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Abstract

I investigate to what extent spiral arms might affect axisymmetric Galactic models. As we
need fully dynamical and high resolution Galactic evolutionary models to probe the structure
of the dark matter halo, it is important that we use accurate mass models describing the
MW structure. Before reaching to that level of effort, a great deal can be learned from fitting
mass and kinematic models to data. Because many researchers still use models which do not
include any spiral structure, they might have systematic errors from their models. I therefore
compare an axisymmetric model of the Galaxy to a model with added spiral perturbations.
The latter was found by adding radial and azimuthal velocity perturbations from an analytic
model of spiral structure to a model of the circular velocity of the MW derived from assuming
a gravitational potential with an axisymmetric bulge and disk and a logarithmic halo.

Recently and accurately measured distances, proper motions and radial velocities of ∼ 100
Galactic maser sources and radial velocity data from the ISM were used to constrain the
models. Using the cold gas as tracer objects in the Galaxy allows me to approximate their
motions as near-circular and within the plane (z = 0).

I use a Bayesian statistical analysis (with a set of priors from a variety of sources) and
a Markov Chain Monte Carlo approach to investigate the parameter space of the models
to arrive at a set of best fitting parameters for the two models. The resulting probability
distributions for all the model parameters and the best-fitting models can then be compared
and the question of spiral influence can be answered.

The simple models employed in this thesis work show that including spiral perturbations
does modestly change some resulting probability distributions of the model parameters and
the best-fitting models. For example, I find a local DM density ρDM = 0.0096±0.001M� pc−3

for all models except for the four armed model with spiral perturbations for which ρDM =
0.00917 ± 0.001M� pc−3. However, these systematic differences are smaller than their cor-
responding statistical difference given my amount of data (∼100 masers). As the amount of
data increases, the statistical uncertainty will shrink (while there is no reason to expect that
the systematic one will). Therefore studies of this kind will be increasingly important as the
amount of data improves. I also show that choosing between a two and four armed spiral
arm model gives different radial and azimuthal perturbations. For the two armed model,
the radial velocity perturbation is vanishing whilst the azimuthal velocity perturbation is
significant and the opposite is true for the four armed model. The point is not to derive any
accurate numbers but to highlight that there is a difference for even the simplest models and
simplest assumptions.
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Populärvetenskaplig beskrivning

Människan har sedan urminnes tider tittat upp mot himlen och försökt lista ut v̊ar plats
i Universum. Vi har kommit l̊angt fram sedan tiderna man kartlade stjärnors positioner för
hand, till att använda superdatorer till att simulera kosmisk historia.

Just nu befinner vi oss i en era där stora resurser läggs ner p̊a att studera v̊art hem, v̊ar
galax, Vintergatan, i mycket större detalj än förr. En av dessa projekt är Gaia satelliten, vars
m̊al är att mäta positioner, hastigheter och ljusstyrkor av en miljard stjärnor i Vintergatan
med högre precision än n̊agonsin. Gaia kommer säkerligen att revolutionera v̊ar först̊aelse
av galaxers uppbyggnad, struktur och formationshistorik. Det är i frammarchen av precision
som mitt arbete kommer in. Med allt mer inkommande detaljerad data kommer behovet av
allt mer detaljerade matematiska modeller av Vintergatan fram.

Alla miljarder stjärnor och all gas i Vintergatan kretsar i stort sätt kring dess mitt punkt
som r̊akar vara ett gigantiskt svart h̊al. Det tar c.a. tjugo miljarder år för en typisk stjärna
i solens omr̊ade att ta sig ett varv kring galaxcentrum. Detta system är dessutom insvept
i ett s̊a kallat halo av mörk materia, n̊agot som man inte direkt kan detektera men n̊agot
som astronomer tros finnas d̊a det skulle förklara en hel del annars oförklarliga observationer.
Astronomer har observerat m̊anga delar av Vintergatan och bevisen pekar p̊a att det finns
s̊a kallade spiral armar. Dessa är regioner där gas och stjärnor är mer ihoptryckta än de annars
skulle vara utanför en arm. Det är m̊anga som försöker finna ut varför dessa spiralarmar
existerar och varför andra galaxer har olika m̊anga. Det r̊ader fortfarande ingen konsensus i
dessa fr̊agor.

Det är inte bara ur empirisk data man kan dra slutsatser om hur världen runt om kring
oss fungerar utan även ur de matemetiska modellerna som beskriver fenomenen. Genom att
anta en modell för ett system kan man beräkna olika kvantiteter fr̊an den och sedan jämföra
resultaten med det man kan observera i verkligheten. Man kan p̊a s̊a sätt validera teorier
beroende p̊a hur bra modellen förutsäger mätvärden i verkligheten.

Jag har försökt besvara fr̊agan: P̊averkar modeller av spiralarmar gamla modeller utan
dem? För att besvara denna fr̊aga har jag använt en typisk modell för Vintergatans struktur
och jämfört den med samma modell där jag lägger till spiral armar. Jag har använt obser-
vationell data fr̊an högenergiska gasomr̊aden i Vintergatan för att urskilja de matematiska
modellerna. Jag har implementerat en statistisk metod som möjliggör användningen av tidi-
gare beräknade kvantiteter som beskriver Vintergatan och en algoritm som letar bland alla
modellparametrar för att hitta de som passar bäst. Genom att titta p̊a vilka olika parametrar
de olika modellerna föredrar kan jag dra slutsatser om hurvida skildrade de är.

Mina resultat visar p̊a att man borde utveckla mina modeler eftersom det finns underlag
som tyder p̊a att spiralarmar kan förändra egenskaper i Vintergatan. Genom att inkludera
spiralarmar förutsäger man till exempel en lägre koncentration av mörk materia nära v̊ar sol.
Detta resultat är viktigt d̊a m̊anga vetenskapliga studier och experiment i världen hänger
p̊a att veta detta värde i s̊a noga utsträckning som möjligt. Det är mycket som kommer att
förändras när man börjar ta hänsyn till spiralarmar i detaljerade modeller och jag hoppas att
fler börjar att inkludera dessa i deras modeller.
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Chapter 1

Introduction

Even though a wealth of knowledge about the properties of galaxies has accumulated over the
last 100 years, a great deal is still unknown. Many have taken on the endeavor, and rightly so,
to continue in the quest of bettering the understanding of our own Galaxy. Simple questions,
such as: how many spiral arms are there, how is the dark matter distributed, how do the
spiral arms affect Galactic objects, are still up for debate. These are key features which, when
understood, may tell us about how the Universe works in a very fundamental way. We aim
to make use of the great advantage of residing in a galaxy, our home, the Milky Way (MW).
From within, we can probe, in detail, the properties of Galactic objects and therefore test our
models, to a great accuracy. Once refined, we hope that the locally developed models will
teach about the rest of the Universe.

In this thesis, I aim to show to what extent spiral arms affect models of the MW’s gravi-
tational potential. This should encourage the community to be more careful when choosing
models of the Galaxy as it will become apparent that spiral arms could alter results. Of
course, a more accurate model will allow for a better determination of the dark matter con-
tent and predictions of the future motions of stars and gas within the Galaxy than previous
models. With Gaia, the European astrometric satellite (Lindegren et al. 2012) due to provide
a map of the positions and velocities of a billion stars in the MW, it is vital to ensure that
our modeling techniques are able to cope with the effects of perturbations like spiral arms.

The main concept used in this work is to, from an underlying model of the MW gravi-
tational potential, calculate the expected velocity of Galactic objects and compare them to
observational data. These were proper motions and radial velocities of Galactic maser sources
(Reid et al. 2014) and terminal velocities from the interstellar medium (ISM), as traced by
HI emission lines (Malhotra 1995). Combining the constraints from the data with a handful
of parameters from previous studies, a set of best fitting parameters were determined. This is
called forward modeling. In this regime, I have compared the resulting best fitting parameters
with different models of the MW’s gravitational potential. Most importantly, models with
and without spiral arms.
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Chapter 2

Background

When Paczynski (1990) set out to determine the distribution of gamma-ray burst progenitors,
he set up a model for the gravitational potential of the MW in order to numerically integrate
the progenitor’s orbit. Efforts like his are common. When one wishes to determine distribu-
tions, future motions or birth locations of stars and gas, it is necessary to assume a model
for the gravitational potential. From here, one is able to calculate the mutual accelerations
of each object from which one is further able to convert into velocity components. Once
the expected velocity components of an object, given its position on the sky, are calculated
with a given model for the gravitational potential, it can be compared to its corresponding
observational velocity components. The validity of a model can as such be tested.

Models of galactic gravitational potentials are as such used for many purposes e.g. asso-
ciating Galactic objects with velocity components, tracing stars back to their birth location,
calculating the local dark matter density etc. It is therefore of great interest to develop a well
fitting model such to describe nature as well as possible. A part of this work is therefore to
study the importance of spiral structure.

Any model of the MW’s gravitational potential greatly depends on the structure of the
system. As more and more data is being gathered with time, more and more details about
its structure are revealed. It is with the detailed knowledge of the structure of the MW one
can aim to best represent it in a model for its corresponding gravitational potential. A brief
overview of Galactic structure is therefore given as a prequel to the model presented in this
thesis work.

2.1 The Galactic structure

The billions of stars residing in the MW tend not to arrange themselves as homogeneously
as gas particles in a beach ball would, but rather exist in somewhat loosely defined groups.
Crudely, but to a relatively good approximation, the stellar contents of our Galaxy can be
thought of as comprising two main parts, a central bulge and a disk as sketched in Figure
2.1. It is perfectly reasonable to model their structure individually and then combine them.

2



Figure 2.1: A representation of the Milky Way where the disk is shown in blue and bulge in
orange.

2.1.1 The Galactic bulge

In a cosmology where galaxies are formed by hierarchical growth, the bulge is a region where
an older stellar population resides. This view is supported by the observationally determined
age of the bulge population. The main tracer population for the age determination are the
red clump giant stars (RCG). These stars have evolved off of their main sequence and their
stellar evolution are best fitted to isochrones of order ∼ 10 Gyr old (Clarkson et al. 2008).

Based on ∼ 8 million bulge RCGs from the VVV survey (Minniti et al. 2010), Wegg &
Gerhard (2013) found a fitting density map that has peanut-like structure. Basically, the
bulge is bar-shaped where the longest axis lies in the midplane but above ∼ 400 pc off of the
midplane, the bulge takes on the shape of an X. Furthermore, they found an angle between
the tip of the bar and the line of sight to the Galactic Center (GC) of (27± 2)◦.

For the purpose of this thesis, such details are neglected as they are complicated to solve
analytically. Instead, I assume a simple oblate spheroidal shape where the longer axes are
parallel with the Galactic plane as seen in 2.1. Approximating the bulge to a spheroid should
not affect the goal of this thesis, which is to use objects far away from the bulge region to
investigate the perturbations induced by spiral arms.

Using photometric data of bulge RCGs, Bissantz & Gerhard (2002) found a best-fitting
stellar density model of the bulge that follows a mix between an exponential and a power-law
distribution. For a spheroidal model, McMillan (2011) reduces the model to the following
bulge density profile

ρb =
ρb,0

(1 + r′/r0)α
exp

[
−(r′/rcut)

]2
(2.1)

where ρb,0 is the scale density, r′ =
√
R2 + (z/q)2 is in cylindrical coordinates where q = 0.5

is the axis ratio of the spheroid, rcut = 2.1 kpc, r0 = 0.075 kpc and α = 1.8. The best fitting
bulge mass for their model was Mb = (8.9± 2)× 109M�.

3



2.1.2 The Galactic disk

From studying the chemistry and distribution of stars in the Galactic disk, one is able to
argue that the disk ought to be subdivided into a thin and a thick disk component (Bensby
et al. 2003; Jurić et al. 2008).

The thin (t) disk hosts the younger (on average) stars, which are concentrated to the
Galactic midplane. Conversely, the thick (T) disk is inhabited by an older stellar population,
for which the stars are more extended in z direction.

A commonly accepted disk density profile is described by a double exponential model

ρd(R, z) =
Σd,0

2zd
exp

[
−|z|
zd
− R

Rd

]
(2.2)

where zd is the scale height, Rd is the scale length and Σd,0 is the surface scale density. The
total mass for such a disk becomes Md = 2πΣd,0R

2
d.

By mapping the number density distribution of ∼28 million stars in the MW from the
Sloan Digital Sky Survey, Jurić et al. (2008) found best fitting scale heights and lengths for
the double exponential model with a quoted 20% accuracy. The resulting scale heights were
ztd = 300 pc and zTd = 900 pc and the scale lengths Rtd = 2.6 kpc and RTd = 3.6 kpc. The
stellar mass for the thin disk M t = 4± 1× 1010M� and for the thick disk MT ≈ 0.2M t.

2.1.3 The Halo

Hosting all of the aforementioned components is a dark matter (DM) halo. In the standard
cosmological picture, galaxies and galaxy clusters are baryonic1 blips embedded in DM halos.
The existence of these halos are motivated from observing the motions of stellar populations
away from the disk region, gaseous rotation curves, gravitational lensing effects and simula-
tions, all of which require stronger gravitational fields which the baryons alone cannot induce
(Zwicky 1937; van der Kruit & Freeman 1984; Kleyna et al. 2001; Adams et al. 2012; Freeman
1970; Bosma et al. 1977; Rubin et al. 1980; van Albada et al. 1985; Walsh et al. 1979; Clowe
et al. 2006; Dubinski & Carlberg 1991; Navarro et al. 1996; Stadel et al. 2009; Springel et al.
2008; Dehnen & Read 2011).

Dark Matter

The simple and classical way to infer the existence of DM is by looking at the velocity
distribution of gas far from the galactic center as a function of its galactocentric radius R.
One would expect the circular velocity (far from the disk) to decay as V ∼

√
M/R from

Newtonian dynamics. However, observations points to the contrary (Begeman et al. 1991).
Figure 2.2 shows the velocity distribution of neutral hydrogen gas in NGC6503, which

clearly shows that the circular velocity of the gas at large radii is constant. By looking at
the aforementioned Newtonian formula, to compensate the increasing R, an increasing mass
M is required in order to keep the velocity distribution constant, which is not luminous. It
is therefore permissible to assume the existence of another kind of matter that is beyond
current direct observational techniques. This currently undetected material is named dark
matter (DM).

1Baryons: Particles from the standard model (SM) of particle physics.
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Figure 2.2: The circular velocity of 21-cm neutral hydrogen lines of NGC6503 as a function
of Galactocentric radius (Begeman et al. 1991). The data points (solid dots) fit with a model
of the circular velocity once all the dashed components are added together.

Large scale stellar surveys reveal the structural complexity of the halo. It has multiple
components and substructures, all of which engulf smaller galaxies and tidally disrupt them
(Ibata et al. 1997; Belokurov et al. 2006; Schlaufman et al. 2009).

As the window of theoretical speculation was opened in the search for a DM model,
there have been many suggestions. One of them, has been rather successful in reproducing
today’s Universe in cosmological simulations (Springel et al. 2006; Guo et al. 2011). The
successful model requires the DM to be dynamically cold (CDM) and its individual particle
constituents to be weakly interacting and massive (WIMP). DM particles with such properties
should therefore able to interact via gravity and the weak nuclear force.

As the solar system is moving through the Galaxy, we expect some flux of DM particles.
The Large Underground Xenon experiment (LUX) is one of several experiments that aims to
directly detect the flux of DM particles on Earth by relying on their assumed weak nuclear
interaction with standard model (SM) particles. LUX has deployed a large chamber of 370 kg
of liquid Xenon ∼ 1.6 km below Earth’s surface. The team hopes that the achieved sensitivity
of the experimental set up might realize a signal coming from a DM/SM interaction. How-
ever, no such signal has yet been detected but constraints have been found, ruling some DM
particle candidates out. This endeavor remains alive as significant upgrades to the detector
awaits, continuing the search.

In cosmological simulations, the most widely used DM mass density profile, enabling the
successful reproductions of observational data as it approximates the density profiles of galaxy
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and cluster halos very well, is the Navarro-Frenk-White (NFW) profile (Navarro et al. 1996)

ρh = ρh,0(r/rs)
−1(1 + r/rs)

−2

where ρh,0 is a scale density and rs is a scale radius. The density behaves as ρ ∝ r−1 in the
core and as ρ ∝ r−3 on the outskirts. However, despite the accuracy of the NFW density
profile, a different expression for the halo profile will be used in this thesis work due to its
simplicity and speed of use (section 3.1, Eq. (3.3)).

One of the ways to test our understanding of DM is to calculate the DM mass density in a
local volume (few 100 pc). Within such a volume, we are able to relatively accurately measure
the kinematics of stars. From these kinematic data sets and density profiles, a local mass
density can be estimated. By disentangling the baryonic mass contribution from that of the
DM, we can estimate a local DM density ρDM,0. The numerical value of this parameter plays
an important role to the particle physics community. As mentioned, there are great efforts
to measure the flux of DM on Earth and formulas used to calculate the rate of interaction
require the local DM density as input. Currently, estimates for ρDM,0 range from ≈0.006 to
≈0.02 M� pc−3 (McMillan 2011; Bovy & Tremaine 2012; Garbari et al. 2012; Zhang et al.
2013; Bovy & Rix 2013; Salucci et al. 2010).

A standardized way of characterizing the extent of the halo is to restrict the radius to
where the density is 200 times the critical density, ρ200 = 200ρcrit ⇒ r200. The critical
density is the density of the Universe if its geometry was flat, i.e. no space-time curvature.
Locally, ρcrit = 3H2

0/8πG where H0 is the Hubble constant (H0 ≈ 73 kms−1Mpc−1). The
mass M200 can be defined within this region. Based on the kinematics of halo stars, the mass
is estimated M200 = 1− 2× 1012M� (Kafle et al. 2012; Deason et al. 2012) and by modeling
local observables (McMillan 2011).

Another property of the halo is its shape. In simulations, where baryons are included,
the halo takes on a triaxial-oblate shape (Kazantzidis et al. 2004; Bailin et al. 2005; Abadi
et al. 2010). The same conclusion can be drawn when fitting models of halo shapes to
observational data of streams from tidally disrupted dwarf galaxies. Such observations have
yielded q = 0.95 ± 0.15 (essentially spherical) where q defines the axis ratio between the z
axis and the plane (Koposov et al. 2010; Küpper et al. 2015).

2.2 Spiral arms

Galactic spirals arms can be regarded as regions where matter is temporarily compressed due
to passing density waves. As it turns out, such density waves and material in the disk do
not generally rotate at the same rate. Therefore, gas that pass the waves (or gets passed by
a wave) is compressed, allowing gravitational collapse of the gas to ensue at a faster rate,
triggering star formation (SF).

A simple model of the spiral structure is to assume them to be long-living and static. In
other words, the wave pattern rotates with a fixed pattern speed over orbital periods. This
concept was made popular by Lin & Shu (1964) where the surface density of the disk took
on the form of a wave equation. Such a model is usually referred to as the stationary spiral
structure and it clearly departs from a picture of a smooth triaxial shape of the disk.

Other authors have argued that spiral arms are a transient phenomenon (Grand et al.
2012; Grand & Kawata 2015; Pérez-Villegas et al. 2015). In this picture, as a galaxy evolves
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in time, arms can get ‘destroyed’ and ‘recreated’, giving them a transient nature.
The interplay of stars and density waves can be rather complex due to a star’s suscepti-

bility of being dynamically heated by such a wave. As an arm is a region of of temporarily
compressed matter, any star trailing the arm will experience a greater gravitational attraction
towards it. Therefore, as angular momentum is changed, they radially migrate outwards in
the disk. On the contrary, if the arm is trailing a star, the star experiences deceleration and
radially migrates inward. For these reasons, and the fact that stars have vertical motion,
modeling the orbits of stars can become very complex. More importantly, radially migrating
stars strongly depart from a simple near-circular orbit.

Gas, on the other hand, is much more efficient at dissipating energy in all directions and
can thus reconfiguring its energetic state such to remain on a near-circular orbit (Baba et al.
2016) and moreover, stay in the mid-plane of the disc. Therefore, if one is to make a model
relying on objects following a near-circular orbit and residing at z ≈ 0, gas is a more favorable
tracer than stars.

2.2.1 Masers

A maser is the microwave analogy of a laser. It is a coherent light source emitted by molecules
commonly found in molecular clouds or High Mass Star Forming Regions (HMSFRs). It is
the abundance of energetic radiation in HMSFRs that power the masers. By definition, the
narrow frequency range radiated by a maser makes for an excellent tracer target. The typical
wavelength of a maser if of order GHz and typical sources are OH, H2O and NH3.

With spirals arms as the main birth location for stars, the measured parallax, proper
motion and radial velocity of masers can thus be mapped and serve as proxies for identifying
the location and kinematics of spiral arms. This has in fact been done. Figure 2.3 shows a
face on view of the MW where the points indicate the location of ∼ 100 maser sources (Reid
et al. 2014).
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Figure 2.3: Plan view of the MW where the points represent maser sources (Reid et al. 2014).

As such, this group find strong evidence for the existence of spiral arms in the MW
based on the parallaxes and proper motions from masers as observed by The Bar and Spiral
Structure Legacy Survey2(BeSSeL) and the Japanese VLBI Exploration of Radio Astronomy
3 (VERA). The accuracies of the measurements are typically ±20µas with some as accurate
as ±5µas.

2.3 The value of having a model and studying the MW

A good theory that describes parts of our natural world is one which can be written down
in mathematical form. The answers of nature then lie in the forms of the equations and
importantly, the values of its constants. By extracting observables from a mathematical
model, such as forces, velocities, energies, etc, we are able to test them by comparing them to
values that have been retrieved from observations. Creating a model is therefore a powerful
tool as it gives insights into the nature of nature.

When it comes to large systems, such as galaxies, it can be useful to assume simple models
in order to catch general trends. Analytic models are in a computational sense ‘cheap’ and
large sets of data from surveys can therefore be correlated quickly. We are in this sense able

2http://bessel.vlbi-astrometry.org
3http://veraserver.mtk.nao.ac.jp
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to discriminate between models at an early stage before committing to large simulations and
dynamical modeling which is an important final step.

It it therefore perfectly reasonable to compare some simple models of the MW (i.e. spiral
arms vs no spiral arms) against recent data to get hints into its structure. It is with great
pleasure we take advantage of our unique position in the Universe. Here, we can get detailed
observations and test models that could otherwise not be testable by extragalactic galaxies.

As mentioned, moving to fully dynamical models and testing their validity is an essential
step as most of the mass in galaxies is expected to reside in the DM halo, which fundamentally
cannot be probed directly (as of yet). Before a dynamical model can be constructed and tested
in simulations, a model describing the distribution of mass is essential to get right because
it directly couples to the shape of the gravitational field, which fundamentally governs the
motion of the objects residing within it. It is therefore important to show to what extent the
inclusion of spiral perturbations in the Galaxy changes important characteristics, such as the
mass of the various components.
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Chapter 3

Theory

The key concepts that are used to construct the models in this thesis are presented in this
section. In section 3.1 I explain how the gravitational potential is set up and crucially, how
expressions for the various velocity components are gained from it. In section 3.2 I introduce
what could in some respects be regarded as a philosophy that enables one to constrain models
by making use of prior studies. Lastly, in section 3.3, I present an algorithm that finds best-
fitting parameters to models based on observational data.

3.1 The gravitational potential and the circular velocity

In order to achieve the goal of calculating parameters with which we can later compare to
observational data, we must start with some basis of predicting future motion of objects
residing in the Galaxy. The basis, in this thesis work, will come from turning the constructed
model for the gravitational potential into a model for the gas’ circular velocity.

The first step is to realize that the gradient of the gravitational potential Φ is an object’s
acceleration,

a = −∇Φ.

The second, to add the separately modeled components of the Galaxy that are deemed to
dominate the gravitational field together. An expression for the total acceleration of a test
particle within such a field is then given by

atot = −∇
3∑
i=1

Φi, (3.1)

where i = 1, 2, 3 represent the bulge, disk and halo respectively and the gradient can be
expressed in cylindrical coordinates ∇ = ∂/∂R R̂+ 1/R ∂/∂φ φ̂+ ∂/∂z ẑ.

The bulge and the disk are modeled as Miyamoto-Nagai potentials (Miyamoto & Nagai
1975) which has the expression

Φ(R, z) = − GM√
R2 +

(
a+
√
z2 + b2

)2 , (3.2)

where G is the Newtonian gravitational constant, M represents the total mass contained
within a system, R is the radial distance from the Galactic center, z the height above the
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plane, a is the scale length and b is the scale height. In short, the parameters a and b determine
the shape of a spheroid. The ratio a/b > 1 makes an oblate object and a/b < 1 makes a
prolate object.

The halo component is modeled as a logarithmic potential (Binney & Tremaine 2011)

Φ3(R, z) =
1

2
v20 ln

(
R2
c +R2 +

z2

q2

)
, (3.3)

where q is the axis-ratio, Rc the core radius and v0 the maximum obtainable velocity in this
potential.

By construction, the bulge, described by Φ1 will contain the mass M1, the scale length
a1 and the scale height b1. Similarly, the disk, described by Φ2, will have a mass M2, a scale
length a2 and a scale height b2. The superposition of these components, including the halo
will result in the total MW potential

ΦMW = Φ1 + Φ2 + Φ3.

Of course, as discussed in sections 2.1.1 and 2.1.2, the density profile of the disk and bulge
have exponential components which departs from the MN model. However, it is stressed that
the analytical MN model is applied to data quicker and is therefore more convenient to use
as opposed to integrating relatively complicated exponentials when solving Poisson equation
∇2Φ = 4πGρexp.

3.2 Bayesian inference

For a set of parameters θ and a set of data d, one can aim to maximize the likelihood
L(d|θ), by running through the parameter space θ in order to find a best-fitting model. The
Bayesian approach allows one to go beyond that, by making use of prior knowledge of the set
of parameters. The new probability distribution, the posterior, is given by:

posterior =
likelihood× prior

evidence
⇔ p(θ|d) =

L(d|θ) p(θ)

p(d)
, (3.4)

where p(θ) is the essential new addition which holds the probability of a parameter as deter-
mined by previous studies. The probability of the data p(d) is assumed to be a normalization
constant here. This is fine because it is the same of all the models.

The probability distributions L(d|θ) & p(θ) in Eq.(3.4) will take the form of a Gaussian
probability distribution function (pdf)

fG(x|µ, σ) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
(3.5)

where µ represents a mean value or in this case observational data, σ its uncertainty and x a
test value obtained from models.

3.2.1 Priors

Below are all of the priors used in order to calculate the Bayesian posterior. The full list of
priors used can be seen in Table 4.1.
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Bulge mass, M1

The mass used to represent the bulge, Mb = (8.9±2)×109M� (= M1), is taken from McMillan
(2011), which, in turn, was obtained from Bissantz & Gerhard (2002). The quoted mass was
determined by turning a luminosity density into a mass density, i.e. a mass-to-light ratio
(M/L). A best-fitting model for the luminosity density was determined by maximizing the
likelihood of a parametric model to two sets of data. The first, near-infrared (NIR) L-band
(λL = 3−4µm) data from the Diffuse Infrared Background Experiment on board the Cosmic
Background Explorer satellite (COBE/DIRBE). The second, the line-of-sight distribution of
clump giant stars. It is worth noting that the authors assumed a spatially constant M/L-ratio
throughout the bulge.

Disk scale length, a2

As explained in section 2.1.2, galactic disks tend to follow an exponential density profile.
Bland-Hawthorn & Gerhard (2016) averaged multiple studies and retrieved a value for the
MW disk scale length Rd = 2.5 ± 0.4 kpc. They way the exponential disk parameter Rd is
implemented as a prior to constrain the Miyamoto-Nagai scale length a2 is shown in Appendix
C.1. Basically, a ratio between a mass inside and outside R0 is calculated from both the MN
density profile and an exponential disk profile, which are then set to equal. a2 is then found
as a function of Rd.

For b2, Binney & Tremaine (2011) concluded that the relation b2 = 0.2 a2 fits the light
distributions of disk galaxies.

Bulge scale length and height, a1 & b1

The same mass ratio relation as explained above is found for the bulge, this time with the
bulge density profile from section 2.1.1. This time, the masses are divided by a bulge cut off
radius Rbc which indicates the extent of the bulge region. Bissantz & Gerhard (2002) finds
the length of the bar to be 3.5 kpc. In this effort, we end up with an expression for the
Miyamoto-Nagai scale length a1 as a function of Rbc. The full derivation that can be seen in
Appendix C.2. Lastly, b1 = 0.5 a1 (Bissantz & Gerhard 2002).

Vertical force, Fz,1.1

Kuijken & Gilmore (1991) determined the gravitational force towards the galactic plane at
z = ±1.1 kpc in the Solar neighborhood to Fz,1.1 = 2πG × (71 ± 6)M� pc−2. The authors
maximized the likelihood of a kinematic model using 512 K dwarf stars as tracers. As the force
in z-direction can be calculated by differentiating my model for the gravitational potential
w.r.t. z, these authors’ findings are used as a constraint.

Radial force, FR,50

Wilkinson & Evans (1999) used the motions of globular clusters and satellite galaxies at
Galactocentric radii, R, greater than 20 kpc to determine the mass within 50 kpc of the
Galaxy, MR<50 kpc = (5.4±1)×1011M�. Approximating the Galaxy to be spherically within
R = 50 kpc, the gravitational force per unit mass can be calculated and used as a constraint
in my model; FR,50 = G×MR<50 kpc/(50 kpc)2 = G× (2.16± 0.4)× 102M� pc−2.
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Proper motion of the Sun, µSgrA∗

Reid & Brunthaler (2004) measured the position of the supermassive black hole Sgr A∗ with
respect to two extragalactic radio sources over an 8 year period, allowing them to infer its
proper motion µSgrA∗ = 6.379 ± 0.024 mas yr−1. The apparent proper motion of Sgr A∗ is
assumed to be entirely due to the motion of the Sun and therefore allows one to convert the
observed proper motion into a circular velocity for the Sun about the Galactic Center, namely
Vc,� = µSgrA∗/R0 = (239± 9) km s−1 where R0 is assumed to be 8.3 kpc.

3.3 Markov Chain Monte Carlo (MCMC)

Conceptually, the MCMC algorithm is a way of probing a parameter space such that the sets
of points produced by the algorithm fairly samples the pdf. This method is invoked as a
direct consequence of the lack of computational power to go through a large parameter space
in a traditional way.

Computationally, the Markov Chain boils down to the following steps:

1. Let θn represent a point in the parameter space and calculate p(θn|d)

2. Choose a trial parameter set θ′ by moving the point θn in all directions in parameter
space and calculate p(θ′|d).

3. Find a random variable r from a uniform distribution in the range [0,1].

4. Check if p(θ′|d)/p(θn|d) > r

• If true, accept trial parameter set and set a new θn+1 = θ′.

• If not, set θn+1 = θn.

5. Go back to step 1 and replace θn with θn+1

where p(θ|d) is the posterior from Eq. (3.4).
This algorithm is continually searching for the largest probability. However, critically,

the fourth statement allows, sometimes, for a slightly lower probability to be accepted. This
ensures that one does not get stuck at a local maximum and that the entire probability space
is being probed. In this way, one should find a global maximum along with its deviations from
the mean. The first 20 per cent of the number of iterations of this algorithm is discarded and
is called ‘the burn in phase’. This is common practice because the initially chosen parameters
are of course not expected to be correct as stronger deviations from the mean are expected
at the start.

This algorithm runs in a loop where each step is given by a new set of test parameters.
As such, instead of adding code to the algorithm that would ensure some level of convergence
of the parameters which would halt the run, I choose to set at fixed number of iterations at
start. In my case, I found that 106 iterations gives smooth enough shapes to the resulting
Gaussian looking pdfs.

Additionally, to check the robustness of the method, I initialized the algorithm with
slightly different values and the results remained unchanged.
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Chapter 4

Method

In this section, I show how predicted values of observables, such as radial velocity and proper
motion of Galactic objects, can be calculated from models. Furthermore, I show how the
observational data is used in order to constrain those models. Given positional data for a
Galactic object, the end objective is to calculate its predicted velocity components, which
will be obtained from the model of the circular velocity.

From section 3.1 we saw how the total acceleration was calculated from assuming a model
for the gravitational potential of the MW. Further assuming that certain Galactic objects
(such as gas) have no vertical motion and that they follow a circular orbit lead to the following
set of equations,

z = 0, ∇ =
∂

∂R
R̂, atot =

√
atot · atot =

V 2
c,tot

R
. (4.1)

Combining Equations (3.1)-(3.3) & (4.1) yields the following expression for the total circular
velocity

V 2
c,tot =

GM1R
2(

R2 + (a1 + b1)
2
)3/2 +

GM2R
2(

R2 + (a2 + b2)
2
)3/2 +

v20R
2

R2
c +R2

. (4.2)

Within Eq. (4.2) lies a hand-full of parameters that need to be determined. They are M1,
M2, v0, a1, a2, b1, b2 and Rc. The next task becomes determining these parameters.

4.1 Determining the parameters

The circular velocity of an object is not a direct observable in nature. It is for this reason we
need to convert the modeled circular velocity into components which we could compare to
observational data. If we imagine observing a maser for example, two things that are possible
to observe are its radial velocity and its proper motion. In the model, such observables
become the radial and tangential velocity, respectively. The comparable velocity components
are illustrated in Figure 4.1.
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Figure 4.1: Plan view of the Galaxy. Here, vφ represents the circular velocity. The red dotted
circle represents the Sun, the black cross represents the Galactic center and the yellow circle
represents a point source of light. Left frame shows the observable velocity components: the
proper motion in direction of longitude, µ`, and the radial velocity, vr. Right frame shows
the modeled velocity components: the tangential velocity, vt, and the radial velocity, vr.

The principle way to determine the parameters in Eq. (4.2) is so check for which set
of those parameters the modeled radial and tangential velocity components fit best with the
corresponding velocity components from data. To find a best fitting model I use a combination
of two techniques. The first is using the MCMC approach, which is explained in section 3.3, to
search through the parameter space, finding the best-fitting model (after which we can even
recover the mean value and a standard deviation for each sampled parameter). The second, is
to put the probability used in the MCMC algorithm in terms of a Bayesian posterior, which
is explained in section 3.2. Doing so allows me to take results from previous studies into
account, so called priors, to further constrain the model. The full list of priors used can be
seen in Table 4.1.
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Table 4.1: All Bayesian priors that are used in order to constrain the models. M1 is the total
mass of the bulge. Rbc is the assumed radial extent of the bulge region. Rd is the disk scale
length. Fz,1.1 is the vertical force an object would be subject to at 1.1 kpc from the disk at
R = R0 where R0 is the distance from the Sun to the the Galactic center. FR,50 is the radial
equivalent at 50 kpc from the Galactic center. µSgrA∗ is the proper motion for the Sun w.r.t.
the Super-massive black hole (SgrA∗) at the Galactic center.

.
Parameter Value Source

M1 (8.9± 2)× 109M� Bissantz & Gerhard (2002)
Rbc 2.5/3.5/4.0 kpc Bland-Hawthorn & Gerhard (2016)
Rd 2.5± 0.4 kpc Bland-Hawthorn & Gerhard (2016)
Fz,1.1 2πG× (71± 6)M� pc−2 Kuijken & Gilmore (1991)
FR,50 G× (2.16± 0.4)× 102M� pc−2 Wilkinson & Evans (1999)

µSgrA∗ ×R0 239± 9 km s−1 Reid & Brunthaler (2004)

4.2 Data

The data used to constrain my model comes from two sources. The parallax, radial velocity
and proper motion of maser sources and the radial velocity of HI gas. The components from
these data sets and the corresponding modeled components are summarized in Table 4.2.

4.2.1 Maser data

The maser data used in this thesis work were obtained from Reid et al. (2014), which, in turn,
obtained the data from the European Very-long-baseline interferometry (VLBI) Network, and
the Japanese VLBI Exploration of Radio Astrometry project. As the names suggest, networks
of ground-based radio telescopes have been used in sync to obtain accurate trigonometric
parallaxes to the maser sources.

The 104 maser sources provided are given in Equatorial Coordinates (EC), which is a
natural frame of reference for an observer. The observables are a, d, $, σ$, µa, σµa , µd,
σµd , vr, σvr . These are: right ascension (R.A.), declination (Dec.), parallax, error in parallax,
proper motion in the direction of right ascension, its error, proper motion in the direction of
right declination, its error, radial velocity and its error, respectively. The velocity components
as obtained from the model and how they are transformed from one coordinate system to EC
is shown in Appendix B.

4.2.2 HI emission data

The radial velocity data from the interstellar medium (ISM), as traced by HI emission lines, is
used (Malhotra 1995). In reality, the gas does not have a singular uniform rotational velocity
for a given Galactic longitude `, as seen in Figure 4.2. That is why I use a simplified model,
where only the maximum radial velocity at a given ` is considered. In the model, such a
maximum is located where the line of sight (direction of longitude) is exactly perpendicular
w.r.t the Galactic center. This is known as the terminal velocity and is illustrated in Figure
4.3.
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Figure 4.2: The radial velocity map of HI emission lines as a function of Galactic longitude,
` (Malhotra 1995).

R0

R

v� line of sight

`

vterm

Figure 4.3: Plan view of the Galaxy in Heliocentric Galactic Polar coordinates (green). Here,
vφ = Vc. The red circle represents the Sun, the black cross represents the Galactic center and
the yellow circles represents HI emission line regions. The line of sight is perpendicular to the
radius R.
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The model for the terminal velocity, vterm, is obtained from Malhotra (1994)

vterm =
|sin`|
sin`

Vc(R0 |sin`|)− (Vc(R0) + V�) sin`, (4.3)

where V� is the Sun’s peculiar velocity in Galactocentric y-direction w.r.t. the velocity of a
hypothetical star at solar position in circular orbit (V� = −12.24 kms−1, McMillan (2011)),
` is the Galactic longitude and R0 is the distance from the Sun to the GC. Thus, for a given
line of sight, i.e. `, and given the constants V� and R0, it is possible to recover the terminal
velocity from the model, which can be compared to observations.

Table 4.2: Summery of the velocity components used to constrain the models.

Velocity component Observable Modeled

Proper motion in R.A. µoa vmt,a$
m

Proper motion in Dec. µod vmt,d$
m

Radial velocity vor vmr
Terminal velocity voterm vmterm

4.3 Comparing the model to data

Now that we have models which can reproduce predicted observables it is time to derive a
best-fitting model. In section 3.2 I introduced the likelihood but did not properly define it.

Parameters, as obtained either from observation or models, come with errors. In nature,
however, there should be a platonic, ‘true’ value for a physical parameter. The pdf thus needs
to be evaluated against true values. For this reason, the probability P , which is the likelihood
in the Bayesian posterior, takes on the form

P (θo|θm) =

∫ ∞
0

PG(θo|θt)PG(θt|θm) dθt, (4.4)

where θt are the true values and the subscript o represents the observed value. This construc-
tion can be visualized as illustrated in Figure 4.4.

The general solution for Eq. (4.4), which now includes errors from both the observations
and the models, is

P (θo|θm) =
β

σoσm
√

2π
Exp

[
α2

β2
− ζ
]
, (4.5)

(
σ2mθo + σ2oθm

)2
(σ2m + σ2o)

2 = α2 ;
σ2m + σ2o
2σ2oσ

2
m

=
1

β2
;

σ2mθ
2
o + σ2oθ

2
m

2σ2oσ
2
m

= ζ. (4.6)

The full derivation that takes you from Eq. (4.4) to Eq. (4.5) is shown in Appendix A.
Note that Eq. (4.5) is independent of any true parameter.
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Figure 4.4: The dashed box represents the sharply peaked pdf of a true value. The two
Gaussian pdfs represent the observed (blue) and modeled (green) location of the parameter.
In a perfect world, all of these peaks would align on a single ‘true’ value.

The formulation of Eq. (4.5) has also introduced something significant which is an error
term in the model, namely σm. This is akin to introducing a perturbation to an otherwise
perfectly circular orbit. σm is set to 7 km s−1 because this is the estimated random velocity
for an object residing in a spiral arm (McMillan 2011). This means that, for whatever velocity
component is being evaluated with the probability P , it is now being treated as being on a
near-circular orbit.

The Bayesian posterior can now be calculated by multiplying the likelihoods (listed in
Table 4.2) and the priors (listed in Table 4.1) together

posterior =

(
Nm∏
i=1

P (µoa,i|µma,i)× P (µod,i|µmd,i)× P (vpr,i|vmr,i)

)
×

(
Nt∏
i=1

PG(voterm,i|vmterm,i)

)
×

PG($o|$m)× PG(ao1|a1)× PG(bo1|b1)× PG(Mo
1 |M1)×

PG(F oR,50|F m
R,50)× PG(F oz,1.1|F m

z,1.1)× PG(µoSgrA∗ |µ
m
SgrA∗),

(4.7)
where Nm is the number of masers and Nt is the number of terminal velocities from the HI
data. The lack of a superscript for the variables in the second argument in PG in the second
row in Eq. (4.7) means that these are test variables in the MCMC algorithm. It should be
reemphasized that the probability terms P have a built in error in the model but the terms
PG do not. So the error terms are not applied to the priors or the terminal velocity (because
the observational errors are as low as ∼ 2 km s−1 (Malhotra 1995), which, compared to the
error introduced in the model ∼ 7 km s−1, is negligible).

4.4 Spiral perturbation

There is no complete understanding of the origin and evolution of spiral phenomena. There is
therefore neither a universal model or modeling technique whose results correctly predict the
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long-term evolution of the majority of galactic systems. Developments of different theories
have been made and the most common ones do solve some systems in some situations.

A common and classical way of modeling the spiral perturbations for a galactic system,
that is also simple and analytic, is to regard the perturbations as static, non-material and
traveling density waves. Quasi-stationary density wave theory is commonly associated with
Grand Design galaxies, which are galaxies with prominent and well-defined spiral arms. In
this regime, the arms are long-lived and rotate with fixed pattern speed. As mentioned in
section 2.2, the framework for such a model has in part been developed by Lin & Shu (1964).

In numerical simulations, however, it is typical to see systems that do not remain static
but develop transient spiral arms (Semczuk et al. 2017). Such results motivate the use of
dynamical spiral models to which there are a few popular ones. The swing amplification
model finds that given a differentially rotating disk, a leading and trailing density pattern
emerges from the disk’s shear. From here, spiral arms are created as wave modes eventually
meet and amplify due to self-gravity (Dobbs & Baba 2014). The tidal interactions model
is good at making grand design galaxies by introducing tidal interaction from surrounding
systems. The bar driven spirals model works to produce spirals as a byproduct of gravitational
field generated by a rotating strong (usually) bar. Even models where DM is the driving force
are explored.

In light of the wide use of axisymmetric models of the MW among the community and the
complexity levels that come with numerical simulations, the model deployed in this thesis work
is inspired by the static wave equation. The parametric solutions that were used are obtained
from Bobylev & Bajkova (2014), where the velocity perturbations in radial and azimuthal
direction, VR = fR cosχ and ∆Vφ = fφ sinχ, respectively, are given. Here, f represents the
amplitude of the wave and χ represents the radial phase of the wave. Given that i represents
the spiral pitch angle, a parameter that determines the amount of winding the spiral pattern
has, and m represents the number of spiral arms in the system, the radial phase of an arm is
given by

χ = m [cot(i) ln(R/R0) + θ]− χ� (4.8)

where χ� is the correction for the radial phase of the Sun and θ is a stars position angle
measured in the direction of Galactic rotation.

In effect, we are moving from a system of near-circular orbit

(vR, vφ, vz) = ( 0 , Vc(R) , 0 ), (4.9)

to a system perturbed by spiral structure

(vR, vφ, vz) = ( VR,sp(R,φ) , Vc(R) + ∆Vφ,sp(R,φ) , 0 ). (4.10)

Models with 2 and 4 arms will be tested.
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Chapter 5

Results

The method presented in this thesis results in Bayesian probability distribution functions
sampled by an MCMC chain for a set of parameters describing axisymmetric models of the
MW and models of static wave-like spiral perturbations all of which can be seen in sections
5.3, 5.4, 5.5, 5.6, 5.7. We also determined a best fitting model in each case which are shown
in sections 5.1 and 5.2. Since the models contain many parameters or priors that can be
changed, I test a few different scenarios. Each section will therefore showcase a model for a
Galaxy with two spiral arms and one for four spiral arms.

The resulting azimuthal and radial velocity distribution for the best-fitting spiral arm
model is shown in section 5.1. In the same section, I show the residual velocity vectors,
comparing the the best-fitting axisymmetric and spiral arm model to the observed values of
the masers. The best fitting model for the terminal velocity is shown in section 5.2. The
vertical and radial force are shown in section 5.3. Sections 5.4, 5.5, 5.6 and 5.7 show the
sets of parameters used to produce the above results and are shown as histograms which are
obtained by binning accepted parameters in the MCMC algorithm.

5.1 Velocity maps

The left panels in Figures 5.1 (two-armed) and 5.2 (four-armed) show the best-fitting total
(axisymmetric model + spiral arms, Vφ+∆Vφ,sp) azimuthal velocity distribution and the right
panels show the radial velocity distribution VR. The azimuthal velocity perturbation for the
two armed model is ∆Vφ,sp,2 ≈ 15 km s−1 and for the four armed model ∆Vφ,sp,4 ≈ 1 km s−1.
The radial velocity perturbation for the two armed model is ∆VR,2 ≈ 0.6 km s−1 and for the
four armed model ∆VR,4 ≈ 16 km s−1.

As a remark, because of the almost vanishing azimuthal velocity perturbation for the
four armed model and the fact that the velocity towards the center of the Galaxy goes to
≈ 150 km s−1, I cut out any velocity that is not in the region 240 km s−1 < Vφ < 250 km s−1

in Figure 5.2a. Otherwise, because of the plotting software’s (MATLAB) color gradient scale
functionality, the azimuthal spiral perturbation ≈ 2 km s−1 would never have been visible as
the total azimuthal velocity is plotted and the tiny difference is hard to distinguish.
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(a) Azimuthal velocity map. (b) Radial velocity map.

Figure 5.1: Velocity maps for the best-fitting parameters in the interval −5 ≤ x, y ≤ 16.
Here, the spiral model has 2 arms and the bulge cut off radius Rbc = 3.5 kpc.

(a) Azimuthal velocity map. (b) Radial velocity map.

Figure 5.2: Velocity maps for the best-fitting parameters in the interval −5 ≤ x, y ≤ 16.
Here, the spiral model has 4 arms and the bulge cut off radius Rbc = 3.5 kpc.

Another way to visualize and to check the validity of the models is to subtract the modeled
velocity components from that of the data. In other words, to show the residuals. Figures
5.3a and 5.3b show the face on view of the Galaxy where the velocity components of the
axisymmetric model has been subtracted from that of the maser data and the axisymmetric
model with spiral perturbations subtracted from the maser data, respectively. Figures 5.4a
and 5.4b show the same for a four armed model. Finally, the residual between the axisym-
metric model and the model including spiral perturbations is show in Figures 5.3c and 5.4c
for a two armed and a four armed model respectively.

The scale of the velocity vectors on these plots should be noticed. The residuals on the
top panels are scaled such that the length of the bottom left arrow corresponds to 200 km s−1

and the bottom panels are scaled by 7 km s−1. The latter is to highlight the residuals between
the models as they are rather tiny.
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(a) Maser data versus axisymmetric model.
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(b) Maser data versus spiral perturbation model.
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(c) Axisymmetric model versus spiral perturbation model.

Figure 5.3: The residuals between the observed and modeled velocity components of masers.
Data given by Reid et al. (2014). The gray scale is indicates 5 kpc radial increments except
for the first one close to the Galactic center with indicates the bulge cut off radius. Here, the
spiral model has 2 arms and the bulge cut off radius Rbc = 3.5 kpc.

Since the parallax becomes very small far away, the error in the measurements become very
large which in turn make the estimate for the proper motion suffer. Because I am modeling
the masers to be on near circular orbits, the velocity vectors will be perpendicular to a line
that joins the source to the Galactic center. Combining the calculated velocity vectors from
my model with the large errors for the masers far away results in the large residuals seen
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towards to bottom right corner in the plots.
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(a) Maser data versus axisymmetric model.
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(b) Maser data versus spiral perturbation model.
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(c) Axisymmetric model versus spiral perturbation model.

Figure 5.4: The residuals between the observed and modeled velocity components of masers.
Data given by Reid et al. (2014). The gray scale is indicates 5 kpc radial increments except
for the first one close to the Galactic center with indicates the bulge cut off radius. Here, the
spiral model has 4 arms and the bulge cut off radius Rbc = 3.5 kpc.
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5.2 Terminal velocity

The best fitting models for the terminal velocity curve as a function of Galactic longitude
are shown in Figures 5.5 and 5.6 for a two armed and a four armed model respectively. The
left panels show the full velocity distribution in −90◦ < ` < 0◦ and 0◦ < ` < 90◦. The right
panels zooms in on the −90◦ < ` < 0◦ region such that the deviations between the models
can clearly be seen. It is clear from the two armed model (Figure 5.5b) that the model with
the spiral perturbations follows the data better than the axisymmetric model.
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(a) Terminal velocity curves.
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(b) Zoomed in terminal velocity curves.

Figure 5.5: (a) shows the terminal velocity (line of sight velocity) of HI line emission as a
function of Galactic longitude, `. The lines represents the best-fit models, (blue: axisym-
metric; red: spiral perturbation) and circles show the observed values Malhotra (1995). (b)
shows a zoomed in version of (a) to better show the difference between the models. Here, the
spiral model has 2 arms and the bulge cut off radius Rbc = 3.5 kpc.
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(a) Terminal velocity curves.
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(b) Zoomed in terminal velocity curves.

Figure 5.6: (a) shows the terminal velocity (line of sight velocity) of HI line emission as a
function of Galactic longitude, `. The lines represents the best-fit models, (blue: axisym-
metric; red: spiral perturbation) and circles show the observed values Malhotra (1995). (b)
shows a zoomed in version of (a) to better show the difference between the models. Here, the
spiral model has 4 arms and the bulge cut off radius Rbc = 3.5 kpc.

5.3 Radial and vertical force

Figures 5.7a and 5.8a show the histograms of the vertical force at solar distance and 1.1
kpc above the plane. Both models (axisymmetric and spiral) seem to agree with prior as
determined by Kuijken & Gilmore (1991). This should not come as a surprise as my models
and data sets are all in the plane.

Figures 5.7b and 5.8b show how the histograms of the radial force in the plane at 50 kpc
from the Galactic center. Both the two armed and the four armed model show significant
departures from the prior given by Wilkinson & Evans (1999). This is probably due to the
the fact that the MN disk scale length a2 also prefers a different value as compared to its
prior as seen in Figures 5.11a and 5.12a since a2 and FR are parameters affected the radial
extent of the disk.
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(a) Vertical force Fz=1.1 kpc.
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(b) Radial force FR=50 kpc.

Figure 5.7: Histogram showing (left) the vertical force per unit mass an object in the Galaxy
would be subject to at R = R0 and z = 1.1 kpc above the plane and (right) the radial force
an object in the Galaxy would be subject to at R = 50 kpc and z = 0. Solid line shows
estimates by Kuijken & Gilmore (1991) and Wilkinson & Evans (1999) respectively. The
dashed line indicates the expectation value. Red histograms represents the spiral arm model
and blue the axisymmetric model. Here, the spiral model has 2 arms and the bulge cut off
radius Rbc = 3.5 kpc.
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(a) Vertical force Fz=1.1 kpc.
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(b) Radial force FR=50 kpc.

Figure 5.8: Histogram showing (left) the vertical force per unit mass an object in the Galaxy
would be subject to at R = R0 and z = 1.1 kpc above the plane and (right) the radial force
an object in the Galaxy would be subject to at R = 50 kpc and z = 0. Solid line shows
estimates by Kuijken & Gilmore (1991) and Wilkinson & Evans (1999) respectively. The
dashed line indicates the expectation value. Red histograms represents the spiral arm model
and blue the axisymmetric model. Here, the spiral model has 4 arms and the bulge cut off
radius Rbc = 3.5 kpc.

27



5.4 Bulge parameters

The bulge was the most heavily constrained part of the model. There were priors for both a1
and b2 as explained in section 3.2.1 (more detailed in Appendix C.2) and for the mass M1.
The resulting MN scale lengths and heights can be seen in panels (a) and (b) respectively
in Figures 5.9 and 5.10. Because there were no data points in the bulge region or any other
priors on the bulge, the a1 and b1 priors pretty much exactly outline the accepted MCMC
values.

The mass, however, looks like a different story, as seen in Figures 5.9c and 5.10c. Both of
them deviate from the prior but more interestingly, for the two armed model, the axisymmetric
versus the spiral model strongly deviate from each other.
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(a) Bulge scale length.
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Figure 5.9: Histograms of the axisymmetric spheroidal bulge with MN scale length a1, scale
height b1 and mass M1 with and without spiral perturbations (red and blue respectively).
The dashed line indicates the expectation value. Here, the spiral model has 2 arms and the
bulge cut off radius Rbc = 3.5 kpc. The solid lines represent the priors listed in table 4.1.
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Figure 5.10: Histograms of the axisymmetric spheroidal bulge with MN scale length a1, scale
height b1 and mass M1 with and without spiral perturbations (red and blue respectively).
The dashed line indicates the expectation value. Here, the spiral model has 4 arms and the
bulge cut off radius Rbc = 3.5 kpc. The solid lines represent the priors listed in table 4.1.
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5.5 Disk parameters

Panels (a) and (b) show the MN scale length and heights respectively in Figures 5.11 and
5.12. The spiral model does not seem to change the values of a2 and b2 by any significance.
However, both the two and the four armed models strongly deviate from the prior, which was
given by the constructed relation between the MN scale length a2 and the exponential disk
scale length Rd as explained in Appendix C.1.

Again, as the mass of the bulge for a two armed model, the mass of the disk, M2, as seen
in Figure 5.11c, prefers different values depending on the different models.
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(a) Disk scale length.
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Figure 5.11: Histograms of the axisymmetric spheroidal disk with MN scale length a2, scale
height b2 and mass M2 with and without spiral perturbations (red and blue respectively).
The dashed line indicates the expectation value. Here, the spiral model has 2 arms and the
bulge cut off radius Rbc = 3.5 kpc. The solid lines represent the priors listed in table 4.1.
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Figure 5.12: Histograms of the axisymmetric spheroidal disk with MN scale length a2, scale
height b2 and mass M2 with and without spiral perturbations (red and blue respectively).
The dashed line indicates the expectation value. Here, the spiral model has 4 arms and the
bulge cut off radius Rbc = 3.5 kpc. The solid lines represent the priors listed in table 4.1.

5.6 Halo parameters

The top panels in Figures 5.13 and 5.14 show the resulting parameters from the logarithmic
halo model. Shown in panel (a) is v0, which is the maximum velocity in the logarithmic halo
potential. It is clear that the different models (spiral versus non spiral) preferred different
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values of v0. Shown in panel (b) is the parameter governing the core radius of the halo. As this
parameter has a wider pdf, the difference in mean values between the spiral and axisymmetric
models are not considered significant.
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Figure 5.13: Histogram of the logarithmic halo parameters v0 (a), Rc (b) and (c) shows the
local DM density. Red histograms represents the spiral arm model and blue the axisymmetric
model. Here, the spiral model has 2 arms and the bulge cut off radius Rbc = 3.5 kpc.

The resulting local DM density for the two armed model is ρDM,0 = 0.0096±0.001M� pc−3

with a negligible model difference. For the four armed model, the difference is slightly more
prominent where ρDM,0 = 0.0096± 0.001M� pc−3 for the axisymmetric models and ρDM,0 =
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0.00917± 0.001M� p−3 for the spiral arm models. These are however well within each others
margins of error but should nevertheless be considered interesting.
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Figure 5.14: Histogram of the logarithmic halo parameters v0 (a), Rc (b) and (c) shows the
local DM density. Red histograms represents the spiral arm model and blue the axisymmetric
model. Here, the spiral model has 4 arms and the bulge cut off radius Rbc = 3.5 kpc.
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5.7 Spiral parameters

All of the spiral model parameters from Bobylev & Bajkova (2014) henceforth referred to as
BB (section 4.4) are shown in Figures 5.15 and 5.16. Since these parameters govern the spiral
structure, the resulting distribution of the two armed and the four armed parameters differ
greatly.

The two armed model prefers a vanishing strength of the radial perturbation, fR ≈ 0 and
an azimuthal perturbation strength |fθ| >> 0 as seen in Figures 5.15a and 5.15b respectively.
Interestingly, the exact reverse is true for the four armed model. Here, |fR| >> 0 and fθ ≈ 0
as seen in Figures 5.16a and 5.16b. The two armed model also prefers a slightly smaller pitch
angle than the four armed model as seen in Figures 5.15c and 5.16c. This could be explained
geometrically as the four armed model basically needs more space or it would wind it self too
tightly.
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Figure 5.15: Histograms of the spiral perturbation parameters. (a) and (b) show the wave
amplitude strengths for fR and fθ respectively. (c) and (d) show the wave pitch angle i
and radial phase of the Sun χ� respectively. Dashed lines represent results from Bobylev &
Bajkova (2014) which used a 2 armed model. Here, the spiral model has 2 arms and the bulge
cut off radius Rbc = 3.5 kpc.
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A general comment to the discrepancy of my results to that of BB’s (seen as dashed lines)
is that BB used a different Galactic model that did not have a full model for the rotation
curve. They also used a more narrow set of data compared to me, only a local sample of
masers (within 1.5 kpc of the Sun) which also came from an older data set. As such, the
deviations from my results are expected and in fact welcome as my results should be better.

Even though it would not be necessary, it is encouraging that the solar phase parameter,
χ�, used in the two armed spiral model coincided well with BB’s results as seen in Figure
5.15d as their model had two spiral arms.
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Figure 5.16: Histograms of the spiral perturbation parameters. (a) and (b) show the wave
amplitude strengths for fR and fθ respectively. (c) and (d) show the wave pitch angle i and
radial phase of the Sun χ� respectively. Dashed lines represent results by Bobylev & Bajkova
(2014) which used a 4 armed model. Here, the spiral model has 4 arms and the bulge cut off
radius Rbc = 3.5 kpc.

5.8 Robustness check

Since I have employed a statistical analysis which used a MCMC algorithm to find best-fitting
parameters, it is useful to check whether or not choosing different initial trial parameters give
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significantly different final results. I tested this by changing all of the initial conditions by
±20% and conclude that the final results seen in all the plots above does not change with any
significance.

Furthermore, since the bulge cut parameter Rbc introduced in section 3.2.1 was chosen
somewhat freely, although my choice for Rbc = 3.5 kpc was motivated by estimates from
Bissantz & Gerhard (2002); Reid et al. (2014), the bulge region is still not well defined, I test
different values for it. As such, I re-ran the code for six permutations of scenarios. For both
a two and four armed model, I set Rbc to 2.0 kpc, 3.5 kpc and 4.0 kpc. It would be rather
messy to show 4 additional sets of results so the most significant parameters that changed
are shown in Tables 5.1 and 5.2 for a two and a four armed model respectively.

It should be noted that when I change Rbc in the model, I also change the region for which
data points are accepted i.e. Rbc = 2.0 kpc will include more masers and terminal velocity
points than Rbc = 4.0 kpc. In terms of accepted masers and accepted terminal velocity points,
a bulge cut off radius of Rbc = 2.0 kpc corresponds to 102/104 and 134/134 of accepted data
points, Rbc = 3.5 kpc corresponds to 101/104 and 115/134 and Rbc = 4.0 kpc corresponds to
97/104 and 104/134.

Table 5.1: Varying the bulge cut off region Rbc for the two armed spiral model and showing
the mean values for relevant parameters. When the mean values from an axisymmetric and
spiral model differ by a meaningful amount I denote the value produced by the spiral model
by (sp). A slot that is not labeled by (sp) means that the models produced a similar value.

Rbc 2.0 kpc 3.5 kpc 4.0 kpc

a1/kpc 0.7 0.1 0.05

M1/1010M� 1.2 0.55(sp)-0.67 0.7

a2/kpc 3.3 3.5 3.3

M2/1010M� 5.5 7(sp)-6.5 6.7(sp)-6.3

ρDM/M�pc−3 0.015(sp)-0.016 0.013(sp)-0.014 0.013(sp)-0.014

fR/km s−1 * 0.0 -3.0

fθ/km s−1 -5.0 -5.0 -5.0

vterm,max/km s−1 130 240 400

The ∗ in table 5.1 refers to a not well defined results. Here, the values for fR spanned too
large of a range. More specifically, fR preffered values between the range −3 < fR/km s−1 < 5
and 7 < fR/km s−1 < 12.
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Table 5.2: Varying the bulge cut off region Rbc for the four armed spiral model and showing
the mean values for relevant parameters. When the mean values from an axisymmetric and
spiral model differ by a meaningful amount I denote the value produced by the spiral model
by (sp). A slot that is not labeled by (sp) means that the models produced a similar value.

Rbc 2.0 kpc 3.5 kpc 4.0 kpc

a1/kpc 0.7 0.1 0.05

M1/1010M� 1.2 0.68 0.72

a2/kpc 3.3 3.5 3.4

M2/1010M� 5.1 6.6 6.5

ρDM/M�pc−3 0.016 0.013(sp)-0.014 0.014

fR/km s−1 -8.5 -9.1 -9.0

fθ/km s−1 0.0 0.0 0.0

vterm,max/km s−1 130 250 450

It is evident from Tables 5.1 and 5.2 that the bulge cut of radius Rbc does alter some
of the parameters in a fairly significant way. The parameters that seem to be undisturbed
and rather robust are the disk parameters (a2 and M2), the local DM density (ρDM,0) and
the spiral arm velocity strength parameters (fR and fθ) especially if the cut off at 2.0 kpc is
omitted. The reason Rbc = 2 kpc differs from the rest can be understood by the fact that
using masers close to the Galactic center allows a greater amount of statistical error both
from the measurements and the poor modeling of the bulge region.

The bulge mass seems consistent with the afore mentioned arguments but the scale length
a1 is a different story. The resulting value of a1 is heavily dependent on the chosen Rbc.
Thankfully, as discussed above, the rest of the parameters are largely unchanged except for
the rather extreme case of Rbc = 2.0 kpc.

The maximum terminal velocities, vterm,max also differ greatly which that is directly cou-
pled to the inconsistency of the bulge scale lengths. Critically, the good news is that the rest
of the terminal velocity curves, beyond the bulge region, do not change at all, they still go
through the data points just like in Figures 5.5b and 5.6b.

5.8.1 Adding exponential decay

In a further attempt to test different models and to try to resemble the MW structure to a
greater accuracy, I add exponential terms to the spiral perturbations. This choice is motivated
by the fact that observations reveal a exponential decaying disk as explained in section 2.1.2.
The results that follow from this model are shown in Appendix D.
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Chapter 6

Discussion & conclusion

The main goal of this thesis work is to show the effect of adding spiral perturbations to a
commonly used axisymmetric model. Adding the simplest model for the spiral arms (i.e.
an analytic wave equation) to one of the most commonly used and simple models for the
Galactic structure (i.e. two axisymmetric disks with a logarithmic halo) results in slightly
differently preferred parameters for the corresponding MW gravitational potential. However,
these systematic differences are smaller than their corresponding statistical difference given
my amount of data (∼100 masers). As the amount of data increases, the statistical uncertainty
will shrink (while there is no reason to expect that the systematic one will). Therefore studies
of this kind will be increasingly important as the amount of data improves.

Adding spiral perturbations indicate that there could be, if further investigated upon
and more data is added, a potentially more significant difference in local DM density. Such
results are important for the scientific community as they look to constrain models of DM
which effect dynamical modeling and simulations of the formation of the MW. Furthermore,
the detectors build on earth that aim to detect scattering events between SM and DM par-
ticles rely on values for the local DM density as input for models of interaction rates. This
should encourage further investigations.

For both the two armed and four armed model, the slight differences are visible when
looking at the shifts in the mean values of the preferred model parameters which can be seen
in (the two armed model) Figures 5.7, 5.9, 5.11, 5.13 and (four armed model) Figures 5.8,
5.10, 5.12, 5.14. One of the standout result in this thesis work is the importance of choosing
the right number of spiral arms as they have polar opposite velocity configurations. The two
armed model prefers a vanishing radial velocity perturbation but a non-vanishing azimuthal
velocity perturbation ∆Vφ ≈ 16 km s−1. The opposite is true for the four armed model.

As one of the major challenges of this thesis work was to constrain the model with enough
priors such that the the MCMC algorithm produced well-defined results, it is encouraging
to see the resulting histograms taking on a Gaussian looking shape as seen in Figures 5.7
- 5.16. For example, in the early stages of this work, we assumed that the Fz, FR &µSgr A∗

priors were enough to constrain the disk parameters. This turned out not to be the case and
required putting efforts into finding a relation between the MN scale length (a2) and some
observational parameter. I claim that the developed relation between a2 and Rd is unique to
this thesis work. The full derivation of it can be found in Appendix C.1. This is also why
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efforts were put into finding similar constraints for the bulge parameters. Otherwise, the now
nice looking Gaussian histograms would look boxy and random where for example a2 could
wander from 0 to 8 kpc.

For the parameters in the spiral model (Figures 5.15 and 5.16) it is seen that the results
from Bobylev & Bajkova (2014) (BB) differ significantly from my results. This is in part
due to using a different model for the Galaxy than BB but also because of using newer and
more inclusive data sets of masers. The aforementioned authors used a smaller and local
sample, ≈ 30 and no farther than 1.5 kpc from the Sun. Their data set was provided by Xu
et al. (2013), which aimed to investigate the local arm and used maser data mainly from Reid
et al. (2009), as opposed to their updated list that I am using (Reid et al. 2014) with ≈ 70
additional maser sources at further distances.

One of the interesting results for the spiral parameters is the completely polar opposite
choices of radial and azimuthal velocity strengths, fR and fθ, when it comes to a two versus
a four armed spiral model as explained in section 5.7. This is an important result as they
propagate to the resulting shape of the terminal velocity curves (Figures 5.5 and 5.6) and the
velocity maps (Figures 5.1 and 5.2) for the models with different arms. The two armed model
preferred a non-zero |fθ| which translates into a non-zero ∆Vφ,sp. This explains the different
shapes of the terminal velocity curves between the axisymmetric model, which depends on Vφ
only, and the model with added spiral perturbation Vφ + ∆Vφ,sp as seen in Figure 5.5b. For
the four armed model, however, |fθ| is vanishing. This is why Figure 5.6b shows almost no
discrepancy between the models for the terminal velocity. The same line of reasoning explains
the difference between the radial and azimuthal velocity distributions as seen in Figures 5.1
and 5.2 when using a two or a four armed model.

It should be noted that the spiral model was not constrained by even a prior specific to the
spiral parameters. It is encouraging that such unconstrained parameters are able to repro-
duce very similar results to BB for the two armed model as seen in Figure 5.15. The resulting
well behaved values for all the spiral parameters shows the self-consistency of the methodology.

It could be tempting to imagine that adding any type of additional model to the axisym-
metric model will result in shifted histograms. I therefore point to the residual plots shown
in Figures 5.3 and 5.4 and argue that the top panels are in good agreement with each other.
In other words, even though the typical residual (data vs model) is ≈ 20 km s−1 near the Sun
and increases to ≈ 200 km s−1 towards the bottom right corner, the spiral model produces the
same level of errors in roughly the same places. This is of course exactly what is highlighted
in Figures 5.3c and 5.4c which shows the residuals between the models. The differences are
of order less than the typical random velocity found in spiral arms < 7 km s−1 for the two
armed model. For the four armed model, the differences between the models are slightly
larger, creeping up to ≈ 7 km s−1, which is still low.

The large errors seen in the bottom right corner as seen in the residual plots are simply
due to the basic fact that these masers are far away and parallaxes are thus expected to
be measured with greater uncertainty. Including these masers have definitely perturbed the
results but to an unknown extent.

Most of the resulting parameters and fits seem to be consistent with previously determined
values for the parameters and data. Both the axisymmetric and spiral model of the terminal
velocity follows the HI data pretty well, especially the two armed spiral model. Even though
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the disk scale lengths deviate a lot from their priors, they are consistent with Paczynski (1990).
The resulting mass of the disk M2 = (6.5−7)×1010M� is also very close to the estimated value
M2 = (4±1)×1010M�. The resulting values of the vertical force is consistent with Kuijken &
Gilmore (1991) and the resulting radial force slightly differs from that of (Wilkinson & Evans
1999), which are new results that I mostly owe to the newer data set. My resulting local DM
density was ρDM = 0.0096 ± 0.001M� pc−3 for all models except for the four armed spiral
model for which ρDM = 0.00917± 0.001M� pc−3. These values are within the confines fo the
estimated ρDM = 0.006 − 0.020M�pc−3 (McMillan 2011; Bovy & Tremaine 2012; Garbari
et al. 2012; Zhang et al. 2013; Bovy & Rix 2013; Salucci et al. 2010). At solar radius, the
resulting azimuthal velocity maps show consistent results Vφ ≈ 240 km s−1 compares to the
estimated solar circular velocity inferred by the apparent proper motion of Sagittarius A∗,
Vc,� = 239± 9 km s−1. For a two armed model, my resulting spiral parameters are generally
consistent with those found by BB. Our results disagree mainly by choice of maser sources
and modeling. They chose close by sources from an older data set and my masers spanned
a larger range from a newer data set. The resulting pitch angles i2 arms = 10.9 ± 0.7◦ and
i4 arms = 15.6±0.5◦ are both in an accepted range for this still very debated parameter (Vallée
2015).

However, the preferred mass of the bulge is not consistent with estimates 1.4−1.8×1010M�
by Bland-Hawthorn & Gerhard (2016) which is double the mass predicted by my modeling.
The bulge scale length is at least consistent with Paczynski (1990).

Authors that have used similar approaches as to mine, Bayesian statistics with forward
modeling, omit spiral structure when for example determining mass models of the MW
(Dehnen & Binney 1998; McMillan 2011). Bovy & Rix (2013) even did full dynamical mod-
eling of ∼ 16, 000 G dwarf stars to fit that to their 3D action-based distribution function
and a MW model with a halo, bulge, stellar and gaseous disk. No spiral arms! Here they
derive parameters such as local surface density and the radial profile of the dark halo. Since
they use a rather large sample (16,000 stars), their statistical errors are smaller. I therefore
argue that systematic effects from including spirals could represent a significant fraction of
the uncertainty of their work.

Bovy & Tremaine (2012) debunked a claim of a newly estimated local DM density that
differed by an order of magnitude (Moni Bidin et al. 2012). In doing so, they used the same
data as Moni Bidin et al. and claim to have found the latest most robust result ρDM =
0.008 ± 0.003M�pc−3. However, this estimate came from assuming a flat rotation curve,
where the main argument seems to be that the local MW’s rotation curve is pretty much
flat (Xue et al. 2008; Fuchs et al. 2009). Again, as I have shown, this uncertainty could
be underestimated because they have not considered the spiral perturbations. After all, the
local DM density could differ by ∼ 0.001M�pc−3 by including simplistic and unconstrained
models for the spiral perturbations. There is a potential for Bovy & Tremaine (2012) to
possibly improve on their results.

Another group that can benefit from my conclusions about the change in local DM density
using spiral modeling is Piffl et al. (2014), which used ∼ 200, 000 giant stars from the RAdial
Velocity Experiment (RAVE) within 1.5 kpc of the plane to estimate the local mass density
and the shape of the DM halo. They find a larger mass of the DM halo than predicted by DM
only simulations but an agreement with simulations including baryons. More importantly,
one of their key results is an estimate for the local DM density and the shape of the halo.
They find ρDM,0 = 0.0126q0.89M�pc−3 where q ' 0.8 once combined with literature results of
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ρDM,0. As these authors are trying to answer big questions about the most massive structure
in the MW which, when answered, inevitably leads to learning more about the rest of the
Universe, it is important to consider the more detailed modeling of the MW, i.e. adding spiral
structure to models.

6.1 Future outlook

If one is to continue arguing for the inclusion of spiral arms in models then what has been
started in this thesis work needs to be continued and further built upon. From a modeling
standpoint, even though the bulge region was not of major interest, if one is to make a
fully consistent model of the MW, then the axisymmetric approximation need to be revised.
Better alternatives of constraining the bulge region than used in this work should therefore
be investigated.

There are of course other model improvements that one could make in order to get closer
to reality. For instance, changing the Kuzmin surface density to that of the MN when con-
structing the relation between a2 and Rd; or having a NFW DM density profile for the halo;
or a bigger game changer, introduce a z component into the modeling. Unfortunately, this
is tricky business because all of these implementations would force one to lose the simplicity
and speed of the analytic modeling.

It would also be very interesting to se what happens when the masers on the far bottom
right are excluded or any kind of different grouping of selection criteria. I suspect different
results from the exclusion of those maser sources as their proper motions have very large error
in parallax. More inclusion of errors are general in welcome since I have totally omitted error
bars in my residual plots.

A major contribution is the wait for new data. The data set I used came from a group
that is working on releasing a new data set with a few more multiples of the masers than I
had. Furthermore, with Gaia releasing its data sets in the near future, the spiral structure
should become more evident and models of spiral arms can be constrained.
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Appendix A

Allowing for error in the model

From Bayes’ theorem we have the posterior

P (m|d) =
P (d|m)P (m)

P (d)
.

Imagining that we are interested in the ‘true’ (t) value of a velocity component v, we set
up the equality where the posterior will be the product of two Gaussian pdfs G which both
are being evaluated against the true parameter vt (not to be confused with the ‘tangential’
velocity)

P (d|m) =

∫ ∞
−∞

G(vo|vt)G(vt|vm) dvt

where o = observation = data = d.

P (d|m) =
1

2πσoσm

∫ ∞
−∞
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now, focusing on the integral,∫ ∞
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completing the square gives:∫ ∞
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where another, non-true term is moved outside of the integral

Exp

[
−
(
σ2m + σ2o
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2
m
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now, for simplicity, set:
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then, the forgoing equation becomes
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and if put back into the full equation before we focused on the integral:
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which is completely free of a true parameter.

42



Appendix B

Coordinate transformations

The natural way of calculating circular velocity is in a Galactocentric Cylindrical (GCY) frame
of reference. As the observational data is given in Equatorial Coordinates (EC, a natural frame
of reference for an observer), there ought to be a set of coordinate transformations which take
me from one frame to the other. For simplicity’s sake, the first task becomes converting the
GCY frame to the Heliocentric Galactic Polar (HGP) frame.

The position of an object on the sky can be determined from knowing three parameters
in the HGP frame. These are, the longitude `, the latitude b and the parallax $. This frame
of reference, in the Galactic plane (z = 0 ⇒ b = 0), is shown in Figure B.1. It is easier
to express HGP coordinates in terms of its corresponding Cartesian coordinates (HCA) as
follows:

x = r ∗ cos(`), y = r ∗ sin(`), vr = dr/dt, µ` = d`/dt, r = 1/$. (B.1)

The expressions for the x and y coordinates in the HCA frame (Eq. (B.1)) is converted into
the Galactocentric frame, which is shown as the blue in Figure B.1. The x and y coordinates
in the Galactocentric Cartesian frame of reference (GCA) as a function of HCA coordinates
can be derived by the following transformation:

xGCA = R0 − xHCA, yGCA = −yHCA. (B.2)

Finally, an expression for the radius R and the angle φ in terms of the Galactocentric
Cylindrical coordinates (GCY) can be obtained:

R =
√
y2GCA + y2GCA, φ = tan−1( yGCA/xGCA ) (B.3)

where, R is pointing from the Galactic center towards an object in the plane and pivotally,
the angular velocity of φ is equivalent to the circular velocity

vφ = Vc(R).

Once the circular velocity has been obtained in the GCY frame, it is possible to decompose
it into the two observable velocity components in the HGP frame which can then finally be
transformed into the EC frame. First, the velocity components are expressed in the HCA
frame as follows:

vx,HCA = vφsin(φ), vy,HCA = −vφcos(φ)− V�, (B.4)
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Figure B.1: Plan view of the Galaxy in Heliocentric Galactic Polar coordinates (HGP, green)
and Galactocentric Cylindrical coordinates (GCY, blue). Here, vφ = Vc. The red circle repre-
sents the Sun, the black cross represents the Galactic center and the yellow circle represents
a point source of light. Green shows the observable velocity components: the longitudinal
proper motion, µ`, and the radial velocity, vr.
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Figure B.2: The Heliocentric frame of refer-
ence. In black: the HCA frame and in green:
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Figure B.3: Both frames are rotated such
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inary line between the Sun and the Galactic
center.
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Figure B.5: In blue: the velocity compo-
nents that will make up the observables.

where V� is the velocity of the Sun in y direction. Now, once in the Heliocentric frame, some
clever coordinate transformations are applied, which are illustrated in Figures B.2 - B.5.

The HGP velocity components (tangential and radial velocity, vt and vr) can now be
expressed in terms of the aforementioned HCA coordinates indicated in blue in Figure B.5

vt = vxsin(−`) + vycos(−`), vr = vxcos(−`)− vysin(−`). (B.5)

One can then of course turn the tangential velocity in Eq. (B.5) into a proper motion by

µ` = vt$.

The very last step is to remain in the Heliocentric frame and convert the HGP coordinates
to the Heliocentric Equatorial Polar (HEQ) or commonly called the Equatorial coordinate
system (EC). This last step is more complicated and the reader should trust that there is
code that transforms HGP coordinates into the ECs

µa(µ`); µd(µ`).

We have now gone full circle and the steps can be summarized as follows

Model in GCY, observations in EC, Do: EC(HGP(HCA(GCY)))

Table 4.2 shows the comparable components.
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Appendix C

Constraints

C.1 Disk constraint

The disk parameters a2 and b2 are constrained by relating these to the observationally deter-
mined values for an exponential disk model. The mass ratio within and outside of a set radius
for both a Miyamoto-Nagai (MN) disk and an exponential (exp) disk is set equal. In effect,
an expression for a2 and b2 as a function of observationally found parameters is recovered.

The MN and exponential disk profiles

ρMN =

(
b2M

4π

) aR2
(
a+ 3

√
b2 + z2

)(
a+
√
b2 + z2

)2
[(
a+
√
b2 + z2

)2
+R2

]5/2
(b2 + z2)3/2

; ρexp =
Σ0

2zd
e−R/Rde−|z|/zd ,

(C.1)
are first transformed into their corresponding surface density profiles in order to find their

mass distribution. The surface density is retrieved by integrating over the entire vertical space
in the plane,

Σ(R) =

∫ ∞
−∞

ρ(R, z) dz.

For the exponential disk, the surface density becomes

Σexp(R) =
Σ0

2zd
e−R/Rd

∫ ∞
−∞

e−|z|/zd dz = Σ0 e
−R/Rd

Conversely, the MN density profile does not have a straight-forward simple analytical
solution. For this reason, an approximation is made and a close alternative to the MN disk
is invoked, namely the Kuzmin (K) surface density profile

ΣK(R) =
aM

2π (R2 + a2)3/2
.

Since a mass element dM inside of a circular surface is

M(R) =

∫ R2

R1

2πRΣ(R) dR,

the mass ratios within and outside of R0 for an exponential and a Kuzmin disk become
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MK(R = 0 < R0)

MK(R > R0)
=

∫ R0

0 R(R2 + a2)−3/2 dR∫∞
R0

R(R2 + a2)−3/2 dR
;

Mexp(R = 0 < R0)

Mexp(R > R0)
=

∫ R0

0 Re−R/Rd dR∫∞
R0

Re−R/Rd dR
.

These mass ratios simplify to

Mratio,K =

√
R2

0 + a2

a
− 1; Mratio,exp =

Rd e
R0/Rd

R0 +Rd
− 1. (C.2)

The mass ratios in Eq. (C.2) are equated and solved for a2 which yields

a2(Rd) =
R0(R0 +Rd)√

R2
d e

2R0/Rd − (R0 +Rd)2
. (C.3)

The solution of the Kuzmin scale length a2 (which will be used as an MN scale length) as
a function of an exponential disk scale height Rd can be seen in Figure C.1.

1 2 3 4 5
Rd

1

2

3

4

a2

Figure C.1: Analytical solution to a Kuzmin disk scale length a2 as a function of an expo-
nential disk scale length Rd, calculated by equating the mass ratio M(R < R0)/M(R > R0)
for the two models.

Bland-Hawthorn & Gerhard (2016) found the exponential disk scale length to be Rd =
2.5 ± 0.4 kpc as an average of many studies. That corresponds to the normal distribution
P (Rd) = G(Rd|2.5, 0.4). To find the desired pdf of a2, the following condition is set up

P (a2) = P (Rd)
dRd
da2

. (C.4)

The derivative term becomes(
da2
dRd

)−1
= e−2R0/Rd

(
e2R0/Rd − (R0 +Rd)

2
)3/2

R−30 . (C.5)
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Inserting Eq. (C.5) into Eq (C.4) gives

P (a2) = G(Rd|2.5, 0.4)× e−2R0/Rd

(
e2R0/Rd − (R0 +Rd)

2
)3/2

R−30 (C.6)

which can be seen in Figure C.2
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Figure C.2: Probability of a Kuzmin disk scale length a2 given an exponential disk scale
length Rd.

From Figure C.2 we see that the pdf behaves normally and can therefore be used as a
constraint and thus as a prior in the model. Finally, from here, the scale length MN b2 can
simply be found by the relation b2 = 0.2 a2 (Binney & Tremaine 2011).

C.2 Bulge constraint

Slightly changing the methodology from that described in section C.1, we wish to construct
a relation between a MN scale length and height a1 and b2 as functions of parameters, this
time obtained from a model by Bissantz & Gerhard (2002), henceforth referred to as BG.
This model aims to describe the mass density profile of the bulge. As this model is not
axisymmetric, an axisymmetric approximation is made (McMillan 2011)

ρBG =
ρb,0

(1 + r′/r0)1.8
e−(r

′/rcut)2 , (C.7)

where, in cylindrical coordinates, r′ =
√
R2 + (z/q)2 and where r0 = 0.075 kpc, rcut = 2.1

kpc, q = 0.5.
A parameter that has to be taken into account is q, which scales the z axis (q < 1 gives

an oblate spheroid). A shell of mass dm in this geometry becomes dm = 4πqr′2ρ(r′)dr′. The
bulge will be defined outward to a bulge cut off region Rbc = 3.5 kpc. The total mass becomes

M(r′ < Rbc) = 4πq

∫ Rbc

0
r′2ρBG(r′) dr′ = 4πqρb,0

∫ Rbc

0

r′2e−(r
′/rcut)2

(1 + r′/r0)1.8
dr′. (C.8)
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where the chosen model for the bulge density, Eq. (C.7), is inserted. Numerically, the mass
ratio within and outside of a bulge cut off radius Rbc = 3.5 kpc becomes

MBG(R = 0 < Rbc)

MBG(R > Rbc)
=

0.0139462

0.000412596
(C.9)

and for the Kuzmin surface density

MK(R = 0 < Rbc)

MK(R > Rbc)
=

∫ Rbc

0 R(R2 + a2)−3/2 dR∫∞
Rbc

R(R2 + a2)−3/2 dR
. (C.10)

These mass ratios simplify to

Mratio,BG = 33.8; Mratio,K =

√
R2

bc + a21

a1
− 1 (C.11)

The mass ratios Eq. (C.11) are equated and solved for a1 which yields

a1(Rbc) = 0.0295978Rbc. (C.12)

If Rbc = 3.5 kpc, a1 = 0.103592 kpc and as b1 = 0.5a1 (Bissantz & Gerhard 2002; Reid et al.
2014), b1 = 0.0517962 kpc.
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Appendix D

Adding exponential decay to the
spiral perturbation terms

To further test models of spiral structure I add an extra term to the spiral perturbation
motivated by the fact that the stars and gas are well described by exponential models, namely

Exp

[
R0 −R
Rd

]
, (D.1)

where Rd is the exponential disk scale length. As such, adding this term to the BB model for
spiral perturbation results in the following expressions

VR = fR cosχ× Exp [(R0 −R)/Rd] ; ∆Vφ = fθ sinχ× Exp [(R0 −R)/Rd] .

D.1 Results

(a) Azimuthal velocity map. (b) Radial velocity map.

Figure D.1: Velocity maps for the best-fitting parameters in the interval −5 ≤ x, y ≤ 16.
Here, the spiral model has 2 arms and the bulge cut off radius Rbc = 3.5 kpc.
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(a) Azimuthal velocity map. (b) Radial velocity map.

Figure D.2: Velocity maps for the best-fitting parameters in the interval −5 ≤ x, y ≤ 16.
Here, the spiral model has 4 arms and the bulge cut off radius Rbc = 3.5 kpc.
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(a) Maser data versus axisymmetric model.
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(b) Maser data versus spiral perturbation model.
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(c) Axisymmetric model versus spiral perturbation model.

Figure D.3: The residuals between the observed and modeled velocity components of masers.
Data given by Reid et al. (2014). The gray scale is indicates 5 kpc radial increments except
for the first one close to the Galactic center with indicates the bulge cut off radius. Here, the
spiral model has 2 arms and the bulge cut off radius Rbc = 3.5 kpc.
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(a) Maser data versus axisymmetric model.
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(b) Maser data versus spiral perturbation model.
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(c) Axisymmetric model versus spiral perturbation model.

Figure D.4: The residuals between the observed and modeled velocity components of masers.
Data given by Reid et al. (2014). Here, the spiral model has 4 arms and the bulge cut off
radius Rbc = 3.5 kpc.
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(a) Azimuthal velocity map.
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(b) Radial velocity map.

Figure D.5: (a) shows the terminal velocity (line of sight velocity) of HI line emission as a
function of Galactic longitude, `. The lines represents the best-fit models, (blue: axisym-
metric; red: spiral perturbation) and circles show the observed values Malhotra (1995). (b)
shows a zoomed in version of (a) to better show the difference between the models. Here, the
spiral model has 2 arms and the bulge cut off radius Rbc = 3.5 kpc.
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(a) Azimuthal velocity map.
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(b) Radial velocity map.

Figure D.6: (a) shows the terminal velocity (line of sight velocity) of HI line emission as a
function of Galactic longitude, `. The lines represents the best-fit models, (blue: axisym-
metric; red: spiral perturbation) and circles show the observed values Malhotra (1995). (b)
shows a zoomed in version of (a) to better show the difference between the models. Here, the
spiral model has 4 arms and the bulge cut off radius Rbc = 3.5 kpc.
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(a) Vertical force Fz=1.1 kpc.
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(b) Radial force FR=50 kpc.

Figure D.7: Histogram showing (left) the vertical force per unit mass an object in the Galaxy
would be subject to at R = R0 and z = 1.1 kpc above the plane and (right) the radial force
an object in the Galaxy would be subject to at R = 50 kpc and z = 0. Solid line shows
estimates by Kuijken & Gilmore (1991) and Wilkinson & Evans (1999) respectively. The
dashed line indicates the expectation value. Red histograms represents the spiral arm model
and blue the axisymmetric model. Here, the spiral model has 2 arms and the bulge cut off
radius Rbc = 3.5 kpc.
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(a) Vertical force Fz=1.1 kpc.
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(b) Radial force FR=50 kpc.

Figure D.8: Histogram showing (left) the vertical point mass force per unit mass an object in
the Galaxy would be subject to at R = R0 and z = 1.1 kpc above the plane and (right) the
radial force an object in the Galaxy would be subject to at R = 50 kpc and z = 0. Solid line
shows estimates by Kuijken & Gilmore (1991) and Wilkinson & Evans (1999) respectively.
The dashed line indicates the expectation value. Red histograms represents the spiral arm
model and blue the axisymmetric model. Here, the spiral model has 4 arms and the bulge
cut off radius Rbc = 3.5 kpc.
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(a) Bulge scale length.
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Figure D.9: Histograms of the axisymmetric spheroidal bulge with MN scale length a1, scale
height b1 and mass M1 with and without spiral perturbations (red and blue respectively).
The dashed line indicates the expectation value. Here, the spiral model has 2 arms and the
bulge cut off radius Rbc = 3.5 kpc. The solid lines represent the priors listed in table 4.1.
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(a) Bulge scale length.
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Figure D.10: Histograms of the axisymmetric spheroidal bulge with MN scale length a1, scale
height b1 and mass M1 with and without spiral perturbations (red and blue respectively).
The dashed line indicates the expectation value. Here, the spiral model has 4 arms and the
bulge cut off radius Rbc = 3.5 kpc. The solid lines represent the priors listed in table 4.1.
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(a) Disk scale length.
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(b) Disk scale height.
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Figure D.11: Histograms of the axisymmetric spheroidal disk with MN scale length a2, scale
height b2 and mass M2 with and without spiral perturbations (red and blue respectively).
The dashed line indicates the expectation value. Here, the spiral model has 2 arms and the
bulge cut off radius Rbc = 3.5 kpc. The solid lines represent the priors listed in table 4.1.
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(a) Disk scale length.
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(b) Disk scale height.
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Figure D.12: Histograms of the axisymmetric spheroidal disk with MN scale length a2, scale
height b2 and mass M2 with and without spiral perturbations (red and blue respectively).
The dashed line indicates the expectation value. Here, the spiral model has 4 arms and the
bulge cut off radius Rbc = 3.5 kpc. The solid lines represent the priors listed in table 4.1.
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(c) Local DM density.

Figure D.13: Histogram of the logarithmic halo parameters v0 (a), Rc (b) and (c) shows the
local DM density. Red histograms represents the spiral arm model and blue the axisymmetric
model. Here, the spiral model has 2 arms and the bulge cut off radius Rbc = 3.5 kpc.
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(a) Halo maximum velocity v0.
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(c) Local DM density.

Figure D.14: Histogram of the logarithmic halo parameters v0 (a), Rc (b) and (c) shows the
local DM density. Red histograms represents the spiral arm model and blue the axisymmetric
model. Here, the spiral model has 4 arms and the bulge cut off radius Rbc = 3.5 kpc.
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(c) Spiral pattern pitch angle.
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(d) Radial phase of the Sun χ�.

Figure D.15: Histograms of the spiral perturbation parameters. (a) and (b) show the wave
amplitude strengths for fR and fθ respectively. (c) and (d) show the wave pitch angle i
and radial phase of the Sun χ� respectively. Dashed lines represent results from Bobylev &
Bajkova (2014) which used a 2 armed model. Here, the spiral model has 2 arms and the bulge
cut off radius Rbc = 3.5 kpc.
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Figure D.16: Histograms of the spiral perturbation parameters. (a) and (b) show the wave
amplitude strengths for fR and fθ respectively. (c) and (d) show the wave pitch angle i and
radial phase of the Sun χ� respectively. Dashed lines represent results by Bobylev & Bajkova
(2014) which used a 4 armed model. Here, the spiral model has 4 arms and the bulge cut off
radius Rbc = 3.5 kpc.

D.2 Conclusion

From the above Figure it is reassuring to see that the pdfs did not change significantly
compared to that without the added exponential term. However, when looking at the spiral
arm terms in Figures D.15 and D.16, there are some wandering going on in the MCMC chain.
It seems as though with this new model, there are some other values for the spiral parameters
that are preferred.

The big difference is when looking at the velocity maps in Figures D.1 and D.2.
The main result here is the large radial velocity perturbation of order ∆vR ≈ 35−10 km s−1

for the two armed model and ∆vR ≈ 100−40 km s−1 in the inner regions of the Galaxy. This is
not surprising since Exp[(R0−R)/Rd] is large in this region and then decays with increasing
R. This result further translates into the shape of the terminal velocity curves as seen in
Figures D.5b and D.6b.
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The residuals in D.3 and D.4 reflect the same result. In the (c) panels where you see the
deviation between the models, it is seen that the much larger radial perturbation given by
the four armed model has a large effect.

All of the main conclusion drawn based on the models without the added exponential term
remains the same here, which is encouraging and largely due to the fact that the exponential
term is mostly relevant towards the bulge region.
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