
“masters1” — 2017/1/23 — 22:45 — page 1 — #1

Comparison of various concatenated

convolutional code ensembles

under spatial coupling

Gabriel IRO
Rajeshwari KABBINALE

Department of Electrical and Information Technology
Lund University

Advisor:
Michael Lentmaier
Saeedeh Moloudi

January 23, 2017

“masters1” — 2017/1/23 — 22:45 — page 2 — #2

Printed in Sweden
E-huset, Lund, 2017

“masters1” — 2017/1/23 — 22:45 — page i — #3

Abstract

A big challenge faced by the digital communication world today is increasing the
reliability of information which is being transmitted. During the transmission of
information, there is a possibility that the information is corrupted or distorted. If
this distortion is considerably high, it becomes difficult to decode and retrieve the
original information. To help mitigate this effect, the information bits are encoded
and the induced errors can be reduced or completely removed after decoding. This
process of protecting the information bits is called error control coding (ECC). It
is introduced to provide reliable transmission of information over the channel and
this is done by adding redundancy to the message that is to be transmitted.

There are ongoing studies in different implementations of error control coding
schemes based on both convolutional codes and block codes. One technique intro-
duced to improve the performance of the codes is spatial coupling. This technique
was first introduced for low-density parity check codes (LDPC) codes, however,
spatial coupling is a general concept, and it can be applied on other classes of
error control codes such as turbo-like codes (TCs). There is research at the De-
partment of Electrical and Information Technology at Lund University on different
construction of spatially coupled turbo-like codes such as: spatially coupled paral-
lel concatenated codes (SC-PCCs), braided convolutional codes (BCCs), spatially
coupled serially concatenated codes (SC-SCCs) and spatially coupled hybrid con-
catenated codes (SC-HCCs). These codes have shown to have asymptotically good
performance, but their performances in the finite length regime is currently under
investigation.

In this thesis we investigated the performance of SCCs and HCCs under spatial
coupling in the finite length regime. At the beginning of our investigation, we
defined the spatially coupled ensembles, then, implemented these ensembles in
Matlab and C++. Thereafter, we simulated the ensembles considering different
puncturing patterns to obtain higher code rates. We then compare our results
with those for BCC and SC-PCC which has been carried out previously in the
department.

The results show that all the investigated codes perform better when they
are spatially coupled than when they are uncoupled. Among all the considered
ensembles, BCC with spatial coupling is comparably the best performing code
overall especially with an increased block length. Moreover, our results also shows
that the pattern of puncturing applied on the code affects the performance of the

i

“masters1” — 2017/1/23 — 22:45 — page ii — #4

code. The puncturing pattern which gives the better performance for uncoupled
codes may not necessarily give the better performance for the coupled codes.

ii

“masters1” — 2017/1/23 — 22:45 — page iii — #5

Acknowledgments

This Thesis would not exist without the support and guidance of

Supervisor: Michael Lentmaier, We thank him for all his help, guidance, dis-
cussion and feedback. We are also grateful for the time given during the entire
thesis.

Co-Supervisor: Saeedeh Moloudi, We thank her for having patience to listen
to our doubts and helping us all the time in her busy schedules.

Finally, we would like to thank our families and friends, for the support and
encouragement.

iii

“masters1” — 2017/1/23 — 22:45 — page iv — #6

iv

“masters1” — 2017/1/23 — 22:45 — page v — #7

Preface

In collaboratiotion with the Department of Electrical and Information Technology
(EIT) this thesis work was carried out by both Rajeshwari Kabbinale and Gabriel
Iro. The goal of authors was to construct different ensembles of spatially cou-
pled convolutional codes and analyze their performance. Both authors have taken
active part in most of the steps in this investigation. The two BCJR decoders
were implemented collaboratively. The main responsibilities of Rajeshwari were
to implement the spatially coupled serially concatenated codes. Gabriel imple-
mented the spatially coupled hybrid concatenated code. Chapter 2 was written
by Rajeshwari and Gabriel wrote Chapter 3, the rest of the report was written
together.

v

“masters1” — 2017/1/23 — 22:45 — page vi — #8

vi

“masters1” — 2017/1/23 — 22:45 — page vii — #9

Table of Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Outline of Thesis . 3

2 Theoretical Background 5
2.1 Convolutional Codes . 5
2.2 Decoding . 7
2.3 Turbo Codes . 12
2.4 Iterative Decoding . 14

3 Spatially Coupled Turbo-like Codes 19
3.1 Serially Concatenated codes . 20
3.2 Hybrid concatenated codes . 21
3.3 Spatial Coupling . 22
3.4 Serially Concatenated Codes with Spatial Coupling 25
3.5 Hybrid Concatenated Code with Spatial Coupling 29
3.6 Window Decoding . 33

4 Results 35
4.1 SCC (uncoupled vs coupled) . 35
4.2 HCC (Uncoupled vs Coupled) Puncturing form-I and Puncturing form-II 37
4.3 HCC uncoupled vs SCC uncoupled 40
4.4 Comparison between uncoupled parallel, serial, braided and hybrid

concatenated code . 42
4.5 Comparison between coupled parallel, serial, braided and hybrid con-

catenated code . 43

5 Conclusions 47
5.1 Future work . 48

References 49

vii

“masters1” — 2017/1/23 — 22:45 — page viii — #10

viii

“masters1” — 2017/1/23 — 22:45 — page ix — #11

List of Figures

1.1 Block diagram of a communication system 1

2.1 Rate=1/2 Recursive Convolutional Encoder 6
2.2 Rate=1/2 Recursive Systematic Convolutional Encoder 6
2.3 Trellis representation of Rate=1/2 Recursive Systematic Convolutional

Encoder . 7
2.4 Rate 1/2 2-state trellis . 9
2.5 Forward recursion(alpha) . 10
2.6 Backward recursion(beta) . 11
2.7 L-values . 12
2.8 (a). Basic turbo encoding structure. (b) Compact graph 13
2.9 Basic turbo decoding structure . 15
2.10 Iterative decoding example . 16
2.11 Horizontal Decoding . 16
2.12 Vertical Decoding . 17
2.13 Decoding Result with a Single Iteration 17

3.1 Serially Concatenated code . 20
3.2 Serially concatenated code’s iterative decoder structure 21
3.3 Hybrid concatenated code. Compact graph and encoder structure. . 22
3.4 Iterative decoder structure of hybrid concatenated code 23
3.5 Braided Convolutional Code . 24
3.6 Braided Convolutional Code with Spatial Coupling 24
3.7 Compact graph of SP-SCC encoder 25
3.8 SC-SCC encoder block diagram . 27
3.9 Spatially coupled SCC’s Iterative Decoder 28
3.10 Compact graph of spatially coupled HCC encoder 29
3.11 SC-HCC Encoder . 31
3.12 Spatially coupled HCC’s Iterative Decoder 32
3.13 Window Decoder . 33

4.1 SCC coupled and uncoupled rate R = 1/4 36
4.2 SCC uncoupled and coupled results 38
4.3 HCC form-I uncoupled and coupled results 39

ix

“masters1” — 2017/1/23 — 22:45 — page x — #12

4.4 HCC form-II uncoupled and coupled results 39
4.5 HCC form-I vs form-II uncoupled results 40
4.6 SC-HCC form-I vs form-II results 41
4.7 HCC form-II vs SCC results . 41
4.8 HCC(form-I and form-II), BCC, SCC and PCC results for input blcok

length N=1000 . 43
4.9 HCC(form-I and form-II), BCC, SCC and PCC results for input block

length N=8000 . 44
4.10 SC-HCC(form-I and form-II), SC-BCC, SC-SCC and SC-PCC results

for input block length N=1000 . 44
4.11 SC-HCC(form-I and form-II), SC-BCC, SC-SCC and SC-PCC results

for input block length N=8000 . 45

x

“masters1” — 2017/1/23 — 22:45 — page 1 — #13

Chapter 1
Introduction

Figure 1.1: Block diagram of a communication system

A digital communication system is made up of several components, as seen
in Figure 1.1. The information source can be any source of data, in a continuous
waveform or discrete symbols. Here the information sequence and the source
encoder are combined into a block called discrete source. Discrete source generates
the information in the form of binary symbol with output u. The channel encoder
takes these message bits and adds redundancy, thereby producing an encoded
sequence v called codeword. Each output symbol from the channel encoder is
transformed into a waveform by the modulator of duration T seconds that is
suitable for transmission. This transmitted waveform gets corrupted by noise
once it enters the channel.

In the receiver side, the demodulator processes the received wave forms from
the channel and produces discrete/continuous output generating the received se-
quence r. The channel decoder transforms the received sequence r into a binary
sequence û called the estimated information sequence. However, the output that
we get from the channel decoder û is not equal to the sequence u. The noise added
by the channel may cause some decoding errors. So the channel decoder exploits
the redundancy to decide which message bits were actually transmitted.

1

“masters1” — 2017/1/23 — 22:45 — page 2 — #14

2 Introduction

In late 1940s, Shannon showed that it is possible to get low error probability
using coding on any channel, provided that the bit-rate is below a threshold called
“channel capacity” [1].

There are two main types of channel coding; block codes and convolutional
codes. In this thesis, we consider convolutional codes. Two or more convolutional
codes can be joined together to form a stronger code. This technique is called
“concatenation”. When codes are concatenated in series, they are called “seri-
ally concatenated codes”[15][16], when they are concatenated in parallel, they are
called “parallel concatenated codes” or “turbo codes”[13]. A combination of both
serial and parallel concatenation is a hybrid concatenated code [14]. Braided con-
volutional code [17] is another type of concatenated code. They are like hybrid
concatenated codes and are also formed by the combination of serially concate-
nated code and hybrid concatenated code.

It is shown that we can apply spatial coupling on these concatenated codes and
get better asymptotic behavior [10], A research carried out in the department of
Electrical and Information Technology at Lund University in this area is “spatially
coupled turbo-like codes” in which the authors performed the density evolution
(DE) analysis and computed the decoding thresholds and showed that the belief
propagation (BP) decoder can achieve the threshold of maximum a posteriori
(MAP) decoder of the underlying uncoupled ensembles occurs for large enough
coupling memory [10].

Moreover, another master’s project carried out in the department is the anal-
ysis of finite length performance of spatially coupled convolutional codes [9]. The
authors in this thesis investigated PCC and BCC for both when these ensembles
were coupled and uncoupled in the finite length regime. However, the performances
of SCC and HCC was not covered in their investigation.

1.1 Contribution

In this thesis, we investigated the performances of finite length hybrid and serially
concatenated codes with and without spatial coupling. Firstly, we defined the spa-
tially coupled ensembles to be used for this investigation. Then we implemented
the ensembles in Matlab and C++. Afterwards, we applied puncturing to obtain
higher code rates and then we simulated the ensembles. For the hybrid code, we
investigated two different puncturing patterns. The results derived from our sim-
ulation were then compared with BCC and SC-PCC which has been carried out
previously in the department [9]. In the results, we observed an improved BER
performance for the SC-TCs in comparison to their respective uncoupled ensem-
bles. BCC with spatial coupling is comparably the best performing code overall
especially for higher block length. Moreover, the results also shows that the pat-
tern of puncturing applied on the code affects its performance. The puncturing
pattern which gives the better performance for the uncoupled code may not neces-
sarily give the better performance for its coupled counterpart. This was observed
in the results for the both puncturing patterns of the HCC ensembles.

“masters1” — 2017/1/23 — 22:45 — page 3 — #15

Introduction 3

1.2 Outline of Thesis

At the beginning of this thesis, in Chapter 2, we give a short introduction on
convolutional codes. Different types of encoders are shown as examples. Trellis
representation of one of the examples is shown and explained. Then the steps of
BCJR algorithm is explained and finally we discuss basic encoding and decoding
structure of parallel concatenated code[3].
In Chapter 3, we mainly discuss about SCCs [5] and HCCs and their encoding
and decoding. We also introduce spatial coupling and present spatial coupled
ensembles [10] of SCC and HCC. Finally, window decoder is also introduced.
In Chapter 4, we present simulation results of the configuration and compare
coupled and uncoupled codes together with different scenarios and see the effect
in the performance when different parameters are taken into consideration. We
also compare the results of serially and hybrid concatenated convolutional codes
with already simulated results of parallel and braided convolutional code [9].
Finally in Chapter 5, we conclude with a short discussion on future investigation.

“masters1” — 2017/1/23 — 22:45 — page 4 — #16

4 Introduction

“masters1” — 2017/1/23 — 22:45 — page 5 — #17

Chapter 2
Theoretical Background

There are two different types of channel codes, block codes and convolutional
codes. In block codes the information sequence is divided into message blocks
of fixed length, to which a number of redundant bits are added. Each block of
information is represented by

u = (u0,u1 · · · ,uk−1)

Each block of k data bits corresponds to n-tuple of bits called as codeword.

v = (v0, v1 · · · , vn−1)

At the encoder output there are 2k different possible codewords corresponding to
the 2k different possible messages. This set of 2k codewords of length n is called
an (n, k) block code. The ratio R = k

n is called the code rate where k is the length
of input block and n is the length of output block.

2.1 Convolutional Codes

In convolutional coding, each block of n coded bits not only depends on k data
bits but also the m · k previous data bits, where m denotes the memory of the
encoder. In convolutional encoder stream of information bits are taken and then
converted into stream of transmitted bits. In a rate R = k/n convolutional encoder
with input memory m can be realized as k is input and n is output. Typically,
k less than n, the information sequence and codeword is divided into blocks of
length k and n, respectively. Low error probabilities and large minimum distance
are achieved by increasing the memory order m and not only by increasing k and n.

Classification of the convolutional codes can be done in two ways, i.e. recursive,
non-recursive and systematic, non-systematic. Recursive encoder uses both feed-
forward and feedback paths and non-recursive encoder only uses feed-forward path
in the encoding process. In the systematic encoder, the information sequence is
not changed among the code sequences, the k input sequences are a copy of the
first k sequences. In non-systematic encoder, due to the convolution process the
output does not contain the information bits.

5

“masters1” — 2017/1/23 — 22:45 — page 6 — #18

6 Theoretical Background

Example 2.1 A rate R=1/2 recursive systematic convolutional encoder

Consider polynomial generator matrix G = (1
1

1 +D
)

Figure 2.1: Rate=1/2 Recursive Convolutional Encoder

Here in the Figure 2.1, u is the information sequence that enters the encoder
bit by bit and the encoder output sequence bits are denoted by v(1) and v(2). D is
the delay operator and number of time units a bit is delayed with respect to initial
bit in the sequence is denoted by the power of D. This is a systematic encoder.
The output sequence v(1) is the copy of information sequence. For the output
sequence v(2) the input bit is modulo 2 added to the stored values of previous
input bit. This bit is fed back and modulo 2 added with input bit which gives u

′

and output bit v(2). u
′

is then moved into the shift register.

Example 2.2 A rate R=1/2 recursive systematic convolutional encoder

Consider polynomial generator matrix G = (1
1 +D2

1 +D +D2
)

Figure 2.2: Rate=1/2 Recursive Systematic Convolutional Encoder

This is also a systematic encoder. The generator matrix is different here with
two delay operator. Rest everything is similar to the Example 2.1.

Trellis representation
A graphical representation of a code shown in Figure 2.3, is called trellis. Any

“masters1” — 2017/1/23 — 22:45 — page 7 — #19

Theoretical Background 7

encoded sequence or any codeword of convoulutional code is represented as a path
on this graph. A trellis consists of nodes and branches. The nodes represent the
encoder’s state and every input sequence u = u0, u1, ... represent path or branches
within the state transition diagram of the encoder. The labels on the branches
are the codewords that the encoder outputs when that particular transition from
a state at time t to a state at time t+ 1 is made in response to a input sequence
ut. Usually trellis start from state zero and end to state zero. In order to go back
to the state zero, the termination bits are added. The termination bits are added
according the number of memory of the encoder in order to take the encoder back
to zero state and terminate the convolutional code.

Trellis diagram Example 2.2 is shown

Figure 2.3: Trellis representation of Rate=1/2 Recursive Systematic
Convolutional Encoder

2.2 Decoding

There are two famous decoding algorithms based on convolutional encoders trellis
structure. One is Viterbi and the other one is BCJR. Viterbi introduced a decod-
ing algorithm in the year 1967 for convolutional codes. Viterbi algorithm was a
programming solution to the problem of finding the shortest path. Forney recog-
nized that it was maximum likelihood ML decoding algorithm for convolutional
codes. BCJR algorithm is a maximum aposteriori Probability (MAP) decoding
method for convolutional code or block code with trellis structure and introduced
in the year 1974. In ML decoding, the probability of codeword error is minimized.
Viterbi decoding algorithm is simpler to implement, is usually preferred. In MAP
decoding, the probability of information bit error is minimized and is used in iter-
ative decoding application, such as turbo codes. In this project we focus on BCJR
decoding algorithm[2][3].

2.2.1 BCJR algorithm

BCJR algorithm was named after Bahl, Cocke, Jelinek and Raviv who introduced
a maximum aposteriori probability (MAP) decoding algorithm for convolutional
code in 1974. This algorithm can be applied to any linear code, block or con-
volutional codes. Better performance is achieved with MAP decoding when the

“masters1” — 2017/1/23 — 22:45 — page 8 — #20

8 Theoretical Background

information bits are not equally likely. The computational complexity of this al-
gorithm is higher than Viterbi algorithm. The BCJR algorithm for decoding uses
trellis to a great extent. BCJR decoding passes the trellis twice i.e. from start to
finish and back again. Because of this nature it is also called as forward-backward
algorithm. BCJR not only provides the codeword, but also gives information
about a posteriori log likelihood ratio. Hence, BCJR provides more information
than Viterbi decoding[2][3]. When the turbo code in 1993 was introduced or came
into existence, modified version of the BCJR algorithm was used by the inventors
of BCJR. This is how the BCJR algorithm had reborn which was practically not
used until then. By using iterative decoding apriori probabilities of the informa-
tion bits change every iteration. So due to this, there is better performance in
MAP decoder.

Let us consider convolutional encoder of rate R = k/n to describe BCJR
algorithm over AWGN channel. The information bit can take values 0 or 1 with
a priori probability P (ui), from which we can define log-likelihood ratio(LLR).
The decoder inputs are the received sequence r and the a priori L-values of the
information bits. With the assumption of information bits not equally likely the
algorithm calculates the aposteriori L-values.

L(ui) = log

[
p(ui = 0|r)

p(ui = 1|r)

]
(2.1)

The numerator and denominator of the equation 2.1, contain aposteriori con-
ditional probabilities, that is, probabilities computed after we know r.

Decoder output obtained

ûi =

{
0, if L(ui) > 0

1, if L(ui) < 0
(2.2)

where j=0,1 · · · j − 1.
In case of coded sequence transmitted over AWGN channel we have

Lch(ui) =
2

σ2
(ri) (2.3)

where Lch(ui) is the channel L-value of coded bits.
To describe the BCJR algorithm let us consider the trellis (Figure 2.4) for the

encoder shown in Figure 2.1 which has one memory unit with rate 1/2. It has
2-states S = {0, 1}. The dashed line is the branch produced by input one and the
solid line show the branches of input zero. Each branch is labeled with an output
or codeword that is generated by the encoder.

Now let us discuss the steps used in BCJR algorithm to calculate the soft
output by an example. Consider the encoder in Figure 2.1 and the received vector
r = (−0.8,−0.1− 1.0,+0.5 + 1.8,−1.11.6,+1.6). The steps of BCJR decoder are
as follows.

1. Firstly, we obtain the trellis for the decoder indicating the number of states
and number of time intervals involved. This trellis is shown in Figure (2.4)

“masters1” — 2017/1/23 — 22:45 — page 9 — #21

Theoretical Background 9

Figure 2.4: Rate 1/2 2-state trellis

2. We compute γ values or the branch metrics assuming that a priori probabil-
ities of the information bits are equally likely, La(ut) = 0, l=1,2 and we compute
log-domain branch metrics. The branch metric from the previous state s

′
to the

current state s is,

γt(s
′
, s) =

K∑
i=1

La(ut
(i))(

1

2
− ut(i)) +

K∑
j=1

Lch(vt
(j))(

1

2
− vt(i)) (2.4)

In the above equation La(ut
(i)) is the a priori probabilities of the information bits.

The required parameters to calculate the branch metric are the channel L-values
Lch(vt

(j)) and the codeword generated by encoder for every transition. Here the s
denotes the current state St = s for the time t, the previous state will be St−1 = s

′

and next state is shown as St+1 = s
′′
.

For the considered example, the branch matrices at t = 0 are as follows,

γ0(s
′

0, s0) = (−0.8)
1

2
+ (−0.1)

1

2
= −0.45

γ0(s
′

0, s1) = (−0.8)
−1

2
+ (−0.1)

−1

2
= +0.45

3. Carry out forward recursion

αt(s) = max∗(γt(s
′
, s) + αt−1(s)), α0(s) =

{
0, if s = 0

−∞, if s 6= 0
(2.5)

The next metric needed is α. To intialize, we consider that at time t = 0, the
α for state zero is zero and the corresponding αs for the other states are − inf.
Then the sum of branch metric and α value of previous node is taken to update
the current α node. When two branch meet at single node max∗ equation is used
and the result is updated in the current α node. The max∗ equation is given by

max∗(x, y) = max(x, y) + ln(1 + e(−|x−y|) (2.6)

“masters1” — 2017/1/23 — 22:45 — page 10 — #22

10 Theoretical Background

Figure 2.5: Forward recursion(alpha)

For example to calculate αt(0) from the Figure 2.5 it can be observed that at
time t two branch meet at current state S0. One is from previous state zero S

′

0 and
other from previous state one S

′

1. The computation can be done in the following
way.

αt(0) = max∗(γt(S
′

0, S0) + αt−1(0), γt(S
′

1, S0) + αt−1(1)) (2.7)

For the considered example,
α0(s0) = 0

α1(s0) = α0(s0) + γ0(s0, s0) = −0.45

α1(s1) = α0(s0) + γ0(s0, s1) = 0.45

α2(0) = max∗(γ1(S
′

0, S0) + α1(s0), γ1(S
′

1, S0) + α1(s1))

= max(−0.7,+1.2) = 1.2 + ln(1 + e−1.9) = 1.34

4. Carry out the backward recursion

βt−1(s′) = max∗(γt(s
′
, s) + βt(s)), βL+m(s) =

{
0, if s = 0

−∞, if s 6= 0
(2.8)

The same procedure is followed as of α, but β values are calculated at each
nodes considering the backward trellis. For example to calculate βt−1(0) from the
Figure 2.6 we can see that one branch going from the state S0 to S

′

0 and another
from the state S1 to S

′

0. The computation can be done in following way

βt−1(0) = max∗(γt(S
′

0, S0) + βt(0), γt(S
′

0, S1) + βt(1)) (2.9)

For the considered example,
β4(s0) = 0

β3(s0) = β4(s0) + γ3(s0, s0) = 0 + 0 = 0

“masters1” — 2017/1/23 — 22:45 — page 11 — #23

Theoretical Background 11

Figure 2.6: Backward recursion(beta)

β3(s1) = β4(s0) + γ3(s1, s0) = 1.6 + 0 = 1.6

β2(0) = max∗(γ2(S
′

0, S0) + β3(s0), γ2(S
′

0, S1) + β3(s1))

= max(0.35,+1.25) = 1.59

β2(1) = max∗(γ2(S
′

1, S0) + β3(s0), γ2(S
′

1, S1) + β3(s1))

= max(−1.45, 3.05) = 3.06

Here, it can be seen that α and β are associated with the encoder states and γ is
associated with the branches or transitions between states. The initial values of
α and β mean the trellis is terminated, that is, begins and ends in the zero state.
Therefore it will be necessary to add some tail bits(depends on memory unit) to
the message in order that the trellis path is forced to return back to the initial state.

5.Computing APP L-values

L(u
(i)
t) = max∗

(s′ ,s):ui
t=0

(αt−1(s
′
) + γt(s

′
, s) + βt(s))

−max∗
(s′ ,s):ui

t=1
(αt−1(s

′
) + γt(s

′
, s) + βt(s)) (2.10)

α and β values at each node and γ values at each branch of trellis enables the
computation of soft output.
For example we can compute Lu0 from Figure 2.7 as

x(s
′

0s
′

1, input0) = max∗(αt−1(0)+γt(S
′

0, S0)+βt(0), αt−1(1)+γt(S
′

1, S1)+βt(1)) = yinput0

x(s
′

0s
′

1, input1) = max∗(αt−1(0)+γt(S
′

0, S1)+βt(1), αt−1(1)+γt(S
′

1, S1)+βt(0)) = yinput1

Lu0
= yinput0 − yinput1

For the considered example,

L(u0) = (α0(0) + γ0(s
′

0, s0) + β1(0))− α0(0) + γ0(s
′

0, s1) + β1(1))

“masters1” — 2017/1/23 — 22:45 — page 12 — #24

12 Theoretical Background

Figure 2.7: L-values

2.99− 3.47 = −0.48

L(u1) = max∗{(α1(0) + γ1(s
′

0, s0) + β2(0), (α1(1) + γ1(s
′

1, s0) + β2(0))}

−max∗{(α1(0) + γ1(s
′

0, s1) + β2(1), (α1(1) + γ1(s
′

1, s1) + β2(1))}

= max∗{0.86, 2.76} −max∗{2.79, 2.86} = −0.62

In order to compute APP L-values the values of αs, βs and γs are required.
Once these values are obtained, at every time instance the soft outputs are ob-
tained by taking the max∗ of the summation of αt−1(s

′
),γt(s

′
, s) and βt(s) for all

zero input branches subtracted from max∗ of the summation of αt−1(s
′
), γt(s

′
, s)

and βt(s) for all one input branches.

2.3 Turbo Codes

The original concept of turbo codes was first introduced in 1993 by Berrou,
Glavieux and Thitimajshima [8]. From early days, the goal has always been
to come close to the Shannon limit performance with a sustainable complexity.
Turbo code with iterative decoding succeeds in achieving performance close to
Shannon limit in terms of BER. Turbo codes are family of concatenated convolu-
tional codes and are built using two or more simple constituent codes or component
codes, arranged in variation of concatenation scheme along with message interleav-
ing. Performance of a turbo code improves when the interleaver size is increased.
Pseudo-random interleaver is an important part of the design and which has a
positive influence on the code properties and the performance of turbo codes.
The basic turbo encoder is a parallel concatenation of two recursive systematic

“masters1” — 2017/1/23 — 22:45 — page 13 — #25

Theoretical Background 13

convolutional (RSC) codes which are placed in parallel along with pseudo random
interleaver. The turbo decoder uses soft-output values and iterative decoding that
is the soft-values of one decoder are passed to the other and vice versa. In the
iterative decoding,

Figure 2.8: (a). Basic turbo encoding structure. (b) Compact graph

Figure 2.8(a) shows the basic turbo encoding structure also known as parallel
concatenated code. It consist of information sequence or message bits u, two
systematic feedback recursive convolutional encoders placed in parallel and an
interleaver denoted by π. The encoders take the name of upper and lower encoder
respectively. The upper encoder gets the information sequence as the input. A
reordered copy of information sequence is given to the lower encoder as an input.

The output of turbo encoders consist of systematic output v(1) = u. The
information u bits feed the upper encoder to create the upper parity sequence
vU. Likewise, a reordered version of u is fed to the lower encoder to create the
lower parity sequence vL. The termination bits of all ensures that the encoder will
return back to zero state. This final sequence will be sent through the channel.

Figure 2.8(b) is the compact graph representation of turbo code. The informa-
tion sequence u, parity sequence of upper encoder vU and parity sequence of lower
encoder vL are shown by a single black circle called variable node. The upper and
lower trellis are denoted by TU and TL. The trellises are replaced by squares
called factor node, which are labeled according to their length. The interleaver is
shown in the graph by a line that crosses the edge which connects u to TL. The
sequence used in TL is the reordered version of information sequence u. Finally
the transmitted sequence is v = {u,vU,vL}.

“masters1” — 2017/1/23 — 22:45 — page 14 — #26

14 Theoretical Background

2.4 Iterative Decoding

Using log-likelihood algebra, it can be shown that any decoder can be used which
accepts soft inputs including a priori values and delivers soft outputs that can
be split into three terms : the soft channel and a priori inputs, and the extrinsic
value. The extrinsic values are used in the iterations.
With u being in Galois Field(2) with the elements {0, 1}. The log-likelihood ratio
of a binary random variable ui, L(ui) given the received value r is defined as in
equation (2.1)

The log-likelihood ratio L(ui) represents the soft value. pU (u) denotes the
probability that the random variable u takes on the value u. The operator � is
used as the notation for addition

L(u1) � L(u2) = L(u1 + u2)

it can be demonstrated using some identities as

L(u1) � L(u2) = log
1 + eL(u1)eL(u2)

eL(u1) + eL(u1)

sign(L(u1)).sign(L(u2)).min(|L(u1)|, |L(u2)|)

along with the additional rules
L(u1) �∞ = L(u) L(u1) �−∞ = −L(u) L(u1) � 0 = 0
The reliability of the sum � is therefore determined by the smallest reliability of
the terms.
Now “soft values” of a channel are defined more clearly. After transmission over a
fading channel or a Gaussian/binary symmetric channel (BSC) log-likelihood ratio
of the x coded bit can be calculated conditioned on the matched filter output y as

L(x|y) = log
exp(−Es

N0
(y − a)2)

exp(−Es

N0
(y + a)2)

+ log
P (x = 0)

P (x = 1)

= Lch · y + L(x)

where Lch channel reliability factor for the fading channel given by equation (2.3).
La(x) is the a priori L-values. At last soft output decoder computes the a poste-
riori L-values

L(vi) = La(vi) + Lch(vi) + Le(vi)

La(vi) is the intrinsic part of the a priori L-value of vi and Lch(vi) is the re-
ceived channel L-value corresponding to symbol vi . Le(vi) is the extrinsic part of
the a posteriori L-values of vi which does not depend on La(vi) or Lch(vi). It is
estimate of vi based on other symbols.

In the first iteration as we can see in the Figure 2.9 for upper decoder the input
are the channel L-values Lu, LU

v which are the L-values of systematic information

“masters1” — 2017/1/23 — 22:45 — page 15 — #27

Theoretical Background 15

Figure 2.9: Basic turbo decoding structure

and parity sequence of the upper encoder. Since we still have no information com-
ing from the lower decoder, the a priori information initially is set to zero. Message
passes through the decoder and the extrinsic L-value of the output is permuted
and fed to the lower decoder. In the first iteration of lower decoder, the input
are the permuted version of the channel L-values Lu, parity sequence LL

v . Then
previously permuted extrinsic L-value coming from the upper decoder is used as
a priori information for u. At the output of the lower decoder the output is sub-
tracted with the intrinsic information in order to get the extrinsic information.
The extrinsic information is de-interleaved before it feeds the input to the upper
encoder as apriori values. These extrinsic L-values, along with the L-values of
the received information symbols, must be interleaved in the same pattern used
at the encoder before entering lower decoder. First iteration is completed after
both upper and lower decoder have been activated. Message passing is done to
improve the performance all around. Convolutional code by itself is not enough to
get with feasible complexity. If two are put together and then they are operating
in this message passing turbo fashion, then they can help each other out and get
to capacity.

For the following iterations, the a priori L-values are replaced by the extrin-
sic a posteriori L-values (Le2) after being de-permuted. After each iteration, the
extrinsic L-values, representing the reliability information about the bits to be
decoded, are passed from one decoder to the other, ensuring that very little infor-
mation is lost relative to optimal decoding.

Soft iterative decoding example

A simple example [4] of a parallel concatenated code using Log-Map algorithm
to illustrate the principle of iterative decoding can be seen. In this example, ver-
tical and horizontal single parity check codes are used. It consists of a block of

“masters1” — 2017/1/23 — 22:45 — page 16 — #28

16 Theoretical Background

Figure 2.10: Iterative decoding example

input vectors u = [u1, u2, u3, u4] and the parity vector of the first constituent code
p1 = [p1, p2] and the parity vector of the second constituent code p2 = [p3, p4].
8 transmitted bits are represented in a rectangular array as shown in Figure 2.9.
The transmitted values after being modulated with output after the channel effect
can be seen.
In the first iteration of decoder 1(horizontal decoding), the log MAP algorithm is
applied to compute the a posteriori L-values for every input bits and the corre-
sponding extrinsic L-values pass to decoder 2 (vertical decoding). The log-MAP
algorithm uses these extrinsic a posteriori L-values received from decoder 1 as the
a priori L-values to compute a posteriori L-values of input bits and the corre-
sponding extrinsic L-values is fed back to decoder 1.

Figure 2.11: Horizontal Decoding

The horizontal decoding(decoder 1/upper decoder) is calculated with the help
of the expression L(ui) � L(uj)sign(L(u1)) · sign(L(uj)) ·min(|L(ui)|, |L(uj)|) be-
tween the information and the parity vectors which computes the aposteriori L-
values for every input bit and the corresponding extrinsic aposteriori L-values.

“masters1” — 2017/1/23 — 22:45 — page 17 — #29

Theoretical Background 17

The same expression as of the horizontal decoding is used in the calculation of

Figure 2.12: Vertical Decoding

the vertical decoding. Here the a priori L-values are considered for the calculation.

Figure 2.13: Decoding Result with a Single Iteration

Finally, by adding channel output with both decoders the aposteriori infor-
mation can be calculated. In this example shown above the message is properly
decoded after the first iteration.

“masters1” — 2017/1/23 — 22:45 — page 18 — #30

18 Theoretical Background

“masters1” — 2017/1/23 — 22:45 — page 19 — #31

Chapter 3
Spatially Coupled Turbo-like Codes

We apply spatial coupling technique in error control codes on pre-existing coding
technique. Examples of such code could be block codes i.e. Low density parity
check (LDPC) code, or on a convolutional code. In this chapter, we discuss spatial
coupling of turbo-like codes. Turbo codes are part of the concatenated convolu-
tional code family. In this thesis, our investigation is focused on serially and hybrid
concatenated codes. Both codes are classified as a type of turbo-like codes. We
apply the concatenation technique to form the code structure.

In error control coding, code concatenation is a technique used to form big
codes from smaller codes. This was also discussed in the previous chapter. We
can also see it as, multi-layer of encoding and decoding of the big codes which are
from the smaller codes that are concatenated. With code concatenation we can
reduce the bit error probability of such codes exponentially while only increasing
the decoding complexity algebraically. Some of the various forms of concatenated
codes are as follows;

• Parallel concatenated codes

• Serially concatenated codes

• Hybrid concatenated codes

• Braided concatenated codes

Parallel concatenated codes was already discussed in the previous chapter.
There we described how it is made, it’s properties and so on. In this chapter, we
will discuss briefly braided concatenated codes in the spatial coupling section, this
is because of it’s code structure relating to how spatial coupling is being applied
in other codes.

19

“masters1” — 2017/1/23 — 22:45 — page 20 — #32

20 Spatially Coupled Turbo-like Codes

3.1 Serially Concatenated codes

Serially concatenated codes are concatenated code construction of component
codes placed in cascade of each other. Or we could say, component codes are
placed serially.

Figure 3.1: Serially Concatenated code

In Figure 3.1(a) is the encoder structure of a serially concatenated code. Here
we can see two encoders placed in series of each other, the outer encoder receives
the original sequence of information, encodes it, and then passes it on to the inner
encoder. The block π symbol in the middle represents an interleaver. The inter-
leaver permutes the bits received from the outer encoder before it is passed on to
the inner encoder. By this, we can increase the Euclidean distance of the code
sequence. Figure 3.1(b) is the compact graph of a serially concatenated code,
in it, we can see how the code sequences are concatenated and permuted going
starting from the un-coded sequence to the output sequence of the inner encoder
and vice versa.

Serially concatenated codes can be applied in either block codes or convolu-
tional codes, there can be more than two encoders in the code structure. It is
important to point out that this technique has been in place since the 1960’s when
Forney investigated concatenated codes [11].

3.1.1 Serially Concatenated Codes with Iterative Decoding

In Chapter 2, we discussed iterative decoding in details. We will now apply this
technique to serially concatenated codes. The decoding is based on the component
codes, which exchange sequence apriori information, and by this technique, we can
improve the performance of the code.

Figure 3.2 shows the iterative decoder for the serially concatenated code.

“masters1” — 2017/1/23 — 22:45 — page 21 — #33

Spatially Coupled Turbo-like Codes 21

Figure 3.2: Serially concatenated code’s iterative decoder structure

We can see that both the inner and outer decoders are connected and are
exchanging information between them during iterations. For more clarity, see
the Section 2.4 on “Iterative Decoding” in the previous chapter. From previous
research, in terms of performance between a serially concatenated code and a
parallel concatenated code, both codes have their advantages and disadvantages.

3.2 Hybrid concatenated codes

To say something is of a “hybrid” form literally means that it is a combination of
two or more other known forms of that particular thing. The concept is the same
in coding techniques. A hybrid concatenated code is a combination of two or more
forms of concatenated coding schemes. We have discussed parallel concatenated
code as well as serially concatenated code. Very often a hybrid concatenated code
can be described as a combination of a serially concatenated code and a parallel
concatenated code. A hybrid concatenated code with two or more interleavers is
a code by which two or more codes are concatenated in parallel of each other to
form the outer encoder and then, the outer encoder is concatenated in series with
one or more codes to form the inner encoder. The input to the outer encoder is
the un-permuted information sequence while the input to the inner encoder is the
permuted concatenated output from the outer encoder.

We can analyze the hybrid concatenated code encoder structure in Figure 3.3
to that of the serially concatenated code found in Figure 3.1. Here, the outer

“masters1” — 2017/1/23 — 22:45 — page 22 — #34

22 Spatially Coupled Turbo-like Codes

Figure 3.3: Hybrid concatenated code. Compact graph and encoder
structure.

encoder has been replaced by two encoders placed in a parallel form, an upper
encoder and a lower encoder. This is the exact form of the parallel concatenated
code found in the previous chapter. Encoded sequences from the upper and lower
encoders are then concatenated (or joined) and are then passed on to the inner
encoder. An interleaver is placed just before the inner encoder to improve the
linear distance properties of the code sequence.

3.2.1 Hybrid concatenated code with iterative decoding

An iterative decoder structure similar to that of serially concatenated code struc-
ture can be constructed. The decoder structure will have three component de-
coders because there are three component encoders during encoding. The decoder
input sequences in the component decoders are connected according to their con-
nections during encoding. This is visible from the compact graph seen in Figure
3.3(b). Also in Figure 3.3(b) we can see how the code sequences are concatenated
and permuted going starting from the un-coded sequence to the output sequence
of the inner encoder and vice versa.

Figure 3.4 shows the hybrid iterative decoder with all of its connections.
Hybrid concatenated code construction brings us interesting prospects in terms of
performance.

3.3 Spatial Coupling

Spatial coupling in coding is a technique used for achieving higher performance
of a code. Let’s call the total number of sequences that will be encoded the

“masters1” — 2017/1/23 — 22:45 — page 23 — #35

Spatially Coupled Turbo-like Codes 23

Figure 3.4: Iterative decoder structure of hybrid concatenated code

coupling length L. The dependence of each finite code sequence is determined
by the coupling memory m. This is the number of neighbor encoders exchanging
information at any particular time t instant. When larger code sequences is used
with a larger coupling length we can achieve very good performance with spatially
coupled codes, however, this can increase the complexity of the belief propagation
(BP) decoding.

3.3.1 Braided convolutional codes

An uncoupled braided convolutional code is very similar to parallel convolutional
code in terms of its structure. However, unlike in the latter, the parity sequence
of the upper component encoder vU is the input of the lower component encoder.
The same is the case for the lower component encoder, its parity sequence vL is
used as the input for the upper component encoder.

Figure 3.5 shows the compact graph and the encoder structure of a braided
convolutional code with two encoders. The main difference between uncoupled
BCCs and spatially coupled BCCs (SC-BCC) is that in the latter, the parity
sequences from both the upper and lower encoders at a time t, are used as input
for their corresponding encoders and decoders in time t + 1. At time t = 0, the
input from the previous time which are supposed to be the parity sequences from
the encoders are set to zero. This we can see in Figure 3.6 below.

“masters1” — 2017/1/23 — 22:45 — page 24 — #36

24 Spatially Coupled Turbo-like Codes

Figure 3.5: Braided Convolutional Code

Figure 3.6: Braided Convolutional Code with Spatial Coupling

“masters1” — 2017/1/23 — 22:45 — page 25 — #37

Spatially Coupled Turbo-like Codes 25

3.4 Serially Concatenated Codes with Spatial Coupling

In this section, we discuss spatially coupled serially concatenated codes.

Given block of length L serially concatenated codes with a 1/4 rate, which are
to be transmitted in time for t=0,...,L, consider that the coupling memory m = 1,
then each code sequence at time t, has part of its encoded sequences transmitted
between time t, and t + 1. Likewise, at time t − 1 parts of it’s sequences are
transmitted at time t. If the coupling memory is greater than 1, we would have a
sequence of code at a given time t transmitted over more than 1 time period, like
in the former. This can be seen in Figure 3.7.

Figure 3.7: Compact graph of SP-SCC encoder

We can also see that in Figure 3.7, information sequence ut is concatenated

“masters1” — 2017/1/23 — 22:45 — page 26 — #38

26 Spatially Coupled Turbo-like Codes

with the parity sequence of the upper encoder, and then permuted, then part of
the sequences are sent to the next time slot, while it also receives part sequence
from the time before. This forms a new sequence from both the current and pre-
vious time instance. The newly formed sequence is then permuted.

Figure 3.8 is the block diagram of spatially coupled serially concatenated code
(SC-SCC). During the encoding, at time t = 0, sequences from the previous time
are considered as null or zero. In the same way, we also want to ensure that our
streams of sequences ends at Lt = 0. We then transmit an all zero sequence at
time t=L. The termination stage is quite complex as it depends on the levels of
coupling as well as the coupling memory. We must take this into consideration
when terminating the chain. Improper termination of sequences can lead to cer-
tain error pattern at the end of the chain.

In a similar process we can also implement a SC-SCC decoder. Considering
that channel values belong not to one time slot alone, and having information
about the encoding process, decoded sequences at each time slot is also connected
to other time slots accordingly. In Figure 3.9, we can see that extrinsic sequences
in the outer decoder as well as the inner decoder are coupled with sequences at
the previous and next time sequences respectively. Likewise the intrinsic channel
values of the outer decoder. The decoder diagram might not be so clear at this
point, because it is an iterative decoder, however this implementation is used with
a window decoding technique which we will talk about at a later section in this
chapter.

“masters1” — 2017/1/23 — 22:45 — page 27 — #39

Spatially Coupled Turbo-like Codes 27

F
ig
u
re

3
.8
:
S
C
-S
C
C
en
co
d
er

b
lo
ck

d
ia
gr
am

“masters1” — 2017/1/23 — 22:45 — page 28 — #40

28 Spatially Coupled Turbo-like Codes

F
ig
u
re

3
.9
:
S
p
atially

cou
p
led

S
C
C
’s
Iterative

D
eco

d
er

“masters1” — 2017/1/23 — 22:45 — page 29 — #41

Spatially Coupled Turbo-like Codes 29

3.5 Hybrid Concatenated Code with Spatial Coupling

The implementation of spatially coupled hybrid conatenated codes (SC-HCC) are
more complex than that of the SC-SCC. In our experiment, in addition to coupling
the parity sequences, we also coupled the input sequence.

We encode a stream of length L SC-HCC with rate 1/5, which we will trans-
mit over the time period for t=0,...,L. Consider that the coupling memory m = 1,
then each code sequence at time t, has part of its encoded sequences as well as
the original bit sequences transmitted between time t, and t + 1. Likewise at time
t − 1 parts of it’s sequences are transmitted at time t. If the coupling memory is
greater than 1, we would have a sequence of code at a give time t transmitted over
more than 1 time period, same like in the SC-SCC case.

Figure 3.10: Compact graph of spatially coupled HCC encoder

Figure 3.10 shows the compact graph of the SC-HCC. Note how we both ap-
plied coupling both before and after encoding the outer sequences. Both the upper
and lower encoders gets their input from the input sequence u, the input sequence
of the lower encoder is permuted while that of the upper encoder isn’t.

Figure 3.11 is the block diagram of the SC-HCC encoder. We set sequences
from time t < 0 to null during encoding. We also should terminate the streams
of sequences with nulls. Unlike in the SC-SCC case, we have to terminate with at
least two streams of nulls. We then transmit an all zero sequence at the t = L−1,

“masters1” — 2017/1/23 — 22:45 — page 30 — #42

30 Spatially Coupled Turbo-like Codes

and t = L. This is because of the multiple levels of coupling.

In a similar way we can also implement a SC-HCC decoder. Considering that
channel values belong not to one time slot alone, and having information about
the encoding process, decoded sequences at each time slots are also connected to
other time slots accordingly. In Figure 3.12, we can see that extrinsic sequences
from the upper decoder as well as the lower decoder are concatenated and are
then permuted, and then spatially coupled with the respective dependent time
slots and blocks. In the same way, the extrinsic sequence from the inner decoder
is de-permuted, and then spatial coupling is applied and the resulting sequence
are fed into the connected input of the upper and lower decoders. Likewise the
intrinsic channel values of the upper and lower decoder. This is also an iterative
decoder implemented with SC-HCC. More details about the decoding process we
will discuss in the Window Decoding section of this chapter.

“masters1” — 2017/1/23 — 22:45 — page 31 — #43

Spatially Coupled Turbo-like Codes 31

F
ig
u
re

3
.1
1
:
S
C
-H

C
C
E
n
co
d
er

“masters1” — 2017/1/23 — 22:45 — page 32 — #44

32 Spatially Coupled Turbo-like Codes

F
ig
u
re

3
.1
2
:
S
p
atially

cou
p
led

H
C
C
’s
Iterative

D
eco

d
er

“masters1” — 2017/1/23 — 22:45 — page 33 — #45

Spatially Coupled Turbo-like Codes 33

3.6 Window Decoding

In uncoupled version of both SCC and HCC, we used only iterative decoding
technique. However, during spatial coupling, iterative decoding alone becomes
complex to implement since sequences are coupled. If we decode our sequences one
after the other, it is indifferent to the uncoupled version of our code and decoding
all length L streams of sequences at the same time is too complex. Window
decoding as a technique for decoding spatially coupled turbo-like codes, it is a
technique used to combat the complexity of belief propagation between coupled
sequences. Sequences are decoded in steps and withing a windowed time frame.
This decomposes the belief propagation scheme into sub-optimal decoding steps
as well as maintaining the code performance [12].

Figure 3.13: Window Decoder

A simple illustration of how a window decoder operates can be seen in Figure
3.13

It comprises of a sliding window with size w = 4, and moves a step at a
time to the right till all streams of sequences have been decoded. To eradicate
the problem of having errors at the beginning and the end of the coupling chain,
each sequence must be decoded equal number of times. At every position of the
window, the decoder iterates for certain number of times. I.e, iteration size I = 5,
the window is then shifted “one” position to the right, and performs another I
number of iterations until all sequences have been decoded. An increased number
of iterations per window, the more accurate the decoding gets. The coupling chain
must then be padded with w−1 sequences of zeros at the beginning of the chain as
well as (w−1) sequences of zeros at the end of the chain. By doing this, we ensure
that the window starts with decoding the first sequence in the chain only, and
slides through to the last sequence in the chain. The size of the window influences
the code performance. The bigger the window, the better the performance, so
also the decoding complexity. An active research is ongoing regarding the optimal
threshold of the window size and how it influences the code performance.

“masters1” — 2017/1/23 — 22:45 — page 34 — #46

34 Spatially Coupled Turbo-like Codes

“masters1” — 2017/1/23 — 22:45 — page 35 — #47

Chapter 4
Results

Main focus of this chapter is to discuss our observation from our investigation
in this project. The bit error rates for different ensembles are presented as a
function of the signal to noise ratio. This chapter we present simulated results
from following ensembles.

1. Uncoupled hybrid concatenated codes

2. Coupled hybrid concatenated codes

3. Uncoupled serially concatenated codes

4. Coupled serially concatenated codes

We also compare our results with results from thesis work carried out in ref-
erence [9] by Hector Moreno and Ardiana Osmani, “Analysis of the finite length
performance of spatially coupled convolutional codes”. In their thesis, they investi-
gated uncoupled and coupled braided convolutional code and parallel convolutional
code. In our simulations we implemented BCJR algorithm in C++ and also im-
plemented the main simulation functions in Matlab. We have also written a MEX
function which acted as an interface between Matlab and C++. Our implementa-
tion of BCJR algorithm in C++ was due to the advantage C++ has over Matlab
on time spent on loops. An additive white Gaussian noise (AWGN) channel is
used to evaluate the performance. We used the Aurora Lunarc cluster facilities
based in Lund University. Aurora consists out of 180 compute nodes for SNIC use
and over 50 compute nodes funded by research groups at Lund University. Each
node has two Intel Xeon E5-2650 v3 processors (Haswell), offering 20 compute
cores per node. The nodes have 64 GB of DDR4 ram installed [13]

4.1 SCC (uncoupled vs coupled)

Rate 1/4

Under this topic simulated results of serially concatenated code and spatially cou-
pled serially concatenated code of rate R = 1/4 is compared for input block length
N = 1000 and N = 8000. For uncoupled case the ensemble of SCC can be seen

35

“masters1” — 2017/1/23 — 22:45 — page 36 — #48

36 Results

in Chapter 3, Figure 3.1. Here two identical rate R = 1/2, 4-state component en-

coders are used with generator matrix [G] = (1
1 +D2

1 +D +D2
). BCJR algorithm

with iterative decoding I = 100 iterations are considered. In the coupled case, we
used the same component encoders as in the uncoupled case, and coupling length
L = 100 and memory m = 1 is considered (see Figure 3.9). A sliding window al-
gorithm with iterative decoding is used during decoding. To ensure that we have
approximately 100 iterations per time slot and iterations per time slot is depen-
dent of window size w, we set the number of iterations to equal 100/w. Different
window size is used for different input block length. By this we can see how much
difference it brings out in the performance of the BER curves.

Figure 4.1: SCC coupled and uncoupled rate R = 1/4

In Figure 4.1 we can see the simulated results for both uncoupled and coupled
case for Input block length N = 1000 and N = 8000. For the coupled case we
have used window size of w = 10 and w = 5 for Input block length N = 1000 and
N = 8000 respectively. Here we can see the effect of increasing the Input block
length from N = 1000 to N = 8000, the waterfall region improves and with a very
steep slope it gets closer to the capacity. For Input block length of N = 1000, SCC
and SC-SCC w = 10 at BER=10−5, we can see SC-SCC has a better performance
than SCC with gain of around 0.8dB. For Input block length of N = 8000, SCC

“masters1” — 2017/1/23 — 22:45 — page 37 — #49

Results 37

and SC-SCC w = 5 at BER=10−5, there is gain of around 0.7dB. In either coupled
case or uncoupled case we don’t see any error floor because error floor is too low
for serially concatenated code due to its good distance property.

Puncturing

We puncture a low rate code to a slightly higher rate code by removing some of
the parity bits after the bits or sequences has been encoded. Original SCC code
rate R = 1/4 and for HCC R = 1/5. To achieve rate R = 1/3 here puncturing
is carried out on both SCC and HCC in order to compare the simulated results
with results of PCC and BCC as both ensembles were simulated with rate R =
1/3. By puncturing several rates can be obtained from the same mother code
making it possible to create a universal encoder/decoder. For example originally,
for HCC, the code rate R = 1/5. That is to say, for every input sequence, we
get five times that sequence as output. For example, in our code, we simulated
for input block length N = 1000, after encoding we will get bit sequence of N =
5000 bits as output. To get to rate R = 1/3, we need to puncture away 2000
bits. We punctured HCC in two forms. For form-I, we punctured all bits of
the outer encoder sequences, while for form-II, we punctured the even bits of the
parity sequences. In HCC, we noticed a significantly different characteristics of
the code performance when we used these different forms of puncturing, this will
be discussed later in this chapter and in the conclusion chapter.

Serially Concatenated Code with rate R=1/3

Under this topic we compare the performance of SCC and SC-SCC of rate R = 1/3.
The ensemble, generator matrix and block length used are same as rate R = 1/4.
To achieve rate R = 1/3, the parity bits of the outer encoder are punctured.

In the Figure 4.2, we can see the performance of SCC ensemble with input
block length N = 1000 and N = 8000. And also the performance of spatially
coupled case of similar input block length can be seen. In the coupled case the
window size used are w = 10 for input block length N = 1000 with iteration
I = 10 and w = 5 for input block length N = 8000 with iteration I = 20. For the
input block length N = 1000 the waterfall region gets better with gain of almost
1.25dB between SCC and SC-SCC. Similarly for input block length N = 8000 the
waterfall region of the SC-SCC gets better with steeper slope closer to capacity
compared to SCC case with gain upto 1.2dB.

4.2 HCC (Uncoupled vs Coupled) Puncturing form-I and
Puncturing form-II

In this section, we discuss results from our simulations comparing uncoupled and
coupled hybrid concatenated codes of input block length N = 8000 and N = 1000
for the form-I and form-II. In all the simulations, we used a rate R = 1/2 with
a 2-state component encoder in the outer encoder while in the inner encoder, we

“masters1” — 2017/1/23 — 22:45 — page 38 — #50

38 Results

Figure 4.2: SCC uncoupled and coupled results

used a rate R = 1/2 with a 4-state encoder. We set the number of iterations
during decoding to I = 100 for uncoupled simulations. To ensure 100 iterations
per time slot in the coupled simulation as in the uncoupled, we set the number of
iteration per time slot to (100/w). For coupled simulation, we set the window size
of w = 10 for input block length of N = 1000, and window size w = 5 for input
block length of N = 8000. To ensure a rate of R = 1/3, we puncture every second
bit of the outer and inner encoded sequences in all simulations for form-II while
for form-I we punctured all the bits of the outer encoded sequences.

Figure 4.3 shows the performance of HCC and SC-HCC form-I ensembles of
rate R = 1/3 with input block length of N = 1000 and N = 8000. As expected,
the uncoupled results were worse off overall with input block length N = 1000
reaching what is like an error floor at 2.9 dB SNR. While that of block length
N = 8000 uncoupled was better, we still can see it approached an error floor at
an SNR of 2dB. Also, we see that input block length of N = 8000 is better than
input block length of N = 1000 for the coupled results.

Figure 4.4 shows the performance of HCC ensembles of rate R = 1/3 with
input block length of N = 1000 and N = 8000, coupled and uncoupled for form-
II puncturing. With input block length of N = 1000 for SC-HCC, we can see
that we have approximately 0.8dB gain when comparing to HCC. However, this

“masters1” — 2017/1/23 — 22:45 — page 39 — #51

Results 39

Figure 4.3: HCC form-I uncoupled and coupled results

Figure 4.4: HCC form-II uncoupled and coupled results

“masters1” — 2017/1/23 — 22:45 — page 40 — #52

40 Results

gain is smaller when we compare that of input block length of N = 8000 which
is approximately 0.6dB. In both uncoupled and coupled cases of the form-I and
form-II, input block length of N = 8000 performs better than input block lengths
of N = 1000 for their respective configurations.

Figure 4.5: HCC form-I vs form-II uncoupled results

Figures 4.5 and 4.6 shows uncoupled simulations for form-I and form-II punc-
turing, and coupled simulations for form-I and form-II puncturing respectively.
While form-II performed better for uncoupled with input block length of N = 1000
and N = 8000 and also for coupled N = 1000, it was form-I puncturing which
is better for coupled N = 8000 with it’s water fall region having approximately
0.1dB gain as over form-II puncturing.

4.3 HCC uncoupled vs SCC uncoupled

In this section, we compare uncoupled HCC and SCC results presented in Sections
4.1 and 4.2.

In the Figure 4.7, the performance of HCC compared to SCC with input block
length N = 1000 is good and has a gain of almost 0.5dB. When we increase the

“masters1” — 2017/1/23 — 22:45 — page 41 — #53

Results 41

Figure 4.6: SC-HCC form-I vs form-II results

Figure 4.7: HCC form-II vs SCC results

“masters1” — 2017/1/23 — 22:45 — page 42 — #54

42 Results

input block length from N = 1000 to N = 8000 we can see a steeper slope with
better performance for both HCC and SCC. At low Eb/N0 HCC has better perfor-
mance than SCC.This shows that increase in the permutation size also increases
the performance.

4.4 Comparison between uncoupled parallel, serial, braided
and hybrid concatenated code

In the research work carried out previously at the department by Hector Moreno
and Ardiana Osmani, “Analysis of the finite length performance of spatially coupled
convolutional codes”, they investigated braided and parallel concatenated convo-
lutional codes. In this section, we compare, braided and parallel convolutional
codes[7] with hybrid and serially convolutional codes which we investigated in this
thesis.

The ensemble presented in Chapter 2, Sections 2.3 and 2.4 correspond to PCC
as seen in Figure 2.8. For PCC two identical R = 1/2, 8-states component encoders

with generator matrix G = (1
1 +D2 +D3

1 +D2 +D3
) are used. The ensemble presented

in Chapter 3, Section 3.3.1 correspond to BCC. For BCC, two identical R = 2/3,
4-states, component encoders with generator matrix as shown in Example 2.3 in
[7] are used. Both PCC and BCC are simulated for input block length N = 1000
and N = 8000. Iterative decoding with the BCJR algorithm with I = 100 iter-
ations were used. Result plots for SC-PCC, PCC, SC-BCC and BCC are taking
from reference [9], research by Hector Moreno and Ardiana Osmani, “Analysis of
the finite length performance of spatially coupled convolutional codes”.

In Figure 4.8 both for PCC and HCC form-I we can observe some error floor,
only we can see that PCC has a steeper slope in the waterfall region, and was
initially better than the other ensembles. HCC form-II was the second best of all
the ensembles as in this comparison, in terms of the waterfall region. We do not
observe any error floor and it also crosses the error floor of PCC. We can see, from
this observation, HCC form-II will perform better than PCC at some point.

In Figure 4.8 and Figure 4.9, we could see PCC had a good waterfall region
but we could also observe the error floor. Notice HCC form-II is the second best
performing ensemble in waterfall region when comparing with other ensembles for
both cases of input block length N = 1000 and N = 8000. HCC form-I still
performs worse when comparing the waterfall region with the other ensembles.
However, we can observe a steeper waterfall region for input block length N =
8000.

“masters1” — 2017/1/23 — 22:45 — page 43 — #55

Results 43

Figure 4.8: HCC(form-I and form-II), BCC, SCC and PCC results
for input blcok length N=1000

4.5 Comparison between coupled parallel, serial, braided
and hybrid concatenated code

In this section we compare performance of spatially coupled parallel, serially, hy-
brid and braided concatenated convolutional codes. A coupling length of L = 100
is considered. Sliding window with different decoding iterations are used. Sliding
window of w = 5, 6, 10 with iteration I = 10 each were used but for our compar-
ison we take the simulated results of window size w = 10 for input block length
N = 1000 and window size w = 5 for input block length N = 8000.

“masters1” — 2017/1/23 — 22:45 — page 44 — #56

44 Results

Figure 4.9: HCC(form-I and form-II), BCC, SCC and PCC results
for input block length N=8000

Figure 4.10: SC-HCC(form-I and form-II), SC-BCC, SC-SCC and
SC-PCC results for input block length N=1000

“masters1” — 2017/1/23 — 22:45 — page 45 — #57

Results 45

In Figure 4.10, we observe that for SC-PCC, while we initially had a steep
waterfall region, at the point where the SNR is equal to 0.2dB we started expe-
riencing an error floor. Notice that this is not the case for the other ensembles.
Apart from the good initial performance of the SC-PCC, SC-BCC outperforms
the other ensembles as it had a steeper waterfall region compared to the others.
We can also observe that performance of SC-HCC form-II and SC-SCC is almost
similar.

Figure 4.11: SC-HCC(form-I and form-II), SC-BCC, SC-SCC and
SC-PCC results for input block length N=8000

In Figure 4.11, we observe that SC-BCC was the best of all comparison wise
because it has a steeper waterfall region. After SC-BCC, we can also see that
SC-SCC gets slightly steeper than SC-PCC. While SC-HCC (form-I and form-II)
were slightly worse off.

“masters1” — 2017/1/23 — 22:45 — page 46 — #58

46 Results

“masters1” — 2017/1/23 — 22:45 — page 47 — #59

Chapter 5
Conclusions

In this chapter, we present our observations in this thesis. We also discuss the
differences or similarities in the different code ensembles which we investigated.
The main codes ensembles which we investigated are namely: hybrid concate-
nated codes with and without spatial coupling and serially concatenated codes,
also with and without spatial coupling. We had also compared some of our results
with results from previous research work on braided convolutional code and paral-
lel concatenated code ensemble, both of which having a spatially coupled form as
well as their uncoupled forms. Of all the results presented in the results chapter,
there are some notable observations which are the following;

For the uncoupled code ensembles;

• The longer the permutation size of the code, the better the code becomes
until it reaches a saturation level

• When comparing puncturing forms in HCC which were investigated, form-
I gives a low performance more than form-II in the uncoupled ensembles.
By this we can conclude that, definitely, the puncturing pattern also has
an effect on the performance of a code. The effects of different puncturing
forms on a code can be investigated further in the future. Compare result
of HCC uncoupled form-I and form-II in Figure 4.8

• The error floor in HCC uncoupled form-I indicates that the code has weak
distance properties

For the coupled code ensembles;

• The longer the permutation size of the code, the better the code becomes
until it reaches a saturation level.

• Coupling overall improves the code performance.

• In HCC, we have investigate two puncturing forms. While form-II was bet-
ter than form-I in all the uncoupled cases, this is not the case for the cou-
pled code ensembles. For the coupled ensembles, puncturing form-I became
better than puncturing form-II when we simulated for input block length
N = 8000, however, for the input block length of N = 1000, puncturing
form-II was better off than puncturing form-I. More investigation on this
behavior needs to be done. See the results in Figures 4.5 and 4.6.

47

“masters1” — 2017/1/23 — 22:45 — page 48 — #60

48 Conclusions

5.1 Future work

There is a lot left to investigate in this area of this master thesis. We have inves-
tigated two different permutation sizes, sizes of one thousand and eight thousand.
While we can observe that the longer the permutation size, the better the code
becomes, there can be further investigations as to the threshold when it comes to
the the permutation size.

For HCC, we have investigated two different puncturing forms. We can observe
in the results that the puncturing pattern of a code can affect the code perfor-
mance and it’s distance properties. Further investigation can be done as to find
a more efficient puncturing method which can be applied to a code to give better
results.

Additionally, we can also investigate more on coupling memory and how large
the coupling memory can be till we reach a threshold where it cannot improve the
code performance anymore. In our simulation, we only used a coupling memory
m = 1, and also used a window size of w = 5 for input block length N = 8000
and w = 10 for input block length N = 1000. More work needs to be done to find
an optimal window size for a given code ensemble which yields the most optimal
performance.

“masters1” — 2017/1/23 — 22:45 — page 49 — #61

References

[1] C. E. Shannon. A Mathematical Theory of Communications Bell Syst. Tech.
J., pp.379-423, July 1948.

[2] Daniel J.Costello Jr. Error Control Fundamental and Application Second edi-
tion Pearson Prentice Hall. 2004.

[3] Silvio A.Abrantes. From BCJR to turbo coding: MAP algorithms made eas-
ier. Information and Telecommunication Technology Center (ITTC) of the
University of Kansas, Lawrence, USA April 2004.

[4] Michael Lentmaier Lecture notes. Iterative Decoding of Concatenated
Codes,EDI042 Error Control Coding,p.63-67 2015/2016.

[5] Sergio Benedetto, Dariush Divsalar, Guido Montorsi and Fabrizio Pollara.
Serially Concatenation of Interleaved Codes: Performance Analysis, Design,
and Iterative Decoding IEEE Transactions on Information Theory, May 1998.

[6] S. Moloudi, M. Lentmaier, and A. Graell i Amat.Threshold Saturation for
Spatially Coupled Turbo-like Codes over the Binary Erasure Channel.

[7] S. Bendetto, D. Divsalar, G. Montorsi and F. Pollara. A soft-output Maximum
A Posteriori (MAP) Module to Decode Parallel and Serially Concatenated
Codes. TDA Progress Report p:1-20 November 1996.

[8] C. Berrou, A. Glavieux and P. Thitimajshima. Near Shannon Limit Error
Correcting Coding and Decoding:Turbo Codes. Proc. IEEE Intl. conf. Com-
mun(ICC 93), pp. 1064-70, Geneva, Switzerland, May 1993.

[9] Ardiana Osmani and Hector Moreno. Analysis of the finite length performance
of spatially coupled convoulutional codes. Master’s Thesis, Department of
Electrical and Information Technology Lund University November 19, 2015.

[10] S. Moloudi, M. Lentmaier, and A. Graell i Amat.Spatially Coupled Turbo
Codes.

[11] Johannesson R, and K.S. Zigangirov. Fundamentals of Convolutional coding
Wiley-IEEE Press, 1999.

[12] D. J. Costello, Jr. A construction technique for random error correcting con-
volutional codes IEEE Trans. on Inform. Theory, IT-19:631-636. Sep. 196

49

“masters1” — 2017/1/23 — 22:45 — page 50 — #62

50 References

[13] G. David Forney, JR. Concatenated codes. Department of Electrical Engineer-
ing, M.I.T, December 1, 1965.

[14] Eirik Rosnes and A. Graell i Amat. Performance Analysis of 3-D Turbo Codes.
6th June 2011.

[15] Ali Ghrayeb, Taher Abualrub. On Parallel and Serial Concatenated Convo-
lutional Codes over GF(4), IEEE ICCS p:327-331. 2002

[16] S. Bendetto, D. Divsalar, G. Montorsi and F. Pollara A Soft-Output Maxi-
mum A Posteriori (MAP) Module to Decode Parallel and Serial Concatenated
Codes, TDA Progress Report p:1-20. November 1996

[17] W. Zhang, M. Lentmaier, K. Zigangirov, and D. J. Costello Jnr. Braided
Convolutional Codes: A New Class of Turbo-Like Codes

[18] http://www.lunarc.lu.se/resources/hardware/aurora/

