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Abstract

Topology optimization using the density based method with penalization and
filters result in non-discrete densities which is an issue since they can’t be man-
ufactured. These intermediate densities are forced to become discrete with
Heaviside projections. The Heaviside function used in this work is a continu-
ous differentiable function that starts with a linear behaviour and approaches a
Heaviside step function with the optimization iterations. A finite strain plastic-
ity problem is solved and optimized, with the objective being to maximize the
plastic work in the structure. The optimization problem has been solved using
the method of moving asymptotes. Since the structure has an elasto- plastic
response the stresses depend on the load history, the optimization therefore be-
comes path dependant as well. The sensitivities has been calculated using the
adjoint method.
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Introduction

The goal of topology optimization is often to find the most optimal geometry
or distribution of material within specified boundaries. It can be applied in an
early stage in the design process to arrive close to an optimal design without
iterations of design concepts. The most common and most researched method
in topology optimization is the density based method used in this thesis [8].
It uses the density as the design variable and it varies between one and zero
representing material and void in the structure. Most research done on the
topic handles small elastic strains, there is however very little research that
deals with large and plastic deformations in topology optimization. Another
method that is promising and growing is the level-set method [12], [14].

The density based method combined with penalization struggles with a few
problems such as non-discrete solutions i.e. gray regions with intermediate den-
sities, mesh dependence and checkerboard patterns [2], [9]. The problems above
can be overcome by different techniques such as filtering. The problem to be
solved in this thesis is a topology optimization problem with large plastic de-
formations. As earlier mentioned the density based approach has been used
together with SIMP (Solid isotropic material with penalization) to punish in-
termediate densities, see figure 1a. A Helmholtz density filter is implemented to
deal with the checkerboard issue and gain control over the length scale, declaring
an average minimum thickness of the material parts in the structure, see figure
1b. The benefit of using a Helmholtz PDE as filter is that it utilize the already
existing FEM-frame and is therefore very efficient, other filters require large
arrays of information on surrounding elements [5]. The intermediate densities
caused by the density filter has been threshold using a Heaviside function, see
figure 1c, forcing the densities to become one or zero [15], [9], [2]. An import
part of topology optimization is the sensitivity analysis, which is the derivatives
of the functionals. Two analytical methods exist to compute the sensitivities,
the direct and adjoint method. In comparison with numerical methods such as
the finite difference method which is easy to implement but is an approximation
and suffers from round-off errors and truncation errors the analytical methods
are more efficient and exact. The functions of the topology problem has been
solved using MMA (Method of moving asymptotes) [11]. An isotropic material
model has been used and the yield surface for evaluating the plastic response
is of Von Mises type. Since the deformation is path dependant the sensitivity
analysis becomes path dependant as well. The adjoint method is used in this
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work, thus, in order to compute the sensitivities the primary structural problem
must be solved first then the sensitivities are calculated after [6]. The objective
of the optimization is to maximize the absorbed plastic work in the structure.
The aim of this thesis is to implement a Heaviside filter in the topology op-
timization problem described above with large plastic strains, the program is
written in fortran at the solid mechanics department at LTH. The work can be
viewed as a continuation of the paper by Wallin et al. [13] where the structural
problem and the topology optimization with density filters has been covered.

(a) Density based method with
penalization ρ.

(b) Filtered densities ρ̃

(c) Heaviside projected densities.
ρ̂ = H(ρ̃)

Figure 1: Illustration of the checkerboard pattern, the non-discrete filtered den-
sities and the discrete Heaviside projected densities.
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Chapter 1

Continuum Mechanics

Continuum mechanics deals with the analysis of the kinematics and mechanical
behaviour of materials which are modeled as a continuous mass. The motion
of the continuous body from the undeformed configuration (B0), also called
reference configuration to the deformed configuration (B) called current config-
uration is shown in figure 1.1. Each point in the reference configuration of the
body has a position vector r0 and in the current configuration r. The vector
mapping the motion from a point in the reference configuration to a point in
the current configuration is ϕi. A set of orthogonal unit base vectors ex, ey, ez
are introduced forming a Cartesian coordinate system [1].

Figure 1.1: The deformed and undeformed configuration

The components of r0 are called material coordinates and the components
of r are called spatial coordinates. The vectors r0, r can be expressed as

r0 = exX + eyY + ezZ

r = exx+ eyy + ezz
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The deformation of the body is expressed through a relation between the refer-
ence and the current configuration

r = r(r0)

and locally the deformation can be approximated by a linear mapping

dx =
∂x

∂X
dX +

∂x

∂Y
dY +

∂x

∂Z
dZ

dy =
∂y

∂X
dX +

∂y

∂Y
dY +

∂y

∂Z
dZ

dz =
∂z

∂X
dX +

∂z

∂Y
dY +

∂z

∂Z
dZ

(1.1)

which can also be written as
dr = F dr0 (1.2)

where F is the deformation gradient, or in index notation where xi ∈ B and
Xi ∈ B0

Fij =
∂xi
∂Xj

. (1.3)

The displacement between the two configuration is expressed by u

r = r0 + u(r0) (1.4)

thus the differential becomes

dr = (I +D)dr0 (1.5)

where I is the identity matrix and D is the displacement gradient and defined
by

Dij =
∂ui
∂Xj

. (1.6)

As can be seen above the deformation gradient can be expressed by the dis-
placement gradient

Fij = δij +
∂ui
∂Xj

(1.7)

where δij is the Kronecker delta. Green’s strain is defined by

εG =
l2 − l20

2l20
=
drT dr − drT0 dr0

2drT0 dr0
=
drT0
ds20

1

2
(F TF − I)

dr0
ds20

(1.8)

so the Green strain tensor is defined as

EG =
1

2
(F TF − I) =

1

2
(D +DT ) +

1

2
DTD (1.9)
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1.1 Weak form of the balance equations

The weak form is the base for the FEM formulation, it will be derived from the
equation of balance of linear momentum [3]∫

V

ρv̇dV =

∫
S

tdS +

∫
V

bdV. (1.10)

Where ρ = ρ(x, t) is mass density, v̇ = v̇(X, t) is the acceleration field, t =
t(x, t) the Cauchy traction vector and b = b(x, t) the body force, with a given
motion x = X (X, t) in spatial coordinates. Since there exists a spatial tensor
field σ such that t(x, t,n) = σ(x, t)n, where n is the outward normal. The
surface integral in (1.10) can be converted into a volume integral by using the
divergence theorem∫

S

t(x, t,n)dS =

∫
S

σ(x, t)ndS =

∫
V

divσ(x, t)dV. (1.11)

With the result from (1.11) into (1.10) Cauchy’s first equation of motion on
global form is obtained ∫

V

(divσ + b− ρv̇)dV = 0, (1.12)

the relation hold for any volume V therefore the local form is

divσ + b = ρv̇. (1.13)

using that the velocity field v can be expressed by time rate of change of the
displacement field u and equation (1.13) is written as

divσ + b = ρü, (1.14)

equation (1.14) is multiplied with an arbitrary weight function c = c(x) and
integrated over the body

f(u, c) =

∫
V

(divσ − b+ ρü) ·c dV = 0 (1.15)

equation (1.15) is the weak form of the equation of motion in spatial coordinates.
Using the chain rule to the term divσ · c can be expressed as

divσ · c = div(σc)− σ : gradc (1.16)

which together with the divergence theorem results in that equation (1.15) can
be rewritten to

f(u, c) =

∫
V

[σ : gradc− (b− ρü)·c]dV −
∫
S

t ·c dS = 0 (1.17)
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where it was used that t = σn on the boundary of the surface. The arbitrary
function c can be viewed as the virtual displacement field δu in the current
configuration, which leads to the weak form of the equations of motion. Due to
the symmetry of σ equation (1.17) can be expressed as

f(u, δu) =

∫
V

[σ :
1

2
(gradT δu+ gradδu)− (b− ρü) · δu]dV −

∫
S

t · δudS = 0

(1.18)
where the following functions

δWint(u, δu) =

∫
V

σ :
1

2
(gradT δu+ gradδu)dV (1.19)

δWext(u, δu) =

∫
V

b·δudV +

∫
S

t·δudS (1.20)

are called the internal and external virtual work. From equation (1.18) one can
see that if the acceleration of the displacement field is zero ü = 0 the internal
virtual work is equal to the external virtual work δWint(u, δu) = δWext(u, δu).
In this work it is preferred to have the formulation of (1.18) in the reference
configuration when solving it. The formulation in the reference configuration

f(u, δu) =

∫
V0

[P : gradδu− (B − ρ0ü) · δu]dV0 −
∫
S0

T · δudS0 = 0 (1.21)

where P is the first Piola-Kirchhoff stress tensor, B the body force and T the
traction force in the reference configuration. The equation can also be expressed
in terms of the second Piola-Kirchhoff stress tensor S instead of the first

f(u, δu) =

∫
V0

[S : δE − (B − ρ0ü) · δu]dV0 −
∫
S0

T · δudS0 = 0 (1.22)

where E is the Green-Lagrange strain tensor and

δE =
1

2
[(F T gradδu)T + F T gradδu] (1.23)
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1.2 Plasticity

In the elastic structural problems the stresses and strains has a one-to-one rela-
tion, i.e. for a certain strain there exists only one stress. If the stresses reaches
above the yield stress however the problem has to deal with plastic deformation
and the one-to-one relation no longer holds since a certain strain can have two
different stresses depending on the load history please see figure (1.2). To deter-

Figure 1.2: The figure to the left is the elastic region and the figure to the right
the plastic

mine if a material response is plastic or elastic a yield function f is introduced.
For f below zero no yielding occurs and when it is equal to zero the material is
yielding, i.e.

f(σij) = 0 (1.24)

When the function f(σij) is equal to zero it can be illustrated by a surface in
the principal stress space called a yield surface, see figure 1.3.

Figure 1.3: Von mises yield criterion in the deviatoric plane
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If the response is elasto-plastic the yield function changes in order for the
function to remain zero, this change of the yield surface is called the hardening
rule. Since the yield surface not only depends on the stresses it becomes

f(σij ,Kβ) = 0

β = 1, 2, ...
(1.25)

where Kβ are the hardening parameters. When the hardening parameters are
equal to zero equation (1.25) is equal to the initial yield function (1.24). Through
the hardening parameters the size, shape and position of the surface (1.25)
changes with plastic loading. Which implies that the choice of hardening pa-
rameters determines the choice of hardening rule and therefore also the change
of the yield surface. To model this change some internal variables exist that
characterize the state of the material i.e. the load history. The internal vari-
ables are expressed as

ακ = internal variables (κ = 1, 2, ..)

ακ = 0 initially,
(1.26)

since the internal variables is assumed to mimic the history of the plastic loading
they have to be zero initially and as the internal variables characterize the
material the hardening parameters depend on the internal variables

Kβ = Kβ(ακ) (1.27)

it then follows that

K̇β =
∂Kβ

∂ακ
α̇κ, (1.28)

since f = 0 during plastic loading, the following expression also holds

ḟ = 0 (1.29)

which is called the consistency condition and with the chain rule on equation
(1.24) it becomes

∂f

∂σij
σ̇ij +

∂f

∂Kβ
K̇β = 0. (1.30)

Since the hardening parameters depend on the internal variables (1.27) we get
the expression

∂f

∂σij
σ̇ij +

∂f

∂Kβ

∂Kβ

∂ακ
α̇κ = 0. (1.31)

Some laws are needed that establish how ακ evolute with plastic deformation,
evolution laws. These laws must be based on experimental results and have a
general format

α̇κ = γkκ(σij ,Kβ) (1.32)

where kκ is the evolution functions and γ is the plastic multiplier which is given
by the Kuhn-Tucker conditions and the consistency condition

γ ≥ 0, f(σij ,Kβ) ≤ 0, γf(σij ,Kβ) = 0, γḟ(σij ,Kβ) = 0 (1.33)
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1.3 Plasticity theory for finite strains

When the strains are small the sum of the plastic strains εpij and the elastic
strains εeij makes up the total strains

εij = εeij + εpij (1.34)

this however is not valid when the strains are large, instead the multiplicative
split of the deformations gradient is employed [10], i.e.

F (X, t) = F e(X, t)F p(X, t) (1.35)

where F e(X, t) is the elastic and F p(X, t) the plastic part of the deformation
gradient. The right Cauchy-Green tensor is defined as

C = F P
T

F e
T

F eF P , (1.36)

and
CP = F P

T

F P (1.37)

is the plastic right Cauchy-Green tensor. The Lagrangian strain tensor is also
divided into a total and plastic part

E =
1

2
(C − 1),

EP =
1

2
(C

P − 1),

(1.38)

where both tensors are associated with the reference configuration, in the current
configuration use will be made of the Eulerian tensors

b = FF T ,

be = F eF e
T

,
(1.39)

which are called the total and elastic left Cauchy-Green tensors. The deforma-
tion gradient can be split into a volume-preserving part and a deviatoric part
as

F̄ = J−1/3F (1.40)

where F̄ is the volume preserving part with det(F̄ ) = 1, J is the Jacobian deter-
minant and describes the local volumetric change J = det(F ). If the material
is assumed to be isotropic, the stresses are independent of the orientation of
the current and reference configuration. The plastic flow is isochoric which is a
standard assumption in metal plasticity, we get

detF P = detCP = 1⇒ J = detF = detF e. (1.41)

Hence the result is no volume change for the plastic gradient. The following
part can be seen as a summary of the key equations by Simo & Hughes, for
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an in-depth discussion the reader is referred to [10]. The stress response is
characterized by a stored-energy function

W = U(Je) + W̄ (b̄
e
),

b̄
e

= Je−2/3be,
(1.42)

where W is the strain energy, U(Je) and W̄ (b̄
e
) are the volumetric and devia-

toric parts of W and are defined as

U(J)e =
1

2
κ

[
1

2
(Je

2 − 1)− lnJe
]
,

W̄ (b̄
e
) =

1

2
µ

(
tr[b̄

e
]− 3

)
,

(1.43)

where µ and κ are the shear modulus and the bulk modulus. Since tr[b̄
e
] =

tr[C̄
e
] where C̄

e
is

C̄
e

= Je−2/3F eTF e (1.44)

the deviatoric part of W can be written as Ŵ (C̄e) instead of W̄ (b̄
e
) and the

strain energy becomes
W = U(Je) + Ŵ (C̄e). (1.45)

the Kirchhoff stress tensor is given by

τ = 2F e
∂W

∂CeF
eT = JeU ′(Je)1 + s,

s = 2dev

[
F̄ e

∂Ŵ

∂C̄e F̄
eT
]
.

(1.46)

The uncoupled, stored-energy function in (1.43) becomes an uncoupled volumetric-
deviatoric stress-strain relationship in (1.46). The stresses can be rewritten as

τ = Jep1 + s,

p = U ′(Je) =
κ

2
(Je2 − 1)/Je,

s = dev[τ ] = µdev[b̄e]

(1.47)

and as mentioned in previous section the yield function keeps track of the plastic
response. The yield surface is here given by

f(τ , α) = ||dev[τ ]|| −
√

2

3
[σy0 +Kα] (1.48)

where σy0 is the initial yield stress, K is the hardening modulus and α is the
internal variable. The associative flow rule is determined by the principle of
maximum plastic dissipation, it takes the form as

˙̄Cp−1 = −2

3
γ[C : Cp−1]F−1nF−T ,

n = dev[τ ]/||dev[τ ]||
(1.49)

14



where γ is the plastic multiplier and C : Cp−1 =
∑
i

∑
j(CijCij

p−1). The
internal state variable evolves by the rate equation

α̇ =

√
2

3
γ, (1.50)

the γ is subject to the previously discussed Kuhn-Tucker conditions and the
consistency condition in the previous section.

1.4 Integration of the flow rule and hardening
law

The problem will be solved with the finite element method and therefore it is
needed to calculate the stresses at the next state. While everything is known
in the current state, only the total displacements are known in the next state
which are provided by the FE equations [7]. In order to calculate the stresses
which depend on the left Cauchy-Green tensor the constitutive equations must
be integrated since the left Cauchy-Green tensor evolves with the flow rule. The
equations that need to be integrated are

˙̄Cp−1 = −2

3
γ[C : Cp−1]F−1nF−T ,

α̇ =

√
2

3
γ,

(1.51)

which has been defined in the previous section. Along with

f(τ , α) = 0 (1.52)

which must hold for a plastic response. The integration is performed using
backward Euler difference scheme and results in the discrete evolution equations

n+1C̄
p−1 − nC̄

p−1
= −2

3
∆γ[n+1Cp−1 : n+1C]n+1F−1n+1nn+1F−T ,

n+1α− nα =

√
2

3
∆γ.

(1.53)

If the response is plastic, the equations in (1.53) must be solved in such a way
that

f(n+1τ ,n+1 α) = 0 (1.54)

is fulfilled. The equations are preferred in spatial coordinates which can be
obtained with some tensor transformations. The expressions

n+1F̄ n+1C̄
p−1n+1F̄

T
= n+1b̄

e
,

n+1 C : n+1Cp−1 = tr[n+1be],
(1.55)
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are used and the derivation can be found in [10]. The first equation in (1.53)
can now be rewritten as

n+1C̄
p−1 − nC̄

p−1
= −2

3
∆γn+1J−2/3tr[n+1be]n+1F̄

−1n+1nn+1F̄
−T
, (1.56)

where n+1F−1 = n+1J−1/3n+1F̄
−1

has been used. If n+1f and n+1f̄ is intro-
duced as the relative deformation gradient and its volume preserving part, they
are defined as

n+1f = n+1F nF−1,

n+1f̄ = n+1F̄ nF̄
−1
.

(1.57)

If each term in the first equation of (1.56) is pre multiplied with n+1F̄ and post

multiplied by n+1F̄
T

together with equation (1.57) we get

n+1b̄
e

= n+1f̄nb̄
en+1f̄

T − 2

3
∆γtr[n+1b̄

e
]n+1n. (1.58)

1.5 Internal Residual

The equations that must be fulfilled in each iteration are

f(n+1τ , n+1α) = ||dev[n+1τ ]|| −
√

2

3
[σy0 +Kn+1α] = 0, (1.59)

n+1b̄
e

= n+1f̄nb̄
en+1f̄

T − 2

3
∆γtr[n+1b̄

e
]n+1n, (1.60)

where

∆α = n+1α− nα =

√
2

3
∆γ, (1.61)

n+1τ = n+1JeU ′(n+1Je)1 + n+1s. (1.62)

In equation (1.60) the ∆γ can be replaced by the expression of ∆α and become

n+1b̄
e

= n+1f̄nb̄
en+1f̄

T −
√

2

3
∆αtr[n+1b̄

e
]n+1n, (1.63)

therefore an internal residual is formed that must always be satisfied and will
look different for a plastic or elastic response. The residual is called C and
depends on the internal state variables that can be altered in order for the
residual to be fulfilled. For a plastic response the residual is

n+1C =


n+1b̄

e − n+1f̄nb̄
en+1f̄

T −
√

2

3
∆αtr[n+1b̄

e
]n+1n

||dev[n+1τ ]|| −
√

2

3
[σy0 +Kn+1α]

(1.64)
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with the internal state variables are

n+1v =

{
n+1b̄

e

n+1α
(1.65)

For an elastic response the residual become

n+1C = {n+1b̄
e − n+1f̄nb̄

en+1f̄
T

(1.66)

Since α is constant for an elastic response, the internal state variable is

n+1v = {n+1b̄
e

(1.67)
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Chapter 2

Finite Element Method

The basis for the finite element formulation is the weak form of the equations
of motion, ie. ∫

V0

[S : δE − b · δu]dV0 −
∫
S0

T · δudS0 = 0 (2.1)

where δE in equation 2.1 is

δE =
1

2
[(F T gradδu)T + F T gradδu] (2.2)

For simplicity the acceleration was ignored ü = 0. The displacement field u is
approximated with the shape functions N and the nodal displacements as

u = Nu (2.3)

the virtual displacement is approximated in the same manner as the displace-
ment field

δu = Nδu. (2.4)

Since the formulation is in the reference configuration the shape functions are
dependant on the material coordinates as N = N(X). Inserting the equations
above into (2.1) results in

δu

(∫
V0

[BTS −NT b]dV0 −
∫
S0

NTT dS0︸ ︷︷ ︸
R

)
= 0 (2.5)

As δu is an arbitrary function and the approximation of δE = Bδu has been
used. In equation (2.5) R is the outer residual and will be used in the coming
chapters.
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Chapter 3

Steady-state coupled
non-linear system

Combining the mechanics and constitutive equations (2.5) and (1.64) shows that
in each time step a set of non-linear coupled system defined as

n+1R(n+1u,n u,n+1 v,n v) = 0
n+1C(n+1u,n u,n+1 v,n v) = 0

(3.1)

must be satisfied. In (3.1), n is the current known state where u and v are known
and n + 1 is the next state where they are unknown. A common procedure to
solve the coupled problem is to uncouple it, by treating the response v as a
function of the system response u, the residuals are then written as

R(u,v(u) = 0,

C(u,v(u) = 0.
(3.2)

The system in (3.2) are solved by implementing two Newton-Raphson loops.
In the outer loop the residual R(u,v(u) is linearized by performing a Taylor
expansion around u

R(uI+1,v(uI+1))

≈ R(uI ,v(uI)) +

[
∂R

∂u
(uI ,v(uI)) +

∂R

∂v
(uI ,v(uI))

Dv

Du
(uI)

]
du

(3.3)

where I is the current iteration and I+1 is the next iteration, since the residual
must be satisfied e.g. (3.2) the residual is assumed to be zero in the next
iteration and equation (3.3) becomes[

∂R

∂u
(uI ,v(uI)) +

∂R

∂v
(uI ,v(uI))

Dv

Du
(uI)

]
du = −R(uI ,v(uI)). (3.4)

To be able to solve the equation above both the system response v(uI) and
the derivative Dv

Du (uI) are needed. Therefore the inner Newton-Raphson loop
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is used to solve the residual C(u, v(u)) for a fixed uI , first C(u, v(u)) is
linearized by using a Taylor expansion around the current iterative vJ(uI)

C(uI ,vJ+1(uI)) ≈ C(uI ,vJ(uI)) +
∂C

∂v
(uI ,vJ(uI))dv (3.5)

and as before the residual is assumed to satisfy it’s condition and be equal to
zero in the next iteration, equation (3.5) becomes

∂C

∂v
(uI ,vJ(uI))dv = −C(uI ,vJ(uI)). (3.6)

The term ∂C
∂v is called the dependent tangent operator. The next iterate

vJ+1(uI) is calculated from

vJ+1(uI) = vJ(uI) + dv. (3.7)

The inner Newton-Raphson loop iterates until the solution is obtained, then the
derivative Dv

Du (uI) is calculated by differentiating the residual C in equation
(3.2) i.e.

∂C

∂u
(uI ,v(uI)) +

∂C

∂v
(uI ,v(uI))

Dv

Du
(uI) = 0 (3.8)

and the derivative Dv
Du (uI) become

Dv

Du
(uI) = −

(
∂C

∂v
(uI ,v(uI))

)−1
∂C

∂u
(uI ,v(uI)). (3.9)

The dependent operator ∂C
∂v (uI ,v(uI)) has been used earlier in equation (3.6)

when computing the incremental response and can be used again. The expres-
sion for the derivative Dv

Du (uI) in equation (3.9) is inserted in equation (3.4) and
it becomes{
∂R

∂u
(uI ,v(uI))− ∂R

∂v
(uI ,v(uI))

[(
∂C

∂v
(uI ,v(uI))

)−1
∂C

∂u
(uI ,v(uI))

]}
du

= −R(uI ,v(uI))
(3.10)

where the term between the braces is called the independent tangent operator,
the system response is then updated by

uI+1 = uI + du. (3.11)

The loops continue to iterate until both residuals are fulfilled.
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Chapter 4

Topology optimization

4.1 General

The idea with optimization in structural mechanics is to produce the optimal
load bearing structure possible within the constraints. The general structural
optimization problem consists of the objective function f that returns a number
that describes how good the design is, usually it’s a minimization problem so
the lower number that f returns the better the design is. The design variable
φ can be a function or vector that can change value in order to improve the
design, it may represent geometry or density in a structure. The state variable
ψ represents the response of the structure for a given design φ, it can be the
displacement or force etc. The optimization problem is usually presented as

(SO)


minimize f(φ, ψ) with respect to φ and ψ

subject to


behavioral constraint on ψ

design constraint on φ

equilibrium constraint.

The formulation above is called simultaneous formulation, φ and ψ are treated
as independent variables and the state problem ψ is solved simultaneous as
the design problem φ. A common situation however is that the state problem
uniquely defines ψ for a given design φ, if the stiffness matrix K(φ) always
has an inverse for any given φ the equilibrium constraint can be left out of the
optimization problem. The formulation of (SO) becomes (SOnf ) and is called
a nested formulation.

(SOnf )

{
min
φ∈X

f(φ, ψ(φ))

s.t. g(φ, ψ(φ)) ≤ 0,
(4.1)

where X is the set where φ is defined and g is the constraint function.
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4.2 Optimal solution

When solving optimization problems it matters whether the set X of the opti-
mization problem is convex or not. For a set to be convex any linear combination
between two points φ ∈ X should also be in the set X , see figure 4.1 below.

Figure 4.1: The convex set to the left and the non-convex set to the right

The condition for convexity can be mathematically expressed by

λφ1 + (1− λ)φ2 ∈ X and λ ∈ (0, 1). (4.2)

When solving optimization problems finding the global minimum to the problem
is key, if the problem is convex any local minimum is a global minimum. Most
of the problems are however non-convex which will be discussed in the next
section. For large scale problems one suitable method is Lagrangian duality,
the Lagrangian is defined by (4.3) below.

L(φ, λ) = g0(φ) +

l∑
i=1

λigi(φ) (4.3)

where λi, i = 1, ..., l are the Lagrangian multipliers. It can be proven that (SO)
is equivalent to the min-max problem (4.4).

SOL min
φ∈X

max
λ≥0
L(φ, λ) = min

φ∈X
max
λ≥0

{
g0(φ) +

l∑
i=1

λigi(φ)

}
(4.4)

First the Lagrangian L is maximized with respect to λ ≥ 0 for a fixed φ and
then the maximized function is minimized with respect to x ∈ X . This is
corresponding to the Lagrangian dual problem D shown in (4.5).

(D)

{
max
λ
ϕ(λ)

s.t. λ ≥ 0
(4.5)

where ϕ is the dual objective function and is defined as

ϕ(λ) = min
φ∈X

L(φ, λ). (4.6)
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The difference between the solution of the original problem (SO) and the dual
problem (D) is called the duality gap. If the problem is convex and Slater’s CQ
is satisfied then the duality gap becomes zero, which means the solution to (D)
and (SO) is equal. So instead of solving the original problem the dual problem
is solved instead.

If the objective function g0 is strictly convex and gii = 1, ..., l are convex and
separable so they can be written as a sum of functions of a single variable

gi(φ) =

n∑
j=1

gij(φj), i = 0, ..., l. (4.7)

The Lagrangian L becomes

L(φ, λ) = g0(φ) +

l∑
i=1

λigi(φ)

=

n∑
j=1

g0j(φj) +

l∑
i=1

λi

( n∑
j=1

gij(φj)

)

=

n∑
j=1

(
g0j(φj) +

l∑
i=1

λigij(φj)

)
(4.8)

and the dual objective function is now rewritten as

ϕ(λ) = min
φ∈X
L(φ, λ) = min

φ∈X

n∑
j=1

(
g0j(φj) +

l∑
i=1

λigij(φj)

)
. (4.9)

When solving the problem above all that is needed is to minimize the Lagrangian
for all φ which are n times for a single variable. This makes Lagrangian duality
a good solving technique for convex, separable problems. With finite upper and
lower bounds the minimization is performed as follows by

if
∂L(φminj ,λ)

∂φj
≥ 0, then φ∗j = φminj

else if
∂L(φmaxj ,λ)

∂φj
≥ 0, then φ∗j = φmaxj

else φ∗j = φ∗j (λ) from
∂L(φj ,λ)

∂φj
= 0

(4.10)
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4.3 Method of Moving Asymptotes

In the previous section the optimization solving methods handled convex prob-
lems, although many of the problems are non-convex. The solution is to make
a convex approximation of the original problem. One of the most common
approximation is MMA (Method of Moving Asymptotes) introduced by Svan-
berg [11]. There exist many other approximations such as CONLIN (Convex
Linearization) but MMA offers more control on how conservative the approxi-
mation should be, and it’s the approximation used in this paper. For iteration
k, the MMA approximation (gM,k

i ) to the original function (gki ) is

gM,k
i (φ) = rki +

n∑
j=1

(
pkij

Ukj − φj
+

qkij
φj − Lkj

)
(4.11)

where Lj and Uj are the moving asymptotes that changes through iterations
and satisfies

Lkj < φkj < Ukj , (4.12)

and

pkij =

 (Ukj − φkj )2
∂gi(φ

k)

∂φj
if
∂gi(φ

k)

∂φj
> 0

0 otherwise,

(4.13)

qkij =


0 if

∂gi(φ
k)

∂φj
< 0

− (φkj − Lkj )2
∂gi(φ

k)

∂φj
otherwise,

(4.14)

rki = gi(φ
k)−

n∑
j=1

(
pkij

Ukj − φkj
+

qkij
φkj − Lkj

)
(4.15)

So either pkij or qkij is equal to zero. When solving the duality problem in previous
section the derivative of the objective function and all constraint functions with
respect to the design variable is needed, these derivatives are called sensitivities
and will be discussed more in the next section. The sensitivities become

∂gM,k
i (φ)

∂φj
=

pkij
(Ukj − φj)2

−
qkij

(φj − Lkj )2
, (4.16)

The formulation changes from SOnf to

(MMA)


min
φ
gM,k
0 (φ)

s.t.
gM,k
i (φ) ≤ 0, i = 1, ..., l

αkj ≤ φkj ≤ βkj , j = 1, ..., l

(4.17)
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where αkj and βkj are move limits that will be defined later. The problem above
is convex and separable which makes it suitable to solve with Lagrangian dual-
ity. Often ε(Ukj −φkj )2/(Ukj −Lkj ) is added to pk0j and ε(φkj −Lkj )2/(Ukj −Lkj ) is

added to qk0j where ε is a small positive number, to make the objective function

gM,k
0 strictly convex. When choosing the asymptotes it’s decided how conserva-

tive the approximation is. The closer the asymptotes are to the current design
the bigger the approximation becomes, and the further apart from the design,
the less conservative it gets. There is no certain way to do this but the updat-
ing approach proposed by Svanberg follows. For the first to iterations k, the
asymptotes are chosen as

Lkj = φkj − sinit(φmaxj − φminj ) (4.18)

Ukj = φkj + sinit(φ
max
j − φminj ) (4.19)

where 0 < sinit < 1, depending on the degree of conservatism, but a typical
value is 0.5 and a lower number makes it more conservative and a higher less
conservative. φmaxj and φminj are the upper and lower bounds of the design

variable. After the first two iterations the signs of (φkj−φk−1j ) and (φk−1j −φk−2j )
are studied, if the two parenthesises has different signs the variable φj oscillates.
When that happens the approximation should be made more conservative by
moving the asymptotes closer to the design. That is made by

Lkj = φkj − sslower(φk−1j − Lk−1j )

Ukj = φkj + sslower(φ
k−1
j − Uk−1j )

where 0 < sslower < 1. If however the signs of (φkj − φk−1j ) and (φk−1j − φk−2j )
are the same the asymptotes should be moved further from the current design
in order to speed up the convergence

Lkj = φkj − sfaster(φk−1j − Lk−1j )

Ukj = φkj + sfaster(φ
k−1
j − Uk−1j )

where sfaster > 1. The move limits αkj and βkj in the formulation (MMA) are
chosen as

αkj = max(φminj , Lkj + µ(φkj − Lkj )), (4.20)

βkj = min(φmaxj , Ukj − µ(Ukj − φkj )), (4.21)

where 0 < µ < 1, and the design variables are to fulfill the following constraint
each iteration

αkj ≤ φkj ≤ βkj , (4.22)

then the following will always be true

Lkj < αkj ≤ φkj ≤ βkj < Ukj (4.23)

Since Lkj 6= φkj 6= Ukj the term (φkj − Lkj ) and (Ukj − φkj ) can never be zero it
prevents division by zero.
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Chapter 5

Regularization and
Thresholding

In order to obtain mesh independent, checkerboard-free and discrete solutions
filters and Heaviside projections are implemented. When the intermediate den-
sities are penalized with the SIMP method it creates checkerboard patterns,
alternating elements with material and void see figure 5.1. In order to get rid
of the checkerboard pattern the area around a certain element need to affect
the density of the element. A length-scale is needed that create a radius around
the element so the elements within that radius have an impact on the density
of the element. The length scale is introduced through filters, the filters use the
elements within the length scale to create a weighted average that decide the
density of the element. The filter will punish elements that are surrounded by
void and increase the density of elements surrounded by material.
Since the density of the element will be an average, intermediate densities will
appear at the edges between the material parts and void in the structure, see
figure 5.1. These intermediate densities are unwanted and are difficult to relate
to in the physical world, i.e. they can not be manufactured. In order to obtain
a discrete solution with only material or void a Heaviside projection can be
applied to the filtered densities, see figure 5.2. The Heaviside function force the
intermediate densities towards solid material or void leaving a feasible solution.
The Heaviside projection is the emphasis of this thesis and has to the authors
knowledge not been implemented in combination with large plastic deforma-
tions prior to this thesis. Both the filtering and Heaviside projections will be
discussed in more detail in this chapter.
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5.1 Filters

The checkerboard patterns that arise in the structure when the SIMP method
is used occur due to the artificial stiffness that different elements create when
connected by a single node. As mentioned earlier, to overcome the checkerboard
patterns filters are applied and with the filters the length scale is introduced.
The filter doesn’t just remove the checkerboard pattern, through the length
scale it also gives control over the minimum thickness or width of the parts
in the structure. The filter will create intermediate densities ranging from full
material to void over the length scale at the edge of the structure creating a
gradient depending which weighted average is used. After filtering the original
density no longer holds any physical value for the structure, it’s only used as a
design variable for the optimization.

(a) The original densities ρ punished by
SIMP

(b) Filtered densities ρ̃.

Figure 5.1: Illustration of the densities before and after filtering
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5.1.1 Helmholtz PDE filter

The density filter applied in this thesis is implicitly defined as a solution to the
Helmholtz PDE with Neumann boundary conditions [4]. The original filtering
techniques require large arrays of information from surrounding elements and
if parallel computing is used the computations becomes expensive and difficult
to implement. The benefit of using a Helmholtz PDE is that it uses the same
finite element solver as the structural problem which avoids using extra arrays
with information. Since the same solver is used the parallel properties are in-
herited and the program becomes more computationally efficient [5]. In this
work the original density is ρ and the filtered densities will be referred to as ρ̃.
The Helmholtz PDE used in this work is defined as

−R2∇2ρ̃+ ρ̃ = ρ (5.1)

together with Neumann boundary conditions

∂ρ̃

∂n
= 0 (5.2)

where ρ̃ is the continuous filtered density, while the unfiltered density ρ is piece-
wise constant, R can be interpreted as the length-scale and ∇2 is the laplacian.
To solve (5.1) the finite element method is used. First (5.1) is multiplied with
a weight function v and integrated over the body, it becomes∫

V

−vR2div(∇ρ̃)dV +

∫
V

vρ̃dV =

∫
V

vdV (5.3)

with the Green- Gauss theorem and the Neumann condition.∫
V

R2(∇v)T∇ρ̃dV +

∫
V

vρ̃dV =

∫
V

vρdV (5.4)

Using the Galerkin-approach where the shape functions is N , v = Nc, ρ̃ = Nρ̃
and ∇ρ̃ = Bρ̃, equation (5.4) becomes

c

{∫
V

R2BTBdV ρ̃+

∫
V

NTNdV ρ̃−
∫
V

NT dV ρ

}
= 0. (5.5)

By denoting the matrices

K =

∫
V

R2BTBdV

M =

∫
V

NTNdV

T =

∫
V

NT dV

the resulting equation
(K +M)ρ̃ = Tρ (5.6)
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is obtained. For the sensitivity analysis the derivative of equation (5.6) with
respect to ρ becomes

∂ρ̃

∂ρ
= (K +M)−1T (5.7)

5.2 Thresholding

The density filter makes the solution non-discrete which can be solved by using
a Heaviside projection on the filtered densities, see figure 5.2. Most Heaviside
functions that are used are approximated as a smooth continuous function [9].
Since the Heaviside function usually is used in the sensitivity analysis it must be
a continuous differentiable function. For stable convergence the function starts
with almost linear behaviour and then continually moves towards a Heaviside
function through the iterations. Therefore there usually exist a built in param-
eter that dictates the slope of the function. There has however been cases of
success with the continuation approach eliminated but has not been applied in
this work [2].

The Heaviside projection will be referred to as ρ̂ = H(ρ̃). There are many
different Heaviside functions that has been tested with linear elastic strains and
a few will be shown below.

(a) Filtered densities ρ̃ (b) Heaviside projected densities. ρ̂ =
H(ρ̃)

Figure 5.2: Illustration of the non-discrete filtered densities and the discrete
Heaviside projected densities.
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5.2.1 Max operating scheme

This Heaviside function was proposed by Guest. K [2].

ρ̂ = 1− e−βρ̃ + ρ̃e−β (5.8)

Where β is a constant that decides the slope of the function, if β approaches zero
the function becomes linear and doesn’t affect ρ̃, as it moves towards infinity it
becomes a Heaviside step function. It works as a max-operator-based scheme, if
the node has zero density then the Heaviside projection becomes zero otherwise
it becomes one, see Figure 5.3.

Figure 5.3: The function proposed by K. Guest for different β. Dotted line
β=0.5, dashed line β=5 and full line β=50.

For the sensitivity analysis the derivative of (5.8) with respect to ρ̃ becomes

∂ρ̂

∂ρ̃
= βe−βρ̃ + e−β (5.9)
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5.2.2 Min operating scheme

Another similar function was proposed by Sigmund. O [9] who turned the filter
to a min-operator-based scheme.

ρ̂ = e−β(1−ρ̃) − (1− ρ̃)e−β (5.10)

If the density in the node is one then the Heaviside projection becomes one
otherwise it becomes zero, see Figure 5.4.

Figure 5.4: The function proposed by O. Sigmund for different β. Dotted line
β=0.5, dashed line β=5 and full line β=50.

For the sensitivity analysis the derivative of (5.10) with respect to ρ̃ becomes

∂ρ̂

∂ρ̃
= βeβ(ρ̃−1) + e−β . (5.11)

The difference between the max and the min operating scheme is that the pro-
jection removes material from structure in the min scheme as opposed to add
material in the max scheme. In the min operating scheme when material is
removed, the structure corresponding to the design variable ρ is much thicker,
therefore providing more stability during the iterations [9]. Both Heaviside
projections above are non-volume preserving, which cause worse convergence
towards the optimal solution than a volume preserving projection [15].
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5.2.3 Volume preserving Heaviside projection

A volume preserving projection was proposed by S. Xu et al. [15] in which both
filters above are combined.

ρ̂ =

{
η[e−β(1−ρ̃/η) − (1− ρ̃/η)e−β ] 0 ≤ ρ̃ ≤ η
(1− η)[1− e−β(ρ̃−η)/(1−η) + (ρ̃− η)e−β/(1− η)] + η η < ρ̃ ≤ 1

(5.12)

Where β determines the slope of the function and η is a volume preserving
parameter that move the center of the two graphs towards the corners along the
linear line in order for the volume to remain the same before and after filtering.
There is a drawback to varying η and keep the volume preserved, when shifting
the center of the graph control is lost over the length-scale [2].

Figure 5.5: The function proposed by S. Xu for different β. Dotted line β=0.5,
dashed line β=5 and full line β=50.

For the sensitivity analysis the derivative of (5.12) with respect to ρ̃ becomes

∂ρ̂

∂ρ̃
=

{
βe−β(1−ρ̃/η) + e−β 0 ≤ ρ̃ ≤ η
βe−β(ρ̃−η)/(1−η) + e−β η < ρ̃ ≤ 1

(5.13)
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Chapter 6

Sensitivities

As mentioned in the previous chapter the derivatives of the objective function
and all constraint functions with respect to the design variables are needed when
solving the optimization problem. These derivatives are called sensitivities and
the solving process is called sensitivity analysis. The two most common ways
of calculating the sensitivities are numerically or analytically.

6.1 Numerical Methods

In numerical sensitivity analysis the sensitivities are calculated by finite dif-
ferences. There exist different ways of doing this, e.g. forward differences or
central differences. The forward differences

∂gi(φ
k)

∂φj
≈ Df =

gi(φ
k + hej)− gi(φk)

h
(6.1)

where ej = [0, ..., 0, 1, 0, ..., 0]T , ej is 1 on index j and zero otherwise. There
is a major issue with the forward differences and that is to find a suitable h.
Ideally h should be as small as possible but that leads to numerical errors due to
cancellation and if the h is to big it becomes a bad approximation. The numer-
ical methods becomes approximations and are more computationally expensive
than the analytical methods, the benefit of using numerical methods are that
they are very easy to implement. The only use of numerical differentiation in
this thesis has been to check that the analytical method has been implemented
correctly.

6.1.1 Analytical Methods

The two most common analytical methods are the direct and adjoint method.
Both methods has their benefits, if the problem has more design variables than
constraint functions then the adjoint method is more efficient and otherwise
the direct method is more efficient. Since the design variables outnumber the
constraint functions in topology optimization by far, the adjoint method is used.
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6.1.2 Adjoint method

This thesis handles a steady-state coupled non-linear system, since the response
from the structure depends on the design variable φi, the residuals R and C
(3.2) are rewritten as

n+1R(n+1u(φ),n u(φ),n+1 v(φ),n v(φ),φ) = 0
n+1C(n+1u(φ),n u(φ),n+1 v(φ),n v(φ),φ) = 0

(6.2)

where iu(φ) and iv(φ) are given by the residuals [6]. The response function F
can in general be defined as

F (φ) = G(Mu(φ),M−1 u(φ), ...,1 u(φ),M v(φ),M−1 v(φ), ...,0 v(φ),φ). (6.3)

In order to obtain the sensitivity of the system, the objective function is differ-
entiated with respect to the design variables φi.

DF

Dφi
=

M∑
n=0

(
∂G

∂nu

Dnu

Dφi
+
∂G

∂nv

Dnv

Dφi

)
+
∂G

∂φi
(6.4)

where Dnu
Dφi

and Dnv
Dφi

are the implicit derivatives. Since both residuals depend
on the design variables the implicit derivatives become costly to compute. The
idea by using the adjoint method is to eliminate the implicit derivatives. By
introducing the arbitrary adjoint vectors nλ and nγ the augmented response
functional can be formed [6]

F̂ (φ) =G(Mu(φ),M v(φ),M−1 u(φ),M−1 v(φ), ...,1 u(φ),1 v(φ),0 u(φ),0 v(φ),φ)

−
M∑
n=1

nλnR(nu(φ),n−1 u(φ),n v(φ),n−1 v(φ),φ)

−
M∑
n=1

nγnC(nu(φ),n−1 u(φ),n v(φ),n−1 v(φ),φ)

.

(6.5)

The augmented functional F̂ is equal to the response functional G since the
residuals in equation (6.2) holds. The sensitivity is then obtained by differen-
tiating the augmented response functional from equation (6.5) with respect to
the design variables.

DF̂

Dφi
=
DF̂E
Dφi

+

M∑
n=1

(
DnF̂I
Dφi

)
λ

+

M∑
n=1

(
DnF̂I
Dφi

)
γ

(6.6)

where the E denotes that the term is explicit and I implicit. The explicit
derivative is defined as follows

DF̂E
Dφi

=
∂G

∂φi
−

M∑
n=1

nλ
∂nR

∂φi
−

M∑
n=1

nγ
∂nC

∂φi
+
∂G

∂0u

D0u

Dφi
+
∂G

∂0v

D0v

Dφi

− 1λ
∂1R

∂0u

D0u

Dφi
− 1λ

∂1R

∂0v

D0v

Dφi
− 1γ

∂1C

∂0u

D0u

Dφi
− 1γ

∂1C

∂0v

D0v

Dφi

(6.7)
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The implicit derivatives are given by(
D1F̂I
Dφi

)
λ

= −
[
1λ
∂1R

∂1u
+1 γ

∂1C

∂1u
+2 λ

∂2R

∂1u
+2 γ

∂2C

∂1u
− ∂G

∂1u

]
D1u

Dφi(
D1F̂I
Dφi

)
γ

= −
[
1λ
∂1R

∂1v
+1 γ

∂1C

∂1v
+2 λ

∂2R

∂1v
+2 γ

∂2C

∂1v
− ∂G

∂1v

]
D1v

Dφi(
D2F̂I
Dφi

)
λ

= −
[
2λ
∂2R

∂2u
+2 γ

∂2C

∂2u
+3 λ

∂3R

∂2u
+3 γ

∂3C

∂2u
− ∂G

∂2u

]
D2u

Dφi(
D2F̂I
Dφi

)
γ

= −
[
2λ
∂2R

∂2v
+2 γ

∂2C

∂2v
+3 λ

∂3R

∂2v
+3 γ

∂3C

∂2v
− ∂G

∂2v

]
D2v

Dφi

...(
DM−1F̂I
Dφi

)
λ

= −
[
M−1λ

∂M−1R

∂M−1u
+M−1 γ

∂M−1C

∂M−1u
+

Mλ
∂MR

∂M−1u
+M γ

∂MC

∂M−1u
− ∂G

∂M−1u

]
DM−1u

Dφi(
DM−1F̂I
Dφi

)
γ

= −
[
M−1λ

∂M−1R

∂M−1v
+M−1 γ

∂M−1C

∂M−1v
+

Mλ
∂MR

∂M−1v
+M γ

∂MC

∂M−1v
− ∂G

∂M−1v

]
DM−1v

Dφi(
DM F̂I
Dφi

)
λ

= −
[
Mλ

∂MR

∂Mu
+M γ

∂MC

∂Mu
− ∂G

∂Mu

]
DMu

Dφi(
DM F̂I
Dφi

)
γ

= −
[
Mλ

∂MR

∂Mv
+M γ

∂MC

∂Mv
− ∂G

∂Mv

]
DMv

Dφi


(6.8)

The implicit derivatives Dnu
Dφi

and Dnv
Dφi

in equation (6.8) can be eliminated, by
choosing the adjoint vectors in a way so the terms within the brackets vanish.
It can be seen that the implicit derivatives depends on the residuals and adjoint
vectors of its load step and the next for all derivatives except the last step
M. Therefore the sensitivity analysis starts with solving the last step M. By
treating γ as a function of λ the equation system (6.9) can be formed. Since
the sensitivity analysis starts from the last step it cannot be solved at the same
time as the primary structural problem and must be solved after. The equations
that needs to be solved are
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M :



[
∂MR

∂Mu
− ∂MR

∂Mv

(
∂MC

∂Mv

)−1
∂MC

∂Mu

]T
Mλ =

−
[(

∂MC

∂Mv

)−1
∂MC

∂Mu

]T
∂G

∂Mv
+

∂G

∂Mu

Mγ = −
(
∂MC

∂Mv

)−T[(
∂MR

∂Mv

)T
Mλ− ∂G

∂Mv

]

M − 1 :



[
∂M−1R

∂M−1u
− ∂M−1R

∂M−1v

(
∂M−1C

∂M−1v

)−1
∂M−1C

∂M−1u

]T
M−1λ =

−
[
∂MR

∂M−1u
− ∂MR

∂M−1v

(
∂M−1C

∂M−1v

)−1
∂M−1C

∂M−1u

]T
Mλ

−
[
∂MC

∂M−1u
− ∂MC

∂M−1v

(
∂M−1C

∂M−1v

)−1
∂M−1C

∂M−1u

]T
Mγ

−
[(

∂M−1C

∂M−1v

)−1
∂M−1C

∂M−1u

]T
∂G

∂M−1v
+

∂G

∂M−1u

M−1γ = −
(
∂M−1C

∂M−1v

)−T[(
∂M−1R

∂M−1v

)T
M−1λ+(

∂MR

∂M−1v

)T
Mλ+

(
∂MC

∂M−1v

)T
Mγ − ∂G

∂M−1v

]
...

2 :



[
∂2R

∂2u
− ∂2R

∂2v

(
∂2C

∂2v

)−1
∂2C

∂2u

]T
2λ =

−
[
∂3R

∂2u
− ∂3R

∂2v

(
∂2C

∂2v

)−1
∂2C

∂2u

]T
3λ

−
[
∂3C

∂2u
− ∂3C

∂2v

(
∂2C

∂2v

)−1
∂2C

∂2u

]T
3γ

−
[(

∂2C

∂2v

)−1
∂2C

∂2u

]T
∂G

∂2v
+
∂G

∂2u

2γ = −
(
∂2C

∂2v

)−T[(
∂2R

∂2v

)T
2λ+(

∂3R

∂2v

)T
3λ+

(
∂3C

∂2v

)T
3γ − ∂G

∂2v

]


(6.9)
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1 :



[
∂1R

∂1u
− ∂1R

∂1v

(
∂1C

∂1v

)−1
∂1C

∂1u

]T
1λ =

−
[
∂2R

∂1u
− ∂2R

∂1v

(
∂1C

∂1v

)−1
∂1C

∂1u

]T
2λ

−
[
∂2C

∂1u
− ∂2C

∂1v

(
∂1C

∂1v

)−1
∂1C

∂1u

]T
2γ

−
[(

∂1C

∂1v

)−1
∂1C

∂1u

]T
∂G

∂1v
+
∂G

∂1u

1γ = −
(
∂1C

∂1v

)−T[(
∂1R

∂1v

)T
1λ+(

∂2R

∂1v

)T
2λ+

(
∂2C

∂1v

)T
2γ − ∂G

∂1v

]


The equation is solved by first calculating Mλ and then Mγ. When the last step
is known it is possible to calculate M−1λ and M−1γ, then continue this process
until the initial state is solved. Once all equations are solved the sensitivities
can be calculated using (6.6), for the complete in-depth method the reader is
referred to [6].

6.2 Sensitivity of the volume constraint

The sensitivity of the constraint function or as in this case the volume preserving
constraint of the structure needs to be evaluated as well. In the MMA solving
process the derivatives of the functions g1(φk) with respect to the design variable
φ is needed

∂g1(φk)

∂φj

where k is the current iteration and j the index of the design variable. The
constraint used in this thesis is a mass constraint, where ρ0 is the element
density that is allowed, ρe the design variable is the current density of the
element and Ve the volume of the element

g1 =

nelm∑
e=1

ρeVe − ρ0
nelm∑
e=1

Ve ≤ 0 (6.10)

where nelm stands for the number of elements. Since ρ0 is a constant the
derivative becomes

∂g1(ρk)

∂ρe
= Ve. (6.11)

With a density filter applied to the design variable the constraint is instead
written as

g1 =

∫
V

ρ̃edV − ρ0
nelm∑
e=1

Ve ≤ 0 (6.12)
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where ρ̃ is the filtered density with nodal values and V is referring to the volume
of the body. The derivative becomes

∂g1(ρ̃k)

∂ρe
=

∫
V

∂ρ̃

∂ρ̃α
dV

∂ρ̃α

∂ρe
(6.13)

where ρ̃ = ρ̃N and N is the shapefunctions, α refers to the nodal value and e to
the element value, if an additional Heaviside projection is applied the constraint
is then written as

g1 :

∫
V

ρ̂edV − ρ0
nelm∑
e=1

Ve ≤ 0 (6.14)

and the derivative is

∂g1(ρ̂k)

∂ρe
=

∫
V

∂ρ̂

∂ρ̃

∂ρ̃

∂ρ̃α
dV

∂ρ̃α

∂ρe
(6.15)
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Chapter 7

Results

7.1 Maximizing the absorbed plastic work

The objective in this topology optimization problem is to maximize the ab-
sorbed plastic work (W p) in the structure. The load case is presented in fig 7.1,
the sides of the structure is fastened so zero displacement occur along the side
boundaries. Due to symmetry only the right half of the structure is analyzed in
the simulations. The load is displacement controlled i.e. forced displacement is
applied and then the internal forces are calculated.

The problem is a plane 2D problem, the thickness of the structure doesn’t affect
the solution. The mesh consists of 11700 eight node brick elements although
2D elements would have been sufficient. The optimization problem is described
in equation (7.1) where ρ0 is the initial density of each element spread out ho-
mogeneously throughout the structure and dictates the mass constraint. In the

Figure 7.1: Description of the load case used in the simulations. The cantilever
beam has a width of 20mm and the height is 5mm. The width where the
displacement is applied is 2.4mm.
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following simulations the initial density has been set to ρ0 = 0.5
min (−Wp(ρ))

s.t.


∫
V

ρ̂edV − ρ0
nelm∑
e=1

Ve ≤ 0

0 < ρj ≤ 1 j = 1...nelm

(7.1)

and the material parameters that are used are the following

K = 164 GPa,

G = 80 GPa,

σy0 = 400 MPa,

H = 18 GPa.

The SIMP (Solid isotropic material penalization) applied changes the material
properties as

K = ρ̂i
3K,

G = ρ̂i
3G,

σy0 = ρ̂i
2σy0,

H = ρ̂i
3H.

The Heaviside function applied in the simulations below is the one developed by
S. Xu. et al. [15] and is shown in equation (5.12). The η in the function is held
at a constant value of 0.5. Two different update routines of β has been applied,
one linearly and one exponentially increasing update scheme. The linear update
is

β = β + 1

and is increasing every 10th optimization loop. The exponential update is

β = β ∗ 2

which is updated every 20th optimization loop. In both cases β has a starting
value of 0.1. The length parameter R in the Helmholtz density filter is set as
R = 0.2mm. The step length depends on the convergence of the problem, the
aim is to reach equilibrium in four Newton-Raphson iterations and the step
length increase or decrease depending on the previous equilibrium.
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7.2 0.25mm displacement with linear β

In this section the maximum displacement is 0.25mm and it’s applied in every
optimization loop.

(a) Iteration 10. (b) Iteration 20.

(c) Iteration 50. (d) Iteration 200.

Figure 7.2: Evolution of the optimization.
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Figure 7.3: Objective function.

Figure 7.4: Evolution of β.
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7.3 0.25mm displacement with exponential β

The load is the same as in the previous case but the exponential updating scheme
of β is applied.

(a) Iteration 10. (b) Iteration 20.

(c) Iteration 50. (d) Iteration 200.

Figure 7.5: Evolution of the optimization.
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Figure 7.6: objective function.

Figure 7.7: Evolution of β.
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7.4 0.25mm displacement without Heaviside func-
tion

In this section the Heaviside variable β has a constant value of zero, since the
Heaviside function becomes linear it doesn’t affect the solution at all.

Figure 7.8: Iteration 200.

Figure 7.9: Objective function
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7.5 2mm displacement with linear β case 1

When the maximum displacement is more than 0.5mm the displacement has to
be ramped up or it will take a large number of steps before reaching the final
displacement. In this case the displacement reaches 2mm in the fourth loop,
increasing 0.5mm in each loop.

(a) Iteration 10. (b) Iteration 20.

(c) Iteration 50. (d) Iteration 200.

Figure 7.10: Evolution of the optimization.

46



Figure 7.11: Objective function.

Figure 7.12: Distribution of plastic work in the structure.
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Figure 7.13: evolution of beta.
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7.6 2mm displacement with linear β case 2

In this section the displacement has increased during the first eight optimization
loops in small steps, reaching 2mm displacement in loop eight.

(a) Iteration 10. (b) Iteration 20.

(c) Iteration 50. (d) Iteration 200.

Figure 7.14: Evolution of the optimization.
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Figure 7.15: Objective function.

Figure 7.16: Evolution of β.
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7.7 2mm displacement without Heaviside func-
tion

This section is without the Heaviside function, the displacement is applied in
the same manner as in the 2mm displacement case 2 with the Heaviside function
over the ten first loops.

Figure 7.17: Iteration 200.
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Figure 7.18: Objective function.
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Chapter 8

Discussion

When trying different Heaviside functions it was early decided upon the filter
by S. Xu et al. [15], the other filters from K. Guest and O. Sigmund didn’t
converge properly and was therefore abandoned in this thesis. The updating
scheme of β has a big impact on the final solution. With the quite aggressive
linear β updating scheme the Heaviside function has a dominant role before
the structure has settled on the optimal solution. This can cause the Heaviside
function to remove the supporting bar to the left in the structure. With the
exponential β updating scheme, the Heaviside function doesn’t affect the opti-
mization as much in the early stages thus allowing the structure to settle. When
comparing the results where the Heaviside function has been implemented to
the results with only the Helmholtz filter fig. 7.8, has been applied, a check can
be made if the Heaviside function has altered the solution. The solutions does
not have to be the same, but if they do differ it should be investigated further.
The displacement of 0.25 mm should be regarded as small and the plastic work
in the bar is pretty low. When looking at the larger displacement of 2mm the
plastic work is larger and the structure moves faster towards the optimal struc-
ture. This makes the choice of method in updating β less critical. The choice
of updating scheme depends on the individual problem but it should be kept in
mind that it can affect the outcome.

When making a comparison to the updating schemes used in the articles of
S. Xu, K. Guest and O. Sigmund [15], [2], [9] which all use small linear elastic
strains. The Heaviside function is often updated exponentially and very slowly,
every 50th iteration or when the problem has converged and the densities doesn’t
change. This approach is quite conservative and cause the program to run more
iterations and increase the computing time a lot, especially for problems with
large, non-linear plastic strains that already is relatively slow.
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Comparing the 2 mm displacement cases, they don’t show the same solu-
tion. In figure 7.14 the top bar has not drifted as far from the early cross as
in fig 7.10. Since the forced displacement hasn’t been applied in the same way
it shouldn’t give the same results since the deformation is plastic and therefore
path dependant. The more realistic case should be when many smaller steps are
taken, since a structure doesn’t go from unloaded to final displacement without
the plastic deformation affecting the displacement during the loading.

The Heaviside function seem to work, achieving discrete solutions. The Heav-
iside projection made the program very sensitive though, in everything from
tolerances to the SIMP penalization and the updating scheme of β.
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