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Abstract

This thesis investigates the effects of network compression on machine
learning networks developed for object tracking. As neural networks re-
quire considerable storage and memory, what is acceptable on larger com-
puter systems may not be suitable for embedded implementations. More
traditional algorithms for object tracking have non-trivial storage and
memory requirements, and the question is if a deep regression based net-
work for object tracking can become more viable after compression.

By using transfer learning on the networks Inception and Caffenet,
which are originally trained for object recognition, it is found that a re-
gression network for object tracking could be exceptionally robust to quan-
tization. While one network fails to properly recognize the task, the other
network successfully retrains on the task - and after the use of quantization
demonstrates a near zero loss of accuracy. The resulting quantized net-
work is just as effective at object tracking as the non-quantized network,
but with reduced computational cost and just a quarter of the required
memory.
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1 Introduction

The aim of this master thesis is to investigate the effects of compression of
a Neural Network designed for object tracking in a video. The purpose is to
establish how this network compression could affect the viability in using neural
networks on embedded (e.g. Mobile) platforms. Typically, neural networks
are intended for deployment on PC platforms, where memory and compute
capabilities are significantly greater than that on embedded platforms.

The size of most networks makes deployment on embedded platforms a chal-
lenge. Available resources such as memory is typically a fraction of PC platforms
have available, and the cost of storage is often much higher as well. The GPUs
used in embedded platforms are typically smaller and as a consequence more
limited in their ability to handle complex computations. The size of the net-
work also increases memory bandwidth requirements, which is also more limited.
The use of Neural Networks for object tracking is not novel, although it is still
a relatively recent one. However, previous implementations have not touched
on network compression. It is therefore network compression and its effects on
object tracking networks that this thesis will investigate.

1.1 Previous Works

Several neural network implementations demonstrated leading accuracy on the
2015 Visual Object Tracking challenge [KML+15]. However, those particular
neural networks were not at all capable of real-time performance even on PC
hardware. Fortunately, there are several other implementations that do not
perform with quite the same degree of accuracy, but are significantly faster. In
particular, this thesis will be built on the work set by the paper “Learning to
track at 100FPS” [HTS16], which while not a leader in accuracy, demonstrated
significantly faster performance.

The effects of compression on the performance and accuracy has been studied
in other domains; Björgvinsdottir and Seibold in their paper “Face Recognition
Based on Embedded Systems” study the effects in detail of network compression
on embedded hardware in the face recognition domain [SH16]. While some of
their findings should produce similar results in this thesis, such as performance,
their results in accuracy are not guaranteed to fully translate.

1.2 VOT Challenge

The Visual Object Tracking Challenge is a yearly competition in which visual
tracking systems can be compared in a repeatable and precisely defined manner.
The primary goal is to compare and evaluate progress in the visual tracking field
[KML+15].

The challenges themselves are graded on Accuracy, Robustness, and Speed.
All of these metrics are naturally important; an implementation that is slow or
sloppy may not be usable in reality. As such, even networks that do not lead in
accuracy and robustness may still be of interest if they can maintain that level
of accuracy with better speed than other implementations.

The VOT challenge as such provides a set of metrics to compare implemen-
tations; and can help researchers decide which areas of research could produce
beneficial results.
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1.3 TensorFlow

TensorFlow is an open source library by Google for use on Linux and Mac OS in
Machine Learning [Inc16]. Neural Networks are not normally implemented fully
by hand, this simply takes too much time. Instead, software libraries are used
which have already implemented the operations involved in neural networks.
This only leaves the programmer to define the shape of the network, making
the process of creating and changing networks significantly easier and faster,
and reduces the lines of code that would be required from thousands to a few
hundred at most.

Furthermore, libraries such as these often support and handle GPU com-
putation, and execution parallelisation across both local and remote hardware.
TensorFlow itself is implemented in a mix of C++ and Python. The primary
API is in Python, with only a limited API for C++ [Inc16]. GPU acceleration
is implemented for NVIDIA’s CUDA.

2 Background

Machine learning is the process of teaching a specific algorithm how to perform
a desired task. Mitchell provides a concise definitions as follows: ”A computer
program is said to learn from experience E with respect to some class of tasks
T and performance measure P , if its performance at tasks in T , as measured by
P , improves with experience E.”[Mit97]

There are a vast number of possible tasks that such a program could be given.
The perhaps most common one with images would be classifiers: where images
contain a specific type of object (Pencil, Train, Car, etc), and the network is
expected to tell you which of these are present in an image. The performance
would then be measured by how often it predicts correctly. Experience would
come from subjecting the network to images containing these types of objects,
with the intent that it will learn to differentiate characteristics of these objects.

In this thesis, the task is instead to learn to quantify the translation. Since
this is a task where a numerical output is expected, it is instead called a regres-
sion task [GBC16]. To solve a regression task for object tracking, where the new
location is defined by the four edges of a bounding box, the learning algorithm
is tasked to output a function:

f : Rn =⇒ R4 (1)

Performance is now instead defined by how close the network prediction is
to the correct translation.

2.1 Datasets and Overfitting

When it comes to measuring performance of a network, we require the use of
more than just a single set of data. Networks are subject to the experience of its
training dataset for thousands if not millions of times: but this is not the data
that the network will see once it is subjected to real world usage. The experience
with the specific input the network has seen while learning will normally make it
very good at handling that input; but the accuracy of the network for this data
will not represent the accuracy of the network on other real use data [GBC16].
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Figure 1: Network error as it changes with more training [GBC16]

Therefore in order to get an idea of how well the network performs on “real”
data, it needs to be separated into several sets. The first, and by far largest,
will be the training set. As the name implies, this is the data that will be used
for teaching the network how to perform its task. Because of the need of much
data as possible to properly learn - this dataset will typically make up 90% or
more of the amount of data available. The remaining 10% will be used by two
datasets used for measuring the estimated performance in real use scenarios.

The first of these datasets is the validation set, and this dataset is run
periodically during training. The performance of the network on this dataset
gives is an indication if the network is correctly learning to solve the problem,
and it works as a guideline for adjusting the training process. Unlike the training
set however, the network is not allowed to learn from the errors of the output.
Every time the validation set is run, it will be as if the network has never seen
these images before - which is the condition we need to expect in real world use.

The final set is the Test set, and this is only run once the network has
completed training. Because adjustments may be made to the network as it
trains, a final dataset is needed to verify how the network performs on data
where we cannot have made adjustments for at all. This set will help tell if the
changes made during training have exhibited certain biases.

As the network is trained, the accuracy for the training should continuously
(if gradually) improve. Hopefully, the accuracy of the validation set will also
improve; however this will not occur at the same rate as the training set. But as
long as the performance of both the training set and validation set is improving,
the network is learning and is on the right track.

While the network is able to benefit from additional training iterations, the
network is said to be underfit. What it means is that the network has not yet
been trained to generalise the input to its peak. Knowing that the network is
underfit is important, so that we do not stop training prematurely. But this
begs the question of when we should stop training.

One answer to that is when the network is no longer converging, when the
accuracy of the validation set stops improving, often called early-stopping. It
should be noted that the training set will likely continue to improve on accuracy.
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However, this is not desirable - as this means that the network is no longer
learning the general characteristics of the task, and is instead training only on
specific and possibly irrelevant traits in its training data. While this could seem
harmless, it is important to realise that this comes at the cost of performance
to the validation set - that is, real world use.

Once a network has stopped learning how to handle the generalised problem,
it has begun growing overfit instead. One can visually observe when a network
transitions from underfit to overfit on a graph by plotting the accuracy of the
network on the training and validation set, versus the time/iteration. The point
where the curve for the performance of the validation set diverges away from the
curve of the performance for the training set, the network has transitioned from
being underfit to being overfit [GBC16]. This process is illustrated in Figure 1.

Typically, the network state is periodically saved, and continued use of the
network should utilize the network in the state where it began to overfit. That a
network has transitioned to being overfit does not mean that further training is
impossible. But it does mean that the training process needs to be adjusted: ei-
ther by adding in new batches of data, changing some of the network parameters
such as learning rate, or adding additional regularisation.

2.2 Dataset bias

Neural networks learn by generalising the input problem, extracting common
features that are present in its training set to find the commonality between
the input that it sees, and the output that it expected. For example, when
presented with a dog, it may learn to identify the presence of a tail, head, four
legs, and ears. If the network is trained to recognise specific breeds of dogs, or
even just to separate it from other animals that also have those parts such as
cats, it can also learn these characteristics in more detail, so that it knows what
a dog’s head looks like and a cat’s tail.

However, carelessly feeding a network with data may result in a network that
does not quite train in a manner that is expected - or wanted. The network
does not inherently know that it should learn to identify a cat; it has to learn
this by being subjected to images where there is a cat, and images where there
is not. Is it therefore important to make sure that these images are separated
only by the presence of the cat. Not on the level of each input, but rather over
the entire set.

That is, it is important to make sure that images that contain cats, do not
also contain other key features. For example, if images that contain cats are all
taken in the grass, and images without cats are taken indoors, then the network
is unlikely to realise that it is the presence of the cat that it should learn from;
and will instead focus on the presence of grass.

An example, though evidence whether it actually occurred or not is lacking,
is a tank identification example. This particular neural network was intended
to learn to detect the presence of a tank; but what the developers didn’t realise
was that the images of tanks they had been supplied were taken on a cloudy
day [Inc16]. As a result; when the network was tested, it was not capable of
identifying tanks within the image, but instead identified the weather.

The only real means of avoiding dataset bias is to make sure that the input
data is sufficiently varied. Images of cats should be taken indoors and outdoors,
in sunny and cloudy weather. The cats should be different cats, of different
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Figure 2: The ILSVRC2015 dataset contains many videos of animals, such as
this one where the goal is to track a squirrel

species and ages, and in different stages of activity. And these types of dif-
ferences needs to be true when the network then comes to dogs, and horses,
and all other objects it should be capable of identifying [Inc16] [GBC16]. In
a tracking setup, a number of different objects are required, each travelling in
variable directions and at variable speeds.

2.3 Used Dataset

For this thesis the “ImageNet Object detection from video” dataset from 2015,
or ILSVRC2015 for short, has been used. The ILSVRC2015 dataset is designed
for classification [RDS+15]; and contains a total of 30 different object classes,
mostly various types of animals, but also a few vehicles. However, the videos
also come with object location data which can be used for training object track-
ers. Each video contains only one tracked object. Video quality is variable,
with video resolutions ranging from 480x360 to 1280x720. Not every frame is
manually annotated; only every 5th frame has manually entered data, with the
remaining frames instead using interpolation.

2.4 Dataset expansion

Availability of training data for machine learning applications has seen con-
siderable improvements in recent years. This in combination with improved
hardware, are the primary reasons use of machine learning for various applica-
tions has increased significantly. But regardless of the size of the dataset, there
are still significant benefits from increasing this dataset in artificial ways. With
imagery, the means of doing this would involve making multiple variants of the
source images where each image has been subjected to a number of modifica-
tions. These modifications can include the image being mirrored, rotating the
image, applying noise, or even slightly changing the colour curves of the image
[GBC16].

The purpose of these modifications is that the network is then further forced
to learn to recognise the the problem it is being tasked to solve, rather than
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individual images. In addition, some of these modifications may further aid in
teaching the network to deal with less ideal images; the sort of lower quality
images that regular users, lacking good photography experience, may be taking.
Unlike classification case however, this thesis has an additional ways of expand-
ing the dataset: by simply doing more comparisons than just the sequential
frames in the video dataset.

Instead of simply comparing only Frame 5 versus Frame 6, we can also
compare Frame 5 to Frame 7, 5 to 8, and so on. Not only does this provide
more data, but it also gives the network opportunities to train in larger and
more extreme translations that would typically be present when only looking
frame-to-frame.

2.5 Neural Networks

In Machine Learning, “Neural Networks” comes from the similar term in neuro-
science. Neural Pathways are a series of neutrons whose activation form a linear
pathway. Neurons only activate when subjected to specific stimuli, and through
a neural network can be created that when subjected to specific imagery, lights
up a chain of neurons that form a specific neural pathways [SH16].

In machine learning, groups of neurons form a collected layer. How these
neurons are connected to other neuron varies, and is commonly defined by the
type of layer the neuron is located in [SH16] [GBC16].

A neural network does not possess any knowledge when it is created. Just
like a real brain, a neural network needs to be trained to be able to carry
out the task intended. This training is carried out by subjecting the network
to large amount of different stimuli and gradually adjusting the parameter of
each neuron to achieve the desired response. Given enough time and data, the
network will eventually learn to generalise the problem, and produce the desired
response from any appropriate input, not just for the input it has been subjected
to during training [GBC16]. As a result, a classifier can learn to identify that
there is a panda in any image that contains one - just like a human can recognise
when seeing a panda.

In practice of course, neither humans nor artificial neural networks will be
flawless. As both will typically have learned how to recognise a vast amount
of objects, both can also be confused or mislead by what they are seeing -
generating the wrong response. For artificial neural networks, the best counter
to this is simply more data, data that is as numerous and diverse as possible.
In practice of course, there is only a finite amount that exists, which will always
place some constraints on just how good the networks can become.

2.6 Fully Connected Layers

In a fully connected layer, each neuron in the layer has a connection to all of
the neurons of the input. A fully connected layer can be realised as a Matrix
Multiplication between the input vector V and the weight matrix W of the local
neuron, followed up by vector addition with the neuron’s biasB. Fully connected
layers are followed with an activation function F , which will be described later
[GBC16]. The output is therefore generated by the equation:

(VW ) +B (2)

12



Figure 3: Convolutional neurons are only connected to a fraction of the input
[GBC16]

The size of the output of this layer is configurable. While the breadth of
the weight W does need to be of the same length of the input V , the length
of the weight is configurable. The length of the W matrix defines the number
of vectors it contains, and each of these vectors is called a feature. By adding
additional features, each feature can become trained to activate on a different
type of input, just like that of a neuron. The obvious drawback with increasing
the number of features in the layer is that it increases the storage requirement
and computational requirement of the layer accordingly. As such, while a layer
will require multiple feature vectors, it is undesirable for the network to contain
more than what is needed to satisfactory solve the problem. Because each vector
should respond differently to inputs, the weight vector cannot be initialised with
uniform number. If that was the case, then all of the vectors/features would
always produce identical responses. A common workaround for this is randomly
initialising the weights [GBC16].

2.7 Convolutional Layers

Convolutional layers are the second key layer type. Unlike fully connected layers
where every input interracts with every output, convolutional layers only have
each output interact with a small amount of the input, as shown in figure 3.
Convolutional layers are useful for detecting localised features. Since neurons in
convolutional layers only look within a small region, they will only activate on
the presence of the desired feature in that region. Convolutional layers exhibit
translation invariance, and can classify patterns regardless of the location within
the input [GBC16].

A key realization of convolutional layers is that the weights used by the kernel
of all neurons is shared. Unlike fully connected layers, convolutional layers can
have a very small kernel size; and as these kernels are shared throughout the
layer, the amount of parameters to store can be reduced by several orders of
magnitude [Mur12].

With a 2-dimensional input image of I and a Kernel K, with output coordi-
nates represented by (i, j) a convolutional layer can be implemented in the form
[GBC16]:

(I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i+m, j + n) (3)

Because the neurons summarise regions, there will by default be overlap be-
tween adjacent regions. This is seldom necessary information. Convolutional

13



layers therefore have a stride which indicates the distance between the centre of
each kernel. A stride other than one has considerable performance and mem-
ory benefits. Aside from reducing the amount of computations needed for the
current layer, strides other than one also reduces the size of the output. With
a stride of two, the size of the output is reduced by half.

The output of the layer will then be a form of feature map where a strong
output indicates the presence of a specific feature within the region a neuron
corresponds to. In conclusion, convolutional networks are useful for identifying
important elements in the image.

2.8 Pooling

Convolutional layers are frequently followed by a pooling layer. These layers
simplify the output generated by the convolutional layer, by summarising local
output, which is what is then passed on to the next layer. Pooling has the
consequence of making the network less sensitive to very minor translations in
its input. Since pooling layers reduce and summarise regions, they also result
in a smaller network [GBC16].

Typically used pooling functions are Max-Pooling and Average pooling. As
their names imply, a max-pool function outputs the maximum value from within
an region, wheras an average-pool function outputs the average value from a
region. For example, for a kernel containing the values [1, 3, 2, 1] the max-pool
function will only output the value 3. For a region size of 2-by-2, a complete
input of the size 20-by-20 is reduced to the size of 10-by-10.

It may seem counterproductive to use pooling when translation information
is important. However, bear in mind that the translation information lost is only
very fine. This minor loss of information should be compensated by the improve-
ments in the networks ability to process the general features of the input images,
and the considerable reduction in computation and memory requirements. Only
a slight loss in attaining pixel accuracy is expected.

2.9 Regularisation

Regularisation are any modifications made to a learning algorithm where the
goal is to reduce the generalisation error, that is the ability to solve the general
task. Reducing the training error is not a goal of regularisation [GBC16]. There
are many different types of regularisation techniques, some that can be very
effective for specific types of tasks. For this thesis however, only some of the
more common general-purpose regularisation techniques will be used.

2.9.1 Dropout

Dropout is a regularisation process of removing outputs from a preceding layer,
in order to force the remainder of the network to utilise output that were not
removed. This method is computationally inexpensive, and while it does slow
down training slightly, it is still reasonably effective in improving the extent
that the network can be trained.

The output from the input are removed at random, meaning that the network
must learn to train in a manner where it cannot assume that specific input
values are present. In effect, it forces the network to develop redundancy, as it
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prohibits the network from training in a manner where it is heavily reliant on a
small group of neurons. This in turn should improve the attainable accuracy of
the network. In most implementations, this simply involves setting the output
of the removed neuron to zero [GBC16].

The exact probability of keeping a neuron is itself a tunable hyperparameter,
and different networks or even layers can use different dropout rates.

2.10 ReLU

Rectifier function, a simple but effective activation function that only outputs
positive values. The function is defined as

f(x) = max(0, x) (4)

ReLu has demonstrated good results in multiple networks in recent years.
[Mur12]

2.11 Transfer Learning

Training a network from scratch is a process that for many tasks cannot be
done quickly. While a simple network may be possible to train in a couple of
hours, networks of those types often only solve very simple tasks (and may have
more efficient alternative methods). Training more complex networks, such as
those used for various image recognition tasks, can take days or weeks. Since
more complex tasks require a network of greater size, training that network will
take significantly longer. Yet many such complex tasks are not entirely unique.
A network trained for face recognition for example, will have its earlier layers
dedicated to identifying generalised shapes and appearances of a human face.
Training a new network to do this would take significant amount of time, but
thankfully, this is not needed [SH16] [Inc16].

Through the use of transfer learning, it is possible to take a network that has
been trained in one problem and apply it to another problem. Obviously, some
similarities between the two are needed, but it is for example possible to train a
face recognition network that has learned to identify a group of faces, to instead
identify a different group of faces. But even slightly more different applications
are possible; one can also take a network trained for image classification, and
retrain it to recognise object translation[HTS16].

This is done by taking an existing network that has been trained on a partic-
ular problem, and extracting its earlier layers. Specifically, the layers of interest
are the convolutional layers - leaving out the fully connected layers. The result
that these layers produce are then fed into a new set of fully connected layers,
and it is these and only these layers that will be trained. In this thesis, two
pre-trained networks are used: Inception and CaffeNet.

2.12 CaffeNet

CaffeNet is a model designed for ImageNet classification [Don]. CaffeNet it-
self is largely based on the network AlexNet [KSH12], with only a minor re-
arrangement of a few operations [Don]. As the name may suggest, the CaffeNet
model is designed for use in with the Caffe library, and as such some conversion
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Figure 4: The CaffeNet network

Figure 5: Layout of the Inception V3 network [SVI+15]

work is required to use it with Tensorflow. This conversion process is described
in the implementation.

CaffeNet has a fairly simple model. As can be observed in figure 4, it has
only a small amount of layers.

CaffeNet takes an input of 227× 227× 3. The output prior to the first fully
connected layer produces an output vector with a of length 9216.

2.13 Inception

Like CaffeNet, Inception is a model designed to process and classify images in
the ImageNet dataset, but is built for use in Tensorflow. Inception designed to
heavily use Convolutional Layers, making use of only a single Fully-Connected
layer at the end [SVI+15] unlike the three fully connected layers used in Caf-
feNet. This has the benefit of making Inception require much fewer parameters
and results in a network size that is smaller than CaffeNet.

Inception uses an input of 299 × 299 × 3, and the output prior to the fully
connected layer is a vector of length 2048.

For the sake of simplicity in reading figure 5, a block ConvPool represented
by figure 6 is used to represent a grouping of layers that occurs multiple times
within the network.

For the full specifications on each individual layer such as their input and
output dimensions, see the Inception paper [SVI+15].
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Figure 6: Inception ConvPool block

2.14 Optimising Algorithms

In machine learning the purpose of the learning algorithm, like in statistical
estimation, is to for a given loss input L optimise its parameter θ in order to
then minimise the sum of L across all iterations i. L is defined by the input
X, the expected output Y , and all the network parameters θ [GBC16]. The
resulting function as such has the form:

L(x, y, θ) =
1

m

m∑
i=1

L(xi, yi, θ) (5)

There are multiple approaches to this problem, so only the basic Stochastic
Gradient approaches and some enhanced variants used in this thesis will be
described.

2.14.1 Gradient Descent

Gradient descent is an iterative optimization algorithm for finding the local
minimum of an input function. To do this, for every iteration the current point
θ is changed by the negative gradient ∇ of the function L at its current point
[Bö]. However, because these changes can be very dramatic, the magnitude
of the proposed change needs to be limited. This magnitude is defined by a
positive scalar value called the learning rate ε [GBC16][Mur12]. Using gradient
descent from the current point θ a new point θ′ is therefore obtained using the
equation

θ′ = θ − ε∇θL(θ) (6)

Tuning the learning rate requires care, as if the learning rate is too low it
will take a very long time to train the network. However if the learning rate is
too high, the network can fail to converge.[Mur12]

2.14.2 Stochastic Gradient Descent (SGD)

Stochastic gradient descent is an extension of the Gradient Descent method
[GBC16]. The general idea behind SGD is the same as for gradient descent.
However the SGD approach realizes that the calculated gradient is only an
expectation that can be approximated using only a subset of the inputs. As
for a given input size of M the computational cost of the gradient descent
algorithm is O(M), standard gradient descent becomes prohibitively expensive
as more input is added. For the SGD, only a fraction of M is used; typically
set as a constant for a computational cost of O(1). A training set with billions
of examples can therefore consist of updates that are generated by only a few
hundred input samples [GBC16].
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2.14.3 Adaptive Gradient Descent (ADAGRAD)

Standard SGD requires a considerable amount of effort in order to find suitable
values for learning rates. ADAGRAD is a method of incorporating knowledge of
observed data in earlier iterations of a training network in order to dynamically
adjust the learning rate of the network. This has the benefit of reducing the
amount of time and effort needed to find suitable hyperparameters to get the
network to converge. Unlike SGD, it is much less sensitive to the initial learning
rate being set too large or too small, as it will re-adapt the learning rate to better
suit that of the network. [DHS11]

2.15 Reduction and Quantization

As the complexity of a network grows the storage requirement of it increases
considerably. While there is a considerable storage cost to a network, the bigger
issue is the memory costs of storing the network when it is being used. Most
networks will when trained take up hundreds of megabytes in RAM and disk
space. While typical PCs are able to handle this, for embedded devices that may
not even have a gigabyte of RAM, it is too much. In addition, the size of the
network puts considerable demands on memory speed and bandwidth, typically
significantly more limited at as well. As a consequence, even a device with good
computational capabilities may be throttled due to the memory requirements.

To alleviate this, we can reduce the network by converting it to a less compli-
cated (and less accurate) data type. Intuitively, converting a 32-bit float to an 8
bit int should yield a size reduction by 75%. A network that would take 200mb
of main memory, would take up just 50mb - a far more reasonable amount,
and one that embedded devices are much more often prepared to handle. By
remembering the minimum and maximum of each feature, it is then possible to
specify where within this range each individual value lies. This approach makes
it possible to remain much closer to the original value than a naive conversion to
a lower precision type [War16]. In addition, speed can also be improved by using
these 8-bit values for computation. Higher precision floats take a considerably
longer amount of time to process than lower-precision floats or integers. In addi-
tion to this, embedded devices often have very limited high precision processing
capabilities, and are instead designed primarily for low precision computations.
By converting the network to use lower precision values, the hardware can be
better utilised.

There is one potential drawback to doing the processing and not just storage
in 8-bit however, and that comes to systems that do not have dedicated hardware
ALUs or techniques for computing these types. For these systems, the hardware
will have to reconvert the operations back to using 32-bit floats while the network
is running. For these systems there will not be an improvement in speed, and
because of the performance cost to re-convert the network, some performance
is actually lost versus the non-reduced network. For these systems, it would be
better to retain the original operations and perform the parameter conversions
only when the network is being loaded.
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Figure 7: Full structure of the network, two images are processed separately by
the convolutional stage and their outputs are then merged into a single vector
to be processed by fully connected layers [HTS16]

3 Implementation

For tracking an object, this paper will base its method on the paper published
by Held, Thrun, and Savarese [HTS16]. In order to be able to track an object,
the object must first be designated. This is done by defining a bounding box
that encompasses the object or region to be tracked.

For the input, two images are supplied. The first image is where the location
of the object is known; the second is the following frame, where the location is
unknown.

Because searching through fully sized frames would be immensely demand-
ing, and largely unnecessary in a video, the network is not supplied with the
full frame. Instead it is only given a cropped frame, centred on the bounding
box of the object [HTS16]. The cropping region is defined by the distance from
the middle of the bounding box to each edge, multiplied by 2. Note that for
rectangular bounding boxes, this will produce a rectangular crop. The same
cropping region applied to the starting frame is then applied onto the following
frame. The purpose of the margin from the boundary box to the edge of the
image is to provide a search region for the network to find the object within.
A larger margin can handle a larger translation, but may result in some loss of
accuracy and detail in the input.

The network structure as defined in the paper by Held, Thrun, and Savarese
and is shown in Figure 7 [HTS16].

Finally, these resulting crops will need to be inserted into the network. Be-
cause the networks used in this thesis accept only specific input resolutions, the
input has to be resized in order to fit. Since the input aspect ratio may not
match the networks input aspect ratio, this rescale will not be uniform. The
key point is that input bounding box will always be in the same regions, and
that will define to the network the object being tracked.
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3.1 Dataset Processing

Despite that the chosen dataset (ILSVRC2015) is intended for classification
with location, some frames still do not have location data. Some videos have no
location data at all. As a result, the entire dataset cannot be used. Fortunately,
the dataset comes pre-divided into a training and validation set [RDS+15]. No
further adjustments need to be made to this division, and they are kept as they
are.

Because of the way the image will be cropped, there are additional steps that
are taken when using the dataset. In order to ensure that there is some usable
data adjacent to each of the bounding box edges, pairs where the bounding box
either starts or ends close to the edge will be filtered out. How close the bounding
box can be to the edge can be specified by a tolerance value T. Computing
whether an image satisfies the tolerance involves, for both dimensions of each
image, the shortest distance D from the bounding box edge to the image edge,
divided it by the size S of the image for that dimension. This resulting value
must exceed the tolerance value T in order to be used within the dataset. In
conclusion, in order for a pair to be accepted into the dataset, it must for both
dimensions of both images satisfy the equation

D

Simage
> T (7)

Its similarly important to ensure that the translation in the image pair does
not place the resulting bounding box outside the second image. If that is the
case, the pair is also rejected. In order to increase the amount of data available,
the dataset is also expanded by not only looking at sequential frames. In order
for the network to learn to potentially handle larger translations, image pairs
will also compare each frame with subsequent 5 frames that contain manual
annotations. This not only provides means to handle larger translations, but it
provides the network with significantly more data. The result of this filtering
and data expansion is that the datasets now look as follows:

Pairs Videos
Training Set 346566 1524
Validation Set 56367 221

Table 1: Number of image pairs and videos after filtering

3.2 Network Structure

The layout of the network in this thesis is divided into two main parts. The
imported section, and the trainable section.

For the first section, the imported section, the network receives two input
images I, which are separately run through the convolutional layers extracted
from an imported network C. The output is then concatenated into a single
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[Dropout]

[FullyConnectedLayer]

L1 = (VW1) +B1

R1 = FRelu(L1)

D1 = FDropout(R1)

L2 = (D1W2) +B2

R2 = FRelu(L2)

D2 = FDropout(R2)

L3 = (D2W3) +B3

(9)

Figure 8: The structure of the trainable part of the network

flattened vector V [HTS16].

Vfirst = C(I1)

Vsecond = C(I2)

V = {Vfirst, Vsecond} (8)

These layers are not subjected to further training; and as such will always
produce the same output. When training, a useful optimization is therefore
possible. Instead of running each image pair through the full network every
single time, the output from this section can be saved. Only needing to run
through the convolutional layers once saves a significant amount of computation
time, particularly when using a larger pre-trained network such as Inception.

Once the vectors V from the pre-trained network have been received, they
are inserted into the second part of the network; the part of the network that
will be trained.

For this, three fully connected layers are used, L1, L2, and L3. After the
layers L1 and L2, a Relu function, and dropout is used. Each of the fully
connected layers have their own Weight W and Bias B. W is a two-dimensional
matrix with the length of the input for the layer, and breadth equal to the
specified feature count for the layer. The Bias is a one dimensional matrix
equal to the breadth of the layer’s weight matrix.

As is the norm, the network bias is initialised to zero. The weights are ini-
tialised with a normalised random distribution. The standard deviation speci-
fied for this distribution is defined with N as the length of the input to the layer
as follows: √

2

N
. (10)

The motivations for this choice of distribution are specified in a paper by
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun [HZRS15]. Because
this part of the network is generated and trained, there are now also hyperpa-
rameters to manage. The three main parameters that need to be managed is
the number of features for each weight, the dropout rate, and the learning rate.

For this thesis, a feature count of 3000 was used for all three fully connected
layers. For the dropout layers, a rate of 0.5 was used. Finally, for the Adagrad
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optimiser, a learning rate of 0.0005 was used, and its initial accumulator value
was set to 0.9. The batch size to use is tuned to the specific capabilities of the
machine performing the training, though for this thesis a batch size of 400 is
used. The pairs used in each batch is randomly selected.

3.3 Converting CaffeNet

CaffeNet is not originally released for the TensorFlow library. To use the Caf-
feNet model in TensorFlow the model needs to be converted. For this thesis,
this was done using a CaffeNet-Tensorflow converter [Eth]. While the tool was
effective in converting the network variables, the generated network definition
ends up being more complicated than necessary. As a result, the network graph
is manually defined, and the weights and biases generated by the converter
are simply imported into their corresponding layer. The resulting network was
saved to a file and verified in TensorBoard.

4 Results

As to be expected, the process of quantizing the networks has significantly
reduced their storage requirement, as can be seen in table 2. Whereas previously
the CaffeNet based network required nearly 400MB, it has been reduced to
requiring just under 100MB. The Inception based network is smaller still.

For both networks, the storage requirement is similar to that of a smartphone
or tablet application. For other embeded uses, the reduced size of these networks
allows them to fit on much cheaper 128MB storage units, instead of requiring a
costlier 512MB storage unit. As both networks have been reduced by the same
ratio, after quantisation the size difference between the two networks has been
reduced to 17.5MB instead of the original 73.2MB. This makes the original size
advantage of Inception less benificial than previously, and how the networks
perform in testing instead becomes more important.

Normal Quantized
CaffeNet 377.7 MB 94.5 MB
Inception 304.5 MB 77.0 MB

Table 2: Size of the networks before and after quantization

To measure RAM usage, the Python memory profiler is used. To avoid issues
with garbage collection; the garbage collector is forced to run after initialisation
of the network. The results listed in table 3 is the peak memory usage of the
networks averaged across multiple runs. The overall memory usage when run-
ning is consistently within a few percentages of the peak, and can be interpreted
as the effective memory requirement. For both networks, memory requirements
are reduced by approximately 50%.

To measure how well the networks perform, they are subjected to four differ-
ent benchmarks. One is a simple speed benchmark, while the remaining three
evaluate the accuracy of the network.

The first benchmark measures the speed of the network, by testing the num-
ber of pairs the network is capable of processing per second. This is effectively
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Normal Quantized
CaffeNet 1600 MiB 830 MiB
Inception 1450 MiB 750 MiB

Table 3: Peak memory during execution

the frame rate of the network. Because no suitable hardware was available for
performing speed measurements however, and because the intent is to get an
approxiate idea of how well the network should behave on embedded hardware,
the speed benchmark is instead run on an Intel 4258U CPU.

The first accuracy benchmark measures mean accuracy over the course of an
entire video. This allows gauging if the network has an easy or hard time with
a particular video, and produces a result that is insensitive to the length of the
dataset videos.

The second accuracy benchmark measures the mean accuracy on a per-frame
basis by taking the mean error over the entire dataset. This produces a figure
which measures how well the network performs overall.

The third accuracy benchmark is much like the second benchmark, except
that instead of using the mean error of a frame, the bounding box edge with the
greatest error is used instead. This can allow detecting deviations that could
otherwise be masked when the frame mean is used.

The actual error of the three accuracy benchmarks is measured on the
cropped and resized input. Since the scale of the input does not match the
scale or aspect ratio of the source, the result does not measure the extent of the
error as seen on the original frames. Additionally, since the Inception network
has a higher input resolution, at least a slightly higher error would be expected.

Due to possible limitations with the quantization module used by Tensorflow,
the speed of the CaffeNet network suffers severely when quantisized. Since the
TensorFlow quantization module is quite recent, the means of fixing could not
be made within the given timespan for the thesis.

As a result, benchmarking has not been possible to perform on the full
validation and training sets due to the extreme amount of time this would
require when benchmarking the quantized networks. The benchmarking sets
have instead been reduced to run only on the first 200 valid pairs within the
validation set, and the first 20 valid pairs within the training set.

Pairs Videos
Training Set 26011 1524
Validation Set 12179 221

Table 4: Number of image pairs and videos using during network evaluation

While this problem causes the speed difference to be non-representative,
it does not affect the resulting network size or accuracy. While not possible
to demonstrate the speedup on this particular network; the potential speed
increases have already previously been demonstrated[SH16][Har].

Due to the limitations of time, the accuracy of the non-quantized networks
has not been fully optimised, further improvements to the training techniques
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Figure 9: Accuracy of the CaffeNet model as it trains

and resulting network accuracy is still possible.
Note that because no changes were made to the networks as they trained, a

test set is not used or required.

4.1 CaffeNet

The CaffeNet implementation is as expected a solid performer. The same im-
plementation as demonstrated in the basis paper, the model appears to be rea-
sonable at object tracking and requires little training time.

As can be observed in Figure 9, it takes only 5000 steps with a batch size
of 400 for the network to reach optimum fitness. After that, the network ceases
to improve on the validation set, only attaining gradually improving scores on
the training set. As can be observed in the tables below, the performance of the
network barely suffers at all. For both the training set and validation set, the
average error is virtually the same.

Looking at the results in tables 5 and 6, it is clear that the network performs
almost identically after compression. While it is strange that the validation set
scores better than the training set, this is likely due to the smaller amount of
samples used for the validation set. There are several further observations that
can be made from the data.
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Normal Quantized
Speed (Pairs/Sec) 5.88 0.52
Mean Video Error (Pixels) 8.91 8.91
Mean Frame Error (Pixels) 8.37 8.38
Mean of Max Frame Error (Pixels) 15.31 15.32

Table 5: CaffeNet training set results

Normal Quantized
Speed (Pairs/Sec) 5.88 0.52
Mean Video Error (Pixels) 7.76 7.77
Mean Frame Error (Pixels) 6.81 6.82
Mean of Max Frame Error (Pixels) 12.50 12.50

Table 6: CaffeNet validation set results

In particular, figures 10 and 11 indicate that very accurate frames do suffer
slightly, with a notable decrease in the number of frames that have a average
or maximum error of less than 1. Consequently, the number of videos with a
mean error of less than 1 is also decreased.
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Figure 10: The CaffeNet model handles quantization well, with little difference
to the accuracy on the training set
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Figure 11: The CaffeNet validation set also shows minimal losses in accuracy
after quantization
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Figure 12: Accuracy of the Inception model as it trains

4.2 Inception

For object tracking, it would appear that Inception’s approach of utilising a
large amount of convolutional layers may be non-optimal.

As can be observed in tables 7 and 8, the Inception based implementation
takes considerably longer to process each image. At just a single frame per
second, even when considering that the network is CPU based, this is far too
slow for use on embedded devices. To make matters worse, the accuracy of the
network does not compensate for this decrease in speed. The inception network,
even after normalising for the greater input size is not accurate, and struggles
to properly track a given object, as can be observed in figures 13 and 14.

Normal Quantized
Speed (Pairs/Sec) 1.03 1.12
Mean Video Error (Pixels) 5.23 8.24
Mean Frame Error (Pixels) 5.03 7.95
Mean of Max Frame Error (Pixels) 9.24 14.33

Table 7: Inception training set results

Overall, while the Inception network does manage to attain a slightly smaller
footprint, the network struggles with learning to properly solve the problem. As
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Normal Quantized
Speed (Pairs/Sec) 1.03 1.12
Mean Video Error (Pixels) 12.49 13.90
Mean Frame Error (Pixels) 11.13 12.48
Mean of Max Frame Error (Pixels) 19.89 22.28

Table 8: Inception validation set results

a result, the implementation is not very viable for use in object tracking. While
it required just 1000 steps to reach its optimum accuracy, which can be reached
in mere minutes, this is simply an indicator that the network is struggling with
handling the task.
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Figure 13: The Inception struggles in general, but shows significant losses with
quantization
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Figure 14: The Inception validation encores the training set, with considerable
losses after quantization
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5 Conclusion

Using CaffeNet, this thesis has successfully demonstrated that it is possible
to quantize an object tracking network. This compression process verified the
expected 75% reduction in network size. However, it is the minimal change in
accuracy that is particularly impressive.

On accuracy metrics, the CaffeNet network after quantization demonstrated
effectively the same accuracy as it had prior to quantization. Only a minor shift
from the number of pairs with a mean error less than one to an mean error
between 1-2 is of note. This however is still an extremely good result.

It can therefore be concluded that quantization is definetly something that
should be considered for object tracking networks, even when they are not being
employed for embedded devices. The potential tradeoff is simply too good to
ignore; a significant reduction in storage requirement and memory requirement,
along with the potential for considerable performance gains that have previously
been demonstrated [SH16][Har].

The second network, Inception, unfortunately struggled with achieving satis-
factory accuracy. However, these issues however stem not from the quantization
process, but rather from the network struggling to learn the original problem.
This results in a network that does not make for a very suitable tracker. While
the quantization results are not great for Inception, because it was never able
to learn the original problem properly, they are not very meaningful.

5.1 Further Work

Quantization is not the only technique available for reducing network size. The
current CaffeNet network has quite a large number of parameters in the fully
connected layers, but there may be many that are minimally contributing to
generating any results.

Another interesting compression technique that could be investigated is
pruning. Pruning allows for the removal of weights that are contributing mini-
mally to the network output. By removing them, the number of computations
that the network needs to perform are reduced. Obviously, their removal also
results in a further reduction in the general size of the network. This has demon-
strated good results in other applications[SH16].
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