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Abstract

Majorana bound states are in condensed matter physics quasiparticle excitations which can
be found in so-called topological superconductors. They have lately received much attention
since they have been predicted to be partly immune to decoherence and therefore suitable for
quantum computation. A nanowire with strong spin orbit coupling and proximity induced
superconductivity that is subject to a magnetic field has been shown to host a pair of Majorana
bound states living on the opposite ends of the nanowire. One bit of quantum information
(a qubit) can be stored in such a pair of Majorana bound states. The quantum information
is then protected from decoherence as long as the Majorana bound states are well separated,
such that their wave functions do not overlap. In this work we explore the effect of introducing
potential barriers in the nanowire. It is shown that for certain parameter settings of the barriers
the overlap between the Majorana bound states can be reduced. Furthermore, disorder in the
potential is studied. The effect of the disorder is also shown to depend on the parameter settings
of the barriers. Finally it is shown that a rotating magnetic field can amplify the spin-orbit
coupling in a nanowire. Increasing the spin-orbit coupling results in a decrease in the overlap.
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Chapter 1

Introduction

1.1 Background

The idea of Majorana bound states stems from the Majorana fermions in particle physics. In
particle physics a Majorana fermion is a particle that is its own anti-particle. The Majorana
fermion was proposed in 1937 by Ettore Majorana, thereby its name, when he found that by
making a clever modification to the Dirac equation it only involves real numbers [1]. It is not
certain if the particle exists as an elementary particle but in condensed matter physics they
are likely to exist as quasiparticle excitations of the many-body groundstate, which we call
Majorana bound state (MBS) [2, 3]. MBSs are exotic states of matter that exist in so called
topological superconductors and have lately received much attention due to their potential use-
fulness as building blocks for a quantum computer [4].

There are suggestions for many different systems hosting MBSs. Examples of these are the frac-
tional quantum Hall states at filling factor v = 5/2, p-wave superconductors, heterostructures
of topological insulators and superconductors, and spin-orbit coupled ferromagnetic Josephson
junctions [5, 6]. Another example is nanowires with strong spin-orbit coupling in proximity
to an s-wave superconductor which hosts a MBS on each end of the nanowire. The MBSs are
zero-mode excitations that are well separated from the bulk states by an energy-gap. A MBS
can furthermore be thought of as a half fermion. This means that a fermoinic state can be writ-
ten as a superposition of two MBSs. This is normally just a mathematical operation without
any physical consequences when the states are localized close to each other and when there is
a significant overlap between the wave functions.

In nanowires MBSs on the opposite ends can in special cases, which is shown later, together
form a ”special” fermonic state. Since the MBSs live on opposite ends of the wire these will
form a fermionic state that is highly delocalized. When e.g. a quantum state interacts with
an environment, the environment may cause decoherence. This means that quantum state and
the environment become entangled. Due to the entanglement information about the quantum
state is lost [7]. However, since the highly delocalized fermionic state cannot be changed by
perturbations only affecting one of its Majorana constituents, it is protected against most types
of decoherence. Due to this property the MBSs are expected to give the possibility of low de-
coherence quantum computation[2, 4]. This property is however only kept as long as the MBSs
are well separated and do not overlap.

One way to possibly realize a quantum computer is to build networks using nanowires hosting
MBSs [8]. When one wants to build networks and make connections between the nanowires, the



nanowires are going to be shorter. This leads to that the MBSs in the nanowire will possibly
overlap (depending on the length of the nanowire) and the possibility of low decoherence might
be lost. This problem is what is going to be addressed in this project.

1.2 Thesis objectives

In this thesis we investigate MBSs in nanowires with spin-orbit coupling and proximity induced
superconductivity, more specifically we want to try if it is possible to modulate the potential
in the nanowire such that the overlap between the MBSs is reduced. The potential can be
modulated by having gate-electrodes inducing a local potential shift in the nanowire. Another
way to modulate the potential in a nanowire is by growing a nanowire with two different types
of materials that has different badgap. The potential difference is then set by the offset in the
conduction band between the two materials.

Due to the required stability of the MBSs in for example quantum computing, the effects of
disorder is studied. We also investigate if a nanowire with modulation of the potential is affected
differently by disorder compared to the homogeneous nanowire. Furthermore we investigate
nanowires with and without spin-orbit coupling subjected to a helical magnetic field. The goal
of this is the same as for the modulation of the potential; to try to find out if it is possible to
reduce the overlap between the MBSs in the nanowire.

1.3 Superconductivity

To realize MBSs in nanowires, one ingredient is as mentioned proximity induced superconduc-
tivity. Proximity induced means that a superconductor induces so called Cooper-pairs into, in
this case, the nanowire which makes it superconducting. Due to this we give a short introduc-
tion to superconductivity.

When certain materials are cooled below a critical temperature the material experience a phase
transition and enters a superconducting phase. In the superconducting phase the electrical
resistance is zero. This phenomena was first discovered in 1911 by Kamerlingh-Onnes when he
observed the disappearance of the electrical resistance when cooling different metals below the
critical temperature, 1., of the investigated material. The explanation of the phase transition
for conventional superconductors (superconductor with pairing of electrons with different spin,
also denoted s-wave superconductor) was given by Bardeen, Cooper and Schriffer (BCS) in
the BCS theory [9]. The BCS theory originated from an observation made by Cooper. He
considered the problem of a pair of electrons interacting above a non-interacting Fermi sea of
electrons and where the only interaction between the free electrons and the Fermi sea is via
the Pauli exclusion principle. From this observation it was found that the electrons can form a
bound state, a Cooper pair, if the sum of the total interaction is attractive. The reason for the
attractive interaction is due to electron-phonon interactions. It can furthermore be shown that
the interaction is strongest when the wave vector and the spin of the electrons are opposite.
Due to this it is only necessary to consider Cooper pairs with (k 1 and —k |) [10]. This effective
positive interaction at the surface of the Fermi-sea renders it unstable and leads to formation
of more Cooper-pairs. This goes on until equilibrium is reached. Due to this, BCS suggested
that the wave function for the superconducting ground state could be written as superposition
of states each with an integer number of Cooper pairs [11]. The ground state is written



|¢BCS> = H(uk + UkCLTCiki) |0> ) (1'1)
k

where k is the wave-vector of an electron and ¢y, is the annihilation operator for an electron
with spin projection ¢ =T,]. The coefficients vy and uy are expansion coefficients and obey
luk|? + |vk|? = 1. Furthermore |vk|? gives the probability of a pair (k 1, —k |) being occupied
while |uk|? = 1—]|vk|? is the probability for a state being unoccupied. To find the value of vy and
uy there are different methods that can be used. The variational method was used when BCS
first presented the BCS theory [9], however, in this case we will use a canonical transformation
which is presented below.

A general Hamiltonian for an s-wave superconductor considered in the BCS theory is

Hpcs = Z kaLUCkU + Z ka'CLTCT_k¢C—k’¢Ck’T7 (1.2)
ko KK/

where & = € — p is the energy of a single electron measured from the chemical potential, 4, and
Vi is the coupling strength. The Hamiltonian describes the interaction between Cooper pairs
and thus the ground state of the BCS Hamiltonian could be expected to be the BCS ground
state, Eq. (1.1), since it is a superposition of states filled with an integer number of Cooper
pairs [11]. A consequence of this is that the pair operators CLTCT—k 1 and cipc_k| has a finite
ground state expectation value, thus <CLTCEk 1) and (ckrc—k|) are non-zero and due to the large
number of particles involved, fluctuations around these are small [9]. Because of this it is useful
to make a mean-field approximation. This means that we can write the density operators as a
sum of its expectation value and a term describing small fluctuations around it [11]

kil = (CkiCt) + 0k (1.3)

By re-writing the Hamiltonian in Eq. (1.2) with Eq. (1.3) and neglecting terms that are bilinear
in dx we obtain the mean-field BCS Hamiltonian

Hids = &cclytioty | Viae [%C Ky (Cieyaen) + e (egel ) = (egel e
ko kk’
(1.4)

The last term in the Hamiltonian is a constant and can be included in the chemical potential.
We define the superconducting order parameter as

- Z ka’bk/ = — Z ka/ <C,k/iCk/T>. (15)
k/

k/

Based on this (and some relabelling of subscripts) the mean-field BCS Hamiltonian can be
written as

Hpyds = Z €kl O — Z(AkCLTCT—m + Apcxyok 1) (1.6)
K



The Hamiltonian can be diagonalized by a linear Bogoliubov transform:

Yt up Uk Ck
()= (% () w)
Tk k Uk/ \C_k|

and the inverse of this transform is given by

Ckt Uk —Uk Tkt

k| k k Vx|
where the coefficients uy and vy are the same as those in the BCS ground state, Eq. (1.2), and
satisfy |uk|? 4+ |vk|> = 1. The operator, i+ = U Cip + vkch_ki creates a superposition of an
electron with k 1 and an electron with —k |. The net effect of the operator is to reduce the

momentum by k and reduce the total spin by //2. By inserting these operators into Eq. (1.6)
the Hamiltonian is found to be diagonal if [11]

1 gk
2 2 -
o[ =1— \uk\ =3 (1 k> ) (1.9)

where

By = /& + |Ag]2 (1.10)

The diagonal Hamiltonian is

HYE = Z Ek(’Y;LTVkT + ’Y]T{i%q) + constant terms. (1.11)
k
The dispersion relation, given in Eq. (1.10) is shown in Fig. 1.1. As seen there is a gap with the
size of 2|Ak| opened up in the excitation spectrum and thus there is a smallest required energy
of 2|Ay| for fermionic excitations. It will later be seen that MBSs will emerge in the middle of
the superconducting gap.
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FIG. 1.1. (Solid line) The excitation spectrum, Eq. (1.10) of a superconductor compared to the spec-
trum of a normal metal (dashed line). As seen, a gap is opened up in the excitation spectrum of the
superconductor.

1.4 Spin-orbit coupling

A key ingredient for realizing MBS in a nanowire is the spin-orbit (SO) coupling. The SO
coupling is needed to realize so called topological supercondutivity in the nanowire [12]. The
SO coupling is a relativistic effect that leads to for example a spin splitting of the energy bands
in a semiconductor. If we consider an electron moving with a momentum, p, we can make a
Lorentz transformation to the reference frame of the electron. The Lorentz transform of the
electric and magnetic field is given by [13]

E—-E=E+vxB (1.12a)

1
BB =B- ,vxE, (1.12b)
C

where E is the electric field, B is the magnetic field, v is the velocity of the electron and c is the
speed of light. The primes denote the reference frame of the electron. Due to this, a particle
moving in an electric field will experience a magnetic field, B’ = —c%v x E. This magnetic field
will interact with the magnetic moment of the electron and the energy due to this interaction
can be included in the Hamiltonian by adding the term

giB

Hso = —p-B' = "2 (VXE)S. (1.13)

where S is the spin operator, up is the Bohr magneton and g is the Landé g-factor. This can

be re-written by using p = mv and S = %a for two-component spin systems where o is a

vector containing the Pauli matrices. Substituting this into Eq. (1.13), using that up = 5% and

2m
changing order of the cross product we obtain
- h
Hg gLB

0=5"50-(px E). (1.14)




From this equation we see that the energy splitting given by the spin-orbit interaction is pro-
portional to both the momentum of the particles as well as the electric field. Due to the small
pre-factors this effect is going to be very small if not the momentum or the electric field is very
large. If we consider a metal where vp &~ 10°m/s [10] and assume an electric field of 106V /m,
which is of the order as for which air break down, this results in an energy of approximately
10~'%eV. This shows that huge electric fields is needed to produce a very small energy splitting.

Now we consider the case of SO coupling in semiconductors. In general the electric field is given
by E = —VV [13] where V is the crystal potential. This gives a SO field

w(p) = 2EB (VV x p). (1.15)

© 2me?

It is known from [14] that SO coupling is invariant under time reversal symmetry. Thus we
consider what happens when time-reversing p and o. The momentum operator changes sign
under time reversal, p — —p [14]. To find the time-reversal of the spin angular momentum we
define the time-reversal operator, T', as [15]

T =o0,K (1.16)

where K is the complex conjugation operator and o, the Pauli matrix in the y direction. The
time-reversal of the spin angular momentum is then found to be TTeT = —¢. From this it then
follows that

w(p)-o=—w(—p)- 0. (1.17)

This implies that —w(p) = w(—p) which is odd in momentum. This can only happen for
semiconductors that are asymmetric under space inversion [16]. There are two main effects
causing the space inversion asymmetry. The bulk inversion asymmetry (BIA) was pointed out
by Dresselhaus after noticing that zinc-blende structures lacked a centre of inversion [17]. Close
to the I' point the SO coupling takes the form [16]

Hp, = +((py — p2)pa0a + c.p.), (1.18)

where 7 is a material dependent parameter and c.p. denotes circular permutation of indices.
For semiconductor quantum structures the inversion symmetry can also be lifted, additionally
to the BIA, by structure inversion asymmetry (SIA). The SIA is due to the asymmetry of the
confining potential V' (r). This was taken into account by Bychakov and Rashba who then
proposed the following Hamiltonian for SO coupling [16]

Hp = a—;”(r xp)- o, (1.19)

where ap is the Rashba parameter and is material dependent. The Rashba parameter replaces
the pre-factor in Eq. (1.14) and typically ag/h >> upFE./mc where E, is the electric field in
the z-direction, which is in this case the direction of the asymmetry. This relation then states
that the SO coupling is much stronger in a semiconductor than it is for a free electron and
compared to the previous calculated energy splitting, the Rashba spin-orbit coupling gives an



energy splitting around 0.1 meV [18], which is 105 times larger than that of an free electron.

For a one-dimensional electron gas (1IDEG) directed along the z-axis with an electric field

pointing in along the z-axis this reduces to Hr = agk,oy. The total Hamiltonian for a 1IDEG
then reads

ﬁlDEG =€ + OékaIUy. (1.20)

2
where € = % This Hamiltonian is easily diagonalized resulting in

B, = e, &+ agks. (1.21)

The dispersion relation is shown in Fig. 1.2. The free electron parabola is split into two shifted
parabolas representing the spin splitting between £, and k,|. It should be noted that due to
the Hamiltonian, Eq. (1.20), spin up and spin down refers to spin up and spin down in the
y-direction.

By
-
—_—
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FIG. 1.2. The dispersion relation, Eq. (1.21) for a 1IDEG with Rashba spin-orbit coupling. The arrows
represent the spin carried by the two different bands. In this case spin up and spin down represent spin
up and spin down in the y-direction.

1.5 Majorana Bound States

The criteria for a state to be considered a MBS is that the operator creating a MBS is equal to
the operator annihilating the MBS. Thus

v =1, (1.22)

where v (71) is the annihilation (creation) operator of a MBS. A consequence of this is that
the MBS will then be a state that is its 'own hole’. For an excitation involving electrons and
holes states to be its own anti-state it is required that the excitation is an equal superposition
of electron and hole states. An operator that creates a state which is a superposition with an
equal part of electrons and holes and that also fulfills Eq. (1.22) is



y=c+c, (1.23)

where ¢ (c!) is a fermion annihilation (creation) operator. From the structure of this operator
it is clear that we should look for excitations in superconductors. This can be realized by the
fact that the wavefunctions of Bogliubov quasiparticles have an electron and a hole part [9]. If
we for a moment drop the spin indices then, in terms of creation and annihilation operators,
the Bogoliubov quasiparticle is written as

v = uct + ve, (1~24)

where the prefactors v and v are given by the energy of the Bogoliubov quasiparticle excitation.
Excitations happening far above the superconducting gap can be well approximated to behave
like an electron and thus |u| ~ 1 and |v| &~ 0. Similar for excitations happening in the Fermi
sea far below the superconducting gap, these can be well approximated with a hole and |u| ~ 0
and |v| ~ 1. The amplitude of the creation and annihilation operator in Eq. (1.23) is equal and
therefore if Eq. (1.24) shall describe a MBS we require that u = v. If we consider the energy
dependence of u and v we could expect that © = v should be in between excitations looking
just like an electron and excitations looking just like a hole. This means that excitations with
u = v is in the mid-gap, which corresponds to ¥ = p in a superconducting system. Now, in the
standard theory Bogoliubon quasiparticles are given by (Eq. (1.7))

v = uci—i—vci. (1.25)

The spin indices makes this operator different from Eq. (1.24) and since the direction of the spin
indices is different the requirement for being a Majorana operator, v = 4T, cannot be fulfilled.
Due to this we cannot have MBS in superconducting systems of s-wave type.

If we instead consider pairing between spinless fermions this is no longer a problem. There is an
immediate consequence of this assumption. In the standard BCS theory the wave functions of
the Cooper pair must be antisymmetric due to the Pauli principle. The condition of having an
antisymmetric wave function is fulfilled by the electrons being in an antisymmetric spin-singlet
configuration in an s-wave superconductor. However, for a spinless superconductor the orbital
wave function must be antisymmetric. Due to this the we cannot have an s-wave superconductor
since it has a symmetric orbital wave function. The simplest option is a superconductor with
p-wave pairing (pairing of electrons with same spin), which is antisymmetric in the orbital wave
function. As a conclusion from the above given arguments, MBSs are mid-gap excitations in
p-wave superconducting systems.

In this section a short introduction to what a MBS is and where it can be found has been given.
In the next sections a toy model of where MBSs occur as well as a model that can be realized
in reality will be presented.

1.6 Kitaev chain

A realistic model for MBSs is presented in the next section, however, here we present a simple
model to realize MBSs. This is the Kitaev model or the Kitaev chain. The Kitaev chain is a
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FIG. 1.3. The Kitaev model for two special cases. (a) Case 1, The Majorana operators on same sites, ¢; is
paired together and... (b) Case 2, Majorana operators on adjacent sites pair and form ¢;. The Majorana
operators the ends of the chain (filled black circles) are left out and can form a highly non-local state
that requires zero energy to be occupied, a so called Majorana zero mode.

one dimensional model of a ”quantum wire” consisting of NV sites [19]. The model assumes that
only one spin direction is present. The requirement of superconductivity is taken into account
by an induced p-wave superconductivity. The Hamiltonian for the Kitaev chain consisting of
N sites reads

1
H=3 <_t(czci+1 + el i) — lelei - 5) T Acicipy + A*CIHCI) ; (1.26)
%

where ¢ is the hopping amplitude, u the chemical potential and A is the induced superconducting
gap. The Majorana operators are then defined as

yia=cl e, yie=i(d — ), (1.27)

where i = 1,2, ..., N. These operators are Majorana operators since they satisfy Eq. (1.22). The
fermionic creation and annihilation operators are, in terms of Majorana operators written as

1 ) 1 .
¢ = 5(%‘,1 +17i2), CZT = 5(%,1 — 1%i,2)- (1.28)

These operators say that mathematically we can split a fermionic state into two MBSs. The
Hamiltonian in Eq. (1.26) can be re-written in terms of Majorana operators using Eq. (1.28).
This gives
1
H =23 (mwviavie + (+H 1AD vy + (—t+ 1ADYi7i41.2) (1.29)

%

Due to the structure of the Hamiltonian there are two special cases to consider, Case 1, when
|Al =t=0and p <0 and Case 2, when |A| =¢ >0 and pu = 0.

Case 1 This case is trivial and leads to
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H=—pu % (cici 2) 5 Ez Vi1Yi,2- (1.30)

The Hamiltonian consists of paired Majorana operators that lives on the same site, ¢, and form
a ground state with occupation number zero. This is presented graphically in Fig. 1.3a.

Case 2 Given |A| =t > 0 and g = 0 the Hamiltonian, Eq. (1.29) becomes

H = itz’yi72’yi+1’1. (131)
%

Now Majorana opearators from two adjacent sites couple (presented graphically in Fig. 1.3.b).
One can define a new fermion operator consisting of Majorana operators from adjacent sites

-1 .
G = 5(%’+1,1 +i7i2)- (1.32)
In terms of Majorana operators these can be expressed as
Yi2 = CNz'T + ¢, Yit11= Z(CI —¢i). (1.33)

Taking these operators and inserting them in Eq. (1.31) leads to
N-1 1
H=2 Z(ej&i - 35) (1.34)
3

One can notice the absence of the operators 717 and 7y in the Hamiltonian and thus they
remain unpaired. These two operators can be combined to form a new fermionic operator

- 1
CN = 5(71,1 + YN 2). (1.35)

Since the operators 1,1 and v 2 live on the opposite ends of the chain, Eq. (1.35) forms a state
that is far from local. Since neither 711 nor vy 2 is included in the Hamiltonian it follows that
[v1,1, H] = [yn,2, H] = 0. Due to this there exist one fermionic state at zero energy, which can
be either empty or occupied. Due to this the the ground state of the Kitaev model is two-fold
degenerate.

In this section we have considered two special cases of the Kitaev chain where one of the cases
illustrates the formation of non-local states at the end of the chain. There are other settings
of the parameters also resulting in end states but this will not be shown here (this can e.g be
found in [19]), instead an argument for that they exist will be given. Given these parameters
the system is said to be in the topologically non-trivial phase. A system in the topologically
non-trivial phase has states at zero energy, separated from the rest by an energy gap. We
consider

Hyot = Hi + AH1, (1.36)

where H is the Hamiltonian of the Kitaev chain with ¢ = A and p = 0, and H; is an arbitrary

10



Hamiltonian with the same symmetries as the Kitaev chain [19]. If A\ = 0 then H;,; = Hg and
of course host MBSs. Now, by increasing A the energy gap may either remain open or close.
As long as the gap stays open, while continously changing A, the topology is preserved and the
system will host MBSs. This means that if we can make a continous transformation between
two systems without closing the gap the topology is preserved and if one of the systems host
MBSs then so will the other [2].

11



Chapter 2

Model

2.1 Nanowire with spin-orbit coupling and proximity induced
superconductivity

In this section we consider a system that resembles the Kitaev chain but which can be realized
in experimental setups. The system is a nanowire with SO coupling, proximity induced super-
conductivity and subjected to a magnetic field. The experimental setup is presented in Fig. 2.1.
The nanowire is directed along the z-axis. The applied magnetic field, B is directed along the
z-axis. A set of gate potentials is applied beneath the wire and controls the chemical potential
in the wire.

Supercondu

VG%

— X
- y

FIG. 2.1. Nanowire with SO coupling in proximity with superconductor. The wire is directed along the x-
direction. The superconductor induces superconductivity in the nanowire via tunnelling of Cooper-pairs
from the superconductor into the nanowire. The applied magnetic field is B and is in the z-direction.
The system is connected to a set of gate electrodes, which controls the chemical potential in the nanowire.

The Hamiltonian describing the low energy physics of a strictly one-dimensional semiconductor
nanowire with SO coupling and induced superconductivity is [20, 3]

H= /\I'T(x)H\Il(m)dx, (2.1)

12



where H is usually denoted the Bogoliubov-de Gennes (BdG) Hamiltonian. Since we are con-
sidering a system with superconductivity it is convenient to include both electrons and holes.
This is taken care of by working with the so-called Nambu spinors

Here . (1y(7) (1/};( D (z)) annihilates (creates) electrons with given spin projection at position
x. Since matrices acting on Nambu spinors must be 4 x 4 matrices we introduce Pauli matrices,
T;, acting in particle-hole space. The Pauli matrices acting in particle-hole space have the same
form as the Pauli matrices acting in spin space, o;. The 4 x 4 matrices acting on spin and
particle-hole space are given by the tensor product, 7; ® o; (suppressed to 7;0;). The BdG
Hamiltonian is then given by

2
H= [;;n — ,u(x)] Ty + apo,7, + Vzo, + A(z) 1y, (2.3)
where p is the momentum operator and g is the chemical potential. The second term in the
Hamiltonian describes the SO coupling of the nanowire and « is the Rashba SO coupling con-
stant. The third term describes the Zeeman energy, Vz, due to the applied magnetic field.
Vz = %gu BB where B is the strength of the applied magnetic field. The induced superconduc-
tivity in the wire is described by the fourth term where A(z) = A is the proximity induced
superconducting gap. It should be noted that terms including only ¢; and 7; should be under-
stood as g;71 and o17; where o1 and 71 are the identity matrix in spin and particle-hole space
respectively. Furthermore, since we have introduced particle-hole space we have doubled the
number of solutions. Since the number of independent solutions cannot be changed there must
be a symmetry between the original states and the ones we get from doubling the number of
states. The symmetry is the particle-hole symmetry. This means that for every energy state,
E;, there exist a state Ej such that E; = —F; [2]. Diagonalization of the BdG Hamiltonian
gives

2 2

2
)2+ VR + A 4 (ap)? £ 2J VAN 4 VRS — )+ (ap) (5 — )% (24)

The excitation spectrum is plotted for various values of the parameters Vz, A and p in Fig. 2.2.
The spectrum is as expected not gapped when A = 0 (Fig. 2.2a). The Zeeman term can,
however, open a gap at p = 0 but there still exist other momenta for which the gap is closed
(Fig. 2.2b). By letting A # 0 the spectrum becomes fully gapped as shown in Fig. 2.2c. For
p = 0 the energy of the lower branch of the excitation spectrum is given by

Ey=E(p=0)= \/VZ2 + A2 42 =24 /VEA2 + V212 = |V — /A2 + 2. (2.5)

For the case when V; < /A2 + p? the gap is dominated by the pairing term, Figs. 2.2a to 2.2¢
and 2.2f. When Vz = /A2 + 2, Ey vanish and a phase transition occurs, which can be seen in
Figs. 2.2d and 2.2e. In the region, Vz; > /A2 + 2 the excitation spectrum is dominated by the
magnetic field and the system is in the topologically non-trivial phase and thus it can support
MBSs. The argument for the existence of the topologically non-trivial phase in nanowires with
SO coupling and induced superconductivity is given in the next section.
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FIG. 2.2. The plots show the excitation spectrum, Eq. (2.5), for various values of the parameters Vz,
A and p. The red line shows the lower branch of the spectrum while the blue shows the upper branch.
The solid (dashed) lines are the electron (hole) states (a) A =0, B=0, u=0. (b) A=0,Vy =1/4,
w=0.(c)A=1/10,Vz=1/4, u=0. (d) A=1/4,Vy; =1/4, u=0. (e) A=1/10, V; = 1/4,
pw=+/21/20. (f) A=1/10, V; = 1/4, p = 0.3.

2.1.1 Majorana bound states in nanowire with spin-orbit coupling and prox-
imity induced superconductivity

In this section it is proved that in certain limits the nanowire with SO coupling reduces to the

one dimensional Kitaev model. The continous model of the Kitaev chain, Eq. (1.26) is given by

[15]

2
Hyewone = [ do{03@) (o 0) w0 + AW @01 @) +hd . (26)
The BAG Hamiltonian associated with this Hamiltonian is [15]
P2
H= (2771 - M) 7. + A'pr, (2.7)

and the spectrum of this Hamiltonian is given by

h2k2 2
<2 _ M) + A/QkQ
m

By =+ (2.8)
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Everywhere, except for the case when p = 0 and k& = 0, the spectrum is gapped. Since this is
just a continuous version of the Kitaev model there exist solutions that are MBSs. Now to show
that the nanowire with SO coupling also host MBSs we want to map the Hamiltonian, Eq. (2.3),
onto Eq. (2.7). We consider the case for a strong Zeeman field and a chemical potential far
below the spin-down parabola. In this case one can derive an effective low-energy Hamiltonian
by projecting out the high-energy states belonging to the spin-down parabola. If we neglect the
SO coupling and define zero energy at the bottom of the band this results in that the magnetic
field produces a shift in the chemical potential and we can write

»’ »’
H= < —(Vz+ u)) T, + ATy — < - ,u> Ty + ATy, (2.9)

2m 2m

In the absence of spin-orbit interaction the low-energy subspace is spanned by the spin-up
electron and the spin-up hole

le 1) =[1,0,0,0]" | 1) =10,0,0,1] . (2.10)

From this it follows that (e 7| Aty e 1) = (e 1| Az |h 1) = (R T| ATy |e 1) = (h 1| A1z |R T) = 0.
This means that we cannot have proximity induced superconductivity with spin-singlet Cooper
pairs in a system that is perfectly spin-polarized. Now we include the SO coupling. This is
done by using first-order perturbation theory which is valid since Vz; > ap around the points
where the energy gap open and close. This modifies the low-energy spinors such that

le t) = [1, —ap/2B,0,0]T |h1) =10,0,—ap/2B,1]T. (2.11)

By repeating the calculations for the matrix elements of the pairing terms we obtain

(e A b 1) = (h 1] A7, le 1) = —2A, (2.12a)
(e 1| ATy le 1) = (h 1| Ary B 1) = 0. (2.12D)

Due to the low-energy projection the Hamiltonian becomes

2
H ~ <p - ,u) Ty — %Au. (2.13)

2m

By comparing this Hamiltonian with the Hamiltonian given for the continuous model of the
p-wave superconductor, Eq. (2.7) we see that if we chose A’ = % the projected low-energy
Hamiltonian of the nanowire with SO coupling maps onto the Hamiltonian of the continuous
p-wave superconductor. Since the p-wave superconductor hosts MBS so will also the nanowire
with SO coupling. Furthermore, as explained in Section 1.6 the system will host MBSs for all
parameter values that can be reached when making a continuous transformation between these
without ever closing the gap.
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2.2 Numerical model

When making the nanowire finite, k is no longer a good quantum number and the continuous
Hamiltonian can no longer be diagonalized. To account for this we use a tight-binding model.
The tight-binding Hamiltonian corresponding to Eq. (2.1) is given by [3]

Hyot = Hyo+ Hsor + Hz + Hy + Hgc, (2.14)

where Hj describes the kinetic energy part of the nanowire, Hgos the spin-orbit interaction
in the nanowire, Hyz is the Hamiltonian for the applied magnetic field, Hy describes disorder
in the nanowire and added gate potentials and Hgc is the Hamiltonian for the induced super-
conductivity in the nanonwire. The above described terms for a one-dimensional tight binding
model with a lattice constant a are given by

Hy = —thL_Laci,g +,ch;r’aci70. (2.15)
1,0 2,0
Here, ¢ labels the lattice sites, u is the chemical potential, ty = % is the effective hopping

parameter and m* is the effective mass. The Hamiltonian for the Rashba SO coupling is

Q0 . B

Hsor =5 el 1oy + e (2.16)
i

where h.c. denotes Hermitian conjugate, ¢ = (cit, ¢ ¢)T, « is the Rashba spin orbit coupling

strength and o = =& where ap is the Rashba parameter. The Hamiltonian describing the effect

of the applied magnetic field in the nanowire is given by

Hy; = szégofi, (2.17)

where o is a vector of Pauli matrices in the direction of the magnetic field, i.e. if the magnetic
field is in the z-direction o = (0,0,0,). Vz = %guBB where B is the applied magnetic-field
strength. Disorder, applied gate potentials or other effects causing a potential change in the
wire is described by

Hy = Vicl cio, (2.18)
%

where V; is the added potential change at site i. The proximity induced superconductivity is
described by

Hge = A Z(CITCL + CiTCii)7 (2.19)
%

where A is the proximity induced superconducting gap. The Nambu spinors in the tight-binding
model are given by ¥; = (¢, ¢y, CL, —CIT)T.

The matrix representation of a one-dimensional chain of a nanowire in the x-direction consisting
on N lattice sites and with a magnetic field in the z-direction is a N x N block matrix where
every block is a 4 x 4 matrix. The block matrix will only have elements on the diagonal and the
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super-diagonal due to nearest neighbour hopping. The diagonal elements of the block matrix
are written

—pu+Vz+V; 0 A 0
o 0 —u—=Vz+V; 0 A
H;; = A 0 WV, — Vi 0 (2.20)
0 A 0 uw—Vy =V
The Hamiltonian is Hermitian H; ;11 = HZT 1 and the matrices on the super-diagonal are given
by
-t a/2 0 0
a2 —t 0 0
Hz,H—l - 0 0 ¢ _O[/2 (221)

0 0 a/2 ¢

The spectrum is obtained by numerically diagonalising the matrix representation of the Hamil-
tonian. The number of lattice sites, n, that is used is determined by the length of the wire and
the lattice constant, a. This is given by n = % + 1. The lattice parameter also controls the
convergence. By making a smaller the convergence towards the exact energies can be increased.
Since the matrix is a 4N x 4N matrix there will be 4N eigenvalues corresponding to the allowed
energy levels of the system. Due to the particle-hole symmetry it is convenient to label the
energy levels between —2N + 1 and 2N and the two energy levels in the middle can thus be
denoted Ey and F;. We denote the corresponding eigenvectors ¥ and 1 and the MBSs that
forms on the ends of an infinite wire ¥ 4 and Wp. These states are given as ¥ = (uy, uy,v|, —vt)
in spin and particle hole space. Here u and v are the amplitude of the electrons and the holes
respectively. It can then be shown that a MBSs has uy = v} and uy = v} [21]. This is however
not true when the system is made finite. The reason is that in a finite system the MBSs, as
mentioned, starts to overlap, which means that the numerical solutions that we find from di-
agonalizing the tight-binding Hamiltonian will be a superposition of ¥4 and ¥p with a finite
energy [22]. This means that we can write

Yo = \}i(‘I’A +i¥B) Y1 = \2(‘1’1& —i¥R). (2.22)

From this it then follows that the MBSs are generated by

vy = \}5(1/11 +10), ¥p=—7=(11 — o). (2.23)

-

2
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Chapter 3

Results

Throughout this work, if otherwise not stated we investigate an indium arsenide (InAs) nanowire
proximity-coupled to an aluminium (Al) superconductor. The induced superconducting gap in
the wire is A = 0.25meV. The Rashba parameter for InAs is ag = 8- 10712eVm [23]. The
energy dispersion relation of the tight-binding model is given by E = e — 2t cos(ka), which gives
an energy band between E = ¢ — 2t and E = € + 2t [24]. However, in Eq. (2.3) we have % — i
with the bottom of the band energy band at E = 0. To ensure that the chemical potential is
close to the bottom of the band in the tight binding model we choose y = —2t.

As will be seen, the main investigations made are how the energy eigenstates of the system
vary as a function of Zeeman field, V. For all cases V is chosen to vary between 0 and 3A
throughout the work. This corresponds to a magnetic field of 3.24 T given that g ~ 8 in InAs
[18]. This is of special importance to know when designing the geometry of the superconductor
since the superconducting state can be destroyed by a to strong magnetic field.

3.1 Homogeneous Nanowire

To understand what happens when a nanowire is made finite we start with investigating a
homogeneous nanowire. Fig. 3.1a shows the twenty lowest energy states of the spectrum as a
function of the Zeeman energy, V, with the states in the middle of the spectrum marked in
red. The length of the nanowire is 7 um and can be considered long compared to those used
in experiments [23]. When Vz = 0 we have a fully gapped system with discrete ”"particle in a
box” states above the gap. When V; < A the spectrum is fully gapped due that the spectrum
is dominated by the pairing terms and the system is in the topologically trivial phase.

By increasing the Zeemann energy the gap is decreased and closes around Vz; = A since
E(Vz = 0) = A. This point marks the topological phase transition. When Vz; > A the
system is in the topologically non-trivial phase. This is characterized by that there are two
states at zero energy, which are separated from the rest of the states by a gap. It should also
be noted that these values are in agreement with the theory presented in Section 2.1 where it
was shown that the system is in the topologically non-trivial phase when Vz > /A2 + p2.

Next we consider a nanowire with a length of 2 um. The spectrum as function of V is plotted
in Fig. 3.1b. From this plot we see that the states at zero energy starts oscillating as a function
of increased Zeeman field. This is due to that when the wire is made shorter the MBSs start to
overlap. Due to the oscillations of the energies close to zero we denote these near-zero modes.
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We now investigate what happens when the length of the nanowire is varying. The result is plot-
ted in Fig. 3.1c with the near zero-modes marked in red. The Zeeman energy has been chosen
to Vz = 0.3 meV which ensures that Vz > A, thus the system is in the topologically non-trivial
phase. When the wire is shorter then L < 2 um the near zero modes start oscillating and the
smaller L is the larger the amplitude of the oscillations. This reflects that the overlap between
MBSs increase as the wire is made shorter. The amplitude of the oscillations decrease as L in-
crease and disappear just before L = 2 um. Thus we look further into a nanowire with L = 2 um.

x10*
1%
3 e =
E E Z ojoe
0 A 0.4 0.6 0 A 0.4 0.6 0.5 1 1.5 2 2.5 3
Vz [meV] Vz [meV] L [um)]

(a) (b) (c)

FIG. 3.1. (a) {E,} as function of V for a wire with L = 7 um. The red curves show Ej ; and the black
curves show the states above and below FEy;. (b) {E,} of the homogeneous nanowire as function of
magnetic field, Vz. L = 2 pm. The red curves correspond to Ey; and the black to above and below lying
states. (¢) {E,} of nanowire as function of L, Vz; = 0.3meV. By decreasing the length of the nanowire
the amplitude of the oscillations of the near zero-modes increase.

Figs. 3.2a to 3.2¢ show the spectrum for a sequence of specific values of the magnetic field and
Figs. 3.2d to 3.2f the corresponding probability density for the three lowest states. In Fig. 3.2a
the Zeeman field is chosen to V; = 0.15meV and thus the system is in the topologically trivial
phase. As expected from this the spectrum has a gap around £ = 0. The corresponding
probability densities (Fig. 3.2d) shows similarities with those of a one-dimensional potential
well where the wave functions are sinusoidal functions. By increasing the Zeeman field such
that the system is in the topologically non-trivial phase (Vz > A) two states, MBSs, are formed
at the ends of the wire. These are plotted, for V; = 0.33meV, in Fig. 3.2e, where the red and
blue curves correspond to the probability density of the MBSs. The probability densities for
the two first excited states spread over the entire nanowire (green and black curves). Fig. 3.2f
shows MBS for V; = 0.43meV. Due to the increase in magnetic field the probability densities
of the MBSs become less localized and spread further into the nanowire compared to when a
smaller magnetic field is applied. This agrees with what has been theoretically predicated [25]
and is also consistent with that the amplitude of the oscillations in the near-zero modes increase
with increasing magnetic field.
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FIG. 3.2. (a) Spectrum (the eigenvalues of Eq. (2.14) closest to zero plotted as a function of eigenvalue
number) for Vz = 0.15meV. The corresponding probability density for the three lowest states with
positive energy is plotted in (d). (b) Spectrum for Vz = 0.33meV. The near zero modes are marked
in red. The probability density of the MBSs and the two first excited states with positive energy are
plotted in (e). (c¢) Spectrum for V; = 0.43meV and the probability density of the MBSs and the two
first excited states are plotted in (f). (d) Vz = 0.15meV. Blue line correspond to the ground state,
green line to the first excited state and black line to the second excited state. (e) Probability densities
for Vz = 0.33meV. The red and blue line corresponds each to a MBS. The green and black waves shows
the first and second excited state respectively. (f) Probability densities for V; = 0.43 meV.
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3.2 Nanowire with potential barriers

In this section we investigate the possibility of decreasing the overlap between the MBSs by
inducing a potential change in the nanowire. The potential change is modulated through the
term Eq. (2.18) and the modulation will act as potential barriers in the nanowire. The width
of the potential barrier(s), Wparrier, 1S determined by the lattice constant, a, and the number of
sites that are assigned with the value of the height of the barrier, V. Three different cases are
investigated, all for a nanowire with L = 2 ym:

e A nanowire with one potential barrier with wperrier = 500nm and Vj varying between 0
and 6 meV.

e A nanowire with one potential barrier with Vy = 0.05meV and wyg;rier varying between
50 and 1500 nm

e A nanowire with Vj = 0.05meV, wpgrrier = 50nm. The number of barriers in the
nanowire, N, varies between 0 and 15.

For every case the ground state energy, E; as a function of the magnetic field, Vz is studied.
This is where the main interest lies since this gives information about how the overlap between
the near-zero modes is affected and the magnetic field is also one of those parameters that is
possible to control during experiments. Due to the particle-hole symmetry it is only necessary
to consider the positive states. For quantum computation it is important to have a large gap
between the zero-modes and the bulk states since a larger gap gives a better protection against
various perturbations. Therefore we investigate both the energy of the first excited state as well
as the gap, Fg = Fs — E1. We also investigate the mean-value of Fy, E4, and the mean-value
of FEs, Es, taken between the point for the phase transition and Vz = 3A. The reason for doing
this is that the mean values should give a good indication if the overlap is in general increasing

, %, normalized with % is studied. This gives an
Vo=0

indication whether E; or E» decreases fastest if both are decreasing. A measure of how F;
reacts to the change of the applied magnetic field is given by

or decreasing. Furthermore, the ratio

@. (3.1)
dVz

The derivative is investigated since if the derivative is large this implies that a small change
in the magnetic field may result in a large energy splitting (E; — Ep) between the near-zero
modes, which means an increase in the overlap between the MBSs. This is important to know
for experiments since if the derivative is large then small fluctuations in the magnetic field can
suddenly make the MBSs overlap very much.

We also study the probability density of the MBSs to ensure that we have localized states at the
ends of the nanowire even when we have a potential barrier in the nanowire. From the probability
densities it might also be possible to understand some of the physics we can’t understand from
just looking at the energy eigenvalues. When investigating the probability densities we choose
to do this for a Zeeman field for which the overlap is small and furthermore, we also choose a
field for which the overlap is similar to that of MBSs in a nanowire without potential barriers
to be able to compare the MBSs of a homogeneous and inhomogeneous nanowire.
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3.2.1 Potential barrier with varying height

In this section we consider a nanowire with a potential barrier with wpgyrier = 500 nm, which is
placed in the middle of the nanowire. The height of the barrier is varied. Fig. 3.3a shows FEj
and Es as a function of Vz for a nanowire without potential barrier and for a nanowire with a

potential barrier of different values for Vj.

It is clearly seen that the potential barrier has an effect on the energy eigenvalues. The most
noticeable is that Eo decrease in energy and the larger the barrier is the larger the energy
decrease is. Fig. 3.3b shows a zoom in around FEj. From the zoom it is seen that the peaks
of the oscillations are shifted to the right and that the amplitude of the oscillations increase.
When Vp = 0.2meV the energy splitting between the near-zero modes become large directly
after the point when the system enters the topologically non-trivial phase (Vz ~ A). The near-
zero modes also show more oscillations compared to when there is no potential barrier in the
nanowire. However, there is a decrease in the overlap around Vz = 0.4 meV of about a half and
the peak around V7 = 0.6 meV is not increasing compared to the last peak.
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FIG. 3.3. (a) E; (dashed line) and E5 (solid line) as function of Vy for a nanowire with a potential
barrier with height V and width, wpgrrier = 500nm. (b) Zoom in around F;.

The derivative, dE /dVy, Fig. 3.4a mainly confirms that the oscillation peaks are shifted when
increasing the barrier height. In addition it shows that a nanowire with a larger barrier, in
this case Vo = 0.2meV, is more affected by a small change in V; for small Zeeman fields. In
Fig. 3.4b, Eq is plotted. This merely confirms that Ey moves towards F; as Vy becomes larger.
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FIG. 34. (a) dE,/dVy as function of V. (b) Eg as a function of V. For both plots, wyaprier = 500 nm.

Figs. 3.5a to 3.5¢ show Ep, Ey and % normalized with % Vo as a function of V. For Vj

0=0 _
smaller than approximately 0.08 meV there is a slight increase in E;. When Vj is between 0.1
to 0.2meV there is a decrease in F;. For barrier heights above 0.2meV the mean energy is
monotonously increasing, which indicates a decrease in the energy splitting between the near-
L2 is decreasing no matter the barrier height. This indicates that, in

zero modes. The ratio, R
the interval where Vz € [0.080.2] meV and Ej is also decreasing, F» is affected more by the

barrier than FEy is.
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FIG. 3.5. (a) E; as function of barrier height. (b) E, as function of barrier height. (c) £2 as function
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The probability density of the MBSs for different barrier heights are shown in Figs. 3.6a to 3.6¢
and a zoom in aroundthe middle of the nanowire is shown in Fig. 3.7. A small barrier, Vy =
0.05meV (Fig. 3.6b), shows a small shift between the MBSs and there is a smaller overlap
between them compared to having no barrier (Fig. 3.6a). A larger barrier (Fig. 3.6¢) shows
an even smaller overlap between the MBSs. However, the weight of the MBSs for the case of

Vo = 0.2meV seems to be shifted more towards the middle of the nanowire.
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FIG. 3.6. The weight of MBSs for (a) nanowire with no potential barrier, (b) for a nanowire with a
potential barrier, V5 = 0.05meV and (c¢) for a nanowire with potential barrier, Vo = 0.2meV. V; =
0.3781 meV for all plots. The grey area in the plots indicates the location of the potential barrier
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FIG. 3.7. (Left panel) Zoom in of Fig. 3.6a around the middle of the nanowire. (Middle panel) Zoom in
of Fig. 3.6b around the middle of the nanowire. (Right panel) Zoom in of Fig. 3.6¢ around the middle
of the nanowire. The gray area in the plots indicates the location potential barrier.

From Fig. 3.5a it was seen that F is increasing monotonously. To understand why this is, we
investigate what happens when making the amplitude of the barrier large. Figs. 3.8a and 3.8b
shows the four smallest states with positive energy for a nanowire with a potential barrier
as function of Vz. Vj varies between A and 24 - A. When increasing the barrier height, Fo
approaches E; as seen in Fig. 3.3a. For barrier heights around A (Fig. 3.8a), Eg = 0eV and
FEq and Es are degenerate. The degeneracy is due to that the barrier makes the nanowire act as
two systems, each side of the barrier hosts a pair of MBSs. Fig. 3.9a shows the spectrum when
Vo = 1meV and V; = 0.44meV. The states above the near zero-modes are also degenerate but
the degeneracy is broken for states with energy above 0.5meV. This is due to the increased
coupling between states on the different sides of the barrier, which has an energy that approaches
the height of the barrier. A consequence of the degeneracy is that the MBSs are now written
as a linear combination of the four states closest to zero,

U = ayy + bbg + by + dip_1q, (3.2)

where a, b, c,d € R. The probability density of the MBSs are plotted in Fig. 3.9b. This confirms
that the nanowire is effectively split in two since each part host a pair of MBSs. Further inves-
tigations of Fig. 3.8 shows that the degeneracy of the near-zero modes are broken by increasing
the magnetic field. It is seen from Figs. 3.8a and 3.8b that the larger the barrier is the larger the
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magnetic field has to be to break the degeneracy. When V5 = 1 meV the magnetic field required
to break the degeneracy is larger than the magnetic field strengths that lies in the chosen interval.
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FIG. 3.8. E,, n € {1,2,3,4} as a function of Vz for barriers with V5 > A, (a) shows E, for medium
height barriers. (b) Shows E,, for large barriers.
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FIG. 3.9. (a) Energy spectrum for nanowire with a potential barrier with wpgrrier = 500nm and Vo =
1meV. Vz = 0.44meV. (b) The probability density of the MBSs. The wave functions is now given
by Eq. (3.2) and in this case Wy = ¢ — o + 1y — 7, (red), Wy = o1 + 1) — by — b7, (blue),
W3 =) +1/18 + 1 +1/1T_1 (black), Uy = 1)y —1/18 — 1 +1/)T_1 (purple). The gray area indicates the location
of the barrier.

These results show that by tuning the height of the barrier a decrease in the overlap between
the MBSs, even though it is small, can be obtained. Furthermore, by making the barrier height
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large, the nanowire can effectively be split into two systems. However, when increasing the
height of the barrier Eg is always made smaller.

3.2.2 Potential barrier with varying width

In this section we consider a nanowire with a potential barrier with varying width, wpgrrier- In
Fig. 3.10a E; and FEs are plotted as a function of Vz and Fig. 3.10b shows a zoom in around
Ey. The main effect of increasing the barrier width is that the oscillations in Fy are shifted
towards larger Zeeman energy. The peak-amplitudes, however, change irregularly. This is e.g.
seen for the barrier with wpgrrier = 500nm. When Vz =~ 0.56 meV the peak is shifted and has

a larger amplitude compared to the case of no barrier. However when Vz & 0.62 meV the peak
is merely shifted.

The mean values of F1 and Fs and the mean of their ratio are shown in Figs. 3.11a to 3.11c.
E; shows no significant change for barriers with wpgrrier < 1000 nm. When the barrier is wider
than 1000nm, E; shows a decrease with increased barrier width. This shows that there in
general is a decrease in the overlap between the MBSs, which is in this case hard to see by just
looking at E1(Vyz). From both Fig. 3.10a and Fig. 3.11b it is clear that by making the barrier
wider Fs is decreasing. When wpgyrier < 1000 nm the decrease in Es is larger than the decrease
in Fq as seen from Fig. 3.11c and there is a negative effect on Fg. By increasing the width

such that wpgrrier > 1000 nm, the ratio £2

B is increasing and thus Eg

normalized with %‘
1{Vp=0

is increasing.
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FIG. 3.10. (a) E; (dashed line) and E5 (solid line) as function of V. (b) Zoom-in around Fj.

The probability density of the MBSs in a nanowire without a potential barrier and in a nanowire
with a potential barrier with wpgrrier = 1500nm is plotted in Figs. 3.12a and 3.12b. The
magnetic field is Vz = 0.518 meV. The data cursor indicates that there is a significant decrease
in in the amplitude of the MBSs in the middle of the nanowire when the potential barrier is

present. Moreover there is a shift in the oscillation peaks indicating a smaller overlap between
the wave functions.
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FIG. 3.12. Probability density of the MBSs for (a) nanowire without potential barrier and (b) for a
nanowire with a potential barrier. V; = 0.05 meV and wperrier = 1500nm. The gray area indicate the
barrier. For both plots V; = 0.518 meV.

3.2.3 Varying number of potential barriers

In this section we consider the third case, a nanowire with a varying number of potential bar-
riers. In Fig. 3.13a F; and FEs, of a wire with a varying number of potential barriers, as a
function of Vz are plotted, and Fig. 3.13b shows a zoom-in around F;. The mean values of
these as well as the ratio of the mean values are plotted in Figs. 3.14a to 3.14c. The height
and the width of the barriers are Vp = 0.05 meV and wpgprier = 50 nm respectively. From the
mean values it is clearly seen that the largest deviations from a homogeneous nanowire are
for a nanowire with either six or thirteen potential barriers. In both cases the mean energy is
decreasing. However, the ratio is increasing, which indicates that the decrease in E7 should be
stronger than the decrease in Fy. The decrease in E; for the case of six and thirteen potential
barriers is due to the decrease in E; for a Zeeman energy around Vz; = 0.7meV. Apart from
this, the peaks in the oscillations of E; are increasing compared to the case of a homogeneous
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nanowire. From F; (Fig. 3.14a) it is seen that when there are ten potential barriers in the
nanowire the mean of the overlap is increasing. The increase in the mean for ten barriers is
mainly due to the larger increase in F; around Vz; = 0.55meV (Fig. 3.13b). For ten barriers
there is also a decrease in the overlap of the MBSs for Vz ~ 0.47meV. The overlap is about a
third of the overlap for the homogeneous nanowire. This analysis shows that it might be possi-
ble to ”tune” the barriers such that the overlap is small in a narrow interval of the magnetic field.

The probability density of the MBSs in a homogeneous nanowire and in a nanowire with ten
potential barriers is plotted in Figs. 3.15a and 3.15b. For both plots V7 = 0.5meV. As seen
from the data cursors the weight of the MBSs is shifted towards the the ends of the nanowire

with ten potential barriers compared to the homogeneous nanowire.
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FIG. 3.13. (a) E; (dashed line) and F5 (solid line) as function of V. (b) Zoom-in around Fj.

%107
1.15
52 0.086
1.1
25 % 0.085 o5+
= =i ~
= - g
= R =
4.8 0.084 0.95
0.9
4.6 0.083
0 5 10 15 0 5 10 15 0 5 10 15
Number of barriers Number of barriers Number of barriers
(a) (b) (c)

FIG. 3.14. (a) E; as function of number of barriers. (b) Fy as function of number of barriers. (c) Ey/FE;

normalized with % as function of number of barriers.

Vo=

28



g % 10° ><.1o6
. ”x:o_ogam
”x: 0.09381 Y:7.723e+06
Y: 7.3176+06
6 L
> 4 =l
2 A A
X: 1.004 X: 1.007
Y: 4.2266+05 Y: 3.7146+05
0 ALV ALY
0 0.5 1 1.5 2 0 0.5 1 1.5 2
X [pum] x [um]
(a) (b)

FIG. 3.15. (a) The weight of the MBSs for (a) a homogeneous nanowire and (b) a nanowire with ten
potential barriers. Vz = 0.5 meV for both cases.

3.3 Superlattice

The results from the nanowire with potential barriers shows that there is indeed a possibility
to decrease the overlap between the MBSs. Having just one potential barrier shows that in a
certain range of Vj, there is a decrease in the overlap between the MBSs, see Fig. 3.3b. The
third case, a nanowire with a varying number of potential barriers shows that by increasing
the number of barriers there is, for certain Zeeman fields, a decrease in the overlap as well,
see Fig. 3.13b. This leads one to think that being able to increase the number of barriers in
the wire as well as the height of the barriers may lead to an even smaller overlap between the
MBSs. A way to achieve such a structure is by using a superlattice structure. A superlattice is
a structure of different materials layered on top of each other in a periodic way. The difference
between the superlattice and the nanowire with many potential barriers is that the barriers in
the superlattice are much thinner and the height much larger, which results in that mini-bands
form in the structure.

The Kronig-Penny model is a simplified model to describe an electron in a one-dimensional
periodic potential structure. The Kronig-Penney structure is shown in Fig. 3.16a.
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FIG. 3.16. (a) Kronig-Penny model for a one-dimensional periodic potential structure. V; is the height of
the superlattice barriers, w is the distance between two barriers and b is the width of a barrier. a* defines
a lattice cell of the potential structure and ¢* is the effective hopping parameter of the superlattice. The
grey areas indicate the mini-bands. (b) The allowed energies of the superlattice (mini-bands shown in
grey) compared to the free electron parabola. Egyperiattice defines the smallest allowed energy in the
superlattice.

The Kronig-Penny model is solved in [24], with m*(k) = m*, and it is found that

m*-a*-b- Vo sin(kia*)
ﬁQ kla*

cos(ka®) = cos(kia®) + (3.3)

where k is the effective wave vector of the structure, m* is the effective mass, Vj is the bar-
rier height, b the barrier width and a* is the lattice constant and defines a lattice cell of the
superlattice as indicated in Fig. 3.16a. The wave function in each cell is then described by the
wave number k; and the energy is given by E = h?k?/2m*. Combining E = h?k?/2m* and
Eq. (3.3) gives the energy as a function of the wave number k. E as function of k is plotted
in Fig. 3.17 for three different cases. The different cases show how the mini-bands are affected
when changing either a* or the product b - Vj.
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FIG. 3.17. Energy as a function of k for different settings of a* and b. Vj is fixed at 0.2eV. (a) a* = 15nm
and b = 5nm, (b) ¢* =20nm and b= 10nm, (c¢) a* = 25nm and b = 5nm. Note that the band start at
E=0.
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The superlattice is modelled in the same way as the potential barriers. Due to the minibands
that form in the superlattice the bottom of the band does not correspond to E = —2t. To take
this into account p is chosen such that u = =2ty + Egyperiattice Where Egyperiattice 1S the energy
of the bottom of the lowest lying miniband in the superlattice (see Fig. 3.16b).

Fig. 3.18a shows F; and F» as a function of V for a nanowire without superlattice and for a
nanowire with superlattice with different amplitudes for V). The superlattice has ¢ = 15nm
and b = 5nm. As seen Fy decrease in energy over the whole interval and the decrease increases
with increasing Vj. This is also supported in Fig. 3.19b, which shows that Ej is decreasing as
function of increasing Vy. A closer analysis of F; shows that there is no systematic change in
E1(Vz) when changing Vj. Fig. 3.19a shows Ej as function of Vj. From this we see that there
is a general decrease in the overlap compared to the homogeneous nanowire. E; is however not
monotonically decreasing when increasing V; which is due to the non-systematic change in E;
(Fig. 3.18b). When Vj = 160meV the peaks of the oscillations for Ej, for V; < 0.6 meV, are
mostly centred beneath the peaks of F; for a homogeneous nanowire (Fig. 3.18b). The amplitude
of the peaks for the superlattice are all smaller than those of a homogeneous nanowire which
shows that, even though the effect is small, it is possible to make the overlap smaller for all
values of V7 in the chosen interval.
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FIG. 3.18. (a) E; (dashed line) and E3 (solid line) as function of Vz (b) Zoom in of (a) around E;.
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FIG. 3.20. The weight of the MBSs in (a) a homogeneous nanowire and (b) a nanowire with a superlattice,
Vo = 160eV. For both cases Vz; = 0.408 meV

The weight of the MBSs in a homogeneous nanowire and in a nanowire with superlattice is
plotted in Fig. 3.20. A close analysis show that there is a small shift of the MBSs towards the
ends of the nanowire, in the case of the nanowire with superlattice, which indicates a decrease in
the overlap of the MBSs. Also noticeable from the MBSs of the nanowire with superlattice is the
strong oscillations. The oscillations can be explained by considering the momentum operator,

R 0
D= fzh% (3.4)

and the free electron parabola, Fig. 3.16b. If we consider the expectation value of the square of
the momentum operator, (p?), this should be larger for the wave function of the MBSs in the
superlattice than in the homogeneous nanowire due to the large oscillations. This is consistent
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with that the chemical potential has to be shifted to larger momentum due to the superlattice.
Thus the oscillations in the wave function is due to the increase in momentum.

3.4 Disorder

3.4.1 Disorder in homogeneous nanowire

In reality semiconducting nanowires are never free from impurities and and other defects causing
disorder in the nanowire. An infinite wire is topologically protected from all kinds of disorder
as long as the gap is not closed. However, since this does not apply to a nanowire that is finite
it is also of interest to investigate how nanowires with potential barrier(s) or a superlattice
structure react to disorder compared to a homogeneous nanowire. We consider disorder in the
potential, which is included by adding a random change to the potential on every lattice site.
The disorder is described by the term

Hpisorder = Z Diczgcia (35)
A

where D; is the strength of the disorder on lattice site ¢. D; is chosen from a normal distribu-
tion NV (u, o), where p is the mean and is set to zero. o is the standard deviation of the normal
distribution and is used to control the strength of the disorder. Since disorder is distributed
randomly there will never be two nanowires with the same disorder profile. To take this into
account we run a hundred simulations and consider the average of this as well as specific cases.
We do simulations for disorder strength varying between 0.1A and 2A. In this section it should
also be noted that a homogeneous nanowire refers to a nanowire that is homogeneous without
disorder and a inhomogeneous nanowire refers to a nanowire that has a defined inhomogeneity
that is not caused by the disorder.

Fig. 3.21 shows the mean value of F; and Fs, after a hundred simulations have been carried out,
as a function of Vz. The nanowire is homogeneous and is subject to disorder in the potential
with varying strength. From this plot it is seen that the disorder has the effect of decreasing
FE5 while the largest effect it has on F; is seen around the points where the near zero-modes
are degenerate, which are shifted away from zero energy. When the disorder strength is large
(standard deviation 2 A) the near-zero mode oscillations disappear as well.
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FIG. 3.21. The mean value of FE; and E5 as a function of V7 for a hundred simulations. The nanowire
is homogeneous and subject to disorder in the potential with varying strength.

Specific cases for weak disorder are plotted in Fig. 3.22a. To distinguish between states that
are subjected to disorder and those that are not, we define E), pisorder as the states which are
subjected to disorder. For small disorder strength the difference between Ei and Eq pisorder
is very small. When the disorder strength becomes larger, in this case D; € N(0,0.5A), the
effect of the disorder is noticeable, which is seen from the increase in the difference between
Eq and F1 pisorder- Furthermore, it is due to the random shifts that we see an increase around
the points where the near-zero modes are degenerate when considering the mean value of many
simulations (Fig. 3.21), and the larger the difference between Ei and E pisorder is the larger the
shift is at the points of degeneracy in the mean value (Fig. 3.21). Because of this it is possible
to say if the difference |Eq - Ey pisorder| i going to be small or large by just looking at what
happens with the mean value of many simulations.

The probability density of the MBSs for a homogeneous nanowire are plotted in Fig. 3.22b. The
dashed lines show the MBSs for a nanowire without disorder and these states are symmetric
around the middle of the nanowire. The solid lines show the MBSs for a nanowire with disor-
der. As seen, due to the disorder, the MBS are no longer symmetric. A specific case of strong
disorder is plotted in Fig. 3.23a. Due to the strong disorder E;, pisorder differs, to a large extent,
from E,. We see that the amplitude of the near-zero modes may become much larger compared
to a nanowire without disorder, which indicate that the overlap is increasing. There, however,
still exist points where the energy is zero. A general decrease in the excited state can be seen,
which results in a decrease of Eq.

The probability density of the MBSs for a nanowire with strong disorder, A/(0,2A), is plotted
in Fig. 3.23b. Compared to the case of small disorder the MBSs now show a large asymmetry.
Moreover, one of the MBSs has become less localized and has its weight shifted towards the
middle of the wire. Due to that the MBS has shifted more towards the middle this implies an
increase in the overlap between the two MBSs. Furthermore, if either of the MBSs leave the
end of the wire the fermionic state consisting of the two MBSs will become less delocalized and
sensitive to decoherence.

The reason for the possible change in the overlap due to the disorder is that the disorder induces
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an asymmetry in the potential. The asymmetry in the potential leads to that the mixture of
spin-up and spin-down states for positive and negative k will be different and due to this the
MBSs will be less localized to the edge of the nanowire, which leads to a larger overlap.
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FIG. 3.22. (a) E; as a function of Vz for a homogeneous nanowire subject to disorder with varying
strength. Due to randomness in the disorder the top panel and the bottom panel show different results.
(b) Weight of the MBSs for a homogeneous nanowire with disorder (solid lines) and without disorder
(dashed lines). D; € N(0,0.5A) and Vz = 0.4266 meV.
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FIG. 3.23. (a) E; and F5 as a function of Vz for a nanowire with strong disorder and (b) the weight of
the MBSs for a homogeneous nanowire with disorder (solid lines) and without disorder (dashed lines).
D; e N(0,2A) and Vz = 0.432meV.

3.4.2 Disorder in inhomogeneous nanowires

In this section we consider disorder in an inhomogeneous nanowire and compare it to both the
case when the nanowire is free from disorder as well as the case of the homogeneous nanowire.
From Section 3.4.1 it was seen that the effects of the disorder can be seen from how the energy
changes around points where the near-zero modes are degenerate. Thus the change in energy
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at the points where the near-zero modes are degenerate is investigated. The change in energy
around the points where the near-zero modes are degenerate is K1 pisorder — £1. This energy
difference is plotted in Fig. 3.24 for four different cases. The top left panel shows F1 pisorder — E1
for a homogeneous nanowire. The bottom left panel shows E} pisorder — 1 for a nanowire with a
potential barrier with wpeyrier = 500nm and Vp = 0.2meV. In comparison to the homogeneous
nanowire the only significant difference is when D; € A(0,2A) and V is large. In this case the
nanowire is less affected by disorder compared to the homogeneous nanowire.

The top right panel of Fig. 3.24 shows Ei pisorder — £ for a nanowire with thirteen barriers
where wpgrrier = 50nm and Vo = 0.05meV. For weak disorder the inhomogeneous nanowire
is again affected similarly by disorder compared to the homogeneous nanowire. However, for
disorder strength of D; € N(0,A) and D; € N(0,1.5A) the nanowire with thirteen potential
barriers is more affected by the disorder then all of the other cases. Furthermore, the effect
is almost the same for when D; € N(0,A) and D; € N(0,1.5A). This indicates that a larger
number of simulations should actually be done. However, this was not possible to conduct due
to the time limit of this project.

The bottom right panel shows a Ej pisorder — £21 for a nanowire with a superlattice. As for the
case of a nanowire with either one or thirteen potential barriers, the nanowire with superlattice
shows similar behaviour compared to the homogeneous nanowire for weak disorder. For the
largest disorder strength chosen (D; € N'(0,2A)) there is a decrease in Ey pjsorder —F1 compared
to the homogeneous nanowire. The decrease is, however, not stronger than that of the nanowire
with one potential barrier. It should be noted from all the plots that the difference, E1 pisorder —
Fj is slightly shifted in Vz. This is due to that, as explained in Section 3.2, points where the
near-zero modes are degenerate are shifted for an inhomogeneous nanowire compared to a
homogeneous nanowire.
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FIG. 3.24. (Top left panel) E1 pisorder — F1 at the points where the near-zero modes are degenerate for
a homogeneous nanowire with disorder. The different lines correspond to different disorder strength, D;.
(Bottom left panel) Eq pisorder —E1 at the point where the near-zero modes are degenerate for a nanowire
with a potential barrier. wpq;rier = 500nm and Vo = 0.2 meV. The different lines correspond to different
disorder strength, D;. (Top right panel) E1 pisorder — E1 at the point where the near-zero modes are
degenerate for a nanowire with thirteen potential barriers. wpgrrier = 50nm and Vo = 0.05meV. The
different lines correspond to different disorder strength, D;. (Bottom right panel) Ei pisorder — E1 at
the point where the near-zero modes are degenerate for a nanowire with a superlattice. The superlattice
barrier with is 5nm, the distance between the barriers is 10nm and V5 = 0.08 meV. The different lines
correspond to different disorder strength, D,.
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3.5 Rotating magnetic field in nanowires with and without spin-
orbit coupling

In the previous sections we have investigated how the overlap between the MBSs are affected by
inducing a potential change in the nanowire and modulating this in different ways. One of the
requirements for realising MBSs for nanowires with proximity induced s-wave superconductivity
is the spin-orbit coupling. However, as discussed in [21], this requirement can be relaxed by
using a helical magnetic field that rotates along the nanowire. This can e.g. be induced by
having set of permanent magnets placed along the nanowire. We start with giving a theoretical
solution to the problem and use this to compare the results we get by implementing the rotating
magnetic field in the tight-binding Hamiltonian.

We begin with a Hamiltonian for a nanowire along an arbitrary direction, &, with proximity
induced superconductivity and subject to a magnetic field. The BAG Hamiltonian is

2
_ (P 1 .
H= <2m ,u) T + 2guBB(§) o+ AT, (3.6)

This Hamiltonian is similar to the one we used before (Eq. (2.3)) except that we for now have
chosen the arbitrary direction, £, and dropped the SO coupling term. Furthermore we still use
the spin and particle-hole space, as described in Section 2.1, and all the consequences of this
still applies. The next step is to make a rotation of the z-axis of the spin basis so it aligns with
the direction of the magnetic field. This is done by performing a unitary transformation of the
Hamiltonian [21]. The unitary operator is defined by

U = expli(¢/2) 0] (3.7)

where o,y = [(Bx2) - 0]/|B x 2| and cos ¢ = B-2/|B|. The easiest way to find the transformed
Hamiltonian, H = UTHU is by letting UTHU act on an arbitrary wave function ¢(¢). This
results in

2
- p ~ ~ 1
H= (2; - u) 7o+ Hp + Hy + S gupo + Ar. (3.8)

The transformation gives two new terms, Hr and Hs. The first term is given by

~ h h
Hgp = —UTU'pgTZ = — <
m

27 g dé

mi

L, 40 y1dom sin(¢/2)) PeTs. (3.9)

The term in the paranthesis is a term acting in spin space. The Hamiltonian describing SO
coupling is (Eq. (2.3)) H = apo,7, and by comparing this with Hp we see that they have the
same structure. This implies that Hp is describing SO coupling. Furthermore, if the field lines
and the nanowire lies in the same plane this term can be simplified further. By taking Z to be
in the plane of the field this implies that o}, = 0. The sign change of 7., when B || Z can be
avoided by choosing [21]

U = expligo /2] (3.10)
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where o, is a constant matrix acting in spin space and describes the spin projection that is
perpendicular to the magnetic field and the z-axis, and ¢ is continuous. This gives that Hgr can
be written

Hp = qefpo i peT. (3.11)

where the effective Rashba coefficient is defined as

h d¢
Qeff = om dE (3.12)
The second term obtained from the transformation, Ho, is given by
N 2\ i
_(_p2 T M ¥ v
Hy = (—h*/2m)U'U - [<2) 2(;5 oL s (3.13)

The first term acts as a renormalization of the chemical potential. The second term has the
same form as an imaginary magnetic field that is parallel to the plane of the spin orbit field. By
writing this term in a symmetrized form , (aeffpe + pecers)/2, it can be included in Eq. (3.12).
Now, for this Hamiltonian to resemble the the Hamiltonian for the nanowire with SO coupling
as studied in previous sections the SO coupling is required to be perpendicular to the magnetic
field. To induce SO coupling with the same strength as the Rashba parameter, the derivative
of the rotating magnetic field, ¢’, should be large. An optimal field for this is proposed in [21]
and is given by

B(¢) = Bolsin(&/R), 0, cos(¢/R)). (3.14)

If we now consider the same setup as before with a nanowire in the x-direction (Section 2.1)
and remembering that cos ¢ = B - z/|B| the Hamiltonian reduces to

2 2
~ P h 1
"= < am T W> e QepppouTs + GgnnBoos + A) (3.15)

where acpr = %. Thus it is shown that an effective SO coupling can be induced in a nanowire
without SO-coupling. To implement a helical magnetic field in the tight-binding model described
in Section 2.2 we simply just have to consider the Zeeman term with o = (0,0, 0,). By choosing
R = 159 nm this ensure that magnetic field can rotate an integer number of periods along the
nanowire. Furthermore, it gives a.ry = ag = 9.59 - 10~'2 eVm, which however is a bit larger
than the Rashba coefficient for InAs. In Fig. 3.25a {E,} as a function of V is plotted. By
comparison to Fig. 3.1a it is seen that the results are similar. Since the SO coupling is stronger
the oscillations in the near-zero modes has been shifted slightly towards the left. This implies
that the region where the splitting between the zero modes is small has become larger. The
weight of the MBSs for a nanowire without SO coupling and subject to a rotating magnetic
field and the weight of the MBS for a nanowire with SO coupling and with a constant magnetic
field are plotted in Figs. 3.25b and 3.25c¢ respectively. A small difference can be seen between
the plots. However, by investigation this is not due to the renormalization of the chemical
potential. This small difference is therefore most probably due to small differences produced by
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the tight-binding description of the Hamiltonian and could possibly be reduced by increasing
the number of lattice sites.
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FIG. 3.25. (a) {E,} as function of Vy for a nanowire without SO coupling and subject to a rotating
magnetic field. R = 159nm. (b) Probability density of MBSs for a nanowire without SO coupling and
subject to a rotating magnetic field, R = 159 nm and Vz = 0.431 meV (c¢) MBSs for a nanowire with SO
coupling, ar = 9.59 - 107'2 and V; = 0.431 meV

The result from the case when the magnetic field is not allowed to make an integer number of
rotations over the nanowire is seen in Fig. 3.26. For this R = 190nm. Due to that the number
of rotations is a non integer this results in two MBSs that are asymmetric and the weight of one
of the MBSs is shifted towards the middle. The shift is, however, mostly to the second peak
and is in this case not changing the overlap.
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FIG. 3.26. Probability density of MBSs for a magnetic field making a non integer number of rotations
over the nanowire. R = 190 nm

Now we consider a nanowire with SO coupling subject to a rotating magnetic field and as in
Eq. (3.6) we add the term

H, = apeo,s, (3.16)

which corresponds to the SO coupling. By making the same unitary transformation Eq. (3.10)
this results in
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~ ha
Hy = apeo,t, + 2R (3.17)

The first term is still the same as before the transformation, however, due to the transformation
a second term has been added which corresponds to a second renormalization of the chemical
potential. The total transformed Hamiltonian is then written, for a nanowire in the z-direction

- p? h? ha 1
H= {3 - =i+ g+ 55 | =+ (Qess + @)poats + 59uBoo: + A(x). (3.18)

The effective SO-coupling induced by the rotating field is dependent on the direction of the
rotation. This is seen from that cos¢ = B - z/|B| and a.f¢ = %%. This term can then,
depending on the direction of the rotation either amplify or reduce the already existing SO
coupling due to the Rashba term. In Figs. 3.27a and 3.27b {E,} as function of V7 is plotted
for a nanowire with SO coupling and subjected to a rotating magnetic field. For the first
case (Fig. 3.27a) the magnetic field induces an effective SO coupling that is opposite to the
Rashba term and since the strength is chosen to be equal the SO terms cancel each other.
Beacuse of this there is only Zeeman splitting and states changes linearly with the magnetic
field and, furthermore, there are no anti-crossings since there is no longer any coupling between
different spin directions. Moreover, the topologically non-trivial phase is never established and
the system does not support MBSs. For the second case (Fig. 3.27b) the rotating magnetic
field induces a SO coupling in the same direction as the the Rashba term and thus the total
SO coupling term is amplified. Due to the increased SO coupling strength the energy splitting
between the zero-modes is decreased which leads to a smaller overlap between the MBSs. The
MBSs are plotted in Fig. 3.27c. As seen from this plot the MBSs localize closer to the ends of
the nanowire.
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FIG. 3.27. (a) {E,} as function of Vz for a nanowire with SO coupling and subject to a rotating
magnetic field which induces an effective spin-orbit field in the opposite direction of the Rashba coupling.
R =190nm and ag = 8-10712. (b) {E,} as function of V for a nanowire with SO coupling and subject
to a rotating magnetic field which induces an effective spin-orbit field in the same direction of the Rashba
coupling. R = 159nm and ar = 9.59- 10712, (c) Majorana modes for a nanowire with SO-coupling and
is subjected to a rotating magnetic field, R = 159nm, ag = 9.59 - 10712 and Vz = 0.431 meV.

From this section we see that by using a rotating magnetic field along the wire instead of a
homogeneous field we can induce SO coupling in a nanowire without SO coupling and as well
control the induced coupling with the shape of the magnetic field. This also works for a nanowire
with SO coupling and by using a rotating field the existing SO-coupling can both be reduced
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and amplified. The induced SO coupling is, however, dependent on if it is possible to make a
integer number of rotations or not. At last, by increasing the SO coupling we also see that the
MBSs become more localized.
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Chapter 4

Discussion

4.1 Conclusion and outlook

The aim of this thesis was to investigate if it is possible to decrease the overlap between MBSs
in nanowires with spin-orbit coupling and proximity induced superconductivity by introducing
different potential barriers. The problem has been addressed using a tight-binding model to de-
scribe the nanowire. For all different cases that has be investigated it is shown that the overlap
between the MBSs can be made to decrease by appropriate choices of barrier parameters and
Zeeman fields. The effect is, however, very small but by making further investigations it might
be possible to find an optimal structure that yields the smallest overlap between the MBSs.
The results also show that there are cases when the induced potential increases the overlap.
This is e.g. seen for a nanowire with ten potential barriers where there is a large increase in the
overlap around Vz =~ 0.55 meV. We have unfortunately not found any intuitive explanation for
why the overlap is either decreasing or increasing when changing the potential structure in the
nanowire. Thus this requires further studies.

Disorder in the potential has been investigated for both a homogeneous nanowire and an inho-
mogeneous nanowire. It has then been shown that disorder has similar effects on the inhomoge-
neous nanowire compared to the homogeneous nanowire for small disorder strengths. For strong
disorder the homogeneous and inhomogeneous nanowire differs from each other. However, de-
pending on the particular potential structure of the inhomogeneous nanowire the MBS overlap
can be made to decrease or increase. A nanowire with one potential barrier or a superlattice is
less affected by the disorder compared to the homogeneous nanowire while the nanowire with
thirteen potential barriers is affected more by the disorder. Further investigations of this should
include stronger disorder strengths as well as disorder in amplitude and the width of the poten-
tial barriers.

At last we follow [21] and shows that SO coupling can effectively be induced in a nanowire
without SO coupling by applying a rotating magnetic field. We then extend the calculations
made in [21] and show that a rotating magnetic field applied to a nanowire with SO coupling
either amplifies or reduces the already existing SO coupling. It is seen that by increasing the
SO coupling in the nanowire the MBSs become more localized. The rotating field that is used
for this is a theoretically optimal field and may not, to the best of our knowledge, be possible
to produce experimentally. Therefore one should make further investigations with a field that
is more experimentally realizable. This could e.g. be a field produced by a set of permanent
magnets placed next to the nanowire [21]. If this shows promising results this might be a good
solution to make the MBSs more localized and the overlap between them smaller. One could
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also think about combining this with a modulated potential structure to possibly achieve even
better results. Further studies could also include investigation of inhomogeneous multi-mode
wires to make the model more realistic and also disorder in the other parameters of the system.
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