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Abstract

A method is devised that provides authentication and integrity protection for
H.264 encoded surveillance video. A digital signature is created at the H.264 Net-
work Abstraction Layer and included in the video stream, providing robustness
against video container changes while remaining format compliant for compati-
bility with software that does not support the signing feature. The signature is
created using asymmetric cryptography, which provides protection to both data in
transit and at rest. The usage of asymmetric cryptography is compared to other
methods of securing digital video and found to be the best approach for this appli-
cation. Keys are unique per camera, allowing identi�cation of the speci�c camera
unit that created a particular video recording. A Public Key Infrastructure is
described, where the camera vendor acts as a Certi�cate Authority.

A proof-of-concept implementation is developed for an Axis ARTPEC-6 devel-
opment board. To establish that the platform is capable of operating the protocol
in real time its cryptographic performance is �rst measured. The benchmark shows
that for typical surveillance video the performance is su�cient. To protect the pri-
vate part of the key used for signing even in the face of partial system intrusion, a
memory access restriction feature that the platform provides is used. This feature
is compared to the functions o�ered by standard Trusted Platform Modules. The
concept itself is platform agnostic and can be implemented on any platform that
handles H.264 video and o�ers similar security features.

Finally limitations of, as well as threats against, the concept are discussed and
analysed. The protocol is considered a viable way of securing video and providing
additional trustworthiness to the authenticity of surveillance video.
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Chapter1
Introduction

Surveillance images are often used for forensic purposes. Being possible evidence
in court or in an insurance claim, it is crucial that the authenticity of images can
be veri�ed. The path between the actual camera and the forensic investigator
who is to examine the surveillance images may be quite long and involve many
people, causing it to be di�cult to establish a chain of custody. The usage of digital
signatures can improve this situation by using cryptography to authenticate digital
images.

1.1 Digital signatures

In asymmetric cryptography, also known as public key cryptography, the key used
is split into two parts. One is public and one is private. The public key is used
for encrypting messages while the private key is used for decryption. Conversely,
the private key is used to sign messages, while the public key is used to validate
digital signatures.

Digital signatures are used for authentication in many di�erent contexts. Be-
cause digital signatures can be validated at any time, by anyone that has the
appropriate public key, they are useful for authenticating data at rest. They are
for example used in authenticated electronic mail which may be stored for a long
time before being read by the recipient. Digital signatures can also be useful
for bootstrapping secure online communications protocols, where the sender and
receiver negotiate a shared symmetric key. In the widely used Transport Layer Se-
curity (TLS) protocol digital signatures are used in the initial handshake in some
con�gurations. Speci�cally, when client authentication is employed in TLS, which
authenticates the client as well as the server, the client performs a signature in
order to prove ownership of a private key. TLS is used in HTTPS to protect both
the con�dentiality of the data in transit using encryption, and also its integrity
using a hash-based message authentication code (HMAC).

The requirements for surveillance image authentication are similar to that of
TLS. The surveillance system should prove to its clients that the photos or videos
are genuine and have not been tampered with. A trusted third party may be used
to delegate trust in signing keys. The di�erence is that in this case data should
also be protected while at rest in the client's custody, not only during transit. This
implies that the digital signature must be stored along with the data it protects,
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2 Introduction

either in the same container or as a separate data �le, allowing it to be veri�ed at
any time.

1.2 Digital signatures in video surveillance

A digital signature can easily be created manually by the camera operator using
common tools like GnuPG [1] before submitting the images to a forensic inves-
tigator. Some vendor-speci�c video management tools like Axis Companion also
have this feature [2]. The sooner the signature is created though, the better, as
this typically means that fewer people have handled the surveillance data before
it is protected by a signature. Ideally, the signature should be created inside the
surveillance camera itself, and this dissertation covers a method for that.

1.3 Goals

The major goal of this dissertation it to propose and evaluate a method for protect-
ing the authenticity and integrity of surveillance video captured by Axis cameras
in real time using a digital signature. The video data should be protected both in
transit and at rest. Its integrity and authenticity should be easily veri�able by any-
one who has access to the video itself. Through the use of public key cryptography
the speci�c camera that created a recording can later be identi�ed.

This project is purely technical. Although one goal of this project is to increase
the trustworthiness of surveillance photography from Axis cameras in a forensic
investigation, no legal claims will be made. The applicability of the contemplated
digital signing features in court or as part of an insurance claim is outside the
scope of this dissertation. It will also be designed as an optional feature. The
lack of a signature in a video stream is more likely explained by not having added
it in the �rst place, not by malicious removal. The veri�cation software must be
designed based on this assumption. Requirements on signature correctness can
later be tightened once the feature has been deployed in all parts of a surveillance
video system.

The dissertation describes:

• A protocol for transferring the signature in conjunction with the correspond-
ing video.

• A proof-of-concept implementation of said method and protocol.

• How the secret key used to create the signature can be protected even in
the face of partial intrusion.

• The short and well-de�ned list of parties that need to be trusted, and the
threats considered.

• The cryptographic keys required and the corresponding infrastructure for
handling the keys.
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1.4 Threats against unprotected surveillance video

There are several conceivable attacks possible on surveillance video. Individual
frames may be edited in an image manipulation program. There exist methods for
detecting tampering of still images. For example, partial image manipulation can
be detected by analysing compression artefacts [3]. Imperfections in the camera
sensor cause a �xed patterned noise that is visible in the image and can be used to
identify a camera given an image [4]. As these methods improve however, so does
image manipulation software. This makes the idea of a cryptographic solution to
this problem attractive, since it gives a clearer binary answer to the question of
whether an image is genuine or not.

Image frames may also be deleted or reordered but otherwise unchanged. Imag-
ine for example a set of images from a very still parking lot at night. It may be
desirable to prove that nothing out of the ordinary occurred at this location.
However, with little or no movement between image frames it may be di�cult
to visually discern a continuous video from a video where incriminating image
frames have been removed from the sequence. Therefore it is important to not
only authenticate frames individually, but also the order of image frames.

A su�ciently well funded adversary may stage an event with actors, produc-
ing a surveillance recording of an entirely fake incident in order to, for example,
frame someone for a burglary. This is di�cult to completely mitigate using only a
technological solution. Including the time and date of the recording as well as the
camera's identity in the produced video in a secure way may provide an indication
of the origin of the video.

1.5 Related work

In 1996 Kelsey, Schneier and Hall [5] developed a protocol for an authenticated
(hand-held) camera. It attempted to cryptographically tie a digital image not
only to a time span but also to a physical location. It is not applicable as-is to
surveillance images since it assumes that every image taken will be saved and used
in hash chains. In surveillance most photography is usually thrown away by a
computer algorithm or operator, and only the interesting parts are kept. More-
over, the protocol described mandates procedural changes since the camera must
interact with a base station before and after each photographic event. However,
the paper considers some interesting attacks that are also relevant to the method
described in this dissertation.

High-end Canon hand-held digital cameras have an image signing feature,
marketed as Original Decision Data. The security of this feature was broken by
Elcomsoft researchers in 2010. The fundamental problem was that the secret key
was stored insecurely and could be dumped as part of the �rmware. Moreover,
the same key was used in every camera of the same model [6].

MPEG-21 is an existing protocol that adds security features to multimedia. It
is discussed in Section �3.2.
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1.6 Structure of this report

In Chapter 2 the available hardware and software resources are described. Candi-
date cryptographic algorithms are introduced and the necessary parts of the H.264
video encoding standard are summarised.

Next, in Chapter 3 di�erent approaches for authenticating digital video are
discussed. Digital signatures are compared to digital watermarks and few remarks
on message authentication codes are made.

The methodology for measuring the cryptographic performance of the target
platform is described in Chapter 4 as well as the results thereof.

In Chapter 5 a protocol for authenticating digital video is proposed. A proof-
of-concept prototype implementation of the protocol is described as well as insights
acquired while developing it. The protocol is discussed and potential improvements
are suggested.

The intended key management and a threat model is described in Chapter 6.
This chapter de�nes the scope and limitations of the proposed protocol.

Finally Chapter 7 concludes the dissertation. It discusses potential future work
and the concept's applicability to other video encoding implementations.



Chapter2
Background

2.1 Targeted hardware

Development will be done on an ARTPEC platform of version 6.
ARTPEC-6 is an Axis developed custom platform based on an ARM main

CPU (MCPU) which runs a Linux based operating system. While the main CPU
supports ARM TrustZone, the operating system is currently not loaded via Secure
Boot. Further, the customer (camera operator) typically has administrative access
to the operating system. In fact, customer modi�cations to the default �rmware
with custom applications are encouraged and supported in Axis cameras. For these
reasons the main operating system must be considered insecure in the context of
signed images.

ARTPEC-6 also has several independent subsystems that together make up the
user de�ned logic (UDL). The UDL contains all the video and image functionality
and other Axis speci�c functions. Each subsystem consists of a helper CPU core
known as an LCPU (Local Central Processing Unit) using the CRIS architecture
as well as relevant hardware blocks for their task.

Typically surveillance video is streamed in real-time to either a professional
video management system (VMS) or to a generic network attached storage (NAS)
device. There is also the possibility of storing video locally in the camera on a re-
movable memory card. This option is sometimes used in smaller installations that
only have a minor number of surveillance cameras. The ARTPEC-6 platform sup-
ports both Motion-JPEG over HTTP and H.264 over RTP (Real-time Transport
Protocol). Video compression is implemented in hardware, so modi�cations to
the compression algorithms cannot be made using the current hardware platform.
In the case where video is streamed to a VMS it is not typically transcoded or
re-compressed, although it may be re-packed into a di�erent container format [7].

2.1.1 User de�ned logic and the CRY subsystem

Most of the UDL subsystems are used in the pipelined processing of image data
from the camera sensor. One subsystem, known as the CRY, is used for cryp-
tographic operations. The CRY has exclusive access to the following hardware
resources:

• A Large Integer Arithmetic Unit (LIAU). This is a hardware acceleration
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6 Background

unit that can perform modular exponentiation on integers of up to 2049 bits
in size. Modular exponentiation is an operation used in RSA calculations.
The LIAU limits the RSA key length to 2048 bits (the 2049th bit is used
for carry).

• A True Random Number Generator (TRNG). This unit is able to generate
random data at an average bandwidth of 150 Mbps. It is used to seed the
pseudorandom number generator in Linux, and also directly by the CRY
LCPU in cryptographic operations that require random data as input.

• A 768 bit One-Time Programmable (OTP) memory which is not accessible
from the main CPU. This can be used to store a per-chip unique symmetric
key that protects the private part of an asymmetric key pair stored else-
where. A program for this secure CPU can thus be created which allows
it to sign data from the main CPU without revealing the private key. Be-
cause RSA keys that provide enough security are longer than 768 bits (see
Section �2.3), they cannot be stored directly in the OTP memory.

The API between the MCPU and LCPUs is a set of command blocks with an
opcode that speci�es a de�ned operation and zero or more parameters. If the
parameters are larger than a simple data type (for example, the data block to
sign and the resulting signature), they are typically transferred by using a pointer
parameter. The actual data is then copied to/from the LCPU via Direct Memory
Access (DMA). Command blocks are processed by the LCPU in several stages of
a software pipeline. The software pipeline has the following stages:

prep() initiates DMA transfers of additional data from main memory, if necessary
for the command. The pipeline is advanced when the transfer is done.

exec() performs the actual work. If the work is expected to take long, a back-
ground thread is instead started here. If a background thread is used, it is
responsible for advancing the pipeline when it is �nished.

stat() initiates DMA transfers of the result back to main memory. The pipeline
is advanced when the transfer is done.

done() means that the command is �nished. A status code is sent back to the
MCPU and the pipeline is then ready to accept a new command.

Command blocks may be queued in input and output FIFO queues, allowing the
LCPUs and the MCPU to work independently without stalls caused by communi-
cation.

The LCPUs have no persistent program memory of their own, so their pro-
grams must be loaded during every camera boot. The CRY has 64 kB of RAM
which is used for both code and run-time data. 16 kB are reserved for dynamic
heap memory. A block diagram of the CRY and its communication channels with
the MCPU is shown in Figure 2.1.

2.1.2 Main CPU subsystem

The image processing performed by the LCPUs terminate in a GStreamer element
which communicate with the UDL through a Linux kernel driver. In the case of
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Figure 2.1: CRY block diagram.

H.264 the video is at this point compressed into individual image frames. Packing
the compressed frames into a H.264 stream, multiplexing the resulting stream into
a RTP container and sending it through the network is done in software in a
GStreamer pipeline.

A simpli�ed diagram of an example GStreamer pipeline is shown in Figure 2.2.
GstArtpec6Src is the element that communicates with the UDL. In this case it is
con�gured to output H.264 video at 1080p. Its source pad is connected to the sink
pad of GstH264Sign. This is a new, blank element which currently does nothing
except copy data from its input to its output. After that comes GstRtpH264Pay
which encapsulates H.264 into an RTP stream. Finally the RTP stream is sent out
on the network by GstUDPSink. In this example the video is streamed over UDP
via the multicast IP address 224.2.0.1. UDP o�ers no guarantees regarding packet
ordering or integrity. Errors during transmission will be seen by the receiver.

Normally RTP streams are set up by the RTSP protocol, which handles stream-
ing sessions. RTSP provides con�guration and teardown of RTP streams, user
authentication and play and pause functionality. Apart from that, this is a rea-
sonable example of how video is streamed from an ARTPEC-6 based camera.

2.2 Existing software resources

There exists a test program for the CRY that implements RSA cryptographic op-
erations and expose them to the MCPU using LCPU commands. The program
is based on the LibTomCrypt cryptographic library. According to its documenta-
tion [8],

LibTomCrypt is a fairly comprehensive, modular and portable
cryptographic toolkit that provides developers with a vast array of
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Figure 2.2: Example GStreamer pipeline.
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well known published block ciphers, one-way hash functions, chaining
modes, pseudo-random number generators, public key cryptography
and a plethora of other routines.

LTC has a very permissive open-source license (namely the WTFPL [9]), making
it suitable for use in a proprietary program such as the CRY �rmware. Currently
no validation of the input data received from the MCPU is performed. Random
data that is required during some operations (RSA OAEP and PSS padding) is
taken from the hardware TRNG. The CRY program also implements an operation
to supply random data to the MCPU.

2.3 Cryptographic algorithms

The RSA algorithm was initially chosen as the primary candidate for this project,
due to existing hardware acceleration support in the platform. In this section is
it discussed and compared to more modern elliptic curve cryptography algorithms
that have recently increased in popularity.

2.3.1 RSA algorithm

One of the �rst algorithms that was used to implement digital signatures is RSA,
�rst publicly described in 1978 [10]. It is now widely used in many applications.
Though there are implementation issues that must be considered, the algorithm
itself remains unbroken still, almost 40 years after its introduction. Its main
problem is performance. In all practical applications the actual data is not signed
directly. Instead a one-way hash function is used to digest the data into a short,
non-reversible representation that is in turn signed. Still, the absolute cost of RSA
is fairly high, meaning that it might be impractical to perform RSA in real time
on performance limited hardware.

2.3.2 Elliptic curve cryptography

Elliptic curve cryptography is based on operations on elliptic curves over �nite
�elds, in comparison to non-ECC algorithms (such as RSA) that operate directly
on �nite �elds. The mathematics behind ECC will otherwise be summarised with
the conclusion that smaller keys are required for the same level of security. The
security of ECC is determined by the number of points on the curve, whereas the
security of RSA is determined by the size of the modulus. ECC has been applied
to digital signatures in two di�erent schemes: ECDSA and EdDSA.

ECDSA is based on plain DSA and should, like DSA, only be used when a
source of high quality random numbers is always present during signature genera-
tion. A lack of entropy in the random values consumed during signature generation
may entirely compromise the private key. ECDSA is implemented in LibTom-
Crypt. It has been shown that although the mathematics remains sound, for some
curves implementation aspects create security problems [11].

EdDSA was invented by Daniel J. Bernstein et. al. and is based on Schnorr
signatures. EdDSA used on an elliptic curve nicknamed Curve25519 (after the
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numbers in its prime 2255−19) is known as Ed25519. The parameters were chosen
to avoid elliptic curves covered by patents, while allowing e�cient computations.
Bernstein et. al. have published an Ed25519 reference implementation attributed
to the public domain. Randomness is not consumed on signature generation,
unlike ECDSA and regular DSA. Array indices and branch conditions do not rely
on the private key, which provides resistance against certain side-channel attacks
that rely for example on timing information [12].

2.3.2.1 Patents

The standard legal disclaimer applies to this section: The author of this disser-
tation has no formal education in patent law and can only cite what others have
suggested.

The application of elliptic curves in cryptography was originally suggested in-
dependently by Koblitz and Miller in 1985 [13, 14]. While the idea is not new, it
has not seen much use until recently much due to the fact that its legal situation
has been unclear for a long time. Unlike RSA, the basic principle of elliptic curve
cryptography was never patented in itself. However, many implementation tech-
niques and practical optimisations of ECC are covered by patents [15]. Certicom
corporation owns many patents and has had a strong claim, according to Bruce
Schneider in 2007 [16].

Bernstein et. al. constructed their Ed25519 reference implementation speci�-
cally to avoid infringing on known patents. He dismisses several patents as being
trivial, claims some patents to be invalid due to prior art and claims others to
be irrelevant to useful applications of ECC. Some patents only apply to certain
elliptic curves, which can be easily avoided. Finally, some patents on ECC have
expired in the last few years [17, 18].

A well-known legal case on ECC is Certicom's 2007 lawsuit against Sony for
their alleged infringement on Certicom patents in the implementation of Sony's
DRM systems. The lawsuit was dismissed in 2009 due to both parties entering a
settlement, and did not set a prejudice [19].

The sketchy conclusion of this short legal research is that there are strong
indicators that elliptic curve cryptography signatures should be implementable
without infringing on any valid, active software patent. The actual implemen-
tation in LibTomCrypt was not investigated at all (since it is not usable on the
current hardware at any rate) and may use implementation techniques that are
still patented. Ed25519 is recommended for further investigation and possible
implementation.

2.3.3 Key lengths and relative security

The security level of a cryptographic algorithm is often expressed in terms of
�equivalent bits of a symmetric key� [20].

As explained in section 2.1.1 the hardware acceleration unit limits the max-
imum length of RSA keys on the ARTPEC-6 platform to 2048 bits. 2048 bits
is also the minimum recommended length by RSA Laboratories [21]. For these
reasons a 2048 bit key length was chosen for the experiments in this project.
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ECC not only requires shorter keys compared to RSA for equivalent security,
they also scale linearly to the equivalent symmetric key. RSA keys scale expo-
nentially, making RSA operations very computationally expensive when higher
security is wanted. This makes digital signature schemes based on ECC attractive
potential replacements for RSA.

Ed25519 public and private keys are 256 bits in size stored each and provide
a security level of 128 bits. This is a bit stronger security than 2048 bit RSA keys
provide. An RSA key with a 128 bit security level is approximately 3072 bits [22].

A 256 bit Ed25519 key could possibly �t into the fuse bits inside the CRY. A
stored 2048 bit RSA key is larger than 2048 bits due to having several parameters
where 2048 is only the size of the modulus. Such a key would not �t into the
fuse bits. However, a unique per-chip symmetric key could be stored there which
protects the private part of an RSA key stored in the unprotected main �ash
memory.

It should be noted that the key length is not the only factor in computational
complexity. Careful selection of the key components can also have a signi�cant
impact on the practical e�ciency in the implementation of a cryptosystem. RSA
bene�ts from using a public exponent with a low hamming weight (number of non-
zero bits), since modular exponentiation with such a number can be implemented
very e�ciently on binary computers. 65537 (216 + 1) is commonly used. This
allows for fast RSA signature veri�cations, even when large keys are used [23].
Similarly, in ECC it has been shown that the elliptic curve has a large impact on
performance [24].

2.4 Overview of H.264

H.264 or formally MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC) is
a video compression standard originally published in 2003 and improved in sev-
eral iterations since. It was collaboratively developed by the ITU-T Video Coding
Experts Group (VCEG) and the ISO/IEC JTC1 Moving Picture Experts Group
(MPEG). Compared to previous MPEG compression standards, H.264 o�ers im-
proved quality over the same bit rate.

The H.264 standard only speci�es the decoding process. The encoding process
is completely unde�ned, as long as the result ful�ls all requirements the decoder
sets. This approach leaves a lot of �exibility to the encoder implementer. It
also means that there are often many ways to encode a given video sequence,
and the decoder must be prepared to handle all the possible options. Inevitably,
the standard will also specify optional features that no actual encoder will ever
implement.

The H.264 standard de�nes a clear separation between its Video Coding Layer
(VCL) and its Network Abstraction Layer (NAL). Stütz and Uhl [25] explain this
separation:

The VCL is responsible for creating a coded representation of
the moving pictures, while the NAL formats these data and provides
header information in a simple and e�ective fashion, i.e., a NAL unit
header is not entropy coded. VCL data are organized into NAL units,
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Figure 2.3: Layers in H.264. Slices are brie�y described in sec-
tion 2.4.5. SCP: start code pre�x.

which start with a one byte header. Most important is the type of a
NAL unit (NUT) that is inferred from the NAL unit header [. . . ]

This layered approach has allowed for fairly comprehensive extensions to the pro-
tocol, such as the Scalable Video Coding (SVC) enhancement. For this project
only the NAL is relevant. The VCL will be explained only brie�y in the next
subsection. See Stütz and Uhl [25] and Wiegand et al. [26] for a more in-depth
explanation of the VCL in H.264. The information in the rest of this section is
based on those two papers.

An overview of the layers in H.264 is illustrated in Figure 2.3.

2.4.1 The video coding layer

Predictive video coding formats are based on the idea of periodic spatially com-
pressed intra-coded video frames (frames that do not depend on any other frames)
interleaved with inter-coded frames that may also be temporally compressed (frames
that encode di�erences from a di�erent frame). Video frames are distinguished by
the following terms:



Background 13

• I-frames are intra-coded as explained above.

• P-frames are predictively coded and contain motion-compensated di�erences
relative to a previous frame.

• B-frames are bi-predictively coded and contain motion-compensated di�er-
ences relative to several previous or later frames in the video stream.

The particular rules for B-frames and the particular di�erences between P- and
B-frames are not relevant for this dissertation.

Frames are naturally grouped together into sequences starting with an I-frame
and ending just before the next I-frame. Such sequences can be decoded indi-
vidually. They are denominated Coded Video Sequences in the H.264 standard,
which will be abbreviated as CVS in this dissertation. A Coded Video Sequence is
equivalent to the term Group Of Pictures (GOP) used in other coding standards
such as MPEG-2.

In H.264 frames are packed into Access Units (AU). An Access Unit contains
a single coded frame as well as optional extra information relevant to the VCL.
H.264 makes a di�erence between Instantaneous Decoding Refresh (IDR) Access
Units, which are units containing an I-frame, and non-IDR AUs. The Access Unit
constitutes the border between the VCL and the NAL.

2.4.2 The network abstraction layer

The Network Abstraction Layer is concerned with encoding Access Units in a way
that can be represented as a stream of data bits. The basic unit of this layer is the
NAL unit. Access Units from the VCL are possibly split, if they are too large, and
pre�xed with a header to be packed into NAL units. Other types of NAL units
(non-VCL NAL units) contain video stream metadata and some units only exist
to make the stream easier to parse by providing delimiters between other NAL
units. Examples of metadata are parameter sets which describe how to decode
VCL NAL units and Supplemental Enhancement Information (SEI) Units which
are used for generic (�everything else�) metadata. The contents of a NAL unit are
identi�ed by the NAL unit type �eld in the header.

Some NAL unit types are reserved for future use. Others are unspeci�ed and
may be used by implementations for any purpose. They will never be claimed
by amendments to the H.264 speci�cation and implementations conforming to the
standard must ignore any unspeci�ed NAL units that they do not recognise.

The speci�cation de�nes an optional bitstream format (commonly known as
the �Annex B format� after the appendix in the speci�cation) which may be used
to transport NAL units. In this format a start code pre�x (0x000001) is inserted
between each NAL unit. Any occurrence of 0x000001 inside the NAL unit content
must be escaped by inserting an emulation prevention byte to prevent the decoder
from treating it as a start code pre�x.

Other transport methods are allowed, in which case the speci�cation only
considers the sequence of NAL units as the bitstream. A common method is to
pre�x each NAL unit with their size in bytes. This method is used in the MP4
container �le format (formally MPEG-4 Part 14). In this scheme the number
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of bytes used for the size �eld itself cannot be inferred and must be speci�ed
elsewhere.

Some NAL units may be reordered in the bitstream. A prominent example is
the B-frame which may refer to a future P-frame. To reduce bu�ering requirements
during the decoding of these they are often encoded after the future P-frame they
reference, even though they are to be displayed before the P-frame.

2.4.3 Parameter sets

Two types of parameter sets exist in H.264: Sequence Parameter Sets (SPS) and
Picture Parameter Sets (PPS). Sequence Parameter Sets apply to entire Coded
Video Sequences, while Picture Parameter Sets apply to individual pictures within
Coded Video Sequences. Without the parameter sets, the VCL cannot be decoded.
They may be included in the video stream packed into NAL units, or they may
be conveyed out-of-band. The idea is that a more reliable channel may be used to
transport the important parameter sets, while a less reliable (higher performance)
channel may be used for the actual video frames. Alternatively, the parameter
sets may be periodically repeated in the stream to provide redundancy. In theory,
di�erent Sequence Parameter Sets may be used for every Coded Video Sequence.
In most practical applications, both SPS and PPS change very rarely.

In Axis cameras, parameter sets are basically static (changing only when the
camera is recon�gured). They are generated by the artpec6src GStreamer element
(see Figure 2.2) and transported in-band through the GStreamer pipeline. Over
the network they are however typically transported out-of-band through the use
of RTSP to set up a video streaming session.

2.4.4 Indexing NAL units

As it can take a substantial amount of time to generate an RSA signature, and
stalling the image pipeline for that time would not be acceptable, the signature will
have to be transported detached from the signed data. Assuming that signatures
are computed piecewise in the H.264 Network Abstraction Layer, and that the
signature units will be injected into the output video stream with a variable delay
from the actual data, they must somehow contain a reference to this data. If there
were a global sequence number that was monotonically incremented in every NAL
unit, that would be an ideal candidate. A client that connects to an already (long)
running live stream would then easily be able to tell the current position in the
stream. Unfortunately the H.264 standard speci�es no such thing. Because H.264
aims to be an e�cient compression format, the standard is very much concerned
with avoiding transmitting redundant information, or information that may be
inferred by the decoder. The following are a few candidates found in the header
of coded video slices that were considered but ultimately rejected as possible NAL
unit sequence numbers for this project:

• A frame_num parameter which increases in decoding order. These only
identify frames within Coded Video Sequences however, and are reset to 0
on the next IDR.



Background 15

• An optional Picture Order Count parameter which increases in display order.
When this is present, it is split into two parts: LSB and MSB (Least and
Most Signi�cant Bits, respectively). The LSB identify slices within Coded
Video Sequences, while the MSB identify Coded Video Sequences. However,
only the LSB are encoded into the slice headers. MSB are inferred by the
decoder and are incremented when the LSB reach their maximum value and
roll over to 0.

• There is a concept of reference picture marking, of both long and short term.
In both cases a picture is tagged with an index, which tells the decoder that
it should hold on to the picture even after displaying it. Short term reference
pictures will be automatically deleted when the decoder's bu�er of reference
pictures is full. Long term reference pictures must be manually deleted by
an explicit command in the bitstream. This approach was rejected due to
a combination of being too intrusive and too complicated to implement.
Every image frame would have to be modi�ed to be tagged with a reference
and in the case of long term marking additional removal commands would
have to be injected into the bitstream. The implications of monopolising
this feature were deemed too uncertain.

An alternative to absolute indexing is to use relative numbering. Typically, the
signature would be encoded very closely, but not directly adjacent, to the data it
refers to. This would result in a low delta counted in any of the primitive units
in a H.264 bitstream, which can be e�ciently Exp-Golomb encoded. Exponential
Golomb coding (Exp-Golomb for short) is a method of encoding numbers using
a variable number of bits. The length of each coded word can be inferred by the
receiver. It is similar to Hu�man coding, except that it does not use a transla-
tion table. Exp-Golomb coding is widely used in the H.264 standard to encode
unbounded numbers.

2.4.5 Concluding remarks

This section is a simpli�ed explanation of the concepts in H.264. It ignores the slice
concept which essentially divides frames further into slice groups where each slice
may be encoded di�erently. For example, a frame may contain an intra-coded I
slice as well as a predictive P slice. It follows that an I-frame is a frame consisting
only of I-slices.
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Chapter3
Authenticating surveillance video

To authenticate pictures and video several techniques are possible. Cryptography
can be used through digital signatures to create a mathematical proof that either a
piece of data is authentic, or a very di�cult (�infeasible�) computational operation
has been performed. Drawing similarities to the analogue world of photographies
printed on paper, another technique comes to mind: Watermarks. Watermarked
paper is traditionally used to indicate that an important document, such as a
passport or a banknote, is authentic and an original copy. While it provides
con�dence in the origin of a document, another important property is that a
watermark cannot be easily removed from a piece of paper. Physical watermarks
have a digital counterpart, and it is this latter property that is most commonly
featured in a digital watermark. The applications of cryptography and digital
watermarks overlap somewhat, but they solve very di�erent problems as will be
explained.

3.1 Digital watermarks

Digital watermarks are concerned with the embedding of additional information
about a work, into the same work. The original work without the watermark
is referred to as the cover work, because it hides or �covers� a secret message.
Typically the watermark should be imperceptible under normal conditions, but
easily readable by someone who is authorised to. If it is perceptible to the consumer
it will have altered the work, possibly devaluing it.

In contrast, cryptography typically assumes a reliable communications channel
and provides con�dentiality, integrity, authentication and/or non-repudiation [27].

By embedding extra data into the original work itself through a watermarking
algorithm, the size does not increase. This is advantageous in certain situations,
where the size of a message is constrained and cannot change. However, as the
watermark constitutes extra data that must be encoded in the �xed space, some
other data must be removed. This is simply a consequence of Shannon's coding
theorem 1. There are several methods for choosing which data to replace with the

1Informally stated by MacKay [28, ch. 4] as:

N i.i.d. random variables each with entropy H(X) can be compressed into
more than N H(X) bits with negligible risk of information loss, as N → ∞;
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watermarking bits. One method, arguably the simplest, is to encode it into the
highest frequency parts of the cover work, as they are often the least perceptible
to the consumer. Because the information that was there before is overwritten,
this leads to a quality degradation in the technical sense, whether it is perceptible
or not.

Digital watermarking algorithms usually (but not always) share the trait with
its physical counterpart that they are di�cult to remove or render unusable once
embedded, without damaging the original content. This trait is called the ro-
bustness of a watermarking algorithm. A robust watermark remains decodable
through transformations and signal processing operations, both malign and be-
nign, of the watermarked content. Examples of such transformations are temporal
and spatial �ltering, lossy compression and geometric distortions (such as rotation,
translation and scaling) [29]. Thus, robust watermarking is a transport protocol
for additional information to the cover work, as argued by Cox et al. [30]. It allows
for reliable (to some degree) transmission of data over an unreliable medium.

Many watermarking algorithms employ a keying function to spread the en-
coded data over a large region (in time, space, and/or frequency), similar to
spread-spectrum encoding. Only using the same key can the watermark be de-
coded. Without the key the watermark may be detectable, but not decodable or
removable without adding so much distortion that the work will be perceptibly
damaged. However, with the ability to decode the watermark using the key also
comes the ability to remove it. Thus, the key must be kept secret. The capability
of read-but-not-remove is a highly sought after, but di�cult to achieve, property
in many digital watermarking schemes [27].

A digital watermark may also be designed to be fragile. A fragile watermark is
undecodable even after a subtle change to the watermarked work. Such watermarks
can be used for authentication. A watermark that is designed to be robust against
benign (such as lossy compression) but not malign transformations is referred to
as semi-fragile [31, ch. 10]. Identifying what constitutes a valid transformation
and what isn't and designing a suitable semi-fragile watermarking algorithm is not
a trivial task [32].

A watermark can be applied before, during or after compression. This is
referred to as the domain. A fragile watermark must be applied either during or
after compression, as it would otherwise be immediately destroyed. A robust or
semi-fragile watermark on the other hand can be applied before compression if
deemed suitable.

3.1.1 Uses of digital watermarks

In Digital Watermarking and Steganography, Cox et al. [29] list a few common
use-cases for digital watermarking. These are exempli�ed brie�y below; for further
information refer to the book.

• Signalling start and stop codes to a machine processing information content

but conversely, if they are compressed into fewer than N H(X) bits it is
virtually certain that information will be lost.
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intended for human consumption, such as broadcast TV.

• Identifying and proving ownership of a work.

• Transaction tracking, also referred to as traitor tracing or �ngerprinting.
This is used for example to identify the person leaking a con�dential work,
such as a preview of an unreleased �lm.

• Device and copy control, where the watermark instructs a playback device
how a work may be consumed for DRM purposes. Device manufacturers are
then forced to implement decoding and enforcing of the device controlling
watermarks by law or policy.

• Content authentication, where the content receiver desires con�dence in the
integrity and origin of a work.

These use-cases place di�erent demands on the watermarking algorithm.
In recent years digital watermarking techniques speci�cally applied to H.264

compressed video have been widely researched. Many of these are robust algo-
rithms that aim to provide content �ngerprinting for DRM of streamed video [33].

3.1.2 Digital watermarks for content authentication

As described in previous sections, digital watermarking can imaginably be used
for a wide variety of purposes. In literature, many authors blur the boundary
between digital watermarks and cryptography. For instance, a cryptographic hash
that is stored inside otherwise unused data �elds in individual video frames could
arguably be called a fragile watermark even though the fragility is a property of
the hash function, not the watermarking function [34]. Kim and A�f [35] cite
several examples of watermarking schemes that were later proven broken because
they were not based on cryptography theory at all, or did not utilise cryptographic
primitives properly.

For this reason, robust watermarking is seen only as a transport medium in
this dissertation, insu�cient for authenticating video in itself. This argument is
also made by Cox, Doërr and Furon [27].

3.2 Digital signatures

For a general introduction to digital signatures, refer to Chapter 1.
Hellwagner et al. [36] discuss di�erent levels in a network stack at which encryp-

tion of streaming multimedia content may be implemented. The same arguments
apply to content authentication and are reiterated below.

• Security at the transport level protects data in transit. Examples are SRTP (Se-
cure Real-time Transport Protocol), TLS and IPsec. This approach provides
no security to data at rest however, making it unsuitable in this project.

• Introduce an intermediary meta-format between the application (H.264 in
this case) and transport layer. MPEG-21 is such a standard for video. It was
published originally in 2001 [37], revised in 2004 [38] and has seen several
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additions since then. It is a wide-spanning framework for multimedia that
can provide content con�dentiality, integrity and authentication as well as
DRM features. MPEG-21 has been used to implement authentication for
H.264 video speci�cally, for example by Iqbal, Shirmohammadi and Zhao
[39]. A problem with introducing another layer is that it is a non-backwards
compatible change in that all parts of the system must support the new
layer. As this would be a major architectural change for limited bene�t
compared to the other approaches, authentication using MPEG-21 was not
pursued in this project.

• Security at the codec format level may provide protection to both data in
transit and data at rest. Many multimedia codecs support user-de�ned data
�elds in their bitstreams. By signing standard data �elds and appending
the signature in a custom �eld the stream remains compatible with compli-
ant decoders. This is a non-standard approach however, unless the codec
speci�es support for embedding digital signatures. Interpretation of the
user-de�ned �elds containing the signature will be vendor-speci�c. Another
disadvantage with this approach is that it is speci�c to a codec. Other data
that may be part of the same multimedia stream, such as audio, is not
protected.

Since codec format level security o�ers protection to stored data, it was pursued
in this project. In the case of H.264 Axis owns the entire chain between the
camera and the video management system and can a�ord a non-standard addition
to H.264 for an optional feature such as this.

3.2.1 Digital signatures for content authentication

For a general introduction to the H.264/AVC stream format, see Section �2.4.
Stütz and Uhl [25] describes an approach for H.264 encryption, which is later

improved by Hellwagner et al. [36]. In this approach every NAL unit in the H.264
stream is individually encrypted. The NAL unit type is then rewritten to one of
the nine unspeci�ed types. The resulting stream is still H.264 format compliant
because according to the H.264/AVC speci�cation, decoders must ignore NAL
units with unspeci�ed unit types in the bitstream. In the original paper, AES in
ECB mode is used while in the follow-up paper the security of the technique is
improved by using AES in CTR mode instead.

Almost exactly the same technique can be used to authenticate the bitstream
by hashing and signing NAL units instead of encrypting them and storing the
signature in an unspeci�ed type. The data stream size will increase somewhat by
the addition of the signatures, but that is not an issue in this application.

To authenticate the order of frames the hash can be calculated over both the
current and the previous image frame. If a frame is missing from the stream the
following hash will then be incorrectly calculated, causing the signature veri�cation
to fail. To avoid hashing the same data twice, this approach can be optimised to
hash the hashes of the current and previous frame instead of the full data.

This will only allow the veri�er to determine whether any image frame in the
video stream has been corrupted or lost. It will not be able to determine the
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number of invalid frames. For that a more elaborate authentication scheme is
required, such as a tree of hashes that is authenticated on multiple levels. This is
outside the scope of this dissertation.

3.3 Message authentication codes

Message authentication codes are commonly used to protect data in transit. For
streaming video they are for example used in SRTP. MACs can be used to protect
data at rest, but because they are computed and veri�ed using the same (sym-
metric) key, they can only be veri�ed by the same party who issued them [40].
In order for a MAC to provide long-term end-to-end data integrity protection to
surveillance video, MAC keys would have to be stored securely during normal op-
eration and only be used when suspicion is already awoken. This limits their use
for the purposes of this project, and were not pursued further.
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Chapter4

Cryptographic performance

To determine the possibilities of using the CRY for signing images in real time, an
early step was to benchmark its cryptographic performance. The easiest way to do
this is to simply use a �x length cryptographic key to sign a �x length piece of data
and measure the time it takes. To obtain a precise measurement without overhead
from communication inside the ARTPEC platform, the time should ideally be
measured inside the LCPU creating the signature itself.

4.1 Measuring LCPU resource usage

The time required for an LCPU to complete a speci�c job can be assessed by
measuring the time spent in the exec() stage of the software pipeline (as described
in section 2.1.1) while the job is executed. A di�culty that arose was that the
pipeline stages are performed in an interrupt context, with most other interrupts
disabled. This is normally not a problem, since a well-behaved computation in-
tensive command of an LCPU application works by only setting up a background
thread in the pipeline exec() stage and using a callback function to advance the
pipeline when the computation has �nished. However, this ruled out using a pe-
riodic interrupt to count discrete time steps (as is done in the lcpu_timer part of
LCPU OS). Fortunately, every LCPU has a 64-bit counter register that is auto-
matically incremented by hardware at 100 MHz (10 nanosecond steps) which can
be read out in software. This counter was used to measure the time spent inside
the exec() stage of a particular software pipeline, which can later be read out by
the MCPU. A program could then be written that simply blocks the exec() stage
of a pipeline for the duration of a signature creation, which is in fact how the
existing proof-of-concept CRY program worked. Implementation was also compli-
cated somewhat due to the fact that debug printing does not work in interrupt
contexts. The debug print routine enters data into a ring bu�er, which is cleared
out and sent to the MCPU by an interrupt. This causes debug messages to stack
up and only be sent to the MCPU after the LCPU exits interrupt context, i.e.
when exec() is done.

23
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4.2 Comparing RSA and ECDSA

RSA signing performance could be readily measured. Using the aforementioned
method, generation of a 2048-bit RSA signature over 32 bytes of data (the size
of a SHA256 hash) was measured at 292 ms with hardware accelerated modular
exponentiation. With hardware acceleration disabled, a signature takes 619 ms to
generate.

An unexpected obstacle appeared during the implementation of ECDSA sup-
port however � the LCPU ran out of heap memory! To measure the memory
required to create an ECDSA signature using LibTomCrypt, a few simple test
programs were created and run on the x86_64-based development PC. As only
the general order of magnitude in signature generation time is of consequence in
this dissertation, the test programs could also provide an indication of approxi-
mate CPU usage in instruction count. The test programs are listed in Appendix A.
For the tests, LTC 1.17 and TFM 0.13 was used. The compiler used was GCC
5.4.0. Since the development PC did not have a fast true RNG, the pseudo-RNG
Yarrow was used instead. The Valgrind tool Massif [41] was used to measure
CPU and heap memory usage over the duration of the program runs. To �lter out
memory allocations caused by I/O and key import/export functions (which would
not be done in the actual implementation), the functions _IO_file_doallocate
and rsa_import were ignored using Massif's --ignore-fn option.

4.2.1 Results and discussion

The results from Massif were graphed using the Massif-Visualizer [42] application.
The exact number of instructions is obviously not comparable to the number

of instructions it would take on an ARTPEC LCPU, since Intel x86 and CRIS
are vastly di�erent CPU architectures. The instruction count is also a very crude
approximation of the actual time required to run a program, as instructions are
associated with very di�erent costs. Assuming that the bulk of the instructions
used by LTC to implement RSA and ECDSA are similar, only di�erent in quantity,
the ratio between the instructions required for the same operation using RSA and
ECC can be expected to be similar across CPU architectures.

The graphs show that ECDSA signature generation is about three times faster
than (non-hardware accelerated) RSA signature generation. This is likely not
enough to make a practical di�erence in the implementation of digital signatures
for real-time video. The graphs also show that ECDSA requires almost 30 kB of
dynamic memory, making it infeasible to run on the current hardware.

These measurements were performed before researching the di�erence between
ECDSA and EdDSA. EdDSA was not benchmarked as it is not currently imple-
mented on the CRY and may perform di�erently.
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Figure 4.1: Heap memory usage of rsa_sign over time. The X axis
shows the time in instructions executed and the Y axis shows
the memory consumption in kB.

Figure 4.2: Heap memory usage of ecc_sign over time. The X axis
shows the time in instructions executed and the Y axis shows
the memory consumption in kB.
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Chapter5
Implementation

A simple protocol was devised that describes how signatures of H.264 compressed
video are created, transferred and veri�ed. Due to time constraints only parts of
said protocol were implemented. Additional improvements that were found out
during prototyping or left out in the initial protocol design to keep the project
scope down are also listed. Since the contemplated improvements have not been
tested in an actual proof-of-concept implementation it is likely that they will have
practical issues that are yet to be found.

5.1 Assumptions

In this initial protocol, the following assumptions were made:

• There is only one video stream with the signing feature active at any given
time. The implementation may assume exclusive access to the signing hard-
ware.

• H.264 parameter sets are conveyed embedded in the video stream.

5.2 Protocol

For simplicity, all integers are encoded as 8-bit numbers in this �rst version of the
protocol. An obvious improvement would be to use Exp-Golomb coding instead.

5.2.1 Signing

The signing consists of the following tasks:

• For every Coded Video Sequence k:

� Create a rolling SHA-256 hash over all NAL units in the Coded Video
Sequence to produce Hcvsk.

� When the Coded Video Sequence ends (i.e. when the next CVS starts):

∗ Finalise the rolling hash Hcvsk.

∗ Concatenate Hcvsk with Hcvsk−1 and hash it with SHA-256 to
produce Hsignk.

27
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� Asynchronously order CRY to sign Hsignk using the RSA algorithm
and PSS message padding, producing Sk. If the CRY is busy calculat-
ing an older signature then place the new job in a queue.

• For every signature Sk computed by CRY:

� Create a new NAL unit with a custom (unspeci�ed) NAL unit type
dubbed signing NAL unit with the following contents:

∗ An identi�er that speci�es that this signing NAL unit contains a
signature coded in the format described in this section.

∗ A reference to the Coded Video Sequence k that was signed, in
the form of a delay measured in Coded Video Sequences.

∗ The actual signature Sk.

� Insert the new NAL unit into the stream between the current Coded
Video Sequence and the next.

This protocol does not modify data in the video stream; it only injects additional
data packets at the Network Abstraction Layer. Since signatures are computed
in order and all signatures take the same amount of time to compute 1, it follows
that they are also inserted into the output stream in order.

5.2.2 Key transfer

In order to verify the signature, the receiver needs the corresponding public key.
To also verify that the key can be trusted, a certi�cate signed by a trusted third
party is used. The key and certi�cate could be conveyed out-of-band like the
parameter sets (see section 2.4.3), but to make the video recording self-contained
they can easily be embedded into the stream itself in the same way. This will also
allow a live viewer to verify the integrity of the streamed video with no special
set-up other than a streaming client with support for signature veri�cation.

Only the case where the key and certi�cate are embedded into the stream is
considered in this protocol. The NAL unit type signing NAL unit that was devised
in the previous section is re-used, with a di�erent identi�er that speci�es that the
content is a key or a certi�cate. No timestamp or delay parameter is needed. The
NAL unit thus contain only the following:

• Key/certi�cate identi�er.

• Key/certi�cate data.

The key format is a DER encoded PKCS #1 RSAPublicKey ASN.1 structure [43],
with emulation prevention bytes inserted to avoid illegal byte sequences in the
resulting byte stream (as described in section 2.4.2). The certi�cate format remains
unspeci�ed in this �rst protocol iteration. The key/certi�cate NAL unit is injected
into the stream before each SPS encountered. This approach adapts to the same
redundancy that the application chooses for the parameter sets.

1Any cryptographic implementation for which this is not true is leaking information
either about the key or the message data.
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The parameters used for signing (hash function, padding scheme and salt
length) are not included in the key/certi�cate NAL unit, since they are hard
coded to the above values in this protocol version.

5.2.3 Veri�cation

The veri�cation program �rst looks for the signing NAL unit containing the packed
key/certi�cate. In the case of a certi�cate it is veri�ed against the veri�cation
program's con�gured list of Certi�cate Authorities. Then, a rolling hash is created
over all NAL units belonging to a Coded Video Sequence. When the CVS ends
(i.e. when the next CVS starts; same rule as described above), �nalise the hash
and add it to a list of hashes to verify. When a signing NAL unit containing a
signature is encountered, use it to verify the stored hash in the list as indexed by
the delay parameter. The signature should always refer to the oldest hash in the
list; anything else is an error condition:

• If the signature refers to an older hash (higher delay value) than is available
in the list, then the signature should be discarded and the user interface
indicate a veri�cation failure. This can happen legitimately if the client just
joined a live video stream and did not see the data the delayed signature
refers to. It could also happen if an entire IDR NAL unit is lost, so that
the veri�er does not detect that a new Coded Video Sequence has started.
The veri�er will eventually �catch up�, but one or more signatures will fail
to verify (up to the number in the delay parameter).

• If the signature refer to a hash with a lower delay value than is available
in the list it means that the video stream is missing signatures. This could
theoretically happen if the camera device is overloaded and is refraining
from signing all its data. It could also happen if video authentication is
implemented as an optional feature with an on/o� switch, and the feature
is turned on while a client is already streaming (unauthenticated) video.
To catch up, the veri�er should drop hashes from its veri�cation list until
the delay parameter of the current signature refers to the oldest hash while
indicating veri�cation failure.

For practical purposes the list of hashes can be bounded in size to the maximum
expected value of the delay parameter. Signature failures are treated as warnings
displayed to the video consumer, along with the seek time of the failure. In the
case of recorded video the seek time is relative to the beginning of the �le, while
in the case of live viewing the seek time can be relative to when the streaming
session started.

5.3 Proof-of-concept implementation

The signing part of the protocol was implemented as a GStreamer element. This
approach allowed the program to be included in the existing software on the
ARTPEC-6 platform with basically no changes. It also allowed fast prototyping by
o�oading irrelevant code like I/O and NAL unit parsing to standard GStreamer
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plugins and libraries. The proof-of-concept implementation can concern itself al-
most exclusively with implementing the signing protocol devised in this chapter,
apart from some glue code. The message digest functionality in OpenSSL is used
to compute SHA256 hashes in the signing GStreamer element. The implementa-
tion communicates directly with the CRY via a debug interface exposed in sysfs by
a very simple Linux kernel driver. In this early proof-of-concept the private sign-
ing key is manually uploaded to the CRY, while the public key is supplied to the
signing element to be packaged and injected into the H.264 stream. Other than the
key to use, the CRY requires (and accepts) no particular run-time con�guration,
as all parameters are hard-coded in its �rmware.

The veri�cation program was also implemented as a GStreamer element, for
much the same reasons. By making it a pass-through element (transform in
GStreamer terminology), its output can be connected to a H.264 decoder and
display in order to demonstrate signature validation in real-time during playback.
OpenSSL's implementation of both SHA256 message digests and RSA signature
validation is used in the veri�cation element. Signature failures are reported
through GStreamer's logging framework as warning messages.

OpenSSL was chosen because it is widely used and was assumed to be a mostly
correct implementation of the cryptographic functions used in this project.2 It was
also already included in the operating system running on ARTPEC-6.

All parts of the protocol above are implemented in the proof-of-concept pro-
totype, with the following exceptions:

• No certi�cate validation is done. The veri�cation program simply accepts
whatever key is included in the video stream.

• Signature validation failures are reported, but not timestamped in the log-
ging message.

• There are bugs in the implementation that cause the video stream to be
corrupted when signing live video. For whatever reason it only works on
recorded video, making it somewhat useless in its current state.

Figure 2.2 shows a typical usage of the signing element in a GStreamer pipeline.
The GStreamer element will continue to copy all input data to its output

unmodi�ed, only inserting additional packets. A sequence diagram of the signing
process is shown in Figure 5.1. The time it takes to sign a hash according to the
wall clock is �xed, but measured in NAL units passed through it may di�er.

5.4 Discussion and possible improvements

5.4.1 Implementation issues

It was found that using a custom NAL unit type is not as robust as initially as-
sumed. Inserting the key/certi�cate NAL unit before the SPS was not a successful
approach. The GStreamer element h264parse was found to discard all data pre-
ceding the �rst SPS, causing the signing key to get lost. This is not unreasonable,

2Although it is still not entirely audited [44].
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Figure 5.1: Sequence diagram of the signing process.
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as any video data encountered before the parameter sets are available cannot pos-
sibly be decoded. As a workaround, the certi�cate unit could be inserted after the
initial parameter sets instead.

During testing a basic GStreamer pipeline (shown in Figure 2.2) was used
to stream video over RTP. It was found that the GStreamer packing element
rtph264pay performs certain parsing of incoming data and discards unspeci�ed
NAL units. Again, this is a legal response according to the standard (section 2.4.2),
but it was not expected. To work around this issue the rtph264pay element could
be modi�ed. Alternatively, instead of using an unspeci�ed NAL unit, the custom
signature data could be packed into the standard SEI NAL unit which also allows
for user-de�ned data.

5.4.2 Signing parameters

In this initial protocol version all signing parameters are hard coded. To allow for
variation in the parameters, as well as support for other signing algorithms than
RSA, the parameters should be included in the key/certi�cate structure embedded
in the stream. Standard protocols for encoding this information exist, such as the
Cryptographic Message Syntax (CMS) [45]. This protocol is used for example in
the S/MIME standard for secure e-mail [46].

5.4.2.1 Timestamping

To further increase the credibility of recorded surveillance video, a secure times-
tamp could be included. The timestamp would have to be authenticated along
with the video data. This is not a di�cult improvement to realise; simply include
a coded representation of the current time in the rolling hash. Alternatively, the
Cryptographic Message Syntax supports embedding the signing time in a stan-
dardised way.

If the camera operators themselves are considered adversaries, the timestamp
must come from a secure real-time clock, one which can be access controlled.
The current hardware only o�ers a standard real time clock chip which is not
designed to be tamper-resistant against the camera operator and thus gives limited
assurance in this use-case.

5.4.3 Fault tolerance

This approach couples the division of Coded Video Sequences with the signature
granularity, making it somewhat easier to reason about. It follows that the sig-
nature validation process will be delayed by one Coded Video Sequence, and the
very �rst Coded Video Sequence will not be veri�able. In a lossy network indi-
vidual NAL units may be lost, causing distortion to the video and the signature
veri�cation to fail. The video will be fully restored when the next IDR frame is
received, i.e. when the next Coded Video Sequence starts. At this point signa-
ture veri�cation can also re-start, although it will take an additional Coded Video
Sequence before the �rst data can be veri�ed again.

Because the public key is embedded in the stream at the same rate as the
H.264 parameter sets, new clients joining a live stream will also be able to start
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verifying the integrity of streamed video as soon as they are able to decode it.
Again, this makes it easier to reason about when the signature should be expected
to verify successfully (when video shows on the screen, the signature should be
valid). Of course, more elaborate hash trees are possible, which may allow further
veri�cation of the Coded Video Sequence order even in the face of packet loss.

5.4.4 Platform dependence

The prototype implemented is directly tied to the ARTPEC-6 and its CRY. It
currently uses debug interfaces to directly communicate with the CRY through a
very simple Linux kernel driver and is quite fragile in the face of changes to the
operating system. This approach would not work in a production environment.

The concept itself, however, is not dependent on the platform at all. The CRY
is used in a fashion similar to a Trusted Platform Module (TPM). It could be
replaced by an actual TPM or an implementation performing a similar function.

Another possible approach is to abstract the underlying secure hardware using
the Linux kernel Crypto API. The Crypto API is primarily used in parts of the
kernel that uses cryptography, for example encrypted �le systems and network
protocols. Cryptographic operations may be provided by software or hardware
implementations [47]. In 2010 a user-space interface for the Crypto API based on
Netlink sockets was proposed and subsequently merged. It is commonly known
as AF_ALG after the new socket address family it adds to Netlink. This allows
user-space applications to access cryptographic hardware through a standardised
interface. Currently it only supports one-way hashes and symmetric key operations
(and combinations of these, such as HMACs and AEAD) [48]. A patch that adds
support for asymmetric key operations such as digital signatures to the user-space
API has been proposed to the Linux Kernel Mailing List but is not yet merged as
of January 2017 [49]. Stephan Mueller, one of the authors of the Crypto API, has
written a user-space library libkcapi that can be used to communicate with the
kernel using the new Netlink API [50].

Axis could wait for this patch to be merged, possibly helping the e�ort along
by �xing the problems found during review on the Linux Kernel Mailing List. A
Crypto API driver for the ARTPEC-6 CRY could be implemented, allowing it to
be used in a mostly platform-independent manner.



34 Implementation



Chapter6
Use-cases and threat model

6.1 Key management

The devised image authentication protocol assumes the following properties of key
management:

Each camera is assigned an RSA key pair during manufacturing. The private
key is encrypted with a symmetric key which is stored in memory which is inac-
cessible to the main operating system running on the camera. In the ARTPEC-6
platform this can be the OTP memory inside CRY. The public key and the en-
crypted private key are stored at a location in main �ash which is persistent across
factory resets and �rmware updates.

Camera speci�c keys have a certi�cate that is signed by the camera vendor
during manufacturing, to attest that the key was in fact issued by the vendor. The
certi�cate could potentially have limited period of validity, requiring certi�cate
renewal. However, since the camera vendor has little possibility of verifying the
camera integrity once it is out of their hands, this is not expected to o�er more
security than issuing certi�cates with unlimited validity. The camera vendor acts
as a Certi�cate Authority and its root certi�cate should be bundled with the part
of its Video Management System that is able to validate authenticated video. It
is of utmost importance that the private CA key is kept secret.

6.2 Threat model

With the hardware limitations detailed in Chapter 2, the number of trusted parties
in the contemplated system can be as few as two: the camera vendor and the
camera operator. The vendor is responsible for implementing the camera software
securely, while the operator is responsible for installing the camera as intended
and protecting the physical and remote access to the camera.

The rest of this section lists some of the most important threats and practical
problems to the concept, and how they are either dismissed or mitigated.

6.2.1 Transmission errors and video editing

Any errors during transmission of the streaming video and its embedded signature
will cause the veri�cation to fail. Any video post-processing done after the sig-
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nature is applied (such as cropping or masking) will also invalidate the signature.
The VMS or storage system must store the video as it is received. Even then,
signature veri�cation may fail occasionally due to transmission errors, since the
video is usually streamed over UDP. The frequency of transmission errors varies
depending on the network reliability, which may range from very high (in the
case of a local unsaturated network) to lower (due to network saturation or when
streaming over the internet).

Even when video is streamed over TCP which uses an error detecting check-
sum, some errors will still slip through. Statistically, at least one error in 65536
will not be detected (since the checksum has 16 bits). It has been shown that for
some systematic (non-random) errors this may occur much more often [51].

The signature is easily stripped from video recordings, maliciously or because
some part of the video management system does not support it. In this case they
should be assigned the same trustworthiness as recordings from a camera without
the authentication feature.

6.2.2 Camera software bugs

The software running on the camera can, and is even likely to have bugs. These
bugs may allow an adversary to assume partial or full control of the camera. An
adversary with full administrative access will at the very least be able to forge
signatures by directly communicating with the CRY from the main operating
system. By storing the secret key in the CRY's OTP memory it is nominally
protected against malicious code running on the main CPU. However, since the
�rmware running on the CRY is not authenticated on the ARTPEC-6 platform,
an adversary could construct an LCPU program that reads out the secret key from
OTP memory and load it onto the CRY.

This is not a trivial attack. The software development kit for the LCPUs
and precise documentation of their architecture are not publicly accessible. This
does not make the attack infeasible to a determined adversary though, only more
involved.

6.2.3 Malicious operator

A malicious operator has the same privileges as described in the previous threat.
Administrator login credentials should be carefully guarded to avoid giving unau-
thorised users access to the camera.

6.2.4 Physical tampering

An adversary may replace the image sensor with a fake sensor that provides the
camera with counterfeit image data, or simply place a screen in front of the camera.
This is a viable attack against any surveillance camera, analogue or digital, and is
essentially impossible to mitigate using software. Whether it is practical or not, it
serves to de�ne the scope of the video authentication feature: The authentication
starts inside the camera and can only attest what the camera sees, not what
actually happened in the scene.
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6.2.5 Recording of a staged event

Again, the camera has no way of analysing the validity of the incident it is cap-
turing on video. The signature does however serve to identify the speci�c camera
through the public key �ngerprint. The public key �ngerprint may in turn be used
to identify the person or organisation who owns the camera, by having the camera
vendor maintain a list of which camera it sold to which customer. Alternatively,
the �ngerprint may simply be used to indicate a deviation from the camera which
is normally monitoring a certain location. Including a timestamp in the signature
serves to authenticate the time of recording.

6.2.6 Replay attack

Unless signature veri�cation failures are treated as hard-failures, a man-in-the-
middle attacker could easily mount a replay attack. A repeated signed video
sequence will be piecewise correct. The signature veri�cation would only fail oc-
casionally as the video is looped. Including a timestamp in the signature would
completely mitigate this attack. Another approach is to use a counter and have
the receiver verify that the counter value is never repeated or decremented.

6.2.7 Broken cryptography

There are several parts to this:

• The signing and hashing algorithms used may some day be proven bro-
ken. This does not happen to cryptographic algorithms every day, but it
has happened before. The widely used MD5 hash function was found to
have design �aws as early as 1996 [52] and a practical attack against SSL
certi�cates using MD5 hashes was demonstrated in 2008 [53].

• The cryptographic primitives may be used in an insecure way in the invented
protocol. This is not unlikely, and so the protocol should be properly peer-
reviewed before putting it to use. As an example, version 2.0 of the Secure
Sockets Layer protocol (later renamed to Transport Layer Security) has been
found to have severe design �aws. An IETF RFC recommends against its
use since 2011 [54].

• The implementations of the cryptographic primitives may be broken, either
OpenSSL or LibTomCrypt. An example of such a problem a�ected the
version of OpenSSL shipped with the Debian Linux distribution between
2006 and 2008. A packaging bug caused the entropy used while generating
keys to be limited to 15 bits [55]. Another prominent example is the now
well-known OpenSSL �Heartbleed� bug discovered in 2014, where memory
that potentially contains fragments of the private key could be leaked to a
remote attacker [56]. It should be noted that LibTomCrypt is not nearly as
widely used as OpenSSL and as such has likely had less public scrutiny.
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6.3 Discussion: On not trusting the operator

With additional changes to the camera hardware and usage policy, even the camera
operator can be taken out of the list of trusted parties, so that only the camera
vendor remains. Several signi�cant changes need to be made:

• All software running on the camera as well as �rmware updates must be
authenticated to have been issued by the vendor using a secure/veri�ed boot
scheme.

• The keys used to authenticate the software must be tamper resistant and
unchangeable by the operator.

• The operator can no longer have unlimited administrative access to the
camera.

• If a timestamp is included in the video signature, it must be derived from a
secure non-user-settable clock.

Not only does this pose signi�cant technical hurdles, it also raises the question of
whether it is an ethical thing to do. Essentially, the camera operator no longer
owns the camera. One could argue that this redistribution of administrative power
also moves the liability of keeping the camera system secure and functional entirely
to the camera vendor. This may be reasonable for a business model where products
are leased rather than sold, although that is only speculation by the author.
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Conclusions

The issues described in the previous chapter place an upper bound on the addi-
tional trustworthiness that the invented protocol brings to a video recording. The
video authentication protocol as implemented on the ARTPEC-6 platform can
give a strong indication, but not a guarantee, that a signed surveillance recording
was created by an Axis camera and that it has not been manipulated afterwards.
Because of the many normal cases that may invalidate the signature, such failures
cannot be treated as fatal. This is unlike for example S/MIME secure e-mail,
TLS and other protocols that are only used over reliable communication channels,
where a failed message integrity check is exceptional and should be treated fatally.
Rather, a discontinuity in the chain of valid signatures should be treated as a
warning in the video management system, which points out a timestamp in the
video where the viewer should pay close attention to investigate the reason for the
veri�cation failure.

By changing some of the initial assumptions, the requirements on signature
correctness be tightened. At a minimum, the video should be streamed over a
reliable channel and the signing feature should be deployed to most parts of a
surveillance system. To estimate the extent of remaining legitimate signature
veri�cation failures, interoperability testing between actual products should then
be performed.

The protocol reduces the list of trusted parties to the camera operator and
vendor. It emphasises the need to keep the camera software secure and up to date
to avoid signature forgery and theft of cryptographic keys.

7.1 Future work

7.1.1 Signature transport encoding

Further investigation is needed regarding the viability of using an unspeci�ed NAL
unit to encode the signature. With this approach modi�cations need to be done
to several other parts that handle the video stream (such as the GstRtpH264Pay
element). Alternatively the signature could possibly be encoded in an SEI NAL
unit as described in section 5.4.1.
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7.1.2 Combining with encryption

The digital signature scheme devised could easily be combined with the encryp-
tion method described by Hellwagner et al. [36] to provide both con�dentiality
and integrity protection of the video stream. A proven method for combining
signing and encryption should be used, as otherwise the result may have security
de�ciencies [57].

7.1.3 Axis ZipStream

ZipStream is an implementation of H.264 invented by Axis. It aims to reduce
bit rate required for surveillance video by dynamically varying the quality of the
video depending on its contents. ZipStream varies compression ratio, frame rate
and length of Coded Video Sequences by estimating how interesting the video is,
while always producing H.264 that is format compliant [58]. Since the protocol
for video authentication described in this dissertation operates on the Network
Abstraction Layer independently of the contents of the video, it is also applicable
for ZipStream encoded video. ZipStream may however a�ect the protocol's fault
tolerance and time to recovery in the face of transmission errors, as it is related
to the CVS length.

7.1.4 H.265

H.265, also known as High E�ciency Video Codec (HEVC) or formally MPEG-H
Part 2, is an evolution of H.264 which o�ers additional features and higher data
compression at the same level of video quality. It shares the concepts of Video
Coding Layer, Network Abstraction Layer and Access Units with H.264 and so the
protocol for video signing should be easily adaptable for H.265. At the general level
speci�ed in this dissertation, the protocol is exactly the same. The implementation
will be slightly di�erent, because the NAL unit header has a di�erent format and
the NAL unit types have di�erent identi�ers.

7.1.5 Hardware changes

Although the CRY has more capabilities, in the implementation done as part of
this dissertation it is used in the same way as a Trusted Platform Module. The
protocol described could easily be implemented on a di�erent platform. A secure
key storage could for example be served by a standard TPM.
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AppendixA
LibTomCrypt test programs

In Section �4.2 a set of test programs was devised to enable performance testing
of LibTomCrypt on a PC. Code listings for these programs follow. As text copied
from PDFs often lose much of its structure depending on the viewer, the code
in these listings are also attached to this document as source code �les. Extract
them using a PDF viewer that supports attachments, or using a specialised tool
like pdfdetach [59].

To run the test programs, �rst install TomsFastMath somehow. The version
bundled with any modern Linux distribution is probably �ne. There are spe-
cial requirements on LibTomCrypt however; it must be built with TFM support
(TFM_DESC de�ned). Build it from source like this:

CFLAGS=-DTFM_DESC make

Then place the test program source �les in a subdirectory inside the LTC
source directory. Build the programs individually like this:

gcc -g -o rsa_gen rsa_gen.c test.c ../libtomcrypt.a -DTFM_DESC -I

../src/headers -ltfm

Exchange rsa_gen with the names of the other test programs to build them
as well. All programs read their input data from standard input and writes to
standard output.

Listing A.1: test.h: header for test.c

#include <stdio.h>

#include <tomcrypt.h>

prng_state yarrow_prng;

int hash_idx, prng_idx;

void init(void);

Listing A.2: test.c: initialisation code common for all test programs

#include "test.h"
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void init(void)

{

int err;

ltc_mp = tfm_desc;

register_hash(&sha1_desc);

register_prng(&yarrow_desc);

err = rng_make_prng(128, find_prng("yarrow"), &yarrow_prng, NULL

);

if (err != CRYPT_OK) {

fprintf(stderr, "rng_make_prng failed: %s\n",

error_to_string(err));

exit(1);

}

hash_idx = find_hash("sha256");

prng_idx = find_prng("yarrow");

if (hash_idx == -1 || prng_idx == -1) {

fprintf(stderr, "rsa_test requires sha256 and yarrow\n");

exit(1);

}

}

Listing A.3: rsa_gen.c: generates a 2048-bit RSA key and writes it
to stdout DER encoded

#include "test.h"

int main(void)

{

unsigned char out[2048];

rsa_key key;

unsigned long len;

size_t wr;

int err;

init();

err = rsa_make_key(&yarrow_prng, prng_idx, 2048 / 8, 65537, &key

);

if (err != CRYPT_OK) {

fprintf(stderr, "make_key err %d: %s\n", err,

error_to_string(err));

exit(1);

}
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len = sizeof(out);

err = rsa_export(out, &len, PK_PRIVATE, &key);

if (err != CRYPT_OK) {

fprintf(stderr, "export err %d: %s\n", err, error_to_string(

err));

exit(1);

}

wr = fwrite(out, 1, len, stdout);

if (wr != len) {

fprintf(stderr, "failed to write key to stdout, %zu/%lu

bytes written\n", wr, len);

exit(1);

}

rsa_free(&key);

return 0;

}

Listing A.4: rsa_sign.c: inputs a DER encoded private key and
creates a signature of a SHA256 hashed 32-byte null-string

#include "test.h"

int main(void)

{

unsigned char in[2048], out[256], data[32] = {0}, hash[32];

rsa_key key;

unsigned long len;

size_t wr, rd;

int err;

hash_state md;

init();

len = sizeof(in);

rd = fread(in, 1, len, stdin);

if (rd == 0) {

fprintf(stderr, "failed to read key from stdin\n");

exit(1);

}

err = rsa_import(in, rd, &key);

if (err != CRYPT_OK) {

fprintf(stderr, "import err %d: %s\n", err, error_to_string(

err));

exit(1);

}
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sha256_init(&md);

sha256_process(&md, data, sizeof(data));

sha256_done(&md, hash);

len = sizeof(out);

err = rsa_sign_hash(hash, sizeof(hash), out, &len, &yarrow_prng,

prng_idx, hash_idx, 0, &key);

if (err != CRYPT_OK) {

fprintf(stderr, "sign_hash err %d: %s\n", err,

error_to_string(err));

exit(1);

}

wr = fwrite(out, 1, len, stdout);

if (wr != len) {

fprintf(stderr, "failed to write signature to stdout, %zu/%

lu bytes written\n", wr, len);

exit(1);

}

rsa_free(&key);

}

Listing A.5: ecc_gen.c: generates a key on the 256-bit NIST curve
and writes it to stdout in LTC special format

#include "test.h"

int main(void)

{

unsigned char out[256];

ecc_key key;

unsigned long len;

size_t wr;

int err;

init();

err = ecc_make_key(&yarrow_prng, prng_idx, 32, &key);

if (err != CRYPT_OK) {

fprintf(stderr, "make_key err %d: %s\n", err,

error_to_string(err));

exit(1);

}

len = sizeof(out);

err = ecc_export(out, &len, PK_PRIVATE, &key);
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if (err != CRYPT_OK) {

fprintf(stderr, "export err %d: %s\n", err, error_to_string(

err));

exit(1);

}

wr = fwrite(out, 1, len, stdout);

if (wr != len) {

fprintf(stderr, "failed to write key to stdout, %zu/%lu

bytes written\n", wr, len);

exit(1);

}

ecc_free(&key);

return 0;

}

Listing A.6: ecc_sign.c: inputs a LTC special format private key
and creates a signature of a SHA256 hashed 32-byte null string

#include "test.h"

int main(void)

{

unsigned char in[256], out[128], data[32] = {0};

ecc_key key;

unsigned long len;

size_t wr, rd;

int err;

init();

len = sizeof(in);

rd = fread(in, 1, len, stdin);

if (rd == 0) {

fprintf(stderr, "failed to read key from stdin\n");

exit(1);

}

err = ecc_import(in, rd, &key);

if (err != CRYPT_OK) {

fprintf(stderr, "import err %d: %s\n", err, error_to_string(

err));

exit(1);

}

len = sizeof(out);

err = ecc_sign_hash(data, sizeof(data), out, &len, &yarrow_prng,
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prng_idx, &key);

if (err != CRYPT_OK) {

fprintf(stderr, "sign_hash err %d: %s\n", err,

error_to_string(err));

exit(1);

}

wr = fwrite(out, 1, len, stdout);

if (wr != len) {

fprintf(stderr, "failed to write key to stdout, %zu/%lu

bytes written\n", wr, len);

exit(1);

}

ecc_free(&key);

}
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#include "test.h"

int main(void)
{
    unsigned char out[256];
    ecc_key key;
    unsigned long len;
    size_t wr;
    int err;

    init();

    err = ecc_make_key(&yarrow_prng, prng_idx, 32, &key);
    if (err != CRYPT_OK) {
        fprintf(stderr, "make_key err %d: %s\n", err, error_to_string(err));
        exit(1);
    }

    len = sizeof(out);
    err = ecc_export(out, &len, PK_PRIVATE, &key);
    if (err != CRYPT_OK) {
        fprintf(stderr, "export err %d: %s\n", err, error_to_string(err));
        exit(1);
    }

    wr = fwrite(out, 1, len, stdout);
    if (wr != len) {
        fprintf(stderr, "failed to write key to stdout, %zu/%lu bytes written\n", wr, len);
        exit(1);
    }

    ecc_free(&key);
    return 0;
}



#include "test.h"

int main(void)
{
    unsigned char in[256], out[128], data[32] = {0};
    ecc_key key;
    unsigned long len;
    size_t wr, rd;
    int err;

    init();

    len = sizeof(in);
    rd = fread(in, 1, len, stdin);
    if (rd == 0) {
        fprintf(stderr, "failed to read key from stdin\n");
        exit(1);
    }

    err = ecc_import(in, rd, &key);
    if (err != CRYPT_OK) {
        fprintf(stderr, "import err %d: %s\n", err, error_to_string(err));
        exit(1);
    }

    len = sizeof(out);
    err = ecc_sign_hash(data, sizeof(data), out, &len, &yarrow_prng, prng_idx, &key);
    if (err != CRYPT_OK) {
        fprintf(stderr, "sign_hash err %d: %s\n", err, error_to_string(err));
        exit(1);
    }

    wr = fwrite(out, 1, len, stdout);
    if (wr != len) {
        fprintf(stderr, "failed to write key to stdout, %zu/%lu bytes written\n", wr, len);
        exit(1);
    }

    ecc_free(&key);
}



#include <stdio.h>
#include <tomcrypt.h>

prng_state yarrow_prng;

int hash_idx, prng_idx;

void init(void);



#include "test.h"

void init(void)
{
    int err;

    ltc_mp = tfm_desc;

    register_hash(&sha1_desc);
    register_prng(&yarrow_desc);

    err = rng_make_prng(128, find_prng("yarrow"), &yarrow_prng, NULL);
    if (err != CRYPT_OK) {
        fprintf(stderr, "rng_make_prng failed: %s\n",
                error_to_string(err));
        exit(1);
    }

    hash_idx = find_hash("sha256");
    prng_idx = find_prng("yarrow");
    if (hash_idx == -1 || prng_idx == -1) {
        fprintf(stderr, "rsa_test requires sha256 and yarrow\n");
        exit(1);
    }
}



#include "test.h"

int main(void)
{
    unsigned char out[2048];
    rsa_key key;
    unsigned long len;
    size_t wr;
    int err;

    init();

    err = rsa_make_key(&yarrow_prng, prng_idx, 2048 / 8, 65537, &key);
    if (err != CRYPT_OK) {
        fprintf(stderr, "make_key err %d: %s\n", err, error_to_string(err));
        exit(1);
    }

    len = sizeof(out);
    err = rsa_export(out, &len, PK_PRIVATE, &key);
    if (err != CRYPT_OK) {
        fprintf(stderr, "export err %d: %s\n", err, error_to_string(err));
        exit(1);
    }

    wr = fwrite(out, 1, len, stdout);
    if (wr != len) {
        fprintf(stderr, "failed to write key to stdout, %zu/%lu bytes written\n", wr, len);
        exit(1);
    }

    rsa_free(&key);
    return 0;
}



#include "test.h"

int main(void)
{
    unsigned char in[2048], out[256], data[32] = {0}, hash[32];
    rsa_key key;
    unsigned long len;
    size_t wr, rd;
    int err;
    hash_state md;

    init();

    len = sizeof(in);
    rd = fread(in, 1, len, stdin);
    if (rd == 0) {
        fprintf(stderr, "failed to read key from stdin\n");
        exit(1);
    }

    err = rsa_import(in, rd, &key);
    if (err != CRYPT_OK) {
        fprintf(stderr, "import err %d: %s\n", err, error_to_string(err));
        exit(1);
    }

    sha256_init(&md);
    sha256_process(&md, data, sizeof(data));
    sha256_done(&md, hash);

    len = sizeof(out);
    err = rsa_sign_hash(hash, sizeof(hash), out, &len, &yarrow_prng, prng_idx, hash_idx, 0, &key);
    if (err != CRYPT_OK) {
        fprintf(stderr, "sign_hash err %d: %s\n", err, error_to_string(err));
        exit(1);
    }

    wr = fwrite(out, 1, len, stdout);
    if (wr != len) {
        fprintf(stderr, "failed to write signature to stdout, %zu/%lu bytes written\n", wr, len);
        exit(1);
    }

    rsa_free(&key);
}


