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Abstract

The Black-Scholes model has been the fundamental framework for option pricing
since its publication 1973, but it is known to have shortcomings. To correct for
this, plenty of research in option pricing theory has been focused on calibrating
a stochastic process to match asset behavior in the financial markets better
than the geometric Brownian motion that Black-Scholes assume describe asset
behaviour justly. A model that has gained popularity in the industry is the
SABR volatility model.

In this thesis we develop a numerical option pricing algorithm using the
Hedged Monte Carlo method, for which we explore various modifications and
additions. Due to its numerical nature, it can be used to price options without
assuming a statistical process for the underlying asset. Instead, it estimates op-
tion prices based solely on historical data. We evaluate the algorithm with sim-
ulated data from the classic Black-Scholes framework and the SABR volatility
model to see that the price estimates from our algorithm matches the theoret-
ically correct values. Having validated the algorithm, we apply it on historical
FX spot data and obtain empirical volatility smiles that lie close to the smiles
observed in the current market.

Keywords: Monte Carlo option pricing, empirical volatility smile
JEL classification: G12
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Abbreviations and Glossary1

At-the-money
BS
Exotic
FX
GBM
Greek
HMC
In-the-money
Intrinsic value
LSM
ON
Out-of-the-money
Option delta (∆)
Option vega (ν)
SABR
Spot
Straddle
Strike
Vanilla
Volatility smile
Volatility surface

Option’s strike equals the forward price of the underlying asset
Black-Scholes framework for option pricing
A more complex contract than the standard contract
Foreign exchange (currency)
Geometric Brownian motion
Partial derivative of the option price, with respect to different factors
Hedged Monte Carlo
Option with intrinsic value greater than zero
Amount an option would pay if it expired today
Least Squares Monte Carlo
Overnight, tenor equivalent to 1 day
Option with zero intrinsic value
Price sensitivity with respect to the underlying asset’s price
Price sensitivity with respect to the underlying asset’s implied volatility
A stochastic process, short for ”Stochastic Alpha, Beta, Rho”
The current market price of a currency, commodity or security
A call option and a put option with the same strike price
The strike price of an option
A regular contract without additional features (antonym of exotic)
Implied volatility in BS parametrized by strike
Implied volatility in BS parametrized by strike and time to maturity

1Note that these explanations are valid in the context of this thesis and should not be used
as a reference in general.
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1 Introduction

1.1 Background

In the foreign exchange (FX) options market, vanilla call and put options are
frequently traded instruments. Vanilla contracts are priced in terms of implied
Black Scholes volatility. The implied Black Scholes volatility is parametrized by
time to maturity and strike to form a volatility surface.

The implied volatility at a specific maturity as a function of strike is referred
to as a volatility smile. Market makers use smiles when quoting prices of options.
Smiles for contracts with maturity of 1 week and above are quoted frequently,
and with small differences between the bid and ask prices. On such tenors,
market makers can be sure that they are in line with the market. Shorter
maturities are quoted less frequently, and with wider bid-ask spreads, making
it difficult to specify the implied volatility accurately for short maturities.

In this project we will develop a numerical method to obtain empirical smiles
implied from exchange rate dynamics. With that we hope to accurately estimate
volatility smiles for short maturities.

1.2 Purpose and contribution

The primary issue of option pricing is that the true option price is unknown. The
Black-Scholes model can used to price options but it rests on various statistical
assumptions about the underlying asset that do not necessarily hold. The goal
of this thesis is to develop an accurate numerical pricing algorithm that avoids
assuming a stochastic process followed by the underlying asset. Instead, we will
obtain empirical option prices and empirical volatility smiles from historical
asset prices. It can potentially help market makers quote prices of illiquid
options or be used in a trading strategy that take advantage of mispricing by
the market.

Option pricing and volatility smile modelling are by no means topics that
have not been researched before, rather the opposite, and the area has gotten
the attention of plenty of smart minds. On the other hand, many papers in
the area are written in a quite theoretical manner. We hope to contribute to
the field by concretizing and developing the implementation of ideas from other
authors. At the same time, we hope to be of practical help to Bank of America
Merrill Lynch in their research and trading of FX options.

1.3 Research questions

A major part of the thesis is devoted to the implementation of the Hedged
Monte Carlo (HMC) method developed by Bouchaud, Potters and Sestovic in
[1], which can be used to estimate option prices from historical spot data. From
estimated option prices for a range of strikes, one can find an implied volatility
smile. Furthermore, we will explore the usage of the smile expansion formula
developed by Bouchaud, Ciliberti, De Leo and Vargas and in [2]. Their formula
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gives a complete volatility smile from the prices of just a few exotic options,
which will explore the feasibility of pricing with the HMC method.

1.4 Results

Our results show the HMC method convergence faster than a simple Monte
Carlo method to correct prices in theoretical settings. We are also able to
produce realistic empirical smiles with little historical data, a promising sign
for our algorithm to be put into practical use. Moreover, the smile expansion
formula proves to be a viable addition, it greatly improves the computationally
efficiency of obtaining a complete volatility smile with numerical methods, but
our results show that it might come at the cost of lost accuracy.

1.5 Structure of the thesis

The remainder of the thesis is organized as follows. Section 2 gives the theo-
retical background of concepts that are used in the thesis. Section 3 presents
methods developed by other authors, which we will use to produce empirical
volatility smiles. Section 4 treats the choices we have made in our implemen-
tation of those methods. In section 5, we demonstrate and discuss our results.
Finally, section 6 wraps up the thesis with a conclusion. In an attempt to im-
prove the reading experience, some material is left for the appendix in section
7 and referenced to throughout the thesis.

2 Theory

This section describe theory that is used in option pricing and we will use to
validate our method, including Black-Scholes model, stochastic processes and
theoretical volatility smile characteristics.

2.1 Black-Scholes model

Black-Scholes (BS) formula was derived in [3], 1973. It has since then been the
most important framework for option pricing. In BS framework the price of a
vanilla call option is given by:

C(x0,K, r, T, σ) = x0N(d1)−Ke−rTN(d2) (1)

where N() is the Gaussian cumulative distribution function and

d1 =
1

σ
√
T

[ ln(
x0

K
) + (r +

σ2

2
)T ] d2 = d1 − σ

√
T , (2)
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x0 - underlying asset price at t = 0
K - strike price
r - continuously compounded risk-free interest rate
T - time to maturity
σ - volatility of the underlying asset

It is common to analyse how options prices change with respect to some of
the parameters above by taking partial derivatives of the option price. These
measurements are referred to as ’Greeks’ as they are denoted in Greek letters.
One Greek that will be used in this thesis is Delta (∆), measuring the price
sensitivity with respect to the price of the underlying asset, simply defined as
∆ = ∂C

∂x . In BS framework it is possible to find an explicit expression for ∆ by
taking the derivative of C and using the chain rule. For a call option this gives
(derived in [4]):

∆ =
∂C

∂x0
= N(d1) (3)

Another option Greek we will use is Vega (ν) which is not really the name of a
Greek letter but measures the price sensitivity with respect to the volatility of
the underlying asset. For a call option in BS, the Vega come out as (derived in
[4]):

ν =
∂C

∂σ
= x0N

′(d1)
√
T (4)

2.2 Wiener process

The Wiener process is a cornerstone for many other stochastic processes. A
variable Wt follows a Wiener process if the change of the variable, dWt, during
a small period of time dt is (e.g. see [4]):

dWt = ε
√
dt, ε ∼ N(0, 1) (5)

and dWt for two different intervals of time are independent.

2.3 Ito’s Lemma

Suppose that the asset price xt follows the Ito process:

dxt = a(xt, t)dt+ b(xt, t)dWt (6)

where Wt is a Wiener process, b(xt, t) and a(xt, t) are functions of xt and t.
Ito’s lemma shows that a function G of xt and t follows the process (e.g. see
[4]):

dG = (
∂G

∂xt
a(xt, t) +

∂G

∂t
+

1

2

∂2G

∂x2
t

b(xt, t)
2)dt+

∂G

∂xt
b(xt, t)dWt (7)
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2.4 Geometric Brownian motion

In BS model it is assumed that the underlying asset xt follows the Geometric
Brownian Motion (GBM), which means it satisfies the stochastic differential
equation (e.g. see [4]):

dxt = µxt dt+ σxt dWt (8)

where W follows a Wiener process. As shown in [4], a portfolio can be created
containing an option and a fraction of the underlying asset (that follows GBM)
such that all risks are eliminated. The value of the option will therefore be
independent of investors risk preferences and risk neutral pricing can be used,
where µ ≡ r.

2.5 SABR volatility model

An asset is said to follow the Stochastic alpha, beta, rho (SABR) volatility model
if the following the stochastic differential equations are satisfied (as presented
in [5]):

dFt = σtF
β
t dW

1
t

dσt = ασt dW
2
t

dW 1
t dW

2
t = ρdt

(9)

where W 1
t and W 2

t are (as can be seen) correlated Wiener processes and Ft is
the forward price of the asset with settlement at the maturity of the option,
observed at time t. The model is calibrated with the characteristic parameters
α, β and ρ. These are some interpretations of role that the parameters play in
the SABR (more details are given in [5] and [6]):

• 0 ≤ β ≤ 1: Controls the nature of the asset price distribution. The
extreme cases β = 0 and β = 1 leads to normally respectively log-normally
distributed asset price. The distributions resulting from values in between
0 and 1 do not have any known closed form probability distributions.

• −1 ≤ ρ ≤ 1 controls the correlation between increments in volatility (σ)
and forward price (Ft). Typically it takes a negative value when the model
is calibrated to match real data, implying that volatility tend to decrease
as the forward price increase and vice versa.

• α > 0 is the volatility of the volatility.

2.6 Volatility smiles

Volatility smiles for the BS model are flat since, according to the model, volatil-
ity should be independent of the strike and all other parameters. However,
volatility smiles observed in the financial markets are rarely flat, which high-
lights a flaw in the BS model. This motivates the interest in studying the
behavior of volatility smiles in the field of financial mathematics.
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Expressions has been derived for the SABR model to find implied BS volatil-
ity, volatility that can be plugged into the BS model to obtain prices that are
results of the asset following SABR instead of GBM. Oblój suggests in in [7]
that the Taylor expansion of first order for implied BS volatility in the SABR
model is (simplified for log-normally distributed asset prices, β = 1):

σBS(y) = I0(y)(1 + I1T ),

I0|β=1 = αy / ln
(√1− 2ρz + z2 + z − ρ

1− ρ

)
,

I1|β=1 =
1

4
ρασ0 +

2− 3ρ3

24
α2, where

y = ln(x0/K) and z = α ln(x0/K)/σ0

(10)

By plugging the parameter values into this formula, we get a theoretically correct
SABR smile. This smile can be compared to smile estimates from our algorithm
based on simulated data from SABR with the same parameters.

3 Method

The Hedged Monte Carlo (HMC) method play an important role in this thesis.
Before getting to the HMC method, it is natural to discuss the Least Squares
Monte Carlo (LSM) method. These methods have in common that they can
be used to price options based solely on historical observations of the under-
lying asset and they are flexible enough to price some exotic options, such as
American options and path-dependent options. Furthermore, we will explore
the possibility of combining the HMC method with a smile expansion formula
developed by De Leo, Vargas, Ciliberti, and Bouchaud in [2]. Their formula
allows one to find the implied BS volatility for any strike, given the prices of a
few exotic options. Although at least one these options are rare or even not ex-
isting in the markets, the HMC method is flexible enough to price them. Thus,
the HMC method together with the smile expansion formula can potentially
produce a complete volatility smile by just pricing a few exotic options.

3.1 Input data

We will begin by describing the data (and the notation of it) that is input for the
Monte Carlo option pricing methods presented in this thesis. The data consists
of a set of time series containing observations of the underlying asset. Every
time series should contain equally many observations and each time series should
be observed over time span that matches the time to maturity of the option one
attempts to price.

Let xl,k denote the price of the underlying asset in the l:th time series at
time k. To match the time to maturity of the option, denoted T , each time
series xl,0,xl,1,. . . ,xl,n should be such that the time between the first(xl,0) and
last(xl,n) observation is T . Additionally, the frequency of the data should be
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consistent so that the time between two following observations xl,k and xl,k+1

is ∆t = T
n .

x0,0 x0,1 . . . x0,n

x1,0 x1,1 . . . x1,n

...
...

. . .
...

xm,0 xm,1 . . . xm,n

(11)

A data set with m+ 1 data series containing n+ 1 data points each.

Figure 1: Example of time series. Illustation of 5 time series (m = 4)
containing 101 data points each (n = 100).

A key advantage of the Monte Carlo methods is that the behaviour of the un-
derlying asset is fully described by this data set, meaning one can use historical
spot data and avoid any model assumption. However, the ’true’ price of a call
or put option, that we aspire to obtain, is unknown. On the other hand, if an
underlying asset follows the GBM, the exact price is known from BS formula.
We will use this fact to evaluate the Monte Carlo methods. By simulating asset
data from the GBM and applying the Monte Carlo methods, we can compare
the results to the BS price to analyse the accuracy. We will also evaluate the
methods with respect to another stochastic volatility model, the SABR volatility
model.

We will investigate how the number of time series (m+ 1) and the number
of observations per time series (n+ 1) affect the price estimate. In addition to
the data set defined above, continuously compounded risk-free interest rate (r),
the maturity (T ) and the strike (K) of the option are needed to obtain price
estimates with the Monte Carlo methods.

3.2 Simulating GBM

To test the methods with BS formula, we need simulated data from the GBM.
Take the definition of the GBM for an asset xt from equation (8). In BS frame-
work, log-normality is assumed for asset prices. To work with log-normal asset
prices, set G(xt) = ln(xt) and use Ito’s lemma to get:

dG = (r − σ2

2
)dt+ σdWt (12)
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Figure 2: Evaluation scheme. Display of how the methods are evaluated
against BS model. The same evaluation scheme is used for SABR, but then

with a larger set of parameters.

Solving the equation for xt with discrete time steps ∆t gives:

ln(xt+∆t)− ln(xt) = (r − σ2

2
)∆t+ σε∆t ⇐⇒

⇐⇒ xt+∆t = xt exp

((
r − σ2

2

)
∆t+ σε∆t

)
(13)

where ε ∼ N(0, 1). It can be seen in equation (13) that ln(xt) is normally
distributed, so that xt has a lognormal distribution, and that one can simulate
data from the GBM by drawing ε from the Gaussian distribution for each time
step.

3.3 Simulating SABR

It is complicated to derive an exact simulation scheme for SABR. Chen, Ooster-
lee & Weide suggest a couple of approximate simulation schemes in [8]. We will
use the log-Euler scheme since it preserves positivity of the asset price process:

Ft+∆t = Ft exp

(
−σ

2
t

2
F 2β−2
t ∆t+ σtF

β−1
t εF∆t

)
σt+∆t = σt exp

(
−α

2

2
∆t+ αεσ∆t

)
where εF ∼ N(0, 1) and εσ ∼ N(0, 1) with Corr(εF , εσ) = ρ

(14)

We will be satisfied with a model where β = 1, with that we are able to use
equation (10) to get a theoretical volatility smile to benchmark against in our
model analysis and above all, to simplify the simulation of the data. Note that
this simplification will just affect the data the we use to evaluate our algorithm,
not the algorithm itself. If we also convert the forward price Ft into spot price
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xt (Ft+∆t/Ft = xt+∆te
−r∆t/xt) we have:

xt+∆t = xt exp

(
−σ

2
t

2
∆t+ σtεx∆t+ r∆t

)
σt+∆t = σt exp

(
−α

2

2
∆t+ αεσ∆t

) (15)

These expressions can be used to simulate an asset that follow the SABR model.
The scheme has a known flaw, it can become unstable with xt diverging to
infinity. One can adjust for this by simply re-simulating such data series. To
simulate the correlated εx and εσ. We draw independently:

ε ∼ N(0, 1) and εx ∼ N(0, 1) then set εσ = ρ · εx +
√

1− ρ2 · ε

This gives the desired properties:

E[εσ] = E[ρ · εx +
√

1− ρ2 · ε] = ρE[εx] +
√

1− ρ2E[ε] = ρ0 +
√

1− ρ20 = 0

V [εσ] = ρ2V [εx] + (1− ρ2)V [ε] = ρ2 + 1− ρ2 = 1

Corr[εx, εσ] = Corr[εx, ρ · εx +
√

1− ρ2 · ε] = ρ · Corr[εx, εx] = ρ

3.4 A simple Monte Carlo approach

Let C(xl,k) denote the option price at time k given the underlying asset price
xl,k. We will at times reduce the notation of the asset price from xl,k to xk if it
is a general expression that holds for any time series.

All Monte Carlo option pricing builds on the fact that given an asset time
series, the payoff and thereby the option price is known at maturity. The original
and simplest Monte Carlo approach for option pricing (from [9]) estimates the
expected payoff and discount it with the risk-free rate (since, as discussed earlier,
risk neutrality can be used for option valuation problems).

This is done by by calculating the payoff at maturity for each time series
to get C(xn). For example, for a call option with strike K, C(xn) =max

[
xn −

K , 0
]
. Then discount the average payoff to get the option price, Ĉ:

Ĉ = e−rT
1

m+ 1

m∑
l=0

C(xl,n) (16)

The accuracy of the HMC algorithm will be put in comparison to this estimation.
This simple Monte Carlo approach should in theory give correct results but it
requires very many time series to produce an accurate estimate, which we will
see later. Since historical data is limited and it is desirable to use as recent
data as possible, the data demands of this method make it of little practical
use, which is why it is desirable to develop less demanding and more accurate
methods.
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3.5 Least Squares Monte Carlo (LSM)

While one can find a hedging strategy that eliminates risk entirely in the BS
framework, for many other stochastic models of asset fluctuations risk in option
trading cannot be eliminated and strict arbitrage opportunities do not exist. It
is therefore desirable to have a method to compute the option price, hedging
strategy and residual risk for any underlying stochastic process. By choosing
an optimal trading strategy such that the chosen measure of risk is minimized,
an estimate of the option price is obtained using a fair game argument.

One framework using this approach is the ”Least Squares Monte Carlo
(LSM)” developed by Longstaff and Schwartz in [10], it lays the ground for
the HMC method that we will get to later. Let ∆t denote the time difference
between two steps (observations of the underlying asset price). Define the price
of an option with respect to the price of the underlying asset xk at time k ·∆t,
as C(xk). The LSM algorithm works back in time from maturity, where the
option price, C(xn), is known from the payoff (e.g for a call option C(xn) =
max

[
xn−K , 0

]
). The option price, Ĉ = C(x0), can be estimated by minimizing

residual risk at defined as:

R = (C(xn)e−rT − C(x0))2 (17)

with respect to C(x0). As touched upon earlier, the option can in theory be
replicated in a way to eliminate all risks. As a consequence, risk neutral pricing
can be used where (according to [4]) any investment is expected to appreciate
with the risk free rate, r:

E
[
C(xn)

]
= C(x0)erT

⇐⇒ E
[
C(xn)e−rT − C(x0)

]
= 0

(18)

As we can see, the defined risk measure R cannot be negative and it should
in theory be zero. It therefore makes sense to find option prices such that
R is minimized. Since the asset price can make big jumps over the complete
lifespan of the option, the risk can be reduced further by minimization at several
points between the start date and maturity. This is done in an iterative manner
beginning at maturity, working backwards in time for k = n − 1, . . . , 0 and
minimizing the local residual risk at each step, defined as:

Rk = (C(xk+1)e−r∆t − C(xk))2, where ∆t =
T

n
(19)

with respect to C(xk). By reducing the total risk with many minimization steps,
the option price estimate, C(x0), will (at least in theory) be more accurate.

To solve the minimization problem at any given step, we express C(xk) as:

C(xk) =

M∑
i=0

bki fi(xk), (20)

where fi(xk) are basis functions depending on xk. This turns the minimization
problem into a linear one in terms of the coefficients bi. To minimize Rk, we
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pick b0, b1, . . . , bM so that C(xk) resembles C(xk+1)e−r∆t as closely as possible.
Denote the residuals C(xk+1)e−r∆t − C(xk) = εk. We will minimize the local
residual risk over all time series. As we can see, the problem has been turned
into a least squares optimization:

min

[
Rk

]
= min

[ m∑
l=1

(
C(xl,k+1)e−r∆t − C(xl,k)

)2
]

= min

[ m∑
l=1

(εl,k)2

]
(21)

which is solved by the regression:

C(xk+1)e−r∆t =

M∑
i=0

bki fi(xk) + ε (22)

This problem can be expressed in matrix form to solve it like a regular multiple
regression:

Yk = Xk
′Bk + ε

where Yk =


C(x0,k+1)e−r∆t

C(x1,k+1)e−r∆t

...
C(xm,k+1)e−r∆t

 Bk =


bk0
bk1
...
bkM



Xk =


f0(x0,k) f1(x0,k) . . . fM (x0,k)
f0(x1,k) f1(x1,k) . . . fM (x1,k)

...
...

. . .
...

f0(xm,k) f1(xm,k) . . . fM (xm,k)


for which the least squares estimate given by (as derived in [11]):

B̂k = (X′kXk)−1X′kYk (23)

This illustrates the necessity of many time series (0, 1, 2 . . . ,m), to accurately
estimate the regression parameters Bk. In general, the more time series available
the better.

With the estimated regression parameters B̂k, we predict the option prices
backwards:

C(xl,k) =

M∑
i=0

b̂ki fi(xl,k), l = 0 . . .m ⇐⇒

⇐⇒ Ĉk = X′kB̂k

(24)

We summarize the Least Squares Monte Carlo as follows:

1. Calculate the option payoffs at maturity (time n) to get
Ĉn = [C(x0,n), C(x1,n), . . . , C(xm,n)]′

Iterate the steps 2 to 5 for k = n− 1, n− 2, . . . , 0:
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2. Calculate Yk by discounting the option prices from step k + 1

3. Calculate Xk using the underlying asset prices from step k

4. Calculate the least squares estimate of Bk:

B̂k = (X′kXk)−1X′kYk (25)

5. Predict the option prices at step k with the regression model:

Ĉk = X′kB̂k (26)

6. Finally we arrive at Ĉ0 from which we estimate the initial option price:

Ĉ =
1

m+ 1

m∑
i=0

C(xi,0) (27)

3.6 Hedged Monte Carlo (HMC)

The HMC method builds on the LSM method. The difference is that a delta
hedge is introduced to improve the minimization of local residual risk:

Rk = (C(xk+1)e−r∆t − C(xk) + ∆(xk)[xk − xk+1e
−r∆t])2 (28)

This is solved in the same iterative manner as LSM, with a least-squares regres-
sion at each step:

C(xk+1)e−r∆t = C(xk)−∆(xk)[xk − xk+1e
−r∆t] + εk (29)

While this might not be a perfect hedging strategy, it can vastly reduce the
residual risk which hopefully results in more accurate option price estimates.
This introduces the problem of how to find ∆(xk)

(
in addition to finding C(xk)

)
.

We will discuss and compare different ways to approach this problem in our
implementation.

3.7 Volatiliy smile expansion

Next, we will combine the HMC method with the volatility expansion formula
derived in [2]. The HMC method can be used to produce volatility smiles
alone, but it is quite computationally demanding since it requires pricing of
a large number of options with different strikes and converting those prices
into implied BS volatility. Additionally, the HMC method estimates prices less
accurately for far out-of-the-money and far in-the-money options. These issues
could potentially be solved by the smile expansion, which gives the implied
BS volatility for any strike from a few exotic at-the-money option prices. The
expansion formula for implied BS volatility is derived in [2] and reads as follows:

σBS(K) = σ(αT + βTM+ γTM2 +O(M3)), M =
K − x0

x0σ
√
T

(30)
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where σ is the real volatility of the underlying asset (which can be estimated
from the sample) and σBS is the implied BS volatility, used in BS formula to
obtain the market price. It is a ”smile expansion” since given the value of all
the other variables, one can choose K independently and obtain the implied BS
volatility corresponding to each strike. But before one can do this, the unknown
coefficients have to be found. They are given by the following expressions:

αT =

√
π

2
E[|uT |] βT =

√
π

2
[1− 2P (uT > 0)] γT =

√
π

2
pT (0)− 1

2αT
(31)

where uT = xT−x0

x0σ
√
T

. An important observation is that the coefficients can be

interpreted as the average payoff of some exotic at-the-money options, as ex-
plained in [2]:

– E[|uT |] = E[|xT − x0|] 1
x0σ
√
T

can be interpreted as the price of a regular

at-the-money straddle divided by x0σ
√
T , since

E[|xT − x0|] = E[max(xT − x0, 0) + max(x0 − xT , 0)] =

= E[max(xT − x0, 0)] + E[max(x0 − xT , 0)],
(32)

which is the expected payoffs from a call option and a put option with
strike prices K = x0 (i.e. at-the-money).

– P (uT > 0) can be interpreted as the price of an at-the-money binary call
option. To illustrate this, define a Bernoulli random variable, yT :

yT =

{
1 if xT > x0

0 otherwise

Using this, rewrite P (uT > 0) in the following way:

P (uT > 0) = P (xT > x0) = P (yT = 1) · 1 + P (yT = 0) · 0 = E[yT ] (33)

In words, that is the expected payoff from an option that pays off 1 if the
underlying asset price exceed its initial price at maturity and 0 otherwise,
i.e the expected payoff from an at-the-money binary call option.

– pT (0) is the value of uT ’s density function at 0. It can be interpreted
as the price of a ”No Move” option, an option that only pays off when
the underlying asset ends very close to its initial price. To illustrate this,
define a random variable, zT :

zT =

{
1
2τ if x0(1− τσ

√
T ) < xT < x0(1 + τσ

√
T )

0 otherwise
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where τ is a small positive number. Then use the midpoint approximation
(e.g. from [12]) and the following rewritings:

pT (0) · 2τ ≈ P (−τ < uT < τ) ⇐⇒

⇐⇒ pT (0) ≈ 1

2τ
P (−τ < uT < τ) =

=
1

2τ
P
(
− τ < xT − x0

x0σ
√
T
< τ

)
=

=
1

2τ
P
(
x0(1− τσ

√
T ) < xT < x0(1 + τσ

√
T )
)

= E[zT ]

(34)

which is the expected payoff from a ”No Move” option that pays off 1
2τ

when the underlying asset ends in the interval [x0(1 − τσ
√
T ), x0(1 +

τσ
√
T )]. Since τ is a small positive number, the term τσ

√
T will also be

small and positive, and the interval will be narrow (hence the term ”No
Move”). The approximation will be accurate when τ → 0. The problem
of picking a sufficiently small τ will be discussed in greater detail later on.

Using these interpretations, one can price the suggested options with the HMC
method, obtain the coefficients and make use of the smile expansion formula.

4 Implementation

This section describes the implementation and development of the methods
presented in the previous section, and the choices we have made in that process.

4.1 LSM implementation

To begin with, one have to pick the basis functions fi(xk) used to express:

C(xk) =

M∑
i=0

bki fi(xk), (35)

For example, we would obtain a linear model if M = 1, f0(xk) = 1 and f1(xk) =
xk. However, option prices are solutions to a diffusion equation. As such, they
are very smooth functions in xk. By using the following piecewise quadratic
polynomials as basis functions, we ensure a smooth and continuous option price
curve C(xk):

f0(xk) = 1

f1(xk) = xk

f2(xk) = x2
k

fs(xk) = (xk − ξs−3)2
+ for s = 3, . . . ,M

(36)
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where (z)+ =

{
0 if z < 0

z if z ≥ 0

The numbers ξs are usually referred to as ”knots”. It can be shown that the
basis functions are independent, we refer to section 7.1 in the Appendix for the
proof. It is clear that the first three basis functions make a quadratic polynomial
which is smooth. To illustrate that the definition of the basis functions with
knots ensures smoothness, let ξ0 < ξ1 < . . . < ξM−3 and take the limits:

lim
xk→ξ−i

C(xk) = bk0 + bk1ξi + bk2ξ
2
i + bk3(ξi − ξ0)2

+ + . . .+ bki+2(ξi − ξi−1)2
+

lim
xk→ξ+i

C(xk) = bk0 + bk1ξi + bk2ξ
2
i + bk3(ξi − ξ0)2

++

+ . . .+ bki+2(ξi − ξi−1)2
+ + bki+3(ξi − ξi)2

+ = lim
xk→ξ−i

C(xk)

(37)

4.2 HMC implementation

The basis functions suggested for LSM in section 4.1 can be used for HMC
as well. There are at least three plausible ways of picking the hedge ∆ (as
suggested in [1, 13]), which we will refer to as different versions of HMC:

1. Regular HMC: Express ∆(xk) with its own set of basis functions:

∆(xk) =

M∑
i=0

aki gi(xk) (38)

This complicates the regressions, compared to LSM, as more parameters
have to be estimated.

2. Option derivative HMC: Set ∆(xk) as the derivative of the option
price:

ai = bi and gi(x) =
dfi(x)

dx
(39)

This will lead to exact results only for Gaussian processes (according to
[2]), but by not using an independent set of basis functions it will re-
duce the computational cost of the ”Regular HMC”. Without additional
parameters the regression matrices will be of the same sizes as in LSM.

3. BS-delta HMC: Set ∆(xk) to the BS-delta, e.g. in the case of a call
option ∆(xk) = N(d1). This delta is just an approximation, as we do not
assume that the BS model necessarily is correct. However, this version
further simplifies the regressions and ensures a smooth hedge curve, as
the BS delta is a smooth function with respect to K. To calculate the BS
delta (∆) one have to guess σ based on the sample.

We will now go into the details of implementing each of these alternatives.
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4.2.1 Regular HMC

We want to include the condition defined above in equation (38) in a matrix
system for the HMC regression in equation (29). As the left hand side is identical
to the one in LSM we will keep:

Yk = XkBk + ε where Yk =


C(x0,k+1)e−r∆t

C(x1,k+1)e−r∆t

...
C(xm,k+1)e−r∆t


We find no reason to change the formulation of basis functions to express

C(xk). We have found it reasonable to use 8 knots, but using slightly more or
less should not have a major impact on the results. There is no number that
can be shown to be optimal in general and an attempt to optimize the number
would probably just be over-fitting to the sample. However, we argue that using
just 1 or 2 knots would give a jagged curve which would not be ideal and 100
knots would result in very large matrices but not necessarily improve the results
significantly.

Since delta is defined as the derivative of the option (with respect to the
underlying asset price) and we used a quadratic spline (degree 2) to interpolate
the option, we will use a linear spline (degree 1) to interpolate the hedge:

g0(xk) = 1

g1(xk) = xk

gs(xk) = (xk − ξs−2)+ for s = 2, . . . , 9

(40)

where (z)+ =

{
0 if z < 0

z if z ≥ 0

The basis functions we have defined for 8 knots gives us:

C(xk) =

10∑
i=0

bki fi(xk) and ∆(xk) =

9∑
i=0

aki gi(xk)

We remind the reader that each hedge adjustment (∆) is multiplied by [xk −
xk+1e

−r∆t]. Denote sk = xk+1e
−r∆t. We also remind of the data notation

presented in section 3.1; xl,k describes the price of the underlying asset in the
l:th time series at time k. The right hand side of the regression model,

C(xk+1)e−r∆t = C(xk)−∆(xk)[xk − xk+1e
−r∆t] + εk, (41)

becomes:

C(xk)−∆(xk)[xk − sk] + εk =

=

10∑
i=0

bki fi(xk) +

( 9∑
i=0

aki gi(xk)

)
[sk − xk] + εk

(42)
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To perform the regression, this will be expressed in matrix form with all of the
time series:

C(xk)−∆(xk)[xk − sk] + ε = Xk,1Bk,1 + Xk,2Bk,2 = XkBk + εk (43)

Xk =
[
Xk,1 Xk,2

]
Bk =

[
Bk,1

Bk,2

]
, where

Bk,1 =


bk0
bk1
...
bk10

 Bk,2 =


ak0
ak1
...
ak9

 Xk,1 =


1 x0,k x2

0,k (x0,k − ξ0)2 . . . (x0,k − ξ7)2

1 x1,k x2
1,k (x1,k − ξ0)2 . . . (x1,k − ξ7)2

...
...

...
...

...
1 xm,k x2

m,k (xm,k − ξ0)2 . . . (xm,k − ξ7)2



Xk,2 =


(s0,k − x0,k) x0,k(s0,k − x0,k) (x0,k − ξ0)+(s0,k − x0,k) . . . (x0,k − ξ7)+(s0,k − x0,k)
(s1,k − x1,k) x1,k(s1,k − x1,k) (x1,k − ξ0)+(s1,k − x1,k) . . . (x1,k − ξ7)+(s1,k − x1,k)

...
...

...
...

(sm,k − xm,k) xm,k(sm,k − xm,k) (xm,k − ξ0)+(sm,k − xm,k) . . . (xm,k − ξ7)+(sm,k − xm,k)



4.2.2 Option derivative HMC

The simplifications presented in equation (39) turns the basis functions for the
hedge into:

g0(xk) =
d

dxk
(1) = 0

g1(xk) =
d

dxk
(xk) = 1

g2(xk) =
d

dxk
(x2
k) = 2xk

gs(xk) =
d

dx
((xk − ξs−3)2) = 2(xk − ξs−3)+ for s = 3, . . . , 10

and ak = bk for all k = 0, . . . , 10

(44)
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With the redefined basis functions g, the right hand side of the regression model
becomes

C(xk)−∆(xk)[xk − sk] + εk =

=

10∑
i=0

bki fi(xk)−
( 10∑
i=0

bki gi(xk)

)
[xk − sk] + εk =

=

10∑
i=0

bki

(
fi(xk)− gi(xk)[xk − sk]

)
+ εk =

= bk0

(
1− 0

)
+ bk1

(
xk − (xk − sk)

)
+ bk2

(
x2
k − 2xk(xk − sk)

)
+

+ bk3

(
(xk − ξ0)2

+ − 2(xk − ξ0)+(xk − sk)
)

+ . . .+

+ bk10

(
(xk − ξ7)2

+ − 2(xk − ξ7)+(xk − sk)
)

+ εk =

= bk0 + bk1sk + bk2(2sk − xk)xk + b3(xk − ξ0)+(2sk − xk − ξ0) + . . .

. . .+ b10(xk − ξ7)+(2sk − xk − ξ7) + εk

Just as in section 4.2.1 this is expressed in matrix form for all time series to
perform the regression.

C(xk)−∆(xk)[xk − sk] + εk = XkBk + εk , Bk =


bk0
bk1
...
bk10


Xk =


1 s0,k (2s0,k − x0,k)x0,k (x0,k − ξ0)+(2s0,k − x0,k − ξ0) . . . (x0,k − ξ7)+(2s0,k − x0,k − ξ7)
1 s1,k (2s1,k − x1,k)x1,k (x1,k − ξ0)+(2s1,k − x1,k − ξ0) . . . (x1,k − ξ7)+(2s1,k − x1,k − ξ7)
...

...
...

...
...

1 sm,k (2sm,k − xm,k)x1,k (xm,k − ξ0)+(2sm,k − xm,k − ξ0) . . . (xm,k − ξ7)+(2sm,k − xm,k − ξ7)



4.2.3 BS-delta HMC

By using BS-delta the regression becomes even more simple, as the hedge ad-
justment becomes known. Without any parameters (ai or bi) being used to
express the hedge, we include the hedge in the known Yk:

Yk =


C(x0,k+1)e−r∆t −∆(x0,k)(s0,k − x0,k)
C(x1,k+1)e−r∆t −∆(x1,k)(s1,k − x1,k)

...
C(xm,k+1)e−r∆t −∆(xm,k)(sm,k − xm,k)


Bk and Xk become identical to the regression matrices for LSM:

Bk =


bk0
bk1
...
bk10

 and Xk =


1 x0,k x2

0,k (x0,k − ξ0)2 . . . (x0,k − ξ7)2

1 x1,k x2
1,k (x1,k − ξ0)2 . . . (x1,k − ξ7)2

...
...

...
...

...
1 xm,k x2

m,k (xm,k − ξ0)2 . . . (xm,k − ξ7)2
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4.2.4 Knots

We have until now only mentioned that 8 knots [ξ0, ξ1, . . . , ξ7] are used, but
not their values. When regressing with a piecewise polynomial these knots
determine the points at which the polynomial is allow to change shape. Our
polynomials should approximate the option price as a function of the underlying
asset and the hedge as a function of underlying asset as good as possible. The
knots should therefore ideally be spread out over the data interval with larger
density where the curvatures change.

There are two other things to consider; First, we want a method that is
flexible and can price a wide range of assets, which means the knots has to be
suitable for vastly different data. Second, it is desirable that the knots change
with time, as the distribution of time series is likely to change at each time
step. Thus, the knots cannot be defined with a fixed value but should rather be
defined relative to the asset prices at a given step.

Apart from above mentioned points, we rely on intuition for the placement of
nodes. Since the option payoff typically change at the strike price, it is natural
to pick one of the nodes equal to the strike, ξ0 = K. Our intuition tells us it
should be a good idea to pick the remaining points spread over the interval of
asset prices. We find the knots well suited for most regressions if we pick the
remaining ξ’s in the following in way. Let x̄t denote underlying asset prices of
all time series at time t, x̄t = [x0,t, x1,t, . . . , xm,t]

ξ1 = 0.10 ·max[x̄t] + (1− 0.10) ·min[x̄t]

ξ2 = 0.30 ·max[x̄t] + (1− 0.30) ·min[x̄t]

ξ3 = 0.45 ·max[x̄t] + (1− 0.45) ·min[x̄t]

ξ4 = 0.50 ·max[x̄t] + (1− 0.50) ·min[x̄t]

ξ5 = 0.55 ·max[x̄t] + (1− 0.55) ·min[x̄t]

ξ6 = 0.70 ·max[x̄t] + (1− 0.70) ·min[x̄t]

ξ7 = 0.90 ·max[x̄t] + (1− 0.90) ·min[x̄t]

(45)

We could have distributed the knots more evenly but it will be useful with larger
density of knots in the middle of the interval to price at-the-money options.

4.2.5 Extrapolated points

The price and perfect hedge are easy to estimate for an option that is very far
into-the-money or out-of-the-money and we will use this fact to further improve
the regression. Take a call option as example (the methodology can easily be
modified for put or other options); if the underlying asset’s price x > 4K, the
call price is very close to the intrinsic value C = [x−K], since it is very unlikely
that the option will become out-of-the-money. As a consequence of this, the

hedge becomes ∆ = dC
dx = d(x−K)

dx = 1. Similarly for a call option, if the
underlying asset is well below the strike price say: x < 0.25K, one can be fairly
certain the option will expire out-of-the-money and therefore C = 0 with ∆ = 0.
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Adding a few artificial observations of options (C(xl,k)) far in-the-money and
out-of-the-money, with corresponding hedge (∆(xl,k)) and underlying asset price
(xl,k), will help constrain the regression, forcing the option-asset and hedge-asset
curves into this known behaviour far from the strike price.

4.2.6 Final step

A short note on the final step of iterations in the HMC algorithm. Complications
arise for regressions at k = 0 if the time series are such that the asset price at
time 0 is the same for all time series. All x0 taking the same value makes
the matrix X ′0X0 singular and we are thereby unable to find the least-squares
solution B̂0 = (X′0X0)−1X′0Y0. This can be solved simply, without a great loss
of accuracy, by ending the iteration at k = 1 and using the simple MC for the

final step Ĉ = e−r∆t 1
m+1

m∑
i=0

Ĉ(xi,1)

4.2.7 HMC algorithm

We summarize the steps in the HMC algorithm, which look much like LSM
algorithm but with the few adjustments mentioned above:

1. Calculate the option payoffs at maturity to get
Ĉn = [C(x0,n), C(x1,n), . . . , C(xm,n)]

Iterate the steps 2 to 5 for k = n− 1, n− 2, . . . , 1:

2. Calculate Yk, as defined above for the chosen version.

3. Calculate Xk, as defined above for the chosen version.

4. Calculate the least squares estimate of Bk:

B̂k = (X′kXk)−1X′kYk (46)

5. Predict the option prices at step k with the regression model:

Ĉk = X′kB̂k (47)

6. Finally we arrive at Ĉ1 from which we estimate the initial option price:

Ĉ = e−r∆t
1

m+ 1

m∑
i=0

C(xi,1) (48)
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Figure 3: Call and hedge functions. Illustrations of a call price C(xk)
and the hedge ∆(xk) at different steps in the algorithm. The call option is

at-the-money with x0=100. The crosses in the upper pictures represent
realised call prices (Ĉk) from equation (47) and the crosses in the lower

pictures are realised ∆’s from the regression. The plots on the left side come
from the ”BS-delta HMC” and right side from the ”Option derivative HMC”.

4.2.8 Extract volatility

The HMC method is used to obtain option prices but the goal of the thesis is
to produce volatility smiles, which is the market standard for quoting option
prices. It is a one-dimensional optimization problem to go from option price to
implied BS volatility. BS formula behave nicely so the Newton method (e.g. see
[14]) can be used to estimate the implied BS volatility with fast convergence.
Define the function we will try to find a root for as:

f(σ) = C(x0,K, r, T, σ)− Ĉ, (49)

where Ĉ is the estimated option price from HMC and C(x0,K, r, T, σ) is the op-
tion price given by Black & Scholes formula. We begin by guessing the volatility
σ0. The standard deviation of the sample data would be a good guess, but it is
probably more computationally efficient to just pick some other arbitrary value
in the interval [0,1]. Starting with at k = 0, iterate the Newton method:

σk+1 = σk −
f(σk)

f ′(σk)
(50)

until f(σk) is sufficiently close to 0 (depending on desired accuracy). We observe
that f ′(σk) = dC

dσ which corresponds to the Greek Vega. Vega has a closed-form
expression for many options in the BS framework. The price and the Vega of a
European Call option under the BS framework was presented in section 2.1.

4.3 Implementation of the smile expansion

To obtain the prices of the exotic options needed to use the smile expansion is
not trivial. Our attempt to do this as accurately as possible is discussed in the
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sections to follow.

4.3.1 ”No Move” option pricing

An issue arise when pricing the ”No Move” option since the probability that
the underlying asset end up at the same value as it started is essentially 0
and the density function is unknown. We can, as mentioned earlier, use the
approximation:

pT (0) ≈ P (−τ + u0 < uT < u0 + τ)
1

2τ
(51)

where τ is a small positive but finite number. With this pT (0) can be found by
pricing an option with the payoff function:

”No Move” payoff1(uT ) =

{
1
2τ if − τ + u0 < uT < u0 + τ

0 otherwise
(52)

To pick τ one has to carefully extrapolate the results to τ = 0. The disadvantage
of this approximation is that in a Monte Carlo simulation the option price will
come down to the few number of time series that end in the defined interval.
This will likely result in a large variation in price from simulation to simulation.
We will evaluate if the variation can be reduced by using another, smoother
payoff function:

”No Move” payoff2(uT ) = exp(−u2
T /2δ

2)/
√

2πδ2, (53)

which is a Gaussian function and δ is a small positive value. One have to find a
suitable δ, that does not reduce the accuracy of the price estimate but reduces
the variance of our estimates, compared to payoff1. The idea is that payoff2 has
tails which makes more time series contribute to the option price with smaller
payoffs, see figure 4. The price will therefore depend less on the asset ending
up in a tight interval.

4.3.2 Binary option pricing

The binary call option has the payoff function:

Binary payoff1(uT ) =

{
1 if uT > 0 ⇐⇒ xT > x0

0 otherwise
(54)

Although not as necessary as for the ”No Move” option, we might be able to
reduce the variance of the binary option estimates by smoothing out its payoff
function. An alternative is to use:

Binary payoff2(uT ) =
1

1 + e−uT k
(55)

where k is some large number to be calibrated. The idea is the same as for the
”No Move” option, the alternative payoff function will result in more time series
making smaller contributions.
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Figure 4: ”No move” payoff functions. Illustation of the two payoff
functions (52) and (53) for a ”No Move” option. The stars are simulated time

series that resulted in positive payoffs.

Figure 5: Binary call payoff functions. Illustration of the two payoff
functions (54) and (55) for a Binary call option. The stars are simulated time
series that resulted in positive payoff.
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4.3.3 Theoretical BS smile

According to BS model, the volatility should be independent of all other factors.
Thus, if BS assumptions hold, the volatility smile expansion from equation (30)
is simplified to:

σBS(K) = σ (56)

This implies that the parameters and their corresponding exotic option prices,
if calculated correctly, should take the following values:

αT = 1 ⇐⇒
√
π

2
E[|uT |] = 1 ⇐⇒ E[|uT |] =

√
2

π

βT = 0 ⇐⇒
√
π

2
[1− 2P (uT > 0)] = 0 ⇐⇒ P (uT > 0) =

1

2

γT = 0 ⇐⇒
√
π

2
pT (0)− 1

2αT
= 0 ⇐⇒ pT (0) =

√
1

2π

(57)

This will come handy when calibrating and testing the smile expansion with
data from the GBM.

5 Results

In this section we will test the HMC method’s ability to price options and
compare the results of the different versions of it. We will also test our imple-
mentation of the smile expansion formula and investigate whether it is viable
to use in combination with the HMC.

5.1 Accuracy of the HMC methods

The HMC methods are evaluated by pricing assets simulated from the GBM
and SABR. The HMC price estimates will be compared to estimates from the
simple Monte Carlo approach from section 3.4 and the theoretically correct
prices, in line with the evaluation scheme illustrated in figure 2. We will in this
section keep the properties seen in table 1 fixed and vary the number of time
series and the intervals between the data points in each time series. Shorter
intervals between the data points (more steps) in each time series will allow
more frequent hedging which could result in higher accuracy. More time series
should intuitively give more information which in turn improves the final price
estimates.

The following statistics are based on 1000 call option price estimates. The
distributions of prices can be seen in the appendix, section 7.2. We are running
the methods repeatedly with relatively little data. In the case of our BS data,
it appears as if the expected value produced by the HMC methods undershoot
the theoretically correct price, although it gets better with more time series.
When the asset is simulated from SABR, the variance of the estimates increase
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Table 1: Option and simulated asset properties

Property Notation Value
Initial asset price x0 10
Strike K 10
Interest rate r 0.05
Time (year) T 1
Volatility σ 0.3
Alpha (SABR) α 0.5
Rho (SABR) ρ 0.2
Beta (SABR) β 1

Table 2: Monte Carlo pricing using BS data. Summary of price statistics.

BS data 250 series, 10 steps 1000 series, 10 steps 250 series, 40 steps
Model Mean SD Mean SD Mean SD
HMC (Regular) 1.3979 0.0476 1.4164 0.0229 1.3842 0.0775
HMC (Option derivative) 1.4089 0.0455 1.4181 0.0229 1.4099 0.0152
HMC (BS-delta) 1.4227 0.0452 1.4219 0.0226 1.4171 0.0138
Simple MC 1.4234 0.1447 1.4201 0.0751 - -
Theoretical price 1.4231 - 1.4231 - 1.4231 -

Table 3: Monte Carlo pricing using SABR data. Summary of price statistics.

SABR data 250 series, 10 steps 1000 series, 10 steps 250 series, 100 steps
Model Mean SD Mean SD Mean SD
HMC (Regular) 1.4207 0.2973 1.4471 0.2477 0.6699 44.2577
HMC (Option derivative) 1.4349 0.2399 1.4435 0.0265 1.3189 0.3926
HMC (BS-delta) 1.4471 0.0542 1.4461 0.0266 1.3479 0.0502
Simple MC 1.4431 0.1758 1.4513 0.0923 - -
Theoretical price 1.4455 - 1.4455 - 1.4455 -
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but the methods still do a good job generally. We will continue by commenting
on each of the methods individually.

The ”Regular HMC” works decently for our BS data although its mean is
furthest from the theoretically correct value out of the different version. It has
a tendency to become unstable for our SABR data. The SABR histogram looks
decent but outliers (extremely high or negative option prices) distort the mean
and the standard deviation. As we have seen earlier, the regression matrices of
”Regular HMC” are very large. The inversion of these matrices can produce
abnormal results if the sample data is small, the same effect is seen for ”Option
derivative HMC”. The anomaly also seem more pronounced for 100 hedge
steps than 10 hedge steps. Many elements in one of the regression matrices
of ”Regular HMC” contains the term [xk+1 − xk]. As the step size decrease,
this term becomes smaller. Meanwhile other elements in the matrix, such as
xk, are not affected sizewise. The large differences in size between elements, in
combination with many iterations, makes the algorithm prone to errors. This
is an argument in favour of using a simplified HMC, in addition to the aspect
of computational efficiency.

The instability issue appears for ”Option derivative HMC” as well but it
less sensitive since it uses with smaller matrices. Generally, ”Option derivative
HMC” seems to work well.

The ”BS-delta HMC” appears to perform best among the HMC methods for
BS data, which could be suspected, its hedge is theoretically perfect for such
data. It also performs very well on SABR data and there are no apparent issues
with instability.

The simple MC’s mean values are generally close to the true price but have
high variance. This is made especially clear in the histograms in the appendix,
section 7.2. In all cases where the HMC methods are stable, they have signifi-
cantly smaller variance than the simple MC.

A general conclusion we can make is that more time series improves the
estimates in all cases, as expected. The consequence of more hedge steps is
more unclear, it does not necessarily improve the accuracy of the estimates since
it can cause instability. On the other hand, when more steps does not cause
instability, as for the ”BS-delta HMC”, it appears as if standard deviation is
reduced but the mean estimate is further from the correct value.

In the following sections we are going to examine the HMC algorithm’s
ability to produce volatility smiles, which involves pricing options for a range
of strikes, unlike the at-the-money tests in this section. Since increasing the
number time series seems to be the best way to increase the accuracy, we will
test the convergence by running the algorithm with larger amounts of data.

5.1.1 ”No Move” option pricing

Before producing volatility smiles with the smile expansion, we will evaluate
and calibrate the payoff functions from section 4.3.1 with prices from BS data.
For each payoff function and parameter value (δ or τ), we price 100 options and
compute the mean and standard deviation of our price estimates. The mean is
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to be compared with the theoretically correct value presented in section 4.3.3;
pT (0) =

√
1/2π ≈ 0.3989. The parameters should be extrapolated to zero for

the payoff to correspond to that of a ”No Move” option. However as the param-
eters approach 0, the probability that the asset will end in the defined interval
approaches 0. As a result, a very narrow payoff function will make the price
estimates volatile and prone to error. We want to use an interval for which 1)
the expected value is correct and 2) the variance is as low as possible.

Since we do not have formula to calculate BS-delta for a ”No Move” option,
we have to use either the ”Regular HMC” or ”Option derivative HMC”. Judging
from the results in the past section, there is not a huge difference in their
performance. We go with the latter for its superior computational efficiency
and stability. We begin by testing:

”No Move” payoff1(uT ) =

{
1
2τ if − τ + u0 < uT < u0 + τ

0 otherwise
(58)

Next, we test:

Table 4: ”No move” option pricing with the payoff1

payoff1 - τ 0.01 0.05 0.1 0.15 0.2 0.3 0.5 0.7 True price
mean price 0.4296 0.4071 0.3904 0.3986 0.3936 0.3935 0.3851 0.3712 0.3989
SD price 0.1929 0.0921 0.0626 0.0461 0.0376 0.0282 0.0190 0.0098 -

”No Move” payoff2(uT ) = exp(−u2
T /2δ

2)/
√

2πδ2, (59)

Table 5: ”No move” option pricing with the Gaussian payoff2

payoff2 - δ 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.5 True price
mean price 0.3913 0.4018 0.3962 0.3957 0.4017 0.3946 0.3799 0.3595 0.3989
SD price 0.2472 0.1447 0.0663 0.0425 0.0281 0.0294 0.0156 0.0094 -

It can be seen that payoff2 increase the consistency of the estimates, the standard
deviations in table 5 are lower than those in table 4 for each τ = δ. The
standard deviations for both versions decrease as parameters increase, which
could be expected. 0.15 appears to be a good choice for both parameters, the
estimates we get from using 0.15 are close to the theoretical value and the
standard deviations are relatively small. For both payoff functions, increasing
τ or δ further might reduce the standard deviation but appears to come at the
cost of a negative bias in the estimates. Since the Gaussian payoff2 seems to be
just as accurate as payoff1, but with lower standard deviation, we decide to use
it from here on out.

5.1.2 Binary option pricing

We will now evaluate and calibrate the two different payoff functions used to
price the binary option, discussed in section 4.3.2. This will be done in the same
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manner as for the ”No Move” payoffs, by pricing 100 options and comparing the
mean and standard deviation. For Binary payoff1 we do not face the issue of
picking a parameter value, but it is tested to compare with Binary payoff2. The
mean of our estimates is to be compared with the theoretically correct value
presented in section 4.3.3; P (uT > 0) = 0.5. Like in the previous section, we
will use the ”Option derivative HMC”. We begin by testing:

Binary payoff1(uT ) =

{
1 if uT > 0 ⇐⇒ xT > x0

0 otherwise
(60)

Table 6: Binary option pricing with payoff1

True price 0.50000
payoff1 - mean price 0.50054
payoff1 - SD price 0.012477

Next, we test payoff2. As k is increased, this payoff function quickly converge
to payoff1 but the smoothing effect will be larger with smaller k values.

Binary payoff2(uT ) =
1

1 + e−uT k
(61)

Table 7: Binary option pricing with payoff2

k-value 0.005 0.1 0.5 1 5 10 True price
payoff2 mean price 0.50019 0.50031 0.50146 0.50200 0.50012 0.49883 0.50000
payoff2 SD price 0.00033 0.00073 0.00291 0.00483 0.01132 0.01128 -

By comparing table 6 and 7, we see that the alternative payoff2 seem produce
estimates with lower standard deviation. It appears that the expected value is
not affected by using the smoothed payoff function, no matter what k-value is
used. Although our tests point towards using a very low k-value we will in the
coming sections settle for payoff2 and a k-value of 5. By just making a small
modification to the geometry of the payoff function, compared to payoff1, we
should have a higher chance of succeeding, although it might leave our final
result subject to further optimization.

5.2 Black-Scholes volatility smile

In this section we display volatility smiles that are generated from BS data
simulated according the specification in table 8. The smiles are generated from
call options with a range of strikes, from the strike that gives ∆ = 0.05 (far
out-of-the-money) to the strike that gives ∆ = 0.95 (far in-the-money).

All plots show decent approximations of the BS smile, which is flat σBS(K) =
σ = 0.3. It can be seen that the smiles tend to be less accurate far from at-
the-money. For the HMC algorithm alone, this is because the price of a far
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Table 8: Specification for option and BS data

Property Notation Value
Initial asset price x0 10
strike K 10
Interest rate r 0
Time T 1 week (1/52 year)
Volatility σ 0.3

Figure 6: BS HMC smiles. BS volatility smile from the HMC methods (10
hedge steps, 1000 time series (left) and 100 000 time series (right)).

Figure 7: BS smile expansions. BS volatility smile from smile expansion
with ”Option derivative HMC” with (10 hedge steps, 1000 time series (left)

and 100 000 time series (right)).
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out-of-the-money option will depend on the few number of time series that
produce positive payoffs and similarly, the price of a far in-the-money option
will will depend on the few number of time series that does not produce positive
payoffs. This dependency makes the estimates volatile. The price of an option
that is close to at-the-money does not have the same kind of sensitivity, there is
an approximately equal number of time series ending with and without positive
payoffs.

The ”Option derivative HMC” appears to converge better than the ”Regular
HMC”, judging from the BS-smiles and tests in previous sections, and it was
therefore used for the smile expansion. The formula for smile approximation is,
as presented in section 3.7:

σBS(K) = σ(αT + βTM+ γTM2 +O(M3)), M =
K − x0

x0σ
√
T

(62)

We observe that when the option is at-the-money (S = K = 10), M = 0 and
therefore σBS(10) = σαT = 0.3αT (which should be equal to 0.3). We see in
figure 7 (especially in the right graph) that the smile expansion and for K = 10
is very close to 0.3, which means that α is estimated accurately.

βT determines the skew of the smile. The BS smile should be flat and
unskewed. We can get an idea of βT ’s accuracy by comparing the ends of the
volatility smile, which should be level, or by looking at the derivative of the
volatility at-the-money, σ′BS(10) = σβT = 0.3βT (which should be equal to
zero). βT appears to be accurately estimated, especially with more time series,
as seen in figure 7.

γT seems to be term that contribute most to the errors. The errors are
apparent in both ends of the volatility smile even with 100 000 time series. This
is expected for two main reasons; firstly, finding γT involves pricing the ”No
move” option which is a difficult task. Secondly, it is multiplied by a factor
2 term, which makes small deviations from the theoretically correct value (in
this case zero) significant for options that are far in-the-money or far out-of-
the-money.

The HMC algorithms alone seem to converge better but it is hard to draw
any conclusions regarding the relative accuracy of using the smile expansion or
not. It is worth noting that the curves in figure 6 and in figure 7 use the same
amount of data, but the smile expansion is obtained from pricing just 4 options.
The HMC curve, on the other hand, is produced by pricing an option at every
point of the volatility curve. Each curve in figure 6 is constructed from 20 option
prices, which is 5 times more than the smile expansion curve, and they are still
pretty jagged.

5.3 SABR volatility smile

In this section we display volatility smiles that are generated by pricing options
with an following asset SABR, simulated with the specification in table 9. The
smiles are generated from call options with a range of strikes, from the strike
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that gives ∆ = 0.05 (far out-of-the-money) to the strike that gives ∆ = 0.95
(far in-the-money). The produced smiles are compared with the approximate
theoretical SABR smile presented in section 2.6.

The convergences are pleasing for SABR data, especially the smile expansion

Table 9: Specification for option and SABR data

Property Notation Value
Initial asset price x0 10
strike K 10
Interest rate r 0
Time T 1 week (1/52 year)
Volatility at time 0 σ0 0.1
Alpha (SABR) α 0.4
Rho (SABR) ρ -0.1
Beta (SABR) β 1

Figure 8: SABR HMC smiles. SABR volatility smile from the HMC
methods (10 hedge steps, 10 000 time series (left) respectively 100 000 time

series (right)).

seems to produce accurate results. It is worth noting how the ”BS-delta HMC”
performs well only for options close to being at-the-money in the left picture
of figure 8, where 10 000 time series are used. This reveals an important point
that we did not see in section 5.1. The outperformance of the HMC methods
versus the simple MC is also striking.

We continue by examining the performance for steeper curvature. The fol-
lowing smiles are also for 1W options but with x0 = 1. The SABR parameters
are specified each graph. It is clear that the smile expansion does not capture
the skewness very well, all of the HMC versions alone do a very job though.
Problems arise in the ends of the volatility smile, the same behavior as we saw
earlier for smiles from BS data. The simple MC show poor convergence and the
”BS-delta HMC” is not as good as the other HMC versions.
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Figure 9: SABR smile expansions. SABR volatility smile from smile
expansion with ”Option derivative HMC” (10 hedge steps, 10 000 time series

(left) and 100 000 time series (right)).

Figure 10: Convex SABR smiles. SABR volatility smiles from the HMC
algorithms alone to the left and from smile expansion with ”Option derivative

HMC” to the right (10 000 time series and 10 hedge steps).
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5.4 Empirical volatility smile

Next, we are going produce empirical volatility smiles for the currency pair
GBPUSD (British Pound to US Dollar). We use 10 years of historical spot data
for the exchange rate, from November 1, 2006, to November 1, 2016, sampled
with bihourly frequency. We will price a 1 week option since the smiles are well
defined for that tenor and it is short enough to get a decent amount of time
series out of the sample. We clean the data from non-trading days and divide
it into time series containing 1 week of trading each (GBPUSD is trading for
122 hours per week). This will give us slighly more than 500 time series (52
weeks per year, times 10 years, minus a few weeks to account for holidays). To
simplify things, we re-base the data to x0=1 for all time series. Like before,
volatility is plotted against strike price, from the strike for which ∆ = 0.05 to
the strike for which ∆ = 0.95. Additionally, we plot histograms (corresponding
to the y-axis on the right-hand side) displaying the distribution of the data (as
xT /x0). We compare the results to a SABR smile that is a calibrated (with
constraint β = 1), by Bank of America Merrill Lynch, to approximately match
current (as of early December 2016) 1W GBPUSD volatility smiles. The cali-
brated smile has the following parameters:

Table 10: Calibrated 1W SABR smile for GBPUSD

Parameter Value
Initial volatility (σ0) 0.1
Alpha (α) 3.8
Rho (ρ) -0.09
Beta (β) 1 (constraint)

It should be made clear that the calibrated SABR volatility smile is not a
smile we can expect convergence towards, it is itself an approximation and it
is reflecting current market conditions. It is neither a good basis for drawing
conclusions about the relative performance of the different versions of HMC.
Its sole purpose is to give an indication of whether we can produce reasonable
empirical smiles with little data.

The ”Regular HMC” and the simple MC have some issues pricing the far
in-the-money options. Apart from that, all of the smiles are reasonable. It is
worth noting how well the convex curvatures are reflected by our algorithm.

The estimated volatility of the 10 year data is slightly higher than σ0 in ta-
ble 10, which could help to explain the vertical difference between our empirical
smiles and the calibrated SABR.

We conclude the result section by displaying empirical overnight (ON) smiles
for the past 10 years. Each smile is produced using 2 years of data, which
approximately gives 500 trading days, or equivalently, 500 times series.
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Figure 11: Empirical 1W smiles from HMC. GBPUSD empirical 1 week
volatility smile from using only HMC (roughly 500 time series and 60 hedge

steps). Histogram shows distribution of underlying asset (xT /x0)

Figure 12: Empirical 1W smile expansion. GBPUSD empirical 1 week
volatility smile from HMC with the smile expansion formula (roughly 500 time
series and 60 hedge steps). Histogram shows distribution of underlying asset

(xT /x0)
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Figure 13: Empirical ON smiles. GBPUSD empirical overnight volatility
smiles from the ”Option derivative HMC” alone to the left and together with

smile expansion to the right (roughly 500 time series and 24 hedge steps).

5.5 Discussion

The HMC algorithm that we develop in this thesis is an empirical model and it
is shown to work based on tests. BS model, on the other hand, is a model that
hold perfectly well in theory but, as we have touched upon many times before,
does not hold perfectly in the real world and neither does any other model for
pricing financial assets. With that being said, it can seem as an weakness that
all our validations are purely empirical but for a model to be of practical use,
empirical evidence can be stronger than theoretical proofs based on questionable
assumptions.

5.5.1 HMC versions

The HMC algorithms we have developed and tested show satisfying convergence
and clearly outperforms the simple MC. The empirical testing in this thesis have
led us to believe that ”Option derivative HMC” is the most preferable version
of HMC. It does well in all tests, for all types of data. The ”BS-delta HMC” is
efficient and stable but underperforms relative to the other versions for SABR
data, raising doubts about its accuracy for data that is not BS. The ”Regular
HMC” is not totally reliable, it can become unstable and produce results that
differ from the other methods by much, this is seen for both BS and real data.
It is also the least computationally efficient version.

The HMC methods show a tendency to undershoot the correct value with
few time series (e.g. see figure 16). This can likely be attributed to the residuals
being log-normally distributed, like the underlying asset in our BS and SABR
simulations. The minimization of least squares residuals relies on normally
distributed residuals with a mean value of zero (as stated in [11]) and therefore
it only works as an approximation for log-normally distributed residuals. This
would explain why the undershooting becomes more pronounced for more hedge
steps which results in more least squares minimization. It also becomes clear
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why the effect is worst for the ”Regular HMC”, its hedge is entirely based on
the log-normally distributed asset prices.

Further, we believe that utilizing the ”smile expansion formula” in combi-
nation with HMC can make a powerful method, it appears to converge well
but with some deviations far from at-the-money. It also greatly improves the
computational efficiency of producing a complete volatility smile. The pleasing
convergence is a consequence of the HMC method performing well for at-the-
money options and that we are able to accurately price ”No Move” and binary
options. The last part can partially be attributed to our smoothed payoff func-
tions for the exotic options. They proved to successfully reduce the variance
of the estimates. However, it seems to struggle with reproducing the skew of
asymmetric SABR smiles.

To obtain a smile from the HMC algorithm alone is more reliable and can
handle all curvatures. Its major drawback is pricing options that are far from
at-the-money, where significantly more data is required in order to obtain the
same precision as for at-the-money options.

5.5.2 Empirical smiles

The ultimate goal of the thesis was to develop a method that is able to produce
empirical volatility smiles which is accomplished and section 5.4 show results
that are promising for the methods to be used in practical settings. It is impor-
tant to point out that the SABR smile we had as comparison is calibrated with
respect to the current market, while the algorithm’s empirical smiles are based
on the past 10 years. When pricing real options it is important to consider
whether the sample data reflect current market conditions. This is not an issue
when pricing options from simulated data, as the data is simulated with con-
stant parameters. However in practice, characteristics such as volatility change
over time. We might have been able to better match the calibrated SABR smile
with more years of data and by only using trading periods that are similar to
today’s market. An example of a simple adjustment one could make is to divide
the sample into high volatility and low volatility parts and use the part that is
deemed most suitable given the current market conditions.

Either way, we cannot expect our models to converge exactly to the cali-
brated SABR, as it is an approximation itself. The important take-aways are
that the curvatures are similar and the levels of volatility are roughly the same.
The artificial SABR and BS smiles in earlier sections constitutes better model
validations.

5.5.3 Optimizing the performance

To use many time series is a crucial factor for the accuracy of the HMC method.
Like for any other Monte Carlo method, evaluating more scenarios gives more
information from which the right conclusions can be drawn. One could imagine
that several hedge steps would improve the accuracy. This was shown to not
necessarily be true, but more hedge steps did reduce the variance if instability
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was avoided. This has led us to suspect that a combination of many time series
and many hedge steps could preserve stability and produce the best possible
results, but the computational demands have prevented us from thoroughly
testing this hypothesis.

We think our results show that the HMC method is a clear step in right
direction for using Monte Carlo methods in the field of option pricing, but a
few aspects are of concern for it to be put into actual use. The main aspect is
probably the amount of data needed for convergence, we saw that it demanded
plenty of data for both BS and SABR volatility smiles. Take an example; you
want to price a 1-day option. To get a decent approximation of the volatility
smile, our tests indicate that you probably want at least 10 000 time series.
This means 10 000 trading days which is equivalent to approximately 40 years
of data. Firstly, this amount of data does not exist for many assets. Secondly,
even if the data exists, it is old and might not fairly reflect today’s market
conditions.

The HMC is a quite big model with plenty of opportunity to tweak different
parameters. To optimize the model with respect to every single one of these is
a huge task. As a consequence, we have throughout the thesis taken decisions
in what may have seemed like an arbitrary manner to be able to arrive at a
final judgement for the HMC method. We therefore wrap this thesis up by
pointing out some of these areas in section 6.1, mentioned previously in thesis
or not, where more work can be done for someone wanting to improve the
implementation of the HMC method.

6 Conclusion

All in all, our implementation and the results produced from it has shown that
the HMC method is powerful and that the goal of the thesis, to produce empir-
ical volatility smiles, is achieved. Although the algorithm might require some
further tweaking and testing, we think that it is not far from being of practical
use in the financial markets. The HMC method is especially suitable for non-
standard options with short tenors. Non-standard, because it means that there
are not previous quotes to rely on and short tenors, because for such one can
divide historical data into a larger amount of time series.

The smile expansion formula is an interesting addition to any numerical op-
tion pricing algorithm, predominantly because it greatly improves the computa-
tional efficiency for producing a volatility smile. However, from our experience
in this thesis, it is not reliable when it comes to producing skewness of the
smiles.

6.1 Suggestions for further research

Monte Carlo option pricing is by no means a finished chapter, there are plenty of
areas to be further researched. There is obviously the possibility of developing
completely new methods, but in terms of the HMC we are able to offer some
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concrete suggestions on possible things to work on. The points to follow were
taken into consideration during our work but left out due to the limited size of
the project.

To improve the performance it could be of interest to use other basis func-
tions. We used cubic splines but there are endless of options out there.

Another area of potential improvement are the knots (if splines are used). We
thought 8 was a reasonable number, but did not test this decision extensively.
With regards to the placement of those knots, we relied on intuition for what
should be decent, so there may very well be a better alternative.

An interesting addition would be to extend the least squares minimization
with a Lasso regression that would aim to minimize the change in parameter
values between each step in the algorithm. The thinking behind this is that
the hedge and option prices (as functions of the stock price) should not change
drastically between two iterations. We think that this addition could improve
the consistency of the estimates and prevent instability.

Moreover, it would be pleasing if the algorithms were validated for more
theoretical frameworks, primarily to ensure convergence. It is also relevant to
investigate the results of using many time series in combination with many
hedge steps. In the real world frequency is not as big of an issue as number
of time series, data can be obtained with really high frequency but for many
assets existing or relevant historical data is limited. Unfortunately it is very
demanding to run HMC with many hedges, doubling the number of hedges
doubles the computational requirements which makes the algorithm take twice
as long time to run.

In addition to more theoretical optimization of the methods, there is plenty
of empirical testing to be done, that part was kept short in this thesis. Because
this thesis is written in co-operation with a FX team at Bank of America Merrill
Lynch, our empirical testing was also limited to foreign exchange but the method
is equally applicable to any other asset. It is left for the future to the test the
real world performance more carefully with historical data from a range assets.

7 Appendix

7.1 Independence of basis functions

We will now independence of the basis functions used throughout the thesis, as
defined in section 3.5.

f0(x) = 1

f1(x) = x

f2(x) = x2

fs(x) = (x− ξs)2
+ for s = 3 . . .M

where (z)+ =

{
0 if z < 0

z if z > 0
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The basis functions are independent if it exists x0, x1, . . . , xM such that the
column vectors 

f0(x0)
f1(x0)

...
fM (x0)

 ,


f0(x1)
f1(x1)

...
fM (x1)

 , . . . ,


f0(xM )
f1(xM )

...
fM (xM )


are linearly independent. In our application, all ξk > 0, although this is not
necessary to show independence. Let:
x0 = 0
0 < x1 < x2 < ξ3
ξ3 < x3 < ξ4
ξ4 < x4 < ξ5
...
ξM < xM
This will make the vectors:

1
0
0
0
0
...
0
0


,



1
x1

x2
1

0
0
...
0
0


,



1
x2

x2
2

0
0
...
0
0


,



1
∗
∗
∗
0
...
0
0


, . . . ,



1
∗
∗
∗
∗
...
∗
∗


where ∗ is some positive number. It is easy to see that no vector can be ex-
pressed as a linear combination of the other vectors and the basis functions must
therefore be independent.
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7.2 Distribution of estimates

In this section we display the distribution of our tests in section 5.1. The
distributions are made up of 1000 price estimates. The different histogram
display a varying number of hedge steps and time series (10 or 100 hedges and
250 or 1000 time series).

Figure 14: Histograms from BS data, 250 time series, 10 hedges.
Distribution of price estimates from Black & Scholes data containing 250 time

series, priced with 10 hedge steps.
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Figure 15: Histograms from BS data, 1000 time series, 10 hedges.
Distribution of price estimates from Black & Scholes data containing 1000

time series, priced with 10 hedge steps.
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Figure 16: Histograms from BS data, 250 time series, 100 hedges.
Distribution of price estimates from Black & Scholes data containing 250 time

series, priced with 100 hedge steps.
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Figure 17: Histograms from SABR data, 250 time series, 10 hedges.
Distribution of price estimates from SABR data containing 250 time series,

priced with 10 hedge steps.

48



Figure 18: Histograms from SABR data, 1000 time series, 10
hedges. Distribution of price estimates from SABR data containing 1000 time

series, priced with 10 hedge steps.
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Figure 19: Histograms from SABR data, 250 time series, 100
hedges. Distribution of price estimates from SABR data containing 250 time

series, priced with 100 hedge steps.
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