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Abstract

Amadeus IT Group provide revenue management systems for the airline indus-
try. The concept of overbooking has been known and applied within the indus-
try since the middle of the 20th century, thus playing a large role in a revenue
management prospect. The passengers booking data is something that could
improve the forecasting of the rate at which passengers don’t show up or can-
cel their respective flights, henceforth referred to as cancellation/no-show rate.
This thesis will only address the no-show part but both the concept of cancella-
tions and no-show together are important when overbooking flights optimally.
Overbooking too little will result in lost revenues and overbooking too much
will result in fees for compensating possibly upset passengers and of course the
issue of having to deny boarding to them as well. Therefore, the investigation
around how to optimally overbook flights is of importance for Amadeus.

In this thesis, machine learning algorithms are tested with the objective to
improve the no-show rates. The revenue management part of this project will
not be discussed in great detail.
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Chapter 1

Introduction

1.1 Background

Amadeus IT Group is a company that provides software systems such as booking
and revenue management systems, mainly targeting not only the airline but
also the broader travel and tourism industry. Amadeus has its head quarter in
Madrid but also large European offices in Nice and Erding.

When you book your flight, the airline keep track of all necessary details re-
garding your travel in a so called PNR, Passenger Name Record. This record
contains a unique code that directly corresponds to your booking. Information
contained in the PNRs include information such as your origin airport, your
final destination, how much you payed for your ticket, number of people on the
booking etc.

Currently, Amadeus calculates no-show rates and cancellation for a given flight
based on time series models. On top of that, information in the PNR could con-
tain features describing the no-show behaviour for passengers. Machine learning
algorithms are suitable for dealing with multiple inputs where traditional mod-
els might be too hard to program yourself or a specific pattern is hard to detect.
PNR-based no-show forecasting is something requested by airlines and therefore
implemented by Amadeus.

Ideally, the objective is to predict a probability of how likely a passenger is to
no-show. This probability is then used as input to a function or a decision rule
for overbooking.

The PNRs form a huge data set so only a subset of all the PNRs will be used for
modeling. The subset itself is still fairly large, containing about 40 covariates
and a few million observations.
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1.2 Problem Formulation

Firstly, I’ve restricted myself to only deal with the no-show rate modeling and
prediction, leaving out the cancellation modeling and prediction in this thesis
project.

Secondly, the goal is to improve the no-show rate forecasting. Therefore, a
baseline model needs to be implemented. The baseline model will work as a
benchmark. The algorithms needs to beat this model in order to be considered
useful for forecasting no-show rates.

When a baseline model is implemented, the machine learning algorithms needs
to be trained on the PNR data and compared with the baseline model.

The analysis is divided into 2 cabins. Cabins in a short-haul flight is the physi-
cal line usually drawn by a curtain, dividing economy and business passengers.
Cabins in a long-haul flight is usually made up of first class, business and econ-
omy. The analysis performed in this thesis are based on the cabins M (Economy)
and C (Business).

The main questions in this thesis project are:

• What covariates in the PNR can be used and how? Does some covariates
need to be removed or transformed?

• How does the machine learning algorithms work?

• How to implement machine learning algorithms in the statistical software
R?

• How to measure which algorithms perform better, what KPIs (Key Per-
formance Indicators) should be used?

• Implement a baseline model and compare the results with the machine
learning algorithms.

1.3 Outline

The report starts with a brief explanation of what no-show rates are used for
and the concept of overbooking in revenue management. This is followed by a
section of data analysis and then machine learning, what it is, how it generally
works and then 3 famous machine learning algorithms are explained. The con-
cepts of over/underfitting and cross-validation follows which are important to
understand when training a model and when interpreting the results.
Here, a few issues with data sets are discussed along with a few performance
metrics/KPIs (Key Performance Indicator).

The 3rd chapter is a walk-through of what was done, how the data was processed
and the algorithms implemented.
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The last 3 chapters presents the results in forms of plots and KPIs. These are
then analysed and thoroughly discussed.
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Chapter 2

Theory

2.1 Overbooking

Overbooking occurs when a seller with limited capacity sells more units than he
or she has to offer[14]. The reason for overbooking is simply to avoid the lost
opportunity for more revenue due to no-showing passengers or cancellations.

Without overbooking, every no-show and many of the cancellations would result
in empty seats in the aircraft, a lost opportunity of more revenue. Consider a
flight with 100 seats that usually has a higher demand than 100. Also, assume
that passengers on this flight on average have a 10 % no-show rate. If the
airline never overbooks, it would, on average, depart with 10 empty seats on
every flight and at the same time deny reservations to passengers who wanted
to be on this flight. This compares to a manufacturer who would plan to run
at 90 % capacity, a waste.

Hence, calculating a total booking limit could be done by

b = C/ρ, b ≥ C and ρ ∈ [0, 1]. (2.1)

Where C is the capacity and ρ the show rate, i.e. 1−NSR, where NSR is the
no-show rate [14].

However, when overbooking too much, there is a penalty called a denied board-
ing cost. This cost is usually more expensive for the airlines than to have an
empty seat [20]. Instead, we want to calculate a very simplified risk-based
booking limit that takes into account the denied boarding cost. Let’s make a
simplified illustration, say the number of passengers that come to the flight are
s. They all pay the same price p and that the cost of denied boarding is D with
D > p.
Both the demand for bookings d and the number of no-shows x are assumed
to be unknown and independent [14]. Also define the cumulative distribution
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function, (CDF), F (d) which is the probability that the total number of book-
ings will be less or equal to d. Let G(x) be the probability that the number of
no-shows will be less or equal to x. Now, we want to determine for which value
of b that maximizes the total expected net revenue. The net revenue is simply
given by [14]

R = ps−D ·max[(s− C), 0]. (2.2)

With equation (2.2), we can calculate the expected value of the net revenue
which is

E[R|b] = p · E[min(b, d)− x]−D · E[max(min(b, d)− x− C, 0)]. (2.3)

Now, assume we have set a booking limit b > C. The effect of changing the
booking limit from b to b+ 1 would have 3 possible outcomes [14].

1. The demand is d < b + 1. Increasing the booking limit would not affect
the number of shows and the outcome from increasing the booking limit
by 1 would be 0.

2. The demand d ≥ b+ 1 and the number of no-shows is greater than b−C.
The airline will in this case gain a paying passenger without having to
overbook and with the gain p.

3. The demand d ≥ b + 1 and the number of no-shows is less or equal to
b − C. This would generate a paying passenger but will also generate a
denied boarding to a passenger. This would result in a loss p−D because
D > p.

Using these 3 outcomes, one can do a probability weighted sum over them. If
the weighted sum is larger than 0, one should increase the booking limit b to
b + 1 because it will generate more expected revenue. Once this is done, you
could repeat this process to find out if the booking limit should be increased
yet again by one seat. If the weighted sum is smaller than 0, then you shouldn’t
increase your booking limit.

By using the CDFs for the no-showsG, we could calculate the change in expected
revenue that we assume to get when we increase the booking limit from b to
b+ 1 [14].

E[R|b+ 1]− E[R|b] = [1− F (b)](G(b− C)(p−D) + [1−G(b− C)]p) (2.4)

Increasing the booking limit by 1 seat will generate more expected revenue if
the right hand side in equation (2.4) is positive. Since 1−F (b) is always greater
than or equal to 0. This means that when p − G(b − C)D is greater than 0
or equivalently p/D > G(b − C) one could keep increasing the booking limit
without losing expected revenue.

This concludes a simple risk-based overbooking algorithm [14]:

1. Begin with b = C.
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2. if p/D ≤ G(b− C), stop. The optimal value for b is the current one.

3. if p/D > G(b− C), set b to b+ 1 and go to step 2 again.

What this means is that the probability distribution of the no-show rate is
important to have in order to use this simplified model. Thus, it is of great
importance to the airlines to have an accurate prediction of the no-show rates
[17]. A poor model/distribution of the no-shows leads directly to loss of revenue,
you either overbook too much or too little.

Even though this is a simplified model, it works closely to the models that air-
lines use in their booking systems today. Of course, the complexity increases
considerably when adding cancellations to this model, the dynamic pricing of
tickets, different booking classes, different cabins etc. Anyhow, it gives an un-
derstanding for why this project is done and what the no-show forecasting is
used for.

Denying a passenger to board costs money, but the passengers reaction and
satisfaction is something hard to measure. This is also important to take into
account. An airline that frequently denies passengers to board might get a bad
reputation and measuring the impact of a bad reputation is also hard.

2.2 Data Analysis

2.2.1 Data Pre-processing

In order to work with the machine learning algorithms, the data needs to be
”clean” and data that is wrong would also produce unwanted answers. Notice
that there is a difference between removing data that is in some way wrong and
removing data that is ”unwanted”. Removing data that’s not wanted could be
seen as cheating.

There are several different things that could be referred to as pre-processing the
data.

• Converting categorical covariates (Dummy Coding).

• Handling missing values.

• Detecting and handling outliers.

Firstly, covariates might need to be transformed in order to be used since one
can’t use for instance strings as inputs to machine learning models.
Instead, one could often group and dummy code them instead. Dummy coding
simplified is when a categorical covariate has different levels and each level is
converted into numerical inputs with levels 0 or 1 [5]. For example, Point of
sale which is a covariate with countries as levels is dummy coded:

PoS = PoSSE1{PoS=SE} + PoSDK1{PoS=DK} + ... (2.5)
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where 1 is the indicator function that takes the value 1 when the criteria sub
scripted is fulfilled. Practically this means extending a categorical variable to
so many inputs that there are levels so that when Point of sale = ”SE”, the
PoSSE = 1 and all other Point of sale variables are 0. When Point of sale (PoS)
is dummy coded, it can be used as an input to the algorithms, whereas the
string ”SE” or ”DK” can’t be used as inputs.

Secondly, an issue with real data sets is that there might be information missing.
If an element is missing, it will henceforth be referred to as NA (not available).
This is a tricky problem and can be dealt with differently depending on the
task. Perhaps the most simple solution is to remove the variable containing
NAs. This might be a bad idea when you don’t have much data or when there
are simply too many NAs or if it introduces bias.
Another treatment is to try to impute them [19], i.e. ”fill in the gap”. There
are many different theories around how to impute missing values. One idea is
to take the average of the other observations of this covariate and set the NAs
to the average. One could also do a linear regression based on other covariates
and try to predict the NAs. There are also more advanced methods that tries
to impute the most likely value given the other observations that aren’t NAs.

In machine learning, some models are actually robust to NAs such as decision
trees and gradient boosting. Neural networks are not robust to NAs so to use
neural networks the NAs cannot be used as inputs.

Sometimes the data is not missing, it’s just that NA might the best label for
that specific observation. For instance, if the segment ID is 1, i.e. the first flight
the passenger will take, there is no connection time. Therefore, the connection
time is set to NA. Not because it’s missing but because setting it to 0 implies
that there was a connection time and that it was 0.

There is no straight answer to how to detect and handle outliers. The probably
most common way is when detecting an outlier is to remove it and treat is as
an error in the data. However, it’s important to understand the data set so
that an important observation isn’t removed. If one is trying to model the stock
market, a stock market crash is most likely not removed. Another example is
if one would find negative values on something that can’t be negative such as
time or weight. These observations could be treated as outliers and possibly
removed unless negative time or weight has a certain meaning in the given data
set.

2.2.2 Data Normalization

Especially when working with Neural Networks it is of importance to normalize
the data to be able to train the network [16]. It’s usually hard enough getting
the network to converge and helping the network by scaling the inputs is almost
always a good idea. Machine learning methods that don’t need normalized data
in order to work can still benefit from this approach. Normalizing is important
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because features with a large range could have a higher impact than those
with a smaller range. An example could be changing measurement units from
kilometers to meters, which would increase the range and thus have a risk of
introducing bias to a model.

One way of scaling down the data is to standardize the data. In mathematical
statistics, this means that you subtract the mean of the data (µX) and divide
by its standard deviation (σX) for each data point xj ∈ X:

x̂j =
xj − µX
σX

(2.6)

The standardized data will have a 0 mean and a unit variance.

Another method is to min-max normalize the data. This is a linear mapping of
the data to an interval [0, 1]. This is done by

x′j =
xj −mX

MX −mX
(2.7)

Where MX = max(X) and mX = min(X). There are more ways of normalizing
the data and some methods are more robust to outliers than others.

2.2.3 Skewed Classes

A skewed class is a problem often occuring when talking about machine learning
[1]. In our case, the class Boarded/No-show is skewed meaning that one is
over/underrepresented. For instance, if you have a training set containing 1000
observations and only 20 of them are of class A and the rest class B, then trying
to predict on 100 new unseen observations will most likely result in predicting
them all as class B.

Let’s say that in the new 100 unseen observations there are 2 of class A (same
ratio as in the training set). The predictor will then receive a 98% accuracy by
setting all predictions to class B. Depending on what the actual task is, this is a
good performance, but when trying to classify for instance no-show passengers,
this is bad since the model doesn’t predict a single no-show passenger [15].

One needs to be aware of the distribution of the covariates and the output since
dealing with a skewed class problem can be tricky. In the given data set, the
percentage of no-shows were on average around 2% which makes it a typical
skewed class problem.

2.3 Machine Learning

Machine learning is a term used when talking about computer science, mathe-
matical statistics and optimisation that together makes computers able to learn
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without being explicitly programmed. Machine learning makes it possible for
computers to learn from data, detect patterns and from its experience perform
tasks like classification, regression and prediction. The more data with good
quality and variety it gets fed, i.e. the more experience it can use to train itself
will make it better at increasing its own accuracy. The outcome from a machine
learning algorithm is usually a measurement such as predicting if a picture con-
tains a cat or a dog (classification), predict housing prices given a number of
housing features (regression) and in our case predict the no-show rate as a prob-
ability (regression). The aim of the machine learning algorithm is to learn on a
set of training examples given both inputs and outputs, then using the obtained
model to predict the output given a set of new unseen inputs/observations.

Usually when talking about machine learning you can divide it into two cate-
gories [9]:

• Unsupervised learning - This means that there are no observed outputs
so the algorithm needs to self find patters and structures in the given data
set.

• Supervised learning - The algorithm has access to observed outputs
and can train itself using these. This will be the concept considered in
this project.

The popularity of machine learning is growing exponentially since a few years
back. This is mainly due to the hardware that has become so much better and
can perform costly calculations. It doesn’t really depend on new findings within
the field. The algorithms are more than a few decades old but haven’t been
implementable practically until recently. Today - everyone with a dedicated
graphical processing unit (GPU) can perform these costly computations. Some
examples of where machine learning is being used are [8]:

• Self driving cars

• Computer vision

• Medical diagnosis such as cancer detection

• Voice recognition

This thesis project will only use supervised learning algorithms.

2.3.1 Supervised Learning

A general way of looking at a supervised learning algorithm is considering a
data set (xi, yi) where i = 1, 2, .., N and xi being the i:th input and yi being the
i:th output. The objective will be to create a model which can predict outputs
for new unseen inputs x and to do it accurately. Depending on the output and
how you want to predict it there are several ways to approach this problem.
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In supervised learning there are generally two different problems that you can
ask your machine learning algorithm to do [9].

• Classification - Our outputs belong to a finite set, yi ∈ { Finite set},
but more explanatory might be that the machine learning algorithm is
supposed to recognise from the inputs what the output is i.e give it a
class or a label. For instance, what animal is there in this picture or what
flower is this given the petal lengths and widths. Therefore, predicting a
cat as a dog is equally wrong as predicting a cat as a horse. The output
is somewhat categorical.

• Regression - In opposite to classification, here our outputs yi ∈ R. A
common example is to predict housing prices given their square meters,
number of rooms etc. Thus, if the actual housing price was 500.000$, the
prediction 499.999$ is much better than 20$ and not equally wrong as in
the classification case.

If you have a classification or a regression type of problem they can be very
similar in the way that in classification, the output is predicted as a regression
but at the very end mapped onto a class or a label. An example would be if you
want to predict a binary class such as ”Male”/”Female” or ”Dead”/”Alive” etc.
If you then fit a regression to the output as a probability of being a ”Male” then,
given the inputs, a simple divider in the regression i.e. if p > 0.5 = ”Male” and
p < 0.5 = ”Female” could be your binary classifier.

The inputs can also vary, they don’t have to be numerical, they can also be
ordered categorical variables such as ”Bad”/”Ok”/”Good” where each differ-
ent level of the covariate naturally corresponds to some rang. There are also
unordered categorical inputs where the levels perhaps can’t be mapped into
ranked importance. Examples of this could be Sweden/Denmark/Norway or
Blue/Green/Yellow, but not necessarily. If the categorical covariates are or-
dered or not depends on the given data set and is something that needs to be
considered before modeling.

The most common way is to denote X as the inputs and Y as outputs where
the capital letters mean that the inputs and outputs doesn’t have to be scalars
but could be vectors or even matrices. Whereas the lower case letters usually
mean a specific observation of a sample xi, yi. Since this project is aimed at
forecasting a no-show rate, the output yi will be a scalar and even more precise
a probability.

With the data set you would normally form X and Y

X =


x1

x2

...
xN

 =


x1,1 . . . x1,k
x2,1 . . . x2,k

... . . .
...

xN,1 . . . xN,k

 , Y =


y1
y2
...
yN

 (2.8)

Each row represents one observation and in the example provided the data set
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is of size N i.e number of observations and there are k covariates [23].

When obtaining the data set, one want to divide the data set into three different
sets: training, test and a validation set. Unless, one uses a technique called
cross-validation. More on this topic in section 2.4.2. Hence,

(X,Y )→ (Xtrain, Ytrain), (Xval, Yval), (Xtest, Ytest).

Which also can be seen graphically in the figure below.

Figure 2.1: Partitioning of the original data set

The procedure most commonly goes as following:

1. Train your model on the training set.

2. Tune the model parameters using the validation set.

3. Test your model on the test set and obtain your accuracy/model perfor-
mance.

In step 1 above, when training the model, the model takes the inputs xi from
the training set and tries to predict outputs ŷi. These predicted values usually
denoted with the hat, ŷi, are compared to the real outputs yi from the training
set. This is done by using a cost function (sometimes denoted as a loss function),
in this project denoted by J (ŷi, yi), where the objective is to minimize the cost
function w.r.t. our model parameters θ. Our cost function can be seen as a
measurement of how wrong our predicted outputs ŷi was from our real outputs
yi. This is mathematically written as [8]

argmin
θ

∑
i

J (ŷi, yi). (2.9)

Usually, the notation is not to have the cost function as a sum of cost functions
over each individual sample but to have the entire vector or matrix of outputs
in the cost function, all from the training set. Notation wise this is written as
J (Ŷ , Ytrain), where Ŷ corresponds to the predicted outputs. There are many
different cost functions where some of them might be more suitable for each
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respective task or application but one of the most common one is the sums of
squares error (SSE) cost function

J =
∑
i

(ŷi − yi)2. (2.10)

Another commonly used cost function is the cross entropy function which is
mainly used when doing regression with a logistic output, when having a sigmoid
activation function (more on this later) and for binary classification. The cross
entropy cost function looks like [12]

J = − 1

N

N∑
i

(yiln(ŷi) + (1− yi)ln(1− ŷi)). (2.11)

2.3.2 CART - Classification and Regression Trees

Decision trees are a family name for machine learning algorithms that divides
the feature space into subsets and gives each subset a constant weight. The
models have a gradient structure, like a tree, meaning each subset is reached
via branches. They are quite easily understood, they can be compared to the
guessing game ”20 questions”. In this game, one of the players think of an
object and the rest of the players get 20 questions to figure out which object
he or she is thinking of. The catch is that the other players are only allowed
to ask questions that can be answered with ”Yes/No”. Just like in the game of
20 questions, the tree based algorithms splits the feature set into subsets and
assigns these subsets constant weights. This is performed step-wise and the
algorithm tries to split on the feature or features that make the most sense to
split upon (more on this later). A parallel to the game could be, if you are
playing ”20 questions” you probably would start by asking a general and wide
question like ”Is the object dead or alive?” and not a very narrow question such
as ”Is it Michael Bolton?”.

A good way of understanding the CART-algorithm is by an example [9]. Let’s
consider a regression problem (continuous output Y ) and inputs X = (x1, x2)
where x1, x2 ∈ [0, 1]. In this example, only binary splitting is considered, for
instance, a divider is added such that x ≤ t or x > t. In figure 2.2 below, the
splitting upon the feature set can be seen to the left. The first step was to
add the dividers for x1 = t1 and x1 = t3. For x2 the dividers at x1 ≤ t1, t2
and x1 > t3, t4 was added which formed the 5 different subsets R1, .., R5. In
figure 2.2 to the right, the decision tree that concurs with the splitting upon
the features is shown, which is just another graphical way of presenting the
splitting.
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Figure 2.2: Left: splitting on the feature set. Right: coinciding decision tree [9]

As a final step, each region is assigned a constant weight wm in region Rm

f̂(X) =

5∑
m=1

wmI{x1,x2}∈Rm
, (2.12)

where I is the indicator function that take value 1 if the criteria that’s sub-
scripted is fulfilled and 0 otherwise.

Since this is a supervised learner, its goal is to minimize the cost function which
we in CART-algorithms define as the SSE seen in equation (2.10) but in this
case as

J = (f̂(X)− Y )2.

In this particular case, the best choice of the weights wm is to set them to the
mean of yi in their respective region

ŵm = mean(yi|xi ∈ Rm). (2.13)

To find the optimal splitting in terms of minimum sums of squares is often not
computationally possible. Thus, we use a costly algorithm that starts with all
of the data in the training set. Consider a partitioning variable j and split point
s and define two halves of the feature set such as

R1(j, s) = {X|Xj ≤ s}, R2(j, s) = {X|Xj > s}

The algorithm then searches for the choice of j and s that minimizes the com-
bined SSE over these regions. The sum that the algorithm minimizes is
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min
j,s

(
min
w1

∑
xi∈R1

(yi − w1)2 + min
w2

∑
xi∈R2

(yi − w2)2

)
.

Regardless of the choice of s and j, the best choice for the inner minimization is
ŵ1 = mean(yi|xi ∈ R1) and ŵ2 = mean(yi|xi ∈ R2), just as in equation (2.13).

For each covariate, determining the best splitting point s is a task that’s compu-
tationally not very costly and therefore, going through all the splitting covariates
j is also relative cheap, so obtaining optimal pairs (s, j) is possible. After ob-
taining a optimal pair (s, j), the set is divided at the obtained splitting point
and the method is repeated on the two new subsets. This continues until an
optimal tree is found according to a specific model criteria.

Where the splitting occurs is decided but it remains to determine how large
the tree should be. This is yet again, as in all statistical modeling, a balance
between bias and variance. A large tree would overfit on the training data set
and a small tree wouldn’t capture the structures in the data set. More on over
and underfitting in section 2.4.1.

One naive approach would be to split the tree only on the splits that reduces
the SSE by a certain threshold. This is a naive approach, since after a useless
split there might come a very significant split. A better approach is to grow a
large tree, denoted by T0 and the tree is grown until it meets a criteria such as
minimal number of observations in a node.

Then, a method called cost complexity pruning is used. A tree T ⊂ T0 , is a
sub tree that can be any tree obtained from pruning T0 by removing internal
nodes and/or leaf nodes. Leaf nodes are the most outer nodes, just as a tree
has leaves as outer contact points. The leaf nodes are represented with m just
as each decision region is represented with Rm and let |T | denote the number
of leaf nodes in T . As mentioned above, the cost complexity pruning is decided
upon the cost complexity criterion seen below [9]

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T |. (2.14)

Where Nm = |xi ∈ Rm| is the number of samples in Rm, ŵm as in equation
(2.13) and Qm(T ) = 1

Nm

∑
xi∈Rm

(yi − ŵm)2. α is the complexity parameter
and the objective is to find a subtree T ⊆ T0 that minimizes equation (2.14)
for each α, where α ≥ 0. It can be interpreted from equation (2.14), that when
α = 0, the solution will be the full grown tree T0. To find Tα i.e. the tree that
minimizes equation (2.14), the tree T0 is pruned using weakest link pruning.
This means that the internal nodes that provides the least increase in cost is
removed and this goes on until only the root remains. This gives a sequence of
trees where the optimal sub tree Tα must be listed. [9]. Obtaining the optimal
α is done by cross-validation. The optimal α̂ is then used to train and prune
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the tree which yields the optimal tree Tα̂. More on cross-validation in the later
section 2.4.2.

When doing classification, the method pretty much remains the same with a
slight difference in f̂ and Qm. Instead of modeling each region with a constant
weight wm, a class proportion weight p̂mk is instead set to each region Rm such
that

p̂mk =
1

Nm

∑
xi∈Rm

I{yi=k}

I.e. the proportion of class k observations in the m :th leaf node. The majority
of the class k in node m is then set as the classifier, mathematically:

k(m) = argmax
k

p̂mk.

For Qm there are three most common choices.

• Misclassification error 1− p̂mk(m)

• Gini index
∑K
k=1 p̂mk(1− p̂mk)

• Cross-entropy −
∑K
k=1 p̂mklog(p̂mk)

They all have similar functionalities/properties but the advantage with the 2
later ones is that they are differentiable which is preferred when working with
numerical data. The later 2 are also more sensitive to changes in node proba-
bilities than the rate of error.

2.3.3 Gradient Tree Boosting

Gradient boosting is an ensemble algorithm meaning that it takes an ensem-
ble of so called ”weak” learners and ensembles them into one ”strong” learner
iteratively. The learners are typically decision trees. In the end the gradient
boosting model could be seen as a weighted sum of decision trees. It iteratively
fits a very simple model to the data, obtain the residuals and fit another simple
model on the residuals from the previous model. This goes on and on until a
stopping criteria is met [9].

Consider, in a regression environment, trying to build a model f that predicts
values ŷ by minimizing the cost function J , such as the SSE.
If the current step for the gradient boosting method is m, where 1 ≤ m ≤ M
and M being the total depth of the algorithm. Then, at step m, the boosting
model assumes that there is a non-perfect model fm which it doesn’t change
but instead improves the model in the next step of the algorithm:

fm+1 = fm + h.
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The logic behind choosing h is quite simple. If we assume that there is a perfect
model s.t.

fm+1 = fm + h = y or equivalently h = y − fm.

So in this sense, h is chosen to model the residuals from the previous function.
Hence, each step in the algorithm models the residuals from the step before. In
gradient tree boosting these functions h are decision trees that tries to model
the residuals [13].

The gradient tree boosting model is therefore a sum of decision trees, where each
decision tree models the residual from the model before, so the final gradient
tree boosting model can be represented as

fM =

M∑
m=1

T (x; θm), (2.15)

where θm are each respective trees model parameters. Therefore, at each step
m, the method must find the next tree parameters θ by

θ̂m+1 = argmin
θm+1

N∑
i=1

J (yi; fm(xi) + T (xi; θm+1)). (2.16)

The parameters θm+1 must be found for each new model fm+1 given the previous
model fm, each set of decision regions Rj,m and each constant weight wj,m,
where j is the index of the decision region. If the regions Rj,m were given, then
finding the optimal constant weights for each sub region would be easy, just as in
the decision trees algorithm [9]. Finding the sub regions Rj,m is difficult and the
method for finding them varies for each type of problem the algorithm is faced
with. For instance, if the cost function J is a MSE, then the solution is just
as easy as for a single decision tree. However, this cost function is not always
suitable. The method also differs if the goal is to do regression or classification.

Instead of going into great detail about all the optimization problems around
solving equation (2.16), one method for solving it will be discussed, called steep-
est descent[2].

The idea of steepest descent is again to minimize the cost function J , in the
sense of gradient boosting, with respect to the fitted functions f (which could
be trees T ).

f̂ = argmin
f
J (f).

If we ignore that f is a sum of trees and instead seen as values of the approxi-
mating function f(xi) on each observation in the data set of length N .

f = {f(x1), f(x2), ..., f(xN )}.
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Again, by solving the minimization of J numerically as a sum of vectors and
obtaining the final model at step M

fM =

M∑
m=0

hm, hm ∈ RN ,

where the first step of the iteration is simply a guess at f0 = h0. Steepest
descent obtains the next hm+1 by looking at the gradient of J and chooses to
”walk” in the negative gradients direction since we want to minimize the cost
function. This is simply done by

hm = −ρmgm,

where ρm is a scalar (can be seen as the step size) and gm is the gradient of
J (f). The gradient is evaluated at the previous step of the iteration fm−1. The
gm can also be viewed as the pseudo-residuals and are obtained at each iteration
i = 1 : M by

gim =
(∂J (yi, f(xi))

∂f(xi)

)
f(xi)=fm−1(xi)

,

and the step size is also obtained my minimizing

ρm = argmin
ρ
J (fm−1 − ρgm).

Finally, the next step is then updated as

fm = fm−1 − ρmgm.

This is repeated until the step M is reached. This is a costly method since in
each step, the gradient for J is computed and a small step locally is taken.
There are ways around this costly method such as stochastic gradient descent
which is computationally cheaper which is of great use if the gradient is of larger
sizes. Stochastic gradient descent simply randomly shuffles the data set, takes
a single observation and performs ”gradient descent” on this single observation.

2.3.4 Neural Networks

Neural Networks are probably one of the hottest topics of machine learning and
these networks are inspired by how the human brain works.
A human brain has neurons, connected to each other forming a network, where
each neuron does a simple computation, hence the name ”Neural Network”.
The Machine learning algorithm Neural Networks mimic this behaviour [8].
There are many different type of neural networks and this thesis will only go
into the conceptual most easy to understand, which is a network most commonly
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referred to as a Multilayer Perceptron (MLP) or a feed forward neural network.
It is called a feed forward network since the information is passed on through
the network, it propagates forward. If a network has some sort of feedback
connection, they are usually referred to as recurrent neural networks.

The network is usually constructed in the way that a group of neurons in each
”step” form a so called layer. A network is said to have an input layer, hidden
layers and an output layer.
When talking about deep networks, the only real difference is the number of
hidden layers, hence the terms ”shallow networks” and ”deep networks”. A
network with one hidden layer is shown below in figure 2.3.

Figure 2.3: MLP with a single hidden layer. Here x0 and z0 are bias terms. [6]

The information is passed from the input layer, through the hidden layers and
ending up in the output layer. The goal, again is to obtain predicted values ŷ in
the output layer and to minimize the cost function J (y, ŷ). Each line that goes
from a neuron to another in figure 2.3 is actually a weight. For each neuron
the connecting inputs with their respective weights are fed forward and this
algorithm is known as forward propagation. In each layer, there is a constant
term known as the bias term. The bias term can be seen as the intercept just
like in linear regression that functions as a constant input to each layer. The
bias term is usually set to 1. The bias term is also given a weight but is different
for each layer, in figure 2.3 the bias term has the subscript 0.

What happens in each neuron is easiest demonstrated by an example. In figure
2.3 above, input to neuron z1 is a weighted sum of all the inputs from the input
layer i.e

z
(2)
1 =

D∑
i=0

w1,ixi,

Where the superscript (2) meaning the second layer, in this case the hidden
layer. The subscripts 1, i meaning that the weight represents input i going to
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neuron 1 in the hidden layer, for this example. In matrix notation, what is fed
to the hidden layer neurons is

Z(2) = XW (1), (2.17)

where X is the matrix of inputs and W the weights for the input layer. However,
the notation Z above, usually referred to as the activation is what is fed to each
new layer but is not the output from that same layer. The activation is fed
to something called an activation function, a usually non-linear function that
transforms the activation for each layer. The activation function produces a
non-linear decision rule by using non-linear combinations of the inputs who are
multiplied by their respective weights. Commonly used activation functions in
MLP are

Sigmoid σ(x) =
1

1 + e−x
or (2.18)

Hyperbolic Tangent σ(x) =
ex − e−x

ex + e−x
, (2.19)

where the Sigmoid transfers the activation to values [0, 1] and the Hyperbolic
Tangent transfers them to values in [−1, 1] [8].

Moving forward in the network, the activation in the hidden layer, Z(2) in
equation (2.17), is then put into let’s say the Sigmoid activation function. This
yields the output from the hidden layer, the 2nd layer in figure 2.3, henceforth
referred to as A,

A(2) = σ(Z(2)). (2.20)

After obtaining the activation for the output layer, the output from the hidden
layer is multiplied with the weights from the output layer,

Z(3) = A(2)W (2). (2.21)

Then again, applying the activation function to the activation Z we obtain the
output from the output layer

Ŷ = σ(Z(3)). (2.22)

This is the forward propagation algorithm and it works pretty much the same
regardless of what the network looks like [10] [8].

The weights for the network are usually initialized at random with some sort of
constraint, for instance, they could be drawn from a normal distribution. If we
add equations (2.17)−(2.22) together, the expression Ŷ = σ(σ(XW (1))W (2)) is
obtained. When plugged into, let’s say a SSE cost function, it looks like

J = (Y − Ŷ )2 = (Y − σ(σ(XW (1))W (2)))2. (2.23)

When talking about training the network, it means adjusting the weights to
minimize the cost function J . One can see that trying to minimize equation

26



(2.23), the only thing that can be altered are the weights W , since we can’t
change the inputs X or the known outputs Y .

Again, minimizing the cost function in equation (2.23), is an optimization prob-
lem usually solved by the back propagation algorithm. Back propagation uses
gradient descent or a version of it when training neural networks.

Gradient descent is conceptually easy and works like steepest descent, mentioned
in section 2.3.3, and is almost easier visualized in the neural network case. The
algorithm tells us to move in the negative direction of the gradient of the cost
function J since we want to minimize it w.r.t the weights. Mathematically, the
weights in layer n are updated such that

W (n)
new = W

(n)
old − α∇J , (2.24)

where the step size α is in neural networks referred to as the learning rate. It
is a hyper parameter that can be regularized. A large α has less risk of getting
stuck at a local minima instead of the global minima, but also has the increased
risk of missing the more precise minima in the optimization process. Therefore,
a larger learning rate makes the process go faster and more robust against local
minima.

When having a large network or a large data set, taking the entire gradient
of all the weights is costly. Therefore, many neural networks are trained using
stochastic gradient descent or a version of it. A simple stochastic gradient
descent is seen below. Again, instead of using the whole gradient, it takes a
single observation and performs ”gradient descent” on this randomly drawn
observation.

W (n)
new = W

(n)
old − α∇J (xi, yi). (2.25)

This process is then repeated for all the observations in the training set [18].

There are other versions of stochastic gradient descent such as batch gradient
descent where a subset of the training set is chosen for each iteration instead
of a single observation, which could be seen as a mix between stochastic and
normal gradient descent.

The algorithm of back propagation uses gradient descent in each step for updat-
ing the weights. Going back to the example in figure 2.3, the back propagation
algorithm updates the weights W (1) and W (2) independently at the same time,
using equation (2.24), for each iteration in the back propagation algorithm. The
weights are updated until a stopping criteria, a performance rate, convergence
or a specified number of iterations is met. However, back propagation using gra-
dient descent doesn’t guarantee that we will converge and find a good solution,
find a solution in a finite number of iterations or find a solution at all [11].
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2.4 Model Evaluation

2.4.1 Over- and Underfitting

These two concepts are usually important topics when talking about machine
learning [7].
When talking about underfitting, one usually refers to that the model hasn’t
learned the behaviour in the data set well enough. An opposite to this is overfit-
ting, meaning that the model has learned the behaviour of the training set too
well. An overfitted model is unlikely to perform well on new data. Choosing the
right complexity of a model is usually a challenging problem since the model
should generalize well to new data. A visualization is provided below in figure
3.1.

Figure 2.4: Underfitting, ”Good model” and overfitting. [21]

A good way of checking if you have over- or underfitted your model is to check
the accuracy of the model on both the training and the test set. Generally
speaking you have:

• Overfitted - When the the accuracy on the training set is high but the
accuracy on the test set is low.

• Underfitted - When the accuracy on both the training set and the test set
is low.

• Good fit - When the accuracy on the training set is high and the accuracy
on the test set is slightly lower on the test set, but still high.

One of the most common problems in modeling is that you take a very complex
model, fit it on your training data and think that you are done since the accuracy
on the training set will be very high. This rarely captures the general behaviour
of real data, whereas a simpler model usually generalizes better to new data
[22].

With four coefficients I can fit an
elephant, and with five I can
make him wiggle his trunk.

John von Neumann
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2.4.2 Cross-Validation

Dividing the data set into training, test and validation set might not always
be the best solution. One obvious issue with this approach is if the data set
is small, then one would preferably want to use as much data as possible for
training the model. Another problem might be that when partitioning the data,
the distribution of the data might be different in the three subsets. This leads
to a group of data is under- or overrepresented when training which leads to
errors when forecasting.

An extreme example would be if you try to teach a student to read, without
the student actually knowing the alphabet. The book you give the student to
learn from, for some reason, doesn’t contain certain letters. But when you test
the student by giving him a new book containing these for him unseen letters,
then, all of a sudden, the student can’t read. It this case, it would have been
better to give him chapters from both books so that in the learning process, he
was exposed to all letters in the alphabet.

A way to work around this problem is to use cross-validation [3]. The data set
is now only divided into a training and a test set, with a usually large training
set containing maybe 90% of the data. Instead of only training the model once,
the model is trained K times on K different training sets which reduces bias.
The test set is left untouched since when measuring accuracy, you want the
model to predict on unseen data. However, the training set is divided into K
equally sized subsets where the subsets are disjoint from each other. The K-fold
cross-validation method is [9]:

• For each fold, take the union of K − 1 subsets as the training set.

• Test on the Kth subset.

• Repeat until all of the K subsets have served as the test set.

Hence, if 5-fold cross validation is used, divide the training data into 5 equally
sized subsets. Use subsets 1− 4 to build the model and test on the 5th subset.
Then, take subsets 1, 2, 3, 5 as the training set and validate on subset 4 and so on.
This means that each fold will have been used K−1 times for training and once
for testing. Having used K-fold cross validation, the performance is measured as
the average of the prediction accuracy over the K folds. However, using K-fold
cross-validation does reduce bias but does increase variance. Usually, 5-fold or
10-fold cross-validation is used.

2.4.3 Performance Metric

The most common way of measuring the performance of a learner is to calculate
it’s accuracy or error rate. This is simply done by averaging the number of times
the classifier was right or wrong. This means that the accuracy is a measurement

29



in the interval [0, 1]. This means that if a learner has an accuracy of 1 i.e 100%
then it obviously has an error rate of 0%.

When dealing with skewed classes, this performance metric might not be the
best way of measuring how well the learner performs. When dealing with binary
classification it is very suitable to print a so called confusion matrix. A confusion
matrix tells us what was classified as what with the correctly classified outputs
are on the diagonal. A confusion matrix looks like

Table 2.1: Confusion Matrix

Predicted 0 1
True
0 a b
1 c d ,

where a are the number of outputs the classifier correctly classified as 0 and b
the number of outputs the classifier incorrectly classified as 1 that actually were
of class 0. The same reasoning goes for c and d. These letters a− d are usually
referred to as seen in table 2.2 below.

Table 2.2: True and false positives/negatives

a: true negatives b: false negatives
c: false positives d: true positives

From the confusion matrix (table 2.1), two easy but useful performance metrics
are Recall and Precision [4]. Recall is simply the proportion of true positives
out of the set of true positives and false negatives i.e

Recall =
true positives

true positives + false negatives
, (2.26)

Which can be interpreted as how well the classifier predict class 1 given that it
is of class 1.

Precision on the other hand is the the proportion of true positives out of the set
of true positives and false positives

Precision =
true positives

true positives + false positives
, (2.27)

Which can be interpreted as what proportion of what was classified as class 1,
was classified correctly.

The following ways of comparing results of predictions are later used as our
KPIs:

30



• the mean error, ME, often referred to as the bias.

ME =
1

n

n∑
i=1

(ŷi − yi) (2.28)

• The root mean square error, RMSE

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (2.29)

• The mean absolute error, MAE

MAE =
1

n

n∑
i=1

|ŷi − yi| (2.30)

• Lastly, the mean absolute scaled error, MASE

MASE =
MAE

1
n−1

∑n
i=2 |yi − yi−1|

(2.31)

All these different error measurements have their advantages and disadvantages.
Only a few of these will later on be discussed in the discussion chapter.
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Chapter 3

Methodology

3.1 Data Preparation

As an initial approach, only one segment in the data set is investigated. Let’s
call it segment AAA-BBB and all flights from AAA to BBB during one year is
filtered out as the new data set. The models and comparisons will be based on
this subset. The covariates being used can be found in the Appendix A.

Another initial approach is that the subset is divided into a training and a test
set or more precisely a test month where the 2 nearby months to the test month
are excluded from the training set. Due to some flights might occur in both the
train and the test set if these are included. This can be seen as a 1/12 of a cross
validation on the full subset of the segment AAA-BBB.

Looking at every flight for this airline throughout a year would be too much
as an initial analysis and the goal is to see if machine learning algorithms can
beat the baseline model. If the algorithms can’t beat the baseline model on the
segment AAA-BBB trained on 9 months of data on a test month then it doesn’t
look very promising. The first test month is chosen so that it has a specific
behaviour with some abnormal events occuring, e.g Christmas or longer public
holidays.

In this thesis project, a data file containing a few million PNR’s is obtained,
all from the same airline. These are extracted from a BOF (Bulk Origin &
destination File) and before implementing models the data needs to be analysed
and understood. The covariates used or versions of the used covariates are seen
in appendix A.

The data is plotted in different groupings in the software Tableau for basic
analysis and comparisons. Some of these plots are seen later in the result section.

As an example, a few lines of data are generated. This is for the reader to get
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a better grip of what more precisely was used when modelling. All data in the
Appendix B are fabricated for illustration purpose. The data in Appendix B
is fabricated due to company secrecy. All the covariates explained in Appendix
A are then used as inputs to the machine learning algorithms when trying to
model the no-show rate, usually denoted in the R code as NSR. The only ones
not used from Apendix A are the following:

• Origin board and off point.

• List of Airports.

• Booking number.

• Fare basis.

• Segment board and off point, since this thesis only adresses one segment
(AAA-BBB).

3.1.1 Data Cleaning

This section contains some examples of the cleaning and transforming that is
done. On purpose, some actions are left out since there would have been too
many specific cases.

Instead of having 200 different countries in Point of sale for instance, the coun-
tries are grouped into fewer levels which later on is fed to the models.

PoS = PoSSE + PoSDK + PoSNO + PoSother

Data that for instance is duplicated, outliers such as flights booked too long in
advance, the return flight is scheduled before the outbound flight were removed.
For some reason the dates 11-16 in June 2016 is overrepresented and the flights
in this time period also have a slightly higher no-show rate.

The data set also contains large amounts of missing data (NA’s). In some
cases, the NA’s are removed and in some cases they need to be imputed. The
imputation is different for each covariate but usually done by a clever grouping
and taking the average of the covariates not containing NA’s.

The covariate ’travel purpose’ is an estimation since when performing online
booking, customers usually fail to specify whether they are travelling with a
business or leisure purpose. The decision ruling for how to estimate the travel
purpose is something not discussed here, but a quite simple model is used. This
is something that is fairly complex and people in the airline industry are working
on complex models trying to estimate and/or compute the travel purpose of
passengers.

The data is also grouped by long and short haul, i.e. the length of the flight
since different no-show behaviour for the two groups is expected. This is done
by calculating the distance between the airports for each segment.
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Some booking classes could be translated into a level of refundability which is
believed to have a high impact on how likely the passengers are to be no-shows.
So for instance, booking classes C,D and Z are always fully refundable since
they correspond to first class tickets.

3.2 Baseline Model

In order to implement machine learning algorithms to try to predict the no-
show rate given the PNRs a baseline model is needed for comparison. If machine
learning can’t beat this simple benchmark model there is probably no point using
machine learning when predicting no-show rates. The model that Amadeus uses
today for no-show forecasting is fairly simple but with many specific groupings.
The model takes the historical no-show rate for each flight on a given segment,
departure time, day of week, season and so on, but still a historical average.
The original baseline model is kept secret but a similar model to the baseline
is implemented by hand and this by hand implemented model is used as a
benchmark.

Our by hand implemented baseline model groups on a segment level, the depar-
ture time (with levels Morning/Day/Evening), day of week and cabin. Imagine
one is looking at the segment AAA-BBB. Then for 9 months of data, each unique
flight is obtained, the no-show rate calculated and then the average no-show rate
given the time of day, cabin and day of week is computed.

Table 3.1: Baseline model. AAA-BBB, cabin: M

Mon Tue Wed Thu Fri Sat Sun
Morning 0.0213 ...
Afternoon ... ...
Evening ...

Since we are only looking at 2 different cabins, M and C, the output from the
baseline model is for each segment, 2 matrices containing the historical average
of the no-show rates for that segment and cabin. Diving into 2 cabins is good for
a first analysis but the airlines usually uses some sort of cross cabin optimization
when reserving seats in a flight. An example would be a flight with a 100 seats
and 20 intended business class seats. If one would sell more than 20 business
class seats, the steward would simply move the curtain further back, hence,
making a larger C cabin. This would lead to the opportunity to sell more low
cost tickets to still keep the economic balance on this specific flight. Therefore,
doing no-show forecasting on different cabins makes sense.

After obtaining these matrices, each unique flight and its no-show rate in the
test months are then obtained and an error matrix is created as the actual no-
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show rate minus the predicted. Where the prediction from the two matrices
given by the baseline model is obtained, depends on when the flight in the test
month is and what day of week it is. Since the grouping is done by cabin, there
will be two error matrices, one for each cabin.

e = actNSR − predNSR (3.1)

The error matrices are simply the actual (act) no-show rates minus the predicted
(pred) no-show rates.

3.3 CART - Recursive Partitioning

In R, a library called rpart(), meaning recursive partitioning can be used to
create decision trees. The packages are installed and called via the following
lines of code.

library(rpart)

library(rpart.plot)

Training a model using rpart, given the covariates and settings.

tree <- rpart(NSR~., data = train, cp = -1, control = list(maxdepth = 25)),

where tree is the name of the model, NSR the no-show rate we want the model
to have as output, the data = train is the training set, cp the complexity pa-
rameter denoted as α in equation (2.14) and the −1 meaning that the parameter
can take on all values without being bounded. The last parameter, maxdepth
meaning how many splits the tree is maximum allowed to have.

When training the tree, rpart by default does a 10-fold cross validation on the
given data set (in this case the training set) in order to find the optimal com-
plexity parameter α. After doing this for a large number of different complexity
parameters, the complexity parameter can be plotted versus the relative error.
Below is a plot of the complexity parameter against the relative error.
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Figure 3.1: Complexity parameter against the relative error. The size of the
tree can also be seen on top of the figure.

The tree is then pruned with the complexity parameter that minimizes the
relative error by using the following code

pruned = prune(tree,cp = tree$cptable[which.min(tree$cptable[,"xerror"]),"CP"])

Where pruned is the pruned model of tree. The model pruned is then used for
prediction.

Predicting using a model is done by using the built in function predict in R.

pred = predict(pruned, test, type = "vector")

This means that the output pred is a vector of, in this case, probabilities of
no-show per PNR, obtained from the model pruned when the model is given
the test data (test).
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3.4 Extreme Gradient Boosting

A famous version of the gradient boosting algorithm, called extreme gradient
boosting with shortening XGboost is used in R [24]. It’s called xgboost() just
as the shortening and XGboost is a well known since it’s performed well on real
data sets and won competitions, for instance on Kaggle.com.

The libraries useful when using xgboost() were obtained via the following lines
of code.

library(xgboost)

library(caret)

library(Matrix)

library(Ckmeans.1d.dp)

library(DiagrammeR)

library(xtable)

The xgboost() algorithm in R need to have sparse format data as inputs. Sparse
matrices are matrices that mostly contain 0. Therefore, the input matrix needs
to be dummy coded with a function called sparse.model.matrix() in R. The
train and the test set are then created.

sparse_train <- sparse.model.matrix(NSh~.-1, data = train[,clm])

sparse_test <- sparse.model.matrix(NSh~.-1, data = test[,clm])

The xgboost() algorithm in R needs the label of the output in order to form a
xgb.matrix object. These are formed and added to a matrix format optimized
for the xgboost() algorithm.

xgb_train <- xgb.DMatrix(data = as.matrix(sparse_train), label=train[,’NSh’])

xgb_test <- xgb.DMatrix(data = as.matrix(sparse_test), label=test[,’NSh’])

Training an xgboost() model can be done by using the following code:

xgb1 <- xgboost(data = xgb_train, booster = ’gbtree’, max_depth = t,

eta = e, nrounds = n, min_child_weight = m

objective = "binary:logistic", eval_metric = ’auc’)

the training set is xgb train, the method used is gradient boosting tree
(’gbtree’),max depth is how many splits each decision tree in each round is max-
imum allowed to have. The ′eta′ is the learning rate and the objective function
is to predict a binary logistic output i.e an output ∈ [0, 1]. The evaluation
metric is ′auc′ or area under the curve which briefly explained is a measure-
ment of how accurate a binary classifier is. An auc = 0.5 is completely random
and an auc = 1 is it predicts perfectly and auc is closely related to false/true
positives/negatives.

In order to find the ”best model”, cross validation is used to find optimal tun-
ing parameters for the xgboost() model. A grid is created containing different
max depth, learning rates eta and min child weight meaning, in this case, the
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minimum number of examples in a node to make a new split. For each com-
bination of these tuning parameters, the model is cross validated and the best
performing combination, according to the auc, of the tuning parameters is then
used when training the model used for prediction.

When the optimal tuning parameters are found, the model is then trained ”nor-
mally” on the training set since the best parameters via cross validation for this
particular data set are found.

Predict using xgboost() in R is smoothly done by using R’s built in function
predict.

pred <- predict(xgb1,xgb_test)

This means that the output pred is a vector of, in this case, probabilities of
no-show per PNR, obtained from the model xgb1 when the model is given the
test data xgb test.
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3.5 Neural Network

In R, there are several libraries that work with neural networks. In this case, the
library called neuralnet() is chosen for its simplicity and easy to use multilayer
perceptron implementation. This library only has the ability of having a single
output node in the output layer. This is fine, since we are doing binary classi-
fication/regression meaning that obtaining the probability of being a no-show
is enough as an output value. Instead, if a regression is made with an output
with more than two levels, then multiple output nodes is needed and the specific
library neuralnet() can’t be used. In that case, libraries like nnet() are more
suitable.

The libraries useful when working with neuralnet() are obtained by the following
lines of code.

library(caret)

library(neuralnet)

The neuralnet() algorithm in R needs to have a special format on the inputs
which can be created using the caret() package. It is a version of dummy coding
which is commonly used in R. One way of dummy coding the train and the test
set is by using the following lines of code.

dummytrain <- dummyVars("~.", data = train1)

dummytrain <- data.frame(predict(dummytrain, newdata = train1))

dummytest <- dummyVars("~.", data = test1)

dummytest <- data.frame(predict(dummytest, newdata = test1))

This is done on the scaled inputs. The inputs are either standardized using
normalization (see section 2.2.2) or if the covariates only had two levels, trans-
formed into binary variables with levels [−1, 1].

Training the network can be done by running the following code.

nn <- neuralnet(f, data = dummytrain, hidden = layers,

err.fct = "ce", linear.output = FALSE,

lifesign.step = 100, lifesign = "full", threshold = t,

learningrate.factor = list(minus = a, plus = b)),

where f is the formula being used, i.e what should be predicted using what. The
command hidden is the number of hidden layers and how many nodes in each
layer that should be used. The command err.fct is the error function which
in this case is chosen to be the cross-entropy function as mentioned earlier in
equation (2.11). The command linear.output means that the activation func-
tion should be applied to the output node.
The lifesign command just states what the algorithm should show and its
progress when training. The threshold is an early stopping criteria and the
learningrate.factor is the range of which values the learning rate is allowed to
have.
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Predicting using the neuralnet package is pretty straight forward. Instead of
using R’s built in function predict, the function compute is used. Compute
returns both the neurons in the trained network and the values in the output
layer. The following lines of code returns the output layer for the test set.

nhat_net <- compute(nn, dummytest)

pred_net <- unlist(nhat_net[2])
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Chapter 4

Results

The first section in this chapter shows plots obtained from Tableau, a software
used for graphic illustrations of data, intended to give a basic understanding of
the data set.

The other sections, one for each machine learning algorithm, the density of the
prediction error is presented. The prediction error is measured in no-show rate,
a 0.1 prediction error could for instance mean that the actual no-show rate is
0.2 but the predicted one was 0.1. The densities are presented as plots with one
plot for each cabin and model used for predicting.

Then the actual no-show rates are plotted vs the predicted ones. This is also
presented as plots with one for each cabin and model used for predicting.

Lastly, a table is presented showing the KPI’s explained in section 2.4.3, where
each model is compared to the baseline model on a cabin level. The only KPI not
mentioned in section 2.4.3 is the one called SD which is the standard deviation
of the error. The best result for each category, out of all the models (including
the baseline), is highlighted in orange. Hence, some tables are containing less
orange colours than others.

All the results are from the same flight route (AAA-BBB) and the predictions
are made on the test month using the suitable data as explained before in
chapter 3. This thesis only presents results from the segment AAA-BBB. Other
tested segments (CCC-DDD) give similar results.
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4.1 Data Exploration

These descriptive plots are plotted using the statistical software Tableau. They
give a basic understanding of different group behaviour in the data set. Again,
these plots describe the segment AAA-BBB and only a few are presented in this
section.

(a) No-show rate per Day of
Week.

(b) No-show rate per Month of Year.

Figure 4.1: The no-show rates plotted per Day of Week and Month of Year
during one year.

In the figures above, there is a very small difference in the no-show rates for
Day of Week and Month of Year. The no-show rates per Day of Week lies
within [0.022, 0.028] and for Month of Year [0.022, 0.029]. Already here, finding
a certain trend based on Day of Week or Month of Year seems difficult.
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(a) No-show rate per Cancellation Fee.
(b) No-show rate per Travel Purpose, B
means business and L leisure.

Figure 4.2: The no-show rates plotted per Cancellation Fee and Travel Purpose
during one year.

Cancellation Fee means if one would cancel his/her ticket, would it be fully
refundable. If there is no cancellation fee (False) then the passenger would
receive the full amount back for his/her ticket. When there is a cancellation
fee (True), in this case, means that if the passenger cancels his/her ticket, they
would receive some sort of fee which could vary from a few percent to the full
ticket price.

In the figures above, there is a difference in no-show rates depending on if the
passenger has a cancellation fee or not. A surprising result is that there is hardly
any difference between the passengers with business and leisure travel purpose
in their respective no-show rates. One would expect business passengers to have
a higher no-show rate than leisure.
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4.2 CART - Recursive Partitioning

(a) Density, Cabin M. (b) Density, Cabin C.

Figure 4.3: Density of the prediction error for Cabin M and C. Predictions
obtained via recursive partitioning tree and compared to the self implemented
baseline model. The black line indicates where the error is 0.

In the figure above we see that the density for decision trees is very similar to
the baseline model. Hard to argue if one is better than the other just by looking
at these plots. One can see the bias, that the centering of the density is slightly
shifted to the left for both cabins.

44



(a) Actual no-show rates vs predicted no-
show rates, Cabin M.

(b) Actual no-show rates vs predicted no-
show rates, Cabin C.

Figure 4.4: Actual no-show rates plotted vs the predicted no-show rates for
Cabin M and C. Predictions obtained via recursive partitioning tree and com-
pared to the self implemented baseline model. The black line indicates where
actual no-show rates are equal to the predicted no-show rates.

When looking at figure 4.4 above, a similar behaviour between the baseline
model and the decision tree model is seen. Even the outliers are similiar. The
concentration of predictions are higher than the actual no-show rates for the
decision tree. This would lead to empty seats.

Table 4.1: KPI’s for the baseline model and the CART-Recursive Partitioning
Tree model for cabins M and C.

ME RMSE MAE MASE SD Accuracy Precision Recall
Baseline M -0.0027791660 0.02376682 0.01859967 1.010469 0.02363444 0.9760211 NA 0

Baseline C 0.0010025106 0.03635059 0.02508650 1.008040 0.03638731 0.9832386 NA 0

Tree M -0.0008526821 0.02310334 0.01773797 0.986756 0.02311805 0.9759307 0 0

Tree C -0.0023875786 0.03804951 0.02634056 1.011136 0.03802597 0.9829424 0.4137931 0.04240283

Comparing table 4.1 with the baseline model, the models perform fairly similar
but one could argue that the tree model performs slightly better. As can be seen,
the tree model has the best results out of all the models in RMSE, MAE, MASE,
SD, precision and recall. One important thing to notice is that the difference
is not that large. Here, one can truly see the effect of a skewed class. The
accuracy is really high for both the baseline and the tree model. However, the
precision and recall results are really bad. So even if the Tree model performs
best in precision and recall, the overall results in the KPIs precision/recall are
pretty bad.
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4.3 Extreme Gradient Boosting

(a) Density, Cabin M. (b) Density, Cabin C.

Figure 4.5: Density of the prediction error for Cabin M and C. Predictions
obtained via extreme gradient boosting and compared to the self implemented
baseline model. The black line indicates where the error is 0.

When looking at figure 4.3 above, the density is fairly similar to the baseline
model, and one might see that the density for the gradient boosting model is
slightly more centered around 0, which is good. This is perhaps more visible in
the left plot showing the density for the M cabin.
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(a) Actual no-show rates vs predicted no-
show rates, Cabin M.

(b) Actual no-show rates vs predicted no-
show rates, Cabin C.

Figure 4.6: Actual no-show rates plotted vs the predicted no-show rates for
Cabin M and C. Predictions obtained via extreme gradient boosting and com-
pared to the self implemented baseline model. The black line indicates where
actual no-show rates are equal to the predicted no-show rates.

When looking at the figure above, it seems like the xgboost model has a larger
spread and that the baseline model is more concentrated. It seems like the
xgboost model has a higher tendency to predict higher no-show rates than the
baseline model, at least in cabin C.

Table 4.2: KPI’s for the baseline model and the extreme gradient boosting
model for cabins M and C.

ME RMSE MAE MASE SD Accuracy Precision Recall
Baseline M -0.0027791660 0.02376682 0.01859967 1.0104688 0.02363444 0.9760211 NA 0

Baseline C 0.0010025106 0.03635059 0.02508650 1.0080404 0.03638731 0.9832386 NA 0

XGB M -0.0004475768 0.02434071 0.01815134 1.0138778 0.02436870 0.9758764 0 0
XGB C -0.0054834911 0.03837400 0.02714368 0.9939287 0.03803096 0.9830609 0 0

When looking at the KPIs for the gradient boosting model we see that the mean
error (ME) is the best out of all the models, meaning that it has the least bias.
In the other KPIs it performs slightly worse than the tree model but generally
not by a lot.
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4.4 Neural Network

(a) Density, Cabin M. (b) Density, Cabin C.

Figure 4.7: Density of the prediction error for Cabin M and C. Predictions
obtained via Neural Network and compared to the self implemented baseline
model. The black line indicates where the error is 0.

It’s quite easy to see that for this particular neural network, the baseline model
is much better when looking at the densities. The neural network both has a
centering further to the left (more bias) and the density is also wider indicating
larger standard deviation.
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(a) Actual no-show rates vs predicted no-
show rates, Cabin M.

(b) Actual no-show rates vs predicted no-
show rates, Cabin C.

Figure 4.8: Actual no-show rates plotted vs the predicted no-show rates for
Cabin M and C. Predictions obtained via Neural Network and compared to the
self implemented baseline model. The black line indicates where actual no-show
rates are equal to the predicted no-show rates.

In these figures we can easily tell that the neural network generally predicts a
higher no-show rate than it actually is. It is quite clear, at least for the M cabin
that this is the case. This would lead to denied boardings which in general is
more expensive than having empty seats on a flight.

Table 4.3: KPI’s for the baseline model and the Neural Network model for
cabins M and C.

ME RMSE MAE MASE SD Accuracy Precision Recall
Baseline M -0.002779165978 0.02376682293 0.01859966647 1.010468814 0.02363444100 0.9760211376 NA 0

Baseline C 0.001002510570 0.03635058610 0.02508650418 1.008040409 0.03638731113 0.9832385691 NA 0
Net M 0.058919990787 0.06802120785 0.06081758104 1.015094689 0.03403310176 0.9752791502 0.044 0.0015094
Net C 0.039840877558 0.06510740103 0.05145378972 1.052087580 0.05156585807 0.9809879176 0 0

As expected, when having looked at the densities and the actual vs predicted
plots, the KPIs also indicate that this neural network has performed worse than
the baseline, tree and gradient boosting model.
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Chapter 5

Discussion

In this section, some of the main problems are discussed, the results are com-
mented on and a few thoughts on the future are mentioned.

As glamourous as it might sound working with machine learning most of the
work lies in the data set. Quoting my supervisor Olivia Mala: ”Machine learning
is not about blindly plugging in data into black box models, it’s mostly about
understanding your data set.” She couldn’t be more right.

The data set has throughout the process been changed regularly, sometimes due
to bugs and sometimes due to more practical things. When obtaining a data
set in a University course, everything just works, it’s been constructed so that
there is some correlation, no missing data and the meaning of each covariate
makes sense. This is not the case in the real world. Firstly, understanding all
the airline terminology and what can be used as what took quite some time and
I still feel that not everything is completely clear to me. Cleaning, changing,
transforming and understanding the data set is where I’ve spent most of my
time. As of today, there are still covariates that are excluded which later on
could be added and that might yield better forecasting.

After deciding upon which segment and data set to use for modelling, the prob-
lem of skewed classes really emerged. After running it a few times and almost
everytime achieving above 97% accuracy on the test set was too good to be true.
First, I thought that the model was overfitting, but that didn’t make any sense
since then the accuracy would have been really high on the training set and
low on the test set which was not the case. Again, looking at accuracy was a
misleading approach since all models performed really well in this KPI.
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I spent quite some time trying to deal with skewed classes by penalising false
positives, trying to regularize certain parameters and stratified sampling. The
stratified sampling was quite interesting. The idea is that you feed a training
set to the models which contains a different distribution of the classes.
For instance, I tried feeding the models a stratified sampled training set, a
training set which contained 100000 PNRs, where half of them were no-show
PNRs. The idea behind it is for the model to really learn to distinguish between
a show and a no-show PNR. This worked, in the sense that the models got higher
scores in precision and recall but lower accuracy.
However, the improvements in precision and recall weren’t good enough. The
models might have been better at specifically classifying PNRs as show/no-
shows but on average they performed worse when predicting the no-show rates.
Since overbooking uses the no-show rate of a flight as an input directly and the
goal was to improve the quality of the forecasting of this input, then stratified
sampling performed worse in this sense. Nevertheless, stratified sampling is
something that could be interesting to look into further in the future.

The models used in the project are fairly different from each other and have
several advantages/disadvantages. According to the results, the decision tree
model performed the best in all but two KPIs. Decision trees are the simplest
model out of the 3 different machine learning algorithms which can be seen as
an advantage. It is easy to train, fast and easy to understand. It is far from
a black box model, the tree can be plotted and one could see exactly why a
decision has been made.
I’ve chosen not to plot the tree since I have so many covariates and fitting it into
an A4 paper is hard, but upon request, it could be presented on a computer.
This is definitely an advantage if this model were chosen for production, since
customers can see themselves what the model does which isn’t really possible
when talking about for instance neural networks. A further investigation could
be to test the machine learning algorithm Random Forest which is an ensemble
method that takes many small decision trees where each tree tries to model the
no-show rates using just a few covariates. These are then weighted together to
create a more robust model. Random Forest is in many practical areas rather
used than the decision tree algorithm.

The algorithm gradient boosting were just outperformed by the decision tree
algorithm according to the chosen KPIs. This doesn’t necessarily mean that
this algorithm is worse. This remains a mystery why, since a gradient boost-
ing model is a tree model that enhances itself. Worth mentioning is that the
extreme gradient boosting algorithm requires careful tuning and it’s likely that
the model could be tuned better. Someone with more experience working with
this algorithm might get better results and therefore this algorithm should not
be overlooked. It is known to perform really well on real world data and is one
of the algorithms that win most competitions on kaggle.com.
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So, should the neural networks be discarded in this case? They did perform way
worse than the other models. Well, they are more advanced and they are a black
box model which might be harder to sell. If they do something wrong, there is
no ”straight fix”. I found that the network I used had trouble converging and
therefore the results might not be as good as the other models, I had to make
them stop early. They are also known to be hard to train but I’m sure that
with the right training they would also perform as well as the other algorithms,
I just didn’t have the time to cross-validate all the different types of learning
rates, number of hidden layers and nodes etc.

Another important thing to add here is that all the results and analyses are
based on a single segment AAA-BBB for a specific airline. Other segments we
know for sure have a different behaviour than the chosen one. There is also a
difference if the chosen segment typically is a business or a leisure segment or
a long or a short haul segment etc. We also know that different airlines have
different no-show behaviour and different policies regarding this. Since these
models haven’t been tested for other airlines in this thesis, it’s hard to give a
general decision whether machine learning should be used when forecasting no-
show rates. One thing that the project show, based on the obtained results, is
that machine learning at least doesn’t make the forecasting worse (when looking
at decision trees and gradient boosting).

Important to mention, PNR-based forecasting is something that airlines have
requested and is not just a research area, it is being used today.

Regarding the business side of the project, is it better to have a model that
more often predicts a too high or low no-show rate? As mentioned before, it is
generally speaking cheaper to have an empty seat than a denied boarding when
looking at a single passenger. But when taking into account that never having a
denied boarding means that you always overbook too little and that the airline
isn’t taking enough risk. So you can see it that overbooking more aggressively
means that the airline is taking more risk and therefore, more often than not,
will have a higher expected return.
Of course, there are cases when denied boarding is more unpleasant than other
times. For instance, if you are booked on a flight from Vilhelmina going to
Stockholm and the next flight leaves in 4 days, then a denied boarding is much
worse than if you are flying from Stockholm to London and you are denied
boarding but the next flight leaves in an hour. Therefore choosing a model
that estimates the no-show rates according to your business requirements of
importance if one needs to choose. Of course, the best is to have a model that
simply forecasts the no-show rates perfectly, that goes without saying.

Apart from the other things mentioned before about the future there are some
interesting models that could be looked into. Banks use something called
anomaly detection when detecting for instance credit card fraud. These are
very rare events since most transactions are not fraud and can be compared to
a very skewed class. There are also more statistically based models called zero-
inflated models that also are based on a distribution with a majority of a 0 class.
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A final thought is of course to go further into AI and try to use reinforcement
learning. Reinforcement learning is the type of AI that Google Deepmind used
to beat the Chinese board game Alpha-go. The algorithms works with rewards
and the cost function is then defined as a sum of rewards where the AI gets
penalised when it makes an error and rewarded when it takes a correct action.
So a simple idea could be to reward the AI for correctly classifying a no-show
passenger with a relative high reward and penalise it relatively heavy when it
makes a wrong no-show prediction. I find reinforcement learning to be the far
most interesting area within AI but also probably the most advanced as well.
All these models could be looked into in the future.
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Chapter 6

Conclusions

We have considered the problem of using machine learning algorithms in order
to improve forecasting the no-show rate of passengers. The goal was to see if
the simple baseline model could be beaten by decision trees, gradient boosting
and/or neural networks and as of now, the answer is not clear. Decision trees
scored the best in our chosen KPIs (Key Performance Indicators) and gradient
boosting had similar but slightly worse results. The difference is so small that
one could argue if there even is a difference between the baseline, decision trees
and gradient boosting. The neural network performed the worst out of all the
models and should rather be more looked into as a second approach.

The most likely reason why the algorithms didn’t perform very well is due to
the randomness of the problem, a passenger just doesn’t show up sometimes.
It might have been intuitive that having more information about the passenger
would help. However, the methods and the knowledge obtained can still be
used. It seems promising when moving on to cancellations, which have a much
higher rate and it might be more related to passenger behaviour.

This project has produced results showing that using machine learning when
forecasting no-show rates using the PNRs is possible. I still feel that there are
many areas to be explored and some might work better than others. If I today
had to choose one of the methods in the thesis for production, I would choose
decision trees as a first step. As a second step I would probably expand to using
Random Forest [9], and I’m saying this without having tested the algorithm
since in many peoples opinion it is a more robust ”extension” of the decision
tree algorithm.
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Appendix A

Covariates with brief explanation:

• Origin board point.

• Origin off point.

• Departure date.

• Departure day of week.

• List of Airports - All the airport the Origin/Destination contains.

• Number of segments - A segment is each ”stop”. E.g Arlanda-New York,
where Arlanda-Frankfurt, Frankfurt-New York are 2 different segments.

• Booking number.

• Days to departure - number of days before departure the reservation was
made.

• Creation day of week.

• Creation time.

• Number of nights - how many nights are the passengers away.

• Day details - which days are they away.

• Travel Direction - One way/Outbound/Return.

• Yield - what the ticket was calculated to cost.

• Fare - what the passenger actually paid.

• Fare basis - code which translates to different rules regarding the booking.

• Company code - is the ticket booked by privately or by a company.

• Is group - in the airline industry, a group is more than 10 people in the
same booking.

• Point of sale - which country was the booking made in.

• Is ticketed - Is the ticket issued or not.
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• Is staff - If the booking is by airline staff.

• Is Crew - If the booking is by airline crew.

• Segment ID - which number is the segment.

• Segment board point.

• Segment off point.

• Segment departure date.

• Segment departure time.

• Segment departure day of week.

• Connection time.

• Cabin - A grouping in the airline industry.

• Booking class.

• Pax type - what type of passenger is it, Adult, Child or Infant.

• Status - Boarded/no-show.

• Travel purpose - Business/Leisure.

• Number in party - how many people in the same booking.

• Cancellation fee
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Appendix B

First column corresponds to the cases IDs, only 6 rows are shown in this exam-
ple. Again, emphasizing that this data is fabricated, the numbers and letters
are made up by me. The data in Appendix B is fabricated due to company
secrecy.

X OBP OOP DepDate DepDoW DepTime AirportList NofSeg Recloc DtD

1 7 AAA BBB 2016-01-02 1 700 AAA-CCC-BBB 1 YABP7X 2

2 8 AAA BBB 2016-02-03 2 800 AAA-CCC-BBB 2 YABP7X 2

3 9 ABC DEF 2016-03-04 3 900 ABC-CCC-DEF 3 YAPP7X 26

4 10 ABC DEF 2016-04-05 4 1000 ABC-GHI-DEF 1 YAPP7X 26

5 11 ABC DEF 2016-05-06 5 1100 ABC-GHI-DEF 2 YAPP7X 26

6 12 ABC DEF 2016-06-07 6 1200 ABC-GHI-DEF 3 YAPP7X 26

CreationDoW CreationTime NofNights DayDetails Direction Yield Fare FareBasis CompCode A

1 6 2216 4 2345 OW 1000 900 USED-RTM1 1 4

2 6 2216 4 2345 OW 1000 900 USED-RTM2 1 4

3 6 2316 5 12345 RT 2000 1219.84 USER-RTM3 0 2

4 6 2316 5 12345 RT 2000 1219.84 USER-RTM4 0 2

5 6 1210 5 12345 RT 2000 1219.84 USER-RTM5 0 2

6 6 1210 5 12345 RT 2000 1219.84 USER-RTM6 0 2

C I PoS IsTicketed IsStaff IsCrew SegID SBP SOP SDepDate

1 2 0 GB 1 0 0 2 CCC BBB 280116

2 2 0 GB 1 0 0 2 CCC BBB 280216

3 2 0 GB 1 0 0 2 CCC DEF 280316

4 2 0 GB 1 0 0 2 GHI DEF 280416

5 2 0 GB 1 0 0 2 GHI DEF 280516

6 2 0 GB 1 0 0 2 GHI DEF 280616

SDepTime CnxTime Cabin BC CnlDtD PaxType Status TP Yield_comp Fare_comp

1 920 85 M U NA A BD L 1000 900.84

2 920 85 M U NA A BD L 1000 900.84

3 920 85 M U NA A BD L 2000 1200.84

4 920 85 M U NA A BD L 2000 1200.84

5 920 85 M U NA C BD L 2000 1200.84

6 920 85 M U NA C BD L 2000 1200.84
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NiP CnlFee OnDType OnDDist SegDist PoS_comp Day1 Day2 Day3 Day4

1 6 FALSE EurBus 700.4871971 334.9607789 RoW 1 1 1 1

2 6 FALSE EurBus 700.4871971 334.9607789 RoW 1 1 1 1

3 6 FALSE EurBus 911.4871971 354.9607789 RoW 1 1 1 1

4 6 FALSE EurBus 911.4871971 354.9607789 RoW 1 1 1 1

5 6 FALSE EurBus 911.4871971 354.9607789 RoW 1 1 1 1

6 6 FALSE EurBus 911.4871971 354.9607789 RoW 1 1 1 1

Day5 Day6 Day7 NofDays ToD SToD SDepYear SDepMonth NSh SDepDoW

1 1 0 0 5 Morning Morning 16 1 0 1

2 1 0 0 5 Morning Morning 16 2 0 2

3 1 0 0 5 Morning Morning 16 3 0 3

4 1 0 0 5 Morning Morning 16 4 0 4

5 1 0 0 5 Morning Morning 16 5 1 5

6 1 0 0 5 Morning Morning 16 6 0 6
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