
Implementation of a scalable and configurable program for automatic generation
of memory circuit layout in nanometer technologies

Axel Andersson and John Gustavsson

Department of Electrical and Information Technology
Lund University

Right now, all across the world, production processes
are successively getting more and more automated. Nat-
urally this includes the memory industry as well, where
the memory compiler is an important tool to improve ef-
fectiveness.

Memory compilers are designed for the purpose of auto-
matically generating the layout of a memory’s circuit. All
memory vendors use this kind of tool to generate memo-
ries for their customers. Compilers are designed to support
generation of memories with different attributes, e.g. speed,
power consumption and various sizes. The tool may be very
advanced and take a lot of time to develop. It is therefore
necessary to make the implementation of the compiler con-
figurable and scalable. A compiler has to be somewhat tech-
nology independent as well, e.g. being compatible for both
130 nm and 65 nm technologies, so that it is usable for a long
period of time. This will make it efficient to use the compiler
in the long run compared to a manual circuit design, where
almost everything in the design process becomes obsolete
after a technology switch.

During this thesis a compiler was implemented for an ar-
chitecture developed at Lund University for Static Random-
Access Memories (SRAM), a fast memory type used in for
example computer systems as cache memory. The compiler
is close to being solely dependant on the architecture of the
memory, i.e. the logic function of each component. There-
fore most of the components are interchangeable, given that
they are compatible with it’s surrounding blocks of course.
Because of this, the compiler can be used to generate mem-
ories with different speed and bit over area density con-
straints. Support for configurable sizing of the memory was
also achieved. Not only in the sense of total number of bits
stored, but also how many addresses and how many bits
there is per address. Having a compiler which is flexible
is really what it is all about, since this means that the mem-
ory provider can support a wide range possible customer re-
quests.

Sometimes there may be a discrepancy between what the
customer needs and what the vendors can provide. There-
fore one of the primary goals was to make an implemen-

tation with a general purpose approach. A compiler which
is technology independent as well as the source code being
structured in a convenient manner. This makes it possible
for other designers to improve the compiler over time, even
though new technologies are released, and there by keeping
the compiler relevant and up to date.

For now the functionality of the compiler is limited to
only working for one architecture. This is something for
further work to improve. A lot of the source code can be
used for other architectures, thanks to the general purpose
approach, which should ease inclusion of more architectures
and functionality.


