

Department of Automatic Control

Study of early termination
of MPC Algorithms

Gustav Henriks

MSc Thesis
TFRT-6023
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2016 by Gustav Henriks. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2016

Abstract

With a steady development of technology, the use of Model Predictive Control
(MPC) has become more and more popular since the computation time has gone
down. With this increase, a need for determining which MPC algorithm is good
for solving a certain type of MPC problem has occurred which would facilitate the
choice of algorithm and also could increase the performance. One of the determin-
ing aspects is if a solver has the possibility to terminate early (stop the algorithm be-
fore it has performed all of its iterations), for example if it is placed on an embedded
system with strict real-time bounds. With the use of an MPC Benchmarking suite
available at ABB Corporate Research Switzerland, the early termination of MPC
algorithms has been investigated. With the usage of 19 benchmarks and 3 different
solvers that uses Interior point method, Gradient descent and Active-set method a
large number of results have been looked through with the help of different Machine
Learning methods. The result has been classified as good or bad performance when
terminated early and different models have been fitted to predict this data. From this
a group of key-features have been attempted to get extracted to see if there is a pos-
sibility on beforehand to tell if a control problem and a certain solver can be early
terminated. Important features that were found were mostly concerning whether the
control input u was under constraint or not. Good results were especially achieved
for a machine learning model based on the Active-set solver qpOASES which could
give good indications on whether a certain problem could get early terminated or
not.

3

Acknowledgements

I would like to thank my supervisors Joachim Ferreau at ABB Switzerland and
Pontus Giselsson at the Department of Autmatic Control at LTH, Lund University,
for their support and guidance throughout this thesis.

5

Contents

1. Introduction 9
1.1 Background . 9
1.2 Objective . 9
1.3 Outline . 10

2. Optimization and MPC 11
2.1 Quadratic programming . 11

2.1.1 KKT-conditions . 11
2.2 Algorithms . 12

2.2.1 Gradient methods . 12
2.2.2 Interior point methods 14
2.2.3 Active set methods . 15
2.2.4 Chosen Algorithms and their Convergence Bounds 16

2.3 MPC: Model Predictive Control 17
2.3.1 Open- and Closed-Loop Scenarios 18

3. Simulation and Data Analysis 19
3.1 Simulation Setup . 19

3.1.1 ABB’s MPC Benchmarking Suite 19
3.2 Benchmarks . 21
3.3 Running Simulations . 21
3.4 Dataset formulation . 22

3.4.1 Feature scaling . 24
3.5 Coupling data to results . 24

3.5.1 Regression analysis . 24
3.5.2 Generalized Linear Models 26
3.5.3 Turning numerical output into categorical output 27

3.6 Feature selection . 29
3.6.1 Correlation based methods 29
3.6.2 Machine learning based methods 30

3.6.2.1 Regularization 30
3.6.2.2 Logistic Regression 30

7

CONTENTS

3.6.2.3 Random Forest 31
3.6.2.4 Cross-validation 32
3.6.2.5 F1-Score . 32

4. Results and Discussion 34
4.1 Preprocessing of results . 34
4.2 Open-Loop . 34

4.2.1 Feature exploration . 34
4.3 Closed-Loop . 38

4.3.1 Feature exploration . 38
4.4 Compiled . 42
4.5 Discussion of Sections 2 and 3 42

5. Conclusions and Future research 44
5.1 Conclusions . 44
5.2 Future Research . 44

Bibliography 45

8

1
Introduction

1.1 Background

The use of Model Predictive Control has been under steady increase since its first
application in the 70s. Along with its increasing popularity, the speed of the con-
troller has become quicker and quicker which makes it more attractive to put in an
embedded system. These systems can be placed in environments where strict real-
time constraints are to be upheld which could be of a problem for the MPC.
Various optimization algorithms exist that can solve a linear MPC problem and the
process of how these work is something that differs from algorithm to algorithm.
This also make them better or worse suited to solve a certain type of problem. When
this combination of solver and problem is not a good match there is a risk that the
problem might not be solved within the real-time constraints, or in other words, the
solver does not converge within given time limits. However, if the result given from
the solver at a not fully converged stadium does not differ or barely differ from the
fully converged solution, a bad match of algorithm and solver could still be a doable
combination. By looking at the problem that is to be solved, it would be of interest
to determine if the problem together with a solver is feasible on beforehand, for ex-
ample by noting a certain set of key-features. Therefore a feature-selecting machine
learning approach will be taken upon this thesis to see whether this is possible or
not.

1.2 Objective

The purpose of this thesis is to investigate early terminated MPC algorithms; both
from a closed-loop performance perspective as well as how good the algorithm itself
behaves. The methods to evaluate the performance will be to see how easy it is to
create a machine learning model and predict if the algorithm will behave well or
badly depending on what problem it is solving.

9

Chapter 1. Introduction

1.3 Outline

In Section 2 the theory behind the algorithms used as well as for Model Predictive
control will be presented. Further in Section 3 the ABB Benchmarking Suite will
be described briefly, then the methods of processing the simulation results includ-
ing the Machine Learning methods used for this. In Section 4 the results from the
machine learning part is presented and discussed upon, and lastly the findings of
the thesis are concluded and put into perspective to see if any future research can be
done in Section 5.

10

2
Optimization and MPC

2.1 Quadratic programming

The function that most of the context in this thesis will be based upon is the function
in (2.1) which will be minimized by a number of chosen algorithms.

Min q(x) =
1
2

xT Hx+ xT c+q0

subject to: Ax≥ b,

Aeqx = beq.

(2.1)

This is the convex quadratic objective function , where H is a positive semi-definite
symmetric matrix, c,x are vectors in Rn and A,Aeq are fixed matrices in Rm×n. x is
the targeted variable that is to be minimized and q0 a constant [12].

2.1.1 KKT-conditions
Conditions that are necessary for a local minimum to (2.1) are the KKT-conditions
(Karush-Kuhn-Tucker Conditions). These are related to the Lagrangian function of
the quadratic problem. The Lagrangian function is defined as in (2.2) [12]

L(x,λ) = f (x)− ∑
i=E∪I

λici(x) (2.2)

where the scalar λ is the Lagrange multiplier, f (x) the function to be minimized
(which for our case makes f (x) = q(x) from (2.1)) and ci(x) its constraints with
i ∈ E referring to the equality constrains and i ∈ I to the inequality constraints.
Using this function, a set of conditions can be formed, see (2.6).

11

Chapter 2. Optimization and MPC

∇xL(x∗,λ ∗) =0 (2.3)
ci(x∗) =0, for all i ∈ E (2.4)
ci(x∗)≥0, for all i ∈ I (2.5)

λ
∗
i ≥0, for all i ∈ I (2.6)

λ
∗
i ci(x∗) =0, for all i ∈ E ∪I (2.7)

where x∗ is the local solution to (2.1). In (2.7) either constraint i is active or λ ∗i = 0.
These conditions will be used later on in the thesis to check if a solution is accurate
enough and this is done by seeing if the conditions in (2.3)–(2.7) are fulfilled or if
they are within a certain tolerance value.

2.2 Algorithms

A lot of different algorithms exist that solve the quadratic programming problem
that the MPC handles. The way they solve the problem is also different and therefore
there is a need to distinguish them.

2.2.1 Gradient methods
The Gradient method, or maybe more known as the Steepest Descent method is a
very simple optimization algorithm that many other algorithms are based upon. In
brief it can be seen in (2.8) where the function is updated until convergence.

θi+1 = θi−α∇θiJ(θi) (2.8)

where J is the function that is to be minimized, α is the step size and θ is the
targeted variable [9].

Emerging from this comes a type of algorithm that has been investigated in this
thesis: Proximal gradient descent. This algorithm works as following, given

minimize l(x)+ψ(x) (2.9)

a function

proxψ(y) = argmin
x
{ψ(x)+

1
2
||x− y||22} (2.10)

is defined where ψ(x) is a convex function and l(x) a smooth function. Function
(2.10) is then used in (2.11) to create the proximal gradient method.

xk+1 = proxtψ(x
k− t∇l(xk)) (2.11)

12

2.2 Algorithms

where t is the step size which is relating to ∇l.

From (2.11) the Fast Dual Proximal Gradient Method can be derived. This algo-
rithm solves the Dual problem to functions of the same form as (2.1), but it can only
handle the equality constraint in (2.1) and therefore A refers to Aeq in this section.
The Dual problem is, simply put, a reformation of (2.1) which is maximized instead
of minimized. Firstly, the dual variable µ is introduced for the equality constraint
in (2.1), Aeqx = beq. The dual problem then becomes (2.12)

minimize d(µ)+g∗(µ) (2.12)

where d(µ) is the dual function

d(µ) := f ∗(−AT
µ). (2.13)

and f ∗,g∗ are conjugate functions determined as

f ∗(y) = sup
x

{
yT x− f (x)

}
(2.14)

Functions (2.10)–(2.13) are then used in the Fast Dual Proximal Gradient Method
seen below.

Algorithm 1 Fast Dual Proximal Gradient Method
Set: µ0 = µ−1,β 0 = 0
for k ≥ 0 do

vk = µk +β k(µk−µk−1)
xk = argmin

x

{
f (x)+(vk)T Ax

}
µk+1 = prox 1

L g∗
(
vk + 1

L Axk
)

end for

β k is picked to achieve a fast conversion and L = ||AH−1AT ||22 is the Lipschitz
constant. For a more detailed explanation how the algorithm works, see [4].

QPgen: A publicly available algorithm that implements Algorithm 1 is QPgen
which has been used in the simulation part in this thesis. The mayor part of the
algorithm is the use of preconditioning to transform ill-conditioned optimization
problems. This is done by adding an invertible matrix to the inequality constraints
in (2.1) on both sides which makes it possible to alter the constraint to make it more
efficient to handle [4]. This algorithm will be used in the simulations in both Dual
and Primal mode.

13

Chapter 2. Optimization and MPC

2.2.2 Interior point methods
Interior point methods are in general performed by removing the inequality con-
straints from (2.1) and instead penalizing constraints in the objective function. The
resulting equality-constrained problem is then solved by the help of the Newton
method [7]. The Newton method is a simple optimization method that can be seen
in (2.15) where the process of finding the next step for a function f is shown.

xk+1 = xk−
∇ f (xk)

∇2 f (xk)
(2.15)

In this thesis, the algorithm used is called the Primal-Dual Interior Point method.
The process of how this one works will be described hereby. Starting from (2.1) the
KKT conditions are computed and become as in (2.16)–(2.19),

Hx−AT
λ + c = 0, (2.16)

Ax−b≥ 0, (2.17)
(Ax−b)iλi = 0, i = 1,2, ...,m (2.18)

λ ≥ 0. (2.19)

A slack vector y≥ 0 is introduced which turns (2.16)–(2.19) into

Hx−AT
λ + c = 0, (2.20)

Ax− y−b = 0 (2.21)
yiλi = 0, i = 1,2, ...,m, (2.22)
{y,λ} ≥ 0. (2.23)

Furthermore, a complementary measure µ is introduced,

µ =
yT λ

m
(2.24)

Next up, a reformation of (2.20)–(2.23) is necessary to construct the primal-dual
method:

F(x,y,λ ;σ µ) =

 Hx−AT λ + c
Ax− y−b
YΛe−σ µe

= 0, (2.25)

{σ ,µ} ≥ 0. (2.26)

with

14

2.2 Algorithms

Y = diag(y1,y2, ...,ym), Λ = diag(λ1,λ2, ...,λm), e = (1,1, ...,1)T

here, σ ∈ [0,1]. By fixing µ and using Newton’s method on (2.25), a linear system
is obtained:  H 0 −AT

A −I 0
0 Λ Y

 ∆x
∆y
∆λ

=−

 Hx−AT λ + c
Ax− y−b
YΛe−σ µe

 (2.27)

Now the Primal-Dual Interior Point Algorithm can be presented, see Algorithm 2.

Algorithm 2 Primal-Dual Interior Point Algorithm

Given (x0,λ 0,y0) with (x0,y0)≥ 0;
set k←0 and µ0 = (y0)T λ 0/m
repeat

Choose σk
Solve (2.27) with (x,λ ,y) = (xk,λ k,yk) and (µ,σ) = (µk,σk)

to obtain (∆xk,∆λ k,∆yk);
Choose step length αk ∈ (0,1] and set

(xk+1,λ k+1,yk+1)← (xk,λ k,yk)+αk(∆xk,∆λ k,∆yk)
µk+1← (yk+1)T λ k+1/m; k← k+1;

until termination threshold is achieved [13]

Forces PRO: The selected algorithm that was used for this thesis was Forces
PRO. Forces PRO is a commercial solver which leads to that the blueprint for how
the solver works exactly is not publicly available, but one of the method it can be
set to use is the Primal-Dual Interior Point Algorithm [1].

2.2.3 Active set methods
Active-set methods work in the manner that they come up with an estimate of the
active set as the solution by using a two-phase iterative method. The first phase finds
a feasible point for the constraints in (2.1) while the second phase tries to maintain
the feasibility whilst the objective is minimized. By active set, the set of constraints
that are active at a current point is targeted, which for inequality constrains means
that they are active if both sides of the constraint are equal to each-other. [17]. An
example of the Active-set method can be seen in Algorithm 3 [5].

qpOASES: qpOASES is an online Active-set algorithm which makes an as-
sumption that a QP does not change a lot in comparison to its previous QP. By
doing this, previous solution information from the earlier QP is used to solve the
next one which gives a faster solution time and makes it well adapted for real-time

15

Chapter 2. Optimization and MPC

Algorithm 3 Active-set method
Let x0 be a starting point that is fulfilling the constraints in (2.1)
Let W be the current working set containing a subset of the active inequality
constraints at x0.
With equation (2.1):
for k=0..N do

Find the optimal ∆ considering the constraints in W as equality constraints
and disregard the constraints not in W .

Solve the quadratic function in (2.1) substituting x for xk+∆ with the equality
constraint Aeq∆ = 0

if xk +∆ is feasible then
xk+1 = xk +∆

Compute Lagrange multipliers λ for equality constraints and µ for active
inequality constraints.

if all λ ≥ 0 then
xk+1 is the optimal solution to (2.1)

else
Remove constraints that belong to the most negative λ from W .

end if
else

Find the maximum step length α such that xk+1 = xk +α∆ is feasible.
Add the primary constraint to W

end if
end for

Algorithm Type Mode
Forces Interior-Point Method -
qpOASES Active Set Warm start
qpOASES Active Set Cold start
QPgen Gradient Descent Dual
QPgen Gradient Descent Primal

Table 2.1 Summary over investigated algorithms

application. Using this method is referred to as Warm Starting, and by not using
this assumption Cold Starting which handles each QP separately. Both warm start-
ing and cold starting have been examined in this thesis [2].

2.2.4 Chosen Algorithms and their Convergence Bounds
In Table 2.1 the following algorithms can be seen that were picked for the simula-
tion test in this thesis.

16

2.3 MPC: Model Predictive Control

For the 3 different methods described in this chapter, a different amount of iter-
ations are in general needed for the method to converge. On the other hand, these
limits are not something that is available on beforehand for all the solvers.

For the Interior point method, a theoretical lower iteration bound exist, but ac-
cording to [16], this bound has a margin compared to its actual convergence bound
that is too big to be practically applicable. Also for the Active set method, a conver-
gence rate analysis is not available, and hence no a priori convergence limit can be
determined. Depending on the choice of warm starting or cold starting the Active-
set method, the average performance can be less computationally demanding while
the worst-case performance is almost always the same [7].

The only method that has a somewhat reliable convergence rate is the Gradient
method. This is depended on the step size t seen in (2.11) and the sequence of
iterates xi generated by the method (for more guidance how these are computed the
reader is referred to [16]).

2.3 MPC: Model Predictive Control

Model Predictive Control (MPC) is an advanced control theory method based on
optimal control that targets the behavior of a predicted process. With the use of
optimization, it is a strong method to handle multiple-input multiple-output systems
and constraints [15].

The MPC formulation, which will be used for the simulations in this thesis, can
be seen in (2.28) [7]. What the MPC does is that it solves a series of QP:s that are
created for a control problem of the form in (2.28) where only the first indices of
x,u are applied and the rest are discarded.

min
x,u

N−1

∑
k=0

(
yk− yr

k
uk−ur

k

)(
Qk Sk
ST

k Rk

)(
yk− yr

k
uk−ur

k

)
+

(
gy

k
gu

k

)T(yk− yr
k

uk−ur
k

)
+(xN− xr

N)P(xN− xr
N)

with x0 given,
xk+1 = Akxk +Bkuk

yk =Ckxk +Dkuk

umin
k ≤ uk ≤ umax

k

ymin
k ≤ yk ≤ ymax

k

dmin
k ≤Mkyk +Nkuk ≤ dmax

k

dmin
N ≤ T xN ≤ dmax

N
(2.28)

Here, for the discrete time step k and the control horizon N, uk is the control input,
xk the states and yk the process output with yr

k and ur
k as the references to be tracked.

Qk ∈ Rny×ny and Rk ∈ Rnu×nu are weighting matrices and P ∈ Rnx×nx a penalty

17

Chapter 2. Optimization and MPC

matrix for the terminal state xN , gy
k ∈ R1×ny and gu

k ∈ R1×nu are linear penalties for
reference tracking. Setting Sk to zero makes (2.28) convex which turns it into the
same for as (2.1).

2.3.1 Open- and Closed-Loop Scenarios
Two main scenarios for evaluating the different algorithms in 2.1 that were used
were open-loop and closed-loop. They differ a bit in how they are constructed and
can be seen in the next two paragraphs.

Open-Loop: When simulations are done in the open-loop case, the evaluation
of the results comes simply from the solution to (2.1), the variable x which contains
the optimization variables in (2.28) (x,u). This is also the output of the solvers.
To be able to compare the results from different examples, a normalization of the
output was done according to (2.29).

x =
||xopt − x||
||x||

, ||x||> 0 (2.29)

Here the Euclidean norm is used.

Closed-Loop: The objective function used for evaluating the closed-loop per-
formance is almost the same as (2.28), it can be seen in (2.30). Here, the output of
the solvers are not used directly but are instead computed after the solver is done to
be able to handle penalization of constraint violations.

N−1

∑
k=0

(
yk− yr

k
uk−ur

k

)(
Qk Sk
ST

k Rk

)(
yk− yr

k
uk−ur

k

)
+

(
gy

k
gu

k

)T(yk− yr
k

uk−ur
k

)
+ constraintViolation(uk,yk)

(2.30)

Furthermore, constraintViolation is referring to a function that returns a value de-
pending on how much the constraints of the u and y vectors are violated. The func-
tion is calculated as in (2.31) and is only activated if the trajectory violates the given
constraints

1
w

(
xk− xmax

xmax− xmin

)2

+
1
w

(
xmin− xk

xmax− xmin

)2

(2.31)

Here, w is a weight chosen to give higher penalization on constraint violation than
on deviation from the reference trajectories. The trajectories are also weighted by its
feasible area (its maximum subtracted by its minimum), and then squared to make
small violations less penalized then large violations.

18

3
Simulation and Data
Analysis

3.1 Simulation Setup

3.1.1 ABB’s MPC Benchmarking Suite
Currently being developed in ABB Corporate Research in Baden, Switzerland, is
an MPC Benchmarking Suite for Matlab that enables a user to test and compare
various MPC Algorithms. The structure of performing a simulation with the Suite
can be seen in Figure 3.1.

In more detail the simulation done in the Suite works as followed:
The user selects the following

• Solver

– Solver options

* Formulation

* Number of maximum iterations

* Enable warmstart

• Benchmark

– Benchmark case

• Global properties

– Open-loop or closed-Loop

– Termination criteria for MPC algorithm

and this information is send through the suite. Firstly the problem structure of the
selected benchmark is checked for consistency, which can be if fields are missing

19

Chapter 3. Simulation and Data Analysis

Solver

Benchmark

Closed loop/open loop

Internal Structure of ABB:s MPC Benchmarking Suite

Preconditioning for

Solving

Fill in missing

information

Post solution

processing

Error

Send data to solver

Check if options

are feasible

User input:

Obtained Solution

Figure 3.1 A flow chart illustrating a simulation done with the MPC Benchmark-
ing Suite

in the setup. These are then set to a default setting. Secondly, the series of QPs
that are to be solved are created and passed to the solver (the chosen algorithm) as
optimization problems. The solver returns the solution which is then post processed
to retrieve the important information. The solver options a user can select are seen
are described in the following paragraphs.

Open-Loop: Setting the global properties to open-loop lets the MPC algorithm
run the simulation and for each new quadratic problem solve it without any infor-
mation regarding the solution of the previous QP.

Closed-Loop: Closed-loop does the opposite compared to open-loop and pro-
vides the algorithm with the previous solution. Furthermore, a processing step was
added to the suite for this thesis: The control signal given from the solution of the
MPC algorithm is always assumed to be within the control signal constraints, which
in practice is to map the control signal to its closest constraint if the constraint is
violated.

Other parameters: To be able to make a fair comparison of the different solvers
that were picked, some parameters were needed to be set as general. When using the
Benchmarking Suite, there is an option of setting the formulation of the quadratic
programming matrices. Either they are sparse or condensed, with the difference that

20

3.2 Benchmarks

the matrices in (2.1) (H,A,Aeq) are either structured in a sparse or dense manner.
What changes is that the variable to be minimized, x, either contains the control
variables (x,u) for sparse formulation or only u for condensed formulation which
in other words is a state elimination of the quadratic programming. Which out of
these methods is best depends on factors such as if the number of states is small
and the control horizon is long (sparse formulation) or the opposite (condensed for-
mulation). To simplify and make the comparison easier for this thesis, the sparse
formulation was picked for all examples and solvers. That way, an extra transfor-
mation (sparse→ condensed) of the problem was avoided [7].

Furthermore, to avoid having singular matrices, a small weight was added to all
hessians (H in (2.1)).

3.2 Benchmarks

In the benchmarking suite, a total of 22 benchmarks were available for testing algo-
rithms on. Out of these, 19 benchmarks were found to be working for at least one of
the chosen algorithm and were therefore also picked for simulation. A table of the
used benchmarks with a short summary of their properties can be seen in Table 3.1.
The benchmarks are originally picked from both the academia as well as internal
ABB scenarios.

Each Benchmark has a certain amount of ’Cases’, which represent a small
change of the control problem like different form of u and y references. If you sum-
marize all the cases over the 19 benchmarks, there is a total of 66 control problems
available. In Table 3.2 a summary of number of problems available per solver can
be seen.

3.3 Running Simulations

The simulations that were done were proceeded as follows. Firstly all five solvers
were allowed to run each problem to obtain the number of iterations each solver
needed for converging according to their internal converging limit. To investigate
the effects of early termination, this iteration limit was changed and passed as a
parameter for the next simulation run. When evaluating the first run of simulations
it occurred that qpOASES cold started and qpOASES warm started a lot of times
only demanded a few numbers of iteration to converge. With this information, a step
of 1

6 was picked as the fixed step size for all further simulation. What this meant was
that the next simulations were run for steps of 1

6 of the converging iteration limit, so
each problem for each solvers were run for 17%,33%,50%,67%,83% and 100%.
The results were saved for further evaluation later on.

21

Chapter 3. Simulation and Data Analysis

Benchmark name nx nu ny Open-Loop stable
Aircraft 4 2 2 no
Ballonplate 2 1 2 yes
BinaryDistillationColumn 11 3 3 yes
Compressor 6 2 6 yes
DcMotor 4 1 4 yes
DoubleInvertedPendulum 4 2 2 no
FiordosExample 2 1 2 no
ForcesExample 2 1 2 no
Helicopter 6 2 6 no
NonlinearCstr 4 2 4 yes
Pendulum 3 1 3 no
PolytopicTerminal 2 1 1 yes
Quadcopter 12 4 12 yes
RandomStableInputBounds 10 3 10 yes
RobotArm 4 2 4 yes
Shell 9 3 3 yes
Spacecraft 7 4 7 no
ToyExample 2 1 2 yes
TripleInvertedPendulum 6 3 3 no

Table 3.1 List of all the benchmarks used in the simulations.

Solvers Open-loop cases Closed-loop cases
Forces 43 44
qpOASES ws 64 66
qpOASES cs 64 66
QPgen Dual 50 52
QPgen Primal 16 16

Table 3.2 Summary of the number of cases used for simulation for Open-loop as
well as Closed-loop scenario.

3.4 Dataset formulation

One of the more prominent things about the Benchmarking suite is the possibility
to make extensive simulations and obtain large amount of data. For this subject,
a dataset of features containing information about the benchmark that was being
solved, the solver that solves it and what termination point that is currently being
handled was created. From the earlier stages of the projected where the simulations
were run, each solution for each scenario was saved for further use in setting up
the dataset and other evaluations. The idea was then rather straight-forward; 1.
create a script that for each scenario retrieves the solution and the properties of the

22

3.4 Dataset formulation

scenario, 2. perform necessary action to be able to use these properties as features
in a dataset, 3. establish the dataset matrix.

The total number of features used in the dataset are 159 and are related to Control
analysis, Numerical analysis, Which solver(s) and Output related (used as output
for the model).

The features related to numerical analysis are Euclidean norms and conditioning
number of the matrices in the benchmarking processes. The thought behind these
features is that larger norms would imply that the processing would be tougher
and same thing for conditioning numbers. A case where the conditioning number
goes towards infinity would indicate the matrices as singular and thus have a need of
processing which could increase the number of iterations needed. Condition number
is calculated as in (3.1).

||A−1|| · ||A|| (3.1)

where A is a square matrix and || · || is the Euclidean norm. Furthermore, the ma-
trices in (2.28) are checked if they are positive definite/semi-definite and added as
categorical features.

The control theory related features are for example related to the controllability,
observability, step change analysis, poles and zeros of the dynamic system and also
MPC specific features as control horizon length, initial and terminal state and also
whether look ahead for reference changes is on or not.

The output related features are not really used for predicting the output but are
available to use as alternative output for the model creation. They were also found
to be useful in checking the validation of the models created later on in this thesis.
In Table 3.3 there is a short summary of the features used where they are counted
and grouped into different categories.

Feature category Number of features
Which Solver 10
Benchmark Properties 142
- Control related 58
- Numerical analysis 81
Output related 7

Categorical 59
Numerical 100

Table 3.3 Summary of different feature groups used in the simulation. Here Cate-
gorical refers to features that are either 0 or 1 and numerical to features that can have
any real value.

23

Chapter 3. Simulation and Data Analysis

3.4.1 Feature scaling
To be able to use the features for simulation evaluation the features have to be
scaled. If they are not, the comparison between the different features and their
importance would be hard to do because of their varied range. The scaling was
performed by mapping the features to a range of 0 to 1 according to (3.2) for a
certain feature j and for all samples i = 1 : N.

Xi, j =
Xi, j−Xmin

i, j

Xmax
i, j −Xmin

i, j
(3.2)

Inevitability, features with an infinite value were present which were taken care
of by simply removing the values which had infinite value and adding related cate-
gorical features which would be set to one if an infinite value is present and zero if
it is not.

Several features were created based on if a problem or a solver contained a cer-
tain property. These features are referred to as categorical features as they would
either be of the nature ’Yes’ or ’No’. However, since all the other data are of nu-
merical origin, it is wanted to change these into numerical values as well. This was
done by simply setting the categorical features to either 1 or 0 referring to ’Yes’ or
’No’.

A succeeding problem with this is that it was not always certain that a presence
of a particular property would increase the wanted outcome that the data would be
used for, therefore each categorical feature would need a counterpart which is just
the inverted version of itself. This means that a new feature which would have 1 or
0 referring to ’No’ respectively ’Yes’ was added for each categorical feature.

3.5 Coupling data to results

After computing the dataset, which became a matrix of the size 1284 · 159 for the
open-loop case and 1254 ·159 for the closed-loop case, with entries from 5 different
solvers and 6 different iteration limits. Each row is a sample for a certain iteration
limit, solver and problem and each column contains one of the 159 features. Now
the process of finding a relation between the dataset and its output began.

3.5.1 Regression analysis
A commonly used statistical approach to examine your data is to create a Regres-
sion model. This model is based on the different features and the output was the
maximum deviation from the fully converged objective function value. The linear
regression fit is a simple relation that can be seen in Equation (3.3)

24

3.5 Coupling data to results

yi = β0 +β1xi (3.3)

Here β0 is an interception-constant and β1 is a vector of predictor constants of the
same length as xi. The regression fit applied on QPgen Dual can be seen in Figures
3.2 and 3.3.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Iteration treshold (max to min)

-0.5

0

0.5

1

1.5

2

M
a

x
 x

-e
rr

o
r

(n
o

rm
a

liz
e

d
)

Max x-error and prediction of x-error

Prediction

Original

Connection

Figure 3.2 Plot showing a linear regression (green points) between the maximal
deviation from the solution for the solver QPgen Dual. The x-axis is set from fully
converged (x = 0) to 1

6 (x = 1) of the fully converged iteration limit. The Predic-
tion data points have a slight offset to make it easier to establish their representing
Original data point.

As visible in the plots, the deviation is of a higher order than linear which makes
the linear regression fit badly. A perfect fit would overlap the green dots with their
corresponding red dots. In the Table 3.4 the Normalized Root Mean Squared Devi-
ation (NRMSD) can be seen for each solver. It is calculated according to (3.4)

1
ymax− ymin

√
∑

n
t=1(ŷt − yt)2

n
(3.4)

where ŷ is the predicted output and y is the original output.
The lesson learned from using regression analysis is that we get a fit that is not

well adapted for the type of data that is present. Using a higher order of regression
would most certainly lead to a better fit but a problem consists with that the output
is never below zero; the deviation is always positive. This calls for a more adaptive
model fitting.

25

Chapter 3. Simulation and Data Analysis

0 20 40 60 80 100 120 140 160 180

Problems (max x-error per iteration limit, benchmark and solver)

-0.5

0

0.5

1

1.5

2

M
a

x
 x

-e
rr

o
r

(N
o

rm
a

liz
e

d
)

Max x-error and prediction of x-error

Prediction

Original

Connection

Figure 3.3 Plot showing a linear regression between the maximal deviation from
the solution for the solver QPgen Dual in the open-loop case. Here each set of
points(Prediction, Original and their connection) is aligned in the x-direction where
each problem comes after one of another. It can be seen as the ’side view’ of Figure
3.2.

Solver NRMSD
All 2.82e-02
Forces 5.61e-02
qpOASES 6.11e-02
qpOASES ws 6.25e-02
qpOASES cs 7.11e-02
QPgen 1.02e-01
QPgen Dual 1.19e-01
QPgen Primal 1.68e-01

Table 3.4 NRMSD for linear regression model for each Solver and sub groups

3.5.2 Generalized Linear Models
A Generalized Linear model (GLM) is a build-on onto the linear regression seen in
(3.3) with the difference that assumptions can be made about the output data. For
this case, the output data is always larger than zero. How the GLM handles this is
by having a link function between the input data and the output. This link function
can be of the linear case as in (3.3) and it can also be of other types, for example
exponential. For this case, a matching link function would be a log-link function
[11]. This gives the relation seen in (3.5) which is the same as (3.6).

log(yi) = β0 +β1xi (3.5)

26

3.5 Coupling data to results

yi = eβ0+β1xi (3.6)

Here, β0 is an interception-constant and β1 is a vector of predictor constants of the
same length as xi. In Figures 3.4 and 3.5 the GLM fit can be seen.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Iteration treshold (max to min)

0

0.5

1

1.5

2

2.5
M

a
x
 x

-e
rr

o
r

(n
o
rm

a
liz

e
d
)

Max x-error and prediction of x-error

Prediction

Original

Connection

Figure 3.4 Plot showing a Generalized linear model regression (green) between
the maximal deviation from the solution for the solver QPgen Dual. The x-axis is
set from fully converged (x = 0) to 1

6 (x = 1) of the fully converged iteration limit.
The Prediction data points have a slight offset to make it easier to establish their
representing Original data point.

A direct comparison with Figures 3.2 and 3.3 tells that the model is much more
adapted for the data that is present. In Table 3.5 the NRSMD are presented. Not
only does the model visually seem more logical, overall the error gets lower by
almost 9 times. For qpOASES the result is just slightly higher. Still, the results are
not adequate enough.

3.5.3 Turning numerical output into categorical output
To make the problem of predicting the performance of a solver or a group of solvers
given certain benchmark properties into a simpler problem, the numerical output
would have to be turned into a categorical output. This categorical output would be
divided into either 0, which for this case would refer to a good performance given a
certain iteration step limit, or into 1 which would refer to a bad performance.

To enable this, a threshold would be needed to be set. Setting a general threshold
that simply determines if the performance is good or bad is not an easy task since
there are many different solvers and benchmarks, and the threshold would most

27

Chapter 3. Simulation and Data Analysis

0 20 40 60 80 100 120 140 160 180

Problems (max x-error per iteration limit, benchmark and solver)

0

0.5

1

1.5

2

2.5

M
a
x
 x

-e
rr

o
r

(N
o
rm

a
liz

e
d
)

Max x-error and prediction of x-error

Prediction

Original

Connection

Figure 3.5 Plot showing a Generalized linear model regression between the max-
imal deviations from the solution for the solver QPgen Dual in the open-loop case.
Here each set of points (Prediction, Original and their connection) is aligned in the
x-direction where each problem comes after one of another. It can be seen as the
’side view’ of Figure 3.4.

Solver NRMSD
All 3.17e-03
Forces 7.34e-03
qpOASES 5.50e-02
qpOASES ws 4.98e-02
qpOASES cs 6.28e-02
QPgen 5.98e-02
QPgen Dual 6.42e-02
QPgen Primal 4.58e-02

Table 3.5 NRMSD for a Generalized linear model for each Solver and sub groups

certainly fluctuate with this variation. Therefore the connection with a good and
bad performance cannot be directly asserted, instead the threshold should be seen
as a guideline towards quality of performance.

Comparing the datasets created after converting numerical output into categori-
cal output can be seen in Table 3.6

28

3.6 Feature selection

1 0 % 1:s
Open-Loop 928 356 72.3
Closed-Loop 300 954 24,0

Table 3.6 Comparison of the open-loop and the closed-loop datasets.

Solvers Maximum correlation Feature
All 0.308 Not QPgen Primal
Forces 0.16 Step change: Peak time
qpOASES 0.182 if condition number of yre f is inf
qpOASES ws 0.161 if condition number of yre f is inf
qpOASES cs 0.203 if condition number of yre f is inf
QPgen 0.343 if condition number of ure f is inf
QPgen Dual 0.301 has Full state
QPgen Primal 0.48 if condition number of ure f is inf

Table 3.7 Table showing the highest correlating feature for the Open-Loop case

3.6 Feature selection

Feature Selection is something that is done out of two reason. The first is to break
down the problem into a smaller problem; a dimensional reduction. This can ex-
ample be used for compression of data. The second reason is to get a better under-
standing of the problem that your data was produced from: getting rid of superfluous
features and only keeping the ones that are relevant. Depending on what the reason
is for making a reduction of features, there are different approaches. The second
reason is what this section will be about.

3.6.1 Correlation based methods
A first step of finding relation between dataset with its features and an output would
be to look at the correlation between them. In this way it is possible to select the
single feature of the dataset that has the largest correlation. When it comes to obtain
more features, correlation between the output and the dataset is not a good method.
This is because selecting features that have the 2nd best correlation and onward
does not guarantee that the prediction will be better, the 2nd best feature could
be completely correlated to the best feature and hence it would not add any extra
information to the prediction. On the other hand, the least correlated feature could
be the one that improves the prediction. Therefore, simply using correlation is only
good for creating a model with one single feature, which is not complex enough for
the task in this thesis. In Table 3.8 and Table 3.7 the highest correlating features are
shown. This time, the fully converged iteration points are not accounted for since
the deviation here always is zero.

29

Chapter 3. Simulation and Data Analysis

Solvers Maximum correlation Feature
All 0.196 Has output constraints
Forces 0.234 umin constraints present
qpOASES 0.315 umax

max−umax
min

qpOASES ws 0,342 umin
max−umin

min
qpOASES cs 0.379 Has output constraints
QPgen 0.317 Lookahead is on
QPgen Dual 0.346 Lookahead is on
QPgen Primal 0.326 condition number of P

Table 3.8 Table showing the highest correlating feature for the Closed-Loop case

3.6.2 Machine learning based methods
A more and more widespread method of examining data to find and draw conclu-
sions and assumptions is to use the help of machine learning theory.

3.6.2.1 Regularization Regularization is a method where you penalize the num-
ber of features used for creating your output.
An example of a regularization method that has been used in this thesis is called
Lasso [3]. This method solves a problem of the form as seen in (3.7)

min
β0,β

(1
N

Deviance(β0,β)+λ

p

∑
j=1
|β j|
)

(3.7)

where Deviance refers to how well the created model fits to the data with the
variables β0 which is the intercept, and β which are the predictor coefficients. N
is the number of observations and p is the number of features. λ is picked by the
user and a high value increases the penalization of the L1 norm of the predictor
coefficients which means that a big number of the predictors will be zero.

Adding this method to the regression method you get Regularized Regression.
Now it is possible to create a model with fewer features and more easily draw
conclusions of which properties are important for a good or a bad fit.

For the open-loop case, the way the deviation from the fully converged objective
function is computed makes the deviation to always be positive. Therefore, creating
a model with Regularized Regression that is able to predict a negative deviation
makes no sense. This called for finding a more specialized method.

3.6.2.2 Logistic Regression As the name suggested, Logistic Regression is a
form of regression like Linear Regression , but instead of giving a numerical out-
put, Logistic regression is a classifier that gives an categorical output of 1:s or 0:s.
In short, this is done my having a link function that maps the data to a span between
0 and 1. Then, a decision boundary is placed in between which groups the outputs

30

3.6 Feature selection

X

< 0.5> 0.5

1

< 0.2> 0.4

10

Figure 3.6 A simple decision tree performing a classification for the variable X.
First input is called the root, the second round boxes are referred to as nodes and the
square boxes as leaves.

on either side to the categories 0 or 1. This method can be used together with Reg-
ularization and also GML to create a powerful features selector that is possible to
adapt to the input data [10].

3.6.2.3 Random Forest Random Forest is a Machine Learning method that clas-
sifies an output into an arbitrary number of classes. It is based on Decision Trees
which is illustrated in Figure 3.6 and Bagging. In a Decision Tree, each node is
split with the help of the best available variable in the dataset. In Random Forest,
each node is split with the best variable among a subset of predictors that are ran-
domly chosen at each node. Bagging is a method of averaging several unbiased and
noisy models to create a model with low variance. The Random Forest algorithm is
described in Algorithm 4 [8].

Algorithm 4 Random Forest
Generate N randomly picked subset of dataset X
for each subset do

Grow one Decision Tree with each node containing the best split among
variables resulting from a randomly picked number of the total number of
predictors.

end for
New data is predicted as a majority vote of all grown Decision Trees.

How well the Random Forest performs is calculated by something called Out

31

Chapter 3. Simulation and Data Analysis

-of-bag (OOB) error. The OOB error, which can be compared to cross-validation
to obtain an unbiased performance estimation (described later in the thesis), is cal-
culated by testing each decision tree on the data (Out-of-bag data) that was not
included when creating it.

With the help of the OOB error, it is possible to obtain the importance of each
feature in the dataset. The way this works is by looking at how much the prediction
is increased for OOB data when a certain feature variable is changed and all others
are kept the same. This measurement is referred to as the OOB Permuted Predictor
Delta Error [8].

3.6.2.4 Cross-validation Cross-validation is a method to assert that the model
or prediction you create is not a too optimistic approach of your data. This means
that the model fits the data too good and will not be a good predictor of new unseen
data. What it does is that it creates subsets of the dataset that you have, creates
a model on that subset and then tests that model on another unseen subsets. In
Algorithm 5 a cross-validation scheme can be seen [6].

Algorithm 5 Cross-validation
Split dataset X into k folds
for each fold do

Current fold becomes test set and the rest of the folds becomes training set
Fit model/parameters onto the training set
Test the model on the "unseen" test set

end for
Best performance on the test set is picked as final model parameters

3.6.2.5 F1-Score When facing a classification problem, it might not be straight-
forward to assess how to evaluate the performance of a created model. There will be
cases where data points from a class is classified as another class and this is often a
relation that is a bit skewed. To handle this, there is a good scoring method called
the F1-score that can be used. Before introducing it, there are some terminologies
that need to be clarified. In a classification problem with two classes, as in this case,
there are 4 different types of outcomes: True Positive (TP), False Positive (FP),
False Negative (FN) and True Negative (TN). In Table 3.9 the relations with these
terms can be seen. These terms are then used to create the Precision value ((3.8))
and Recall (3.9). Together they create the F1-score (3.10). For a good F1-score,
both Precision and Recall need to be high which means that the amount of False
Positives and False Negatives need to be low (A F1-score of 1 would indicate a
’perfect’ classifier) [14].

32

3.6 Feature selection

Actual
0 1

Predicted 0 TN FN
1 FP TP

Table 3.9 A table showing how the different classification outcomes for two classes
(0 and 1) relate to each other

Precision =
T P

T P+FP
(3.8)

Recall =
T P

T P+FN
(3.9)

F1 = 2 · Precision ·Recall
Precision+Recall

(3.10)

33

4
Results and Discussion

4.1 Preprocessing of results

As mentioned earlier, some solvers make up a bad match with certain problems and
hence the solutions that is produced has a KKT-violation that is much higher when
comparing to other problem for the same solver. This results should not be taken
into consideration when it comes down to evaluating the results and are therefore
removed. A limit of a KKT-violation of 0.01 was set as a threshold for removing
result that has a higher KKT-violation than that. The choice of 0.01 comes from that
when running processes in real world simulation, there will always be a numerical
error related to disturbances and model uncertainty, hence a value of 0.01 will allow
the results that have a good KKT-violation value, as well as some results that are
on the edge of being bad results but still removing the results that are clearly not
feasible.

In General when analyzing the results in Section 4, a high score for the GLM to-
gether with the combination of a low OOB error and high OOB Permuted Predictor
Delta Error is something to look for.

4.2 Open-Loop

4.2.1 Feature exploration
GLM: Using a GLM with Lasso regularized logistic regression, the following fea-
tures were picked as seen in Table 4.1. The feature indicating at what iteration per-
centage the simulation is terminated at was picked for all solvers and is not included
in the table. For this case, the F1-score shows that the eight different models build
are able to make predictions that are better than just guessing (F1-score higher than
0.5), with the different qpOASES subsets has the highest score and the QPgen sub-
sets has the lowest. For qpOASES the features used are either related to if there is a
constraint present on umax, the variation of ure f or the conditioning or magnitude of
the problem’s matrices. Furthermore, Forces has a relatively high F1-score as well

34

4.2 Open-Loop

where a terminal state 6= 0 as the first picked feature.

Solvers Features F1-score
Qpgen Dual

ALL QPgen Primal 0.901
umax constraints present
Terminal state 6= 0

Forces Condition Number of P 0.922
Step change: % of undershoot
umax constraints present

qpOASES Standard deviation of ure f 0.973
Condition Number of M
umax constraints present

qpOASES ws Standard deviation of ure f 0.972
Condition Number of Q
umax constraints present

qpOASES cs Standard deviation of ure f 0.972
Norm of C
Condition number of P

QPgen Has Full State 0.755
Number of QPs
Condition number of P

QPgen Dual Norm of the the process zeros 0.779
x0,max− x0,min

Condition number of yre f
QPgen Primal Largest gain of the LTI system 0.767

Horizon length

Table 4.1 Most important features disregarding the iteration percentage indicat-
ing feature, when creating a GLM with Lasso regularized logistic regression for the
open-loop case. For each solver group, the features are ordered according to their
importance in descending order.

Random Forest: Looking at the OOB Permuted Predictor Delta Error the fol-
lowing features which highest importance for each solver can be seen in Table 4.2.
For all solvers, the feature indicating at what iteration percentage the simulation
is terminated at had the highest Delta Error value (ranging between 2.50 and 0.77)
and is not included in the table. Comparing with the results achieved with the GLM,
qpOASES has the smallest error together with the model for the whole dataset (all
solvers), and also here QPgen has a higher OOB error. Since qpOASES has both

35

Chapter 4. Results and Discussion

Solvers Features Delta Error OOB Error
QPgen Dual 0.699

All QPgen Primal 0.686 0.079
qpOASES ws 0.639
norm of ure f 0.152

Forces Lookahead is on 0.143 0.214
Pos-semi def.(Q,P) 0.134
umax constraints present 0.391

qpOASES NbrOf active constraints 0.369 0.048
% of states under constraint 0.303
% of states under constraint 0.441

qpOASES ws umax-umin 0.322 0.055
umin constraints present 0.301
NbrOf active constrains 0.280

qpOASES cs ∑ |umin| 0.280 0.125
umin constraints present 0.270
norm of ure f 0.318

QPgen Sampling time 0.379 0.231
Min of the natural freq of each pole 0.299
Norm of ure f 0.327

QPgen Dual Horizon length 0.321 0.262
∑ |ymax| 0.312
condition number of yre f 0.249

QPgen Primal Min of the natural freq of each pole 0.219 0.219
umax−umin 0.206

Table 4.2 Most important features disregarding the iteration percentage indicating
feature, when creating a random forest according to the OOB Permuted Predictor
Delta Error. Also visible is the OOB error for 100 different decision trees where all
features are used.

the best performance in both machine learning methods, the results are a bit more
interesting since, for the GLM case, the chosen features actually can predict how
the convergence looks like. For the Random forest case, the constraints of u and its
reference are also mentioned as well as "% of states under constraints" which also
includes u.

The feature with the highest Delta Error, for the five different solvers, which is
related to the importance of the feature, is found for qpOASES ws with "% of states
under constraints".

The most important features from Table 4.1 and 4.2 are summarized and illus-

36

4.2 Open-Loop

trated as histograms in Figures 4.1–4.3. In Figure 4.1 it is possible to see that more
than half of the picked features have control related origin. More specifically when
looking at Figure 4.2, the control input u seem to be involved where around 35% of
the features where related to it. In Figure 4.3 the most common features are sum-
marized where the feature of "umax constraint present" is the one that occurs most
times. Furthermore, two more u-related features are visible in this plot.

Solver Control Numerical

Feature groups

0

0.1

0.2

0.3

0.4

0.5

0.6

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
n

u
m

b
e

r
o

f
u

s
e

d
 f

e
a

tu
re

s
Grouping of the most common features

Solver related

Control related

Numerical related

Figure 4.1 Histogram showing the most used feature groups for the different mod-
els created for open-loop

Sol
ve

rs

C
on

st
ra

in
ts

R
ef

er
ec

e

C
on

di
tio

ni
ng

Ste
p

ch
an

ge

N
or

m
O
th

er
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
n

u
m

b
e

r
o

f
u

s
e

d
 f

e
a

tu
re

s

Sub-grouping of most important features

General

u-related

x-related

y-related

Figure 4.2 Histogram showing the most used features in new sub-groups for the
different models created for open-loop

37

Chapter 4. Results and Discussion

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
u

m
b

e
r

o
f

o
c
c
u

re
n

c
e

s

Most occuring features: Open Loop

u
max

 constraint present

Condition number of P

Standard deviation of u
ref

Norm of u
ref

Figure 4.3 Histogram showing the most commonly used features for the different
models created for open-loop

4.3 Closed-Loop

4.3.1 Feature exploration
GLM: For the GLM case, performing a cross-validation for a Lasso regularized
logistic regression was found to not be obtainable.

Random Forest: The most important features when creating a Random Forest
can be seen in Table 4.3.

For the closed-loop case, the GLM Lasso failed to create a model for the data.
This is surprising but not completely unexpected since the closed-loop scenario
adds an extra level of complexity compared to the open-loop scenario. With the
Random Forest for the QPgen dual subset, the predictors for features that were all
zero for this particular subset were active in the model creation, which is a sign that
something went wrong and could also be a sign that some training sets were only
containing 0:s. Still, the Random Forest managed to create models for the rest of
the 7 sets. The downside is that Random Forest uses not only the most important
features, and because of that the same conclusions can not be made as for the open-
loop case.

Smallest OOB error was seen for QPgen and QPgen primal. The most important
features are all control theory related where the peak time for a step change both
occurs in both subsets.

The feature with the highest Delta Error for the five solvers is the range of the
initial states in x0. This is a higher delta error than for the open-loop case (0.548
vs 0.441), but the OOB Error is, when put into perspective with the other scenario,

38

4.3 Closed-Loop

much higher.

Solvers Features Delta Error OOB Error
qpOASES cs 1.043

All Not Forces 0.920 0.122
qpOASES ws 0.900
norm of umin 0.367

Forces umin constraints are present 0.346 0.147
umax constraints are present 0.321
Not qpOASES ws 0.828

qpOASES qpOASES ws 0.689 0.135
qpOASES cs 0.677
Largest pole 0.457

qpOASES ws Step change: peak value 0.395 0.152
∑ |ymin| 0.386
x0,max− x0,min 0.548

qpOASES cs ∑ |x0| 0.546 0.116
Number of QP:s 0.471
Horizon length 0.303

QPgen Number of QPs 0.298 0.080
Step change: peak value 0.288
- -

QPgen Dual - - -
- -
Step change: peak time 0.143

QPgen Primal Norm of the process zeros 0.143 0.063
Sampling time 0.143

Table 4.3 Most important features disregarding the iteration percentage indicat-
ing feature, when creating a random forest with 100 decision trees according to the
OOB Permuted Predictor Delta Error. Noting that QPgen Dual is missing results, the
reason is that the Random Forest method failed to make a model for this subset.

The most important features from Table 4.3 are summarized and illustrated as
histograms in Figures 4.4–4.6. As for the open-loop case, the control related fea-
tures are again mostly used (figure 4.4) but with the u-related features not being as
prominent as in the open-loop case (seen in 4.2). Looking at the most used features
in Figure 4.6, the feature giving the peak time after a step change is mostly used,
but noting here is that it only occurs 3 times which is a total occurrence of 12.5%.

39

Chapter 4. Results and Discussion

Solver Control Numerical

Feature groups

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
n

u
m

b
e

r
o

f
u

s
e

d
 f

e
a

tu
re

s

Grouping of the most common features

Solver related

Control related

Numerical related

Figure 4.4 Histogram showing the most used feature groups for the different mod-
els created for closed-loop

Sol
ve

rs

C
on

st
ra

in
ts

R
ef

er
ec

e

C
on

di
tio

ni
ng

Ste
p

ch
an

ge

N
or

m
O
th

er
0

0.05

0.1

0.15

0.2

0.25

0.3

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
n

u
m

b
e

r
o

f
u

s
e

d
 f

e
a

tu
re

s

Sub-grouping of most important features

General

u-related

x-related

y-related

Figure 4.5 Histogram showing the most used features in new sub-groups for the
different models created for closed-loop

40

4.3 Closed-Loop

1 2 3 4
0

0.5

1

1.5

2

2.5

3

N
u

m
b

e
r

o
f

o
c
c
u

re
n

c
e

s

Most occuring features: Closed Loop

Step change: peak time

Number of QP:s

qpOASES ws

qpOASES cs

Figure 4.6 Histogram showing the most commonly used features for the different
models created for closed-loop

41

Chapter 4. Results and Discussion

4.4 Compiled

In Figures 4.7–4.9 a compiled version, where the results from both the open-loop
and the closed-loop scenario is considered, of histograms can be seen summariz-
ing the most important features from Tables 4.1–4.3. Since control related features
where the most used ones for both the open- and closed-loop case it is also the most
used ones when compiling both the cases together. This is seen in Figure 4.7. In
Figure 4.8, the most used sub-group overall is the features realted to the constraints
of the control variables, where the u-related are again most dominant. The most
interesting plot is Figure 4.9 where the most commonly used features are shown,
here the feature signaling if umax constraint is present or not is by far the most used
feature.

Solver Control Numerical

Feature groups

0

0.1

0.2

0.3

0.4

0.5

0.6

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
n

u
m

b
e

r
o

f
u

s
e

d
 f

e
a

tu
re

s

Grouping of the most common features

Solver related

Control related

Numerical related

Figure 4.7 Histogram showing the most used feature groups for the different mod-
els created both for closed-loop and open-loop

4.5 Discussion of Sections 2 and 3

Given the different proportions of the datasets could be a reason for why the mod-
eling was much more troublesome for the closed-loop case than for the open-loop.
As seen in Table 3.6, the number of 1:s and 0:s for the two dataset is almost in-
verted. Why this can create a problem is that for a certain subset, there is a risk that
a training set created with cross-validation or with Random Forest will only contain
zeros.

In Tables 3.7 and 3.8, the features with the highest correlation with the output
can be seen. Interestingly, in Table 3.7 for the open-loop case, the Condition number
of yre f and ure f are mentioned several times. Since neither yre f nor ure f are square

42

4.5 Discussion of Sections 2 and 3

Sol
ve

rs

C
on

st
ra

in
ts

R
ef

er
ec

e

C
on

di
tio

ni
ng

Ste
p

ch
an

ge

N
or

m
O
th

er
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
n

u
m

b
e

r
o

f
u

s
e

d
 f

e
a

tu
re

s

Sub-grouping of most important features

General

u-related

x-related

y-related

Figure 4.8 Histogram showing the most used features in new sub-groups for the
different models created both for closed-loop and open-loop

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

N
u

m
b

e
r

o
f

o
c
c
u

re
n

c
e

s

Most occuring features

u
max

 constraint present

Condition number of P

Standard deviation of u
ref

Number of QP:s

qpOASES ws

Norm of u
ref

u
min

 constraint present

Step change: peak time

Figure 4.9 Histogram showing the most commonly used features for the different
models created both for closed-loop and open-loop

matrices, the condition number is calculated in another way than in (3.1) (more
precisely by the help of Singular Value Decomposition). These features in Tables
3.7 and 3.8 are hard to interpret, one case could be that they are "hiding" more
important features that are of numerical origin, while the "if condition number is
infinite" related features are either 0 or 1 with 1 as the highest value a feature can
have. Therefore a numerical feature with a lower value than 1 would have a less
correlation.

43

5
Conclusions and Future
research

5.1 Conclusions

The findings in this thesis show that it is possible to predict for some solvers whether
or not they will come up with a good enough solution when terminated early, when
only using a few numbers of features. The Machine learning model-based pre-
dictions done in ABB’s Benchmarking Suite work best for an open-loop scenario
whereas for closed-loop, less results were achieved.

The features that were most used in general are related to the control input u.
Good results were achieved for especially qpOASES in the open-loop case, with the
control input u here as well as the most relevant feature. The results for the closed-
loop case were not as well defined, with QPgen Primal as the best solver but with
low-valued feature importance.

5.2 Future Research

The research regarding this topic can be extended in several directions to see if the
results will improve, for example adding more iteration steps or coming up with
more benchmarking cases (time and processing demanding), or trying out different
machine learning methods than the ones used in this thesis. Relating the work more
further to how the algorithms work in very detail is also something that can be
looked upon.

44

Bibliography

[1] Alexander Domahidi. FORCES: Fast Optimization for Real-time Control on
Embedded Systems. http://forces.ethz.ch/doku.php?id=start.
Oct. 2012.

[2] Hans Joachim Ferreau et al. “qpOASES: a parametric active-set algorithm
for quadratic programming”. In: Mathematical Programming Computation
6.4 (Dec. 2014), pp. 327–363. ISSN: 1867-2949, 1867-2957. DOI: 10.1007/
s12532-014-0071-1. URL: http://link.springer.com/10.1007/
s12532-014-0071-1 (visited on 07/23/2016).

[3] Wenjiang J. Fu. “Penalized Regressions: The Bridge versus the Lasso”. In:
Journal of Computational and Graphical Statistics 7.3 (Sept. 1998), p. 397.
ISSN: 10618600. DOI: 10.2307/1390712. URL: http://www.jstor.org/
stable/1390712?origin=crossref (visited on 10/18/2016).

[4] Pontus Giselsson and Stephen Boyd. “Preconditioning in fast dual gradient
methods”. In: IEEE, Dec. 2014, pp. 5040–5045. ISBN: 978-1-4673-6090-
6 978-1-4799-7746-8 978-1-4799-7745-1. DOI: 10 . 1109 / CDC . 2014 .
7040176. URL: http : / / ieeexplore . ieee . org / lpdocs / epic03 /
wrapper.htm?arnumber=7040176 (visited on 03/24/2016).

[5] Ola Harkegard. “Efficient active set algorithms for solving constrained least
squares problems in aircraft control allocation”. In: Decision and Control,
2002, Proceedings of the 41st IEEE Conference on. Vol. 2. IEEE, 2002,
pp. 1295–1300. URL: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=1184694 (visited on 07/23/2016).

[6] Ron Kohavi et al. “A study of cross-validation and bootstrap for accuracy
estimation and model selection”. In: International Joint Conference on Ar-
tificial Intelligence. Vol. 14. 1995, pp. 1137–1145. URL: https://pdfs.
semanticscholar.org/0be0/d781305750b37acb35fa187febd8db67bfcc.
pdf (visited on 07/16/2016).

45

BIBLIOGRAPHY

[7] D. Kouzoupis et al. “Towards proper assessment of QP algorithms for em-
bedded model predictive control”. In: Control Conference (ECC), 2015 Eu-
ropean. Control Conference (ECC), 2015 European. July 2015, pp. 2609–
2616. DOI: 10.1109/ECC.2015.7330931.

[8] Andy Liaw and Matthew Wiener. “Classification and regression by random-
Forest”. In: R news 2.3 (2002), pp. 18–22. URL: ftp://131.252.97.79/
Transfer/Treg/WFRE_Articles/Liaw_02_Classification%20and%
20regression%20by%20randomForest.pdf (visited on 07/16/2016).

[9] David G. Luenberger and Yinyu Ye. Linear and nonlinear programming. 3rd
ed. International series in operations research and management science. New
York, NY: Springer, 2008. 546 pp. ISBN: 978-0-387-74502-2.

[10] David JC MacKay. Information theory, inference and learning algorithms.
Cambridge university press, 2003. URL: http://books.google.com/
books ? hl = en & lr = &id = AKuMj4PN _ EMC & oi = fnd & pg = PR7 & dq =
%22requires+some+of+the%22+%22are+towards+the+end.+All+
chapters+of+Part+III+are+optional+on+a%22+%22Parts+I,
+II,+IV,+and+V+of+this+book,+chapters+on+advanced+or%22+
&ots=ELnrc75yAf&sig=bt2ju-jexLaetgk-pV3LrnUcoI4 (visited on
07/19/2016).

[11] Peter McCullagh and John A. Nelder. Generalized linear models. Mono-
graphs on statistics and applied probability: 37. London : Chapman & Hall,
1989, 1989. ISBN: 978-0-412-31760-6.

[12] Jorge Nocedal and Stephen J. Wright. Numerical optimization. 2nd ed.
Springer series in operations research. New York: Springer, 2006. 664 pp.
ISBN: 978-0-387-30303-1.

[13] Florian A. Potra and Stephen J. Wright. “Interior-Point Methods”. In: Jour-
nal of Computational and Applied Mathematics 124 (Nov. 1999), pp. 281–
302. URL: http://pages.cs.wisc.edu/~swright/papers/potra-
wright.pdf (visited on 07/29/2016).

[14] David Martin Powers. “Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation”. In: (2011). URL: http:
//dspace2.flinders.edu.au/xmlui/handle/2328/27165 (visited on
07/16/2016).

[15] James Blake Rawlings and David Q. Mayne. Model predictive control: the-
ory and design. OCLC: ocn430536884. Madison, Wis: Nob Hill Pub, 2009.
533 pp. ISBN: 978-0-9759377-0-9.

46

BIBLIOGRAPHY

[16] Stefan Richter. “Computational complexity certification of gradient methods
for real-time model predictive control”. PhD thesis. Diss., Eidgenössische
Technische Hochschule ETH Zürich, Nr. 20718, 2012, 2012. URL: https:
/ / e - collection . library . ethz . ch / view / eth : 6362 (visited on
03/21/2016).

[17] Elizabeth Lai Sum Wong. “Active-set methods for quadratic programming”.
In: (2011). URL: http://escholarship.org/uc/item/2sp3173p.pdf
(visited on 07/23/2016).

47

Document name

Date of issue

Document Number

Author(s) Supervisor

Sponsoring organization

Title and subtitle

Abstract

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN

Language Number of pages Recipient’s notes

Security classification

	Blank Page

