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Abstract

The unpredictable behaviour of financial time series has long been a concern for econometricians,
making it difficult to find appropriate models with a satisfactory fit. The Markov regime switching
model is a popular approach, much in behalf of the way it takes the shifts in the time series
behaviour into account.

The model in this thesis is based on a mixture of normal distributions, extended to include a Markov
switching behaviour. As the behaviour of the time series changes, regime switches are assigned to it,
making the time series alternate between a predetermined number of states.

After the implementation, on two portfolios a seven stocks selected from the Stockholm stock
market, the examinations indicated that the fit of the model could be improved by changing the
number of states assumed in the estimation. It was found that a Markov regime switching model
with three states had the most satisfactory fit to the time series. Subsequently, one of the modelled
portfolios was allocated to maximize the Sharpe ratio. This led to some unfavourable extreme
allocations, and upon comparison with a portfolio of equal weights containing the same assets the
results were poor. Despite a higher yearly return, the modelled portfolio displayed significantly larger
volatilities, leaving the results of this evaluation inconclusive. Nevertheless, the implementation lead
to a significant improvement in the autocorrelation of the absolute residuals, along with giving the
residuals a substantially more homogenic appearance. These results indicate that most of the
significant dependence structure has been captured, in particular by the three-state model.



1 Introduction

The Markov regime switching model, first described by G. Lindgren, 1978, is a type of specification in
which the main point is handling processes driven by different states, or regimes, of the world. In this
model, the observed time series are assumed to follow a non-linear stationary process. The
behaviour of the time series is characterized by multiple equations, decided by the different states of
the model.

What separates the Markov regime switching model from other switching models is that the
switching mechanism is controlled by an unobservable variable that follows a hidden Markov chain.
By Markov properties, the current value of the variable depends only on its immediate past value.
This means that a structure in the series may prevail for a random period of time, before being
replaced by another structure when a switching takes place. This way, the Markov regime switching
model is able to capture more complex dynamic patterns.

Financial time series occasionally display dramatic breaks in their behaviour, due to e.g. financial
crises. Therefore, the idea of the financial market finding itself in different states at different times
becomes appealing. Furthermore, it has been found that financial time series exhibit some
formalised facts which can advantageously be reproduced by a hidden Markov model. This has made
the Markov regime switching model one of the most popular nonlinear time series models in the
literature (Cont, 2001, Hamilton, 1989, 2005, Lindgren, 1978).

1.1 Thesis Statement

The aim with this thesis is to explain the Markov regime switching model in a detailed and
comprehensible way, and provide a complete description of the practical implementation to the
Stockholm stock market. A portfolio containing seven stocks will be modelled according to a chosen
Markov regime switching model. This portfolio will then be allocated to maximize the Sharpe ratio,
and finally compared to a portfolio of equal weights.



2 The Hidden Markov Model

A hidden Markov model (HMM) is a bivariate discrete time process {S, Y; }+»0, where {S;}is an
underlying Markov chain and {Y;} is a sequence of independent random variables, of which follows
that the conditional distribution of Y; only depends on S;. Since the Markov chain S; is hidden, only
the stochastic process {Y;} is available to the observer. In other words, the state of the process is not
directly visible, but the output process, dependent on the state, is visible. This means that all
statistical inference has to be done in terms of the output stochastic process {Y;} only, as {S;}is not
possible to observe (Rydén et al, 2005).

A HMM has an interesting dependence structure, which comes handy when dealing with e.g.
financial time series. To get an intuitive hint as to how this dependence works, it is here represented
by a graphical model:
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Fig. 2.1 Graphical representation of the dependence structure of a HMM.

As Figure 2.1 implies, the distribution of a variable Sy, 4 conditional on the history of the process Sy, .
.., S, is determined only by the value of the preceding variable, S;. This is all according to the
Markov property, where future events are completely independent of the past, depending only on
the present state. In addition, the distribution of ¥; conditionally on the past observations Yy, . . .,
Y;_1 and the past values of the state, S, . . ., S;, is determined by S; only (Rydén et al, 2005). Putting
this into mathematical terms, we get the following properties:

f(Ses11Ses s S1) = f(Se411S) (1)
felSeq, s S0, Yeon, -, Y1) = fF(Y2Se) (2)

2.1 Assumptions of the Hidden Markov Model
A few assumptions on the HMM used in this thesis need to be specified in order to make use of the
model.

First of all, the hidden Markov chain is assumed to be time-independent. This means that the
transition probabilities of the chain;

Di,j =P(Se =jISt-1 =) =P(Se =jISt—-1 =10, St =k, ...,S5, = 1) (3)

between two states i and j in a finite state space Q = {1, ..., N} needs to be constant over time. This is
convenient, since said transition probabilities and the Markov chain’s set of initial probabilities;

;= P(S; =1)

are all that is needed to define the dynamic of the HMM.



Secondly, the Markov chain is assumed to be ergodic, i.e. aperiodic and positive recurrent. This is
necessary in order to ensure consistency of the estimates of the model (Campigotto, 2009).

3 Definitions
Before postulating a more specific model there are a few definitions to be stated that will be referred
to throughout the thesis:

Definition 3.1 A HMM's filter probability, in this thesis referred to as a; ¢, is defined as the probability
of the underlying Markov chain being in a given state i at time t, conditionally on a set of
observations {yy..}; a; ¢ = P(S = i | y1.¢)-

Definition 3.2 The smoothing probability of a HMM, referred to as m; ; , determines the probability of
the underlying Markov chain being in a given state i at time t, conditionally on a set of observations

Wrteclh it = P(Se = 0| Y1:41), T>0.

Definition 3.3 The Bayesian information criterion (BIC) is a criterion for model selection among a
finite set of models, where the model with the lowest BIC is preferred. While adding parameters to a
model may increase the likelihood, it may also result in overfitting. BIC solves this issue by
introducing a penalty term for the number of parameters. Formal definition: BIC = —2 - In(L™**) +
k - In(n), where L™** = the maximized value of the likelihood function of the model, n = the
number of observations and k = the number of parameters to be estimated.



4 Method: Specification of Chosen Markov Regime Switching Model
The model applied in this thesis is grounded on a mixture of normal distributions, based mainly on
Campigotto, 2009, Hamilton, 2005 and Perlin, 2015.

Assume that the typical historical behaviour of a financial time series can be described by the
following process:

Yo =us, + & (4)
Where;
Y; is the observed return of the time series at time t
Us, is the intercept, or expected return, while in state S;
& is a normal random stochastic variable, & ~ N(O, a_gt)

This is a simple case of a model with a switching dynamic. The model in equation (4) is switching
states with respect to an indicator value S, meaning that with N states there will be N values for g,

and aszt. Here, the residuals &; are assumed to be normal distributed.

4.1 Markov Regime Switching Model with N Regimes

Now, assume that the number of states (or regimes) is N, i.e. S; € Q ={1, ..., N}. This implies that e.g.
the log returns of a financial time series are drawn from N distinct normal distributions, depending
on what state the HMM is currently in. This would give us the following model to work with:

Y =y +¢& forstatel (5)

Y; = u, + & forstate 2 (6)

Y = uy + & forstateN (7)
Where;

& ~N(0,0?) forstatel (8)

g ~N(0,0%) forstate 2 (9)

g ~N(0,0%) forstate N (10)

This means that when the state of the HMM for time tis 1, then the expectation of the dependent
variable is u; and the variance of the innovations is o7, etc.

Since the underlying Markov chain is hidden one cannot observe what state the HMM is in directly,
but only deduce its operation through the observed behaviour of Y;. In order to attain the probability
law governing the observed data Y; a probabilistic model of what causes the change from state S; =i
to state S; =j is required. This can be specified using the transition probabilities of an N state HMM
(Hamilton, 2005);



pij =P =jlSi—1 =1 i,jeQ = {1,2,..,N} (11)

The transition probability (11) is by the Markov property described in (3) dependent of the past only
through the value of the most recent state. This is one of the central points of the structure of a

Markov regime switching model, i.e. the switching of the states of the underlying HMM is a
stochastic process itself.



5 Parameter Estimation

There are several ways to estimate the required parameters of the N-state Markov regime-switching
model given by (5) - (10), e.g. by using the EM algorithm from Dempster et al., 1977. In the
framework of this thesis, however, the parameters will be estimated using maximum likelihood.

5.1 Maximum Likelihood Estimation

Consider the model given by equation (5) — (10), i.e. a Markov regime-switching model with N
regimes. The estimation will be performed using Hamilton’s filter, where the main idea is to calculate
each state’s filter probabilities by making inferences on each state’s unknown probabilities based on
the available information. When the filter probabilities are obtained, we have the probabilities one
needs for calculating the log likelihood of the model.

5.1.1 Calculating the Filter Probabilities

The model’s filter probabilities, defined in Definition 3.1, are calculated by utilizing the model’s
iterative relations by means of recursion. This can be done using a combination of the relation
between observations and hidden states, and the endogenous relation between hidden states,
demonstrated in equation (1) and (2) respectively.

Begin from the starting value in our recursion, i.e. with the probability of being in state i at time t=1:
ajy =P(S1=1ily)

— f(Sl = i! yl)
fr1)
_ f 1S =1)P(S1=1)
Z;yzlf(sl =1 y1)

fQ1 1S, =1)P(S;=10)
Z?’ﬂf()ﬁ | S1=J)P(S1 =)

The second element of the numerator is simply the previously mentioned initial probability of the
Markov chain, i.e. P(S; = i) = m;, and it will henceforth be denoted as such. One can at this point
notice that a; ; is the normalized value of the product between the initial probability and the
conditional probability function f(Y; | S; = i), and can therefore be written as follows:

f ]S, =i)m
ﬂy:1f(Y1 | Sy =j)m;

Now, assume that we know the filter probability at time t-1, namely «; ;. Following the same
strategy as for t = 1 leads to the following recursion:

a1 = = [f(1 ]S =i)m]

f(Se =14,y | y1:e-1)
fOel y1:6-1)

_ f(Se=1ye | yie-1)
Z?’ﬂf(st =) ye | y1e-1)

= [f(Se =6,y | yre-1)]

At = P(Se=ilyse) =




= [fe ISt = 4,y1:0-1)P(Se = i | y1:6-1)]
= [f(ye | Se = DP(Se = i | y1:e-1)] (12)

By the Markov property in equation (2), also demonstrated in Fig. 2.1, one can deduce that once
observation y; has been extracted, the only relation between the current state of the hidden chain
S:, and the set of observations, {y;.;—1}, exists through S;_;. Following this understanding, the next
step is to choose a; ¢_1:

At = P(S=ilyre-1) =

N
= Z P(St =1,51=j1Y1.t-1)
=

N
= ZP(St =i |S;q = j, V1t—-1)P(Se-1 = j | y1:0-1)
=1

N
= Z P(S; =i 1S = PDP(Se-1 =J | ¥y1:0-1)
j=1

Here, the first part of the sum corresponds to the transition probability p; ; (11) between state i and
j, and the second part to the filter probability at time t-1, a; ;_;. Inserting this into formula (12) the
recursion relation becomes (Campigotto, 2009):

aic=[fe IS: = i)Zﬁ-Vzl i j®it-1l

5.1.2 The Maximum Likelihood Formula

We denote the set of parameters of the N-state Markov regime-switching model given by (5) - (10)
we would like to estimate by {8}. In our case, {6} = {(m;), (p; ;), (™), E[*™)}, L,j€Q =
{1,2,..,N},m,n € {1, 2, ..., M}, where:

1r; denotes the initial probability for state i

pi,j denotes the transition probability between state i and j
pi"* denotes the intercept for asset m in state i

E;n‘n denotes the covariance between asset m and n in state i

Consider the conditional probability function f(y; | S; = i, ©) as the likelihood function for state i
conditional on the set of parameters. When the filter probability function a; ; is estimated, one has
the necessary information in order to calculate the full log likelihood of the HMM as a function of the
set of parameters. The full log likelihood function is given by:

mL=3_, YN, f(y: 1S =i,0)P(S, = i) (13)

The function (13) is a weighted average of the likelihood function in each state, where the weights
are given by the state's probabilities.

One estimates the set of parameters {8} by maximising the full log likelihood function over said set of
parameters. This must be made under certain conditions, since we are working with probabilities.



Denote the transition probability matrix, i.e. the matrix with element (i,j) being the transition
probability between state i and j, p; j, by P. All elements of this matrix must be non-negative, and all
rows must sum up to one. The same goes for the HMM'’s filter probabilities (Definition 3.1) and the
smoothing probabilities (Definition 3.2) (Campigotto, 2009, Perlin, 2015).



6 Practical Implementation Part One: Application to the Stockholm Stock Market
For the application of the model | have chosen two different portfolios, each containing seven stocks
selected from the Stockholm stock market in the period 2006-10-02 — 2016-11-01. Said portfolios will
be modelled according to the Markov regime switching model given by equation (5) — (10), and the
results will be analysed as to how well the selected model fits the data. This will be made by e.g.
normalising the residuals after the model has been applied to see how well the time series fits the
assumption of normal distributed residuals, along with checking whether any dependence structure
remains after normalisation.

One of these portfolios will in the second part on the implementation be evaluated for the last two
years of the chosen time period. Using the first year as data base, the expected return and
covariance will be estimated from the Markov regime switching model’s parameter estimation once
every month for the last year of observations. The result will be applied to find the optimal portfolio
weights to maximize the Sharpe ratio, and finally compared to an equally weighted portfolio
containing the same stocks.

6.1 Definition of Y

The time series of observations constituting the observed part of the HMM gives us a matrix of log
returns, denoted Y. Each column Y™ of Y stands for the log returns of stock m, where element y"
denotes the log return of the closing price of stock m in a given portfolio, at time t;

i
m_ i =t—
Yt " (Ctnh)

where ¢{" gives us the closing price of stock m at time t. We work in discrete time, as the data will be
daily prices. The observed time period of business days 2006-10-02 — 2016-11-01 of the seven
selected stocks makes Y a 2535x7 matrix.

Two distinct portfolios each containing seven stocks were chosen from the Stockholm stock market.
Portfolio one, containing only stocks with sector root code financials, will be denoted Port,, and
portfolio two, with no financial stocks, will be denoted Port,.

Chart 6.1: Asset list for Port,; and Port,

Stock Index Port, Port,
y! Investor A AstraZeneca
Y? Nordea Bank Volvo A
Y3 SEB A Hennes & Mauritz B
Y4 Castellum Alfa Laval
Ys Fabege Skanska B
Y® Handelsbanken A Axfood
Y’ Swedbank A PEAB B

Comparing the norms of each portfolio’s covariance matrix we get the following results:
ol .. gl7
Port;: : : = 0.002406

71 ... 72

o o | P
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o’ .. gl7
Port,: : : = 0.001569
o7l .. g7* 5
This demonstrates the reason for selecting one portfolio with financial stocks and one without; the
significant difference in the variance and covariance between the stocks of the portfolios. Port, has

a higher norm indicating higher variances and covariances than Port,.

Financial stocks are in general known to be more difficult to model because of the high volatility they
usually demonstrate. Therefore, it would be interesting to apply the Markov regime switching model
to a portfolio consisting only of financial stocks.
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Fig. 6.1 Closing price Port;. Fig. 6.2 Closing price Port,.

The difference in covariance becomes more apparent when comparing the plots of each portfolio’s
closing prices (Fig. 6.1, Fig. 6.2). Port,’s larger covariances are evident, as the closing prices of all
assets contained in the portfolio appear to move more in sync than those for Port,.

The plots also emphasize the change in the closing prices behaviour. It’s clear that the time series
follow calmer patterns at some points, while the volatilities increase significantly at other time
periods. This argues for the idea of the time series switching between different states, making the
Markov regime switching model appealing.

6.2 Parameter Estimation

To estimate the parameter set {8} = {(7;), (pl-,j), (U™, (6/*™)} using the previously defined
maximum likelihood formula (13) can be a challenging affair by hand. For this thesis, the MATLAB
package: “MS Regress - The MATLAB Package for Markov Regime Switching Models” by Perlin, 2015,
was used to estimate the necessary parameters. The package uses the method mentioned in section
5.1, i.e. estimation by using Hamilton’s filter to calculate the hidden chain’s filter probabilities, before
inserting them into the full log likelihood formula (13).

The estimation was made under the assumption of a two- or three-state regime switching model,
S €Q={1, .., N}where N =2 or 3. For simplicity, the remaining part of this section the description
of the chosen model will be done for a three-state regime switching model.

The assumption of normal distributed residuals, &;, was also made during the estimation.

11



This presents us with, for each portfolio, a model where the log returns of stock m are drawn from 3
distinct normal distributions, depending on what state the HMM is currently in:

Y" =u* +¢ forstatel (14)

Y™ =ul + ¢ forstate 2 (15)

Y™ = uf* + & forstate 3 (16)
Where;

& ~ N(O, a{”z) for state 1 (17)

g ~ N(O, azmz) for state 2 (18)

& ~ N(O, 03’”2) for state 3 (19)

With seven stocks in each portfolio, we would get seven sets of equation (14) — (19) for each

portfolio, with ui"* determining the expected log return and aimz the variance for asset m while the
HMM is in state i. Since the covariance between assets most likely differs depending on what state
the HMM is currently in, one covariance matrix per stock was estimated for each state i;

2
O'il “ces 0'i1’7
=1 o~ i i€eqQ=1{123}
2
0'7'1 0'7

The expected log returns for state i are presented in a column-vector denoted y;, and the residuals
in a 2535x7 matrix denoted &.

The transition probability matrix is in a three-regime model given by:

P =|P21 P22 D23

P31 P32 P33

P11 P12 P1,3]

with p; ;, i,j€{1, 2,3}, defined by equation (11).

As for the remaining parameter set (7;), i.e. the initial probability of the HMM, it is derived from the
smoothing probability mentioned in Definition 3.2. This probability is very similar to the filter
probability defined in Definition 3.1, but while the filter probability gives us the probability of the
HMM being in a certain state at a time t given all observations y{%, the smoothing probability instead
determines the probability of the HMM being in a certain state at a previous time. The vector

= [7T1,t Tyt 7T3,t]

gives us the corresponding initial probabilities at time t.

12



6.2.1 Parameter Estimation: Results
Chart 6.2: Two-State Regime Switching Model
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0.00019 0.00024 0.00030 0.00016 0.00017 0.00020 0.00026 0.00005 0.00010 0.00014 0.00009 0.00008 0.00004 0.00008

2, =|0.00014 0.00014 0.00016 0.00022 0.00019 0.00012 0.00016 2, =] 0.00005 0.00016 0.00009 0.00021 0.00012 0.00005 0.00012
0.00014 0.00015 0.00017 0.00019 0.00027 0.00013 0.00016 0.00005 0.00013 0.00008 0.00012 0.00015 0.00005 0.00012
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p= [0.95 0.05 p_[088 0.12
0.18 0.82 0.28 0.72
BIC: -1.049688e+05 BIC: -1.001626e+05
Chart 6.3: Three-State Regime Switching Model
Port, Port,
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0.00025 0.00034 0.00030 0.00015 0.00017 0.00026 0.00026 0.00004 0.00021 0.00008 0.00013 0.00011 0.00004 0.00011
0.00024 0.00030 0.00033 0.00015 0.00017 0.00026 0.00027 0.00004 0.00008 0.00010 0.00007 0.00006 0.00003 0.00006
={0.00014 0.00015 0.00015 0.00016 0.00015 0.00013 0.00014 X; =(0.00004 0.00013 0.00007 0.00017 0.00010 0.00004 0.00010
0.00016 0.00017 0.00017 0.00015 0.00021 0.00015 0.00015 0.00004 0.00011 0.00006 0.00010 0.00011 0.00004 0.00009
0.00021 0.00026 0.00026 0.00013 0.00015 0.00025 0.00023 |0.00003 0.00004 0.00003 0.00004 0.00004 0.00008 0.00004I
10.00021 0.00026 0.00027 0.00014 0.00015 0.00023 0.00027 |-0.00004 0.00011 0.00006 0.00010 0.00009 0.00004 0.00017
r0.00031 0.00029 0.00034 0.00023 0.00025 0.00025 0.00033 [0.00021 0.00011 0.00010 0.00011 0.00011 0.00004 0.00009]

0.00034 0.00044 0.00061 0.00031 0.00035 0.00038 0.00055 0.00010 0.00024 0.00030 0.00021 0.00021 0.00007 0.00020
0.00011 0.00035 0.00021 0.00044 0.00028 0.00011 0.00026
0.00025 0.00028 0.00035 0.00036 0.00052 0.00025 0.00036 0.00011 0.00032 0.00021 0.00028 0.00039 0.00010 0.00028
0.00025 0.00033 0.00038 0.00023 0.00025 0.00035 0.00039 0.00004 0.00012 0.00007 0.00011 0.00010 0.00029 0.00011

L0.00033 0.00044 0.00055 0.00033 0.00036 0.00039 0.00069- l0.00009 0.00032 0.00020 0.00026 0.00028 0.00011 0.00054 J

0.00029 0.00045 0.00044 0.00026 0.00028 0.00033 0.00044 |0.00011 0.00057 0.00024 0.00035 0.00032 0.00012 0.00032 |

r0.00062 0.00046 0.00062 0.00036 0.00043 0.00043 0.00058 0.00089 0.00012 0.00009 0.00008 0.00021 0.00014 0.00016
0.00046 0.00157 0.00090 0.00044 0.00048 0.00083 0.00090 0.00012 0.00165 0.00039 0.00088 0.00081 0.00014 0.00095
0.00062 0.00090 0.00221 0.00046 0.00054 0.00087 0.00149 0.00009 0.00039 0.00065 0.00044 0.00036 0.00010 0.00040
={0.00036 0.00044 0.00046 0.00105 0.00077 0.00036 0.00051 X3 =(0.00008 0.00088 0.00044 0.00169 0.00074 0.00015 0.00071
0.00043 0.00048 0.00054 0.00077 0.00140 0.00047 0.00049 0.00021 0.00081 0.00036 0.00074 0.00117 0.00014 0.00079
0.00043 0.00083 0.00087 0.00036 0.00047 0.00119 0.00071 0.00014 0.00014 0.00010 0.00015 0.00014 0.00058 0.00007
1L0.00058 0.00090 0.00149 0.00051 0.00049 0.00071 0.00237 l0.00016 0.00095 0.00040 0.00071 0.00079 0.00007 0.00243

094 0.03 0.03 0.79 0.19 0.02
P=]0.06 090 0.04 P=(020 074 0.06
0.04 0.16 0.80 0.07 0.22 0.71

BIC: —1.055782 - 10° BIC: —1.004746 - 10°

6.3 Analysis of Estimation Results

6.3.1 Chart 6.2

Looking at the results of the estimation of the two-state model in Chart 6.2 one can deduce that for
both portfolios the expected log return for each stock in state two is always lower or equal to the
expected log return in state one. This, along with the significantly higher variance demonstrated by
both portfolios in state two hints to the conclusion that state one stands for a “Bull” market
environment, with higher returns and lower variances, while state two stands for the opposite; a
“Bear” market environment. Note that while the results of this estimation indicate one state being
more desirable than the other, this may not always be the case. This will become evident when
analysing Chart 6.3.

Comparing the norms of the estimated covariance matrices X; of each portfolio one can find once
again that Port, has higher covariances than Port,, in both states.

Lastly, it is found by observing the transition probability matrix P that the regimes in Port; tend to
have a longer duration than the corresponding regimes in Port,. If the HMM is currently in state
one, there is a probability of 0.95 that it will remain in this state for Port,, while the same probability
is equal to 0.88 for Port,. If the switching between states is too frequent, it is difficult to anticipate
the behaviour of the HMM. Therefore, a long regime duration is preferred for most implementations.

To conclude the analysis of Chart 6.2, it would be interesting to relate the portfolios smoothing
probability to its conditional standard deviation:
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Here, one can easily distinguish the difference in regime persistence between the both portfolios.
Port,’s smoothing probabilities (Fig. 6.6) indicate an HMM that switches frequently between the
two states, while the smoothing probabilities of Port; (Fig. 6.4) hints to a HMM that stays in each
state for a more extensive period of time.

In addition to this, it is also easy to relate the smoothing probabilities to the behaviour of the
corresponding conditional standard deviation of each portfolio. Where the higher volatilities of the
financial crisis are evident, throughout observation 500 — 700 approximately, the smoothing
probabilities of both portfolios demonstrate that state two, the “Bear” regime, is the most probable
state of the HMM. For Port;, one can also distinguish the calmer time periods with lower volatilities,
consisting of e.g. observation 1900 — 2100 circa, where state one, the “Bull” regime, is the most
probable state.

6.3.2 Chart 6.3
When applying the three-state regime switching model to our portfolios the results differ slightly
from the two-state scenario.

Firstly, whereas the two-state model had a clear distinction of which state was more preferred to the
other, the three-state model displays a less evident separation between states. The norms of the

15



covariance matrices for both portfolios show us that, once again, the regimes are ordered by
increasing volatilities. State one is the most desirable state with the lowest variances, while state
three has the highest volatilities. This pattern, however, is not followed by the expected log return
vectors pq - H3. A quick look at p4 tells us that state one also has the highest log returns, but for u,
and p3 the results differ. State two always appear to have an expected log return equal to or lower
than for state three. This makes it harder to rank the states in the same way as for the two-state
regime switching model, but it doesn’t create a problem for this thesis implementation. Generally,
one merely has to take risk aversion into account in order to decide whether state two or state three
is the less desirable state.

Upon comparison between portfolios the results are similar to the two-state model’s: estimated
covariances are in general higher for Port;, and the transition probability matrices also indicate a
higher regime duration than for Port,.
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Fig. 6.7 Conditional standard deviation Port;.
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Fig. 6.10 Smoothing probability Port,, three states.

The low regime persistence for Port; (Fig. 6.10) is even more evident in the three-state switching
model; it is difficult to distinguish what state the HMM is in at all given times in the current scale.
Nevertheless, the financial crisis is still noticeable throughout observation 500 — 700 circa, where
state three with the highest variances is indubiously the most probable state for both portfolios.

To conclude, the estimated BIC's mentioned in Definition 3.3 indicate that the three-state Markov
regime switching model gives the best fit to the observed log return in comparison to the two-state
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model. This goes for both portfolios; the BIC value for the three-state model is lower than for the
two-state model in both cases. Although this reveals which model of the two is preferable by the
Bayesian information criterion, it is important to mention that it tells us nothing of how well the
model fits the data in general.

A relevant side note is that a four-state regime switching model was also tested for both portfolios,
although it brought poorer results; the BIC value had increased in comparison to the three-state
model. Further testing established that the four-state model had a worse fit to our data than the
other models. In regard to this, only the results of the two- and three-state models will be
demonstrated and analysed throughout this thesis.

6.4 Normalisation of Residuals

To see how well the chosen Markov regime switching model fits the selected log return time series in
a general sense is obviously of great interest, otherwise one might not be able to trust the results.
Apart from comparing BIC values, this will be done by normalising the residuals after the model has
been applied to see how well the time series fits the assumption of normal distributed residuals. If
the assumption is correct, the following statements should be true:

1) The residuals should not be correlated with another variable.
2) Adjacent residuals should not be correlated with each other, i.e. there should be no
autocorrelation between residuals.

If 1) and 2) are not satisfied, there is most likely some explanatory information that hasn’t been
captured by the model leaking into the residuals, e.g. a missing interaction between terms in the
model. If the residuals are autocorrelated there is some predictive information present that is not
captured by the predictors.

In order to test if statement 1) and 2) are correct, the estimated residuals of each portfolio will be
normalised. Each asset’s residuals will be divided by its corresponding standard deviation, conditional
on what state the HMM is most probable to be in at the given time. To estimate what state the HMM
has the highest probability of being in at time t, the smoothing probability 7; ; will be taken into
account. As mentioned in Definition 3.2, the smoothing probability determines the probability of the
HMM being in a given state i at time t, conditionally on the set of observations {y;.;4;}, T > 0. In this
case, this set will contain all observations included in the estimation, i.e. {y;1.2535}.

If T;+ > 0.5, the residuals &, of all stocks of the given portfolio at time t are assumed to be emitted
from state i, and will consequently be divided by the corresponding standard deviation for state i, g;.
By denoting the 2535x7 matrix of normalised residuals €"°"™ we get the expression:

gom — g [51 jeq=q1,.,N) (20)

6.4.1 Normalisation of Residuals: Results and Analysis
Formula (20) was applied to both portfolios, first for the two-state Markov regime switching model,
then for the three-state model.

By statement 1) there should be no covariance between the normalised residuals. This means that
the covariance matrix of the normalised residuals should be close to the identity matrix of matching
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size. This was tested by taking the norm of the covariance matrix, denoted by X norm, while
subtracting the identity matrix;

1 -« 0
Yonorm — 1 (21)
o - 1lll,

Chart 6.4: Results from applying formula (21) to €™°™™

Number of states Port; Port,
2 0.216534 0.125177
3 0.209483 0.106949

Chart 6.4 reveals that covariance between normalised residuals still can be found, indicating that the
residuals haven’t been sufficiently standardized since a dependence structure still exists. An
important observation is, however, that the normalised residuals seem to be more standardized
when modelled with a switching model with three states instead of two.

To deduce whether the normalised residuals €*°"™ follow a normal distribution they will be
displayed in a normal probability plot:

Normal Probabllity Plot. Normal Probability Plot
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0.95 095}
0.90 0.90
2 075 > 075}
E 0.50 E 0.50 |

o 3
o 025+t 0 025
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0.02 002
0.011 0.01}
0.003 0.003 |
0.001 | ] i - 0.001
e | | | | s ‘
-6 -4 -2 0 2 4 6 -4 -2 0 2 4 6
Data Data
Fig. 6.11 Normal probability plot of normalised residuals Fig. 6.12 Normal probability plot of normalised residuals
Port,, two states. Port,, three states.

The plots in Fig. 6.11 and 6.12 demonstrate that £*°"™ do not completely follow a normal
distribution, which real data is rarely expected to do. When inspecting the ends of the plots they
have slopes that are less steep than the fitted line, indicating more outliers. This suggests that the
distribution of the normalised residuals has larger tails than a normal distribution. Nonetheless, by
closely observing e.g. the axes one can deduce that the normalised residuals of three-state model
have fewer extreme outcomes and appear somewhat closer to the fitted line. Thereof, they can be
assumed closer to a normal distribution than the normalised residuals of the two-state model.
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The next step is to do a scatter plot of €"°"™, The aim
is for the normalised residuals to look as
homogeneous and stationary as possible, meaning
there is no dependence structure left between assets.
The plots demonstrated in the remaining part of this
section will be for Port;, because of the similarity in
the results between the portfolios.

Before applying the model one can deduct from Fig.
6.13 that the variance of the log return vector Y of
Port, displays a highly fluctuating behaviour, with
noticeably higher volatilities e.g. throughout
observation 500 — 700.

After applying a two-state Markov regime switching
model and normalising the residuals (Fig. 6.14) a
significant improvement is evident. The residuals
illustrate a relatively homogeneous plot. Yet, upon
further inspection of the plot, it would seem that the
normalised residuals are slightly further dispersed
around observation 500, while they appear more
collected e.g. nearby observation 1500 — 2000.

When a three-state model was applied (Fig. 6.15)
further improvement was evident. The plot of Port;’s
normalised residuals appears to be, if not completely,
very close to homogeneous.

Similar results were obtained when the same
measures were taken for Port,, only the log return
were slightly more homogeneous before any model
was applied.

This result shows us that there is no dependence
remaining between assets, and consequently between
residuals, but only for the same time. Autocorrelation,
meaning you can use one residual to predict the next
one, is still a possibility. Theoretically, there should be
no significant autocorrelation in a financial time series.
This would imply that e.g. predicting the future value
of a stock would be possible, which it in light of the
efficient market hypothesis shouldn’t be because of
arbitrage.

stock1
stock2
stock3
stock4
stock5

L stock6
0.1+ : . . i L+ stock7
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Fig. 6.13 Log return Port,.
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Fig. 6.14 Normalised residuals Port,, two states.
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Fig. 6.15 Normalised residuals Port,, three states.
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Fig. 6.16 Covariance function of log returns
Porty, stock 1.

By observing the covariance function for each stock in the portfolio, one can verify that there seems
to be no significant autocovariance, and consequently, no significant autocorrelation. The
covariances and correlations in Fig. 6.16-6.23 were estimated with a time interval of 100 business
days. As an example, Fig. 6.16 shows us the covariance function of Y1, i.e. stock number one in
Port;. It is therefore not surprising that the normalised residuals (Fig. 6.17) too appear to be
uncorrelated, regardless of whether they were modelled with the assumption of two or three states.
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Matching results were obtained when analysing the
remaining stocks in Port,, as well as for all stocks in
Port,.

Although time series of log returns often are without
any significant autocorrelation, the absolute log
returns are not. The autocorrelation function of
absolute returns decays slowly with lag, indicating
that there is an autocorrelation in the variance of the
time series (Granger et al, 2000, Rogers et al, 2011).
This is evident when inspecting Fig. 6.13; after a time
period of high volatility the returns of the following
days are also likely to have high variances.

In order to investigate this, the covariance function of
the absolute value of the normalised residuals €™
of each stock will be plotted and compared to the
covariance function of the corresponding absolute log
returns. The trend will also be removed from the plots,
enabling us to focus the analysis on the fluctuations in
the data.

Fig. 6.18 displays a characteristically decaying
covariance function for the absolute log return of an
arbitrary stock in Port;, indicating that there is indeed
correlation in the variance. After applying either the
two- or three-state model and normalising the
residuals of either of the portfolios, however, a
significant improvement can be distinguished. Only the
two-state case is illustrated (Fig. 6.19), since the three-
state case presented a nearly identical result.
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Fig. 6.17 Covariance function of normalised residuals
for a two-state model Port,, stock 1.
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Now that the autocovariance, and consequently the autocorrelation, of each asset with itself has
been checked, it is necessary to investigate whether there is significant autocorrelation between

assets. Similar to the result of the log return of a
:

67

single stock, no significant autocorrelation is Cross correlation
Autocorrelation stock 6
detected pairwise between stocks either. 0.8 Autocorrelation stock 7
Consequently, the autocovariance of pairwise ol
normalised residuals between stocks show no
considerable result. Fig. 6.20 illustrates the 041
correlation function between stock six and stock 0zl
seven in Port;. As predicted, the function
fluctuates around zero for all time lags greater 0 [
than zero. At time lag zero the autocorrelation of .
100 -50 0 50 100

each stock with itself reaches the value one,
illustrating the autovariance of the stock.

20

Fig. 6.20 Correlation function between normalised
residuals of stock 6 and 7 in Port,, two states.



As for the absolute log return, a dependence that
decays with lag is once again found when checking
correlation functions pairwise between assets. The
correlation function between the absolute log
returns of stock six and seven in Port; (Fig. 6.21)
clarifies this. In addition, the cross correlation
increases considerably at time lag zero, indicating
a high cross correlation between the assets. The
correlation functions between all other pairs of
stocks in Port, and Port, followed the same
pattern.

After applying a two-state regime switching model
and normalising the residuals (Fig. 6.22) there is an
improvement; the correlation function no longer
shows a dependence decaying with lag, and the
cross correlation has no increase at time lag zero.
Although the improvement is evident, there is still
room for further revision. Upon taking a closer
look at Fig. 6.22, there is a noticeable gap between
the autocorrelations of the stocks. The
autocorrelation of stock seven, represented by the
yellow line, fluctuates well above zero. This would
indicate that there is a dependence that hasn’t
been captured by the model, but this is not
necessarily the case. The irregularity might just
indicate a structure breach, e.g. because of the
vast difference in variance between distinct time
periods. This was a recurring occurrence when
analysing pairwise stocks in both portfolios,
indicating that the model hasn’t successfully
captured the entire dependence structure of the
data.

Applying a three-state regime switching model
seemed to remedy this. When applied, all pairwise
correlations of absolute normalised residuals
showed a more agreeable result (Fig 6.23). The
realisations of the autocorrelations were
fluctuating around zero, implying that there is no
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Fig. 6.23 Correlation function between absolute normalised
residuals of stock 6 and 7 in Port,, three states.

significant dependence structure left after normalisation.

6.5 Conclusion of Practical Implementation Part One

Implementing a Markov regime switching model to a time series of log returns can be problematic
when assuming normal distributed residuals. The data might not fit the assumption, and there might
be dependence structures that are not apprehended by the model.
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By changing the number of states assumed in the regime switching model it was apparent that one
can improve the fit of the model, and it was ultimately found that a three-state model was the best
candidate for both portfolios. This was concluded after finding that the three-state model had the
lowest BIC value, along with having normalised residuals closest to a normal distribution. The three-
state model also attended most effectively to the autocorrelation of the absolute normalised
residuals, as it implied that all significant dependence structure was captured by the model.

It should be noted, however, that the normalised residuals did not completely follow a normal
distribution. This indicates that the model did not capture the entire behaviour of the time series in a
satisfactory fashion.
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7 Practical Implementation Part Two: Allocation Optimization

As for the second part of this thesis practical implementation, the model with the best fit to our data
will be used to estimate the weights optimizing the Sharpe ratio of the chosen portfolio. The returns
of this allocation will then be compared to those of a portfolio of equal weights, containing the same
assets.

7.1 Practical Details

The three-state Markov regime switching model was in the first part of the implementation found to
fit the log return time series the best. It will be implemented on Port,, since the portfolios residuals
appeared just as homogeneous and independent after normalisation as for Port,, in spite of the far
higher variations in volatility of the log return before any model was applied.

The column vector of relative weights w™* optimizing the Sharpe ratio of Port; will be estimated
each month under the course of one year, using the previous year as base of observations. The last
two years of the observations used in part one will be taken into account, i.e. 2014-11-04 — 2016-11-
01. This gives us 500 observations of each stock, making the observed log returns Y a 500x7 matrix.

The first year, constituted by observation 0-250, will as previously mentioned be used as data base
when estimating the necessary parameters. Thereafter, the remaining 250 observations will be
partitioned into 12 subseries, one representing each month. Each subseries will contain 20
observations except for the last subseries, which will contain 30, in order to take a full year into
account.

For each subseries, the column-vector of expected log returns fi and the matrix of expected
covariances 2 will be estimated for the following 20 observations. This estimation will be based on
the set of parameters {6} obtained when applying a three-state Markov regime switching model.
Using these estimates, the relative weights maximising the Sharpe ratio will be estimated, and the
absolute weights will then be applied to the actual observed log return. This portfolio will be denoted
Portyyu- When this is done, a new estimation of the set of necessary parameters for the regime
switching model will occur, updating the parameters used to estimate fi and 2 for the successive
subseries of observations.

Lastly, the outcome will be compared to a portfolio of equal weights, denoted Port,,,, containing
the same stocks. A hypothetical investment of 1 million Swedish crowns (1 MSEK) will be put into
each of the portfolios.

7.2 The Equal Weight Portfolio

Before initializing any estimation, a motivation as to why a portfolio of equal weights was chosen as a
fair adversary to the optimal portfolio Porty, is in place. The equal weight strategy, a.k.a. the
naive strategy, does not involve any optimization or estimation and completely ignores the data,

- . . 1
always assigning the relative weight wé% = " to each of the M assets.

In spite of the total disregard of the data, it has been found that the equal weight strategy in general
has Sharpe ratios that are higher, or statistically indistinguishable, relative to a wide range of
strategies. This particular research includes several portfolio strategies, such as the Bayes-Stein
shrinkage portfolio, Markowitz mean variance portfolio, etc. The conclusion to this investigation
announced that no strategy from the optimal models is consistently better than the equal weight
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strategy, indicating that the errors in estimating returns and covariances erode all the gains from
optimal diversification (DeMiguel et al, 2007).

7.3 Estimation of fi and 2

Given that all necessary parameters: {6} = {(rr;), (p;;), (™), E"™}, ,j € @ ={1,2,..,N},mn €
{1, 2, ..., M} of a Markov regime switching model have been estimated for a certain sequence of log
returns, it is possible to estimate the expected log returns and covariances for a consecutive
sequence of not yet observed log returns.

Let V5 = Z,‘Ll y; denote the sum of log returns y;, where § is the number of steps, or in our case;
the number of business days, we want to estimate. One can use the moment generating function of
175 to estimate the requested parameters. By denoting the moment generating function Mg we get
the following formula (Asmussen, 2003):

Ms(2) = E[e775] = mo(PeX@)° 1,
Where;
1T denotes the initial probability of the HMM
P denotes the transition probability matrix
N is the HMM'’s total number of states
1, denotes a size N column-vector of ones
Z is a column-vector with elements z4, ..., ), with M denoting the total number of assets

K(z) is a diagonal matrix with elements z'u; + z'2; -Z/2 s, Z Uy 2y Z/Z' where pu; and X;
denotes the expected log return vector and covariance matrix of the HMM in state i, respectively.

It is now possible to express the estimated expected log return for the consecutive time period § of
stock m as:

m =E[e%' | -1 =E[emTs] -1 = Mg(I)) — 1
Where I,,, denotes column m in a MxM identity matrix.

In addition to this, the covariance between asset m and n, i.e. element (m,n) in the estimated
covariance matrix Z, can be obtained by the following formula:

smn _ g [ef,gmwa”] —F [375’"] E [eY5”] _ E[e(1m+ln)’-}75] _E [ezm’-?(g] E [ezn'.ﬁg]
= M&(’m + In) - MS(Im)M6(In)
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7.3.1 Estimation of fi and 2 Results
Chart 7.1: fi and Z for Port,
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7.4 Estimation of wmaX
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The estimates i and ¥ announced in Chart 7.1 are subsequently used to, for each subseries, find the

relative portfolio weights w%* that maximize the Sharpe ratio S, of the selected portfolio:

_ Hp~Hf
Sp=—""

Where;
Uy, denotes the expected return of portfolio p
Us denotes the risk-free rate of return

g, denotes the standard deviation of portfolio p

9p

For simplicity, this implementation will have the risk-free rate of return set to zero, meaning that
equation (22) will simply be composed of the expected return divided by the standard deviation of
the portfolio. In addition, no short selling is allowed, making all weights positive. When conducting
pure investment the positive weight strategy is often preferred, e.g. because of the impossibility of

losing more capital than the invested amount.
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Denote the column-vector of relative portfolio weights w. The aim is to find the weights that
maximize the Sharpe ratio. Expressing (22) in matrix form, with a zero-risk-free rate return, one
wants to maximize the following formula with respect to w:

All weights need to sum up to one and be positive, so the following conditions are imposed on the
elements of w:

With M denoting the total number of assets.

7.4.1 Estimation of w™*: Results
Chart 7.2: w™** (transposed) for Port,

Subseries Index wmax

1 w4’ =10.000 0.000 0.000 0.000 1.000 0.000 0.000]

2 wmax' [0.000 0.000 0.000 0.000 1.000 0.000 0.000]
3 w4’ =[0.000 0.000 0.000 0.000 1.000 0.000 0.000]
4 wi%’ =10.000 0.000 0.000 0.000 1.000 0.000 0.000]
5 w4’ =10.000 0.000 0.000 0.000 1.000 0.000 0.000]
6 w2’ =10.000 0.000 0.000 0.000 1.000 0.000 0.000]
7 wi'%’ =10.000 0.000 0.000 0.000 1.000 0.000 0.000]
8 wZ%*’" =10.000 0.000 0.000 0.760 0.240 0.000 0.000]
9 wZ%*’" =10.000 0.000 0.000 0.235 0.765 0.000 0.000]
10 wii%*’ =0.195 0.000 0.000 0.000 0.805 0.000 0.000]
11 w4’ =10.000 0.000 0.000 0.000 1.000 0.000 0.000]
12 wiia*’ =[0.000 0.000 0.000 0.191 0.809 0.000 0.000]

7.5 Implementation of Estimates
The parameters fI, £ and w™* estimated in this section will set the foundation for the allocation
our optimal portfolio Porty.

Before implementing the optimal weights, the absolute weights must be calculated for each
subseries. These are the weights that will be implemented on the observed return. Denoting the
optimal absolute returns of asset m at time t h{", this is done by applying the following formula:

pm = Py Iew™ax!
t — cm
t
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Where:
c{™ denotes the closing price of stock m at time t
P; denotes the compound return of the investment at time t

Equivalent calculations are done for the equal weight portfolio, Port,,,, only the relative weights are

. 1
at all times equal to wé% = - for each of the M assets.

The optimal weights given by (23) will be calculated for each subseries and the allocations will be
updated accordingly. A hypothetical amount of 1 MSEK will be invested into the first allocation, and
the entire return will then be reinvested one month apart in every subsequent allocation. All along,
the same investment will be put into Port,,,. The log returns and compound returns of both
portfolios will be announced and compared throughout the entire year.

7.5.1 Implementation of Estimates: Results
Chart 7.3: Portypyy vs. Porte,,

Subseries Log Return Compound Return SEK Log Return Compound return SEK
Index Portyym Portyym Port,,, Port,,,

1 0.0098 1009 772 0.0045 1004 493
2 -0.1258 882 736 -0.0058 998 665

3 0.1365 1003 257 0.0429 1041 490
4 0.0227 1026 059 0.0142 1056 276
5 0.1238 1153094 0.0559 1115323
6 0.0452 1205212 0.0061 1122147
7 0.0108 1218241 -0.0151 1105 229
8 -0.0272 1185144 0.0156 1122432
9 0.0166 1204784 -0.0168 1103 585
10 -0.0318 1166529 -0.0471 1051 604
11 -0.0572 1099 779 -0.0152 1035576
12 -0.0575 1036544 -0.0455 988 422

7.6 Implementation of Estimates: Analysis

Chart 7.3 presents the obtained results when allocating Porty according to our estimated
absolute weights. To get an overview of the progress of our investment, Fig. 7.1 shows us the
development of the compound return of both portfolios.
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According to Chart 7.3, Portyyy ended up 1.25 X10

with a yearly return of approximately 3.65 %, . Port,,.
while Port,,, held a negative yearly return of 20 // \/"\\— Port,,,
circa-1.16 %. One could thereof reach the 115} / \\
conclusion that the portfolio modelled with a il T
three-state regime switching model
outperformed the equal weight portfolio. 1.05 ‘.
Upon taking a more sceptical look at the 1 ’x ~ [
results, however, it is found that the log 0.05
returns of Porty. show significantly larger
fluctuations, indicating higher volatilities. This, o9
of course, presents considerably higher risks, 0.85 : : : ‘ - ‘

0 2 4 6 8 10 12 14

and a risk avert investor would likely refrain

. Fig. 7.1 Compound return (MSEK) of Portyyy and Port,,,.
from such an investment.

A closer look at Fig. 7.1 declares that although the compound return of Porty, at most observed
times is decidedly higher than that of Port,,,, a large dive can be noted at time two, i.e. at the
second observed month. When consulting the chart, a significant negative return of -12.58 % can be
deduced at the given time. The dive is all but recovered in the third subseries, when a return of 13.65
% is presented. Nevertheless, this substantiates the previous statement of high volatilities.

It would have been interesting to include a comparison of the portfolios Sharpe ratios, but this
proved difficult to implement as the data points of the evaluation are too few.

An important side note is the extreme allocations demonstrated by the Sharpe ratio-maximising
relative weights w™?* presented in Chart 7.2. Going by the chart, all weight is to be put into one
single asset at most times. A diversifying strategy, i.e. a portfolio constructed of different assets, is
often found favourable. The reason for this is that a more diversified portfolio, on average, pose a
lower risk than any individual investment found within the portfolio.

In brief, it seems that according to this evaluation the results are inconclusive. In spite of the on
average larger returns of Portyyy, the considerably smaller fluctuations of the returns of the equal
weight portfolio makes it more attractive to a risk avert investor. It is uncertain whether the
implementation of the Markov regime switching model led to a more favourable portfolio allocation.
To increase the credibility in the results, this could perhaps be remedied by e.g. a larger sample.
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8 Conclusions and Discussion

In the first part of the implementation of the Markov regime switching model to the Stockholm stock
market it was demonstrated that a three-state model was preferred over a two-state model. This
was indicated by the fact that the three-state model had a lower BIC value, along with the overall
better fit to the time series of observed log returns. The three-state model also attended most
efficiently to the autocorrelation of the absolute normalised residuals, implying that all significant
dependence structure was captured by the model. In addition to this, the normalised residuals of the
three-state model proved slightly closer to a normal distribution.

However, by observing a normal probability plot of the normalised residuals, one can also conclude
that said residuals were not entirely normal distributed. Real data often demonstrate this type of
complication, since observed residuals rarely act completely in accordance with any distribution. This
presents a complication, since the Markov regime switching model assumes normal distributed
residuals when estimating the parameters. Consequently, the chosen Markov regime switching
model might not have an as satisfactory fit to the data as assumed in this thesis, leading to a
decrease in credibility in the results.

Part two of the implementation showed us that regarding yearly return, the portfolio modelled by a
three-state Markov regime switching model outperformed the equal weights-portfolio. As to which
portfolio was preferred over the other, however, the results were uncertain. Portyy displayed
significantly larger volatilities exposing the investor to larger risks.

Worth to mention is the size of the implemented subseries; since a year consisted of 250
observations, each month, save for the last, was represented by 20 observations for simplicity.
Looking at a real almanac, this is of course not the case.

Another issue with the implementation was the extreme allocations that were estimated for
Portyu. Putting one’s entire investment into one asset increases the exposure to the particular
assets risk, which is why a more diversified strategy is to be preferred.

Despite of apparent complications, we cannot escape the fact that the implementation of the
Markov regime switching model led to a considerable improvement in the autocorrelation of the
absolute residuals. These results, along with the increased homogeneity of said residuals indicates
that most of the significant dependence structure has been captured, in particular by the three-state
model. The poor results found in the second part of the implementation may have been due to a too
small sample size.

8.1 Difficulties and Further Research

Due to the assumption of normal distributed residuals not being entirely fulfilled, all significant
information may not have been caught by the model. A similar study, with e.g. an assumption of
generalized error distributed residuals, might yield more trustworthy results and would therefore be
interesting to read.

In acknowledgement of the inconclusiveness of the second implementation, a larger sample could
with advantage be taken into regard. Because of the amount of computation time involved, this was
not possible to implement for this thesis.
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Popularvetenskaplig Sammanfattning

Finansiella tidsseriers oférutsagbara beteende har lange varit ett bekymmer for ekonometriker. Det
ar en utmaning att hitta lampliga modeller som tar hansyn till strukturskiftningarna som uppstar i
tidsseriernas upptradande. En Markov regim switching modell ar ett populart redskap, mycket tack
vare det satt den behandlar férandringar i en tidsseries beteende.

Anta att en tidsserie kan beskrivas med hjalp av olika regimer, eller tillstand, vilka tilldelas
allteftersom tidsseriens beteende férandras. Bytesmekanismen som bestammer évergangen fran en
regim till en annan styrs av en gdmd Markov modell. En gémd Markov modell &r en statistisk modell
som anvands for att modellera processer, dar man tanker sig att ett system kan beskrivas som en
maéngd tillstand vilka man ror sig mellan enligt en Markovprocess. Modellen i denna avhandling ar
baserad pa en blandning av normalférdelningar, mellan vilka tidserien ror sig vid regimbyte. Enligt
egenskaper hamtade fran denna modell sa beror tidsseriens aktuella virde endast pa det absolut
senaste vardet. Det innebar att en struktur i en tidsseries beteende kan rada under en slumpmassig
tidsperiod, innan den blir ersatt av en annan struktur nar regimbytet sker. Pa detta sétt kan en
Markov regim switching modell fanga mycket komplexa dynamiska monster.

Modellen applicerades pa tva portféljer, bestaende av vardera sju aktier fran Stockholmsbérsen.
Efter atskilliga examinationer var det tydligt att modellens lamplighet, framst utifran hur val den
passade de utvalda finansiella tidsserierna, kunde forbattras genom att dndra antalet regimer i
modellen. Bland annat kontrollerades hur vl de standardiserade residualerna foljde en
normalférdelning, samt hurvida nagon beroendestruktur aterfanns hos residualerna efter
normalisering. Det konstaterades foljaktligen att en Markov regim switching modell med tre regimer
var mest fordelaktig. Anpassningen till portféljernas tidsserier var dock inte optimal.

Modellen med tre regimer implementerades saledes pa en av portfdljerna, som sedan allokerades i
syfte att maximera Sharpe kvoten, som méter den riskjusterade avkastningen. Detta ledde till
extrema portféljvikter, med allt kapital investerat i en enda aktie vid de flesta tidpunkter, vilket anses
ofdrdelaktigt ur riskspridningssynpunkt. Vid jamférelse med likaviktad portfélj, innehallande samma
aktier, blev resultaten dessvarre inte tillfredstallande. Trots en hogre arlig avkastning pavisade den
modellerade portfoljen betydligt hogre volatilitet. Det var alltsa inte mojligt att avgora huruvida
appliceringen av en Markov regim switching modell ledde till en mer gynnsam allokering i en
underokning av foreliggande omfattning.

Trots uppenbara komplikationer medférde appliceringen av modellen en betydande forbattring
rorande residualernas beroendestruktur. Autokorrelationen i den absoluta avkastningen minskade
avsevart, samtidigt som de standardiserade residualerna fick ett mer homogent utseende. Detta
leder till slutsatsen att det mesta av tidsseriernas beroendestruktur fangats upp, i synnerhet av
Markov regim switching modellen med tre regimer. Implementeringens svaga resultat kan mojligtvis
forklaras av att den utférdes over ett for litet urval.
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