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Abstract 

The unpredictable behaviour of financial time series has long been a concern for econometricians, 

making it difficult to find appropriate models with a satisfactory fit. The Markov regime switching 

model is a popular approach, much in behalf of the way it takes the shifts in the time series 

behaviour into account.  

The model in this thesis is based on a mixture of normal distributions, extended to include a Markov 

switching behaviour. As the behaviour of the time series changes, regime switches are assigned to it, 

making the time series alternate between a predetermined number of states.  

After the implementation, on two portfolios à seven stocks selected from the Stockholm stock 

market, the examinations indicated that the fit of the model could be improved by changing the 

number of states assumed in the estimation. It was found that a Markov regime switching model 

with three states had the most satisfactory fit to the time series. Subsequently, one of the modelled 

portfolios was allocated to maximize the Sharpe ratio. This led to some unfavourable extreme 

allocations, and upon comparison with a portfolio of equal weights containing the same assets the 

results were poor. Despite a higher yearly return, the modelled portfolio displayed significantly larger 

volatilities, leaving the results of this evaluation inconclusive. Nevertheless, the implementation lead 

to a significant improvement in the autocorrelation of the absolute residuals, along with giving the 

residuals a substantially more homogenic appearance. These results indicate that most of the 

significant dependence structure has been captured, in particular by the three-state model. 
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1 Introduction 
The Markov regime switching model, first described by G. Lindgren, 1978, is a type of specification in 

which the main point is handling processes driven by different states, or regimes, of the world. In this 

model, the observed time series are assumed to follow a non-linear stationary process. The 

behaviour of the time series is characterized by multiple equations, decided by the different states of 

the model. 

What separates the Markov regime switching model from other switching models is that the 

switching mechanism is controlled by an unobservable variable that follows a hidden Markov chain. 

By Markov properties, the current value of the variable depends only on its immediate past value. 

This means that a structure in the series may prevail for a random period of time, before being 

replaced by another structure when a switching takes place. This way, the Markov regime switching 

model is able to capture more complex dynamic patterns. 

Financial time series occasionally display dramatic breaks in their behaviour, due to e.g. financial 

crises. Therefore, the idea of the financial market finding itself in different states at different times 

becomes appealing. Furthermore, it has been found that financial time series exhibit some 

formalised facts which can advantageously be reproduced by a hidden Markov model. This has made 

the Markov regime switching model one of the most popular nonlinear time series models in the 

literature (Cont, 2001, Hamilton, 1989, 2005, Lindgren, 1978). 

 

1.1 Thesis Statement 
The aim with this thesis is to explain the Markov regime switching model in a detailed and 

comprehensible way, and provide a complete description of the practical implementation to the 

Stockholm stock market. A portfolio containing seven stocks will be modelled according to a chosen 

Markov regime switching model. This portfolio will then be allocated to maximize the Sharpe ratio, 

and finally compared to a portfolio of equal weights. 
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2 The Hidden Markov Model 
A hidden Markov model (HMM) is a bivariate discrete time process {𝑆𝑡, 𝑌𝑡}𝑡≥0, where {𝑆𝑡} is an 

underlying Markov chain and {𝑌𝑡} is a sequence of independent random variables, of which follows 

that the conditional distribution of 𝑌𝑡 only depends on 𝑆𝑡. Since the Markov chain 𝑆𝑡 is hidden, only 

the stochastic process  {𝑌𝑡} is available to the observer. In other words, the state of the process is not 

directly visible, but the output process, dependent on the state, is visible. This means that all 

statistical inference has to be done in terms of the output stochastic process {𝑌𝑡} only, as  {𝑆𝑡} is not 

possible to observe (Rydén et al, 2005).  

A HMM has an interesting dependence structure, which comes handy when dealing with e.g. 

financial time series. To get an intuitive hint as to how this dependence works, it is here represented 

by a graphical model: 

 

 

 

 

 

 

 

As Figure 2.1 implies, the distribution of a variable 𝑆𝑡+1 conditional on the history of the process 𝑆0, . 

. . , 𝑆𝑡, is determined only by the value of the preceding variable, 𝑆𝑡 . This is all according to the 

Markov property, where future events are completely independent of the past, depending only on 

the present state. In addition, the distribution of 𝑌𝑡 conditionally on the past observations 𝑌0, . . ., 

𝑌𝑡−1  and the past values of the state, 𝑆0, . . ., 𝑆𝑡, is determined by 𝑆𝑡 only (Rydén et al, 2005). Putting 

this into mathematical terms, we get the following properties: 

                                                                 𝑓(𝑆𝑡+1|𝑆𝑡, … , 𝑆1) = 𝑓(𝑆𝑡+1|𝑆𝑡)                                                         (1) 

                                                        𝑓(𝑌𝑡|𝑆𝑡−1, … , 𝑆1, 𝑌𝑡−1, … , 𝑌1) = 𝑓(𝑌𝑡|𝑆𝑡)                                                  (2) 

 

2.1 Assumptions of the Hidden Markov Model 
A few assumptions on the HMM used in this thesis need to be specified in order to make use of the 

model. 

First of all, the hidden Markov chain is assumed to be time-independent. This means that the 

transition probabilities of the chain; 

                                  𝑝𝑖,𝑗 = 𝑃(𝑆𝑡 = 𝑗|𝑆𝑡−1 = 𝑖) = 𝑃(𝑆𝑡 = 𝑗|𝑆𝑡−1 = 𝑖,  𝑆𝑡−2 = 𝑘,… , 𝑆1 = 𝑙 )                  (3) 

between two states i and j in a finite state space Ω = {1, …, N} needs to be constant over time. This is 

convenient, since said transition probabilities and the Markov chain’s set of initial probabilities; 

                                                                            𝜋𝑖 = 𝑃(𝑆1 = 𝑖)                                                                           

are all that is needed to define the dynamic of the HMM.  

 

  

Fig. 2.1 Graphical representation of the dependence structure of a HMM. 
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Secondly, the Markov chain is assumed to be ergodic, i.e. aperiodic and positive recurrent. This is 

necessary in order to ensure consistency of the estimates of the model (Campigotto, 2009). 

 

3 Definitions 
Before postulating a more specific model there are a few definitions to be stated that will be referred 

to throughout the thesis: 

Definition 3.1 A HMM’s filter probability, in this thesis referred to as 𝛼𝑖,𝑡, is defined as the probability 

of the underlying Markov chain being in a given state i at time t, conditionally on a set of 

observations {𝑦1:𝑡}; 𝛼𝑖,𝑡 = 𝑃(𝑆𝑡 = 𝑖 | 𝑦1:𝑡).                                   

Definition 3.2 The smoothing probability of a HMM, referred to as 𝜋𝑖,𝑡 , determines the probability of 

the underlying Markov chain being in a given state i at time t, conditionally on a set of observations 

{𝑦1:𝑡+𝜏}; 𝜋𝑖,𝑡 =  𝑃(𝑆𝑡 = 𝑖 | 𝑦1:𝑡+𝜏), 𝜏 > 0.                     

Definition 3.3 The Bayesian information criterion (BIC) is a criterion for model selection among a 

finite set of models, where the model with the lowest BIC is preferred. While adding parameters to a 

model may increase the likelihood, it may also result in overfitting. BIC solves this issue by 

introducing a penalty term for the number of parameters. Formal definition: 𝐵𝐼𝐶 = −2 · 𝑙𝑛(𝐿𝑚𝑎𝑥) +

𝑘 · 𝑙𝑛(𝑛), where 𝐿𝑚𝑎𝑥 = the maximized value of the likelihood function of the model, 𝑛 = the 

number of observations and 𝑘 = the number of parameters to be estimated.  
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4 Method: Specification of Chosen Markov Regime Switching Model 
The model applied in this thesis is grounded on a mixture of normal distributions, based mainly on 

Campigotto, 2009, Hamilton, 2005 and Perlin, 2015.  

Assume that the typical historical behaviour of a financial time series can be described by the 

following process: 

                                                                                      𝑌𝑡 = 𝜇𝑆𝑡
+ 𝜀𝑡                                                                     (4) 

Where; 

𝑌𝑡 is the observed return of the time series at time t 

𝜇𝑆𝑡
 is the intercept, or expected return, while in state 𝑆𝑡 

𝜀𝑡 is a normal random stochastic variable, 𝜀𝑡 ~ N(0, 𝜎𝑆𝑡

2 ) 

This is a simple case of a model with a switching dynamic. The model in equation (4) is switching 

states with respect to an indicator value 𝑆𝑡, meaning that with N states there will be N values for 𝜇𝑆𝑡
 

and 𝜎𝑆𝑡

2 . Here, the residuals 𝜀𝑡 are assumed to be normal distributed. 

 

4.1 Markov Regime Switching Model with N Regimes  
Now, assume that the number of states (or regimes) is N, i.e. 𝑆𝑡 ∈ Ω = {1, …, N}. This implies that e.g. 

the log returns of a financial time series are drawn from N distinct normal distributions, depending 

on what state the HMM is currently in. This would give us the following model to work with:  

                                                                      𝑌𝑡 = 𝜇1 + 𝜀𝑡    for state 1                                                              (5) 

                                                                        𝑌𝑡 = 𝜇2 + 𝜀𝑡    for state 2                                                              (6) 

                                                                                      ⋮ 

                                                                         𝑌𝑡 = 𝜇𝑁 + 𝜀𝑡   for state N                                                            (7) 

Where; 

                                                                      𝜀𝑡 ~ N(0, 𝜎1
2)    for state 1                                                            (8) 

                                                                        𝜀𝑡 ~ N(0, 𝜎2
2)    for state 2                                                            (9) 

                                                                                      ⋮ 

                                                                         𝜀𝑡 ~ N(0, 𝜎𝑁
2)   for state N                                                         (10) 

 

This means that when the state of the HMM for time t is 1, then the expectation of the dependent 

variable is 𝜇1 and the variance of the innovations is 𝜎1
2, etc. 

Since the underlying Markov chain is hidden one cannot observe what state the HMM is in directly, 

but only deduce its operation through the observed behaviour of 𝑌𝑡. In order to attain the probability 

law governing the observed data 𝑌𝑡 a probabilistic model of what causes the change from state 𝑆𝑡 = i 

to state 𝑆𝑡 = j is required. This can be specified using the transition probabilities of an N state HMM 

(Hamilton, 2005);  
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                                          𝑝𝑖,𝑗 = 𝑃(𝑆𝑡 = 𝑗|𝑆𝑡−1 = 𝑖)   𝑖, 𝑗 ∈ Ω =  {1, 2, … , N}                                            (11) 

The transition probability (11) is by the Markov property described in (3) dependent of the past only 

through the value of the most recent state. This is one of the central points of the structure of a 

Markov regime switching model, i.e. the switching of the states of the underlying HMM is a 

stochastic process itself. 
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5 Parameter Estimation  
There are several ways to estimate the required parameters of the N-state Markov regime-switching 

model given by (5) - (10), e.g. by using the EM algorithm from Dempster et al., 1977. In the 

framework of this thesis, however, the parameters will be estimated using maximum likelihood. 

 

5.1 Maximum Likelihood Estimation 
Consider the model given by equation (5) – (10), i.e. a Markov regime-switching model with N 

regimes. The estimation will be performed using Hamilton’s filter, where the main idea is to calculate 

each state’s filter probabilities by making inferences on each state’s unknown probabilities based on 

the available information. When the filter probabilities are obtained, we have the probabilities one 

needs for calculating the log likelihood of the model. 

 

5.1.1 Calculating the Filter Probabilities 
The model’s filter probabilities, defined in Definition 3.1, are calculated by utilizing the model’s 

iterative relations by means of recursion. This can be done using a combination of the relation 

between observations and hidden states, and the endogenous relation between hidden states, 

demonstrated in equation (1) and (2) respectively.   

Begin from the starting value in our recursion, i.e. with the probability of being in state i at time t=1: 

𝛼𝑖,1 = 𝑃(𝑆1 = 𝑖 | 𝑦1) 

= 
𝑓( 𝑆1 = 𝑖, 𝑦1)

𝑓(𝑦1)
 

= 
𝑓(𝑦1 | 𝑆1 = 𝑖 )𝑃(𝑆1 = 𝑖)

∑ 𝑓(𝑆1 = 𝑖, 𝑦1) 
𝑁
𝑗=1

 

= 
𝑓(𝑦1 | 𝑆1 = 𝑖 )𝑃(𝑆1 = 𝑖)

∑ 𝑓(𝑦1 | 𝑆1 = 𝑗 )𝑃(𝑆1 = 𝑗) 𝑁
𝑗=1

 

The second element of the numerator is simply the previously mentioned initial probability of the 

Markov chain, i.e. 𝑃(𝑆1 = 𝑖) =  𝜋𝑖, and it will henceforth be denoted as such. One can at this point 

notice that 𝛼𝑖,1 is the normalized value of the product between the initial probability and the 

conditional probability function 𝑓(𝑌1 | 𝑆1 = 𝑖 ), and can therefore be written as follows: 

𝛼𝑖,1 = 
𝑓(𝑌1 | 𝑆1 = 𝑖 )𝜋𝑖

∑ 𝑓(𝑌1 | 𝑆1 = 𝑗 )𝜋𝑗 
𝑁
𝑗=1

= ⌈𝑓(𝑌1 | 𝑆1 = 𝑖 )𝜋𝑖⌉ 

Now, assume that we know the filter probability at time t-1, namely 𝛼𝑖,𝑡−1. Following the same 

strategy as for t = 1 leads to the following recursion: 

𝛼𝑖,𝑡 = 𝑃(𝑆𝑡 = 𝑖 | 𝑦1:𝑡) =  
𝑓(𝑆𝑡 = 𝑖, 𝑦𝑡  | 𝑦1:𝑡−1)

𝑓(𝑦𝑡 | 𝑦1:𝑡−1)
 

= 
𝑓(𝑆𝑡 = 𝑖, 𝑦𝑡 | 𝑦1:𝑡−1)

∑ 𝑓(𝑆𝑡 = 𝑗, 𝑦𝑡  | 𝑦1:𝑡−1)
𝑁
𝑗=1

 

= ⌈𝑓(𝑆𝑡 = 𝑖, 𝑦𝑡 | 𝑦1:𝑡−1)⌉ 
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= ⌈𝑓(𝑦𝑡 | 𝑆𝑡 = 𝑖, 𝑦1:𝑡−1)𝑃(𝑆𝑡 = 𝑖 | 𝑦1:𝑡−1)⌉ 

                                                             =  ⌈𝑓(𝑦𝑡 | 𝑆𝑡 = 𝑖)𝑃(𝑆𝑡 = 𝑖 | 𝑦1:𝑡−1)⌉                                                  (12) 

By the Markov property in equation (2), also demonstrated in Fig. 2.1, one can deduce that once 

observation 𝑦𝑡 has been extracted, the only relation between the current state of the hidden chain 

𝑆𝑡, and the set of observations, {𝑦1:𝑡−1},  exists through 𝑆𝑡−1. Following this understanding, the next 

step is to choose 𝛼𝑖,𝑡−1: 

𝛼𝑖,𝑡 =  𝑃(𝑆𝑡 = 𝑖 | 𝑦1:𝑡−1) = 

= ∑
 

𝑃(𝑆𝑡 = 𝑖, 𝑆𝑡−1 = 𝑗 | 𝑦1:𝑡−1)

𝑁

𝑗=1

 

= ∑
 

𝑃(𝑆𝑡 = 𝑖 |𝑆𝑡−1 = 𝑗,

𝑁

𝑗=1

 𝑦1:𝑡−1)𝑃(𝑆𝑡−1 = 𝑗 | 𝑦1:𝑡−1) 

=  ∑
 

𝑃(𝑆𝑡 = 𝑖 |𝑆𝑡−1 = 𝑗

𝑁

𝑗=1

)𝑃(𝑆𝑡−1 = 𝑗 | 𝑦1:𝑡−1) 

Here, the first part of the sum corresponds to the transition probability 𝑝𝑖,𝑗 (11) between state i and 

j, and the second part to the filter probability at time t-1, 𝛼𝑖,𝑡−1. Inserting this into formula (12) the 

recursion relation becomes (Campigotto, 2009): 

                                                         𝛼𝑖,𝑡 = ⌈𝑓(𝑦𝑡 |𝑆𝑡 = 𝑖 ) ∑ 𝑝𝑖,𝑗𝛼𝑖,𝑡−1
𝑁
𝑗=1 ⌉                                               

 

5.1.2 The Maximum Likelihood Formula 
We denote the set of parameters of the N-state Markov regime-switching model given by (5) - (10) 

we would like to estimate by {Ѳ}. In our case, {Ѳ} = {(𝜋𝑖), (𝑝𝑖,𝑗), (𝜇𝑖
𝑚), (Σ𝑖

𝑚,𝑛)}, i, j ∈ Ω =

{1, 2,… , N},m, n ∈ {1, 2,… ,M}, where: 

 𝜋𝑖 denotes the initial probability for state i 

 𝑝𝑖,𝑗 denotes the transition probability between state i and j 

𝜇𝑖
𝑚 denotes the intercept for asset m in state i 

Σ𝑖
𝑚,𝑛 denotes the covariance between asset m and n in state i 

Consider the conditional probability function 𝑓(𝑦𝑡 | 𝑆𝑡 = 𝑖, Ѳ) as the likelihood function for state i 

conditional on the set of parameters. When the filter probability function 𝛼𝑖,𝑡 is estimated, one has 

the necessary information in order to calculate the full log likelihood of the HMM as a function of the 

set of parameters. The full log likelihood function is given by: 

                                                  𝑙𝑛 𝐿 =  ∑ 𝑙𝑛𝑇
𝑡=1 ∑ 𝑓(𝑦𝑡 | 𝑆𝑡 = 𝑖, Ѳ)P(𝑆𝑡 = 𝑖) 𝑁

𝑖=1                                          (13) 

The function (13) is a weighted average of the likelihood function in each state, where the weights 

are given by the state's probabilities.  

One estimates the set of parameters {Ѳ} by maximising the full log likelihood function over said set of 

parameters. This must be made under certain conditions, since we are working with probabilities. 
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Denote the transition probability matrix, i.e. the matrix with element (i,j) being the transition 

probability between state i and j, 𝑝𝑖,𝑗, by P. All elements of this matrix must be non-negative, and all 

rows must sum up to one. The same goes for the HMM’s filter probabilities (Definition 3.1) and the 

smoothing probabilities (Definition 3.2) (Campigotto, 2009, Perlin, 2015). 
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6 Practical Implementation Part One: Application to the Stockholm Stock Market 
For the application of the model I have chosen two different portfolios, each containing seven stocks 

selected from the Stockholm stock market in the period 2006-10-02 – 2016-11-01. Said portfolios will 

be modelled according to the Markov regime switching model given by equation (5) – (10), and the 

results will be analysed as to how well the selected model fits the data. This will be made by e.g. 

normalising the residuals after the model has been applied to see how well the time series fits the 

assumption of normal distributed residuals, along with checking whether any dependence structure 

remains after normalisation. 

One of these portfolios will in the second part on the implementation be evaluated for the last two 

years of the chosen time period. Using the first year as data base, the expected return and 

covariance will be estimated from the Markov regime switching model’s parameter estimation once 

every month for the last year of observations. The result will be applied to find the optimal portfolio 

weights to maximize the Sharpe ratio, and finally compared to an equally weighted portfolio 

containing the same stocks. 

 

6.1 Definition of Y 
The time series of observations constituting the observed part of the HMM gives us a matrix of log 

returns, denoted Y. Each column 𝒀𝑚 of Y stands for the log returns of stock m, where element 𝑦𝑡
𝑚 

denotes the log return of the closing price of stock m in a given portfolio, at time t; 

𝑦𝑡
𝑚 = 𝑙𝑛 (

𝑐𝑡
𝑚

𝑐𝑡−1
𝑚 ) 

where 𝑐𝑡
𝑚 gives us the closing price of stock m at time t. We work in discrete time, as the data will be 

daily prices. The observed time period of business days 2006-10-02 – 2016-11-01 of the seven 

selected stocks makes Y a 2535x7 matrix. 

Two distinct portfolios each containing seven stocks were chosen from the Stockholm stock market. 

Portfolio one, containing only stocks with sector root code financials, will be denoted 𝑃𝑜𝑟𝑡1, and 

portfolio two, with no financial stocks, will be denoted 𝑃𝑜𝑟𝑡2. 

Chart 6.1: Asset list for 𝑃𝑜𝑟𝑡1 and 𝑃𝑜𝑟𝑡2 

Stock Index 𝑷𝒐𝒓𝒕𝟏 𝑷𝒐𝒓𝒕𝟐 

𝒀𝟏 Investor A AstraZeneca 

𝒀𝟐 Nordea Bank Volvo A 

𝒀𝟑 SEB A Hennes & Mauritz B 

𝒀𝟒 Castellum Alfa Laval 

𝒀𝟓 Fabege Skanska B 

𝒀𝟔 Handelsbanken A Axfood 

𝒀𝟕 Swedbank A PEAB B 

 

Comparing the norms of each portfolio’s covariance matrix we get the following results: 

𝑃𝑜𝑟𝑡1 : ‖
𝜎12

⋯ 𝜎1,7

⋮ ⋱ ⋮

𝜎7,1 ⋯ 𝜎72

‖

2

=  0.002406 
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𝑃𝑜𝑟𝑡2 : ‖
𝜎12

⋯ 𝜎1,7

⋮ ⋱ ⋮

𝜎7,1 ⋯ 𝜎72

‖

2

=  0.001569 

This demonstrates the reason for selecting one portfolio with financial stocks and one without; the 

significant difference in the variance and covariance between the stocks of the portfolios. 𝑃𝑜𝑟𝑡1 has 

a higher norm indicating higher variances and covariances than 𝑃𝑜𝑟𝑡2. 

Financial stocks are in general known to be more difficult to model because of the high volatility they 

usually demonstrate. Therefore, it would be interesting to apply the Markov regime switching model 

to a portfolio consisting only of financial stocks. 

 

The difference in covariance becomes more apparent when comparing the plots of each portfolio’s 

closing prices (Fig. 6.1, Fig. 6.2). 𝑃𝑜𝑟𝑡1’s larger covariances are evident, as the closing prices of all 

assets contained in the portfolio appear to move more in sync than those for 𝑃𝑜𝑟𝑡2.  

The plots also emphasize the change in the closing prices behaviour. It’s clear that the time series 

follow calmer patterns at some points, while the volatilities increase significantly at other time 

periods. This argues for the idea of the time series switching between different states, making the 

Markov regime switching model appealing. 

 

6.2 Parameter Estimation 
To estimate the parameter set {Ѳ} = {(𝜋𝑖), (𝑝𝑖,𝑗), (𝜇𝑖

𝑚), (𝜎𝑖
𝑛,𝑚)} using the previously defined 

maximum likelihood formula (13) can be a challenging affair by hand. For this thesis, the MATLAB 

package: “MS Regress - The MATLAB Package for Markov Regime Switching Models” by Perlin, 2015, 

was used to estimate the necessary parameters. The package uses the method mentioned in section 

5.1, i.e. estimation by using Hamilton’s filter to calculate the hidden chain’s filter probabilities, before 

inserting them into the full log likelihood formula (13).  

The estimation was made under the assumption of a two- or three-state regime switching model, 

𝑆𝑡 ∈ Ω = {1, …, N} where N = 2 or 3. For simplicity, the remaining part of this section the description 

of the chosen model will be done for a three-state regime switching model. 

The assumption of normal distributed residuals, 𝜀𝑡, was also made during the estimation. 

Fig. 6.1 Closing price 𝑃𝑜𝑟𝑡1. Fig. 6.2 Closing price 𝑃𝑜𝑟𝑡2. 
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This presents us with, for each portfolio, a model where the log returns of stock m are drawn from 3 

distinct normal distributions, depending on what state the HMM is currently in: 

                                                                      𝑌𝑡
𝑚 = 𝜇1

𝑚 + 𝜀𝑡    for state 1                                                        (14) 

                                                                        𝑌𝑡
𝑚 = 𝜇2

𝑚 + 𝜀𝑡    for state 2                                                        (15) 

                                                                        𝑌𝑡
𝑚 = 𝜇3

𝑚 + 𝜀𝑡    for state 3                                                        (16) 

 

Where; 

                                                                      𝜀𝑡 ~ N(0, 𝜎1
𝑚2

)    for state 1                                                       (17) 

                                                                        𝜀𝑡 ~ N(0, 𝜎2
𝑚2

)    for state 2                                                       (18) 

                                                                        𝜀𝑡 ~ N(0, 𝜎3
𝑚2

)    for state 3                                                       (19) 

 

With seven stocks in each portfolio, we would get seven sets of equation (14) – (19) for each 

portfolio, with 𝜇𝑖
𝑚 determining the expected log return and 𝜎𝑖

𝑚2
 the variance for asset m while the 

HMM is in state i. Since the covariance between assets most likely differs depending on what state 

the HMM is currently in, one covariance matrix per stock was estimated for each state i;  

                                                                 Σ𝑖 = [
𝜎𝑖

12
⋯ 𝜎𝑖

1,7

⋮ ⋱ ⋮

𝜎𝑖
7,1 ⋯ 𝜎𝑖

72
],   𝑖 ∈  Ω =  {1, 2, 3}                                 

The expected log returns for state i are presented in a column-vector denoted 𝝁𝒊, and the residuals 

in a 2535x7 matrix denoted 𝜺. 

The transition probability matrix is in a three-regime model given by: 

                                                                             𝑷 = [

𝑝1,1 𝑝1,2 𝑝1,3

𝑝2,1 𝑝2,2 𝑝2,3

𝑝3,1 𝑝3,2 𝑝3,3

]                                                           

with 𝑝𝑖,𝑗 , 𝑖, 𝑗𝜖{1, 2, 3}, defined by equation (11). 

As for the remaining parameter set (𝜋𝑖), i.e. the initial probability of the HMM, it is derived from the 

smoothing probability mentioned in Definition 3.2. This probability is very similar to the filter 

probability defined in Definition 3.1, but while the filter probability gives us the probability of the 

HMM being in a certain state at a time t given all observations 𝑦1:𝑡
𝑚 , the smoothing probability instead 

determines the probability of the HMM being in a certain state at a previous time. The vector 

𝝅𝑡 = [𝜋1,𝑡  𝜋2,𝑡  𝜋3,𝑡] 

gives us the corresponding initial probabilities at time t.                                        
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6.2.1 Parameter Estimation: Results  
Chart 6.2: Two-State Regime Switching Model 

𝑷𝒐𝒓𝒕𝟏 𝑷𝒐𝒓𝒕𝟐 

 

𝝁𝟏 = 

[
 
 
 
 
 
 

0.0000
 0.0004 
0.0001
0.0001

 −0.0001 
0.0000
0.0000 ]

 
 
 
 
 
 

            𝝁𝟐 =  

[
 
 
 
 
 
 
 −0.0008 
0.0001
0.0001

−0.0002
−0.0004
−0.0004
0.0000 ]

 
 
 
 
 
 

 

 

𝝁𝟏 = 

[
 
 
 
 
 
 
 0.0000 
0.0000
0.0003
0.0003
0.0005
0.0002
0.0001 ]

 
 
 
 
 
 

             𝝁𝟐 = 

[
 
 
 
 
 
 

0.0000
0.0000

 −0.0006 
0.0000

−0.0001
−0.0004
−0.0001 ]

 
 
 
 
 
 

 

 
 

𝚺𝟏 =

[
 
 
 
 
 
 
0.00020  0.00018  0.00019  0.00014  0.00014  0.00015  0.00018 
0.00018  0.00027  0.00024  0.00014  0.00015  0.00019  0.00023
0.00019  0.00024  0.00030  0.00016  0.00017  0.00020  0.00026
0.00014  0.00014  0.00016  0.00022  0.00019  0.00012  0.00016
0.00014  0.00015  0.00017  0.00019  0.00027  0.00013  0.00016
0.00015  0.00019  0.00020  0.00012  0.00013  0.00020  0.00020
0.00018  0.00023  0.00026  0.00016  0.00016  0.00020  0.00030 ]

 
 
 
 
 
 

 

 

𝚺𝟐 =

[
 
 
 
 
 
 
0.00049  0.00041  0.00049  0.00015  0.00019  0.00037  0.00042
0.00041  0.00107  0.00071  0.00011  0.00012  0.00062  0.00054
0.00049  0.00071  0.00156  0.00027  0.00041  0.00069  0.00108
0.00015  0.00011  0.00027  0.00093  0.00079  0.00021  0.00032
0.00019  0.00012  0.00041  0.00079  0.00136  0.00025  0.00040
0.00037  0.00062  0.00069  0.00021  0.00025  0.00093  0.00050
0.00042  0.00054  0.00108  0.00032  0.00040  0.00050  0.00175]

 
 
 
 
 
 

 

 

 

𝚺𝟏 =

[
 
 
 
 
 
 
0.00011  0.00005  0.00005  0.00005  0.00005  0.00003  0.00004 
0.00005  0.00027  0.00010  0.00016  0.00013  0.00005  0.00014
0.00005  0.00010  0.00014  0.00009  0.00008  0.00004  0.00008
0.00005  0.00016  0.00009  0.00021  0.00012  0.00005  0.00012
0.00005  0.00013  0.00008  0.00012  0.00015  0.00005  0.00012
0.00003  0.00005  0.00004  0.00005  0.00005  0.00012  0.00005
0.00004  0.00014  0.00008  0.00012  0.00012  0.00005  0.00023 ]

 
 
 
 
 
 

 

 

𝚺𝟐 =

[
 
 
 
 
 
 
0.00045  0.00006  0.00009  0.00004  0.00010  0.00006  0.00011
0.00006  0.00103  0.00031  0.00058  0.00052  0.00012  0.00057
0.00009  0.00031  0.00047  0.00030  0.00028  0.00008  0.00028
0.00004  0.00058  0.00030  0.00095  0.00046  0.00009  0.00046
0.00010  0.00052  0.00028  0.00046  0.00073  0.00009  0.00051
0.00006  0.00012  0.00008  0.00009  0.00009  0.00046  0.00008
0.00011  0.00057  0.00028  0.00046  0.00051  0.00008  0.00130]

 
 
 
 
 
 

 

 

 

𝑷 = [ 0.95 0.05 
 0.18 0.82 

]   

 

𝑷 = [ 
0.88 0.12
0.28 0.72

 ] 

 
BIC: -1.049688e+05 

 
BIC: -1.001626e+05 

 

Chart 6.3: Three-State Regime Switching Model 

𝑷𝒐𝒓𝒕𝟏 𝑷𝒐𝒓𝒕𝟐 

 

𝝁𝟏 = 

[
 
 
 
 
 
 
0.0004
0.0000
0.0000
0.0004
0.0002
0.0003
0.0000]

 
 
 
 
 
 

  𝝁𝟐 = 

[
 
 
 
 
 
 
−0.0006
−0.0001
−0.0001
−0.0003
−0.0002
−0.0004
0.0000 ]

 
 
 
 
 
 

  𝝁𝟑 =  

[
 
 
 
 
 
 

0.0004
−0.0001
−0.0001
0.0002
0.0001
0.0000
0.0001 ]

 
 
 
 
 
 

 

 

𝝁𝟏 = 

[
 
 
 
 
 
 
0.0000
0.0001
0.0003
0.0005
0.0002
0.0003
0.0003]

 
 
 
 
 
 

  𝝁𝟐 =  

[
 
 
 
 
 
 

0.0000
−0.0001
−0.0003
−0.0001
−0.0005
0.0000
0.0000 ]

 
 
 
 
 
 

   𝝁𝟑 = 

[
 
 
 
 
 
 

0.0000
−0.0001
0.0007
0.0004
0.0002
0.0007
0.0002 ]
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𝚺𝟏 =

[
 
 
 
 
 
 
0.00024  0.00025  0.00024  0.00014  0.00016  0.00021  0.00021
0.00025  0.00034  0.00030  0.00015  0.00017  0.00026  0.00026
0.00024  0.00030  0.00033  0.00015  0.00017  0.00026  0.00027
0.00014  0.00015  0.00015  0.00016  0.00015  0.00013  0.00014
0.00016  0.00017  0.00017  0.00015  0.00021  0.00015  0.00015
0.00021  0.00026  0.00026  0.00013  0.00015  0.00025  0.00023
0.00021  0.00026  0.00027  0.00014  0.00015  0.00023  0.00027]

 
 
 
 
 
 

 

 

𝚺𝟐 =

[
 
 
 
 
 
 
0.00031  0.00029  0.00034  0.00023  0.00025  0.00025  0.00033
0.00029  0.00045  0.00044  0.00026  0.00028  0.00033  0.00044
0.00034  0.00044  0.00061  0.00031  0.00035  0.00038  0.00055
0.00023  0.00026  0.00031  0.00042  0.00036  0.00023  0.00033
0.00025  0.00028  0.00035  0.00036  0.00052  0.00025  0.00036
0.00025  0.00033  0.00038  0.00023  0.00025  0.00035  0.00039
0.00033  0.00044  0.00055  0.00033  0.00036  0.00039  0.00069]

 
 
 
 
 
 

 

 

𝚺𝟑 =

[
 
 
 
 
 
 
0.00062  0.00046  0.00062  0.00036  0.00043  0.00043  0.00058
0.00046  0.00157  0.00090  0.00044  0.00048  0.00083  0.00090
0.00062  0.00090  0.00221  0.00046  0.00054  0.00087  0.00149
0.00036  0.00044  0.00046  0.00105  0.00077  0.00036  0.00051
0.00043  0.00048  0.00054  0.00077  0.00140  0.00047  0.00049
0.00043  0.00083  0.00087  0.00036  0.00047  0.00119  0.00071
0.00058  0.00090  0.00149  0.00051  0.00049  0.00071  0.00237]

 
 
 
 
 
 

 

 

 

𝚺𝟏 =

[
 
 
 
 
 
 
0.00009  0.00004  0.00004  0.00004  0.00004  0.00003  0.00004
0.00004  0.00021  0.00008  0.00013  0.00011  0.00004  0.00011
0.00004  0.00008  0.00010  0.00007  0.00006  0.00003  0.00006
0.00004  0.00013  0.00007  0.00017  0.00010  0.00004  0.00010
0.00004  0.00011  0.00006  0.00010  0.00011  0.00004  0.00009
0.00003  0.00004  0.00003  0.00004  0.00004  0.00008  0.00004
0.00004  0.00011  0.00006  0.00010  0.00009  0.00004  0.00017]

 
 
 
 
 
 

 

 

𝚺𝟐 =

[
 
 
 
 
 
 
0.00021  0.00011  0.00010  0.00011  0.00011  0.00004  0.00009
0.00011  0.00057  0.00024  0.00035  0.00032  0.00012  0.00032
0.00010  0.00024  0.00030  0.00021  0.00021  0.00007  0.00020
0.00011  0.00035  0.00021  0.00044  0.00028  0.00011  0.00026
0.00011  0.00032  0.00021  0.00028  0.00039  0.00010  0.00028
0.00004  0.00012  0.00007  0.00011  0.00010  0.00029  0.00011
0.00009  0.00032  0.00020  0.00026  0.00028  0.00011  0.00054  ]

 
 
 
 
 
 

 

 

𝚺𝟑 =

[
 
 
 
 
 
 
0.00089  0.00012  0.00009  0.00008  0.00021  0.00014  0.00016
0.00012  0.00165  0.00039  0.00088  0.00081  0.00014  0.00095
0.00009  0.00039  0.00065  0.00044  0.00036  0.00010  0.00040
0.00008  0.00088  0.00044  0.00169  0.00074  0.00015  0.00071
0.00021  0.00081  0.00036  0.00074  0.00117  0.00014  0.00079
0.00014  0.00014  0.00010  0.00015  0.00014  0.00058  0.00007
0.00016  0.00095  0.00040  0.00071  0.00079  0.00007  0.00243]

 
 
 
 
 
 

 

 

𝑷 = [
0.94 0.03 0.03
 0.06 0.90 0.04 
 0.04 0.16 0.80 

] 

 

𝑷 = [
0.79 0.19 0.02
 0.20 0.74 0.06 
 0.07 0.22 0.71 

] 

 
BIC: −1.055782 · 105 

 
BIC: −1.004746 · 105 

 

6.3 Analysis of Estimation Results 

6.3.1 Chart 6.2 
Looking at the results of the estimation of the two-state model in Chart 6.2 one can deduce that for 

both portfolios the expected log return for each stock in state two is always lower or equal to the 

expected log return in state one. This, along with the significantly higher variance demonstrated by 

both portfolios in state two hints to the conclusion that state one stands for a “Bull” market 

environment, with higher returns and lower variances, while state two stands for the opposite; a 

“Bear” market environment. Note that while the results of this estimation indicate one state being 

more desirable than the other, this may not always be the case. This will become evident when 

analysing Chart 6.3. 

Comparing the norms of the estimated covariance matrices 𝚺𝒊 of each portfolio one can find once 

again that 𝑃𝑜𝑟𝑡1 has higher covariances than 𝑃𝑜𝑟𝑡2, in both states.  

Lastly, it is found by observing the transition probability matrix P that the regimes in 𝑃𝑜𝑟𝑡1 tend to 

have a longer duration than the corresponding regimes in 𝑃𝑜𝑟𝑡2. If the HMM is currently in state 

one, there is a probability of 0.95 that it will remain in this state for 𝑃𝑜𝑟𝑡1, while the same probability 

is equal to 0.88 for 𝑃𝑜𝑟𝑡2. If the switching between states is too frequent, it is difficult to anticipate 

the behaviour of the HMM. Therefore, a long regime duration is preferred for most implementations. 

To conclude the analysis of Chart 6.2, it would be interesting to relate the portfolios smoothing 

probability to its conditional standard deviation: 
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Fig. 6.3 Conditional standard deviation 𝑃𝑜𝑟𝑡1. 

 

Fig. 6.4 Smoothing probabilities 𝑃𝑜𝑟𝑡1, two states. 

 

Fig. 6.5 Conditional standard deviation 𝑃𝑜𝑟𝑡2. 

 

Fig. 6.6 Smoothing probabilities 𝑃𝑜𝑟𝑡2, two states. 

Here, one can easily distinguish the difference in regime persistence between the both portfolios. 

𝑃𝑜𝑟𝑡2’s smoothing probabilities (Fig. 6.6) indicate an HMM that switches frequently between the 

two states, while the smoothing probabilities of 𝑃𝑜𝑟𝑡1 (Fig. 6.4) hints to a HMM that stays in each 

state for a more extensive period of time. 

In addition to this, it is also easy to relate the smoothing probabilities to the behaviour of the 

corresponding conditional standard deviation of each portfolio. Where the higher volatilities of the 

financial crisis are evident, throughout observation 500 – 700 approximately, the smoothing 

probabilities of both portfolios demonstrate that state two, the “Bear” regime, is the most probable 

state of the HMM. For 𝑃𝑜𝑟𝑡1, one can also distinguish the calmer time periods with lower volatilities, 

consisting of e.g. observation 1900 – 2100 circa, where state one, the “Bull” regime, is the most 

probable state. 

 

6.3.2 Chart 6.3 
When applying the three-state regime switching model to our portfolios the results differ slightly 

from the two-state scenario. 

Firstly, whereas the two-state model had a clear distinction of which state was more preferred to the 

other, the three-state model displays a less evident separation between states. The norms of the 
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covariance matrices for both portfolios show us that, once again, the regimes are ordered by 

increasing volatilities. State one is the most desirable state with the lowest variances, while state 

three has the highest volatilities. This pattern, however, is not followed by the expected log return 

vectors 𝝁𝟏 - 𝝁𝟑. A quick look at 𝝁𝟏 tells us that state one also has the highest log returns, but for 𝝁𝟐 

and 𝝁𝟑 the results differ. State two always appear to have an expected log return equal to or lower 

than for state three. This makes it harder to rank the states in the same way as for the two-state 

regime switching model, but it doesn’t create a problem for this thesis implementation. Generally, 

one merely has to take risk aversion into account in order to decide whether state two or state three 

is the less desirable state. 

Upon comparison between portfolios the results are similar to the two-state model’s: estimated 

covariances are in general higher for 𝑃𝑜𝑟𝑡1, and the transition probability matrices also indicate a 

higher regime duration than for 𝑃𝑜𝑟𝑡2.  

 

Fig. 6.7 Conditional standard deviation 𝑃𝑜𝑟𝑡1.  

 

Fig. 6.8 Smoothing probability 𝑃𝑜𝑟𝑡1, three states. 

 

Fig. 6.9 Conditional standard deviation 𝑃𝑜𝑟𝑡2. 

 

Fig. 6.10 Smoothing probability 𝑃𝑜𝑟𝑡2, three states. 

The low regime persistence for Port2 (Fig. 6.10) is even more evident in the three-state switching 

model; it is difficult to distinguish what state the HMM is in at all given times in the current scale. 

Nevertheless, the financial crisis is still noticeable throughout observation 500 – 700 circa, where 

state three with the highest variances is indubiously the most probable state for both portfolios. 

To conclude, the estimated BIC’s mentioned in Definition 3.3 indicate that the three-state Markov 

regime switching model gives the best fit to the observed log return in comparison to the two-state 
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model. This goes for both portfolios; the BIC value for the three-state model is lower than for the 

two-state model in both cases. Although this reveals which model of the two is preferable by the 

Bayesian information criterion, it is important to mention that it tells us nothing of how well the 

model fits the data in general. 

A relevant side note is that a four-state regime switching model was also tested for both portfolios, 

although it brought poorer results; the BIC value had increased in comparison to the three-state 

model. Further testing established that the four-state model had a worse fit to our data than the 

other models. In regard to this, only the results of the two- and three-state models will be 

demonstrated and analysed throughout this thesis. 

 

6.4 Normalisation of Residuals 
To see how well the chosen Markov regime switching model fits the selected log return time series in 

a general sense is obviously of great interest, otherwise one might not be able to trust the results. 

Apart from comparing BIC values, this will be done by normalising the residuals after the model has 

been applied to see how well the time series fits the assumption of normal distributed residuals. If 

the assumption is correct, the following statements should be true: 

1) The residuals should not be correlated with another variable. 

2) Adjacent residuals should not be correlated with each other, i.e. there should be no 

autocorrelation between residuals. 

If 1) and 2) are not satisfied, there is most likely some explanatory information that hasn’t been 

captured by the model leaking into the residuals, e.g. a missing interaction between terms in the 

model. If the residuals are autocorrelated there is some predictive information present that is not 

captured by the predictors.  

In order to test if statement 1) and 2) are correct, the estimated residuals of each portfolio will be 

normalised. Each asset’s residuals will be divided by its corresponding standard deviation, conditional 

on what state the HMM is most probable to be in at the given time. To estimate what state the HMM 

has the highest probability of being in at time t, the smoothing probability 𝜋𝑖,𝑡  will be taken into 

account. As mentioned in Definition 3.2, the smoothing probability determines the probability of the 

HMM being in a given state i at time t, conditionally on the set of observations {𝑦1:𝑡+𝜏}, 𝜏 > 0. In this 

case, this set will contain all observations included in the estimation, i.e. {𝑦1:2535}.  

If 𝜋𝑖,𝑡 > 0.5, the residuals 𝜀𝑡 of all stocks of the given portfolio at time t are assumed to be emitted 

from state i, and will consequently be divided by the corresponding standard deviation for state i, 𝜎𝑖. 

By denoting the 2535x7 matrix of normalised residuals 𝜺𝑛𝑜𝑟𝑚 we get the expression: 

                                                           𝜺𝑛𝑜𝑟𝑚 = 𝜺√𝜮𝑖
−1  , 𝑖 𝜖 Ω = {1,… ,𝑁}                                                    (20) 

 

6.4.1 Normalisation of Residuals: Results and Analysis 
Formula (20) was applied to both portfolios, first for the two-state Markov regime switching model, 

then for the three-state model.  

By statement 1) there should be no covariance between the normalised residuals. This means that 

the covariance matrix of the normalised residuals should be close to the identity matrix of matching 
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size. This was tested by taking the norm of the covariance matrix, denoted by 𝜮𝜺𝑛𝑜𝑟𝑚, while 

subtracting the identity matrix; 

                                                                     ‖𝜮𝜺𝑛𝑜𝑟𝑚 − [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

]‖

2

                                                              (21) 

 

Chart 6.4: Results from applying formula (21) to 𝜺𝑛𝑜𝑟𝑚 

Number of states 𝑃𝑜𝑟𝑡1 𝑃𝑜𝑟𝑡2 

2 0.216534 0.125177 

3 0.209483 0.106949 

 

Chart 6.4 reveals that covariance between normalised residuals still can be found, indicating that the 

residuals haven’t been sufficiently standardized since a dependence structure still exists. An 

important observation is, however, that the normalised residuals seem to be more standardized 

when modelled with a switching model with three states instead of two. 

To deduce whether the normalised residuals 𝜺𝑛𝑜𝑟𝑚 follow a normal distribution they will be 

displayed in a normal probability plot:  

 

The plots in Fig. 6.11 and 6.12 demonstrate that 𝜺𝑛𝑜𝑟𝑚 do not completely follow a normal 

distribution, which real data is rarely expected to do. When inspecting the ends of the plots they 

have slopes that are less steep than the fitted line, indicating more outliers. This suggests that the 

distribution of the normalised residuals has larger tails than a normal distribution. Nonetheless, by 

closely observing e.g. the axes one can deduce that the normalised residuals of three-state model 

have fewer extreme outcomes and appear somewhat closer to the fitted line. Thereof, they can be 

assumed closer to a normal distribution than the normalised residuals of the two-state model. 

Fig. 6.11 Normal probability plot of normalised residuals 
𝑃𝑜𝑟𝑡1, two states. 

Fig. 6.12 Normal probability plot of normalised residuals 
𝑃𝑜𝑟𝑡1, three states. 
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The next step is to do a scatter plot of 𝜺𝑛𝑜𝑟𝑚. The aim 

is for the normalised residuals to look as 

homogeneous and stationary as possible, meaning 

there is no dependence structure left between assets. 

The plots demonstrated in the remaining part of this 

section will be for 𝑃𝑜𝑟𝑡1, because of the similarity in 

the results between the portfolios. 

Before applying the model one can deduct from Fig. 

6.13 that the variance of the log return vector Y of 

𝑃𝑜𝑟𝑡1 displays a highly fluctuating behaviour, with 

noticeably higher volatilities e.g. throughout 

observation 500 – 700.  

After applying a two-state Markov regime switching 

model and normalising the residuals (Fig. 6.14) a 

significant improvement is evident. The residuals 

illustrate a relatively homogeneous plot. Yet, upon 

further inspection of the plot, it would seem that the 

normalised residuals are slightly further dispersed 

around observation 500, while they appear more 

collected e.g. nearby observation 1500 – 2000. 

When a three-state model was applied (Fig. 6.15) 

further improvement was evident. The plot of 𝑃𝑜𝑟𝑡1’s 

normalised residuals appears to be, if not completely, 

very close to homogeneous.  

Similar results were obtained when the same 

measures were taken for 𝑃𝑜𝑟𝑡2, only the log return 

were slightly more homogeneous before any model 

was applied. 

This result shows us that there is no dependence 

remaining between assets, and consequently between 

residuals, but only for the same time. Autocorrelation, 

meaning you can use one residual to predict the next 

one, is still a possibility. Theoretically, there should be 

no significant autocorrelation in a financial time series. 

This would imply that e.g. predicting the future value 

of a stock would be possible, which it in light of the 

efficient market hypothesis shouldn’t be because of 

arbitrage.  

By observing the covariance function for each stock in the portfolio, one can verify that there seems 

to be no significant autocovariance, and consequently, no significant autocorrelation. The 

covariances and correlations in Fig. 6.16-6.23 were estimated with a time interval of 100 business 

days. As an example, Fig. 6.16 shows us the covariance function of 𝒀1, i.e. stock number one in 

𝑃𝑜𝑟𝑡1. It is therefore not surprising that the normalised residuals (Fig. 6.17) too appear to be 

uncorrelated, regardless of whether they were modelled with the assumption of two or three states. 

Fig. 6.13 Log return 𝑃𝑜𝑟𝑡1. 

Fig. 6.14 Normalised residuals 𝑃𝑜𝑟𝑡1, two states. 

Fig. 6.15 Normalised residuals 𝑃𝑜𝑟𝑡1, three states. 

Fig. 6.16 Covariance function of log returns  
𝑃𝑜𝑟𝑡1, 𝑠𝑡𝑜𝑐𝑘 1. 
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Matching results were obtained when analysing the 

remaining stocks in 𝑃𝑜𝑟𝑡1, as well as for all stocks in 

𝑃𝑜𝑟𝑡2. 

Although time series of log returns often are without 

any significant autocorrelation, the absolute log 

returns are not. The autocorrelation function of 

absolute returns decays slowly with lag, indicating 

that there is an autocorrelation in the variance of the 

time series (Granger et al, 2000, Rogers et al, 2011). 

This is evident when inspecting Fig. 6.13; after a time 

period of high volatility the returns of the following 

days are also likely to have high variances.  

In order to investigate this, the covariance function of 

the absolute value of the normalised residuals 𝜺𝑛𝑜𝑟𝑚 

of each stock will be plotted and compared to the 

covariance function of the corresponding absolute log 

returns. The trend will also be removed from the plots, 

enabling us to focus the analysis on the fluctuations in 

the data.  

Fig. 6.18 displays a characteristically decaying 

covariance function for the absolute log return of an 

arbitrary stock in 𝑃𝑜𝑟𝑡1, indicating that there is indeed 

correlation in the variance. After applying either the 

two- or three-state model and normalising the 

residuals of either of the portfolios, however, a 

significant improvement can be distinguished. Only the 

two-state case is illustrated (Fig. 6.19), since the three-

state case presented a nearly identical result.  

Now that the autocovariance, and consequently the autocorrelation, of each asset with itself has 

been checked, it is necessary to investigate whether there is significant autocorrelation between 

assets. Similar to the result of the log return of a 

single stock, no significant autocorrelation is 

detected pairwise between stocks either. 

Consequently, the autocovariance of pairwise 

normalised residuals between stocks show no 

considerable result. Fig. 6.20 illustrates the 

correlation function between stock six and stock 

seven in 𝑃𝑜𝑟𝑡1. As predicted, the function 

fluctuates around zero for all time lags greater 

than zero. At time lag zero the autocorrelation of 

each stock with itself reaches the value one, 

illustrating the autovariance of the stock. 

 

 

Fig. 6.17 Covariance function of normalised residuals 
for a two-state model 𝑃𝑜𝑟𝑡1, stock 1. 

Fig. 6.18 Covariance function of absolute log returns 
𝑃𝑜𝑟𝑡1, 𝑠𝑡𝑜𝑐𝑘 1. 

Fig. 6.19 Covariance function of absolute normalised 
residuals for a two-state model 𝑃𝑜𝑟𝑡1, stock 1. 

Fig. 6.20 Correlation function between normalised 
residuals of stock 6 and 7 in 𝑃𝑜𝑟𝑡1, two states. 
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As for the absolute log return, a dependence that 

decays with lag is once again found when checking 

correlation functions pairwise between assets. The 

correlation function between the absolute log 

returns of stock six and seven in 𝑃𝑜𝑟𝑡1 (Fig. 6.21) 

clarifies this. In addition, the cross correlation 

increases considerably at time lag zero, indicating 

a high cross correlation between the assets. The 

correlation functions between all other pairs of 

stocks in 𝑃𝑜𝑟𝑡1 and 𝑃𝑜𝑟𝑡2 followed the same 

pattern.  

After applying a two-state regime switching model 

and normalising the residuals (Fig. 6.22) there is an 

improvement; the correlation function no longer 

shows a dependence decaying with lag, and the 

cross correlation has no increase at time lag zero. 

Although the improvement is evident, there is still 

room for further revision. Upon taking a closer 

look at Fig. 6.22, there is a noticeable gap between 

the autocorrelations of the stocks. The 

autocorrelation of stock seven, represented by the 

yellow line, fluctuates well above zero. This would 

indicate that there is a dependence that hasn’t 

been captured by the model, but this is not 

necessarily the case. The irregularity might just 

indicate a structure breach, e.g. because of the 

vast difference in variance between distinct time 

periods. This was a recurring occurrence when 

analysing pairwise stocks in both portfolios, 

indicating that the model hasn’t successfully 

captured the entire dependence structure of the 

data. 

Applying a three-state regime switching model 

seemed to remedy this. When applied, all pairwise 

correlations of absolute normalised residuals 

showed a more agreeable result (Fig 6.23). The 

realisations of the autocorrelations were 

fluctuating around zero, implying that there is no 

significant dependence structure left after normalisation.  

 

6.5 Conclusion of Practical Implementation Part One 
Implementing a Markov regime switching model to a time series of log returns can be problematic 

when assuming normal distributed residuals. The data might not fit the assumption, and there might 

be dependence structures that are not apprehended by the model.  

Fig. 6.21 Correlation function between absolute log returns 
of stock 6 and 7 in 𝑃𝑜𝑟𝑡1. 

Fig. 6.22 Correlation function between absolute normalised 
residuals of stock 6 and 7 in 𝑃𝑜𝑟𝑡1, two states. 

Fig. 6.23 Correlation function between absolute normalised 
residuals of stock 6 and 7 in 𝑃𝑜𝑟𝑡1, three states. 
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By changing the number of states assumed in the regime switching model it was apparent that one 

can improve the fit of the model, and it was ultimately found that a three-state model was the best 

candidate for both portfolios. This was concluded after finding that the three-state model had the 

lowest BIC value, along with having normalised residuals closest to a normal distribution. The three-

state model also attended most effectively to the autocorrelation of the absolute normalised 

residuals, as it implied that all significant dependence structure was captured by the model. 

It should be noted, however, that the normalised residuals did not completely follow a normal 

distribution. This indicates that the model did not capture the entire behaviour of the time series in a 

satisfactory fashion. 
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7 Practical Implementation Part Two: Allocation Optimization 
As for the second part of this thesis practical implementation, the model with the best fit to our data 

will be used to estimate the weights optimizing the Sharpe ratio of the chosen portfolio. The returns 

of this allocation will then be compared to those of a portfolio of equal weights, containing the same 

assets. 

 

7.1 Practical Details 
The three-state Markov regime switching model was in the first part of the implementation found to 

fit the log return time series the best. It will be implemented on 𝑃𝑜𝑟𝑡1, since the portfolios residuals 

appeared just as homogeneous and independent after normalisation as for 𝑃𝑜𝑟𝑡2, in spite of the far 

higher variations in volatility of the log return before any model was applied.  

The column vector of relative weights 𝒘𝑚𝑎𝑥  optimizing the Sharpe ratio of 𝑃𝑜𝑟𝑡1 will be estimated 

each month under the course of one year, using the previous year as base of observations. The last 

two years of the observations used in part one will be taken into account, i.e. 2014-11-04 – 2016-11-

01. This gives us 500 observations of each stock, making the observed log returns Y a 500x7 matrix. 

The first year, constituted by observation 0-250, will as previously mentioned be used as data base 

when estimating the necessary parameters. Thereafter, the remaining 250 observations will be 

partitioned into 12 subseries, one representing each month. Each subseries will contain 20 

observations except for the last subseries, which will contain 30, in order to take a full year into 

account.  

For each subseries, the column-vector of expected log returns 𝝁̂ and the matrix of expected 

covariances 𝜮̂ will be estimated for the following 20 observations. This estimation will be based on 

the set of parameters {Ѳ} obtained when applying a three-state Markov regime switching model. 

Using these estimates, the relative weights maximising the Sharpe ratio will be estimated, and the 

absolute weights will then be applied to the actual observed log return. This portfolio will be denoted 

𝑃𝑜𝑟𝑡𝐻𝑀𝑀. When this is done, a new estimation of the set of necessary parameters for the regime 

switching model will occur, updating the parameters used to estimate 𝝁̂ and 𝜮̂ for the successive 

subseries of observations.  

Lastly, the outcome will be compared to a portfolio of equal weights, denoted 𝑃𝑜𝑟𝑡𝑒𝑤, containing 

the same stocks. A hypothetical investment of 1 million Swedish crowns (1 MSEK) will be put into 

each of the portfolios. 

 

7.2 The Equal Weight Portfolio 
Before initializing any estimation, a motivation as to why a portfolio of equal weights was chosen as a 

fair adversary to the optimal portfolio 𝑃𝑜𝑟𝑡𝐻𝑀𝑀  is in place. The equal weight strategy, a.k.a. the 

naïve strategy, does not involve any optimization or estimation and completely ignores the data, 

always assigning the relative weight 𝑤𝑒𝑤 =
1

𝑀
 to each of the M assets. 

In spite of the total disregard of the data, it has been found that the equal weight strategy in general 

has Sharpe ratios that are higher, or statistically indistinguishable, relative to a wide range of 

strategies. This particular research includes several portfolio strategies, such as the Bayes-Stein 

shrinkage portfolio, Markowitz mean variance portfolio, etc. The conclusion to this investigation 

announced that no strategy from the optimal models is consistently better than the equal weight 
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strategy, indicating that the errors in estimating returns and covariances erode all the gains from 

optimal diversification (DeMiguel et al, 2007). 

 

7.3 Estimation of 𝝁̂ and 𝜮̂ 
Given that all necessary parameters: {Ѳ} = {(𝜋𝑖), (𝑝𝑖,𝑗), (𝜇𝑖

𝑚), (Σ𝑖
𝑚,𝑛)}, i, j ∈ Ω = {1, 2, … , N},m, n ∈

{1, 2,… ,M} of a Markov regime switching model have been estimated for a certain sequence of log 

returns, it is possible to estimate the expected log returns and covariances for a consecutive 

sequence of not yet observed log returns.  

Let 𝑌̃𝛿 = ∑ 𝑦𝑡
𝛿
𝑡=1  denote the sum of log returns 𝑦𝑡, where 𝛿 is the number of steps, or in our case; 

the number of business days, we want to estimate. One can use the moment generating function of  

𝑌̃𝛿  to estimate the requested parameters. By denoting the moment generating function 𝑀𝛿 we get 

the following formula (Asmussen, 2003): 

                                                           𝑀𝛿(𝑧) = 𝐸[𝑒𝑧·𝑌̃𝛿] = 𝝅0(𝑷𝑒𝐾(𝑧))
𝛿
𝟏𝑁                                                                      

Where; 

𝝅0 denotes the initial probability of the HMM 

𝑷 denotes the transition probability matrix 

N is the HMM’s total number of states  

𝟏𝑁 denotes a size N column-vector of ones  

𝑧 is a column-vector with elements 𝑧1, …, 𝑧𝑀, with M denoting the total number of assets 

K(z) is a diagonal matrix with elements 𝑧′𝝁1 + 𝑧′𝜮1 ∙ 𝑧 2⁄ ,… , 𝑧′𝝁𝑁 + 𝑧′𝜮𝑁 ∙ 𝑧 2⁄ , where 𝝁𝑖  and 𝜮𝑖  

denotes the expected log return vector and covariance matrix of the HMM in state i, respectively. 

It is now possible to express the estimated expected log return for the consecutive time period 𝛿 of 

stock m as: 

                                                         𝜇̂𝑚 = 𝐸[𝑒𝑌̃𝛿
𝑚
] − 1 = 𝐸[𝑒𝑰𝑚

′ ·𝑌̃𝛿] − 1 = 𝑀𝛿(𝑰𝑖) − 1                                                         

Where 𝑰𝑚 denotes column m in a MxM identity matrix. 

In addition to this, the covariance between asset m and n, i.e. element (m,n) in the estimated 

covariance matrix 𝜮̂, can be obtained by the following formula: 

𝛴̂𝑚,𝑛 = 𝐸 [𝑒𝑌̃𝛿
𝑚

+𝑌̃𝛿
𝑛

] − 𝐸 [𝑒𝑌̃𝛿
𝑚

] 𝐸 [𝑒𝑌̃𝛿
𝑛

] = 𝐸[𝑒(𝑰𝑚+𝑰𝑛)′·𝑌̃𝛿] − 𝐸 [𝑒𝑰𝑚
′·𝑌̃𝛿] 𝐸 [𝑒𝑰𝑛

′·𝑌̃𝛿]

= 𝑀𝛿(𝑰𝑚 + 𝑰𝑛) − 𝑀𝛿(𝑰𝑚)𝑀𝛿(𝑰𝑛) 
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7.3.1 Estimation of 𝝁̂ and 𝜮̂: Results 
Chart 7.1: 𝝁̂ and 𝜮̂ for 𝑃𝑜𝑟𝑡1 

Subseries 
index 

𝝁̂ 𝜮̂ 

 
1 

 

𝝁̂1 =

[
 
 
 
 
 
 

0.0081
−0.0012
0.0044
0.0108
0.0302
0.0020
0.0018 ]

 
 
 
 
 
 

 

 

𝜮̂1 =

[
 
 
 
 
 
 
0.0046  0.0035  0.0031  0.0026  0.0029  0.0030  0.0030
0.0035  0.0054  0.0034  0.0024  0.0028  0.0035  0.0030
0.0031  0.0034  0.0041  0.0018  0.0021  0.0031  0.0030
0.0026  0.0024  0.0018  0.0035  0.0030  0.0021  0.0019
0.0029  0.0028  0.0021  0.0030  0.0043  0.0023  0.0023
0.0030  0.0035  0.0031  0.0021  0.0023  0.0041  0.0030
0.0030  0.0030  0.0030  0.0019  0.0023  0.0030  0.0036]

 
 
 
 
 
 

 

 
2 

 

𝝁̂2 =

[
 
 
 
 
 
 
−0.0103
−0.0170
−0.0210
−0.0168
−0.0030
−0.0207
−0.0212]

 
 
 
 
 
 

 

 

𝜮̂2 =

[
 
 
 
 
 
 
0.0273  0.0259  0.0256  0.0252  0.0258  0.0256  0.0253
0.0259  0.0277  0.0256  0.0251  0.0255  0.0259  0.0255
0.0256  0.0256  0.0264  0.0243  0.0248  0.0257  0.0252
0.0252  0.0251  0.0243  0.0262  0.0261  0.0246  0.0243
0.0258  0.0255  0.0248  0.0261  0.0275  0.0252  0.0249
0.0256  0.0259  0.0257  0.0246  0.0252  0.0267  0.0253
0.0253  0.0255  0.0252  0.0243  0.0249  0.0253  0.0258]

 
 
 
 
 
 

 

 

 
3 

 

𝝁̂3 =

[
 
 
 
 
 
 
0.0081
0.0044
0.0012
0.0108
0.0302
0.0020
0.0018]

 
 
 
 
 
 

 

 

𝜮̂3 =

[
 
 
 
 
 
 
0.0046  0.0035  0.0031  0.0026  0.0029  0.0030  0.0030
0.0035  0.0054  0.0034  0.0024  0.0028  0.0035  0.0030
0.0031  0.0034  0.0041  0.0018  0.0021  0.0031  0.0030
0.0026  0.0024  0.0018  0.0035  0.0030  0.0021  0.0019
0.0029  0.0028  0.0021  0.0030  0.0043  0.0023  0.0023
0.0030  0.0035  0.0031  0.0021  0.0023  0.0041  0.0030
0.0030  0.0030  0.0030  0.0019  0.0023  0.0030  0.0036]

 
 
 
 
 
 

 

 
4 

 

𝝁̂4 =

[
 
 
 
 
 
 

0.0021
0.0008

−0.0153
0.0078
0.0235

−0.0064
−0.0048]

 
 
 
 
 
 

 

 

𝜮̂4 =

[
 
 
 
 
 
 
0.0040  0.0033  0.0029  0.0023  0.0025  0.0029  0.0027
0.0033  0.0052  0.0033  0.0024  0.0025  0.0036  0.0031
0.0029  0.0033  0.0041  0.0018  0.0020  0.0033  0.0030
0.0023  0.0024  0.0018  0.0035  0.0030  0.0022  0.0019
0.0025  0.0025  0.0020  0.0030  0.0041  0.0023  0.0020
0.0029  0.0036  0.0033  0.0022  0.0023  0.0047  0.0031
0.0027  0.0031  0.0030  0.0019  0.0020  0.0031  0.0035]

 
 
 
 
 
 

 

 
5 

 

𝝁̂5 =

[
 
 
 
 
 
 
−0.0396
−0.0423
−0.0429
−0.0365
−0.0305
−0.0451
−0.0473]

 
 
 
 
 
 

 

 

𝜮̂5 =

[
 
 
 
 
 
 
0.0475  0.0467  0.0465  0.0456  0.0463  0.0461  0.0458
0.0467  0.0487  0.0471  0.0457  0.0462  0.0469  0.0462
0.0465  0.0471  0.0482  0.0453  0.0458  0.0470  0.0463
0.0456  0.0457  0.0453  0.0466  0.0466  0.0451  0.0450
0.0463  0.0462  0.0458  0.0466  0.0484  0.0458  0.0456
0.0461  0.0469  0.0470  0.0451  0.0458  0.0478  0.0460
0.0458  0.0462  0.0463  0.0450  0.0456  0.0460  0.0467]

 
 
 
 
 
 

 

 
6 

 

𝝁̂6 =

[
 
 
 
 
 
 

0.0017
−0.0043
−0.0074
0.0070
0.0185

−0.0084
−0.0037]

 
 
 
 
 
 

 

 

𝜮̂6 =

[
 
 
 
 
 
 
0.0049  0.0036  0.0037  0.0028  0.0031  0.0036  0.0035
0.0036  0.0055  0.0040  0.0029  0.0030  0.0041  0.0036
0.0037  0.0040  0.0053  0.0024  0.0027  0.0042  0.0038
0.0028  0.0029  0.0024  0.0038  0.0033  0.0024  0.0024
0.0031  0.0030  0.0027  0.0033  0.0046  0.0028  0.0027
0.0036  0.0041  0.0042  0.0024  0.0028  0.0052  0.0038
0.0035  0.0036  0.0038  0.0024  0.0027  0.0038  0.0045]

 
 
 
 
 
 

 

 
7 

 

𝝁̂7 =

[
 
 
 
 
 
 

0.0143
0.0005

−0.0004
0.0088
0.0205
0.0013
0.0017 ]

 
 
 
 
 
 

 

 

𝜮̂7 =

[
 
 
 
 
 
 
0.0047  0.0039  0.0035  0.0026  0.0029  0.0035  0.0033
0.0039  0.0059  0.0042  0.0027  0.0028  0.0042  0.0038
0.0035  0.0042  0.0055  0.0020  0.0023  0.0043  0.0036
0.0026  0.0027  0.0020  0.0039  0.0034  0.0022  0.0022
0.0029  0.0028  0.0023  0.0034  0.0049  0.0025  0.0027
0.0035  0.0042  0.0043  0.0022  0.0025  0.0056  0.0038
0.0033  0.0038  0.0036  0.0022  0.0027  0.0038  0.0047]
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8 

 

𝝁̂8 =

[
 
 
 
 
 
 

0.0053
−0.0073
0.0005
0.0121
0.0114
0.0006

−0.0009]
 
 
 
 
 
 

 

 

𝜮̂8 =

[
 
 
 
 
 
 
0.0045  0.0038  0.0036  0.0026  0.0026  0.0035  0.0031
0.0038  0.0058  0.0041  0.0026  0.0026  0.0041  0.0038
0.0036  0.0041  0.0056  0.0022  0.0021  0.0042  0.0037
0.0026  0.0026  0.0022  0.0037  0.0030  0.0022  0.0022
0.0026  0.0026  0.0021  0.0030  0.0042  0.0025  0.0024
0.0035  0.0041  0.0042  0.0022  0.0025  0.0053  0.0036
0.0031  0.0038  0.0037  0.0022  0.0024  0.0036  0.0045]

 
 
 
 
 
 

 

 
9 

 

𝝁̂9 =

[
 
 
 
 
 
 

0.0039
−0.0022
−0.0107
0.0111
0.0140

−0.0087
−0.0013]

 
 
 
 
 
 

 

 

𝜮̂9 =

[
 
 
 
 
 
 
0.0049  0.0039  0.0040  0.0027  0.0031  0.0036  0.0036
0.0039  0.0065  0.0045  0.0029  0.0030  0.0042  0.0039
0.0040  0.0045  0.0059  0.0025  0.0028  0.0046  0.0041
0.0027  0.0029  0.0025  0.0041  0.0035  0.0023  0.0025
0.0031  0.0030  0.0028  0.0035  0.0049  0.0027  0.0031
0.0036  0.0042  0.0046  0.0023  0.0027  0.0056  0.0039
0.0036  0.0039  0.0041  0.0025  0.0031  0.0039  0.0050]

 
 
 
 
 
 

 

 
10 

 

𝝁̂10 =

[
 
 
 
 
 
 
0.0136
−0.0007
−0.0094
0.0094
0.0175
−0.0015
0.0024 ]

 
 
 
 
 
 

 

 

𝜮̂10 =

[
 
 
 
 
 
 
0.0053  0.0038  0.0039  0.0028  0.0028  0.0036  0.0034
0.0038  0.0062  0.0043  0.0026  0.0026  0.0042  0.0037
0.0039  0.0043  0.0055  0.0022  0.0024  0.0043  0.0040
0.0028  0.0026  0.0022  0.0038  0.0033  0.0021  0.0022
0.0028  0.0026  0.0024  0.0033  0.0046  0.0023  0.0026
0.0036  0.0042  0.0043  0.0021  0.0023  0.0054  0.0037
0.0034  0.0037  0.0040  0.0022  0.0026  0.0037  0.0051]

 
 
 
 
 
 

 

 
11 

 

𝝁̂11 =

[
 
 
 
 
 
 
0.0058
−0.0005
−0.0026
0.0122
0.0211
−0.0040
0.0023 ]

 
 
 
 
 
 

 

 

𝜮̂11 =

[
 
 
 
 
 
 
0.0047  0.0036  0.0036  0.0026  0.0028  0.0035  0.0032
0.0036  0.0059  0.0042  0.0027  0.0026  0.0042  0.0038
0.0036  0.0042  0.0057  0.0023  0.0024  0.0045  0.0038
0.0026  0.0027  0.0023  0.0039  0.0034  0.0022  0.0024
0.0028  0.0026  0.0024  0.0034  0.0046  0.0025  0.0027
0.0035  0.0042  0.0045  0.0022  0.0025  0.0055  0.0037
0.0032  0.0038  0.0038  0.0024  0.0027  0.0037  0.0047]
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𝝁̂12 =

[
 
 
 
 
 
 
0.0136
−0.0005
0.0036
0.0208
0.0278
0.0040
0.0057 ]

 
 
 
 
 
 

 

 

𝜮̂12 =

[
 
 
 
 
 
 
0.0068  0.0053  0.0053  0.0036  0.0041  0.0051  0.0048
0.0053  0.0085  0.0061  0.0035  0.0037  0.0062  0.0054
0.0053  0.0061  0.0080  0.0031  0.0036  0.0064  0.0057
0.0036  0.0035  0.0031  0.0054  0.0044  0.0031  0.0030
0.0041  0.0037  0.0036  0.0044  0.0065  0.0036  0.0037
0.0051  0.0062  0.0064  0.0031  0.0036  0.0081  0.0057
0.0048  0.0054  0.0057  0.0030  0.0037  0.0057  0.0068]

 
 
 
 
 
 

 

 

7.4 Estimation of 𝒘𝑚𝑎𝑥   
The estimates 𝝁̂ and 𝜮̂ announced in Chart 7.1 are subsequently used to, for each subseries, find the 

relative portfolio weights 𝒘𝑚𝑎𝑥  that maximize the Sharpe ratio 𝑆𝑝 of the selected portfolio: 

                                                                              𝑆𝑝 =
𝜇𝑝−𝜇𝑓

𝜎𝑝
                                                                              (22) 

Where; 

𝜇𝑝 denotes the expected return of portfolio p 

𝜇𝑓  denotes the risk-free rate of return 

𝜎𝑝 denotes the standard deviation of portfolio p 

For simplicity, this implementation will have the risk-free rate of return set to zero, meaning that 

equation (22) will simply be composed of the expected return divided by the standard deviation of 

the portfolio. In addition, no short selling is allowed, making all weights positive. When conducting 

pure investment the positive weight strategy is often preferred, e.g. because of the impossibility of 

losing more capital than the invested amount. 
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Denote the column-vector of relative portfolio weights 𝒘. The aim is to find the weights that 

maximize the Sharpe ratio. Expressing (22) in matrix form, with a zero-risk-free rate return, one 

wants to maximize the following formula with respect to 𝒘:  

                                                                  𝑚𝑎𝑥𝒘 𝑆𝑝 = 𝑚𝑎𝑥𝒘  
𝒘′𝝁̂

√𝒘′𝜮̂𝒘
                                                                 

All weights need to sum up to one and be positive, so the following conditions are imposed on the 

elements of 𝒘:  

∑𝑤𝑖

𝑀

𝑖=1

= 1 

𝑤𝑖 ≥ 0,   𝑖 𝜖 {1,… ,𝑀} 

With M denoting the total number of assets. 

 

7.4.1 Estimation of 𝒘𝑚𝑎𝑥: Results 
Chart 7.2: 𝒘𝑚𝑎𝑥  (transposed) for 𝑃𝑜𝑟𝑡1 

Subseries Index 𝒘𝒎𝒂𝒙   

1 𝒘1
𝑚𝑎𝑥′

= [0.000 0.000 0.000 0.000 1.000 0.000 0.000]  

2 𝒘2
𝑚𝑎𝑥′

= [0.000 0.000 0.000 0.000 1.000 0.000 0.000] 

3 𝒘3
𝑚𝑎𝑥′

= [0.000 0.000 0.000 0.000 1.000 0.000 0.000] 

4 𝒘4
𝑚𝑎𝑥′

= [0.000 0.000 0.000 0.000 1.000 0.000 0.000] 

5 𝒘5
𝑚𝑎𝑥′

= [0.000 0.000 0.000 0.000 1.000 0.000 0.000] 

6 𝒘6
𝑚𝑎𝑥′

= [0.000 0.000 0.000 0.000 1.000 0.000 0.000] 

7 𝒘7
𝑚𝑎𝑥′

= [0.000 0.000 0.000 0.000 1.000 0.000 0.000]  

8 𝒘8
𝑚𝑎𝑥′

= [0.000 0.000 0.000 0.760 0.240 0.000 0.000]  

9 𝒘9
𝑚𝑎𝑥′

= [0.000 0.000 0.000 0.235 0.765 0.000 0.000]  

10 𝒘10
𝑚𝑎𝑥′

= [0.195 0.000 0.000 0.000 0.805 0.000 0.000]  

11 𝒘11
𝑚𝑎𝑥′

= [0.000 0.000 0.000 0.000 1.000 0.000 0.000] 

12 𝒘12
𝑚𝑎𝑥′

= [0.000 0.000 0.000 0.191 0.809 0.000 0.000]  

 

 

7.5 Implementation of Estimates 
The parameters 𝝁̂, 𝜮̂ and 𝒘𝑚𝑎𝑥  estimated in this section will set the foundation for the allocation of 

our optimal portfolio 𝑃𝑜𝑟𝑡𝐻𝑀𝑀.  

Before implementing the optimal weights, the absolute weights must be calculated for each 

subseries. These are the weights that will be implemented on the observed return. Denoting the 

optimal absolute returns of asset m at time t ℎ𝑡
𝑚, this is done by applying the following formula: 

                                                                        ℎ𝑡
𝑚 =

𝑃𝑡∙𝑰𝑡𝒘
𝑚𝑎𝑥′

𝑐𝑡
𝑚                                                                              (23) 
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Where: 

𝑐𝑡
𝑚 denotes the closing price of stock m at time t 

𝑃𝑡 denotes the compound return of the investment at time t 

 Equivalent calculations are done for the equal weight portfolio, 𝑃𝑜𝑟𝑡𝑒𝑤, only the relative weights are 

at all times equal to 𝑤𝑒𝑤 =
1

𝑀
 for each of the M assets. 

The optimal weights given by (23) will be calculated for each subseries and the allocations will be 

updated accordingly. A hypothetical amount of 1 MSEK will be invested into the first allocation, and 

the entire return will then be reinvested one month apart in every subsequent allocation. All along, 

the same investment will be put into 𝑃𝑜𝑟𝑡𝑒𝑤. The log returns and compound returns of both 

portfolios will be announced and compared throughout the entire year. 

 

7.5.1 Implementation of Estimates: Results 
Chart 7.3: 𝑃𝑜𝑟𝑡𝐻𝑀𝑀  vs. 𝑃𝑜𝑟𝑡𝒆𝒘 

Subseries 
Index 

Log Return 
𝑷𝒐𝒓𝒕𝑯𝑴𝑴   

Compound Return SEK 
𝑷𝒐𝒓𝒕𝑯𝑴𝑴 

Log Return 
 𝑷𝒐𝒓𝒕𝒆𝒘   

Compound return SEK 
𝑷𝒐𝒓𝒕𝒆𝒘 

1     0.0098    1 009 772     0.0045   1 004 493 

2    -0.1258    882 736    -0.0058   998 665 

3     0.1365    1 003 257     0.0429   1 041 490 

4     0.0227    1 026 059     0.0142   1 056 276 

5     0.1238    1 153 094     0.0559   1 115 323 

6     0.0452    1 205 212     0.0061   1 122 147 

7     0.0108    1 218 241    -0.0151   1 105 229 

8    -0.0272    1 185 144     0.0156   1 122 432 

9     0.0166    1 204 784    -0.0168   1 103 585 

10    -0.0318    1 166 529    -0.0471   1 051 604 

11    -0.0572    1 099 779    -0.0152   1 035 576 

12    -0.0575    1 036 544    -0.0455   988 422 

 

 

7.6 Implementation of Estimates: Analysis 
Chart 7.3 presents the obtained results when allocating 𝑃𝑜𝑟𝑡𝐻𝑀𝑀  according to our estimated 

absolute weights. To get an overview of the progress of our investment, Fig. 7.1 shows us the 

development of the compound return of both portfolios.  
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According to Chart 7.3, 𝑃𝑜𝑟𝑡𝐻𝑀𝑀  ended up 

with a yearly return of approximately 3.65 %, 

while 𝑃𝑜𝑟𝑡𝑒𝑤 held a negative yearly return of 

circa -1.16 %. One could thereof reach the 

conclusion that the portfolio modelled with a 

three-state regime switching model 

outperformed the equal weight portfolio.  

Upon taking a more sceptical look at the 

results, however, it is found that the log 

returns of 𝑃𝑜𝑟𝑡𝐻𝑀𝑀  show significantly larger 

fluctuations, indicating higher volatilities. This, 

of course, presents considerably higher risks, 

and a risk avert investor would likely refrain 

from such an investment. 

A closer look at Fig. 7.1 declares that although the compound return of 𝑃𝑜𝑟𝑡𝐻𝑀𝑀  at most observed 

times is decidedly higher than that of 𝑃𝑜𝑟𝑡𝑒𝑤, a large dive can be noted at time two, i.e. at the 

second observed month. When consulting the chart, a significant negative return of -12.58 % can be 

deduced at the given time. The dive is all but recovered in the third subseries, when a return of 13.65 

% is presented. Nevertheless, this substantiates the previous statement of high volatilities.  

It would have been interesting to include a comparison of the portfolios Sharpe ratios, but this 

proved difficult to implement as the data points of the evaluation are too few. 

An important side note is the extreme allocations demonstrated by the Sharpe ratio-maximising 

relative weights 𝒘𝑚𝑎𝑥  presented in Chart 7.2. Going by the chart, all weight is to be put into one 

single asset at most times. A diversifying strategy, i.e. a portfolio constructed of different assets, is 

often found favourable. The reason for this is that a more diversified portfolio, on average, pose a 

lower risk than any individual investment found within the portfolio.  

In brief, it seems that according to this evaluation the results are inconclusive. In spite of the on 

average larger returns of 𝑃𝑜𝑟𝑡𝐻𝑀𝑀, the considerably smaller fluctuations of the returns of the equal 

weight portfolio makes it more attractive to a risk avert investor. It is uncertain whether the 

implementation of the Markov regime switching model led to a more favourable portfolio allocation. 

To increase the credibility in the results, this could perhaps be remedied by e.g. a larger sample. 

 

 

 

 

 

 

 

 

 

Fig. 7.1 Compound return (MSEK) of 𝑃𝑜𝑟𝑡𝐻𝑀𝑀 and 𝑃𝑜𝑟𝑡𝑒𝑤. 
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8 Conclusions and Discussion 
In the first part of the implementation of the Markov regime switching model to the Stockholm stock 

market it was demonstrated that a three-state model was preferred over a two-state model. This 

was indicated by the fact that the three-state model had a lower BIC value, along with the overall 

better fit to the time series of observed log returns. The three-state model also attended most 

efficiently to the autocorrelation of the absolute normalised residuals, implying that all significant 

dependence structure was captured by the model. In addition to this, the normalised residuals of the 

three-state model proved slightly closer to a normal distribution.  

However, by observing a normal probability plot of the normalised residuals, one can also conclude 

that said residuals were not entirely normal distributed. Real data often demonstrate this type of 

complication, since observed residuals rarely act completely in accordance with any distribution. This 

presents a complication, since the Markov regime switching model assumes normal distributed 

residuals when estimating the parameters. Consequently, the chosen Markov regime switching 

model might not have an as satisfactory fit to the data as assumed in this thesis, leading to a 

decrease in credibility in the results. 

Part two of the implementation showed us that regarding yearly return, the portfolio modelled by a 

three-state Markov regime switching model outperformed the equal weights-portfolio. As to which 

portfolio was preferred over the other, however, the results were uncertain. 𝑃𝑜𝑟𝑡𝐻𝑀𝑀  displayed 

significantly larger volatilities exposing the investor to larger risks.  

Worth to mention is the size of the implemented subseries; since a year consisted of 250 

observations, each month, save for the last, was represented by 20 observations for simplicity. 

Looking at a real almanac, this is of course not the case.  

Another issue with the implementation was the extreme allocations that were estimated for 

𝑃𝑜𝑟𝑡𝐻𝑀𝑀. Putting one’s entire investment into one asset increases the exposure to the particular 

assets risk, which is why a more diversified strategy is to be preferred.  

Despite of apparent complications, we cannot escape the fact that the implementation of the 

Markov regime switching model led to a considerable improvement in the autocorrelation of the 

absolute residuals. These results, along with the increased homogeneity of said residuals indicates 

that most of the significant dependence structure has been captured, in particular by the three-state 

model. The poor results found in the second part of the implementation may have been due to a too 

small sample size. 

 

8.1 Difficulties and Further Research 
Due to the assumption of normal distributed residuals not being entirely fulfilled, all significant 

information may not have been caught by the model. A similar study, with e.g. an assumption of 

generalized error distributed residuals, might yield more trustworthy results and would therefore be 

interesting to read.  

In acknowledgement of the inconclusiveness of the second implementation, a larger sample could 

with advantage be taken into regard. Because of the amount of computation time involved, this was 

not possible to implement for this thesis. 
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Populärvetenskaplig Sammanfattning 

Finansiella tidsseriers oförutsägbara beteende har länge varit ett bekymmer för ekonometriker. Det 

är en utmaning att hitta lämpliga modeller som tar hänsyn till strukturskiftningarna som uppstår i 

tidsseriernas uppträdande. En Markov regim switching modell är ett populärt redskap, mycket tack 

vare det sätt den behandlar förändringar i en tidsseries beteende. 

Anta att en tidsserie kan beskrivas med hjälp av olika regimer, eller tillstånd, vilka tilldelas 

allteftersom tidsseriens beteende förändras. Bytesmekanismen som bestämmer övergången från en 

regim till en annan styrs av en gömd Markov modell. En gömd Markov modell är en statistisk modell 

som används för att modellera processer, där man tänker sig att ett system kan beskrivas som en 

mängd tillstånd vilka man rör sig mellan enligt en Markovprocess. Modellen i denna avhandling är 

baserad på en blandning av normalfördelningar, mellan vilka tidserien rör sig vid regimbyte. Enligt 

egenskaper hämtade från denna modell så beror tidsseriens aktuella värde endast på det absolut 

senaste värdet. Det innebär att en struktur i en tidsseries beteende kan råda under en slumpmässig 

tidsperiod, innan den blir ersatt av en annan struktur när regimbytet sker. På detta sätt kan en 

Markov regim switching modell fånga mycket komplexa dynamiska mönster. 

Modellen applicerades på två portföljer, bestående av vardera sju aktier från Stockholmsbörsen. 

Efter åtskilliga examinationer var det tydligt att modellens lämplighet, främst utifrån hur väl den 

passade de utvalda finansiella tidsserierna, kunde förbättras genom att ändra antalet regimer i 

modellen. Bland annat kontrollerades hur väl de standardiserade residualerna följde en 

normalfördelning, samt hurvida någon beroendestruktur återfanns hos residualerna efter 

normalisering. Det konstaterades följaktligen att en Markov regim switching modell med tre regimer 

var mest fördelaktig. Anpassningen till portföljernas tidsserier var dock inte optimal. 

Modellen med tre regimer implementerades således på en av portföljerna, som sedan allokerades i 

syfte att maximera Sharpe kvoten, som mäter den riskjusterade avkastningen. Detta ledde till 

extrema portföljvikter, med allt kapital investerat i en enda aktie vid de flesta tidpunkter, vilket anses 

ofördelaktigt ur riskspridningssynpunkt. Vid jämförelse med likaviktad portfölj, innehållande samma 

aktier, blev resultaten dessvärre inte tillfredställande. Trots en högre årlig avkastning påvisade den 

modellerade portföljen betydligt högre volatilitet. Det var alltså inte möjligt att avgöra huruvida 

appliceringen av en Markov regim switching modell ledde till en mer gynnsam allokering i en 

underökning av föreliggande omfattning.  

Trots uppenbara komplikationer medförde appliceringen av modellen en betydande förbättring 

rörande residualernas beroendestruktur. Autokorrelationen i den absoluta avkastningen minskade 

avsevärt, samtidigt som de standardiserade residualerna fick ett mer homogent utseende. Detta 

leder till slutsatsen att det mesta av tidsseriernas beroendestruktur fångats upp, i synnerhet av 

Markov regim switching modellen med tre regimer. Implementeringens svaga resultat kan möjligtvis 

förklaras av att den utfördes över ett för litet urval. 


