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Abstract

Artificial neural networks are machine learning systems based on the neural networks of
the human brain. A problem that has to be overcome for neural networks is overtraining,
which means that the network performs well on data that has been used for training
the network, but does not make good predictions on new data. One branch of artificial
neural networks, called deep neural networks, uses a lot of hidden layers of neurons to
produce state-of-the-art results on a wide variety of problems. Because of the size of
these networks, training requires a lot of computation, and some methods for dealing
with overtraining that are available for shallow neural networks, with only a few hidden
layers, become impractical. Dropout is a recently developed method to reduce overtraining
without being too computationally demanding for deep neural networks. In this project,
however, dropout is applied to shallow neural networks, and in this thesis it is shown that
dropout is a good way to reduce overtraining in shallow neural networks on a variety of
classification problems.

Populärvetenskaplig sammanfattning

Dagens samhälle blir mer och mer datoriserad och tekniken blir allt mer avancerad. I
teknikens framkant finner man artificiell intelligens. Idag finns det artificiell intelligens
som kan vinna över världsmästare i en mängd olika brädspel som schack och go, kan
analysera och först̊a bild och tal, och hjälpa läkare med diagnosering av patienter. Artificiell
intelligens tillämpas ocks̊a i självkörande bilar. Detta är möjligt p̊a grund av utvecklingen
av artificiella neurala nätverk, som är baserade p̊a neuronerna och och de komplexa neurala
nätverken i hjärnan. En relativt ny metod kallad dropout har visats kunna förbättra
förmågan hos djupa neurala nätverk att kunna lösa nya uppgifter baserat p̊a tidigare
exempel. Detta projektet handlar om att studera dropout genom att tillämpa metoden
p̊a sm̊a nätverk. Sm̊a nätverk har fördelarna att de är lättare att implementera och g̊ar
fortare att träna, vilket gör det enklare att testa metoden p̊a en mängd olika problem.
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1 Introduction

The goal of this project is to study the effect of the dropout method, when applying it to
shallow networks.

This introduction aims to give an understanding of neural networks, and how they are
implemented.

1.1 Simple Perceptron

1.1.1 The biological neuron

The algorithms used in artificial neural networks are inspired by the nerve cells of the
human brain, called neurons. In 1943, Warren Sturgis McCulloch, an American neu-
ropsysiologist, and Walter Harry Pitts, a logician working in the field of computational
neuroscience, published a paper called ”A Logical Calculus of Ideas Immanent in Nervous
Activity”, where they proposed a simple model of how a biological neuron might work [1].

The cell body receives electrical signals from other neurons or sensory cells via the
dendrites (fig.1a). The input signals are processed in the cell body and the generated
output signals are transmitted through the axon which is connected to the dendrites of
other neurons. These connections are called synapses and can have varying strengths, and
they can either excite or inhibit the receiving neuron, making it more likely or less likely
to fire a signal.

(a) A biological neuron [2]. The input signals
go into the neuron via the dendrites. The sig-
nals are processed in the cell body, and new
signals are transmitted via the axon.

(b) A simple perceptron. The inputs xm are
multiplied by their respective weights wm, and
summed up along with the bias b. The sum
is then passed through the activation function
φ(x) to finally give the output y.

Figure 1: A comparison between the biological neuron and the simple perceptron with one
output node.
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1.1.2 The artificial neuron

The simplest model of an artificial neural network is the artificial neuron, also referred to
as the simple perceptron, which was introduced by Frank Rosenblatt in 1958 [3, p.10]. The
simple perceptron has an input layer and an output layer. Each input node is connected
to each output node with weights deciding the strength of the connection. These weights
can be either positive or negative, leading to constructive interference if two weights have
the same sign or destructive interference if the weights have different signs.

With only one output node the similarities between the neuron and the simple per-
ceptron become apparent (fig.1b). The simple perceptron sums up all the M inputs xm,
multiplied by their assigned weights wm and adds a bias b. The sum is then passed through
an activation function φ(x), and the output y from the simple perceptron is given by the
output from this activation function. Mathematically this can be written as:

h =
M∑
m=1

wmxm + b

y = φ(h). (1.1)

By defining a bias weight w0 = b and a bias input x0 = 1 the equation can be simplified
to:

y = φ(
M∑
m=0

wmxm) = φ(wTx) (1.2)

w ≡


w0

w1
...
wM

 ; x ≡


x0
x1
...
xM

 (1.3)

1.1.3 Decision plane

The McCullock-Pitts model uses a sharp activation function given by:

φ(x) =

{
1 x > 0

−1 x ≤ 0
(1.4)

The plane given by h = 0 is the decision plane, and divides the M-dimensional input
space into two regions where h > 0 ⇒ y = 1 and h ≤ 0 ⇒ y = −1. This is easily illus-
trated with the AND-problem, where the inputs are 2-dimensional and the decision plane
becomes a line (table 1 and fig.2). During a process called learning, the decision plane is
adjusted so that the outputs y matches the given target outputs d. This is done by tuning
the weights wm (including the bias weight w0). The learning process is also called training
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the network [3, p.12-14].

x1 x2 d
-1 -1 -1
-1 1 -1
1 -1 -1
1 1 1

Table 1: The AND-
problem. d is the target
output for the network
given the inputs x1 and
x2.

Figure 2: The AND-problem. This shows how
the decision plane might move during the learn-
ing process to separate the data points into two
groups, one with d = 1 and one with d = −1.

x1 x2 d
-1 -1 -1
-1 1 1
1 -1 1
1 1 -1

Table 2: The XOR-
problem.

Figure 3: The XOR-problem. It is impossible
to separate the data points into one group with
targets d = 1 and another group with targets
d = −1 using only one straight line. There will
always be at least one data point misplaced.

1.2 Multilayer Perceptron

Some problems are unsolvable with the simple perceptron. A simple example is the XOR-
problem (table 2 and fig.3). To solve these problems, one or more hidden layers of nodes are
introduced. With one hidden layer, the hidden nodes can be seen as simple perceptrons with
the same inputs, where each node creates a decision plane. This allows the network to work
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with several decision planes and combine them to create complex decision boundaries. The
resulting structure is called a multilayer perceptron, commonly referred to by its acronym,
MLP. One of the simplest MLP-models is the fully connected feed-forward MLP, where all
nodes from one layer are connected to all nodes in the next layer (fig.4), which means that
the outputs from one layer are the inputs for the nodes in the next layer.

Figure 4: A multilayer perceptron with M inputs, one hidden layer of I hidden nodes with
outputs vi, and an output layer with one output node y. For simplicity, the summations
and the activation functions for each node are often not drawn out. Note that a general
MLP might have more than one output.

With the nodes, weights, and activation function denoted vi, w
(1)
im and φ(1)(x) for the

hidden layer, and y, w
(2)
i and φ(2)(x) for the output layer, the output of an MLP with one

hidden layer and one output node is given by (compare with eq.1.1):

vi = φ(1)

(
M∑
m=0

w
(1)
imxim

)
(1.5)

y = φ(2)

(
I∑
i=0

w
(2)
i vi

)
(1.6)

Usually the activation function for the output layer φ(2)(x) is chosen to be a sigmoidal
function if the network is supposed to solve a classificasion problem, or a linear function
if the network is supposed to solve a regression problem. However, the activation function
for the hidden layer needs to be a nonlinear function (usually sigmoidal). It can be proven
that a linear activation function for the hidden layer makes the MLP equivalent to a simple
perceptron [3, p.15, 21− 23].

1.3 Gradient Descent Learning

A problem can be given by a data set of N input-output patterns. The AND-problem and
the XOR-problem, for example, both have 4 input-output patterns (see table 1 and 2).
Given a data set of N input-output patterns an error function can be defined as:
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E =
1

2N

N∑
n=1

(d(n)− y(n))2 (1.7)

where y(n) is the output of the network and d(n) is the target output given an input signal
(x1(n), x2(n), ..., xM(n)).

The function given by equation 1.7 is the mean square error function and is a measure-
ment of how well the network performs on a given problem. Since all terms in the sum
are positive, an error of E = 0 would mean that all data points are classified correctly.
The learning process aims to minimize E as a function of the weights (w0, w1, w2, ..., wM)
(which affects the output of the network y). This can be done with gradient descent
learning, which has the following update rule:

w
(1)
im → w

(1)
im + ∆w

(1)
im ;w

(2)
i → w

(2)
i + ∆w

(2)
i (1.8)

∆w
(1)
im = −η ∂E

∂w
(1)
im

; ∆w
(2)
i = −η ∂E

∂w
(2)
i

(1.9)

where η is a parameter called the learning rate.
Updating the weights using all input-output patterns for each update is called batch

updating. In practice, this is often too inefficient as the gradients for each data point in
the whole data set have to be calculated for just one update. Therefore, block updating
is often preferred. Block updating uses a few patterns for each update (typically 10-50
patterns). Gradient descent with block updating is called mini-batch gradient descent [4].

The amount of training on a network is measured in epochs. When the updating has
cycled through all patterns once, one epoch has passed. In the case of batch updating,
each update is an epoch, whereas for block updating, several updates are required to cycle
through all patterns.
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2 Dropout

2.1 Deep neural networks

In theory, a multilayer perceptron can approximate any continuous function to an arbitrary
degree with only one hidden layer, given that it has enough hidden nodes. The problem
however, is to find the correct amount of hidden nodes and to find a way to train the
weights to their optimal value. In practice more hidden layers are usually added to solve
more complex problems. Artificial neural networks that uses a large number of hidden
layers and parameters, called deep neural networks, are very powerful models that are used
to solve a wide variety of problems, including image recognition and speech recognition [5].

2.2 Overtraining

A problem with these networks, however, is overtraining. As you increase the size of the
networks (by adding more hidden layers and more hidden nodes), the decision boundaries
created by the networks can become increasingly complex. Overtraining occurs when the
decision boundaries conforms to the training set too much in detail, giving a very good
performance on the training set, but a poor performance on new data that has not been
used for training [6]. One common solution when working with shallow networks (with
few layers and nodes) is to train several neural networks and create an ensemble output.
The ensemble output can be the average output of the networks or some kind of weighted
output. However, because of the size of deep neural networks, training requires a lot of
computation, and creating an ensemble of many networks may not be a practical solution.
Other ways of dealing with overtraining include early stopping, which is a method where
you stop the training as soon as the validation performance get worse, and using weight
penalties, which limits the complexity of the network.

2.3 The Dropout Method

Dropout is a recently developed technique that deals with the problem of overtraining
without being as computationally demanding as an ensemble of networks [7]. For each data
point during training, a thinned network is sampled and trained. The thinned networks
are sampled by randomly dropping out nodes with a predefined probability given by 1− p.
A dropped out node is temporarily removed from the network, along with its connections
(fig.5).

When simulating the network, for instance when validating the network, no nodes are
dropped out. Instead, the output of each node is multiplied by their probability of being
retained p. This gives the same value as the expected output of the nodes during training.

Dropout can be seen as a way of approximating an ensemble of 2n possible thinned
networks, where n is the number of nodes in the network, excluding output nodes (since
they are not dropped out).
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Figure 5: (b) shows a possible thinned network during training after dropout has been
applied to the network shown in (a). The crossed out nodes has been dropped out. [7]

2.3.1 Network Size

With n hidden nodes and the probability of retaining a hidden node during training given
by ph, there will on average be phn hidden nodes present after dropout. A network with
fewer nodes will have a lower capacity, meaning that it will not be able to learn as complex
features as a network with more nodes. Hence, to retain the complexity of the network,
a standard MLP with n hidden nodes will be compared to a dropout network with n/ph
hidden nodes, rounded to the nearest integer [7].
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3 Methods

3.1 Validation

The error function given by equation 1.7 can also be used to evaluate the performance of
a network.

The training performance, that is, the error when evaluating the network on data points
that were included in the training, can become very close to zero by using a lot of nodes
and by training the network for a very long time. However, this is most often not a good
measurement of how the network performs on new data sets.

Since the idea is to use neural networks to get solutions that you do not already know the
answer to, the generalization performance, that is, the performance on data that were not
part of the training is most often of greater value. One way to estimate the generalization
performance is to split the given data set into two parts, creating a training set and a
validation set. When the neural network has been trained using the training set, the
validation set can be used to estimate the generalization performance, since it has not
been used during the training.

However, there are some drawbacks to this method. Since a part of the data set has
been set aside for validating the network, not all information available is used for improving
the network. Also, if the validation set is too small, the estimation of the generalization
performance will not be accurate.

3.1.1 K-fold cross validation

To overcome these drawbacks, another method called K-fold cross validation, which uses
the given data in a more efficient way, may be used [3, p.52-53]. The data set is split into
K parts of approximately equal size. K models are then trained on K slightly different
training data sets created by removing one part from the data set (fig.6). The part that
has been removed from the training data set is the corresponding validation data set and
is used to give a generalization performance. The average of the K validation results is
used as the final estimate of the generalization performance. This way, all data is used for
both training and validation without validating a network using the same data it has been
trained with.

3.2 Problem description

In this project, the effect of the dropout method applied to shallow networks, and how
well it reduces overtraining, was studied. The data sets used are described in the next
subsection.

3.2.1 Network Structure and Training

The networks used were multilayer perceptrons with only one hidden layer. All the data
sets used in this project were classification problems with one dimensional outputs, and
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Figure 6: K-fold cross validation with K = 5. Each of the 5 parts is used as a validation
set for a model trained on the remaining parts.

hence, the networks only had one output node. The activation function used for the hidden
nodes was:

φ(1)(x) = tanh(x), (3.1)

whereas, since the classes (i.e. the outputs) were given by either 0 or 1, the output activa-
tion function was set to a logistic function given by:

φ(2)(x) =
1

1 + exp(−x)
(3.2)

This function is bounded between 0 and 1, in contrast to the hidden activation function
tanh(x) which is bounded between -1 and 1 (fig. 7).

The networks were trained using mini-batch gradient descent with 10 data points in
each block update.

3.2.2 Learning rate

A dynamical learning rate was used. A few different starting values for the learning rate
η was tested. However, the impact of changing the starting value was not big, and a good
value to start at was η = 0.01 for all problems. The learning rate was modified during
training according to:

ηt+1 =

{
ηt · γ if Et+1 ≥ Et

ηt ·
(
1 + 1−γ

10

)
if Et+1 < Et

(3.3)
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Figure 7: The hyperbolic function tanh(x) (left) and the logistic function φ(x) = 1
1+exp(−x)

(right). The outputs of the hyperbolic function are bounded between -1 and 1 and the
outputs of the logistic function are bounded between 0 and 1.

where Et+1 and Et are the error rates after t+ 1 and t epochs. The scale factor γ was set
to γ = 0.999.

3.2.3 Normalization of inputs

Before any training, the inputs of the data sets were normalized according to:

xm =
xm− < xm >

σxm
. (3.4)

where < xm > is the mean value of all inputs in the data set with index m and σxm is the
standard deviation.

3.2.4 Validation

The generalization performance was estimated using 5-fold cross validation (fig. 6).

3.2.5 Implementation

All software used in this project was implemented from scratch in Java using Eclipse (IDE).

3.3 Data Sets

3.3.1 Pima

This data set is from a study where a population was tested for diabetes [8]. The inputs
contain information about the individuals and the output is either a one, if they tested
positive, or a zero, if they tested negative. The data set contains 768 data points where
about a third of the data points has the output one. Each data point has eight input
values.
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3.3.2 NL1

This is an artificial non-linear problem with 1000 data points where each data point contains
a total of eight randomly generated inputs. The first four inputs x1, x2, x3, x4 are normally
distributed variables whereas the other four inputs b1, b2, b3, b4 are binary variables. Using
these random variables a value y was calculated using the following formula:

y = x1x2 + x3x4 + 2x21 + 2x22 + 2sin(2πx3) + b1b2 + 3b3b4. (3.5)

The data points were separated into two classes. The 500 data points with the highest
value of y belonged to class 1 and the others belonged to class 0.

3.3.3 NL2

This is an altered version of the previous data set where each data point gets an addi-
tional four normally distributed random variables. These variables do not affect the class
of the data point and only serve to add noise, making the network more susceptible to
overtraining.

3.3.4 NL2 - halved data set

500 data points from the NL2 data set was chosen at random. This data set was created
to further increase the likelihood of overtraining.

3.3.5 Pancreat

This data is from a study trying to distinguish patients with pancreatic cancer from healthy
controls using biomarkers (in this case protein content in the blood). This data set contains
229 datapoints where about half of them has output 1 and the other half has output 0.
The data points have 253 input values.
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4 Results

The figures in this section show the mean square error (eq. 1.7) as a function of the
amount of training (measured in number of epochs) for several different network sizes. In
the figures showing the results for the dropout networks, ph denotes the retaining rate of
the hidden nodes, and pi denotes the retaining rate of the input nodes.

4.1 Pima

Figure 8: The training errors (left) and validation errors (right) when training on the Pima
data set without applying dropout.

The Pima data set was tested with several different networks with varying amounts of
hidden nodes. This was first done without dropout to see how susceptible the networks
were to overtraining. A clear case of overtraining can be seen in fig. 8. The training
errors decrease as the number of hidden nodes and the number of epochs increases. The
validation errors, however, increase with the number of epochs after reaching their optimal
values at 0.16± 0.01 (these are listed in table 3 as best validation errors without dropout),
and the lowest validation errors after 5000 epochs were achieved with the fewest number
of hidden nodes (3 and 5).

To find a good drop rate for the hidden layer, several different networks with varying
value of the drop rate were tested with phn held constant at phn = 50 (fig. 9). The reason
for choosing a high value of phn is that a network with more capacity is more susceptible
to overtraining, and that the effect of applying dropout would be clearer. Even with low
dropout, the validation error of the network is improved. However, the optimal value of ph
seems to be around ph = 0.7 (30% dropout), as the error does not decrease appreciably even
when applying 90% dropout. Note that there will always be a slight variation because of
the randomness of the starting values of the weights as well as the randomness of dropout.

With 30% dropout on the hidden layer, barely any overtraining is observed (fig. 10),
even for the largest network with 71 hidden nodes (note that the corresponding network
without dropout has 0.7 · 71 ≈ 50 hidden nodes). Since the network size does not affect
the validation performance, the smallest network, in this case with 4 hidden nodes would
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Figure 9: The validation errors for networks
with varying dropout for the hidden layer
and no drop out on the input layer, where
phn was held constant at phn = 50. The val-
idation error of a network with no dropout
is included for comparison.

Figure 10: Validation errors when training
on the Pima data set with 30% dropout on
the hidden layer. The corresponding net-
works in this figure and the ones in figure 8
have the same color.

be preferred because less computing is needed to update the network, ultimately leading
to a reduction of time needed to train the network.

Figure 11: The validation errors for varying
drop rates on the input layer. All networks
used in this test had 50 hidden nodes.

Figure 12: Validation errors when training
on the Pima data set with 20% dropout on
the input layer.

Retaining rates for the input nodes ranging from 0.5 to 0.9 were tested on a network
with 50 hidden nodes (fig. 11).

Almost the same result as 30% drop rate on the hidden layer was achieved by applying
20% dropout on the input layer (fig. 12). Since all hidden nodes are retained during
training, the complexity of the decision boundaries are kept. Thus the size of the networks
do not need to be changed when applying dropout to the input layer, keeping the networks
smaller. As mentioned before, this is preferred because of reduction in training time.
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No improvements could be observed when dropout was applied on both the input layer
and the hidden layer at the same time.

Table 3: The second column lists the best validation errors reached for each network size
with no dropout applied to the networks. The columns 3, 4, and 5 lists the validation
errors after 5000 epochs.

phn
best validation errors
without dropout

validation errors
without dropout

validation errors
with ph = 0.7

validation errors
with pi = 0.8

3 0.16083 0.17047 0.15952 0.15435
5 0.15729 0.17868 0.15769 0.15737
10 0.15650 0.19028 0.16041 0.15803
15 0.15497 0.20516 0.15684 0.16437
30 0.15901 0.20724 0.15868 0.16323
40 0.15904 0.21105 0.16131 0.15835
50 0.15781 0.22333 0.15889 0.15741

Figure 13: The purple line shows the best validation errors reached with no dropout applied
to the networks. The other lines show the validation errors after 5000 epochs. The exact
values are listed in table 3.

The validation errors when applying dropout reach their optimal value and do not
increase with further training. The validation errors after 5000 epochs with and without
dropout were compared to the optimal validation errors reached without any dropout (table
3 and fig. 13). Fig. 13 shows us that dropout reduces the overtraining without limiting
the validation performance of the network, and that no additional regularization of the
networks is needed.
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Figure 14: The training errors (left) and validation errors (right) when training on the NL1
data set without dropout.

4.2 NL1

The training and validation errors when training on the NL1 data set is shown in fig. 14.
More hidden nodes, and thus more complex decision boundaries are required to get good
validation performance, which indicates the non linearity of the problem. For the networks
with more than 15 hidden nodes, overtraining can be seen after a certain amount of epochs
where the validation errors increases as the training errors decreases. However, despite
the absence of overtraining for the smallest network, it is still outperformed by the larger
networks. The networks with 3, 5, and 10 hidden nodes only have slight overtraining.

Figure 15: The validation errors for net-
works, trained on the NL1 data set, with
varying dropout for the hidden layer, and
no drop out on the input layer. phn was
held constant at phn = 50.

Figure 16: Validation errors when training
on the NL1 data set with 10% dropout on
the hidden layer.

For the NL1 data set a 10% drop rate on the hidden layer was enough to remove
most of the overtraining (fig. 15). One thing to note here, is that when the drop rate
is 90%, that is, when ph = 0.1, the error reduces at a slower rate compared to the other
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networks with dropout. This is due to a lower percentage of weights being trained at each
update, meaning that on average, more epochs will be needed for a given weight to be
updated, and therefore, more epochs will be needed for a given weight to reach a good
value. Additionally, since the size of the network is greater, each individual epoch will
require more calculations and hence more time.

With 10% dropout on the hidden layer, a clear reduction of overtraining on the larger
networks can be seen in fig. 16.

Figure 17: The validation errors for varying
drop rates on the input layer. All networks
used in this test had 50 hidden nodes.

Figure 18: Validation errors when training
on the NL1 data set with 20% dropout on
the input layer.

The best input drop rate for the NL1 data set was 20% (fig. 17). With a higher drop
rate than 20% for the input layer the error increased with increasing drop rate. Compared
to applying a 10% drop rate on the hidden nodes (fig. 16), all networks except for the
network with 3 hidden nodes had a similar result when applying 20% dropout on the inputs
(fig. 18). However, the error of the network with 3 hidden nodes was decreased by 32%.

Table 4: The second column lists the best validation errors reached for each network size
with no dropout applied to the networks. The columns 3, 4, and 5 lists the validation
errors after 5000 epochs.

phn
best validation errors
without dropout

validation errors
without dropout

validation errors
with ph = 0.9

validation errors
with pi = 0.8

1 0.21762 0.21764 0.21413 0.22775
3 0.17160 0.18008 0.20300 0.13665
5 0.11348 0.11360 0.12757 0.12921
10 0.11010 0.11905 0.11821 0.11900
15 0.12945 0.16661 0.13155 0.11905
30 0.10632 0.14816 0.10822 0.11700
40 0.12095 0.15658 0.12512 0.11675
50 0.10449 0.14504 0.11056 0.11820
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Figure 19: The purple line shows the best validation errors reached with no dropout applied
to the networks. The other lines show the validation errors after 5000 epochs. The exact
values are listed in table 4.

The validation errors after 5000 epochs with and without dropout were compared to
the optimal validation errors reached without any dropout (table 4 and fig. 19). No sign
of loss in validation performance can be seen when dropout is applied.

4.3 NL2

Figure 20: The training errors (left) and validation errors (right) when training on the NL2
data set without dropout.

Training neural networks on the NL2 data set, which is an alternated version of NL1,
showed similar results as NL1. The networks with 15 hidden nodes or more had a slight
increase of the validation errors and a slight decrease in training errors, signifying a slight
increase in overtraining. This was to be expected since noise was added into the data
set. The network with 10 hidden nodes had the most increase in overtraining with the
validation error increasing from 0.12 to 0.15 and the training error decreasing from 0.071
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Figure 21: The validation errors for net-
works, trained on the NL2 data set, with
varying dropout for the hidden layer, and
no drop out on the input layer. phn was
held constant at phn = 50.

Figure 22: Validation errors when training
on the NL2 data set with 10% dropout on
the hidden layer and no drop out on the
inputs.

to 0.056. The networks with 1 and 3 hidden nodes however, showed a decrease in both
training and validation errors.

As for the NL1 data set, 10% dropout on the hidden layer was enough to reduce most
of the overtraining when training networks with phn = 50 on the NL2 data set (fig. 21).
This was also true for the other network sizes (fig. 22).

Figure 23: The validation errors for varying
drop rates on the input layer. All networks
used in this test had 50 hidden nodes.

Figure 24: Validation errors when training
on the NL2 data set with 20% dropout on
the input layer.

A 20% drop rate was the optimal value for the input layer (fig. 23). Again, the results
are very similar to those of the NL1 data set (fig. 24).
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Table 5: The second column lists the best validation errors reached for each network size
with no dropout applied to the networks. The columns 3, 4, and 5 lists the validation
errors after 5000 epochs.

phn
best validation errors
without dropout

validation errors
without dropout

validation errors
with ph = 0.9

validation errors
with pi = 0.8

1 0.20598 0.20599 0.20707 0.21730
3 0.14237 0.14257 0.14846 0.16080
5 0.11990 0.12057 0.13188 0.13721
10 0.12227 0.15819 0.12603 0.12755
15 0.11980 0.16900 0.12761 0.12032
30 0.11784 0.16614 0.12885 0.12461
40 0.11649 0.16628 0.12655 0.12729
50 0.11526 0.17746 0.12015 0.12311

Figure 25: The purple line shows the best validation errors reached with no dropout applied
to the networks. The other lines show the validation errors after 5000 epochs. The exact
values are listed in table 5.

The validation errors after 5000 epochs with and without dropout were compared to
the optimal validation errors reached without any dropout (table 5 and fig. 25). Again,
no loss in validation performance is observed.

4.4 NL2 - half data set

Since the NL1 and NL2 data sets had so similar results, the added noise did not make as
big a difference as expected. A likely reason for this is that the size of the data set was
big enough for the networks to learn that the noise variables did not affect the output by
lowering the absolute value of the weights corresponding to those inputs. Therefore, to
increase the impact of the noise, and to increase the networks susceptibility to overtrain, the
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Figure 26: The training errors (left) and validation errors (right) when training on the NL2
data set without dropout.

NL2 data set was halved. The training and validation errors when training without dropout
on the halved data set are shown in fig. 26, where a significant increase of overtraining can
be seen.

Figure 27: The validation errors for net-
works, trained on the halved NL2 data set,
with varying dropout for the hidden layer,
and no drop out on the input layer. phn was
held constant at phn = 50.

Figure 28: Validation errors when train-
ing on the halved NL2 data set with 50%
dropout on the hidden layer.

A much higher drop rate was required for reducing the overtraining (fig. 27). Since
less information is used for training the networks, the networks produce higher validation
errors compared to when training on the whole data set. However, the dropout method
still removes almost all of the overtraining with a 50% drop rate on the hidden layer (fig.
fig. 28).
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Figure 29: The validation errors for varying
drop rates on the input layer. All networks
used in this test had 50 hidden nodes.

Figure 30: Validation errors when train-
ing on the halved NL2 data set with 20%
dropout on the input layer.

As for the NL1 and NL2 data sets, 20% was the optimal value for the drop rate on the
inputs (fig. 29). Some overtraining can still be observed. However, the validation errors
are slightly lower compared to applying dropout on the hidden layer (fig. 30; compare to
fig. 28).

Table 6: The second column lists the best validation errors reached for each network size
with no dropout applied to the networks. The columns 3, 4, and 5 lists the validation
errors after 5000 epochs.

phn
best validation errors
without dropout

validation errors
without dropout

validation errors
with ph = 0.5

validation errors
with pi = 0.8

1 0.21188 0.21188 0.22069 0.21999
3 0.19745 0.20835 0.20699 0.19009
5 0.18419 0.20040 0.18974 0.15707
10 0.19076 0.22945 0.18508 0.14905
15 0.22945 0.21416 0.17477 0.15330
30 0.16471 0.22634 0.16484 0.16334
40 0.16335 0.20964 0.16158 0.15780
50 0.17320 0.21948 0.16291 0.15337
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Figure 31: The purple line shows the best validation errors reached with no dropout applied
to the networks. The other lines show the validation errors after 5000 epochs. The exact
values are listed in table 6.

Table 6 and fig. 31 shows that even for this halved data set, the validation performance
was not limited due to applying dropout. On the contrary, the validation performances of
the smaller networks are improved by a considerable amount.

4.5 Pancreat

Figure 32: The training errors (left) and validation errors (right) when training on the
Pancreat data set without dropout.

The huge number inputs make the networks very susceptible to overtraining when
training on the Pancreat data set (fig. 32). The training errors are almost zero whereas
all validation errors were above 0.25 after 5000 epochs.

For this data set, the best result without dropout on the inputs was achieved with a
70% drop rate on the hidden nodes, however, a lot of overtraining is still present (fig. 33
and fig. 34).
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Figure 33: The validation errors for vary-
ing drop rates for the hidden layer, and no
dropout on the input layer. phn was held
constant at phn = 50.

Figure 34: Validation errors when training
on the Pancreat data set with 70% dropout
on the hidden layer and no dropout on the
input layer.

(a) pi of the interval [0.5,1.0]. (b) pi of the interval [0.1,0.4].

Figure 35: The validation errors for varying drop rates on the input layer. All networks
used in this test had 50 hidden nodes.

Figure 36: Validation errors when training on the Pancreat data set with 80% dropout on
the input layer.

25



Dropout on the inputs showed significantly better results. The best drop rate for the
inputs was 80% (fig. 35). Figure 36 shows that, with 80% dropout on the inputs, no sign
of overtraining can be observed. Another thing to notice from this figure is that almost
the same validation error is reached for all network sizes, even with only one hidden node,
meaning that this was a linear problem.

Table 7: The second column lists the best validation errors reached for each network size
with no dropout applied to the networks. The columns 3, 4, and 5 lists the validation
errors after 5000 epochs.

phn
best validation errors
without dropout

validation errors
without dropout

validation errors
with ph = 0.3

validation errors
with pi = 0.2

1 0.20557 0.31634 0.25343 0.20293
3 0.21611 0.35149 0.28860 0.20698
5 0.20503 0.31352 0.29059 0.21121
10 0.19875 0.30367 0.29315 0.20480
15 0.22025 0.34972 0.28711 0.19823
30 0.20130 0.29701 0.26975 0.20937
40 0.23143 0.36113 0.27140 0.20818
50 0.19794 0.29436 0.27967 0.20365

Figure 37: The purple line shows the best validation errors reached with no dropout applied
to the networks. The other lines show the validation errors after 5000 epochs. The exact
values are listed in table 7.

The validation errors after 5000 epochs with and without dropout were compared to
the optimal validation errors reached without any dropout (table 7 and fig. 37). As also
seen in fig. 34, dropout on the hidden layer reduced the overtraining, but was not enough
to remove the overtraining. However, fig. 37 shows that with dropout on the input layer,
the validation errors are as low as the optimal errors without any dropout.
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4.6 Discussion and Conclusion

Dropout is a versatile method, capable of reducing overtraining on a variety of problems,
with varying number of inputs, complexity and data set sizes, without limiting the perfor-
mance of the network.

A downside with dropout networks is that they take a longer time to train compared
to regular MLPs without any dropout. A higher drop rate on the hidden layer reduces the
probability of overtraining but requires more time. Dropout on the input layer does not
increase the time as much as dropout on the hidden layer, since the size of the networks
stays constant, however, a more careful choice of the drop rate has to be made, since, with
a higher drop rate, although overtraining is reduced, the performance of the network may
be worse. This effect could be seen for the non-linear problems. A likely reason for this is
that with a drop rate that is too high, the networks are not always capable of finding the
non-linear relations, since they require several inputs to be present.

For the data sets used in this project, dropout on the inputs proved to be better than
dropout on the hidden layer (with good values on the drop rates). By applying dropout on
the input layer the validation errors were as good as or better than the validation errors
produced by applying dropout to the hidden layer, whilst taking significantly less time to
train.

No improvements could be made by applying dropout on both inputs and hidden nodes,
since, with good values on the drop rates, the networks had almost no problem of overtrain-
ing either when only applying dropout on the hidden nodes (all data sets except Pancreat)
or only on the inputs (all data sets). This also shows that no additional regularization is
needed.

An improvement on the study could have been made by comparing the dropout method
to ensembles. However, this was not done due to limited time.
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