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Abstract

Monte Carlo (MQ) method is a powerful tool to approximate high dimensional inte-
grals. The disadvantage of ordinary MQ is the slow convergence rate by cause of the
essential randomness of this method. Computations of this convergence can lead to
pure time consuming. Quasi-Monte Carlo (QMC) method yields considerably better
results since this method is a deterministic alternative which uses Low-Discrepancy
sequences instead of random samples . There are a multiplicity of big open problems
in QMC-methods, problems partly arising from applications and partly arising from
theory.
QMC are developed to integrate over unite cube, where it has much more accuracy
than MC for integrands of bounded variation. Integration over more general spaces
such as triangles, disks and Cartesian products of such spaces is more challenging
for QMC. Nevertheless in real-world applications various problems are defined over
such spaces.
The aim of this thesis is to provide a survey of a solution of such problems of numer-
ical integration defined over non-cubical spaces. We present QMC and randomised
QMC (RQMC) constructions in the triangle with a vanishing discrepancy based
on the recent work of Basu 2016. The QMC construction is a version of the Van
der Corput-Halton sequences specially made to the unit triangle. The attraction of
scrambled net is replication based error estimation for QMC with slightly the same
accuracy as QMC, and for smooth enough integrands.

Keywords: Quasi-Monte Carlo methods, Discrepancy, Low-discrepancy se-
quence, Scrambled net.
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Chapter 1

Introduction

The complication of numerical integration arises in applications from finance, physics,
biology, computer graphics, and others, where one need to figure out some integral
for instance an average value which may not be done analytically. Thus in such a
case one need to resort to numerical methods. Monte Carlo (MC) sampling plays
a key role in this case. In the following we consider the standardised problem of
approaching an integral of the form∫

[0,1]s
f(x)dx.

We approximate the integral by choosing quadrature points x0, ..., xN−1 ∈ [0, 1)s,
since the volume of the unit cube [0, 1]s equals one, the value of this integral is just
the expectation value of the function f , i.e.∫

[0,1]s
f(x)dx ' 1

N

N−1∑
i=0

f(xi).

Now the question occurs which choice of the quadrature points x0, ..., xN−1 gives a
significant result when we estimate the absolute value of the integration error, i.e.
the expectation value of εN,f ; [Dick et al. 2013]∣∣∣∣∣

∫
[0,1]s

f(x)dx− 1

N

N−1∑
i=0

f(xi)

∣∣∣∣∣ =: εN,f (x0, ..., xN−1).

Thus there is the following Theorem.

Theorem 1.0.1. Let f ∈ L2([0, 1]s), then ∀N ∈ N we have:

E(ε2
N,f ) =

1

N

∫
[0,1]s

(
f(x)−

∫
[0,1]s

f(y)dy

)2

dx =
σ2(f)

N
,

where

σ2(f) := Is(f
2)− (Is(f))2.

[Dick, Kuo, and Sloan 2013]
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Quasi-Monte Carlo integration over non-cubical domains

This Theorem says that the absolute value of the integration error is bounded by
σ(f)

N
, where σ(f) is the standard deviation of f . Remark that the integration error

does not depend on the dimension s (for some functions σ(f) may be depended on

s). Since N−
1
2 < N−

1
s for s > 2, accordingly for s > 2 it is better, on average, to use

random points for approximating of the integration. This method of using random
points x0, ..., xN−1 is called Monte Carlo(MC) sampling. [Boyle 1977, Lemieux 2009,
Löbbe 2014]
MC-method can easily be implemented and with little additional work it can be
used to estimate a broad set of different applications. However the MC-sampling
has some disadvantages:

• The generation of random points is difficult.

• The method converges too slowly for some applications and some regularity
of the integrand is not reflected by this method.

If we chose the quadrature points x0, ...,xN−1 ∈ [0, 1]s deterministically, then
the algorithm 1

N

∑N−1
i=0 f(xi) is called a quasi-Monte Carlo (QMC) rule or a QMC

algorithm. The main focus of this survey is on QMC-method that can be considered
as a deterministic version of the ordinary MC-method. In the deterministic case
the quadrature points are needed to be in some sense well-distributed in [0, 1)s.
The idea is to use specially selected Low-Discrepancy Sequences (LDS) instead of
the random numbers. QMC sampling is developed for problems of integration over
the unit cube. Sampling over more complicated domains, such as the triangle or
the discs is more difficult. Integration over such domains is relevant in graphical
rendering, for some example of such a case we refer to Jensen et al. 2001.
The task of this thesis is to investigate such problems of numerical integration over
non-cubical region H. Namely the essential aim is to estimate:

µ =
1

vol(H)

∫
H
f(x)dx

by equal weight

µ̂ =
1

N

N∑
i=1

f(xi).

by suitably choice of the points xi ∈ H for i = 1, ..., N .
QMC consists of two center concepts, Discrepancy of point set and Variation of a
function. In the following chapter we introduce the definition of discrepancy and a
special Low-Discrepancy Sequence known as digital nets.
The thesis is structured in two particular parts. First we recall basic notions related
to QMC-sampling and then the recent work of Basu 2016 is represented by means
of numerical integration over non-cubical domains.

8 Chapter 1 Nilofar Mortazavi



Chapter 2

Background on Quasi-Monte Carlo

In this chapter an overview of QMC over the unit cube is given. QMC is consisted
of two center concepts, Discrepancy of a point set, and Variation of a function. The
definition of discrepancy and focus on a special low-discrepancy sequence known as
digital nets are described in sections 2.1 and 2.2. In section 2.3 we introduce the
concept of variation of a function in the sense of Hardy and Krause. Then with
these definitions we represent the Koksma-Hlawka inequality to get an error bound
for QMC integration over [0, 1]s. To develop the ideas of randomization we describe
a specific scrambling algorithm in the end of the chapter. We use all of the concepts
introduced in this chapter to expand the ideas for the rest of the survey.

2.1 Definition of Discrepancy

QMC rule is improved upon MC by choosing xi more uniformly distributed in [0, 1]s

than random samples usually are, where the uniformity measures via discrepancy. As
an example we consider a one-dimensional function f : [0, 1] → R with continuous
first derivative bounded on [0, 1]. For subset B of [0, 1] we define χB(x) as the
characteristic function of B, i.e.:

χB(x) =

{
1, if x ∈ B
0, if x /∈ B

For a point set G consisting of N points in the interval [0, 1], the function δG :
[0, 1]→ R

δG(α) :=
A([0, α), N,G)

N
− α

is called the discrepancy function of the point set G at point α, where

A([0, α), N,G) :=
N−1∑
i=0

χ[0,α)(xi)

is the number of points of the point set G which lie in the interval [0, α). [Dick and
Pillichshammer 2010]
Lebesgue measure or the length of the interval [0, α) is α. Hence for a given α ∈ [0, 1],
the discrepancy function δG(α) measures the difference between the proportion of
points of the set G in the interval [0, α) and the length of the interval [0, α). The

9



Quasi-Monte Carlo integration over non-cubical domains

discrepancy function is small when the points x0, ..., xN−1 are smoothly spread over
the interval [0, 1].
The star discrepancy of the point set H consisting of N points in [0, 1]s at point
γ ∈ [0, 1]s,is defined as

D∗N(H) := sup
γ∈[0,1]s

|δH(γ)|,

where the function δH(γ) : [0, 1]s → R

δH(γ) :=
A([0, γ), N,H)

N
−

s∏
i=1

xi

denotes the s-dimensional discrepancy function of the point set H at point γ. Figure
2.1 illustrates the discrepancy of a set. The set of points is scattered uniformly if
the absolute value of ration of the number of points lying in [0, γ] and also the total
number of points minus vol([0, γ]) are small. Because of this reason discrepancy is
used to measure the uniformity of a set of points. [Fang and Wang 1994]

Figure 2.1: The illustration of Discrepancy. [Sorce: Fang and Wang 1994]

2.2 Digital nets

To describe the notion of digital nets we need a series of fundamental definition.

Definition 2.2.1. Suppose b ≥ 2 be an integer. An s-dimensional, b-adic elemen-
tary box defines as an interval of the form

s∏
i=1

[
ai
bki
,
ai + 1

bki

)
;

∀ 1 ≤ i < s with integers 1 ≤ ai < bki and ki ≥ 0.

10 Chapter 2 Nilofar Mortazavi



Quasi-Monte Carlo integration over non-cubical domains

Definition 2.2.2. Suppose b ≥ 2 be an integer. ∀n ∈ N0 with b-adic expansion
n = n0 + n1b+ n2b

2 + ... (this expansion is clearly finite) the (b-adic) radical inverse
function φb : N0 → [0, 1) is denoted as

φb(n) =
n0

b
+
n1

b2
+
n2

b3
+ ....

Then the b-adic Van der Corput sequence can be defined as the one-dimensional
sequence S = (xn)n≥0 with xn = φb(n); ∀n ∈ N0. Halton’s method is based on the
b-adic representation of the natural number. [Dick and Pillichshammer 2010, Basu
and Owen]

Example 2.2.1. the first elements of the 2-adic Van der Corput sequence can be
created as follows:
First we take the natural numbers 0, 1, 2, ... in base b = 2;

0, 12, 102, 112, 1002, 1012, 1102, ...

Then we apply the radical inverse function φ2 to each number, to get the sequence

0, 0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, ...

which in fraction form is the sequence

0,
1

2
,
1

4
,
3

4
,
1

8
,
5

8
,
3

8
, ... �

Definition 2.2.3. For integers b1, ..., bs ≥ 2, the Van der Corput-Halton sequence
is the sequence S = (xn)n≥0 with xn = (φb1(n), ..., φbs(n)), ∀n ∈ N0. Here φb
denotes the b-adic radical inverse function as defined in Definition 2.2.2. The integers
b1, ..., bs are called the bases of the Van der Corput-Halton sequence. [Dick and
Pillichshammer 2010]

Example 2.2.2. The first points of the Van der Corput-Halton sequence for 2-
dimensional in bases b1 = 2 and b2 = 3, are x0 = (0, 0), x1 = (1/2, 1/3), x2 =
(1/4, 2/3), x3 = (3/4, 1/9), x4 = (1/8, 4/9), .... The figure 2.2 displays the first 1000
points of this sequence. �

Definition 2.2.4. For integers 0 ≤ p ≤ n, the points x1, x2, ..., xbn ∈ [0, 1]s is called
a (p, n, s)-net in base b if each s-dimensional b-adic box with volume bp−n contains
exactly bp of the xi.

The nets have low discrepancy because the unions of b-adic boxes can efficiently

approximate boxes [0, α]. Digital nets can obtain a discrepancy of O(
(logN)s−1

N
).

[Basu 2016]

Definition 2.2.5. For integer p > 0, the infinite sequence x1, x2, ... ∈ [0, 1]s is called
a (p, s)-sequence in base b if the sub-sequence x1+rbn , ..., x(r+1)bn is a (p, n, s)-net in
base b, ∀r ∈ Z > 0 and n > p, i.e. if the same value of p holds for all n > 0 then
the digital net is a (p, s)-net. The Van der Corput sequence in base b is a (0, 1)-net
in base b.

Chapter 2 Nilofar Mortazavi 11
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Figure 2.2: The first 1000 points of the 2-dimensional Van der Corput sequence in
bases b1 = 2 and b2 = 3.

The (p, s)-sequences is called digital sequences which are extended versions of

(p, n, s)-nets. They can obtain a discrepancy of O(
(logN)s

N
), thus the Van der

Corput-Halton is well uniformly scattered on [0, 1]s. The discrepancy rate improves

to O(
(logN)s−1

N
) along the sub-sequence N = βbn for integers n ≥ 0 and 1 ≤ β < b.

[Dick and Pillichshammer 2010]
Using the framework of digital nets can allow us

• to provide the (p, n, s)-net or the (p, s)-sequence in a simple way (in the form
of s matrices);

• to choose the quality parameter p in a rather fast way;

• to examine the point sets of high quality may be limited to the examination
for the matrices mentioned above with certain properties.

2.3 Variation of function

Introductory text books on real analysis commonly cover the concept of total varia-
tion for functions of a single real variable. Hardly any of them declare much about
multidimensional variation.

2.3.1 One-dimensional variation

Suppose f(x) is a real valued function defined on the interval [α, β] where −∞ <
α ≤ β < ∞. A ladder on the interval [α, β] is defined as a set K containing α
and finitely many, possibly zero, values from the interval (α, β). The ladder K does
not contain β except when α = β. Obviously this case is decayed, but in some
settings below it is harder to exclude it than to include it. Each element k ∈ K has

12 Chapter 2 Nilofar Mortazavi
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a successor element k+, such that if (k,∞) ∩ K = ∅ then k+ = β. Otherwise k+ is
the smallest element of (k,∞) ∩ K. If the elements of K are formed into increasing
order, i.e., α = k0 < k1 < ... < kn, then the successor element of kj is kj+1 for j < n
and it equals β for j = n. Note that the value k+ depends on K but the notation
will not make specific this dependence.
Let K denote the set of all ladders on the interval [α, β], hence the total variation
of f(x) on [α, β] is defined: [Owen 2005]

V (f ;α, β) = sup
K∈K

∑
k∈K

|f(k+)− f(k)|.

The total variation in the sense of Hardy and Krause is the most widely used defi-
nition for QMC.
To describe the total variation of a function in the sense of Hardy and Krause, we
first introduce some notation.
Assume xj is j-th component of x ∈ Rs and x = (x1, ..., xs),then for any x,y ∈ Rs,
when x ≤ y the hyperrectangle [x,y] is the set {z ∈ Rs|x ≤ z ≤ y}. (∀x,y ∈ Rs it
is written x < y or x ≤ y if the inequality holds for all s components.)
Also [x,y) = {z ∈ Rs|x ≤ z < y} and (x,y] and (x,y) are defined in the same
way. Then the s-dimensional volume,

∏s
j=1(yj − xj) of [x,y] is denoted vol([x,y]).

For u ⊆ {1, ..., s}, |u| defines the cardinality of u and −u the compliment of u with
respect to the set {1, ..., s}, so that −u = {1, ..., s} − u. The expression xu denotes
a |u|-tuple of real values describing the components xj for j ∈ u.
Assume that u, v ⊆ {1, ..., s} and a,b ∈ [x,y] with u ∩ v = ∅, The domain of au

is the hyperrectangle [xu,yu] and the domain of bv is the hyperrectangle [xv,yv].
Then the notation au : bv introduces the point c ∈ [xu∪v,yu∪v] with cj = aj for
j ∈ u and cj = bj for j ∈ v. The symbol au : bv is well defined for au ∈ [xu,yu] and
bv ∈ [xv,yv], when u ∩ v = ∅.
Zero-dimensional domains and functions on them are of no interest in this survey.
They however appear as special cases in some derivations. In the addition, a∅ de-
notes the ”zero-tuple”. The Cartesian product of zero sets is the set consisting of
the zero-tuple, and the volume of a zero-dimensional rectangle is

∏
i∈∅(b

i − ai) = 1,
since empty products are consistently taken to be one. A function f on [x∅,y∅] is
constant, with a value is denoted by f().
Now we can represent the multi-dimensional variation using these notations.

2.3.2 Multi-dimensional variation

The s-fold alternating sum of function f defined over the interval [x,y] is: [Dick,
Kuo, and Sloan 2013, Owen 2005]

∆(f ; x,y) =
∑

u⊆{1,...,s}

(−1)|u|f(xu : y−u).

Note that the coefficient of f(y) is one while it of f(x) is (−1)s. The alternating
sums is well defined even when the inequality x ≤ y does not hold.
Let Kj, for any j = 1, ..., s be a partition of [xj, yj], then a multi-dimensional ladder
on [x,y] has the form K =

∏s
j=1Kj and for k ∈ K, the successor point k+ can be

Chapter 2 Nilofar Mortazavi 13
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defined by taking k+
j to be the successor of kj in Kj. The variation of function f

over K is:
V (f ;K) = VK(f) =

∑
k∈K

|∆(f ; k,k+)|.

A ladder is, with minor distinctness, that Clarkson and Adams 1933 call a ”net”.
These nets include upper boundaries from b. Ladders are sets, which allows writing
some manipulations economically.

Definition 2.3.1. The variation of function f on the hyperrectangle [x,y], in the
sense of Hardy and Krause, is defined: [Owen 2005]

VHK(f ; x,y) = VHK(f) =
∑

v⊂{1,...,s}

V[x−v ,y−v ]f(z−v; yv).

If VHK(f) <∞, then the function f has bounded variation in the sense of Hardy
and Krause (BVHK). The definition of bounded variation in Hardy (1905)[Clark-
son and Adams 1933] requires that V[x−v ,y−v ]f(z−v; tv) < ∞ and V[x,y] < ∞ for all
0 < |v| < s and all tv ∈ [xv,yv].

The most essential use of variation in QMC is in the Koksma-Hlawka inequality.

Theorem 2.3.1. (Koksma-Hlawka inequality) Suppose f : [0, 1]s → R is a function
of bounded variation in the sense of Hardy and Krause. Then for any set of points
x1, ...,xN ∈ [0; 1]s with N ≥ 2, the quadrature error has an upper bound equal to,
see Niederreiter (1992),∣∣∣∣∣ 1

N

N∑
i=1

f(xi)−
∫

[0,1]s
f(x)d(x)

∣∣∣∣∣ ≤ D∗NVHK(f).

There are many constructions for which D∗N = O(
(logN)s−1

N
) [Bratley, Fox, and

Niederreiter 1994], hence when VHK(f) < ∞, QMC is asymptotically much more
accurate than MC.
The terms D∗N and VHK(f) are difficult to compute, possibly much more than the
integral of function f . Further in case that both the terms are known the Koksma-
Hlawka bound is found to overestimate the true error of integration. Although the
condition of VHK(f) < ∞ is contrary because it is required that the function f be
bounded, a condition that often disregarded in option pricing application. Thus the
Koksma-Hlawka inequality as a practical error bound has a limited applicability.
[Glasserman 2003]

2.4 Randomisation of digital net

In this section randomisation of digital net is considered. The purpose of this algo-
rithm is to combine deterministic algorithms with random in such a way that one can
reach the best features of the both methods. The improved rate of convergence is the
advantage of a QMC-algorithm based on a digital net. On the other hand there are
also some disadvantages compared to MC-algorithms, where the quadrature points
are selected uniformly and i.i.d. in [0, 1)s, for instance:

14 Chapter 2 Nilofar Mortazavi
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• The first point of a digital net is always zero , which draws on problems in
some applications. If the points in the interval [0, 1]s need to be mapped to Rs

such that the points are normally distributed, so the point zero gets mapped
to (−∞, ...,−∞).

• Estimation of integrals where the integrand has a irregularity, using deter-
ministic samples in a QMC-algorithm is sometimes tricky. Uniform and i.i.d.
random samples consistently avoid this matter (with high probability).

• Another involvement in applications is bias of the estimator 1
N

∑N−1
i=0 f(xi).

• A benefit of uniformly and i.i.d. chosen random samples over deterministically
selected samples is that in the previous case a statistical estimate of the error

by
√

1
1−N

∑N−1
i=0 (f(xi)− 1

N

∑N−1
i=0 f(xi))2 is obtainable. But for deterministic

quadrature points such an estimate is not obtainable.

These problems can be avoided using randomised digital nets as quadrature
points. Although uniform and i.i.d. random selection of the quadrature points give
an unbiased estimator with standard deviation of order 1√

N
, thus they are inferior

to QMC-sampling in related to the speed of convergence. [Dick and Pillichshammer
2010]
The aim of this section is to develop a combination of deterministic choices and ran-
dom choices of the quadrature points to get the attractive features of both methods.
To be more accurate, we want to obtain quadrature points x0, ...,xN−1 such that
any xi is uniform and i.i.d. and in the meantime the point set x0, ...,xN−1 has low
discrepancy. This way we can obtain a statistical error estimate and avoid the prob-
lems introduced at the beginning. Numerous randomisation-methods are known.
The simplest method of describing a randomisation in (p, n, s)-nets is by using a
digital shift σ ∈ [0, 1)s which distributes uniformly. We focus on the scrambling of
digital nets as represented by Owen.

2.4.1 Owen’s scrambling algorithm

Owen’s scrambling algorithm is easiest defined for some generic point x = (x1, ..., xs) ∈
[0, 1)s where xi = xi,1b

−1 + xi,2b
−2 + ... is the base b expansion of xi. The scrambled

point can be denoted by y ∈ [0, 1)s, with y = (y1, ..., ys) and yi = yi,1b
−1+yi,2b

−2+...
. The point y can be obtained by applying permutations to any digit of any coordi-
nate of x. The permutation applied to digit xi,j depends on the previous digits xi,k
for 1 ≤ k < j. Particularly, yi,1 = πi(xi,1), yi,2 = πi,xi,1(xi,2), yi,3 = πi,xi,1,xi,2(xi,3), ...,
and generally

yi,j = πi,xi,1,...,xi,j−1
(xi,j)

where πi,xi,1,...,xi,j−1
is a random permutation of {0, ..., b−1} and each random permu-

tation is uniformly distributed on the set of b! permutations of {0, ..., b− 1}. Owen
uses the term nested uniform scrambling for this procedure, where nested defines
the dependence of the permutation for the digit i > 1 on the values of digits i > j,
and uniform defines the use of all b! possible permutations.[Niederreiter and Shiue
2012]
A nested uniform scramble of x applies independent nested uniform scrambles to
each s components of x. We consider that permutations with different indices are
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independent from each other and that any permutation has the same probability.
This way the scrambled point y is uniformly distributed in [0, 1)s.
To explain Owen’s scrambling, let for 1 ≤ i ≤ s,

Πi = {πi,xi,1,...,xi,j−1
; j ∈ N, xi,1, ..., xi,j−1 ∈ {0, ..., b− 1}},

where for j = 1 we assume that πi,xi,1,...,xi,j−1
= πi, be a given set of permutations

and Pi = (Π1, ...,Πs). Then, using these permutations to digital point x ∈ [0, 1)s

when applying Owen’s scrambling, we define y = xPi . [Dick and Pillichshammer
2010]

Let x ∈ [0, 1)s and let y be the result of a Owen’s scrambling of x. Then
y ∼ U[0, 1)s. [Basu and Owen]

If the sequence x1, ...,xm forms a (p, n, s)-net in base b, then the scrambled
points yi are a (p, n, s)-net in base b with probability one. In addition if xi is a
(p, s)-sequence in base b, then the scrambled points yi form also a (p, s)-sequence in
base b with probability one. [Basu 2016]

In scrambled net quadrature we estimate µ =
∫

[0,1)s
f(y)dy by

µ̂ =
1

N

N∑
i=1

f(yi)

where yi are the scrambled points of xi. For f ∈ L1[0, 1)s we have E(µ̂) = µ, which
follows from proposition 1. When f ∈ L2[0, 1)s the variance of µ̂ can be estimated
using independent random replications of the scrambled nets. If VHK(f) <∞ then
from the Koksma-Hlawka inequality we can obtain

V ar(µ̂) = O(
log(N)2(s−1)

N2
) = O(N−2+ε).

Following Theorem mentions that the scrambled net has the potential to improve
accuracy.

Theorem 2.4.1. For f : [0, 1]s → R with continuous
∂s

∂y1 ...∂ys
f suppose yi are a

nested uniform scramble of the first N = λbn points of a (p, s)-sequence in base b,
for λ ∈ {1, 2, ..., b− 1}, then:

V ar(µ̂) = O(
log(N)(s−1)

N3
) = O(N−3+ε).

[Owen 1997b, Owen 2008]

The Theorem below establishes that smoothness and bounded variation are not
necessary for the scrambled nets to attain a better rate than MC-method.
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Theorem 2.4.2. Let y1, ...,yN be a nested uniform scramble of a (p, n, s)-net in
base b and let f ∈ L2[0, 1)s. Then:

V ar(µ̂) = o(
1

N
)

as N →∞.

Note that the term log(N)(s−1) is not necessarily small compared to N3 for proper
sizes of N and large s. For proof see Owen 1998.

Theorem 2.4.3. Assume y1, ...,yN be a nested uniform scramble of a (p, n, s)-net
in base b and let f ∈ L2[0, 1)s with variance σ2 where y ∼ U[0, 1]s. Then:

V ar(µ̂) ≤ bp
(
b+ 1

b− 1

)s−1
σ2

N
.

If p = 0, then V ar(µ̂) ≤ eσ
2

N
= 2.718σ

2

N
.

Proof. The first result can be found in [Owen 1998] and the second is in [Owen
1997a].
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Chapter 3

Low-Discrepancy Constructions in
Simplex

As we mentioned before most research in the field of QMC-sampling focuses on
sampling from the unit cube. Namely many problems in computer graphics, are
described via quadrature over the unit triangle. QMC integration over the simplex
have been developed by Pillards and Cools 2005 and Brandolini et al. 2013a.
In this chapter we consider numerical integration over a triangular region, using
QMC-sampling. Commonly integrals of this form arise in graphical rendering.
Usually sampling form these domains can be approached by applying a mapping
φ : [0, 1]s → D where D is the domain of interest. The mapping defines such that
if x ∼ U([0, 1]s) then φ(x) ∼ U(D). Generally there are various choices for such
mappings, and the dimension of D does not necessarily equal to the dimension s of
the cube. Using such a mapping we are able to generate QMC points xi ∈ [0, 1]s

where φ(xi) can be used as sample points in D.

This approach gives us an estimation µ =
∫
D
g(x)dx by 1

N

∑N
i=1 f(xi) where

f(x) = g(φ(x)). But the problem is that the composite function f = g ◦ φ may
not be well adapted to QMC, it can have singularities, cusps, or discontinuities.
These factors may decline the performance of QMC or at least they make it more
challenging to analyze QMC’s performance.
Pillards and Cools 2005 investigated QMC integration over the simplex. They no-
ticed that the Koksma–Hlawka bound might be applied using the variation of the
composite function g ◦ φ and the discrepancy of the original points xi. They also
constructed a measure of variation for functions on the simplex, a corresponding
discrepancy measure for points inside the simplex, and a Koksma–Hlawka bound
using these two features. But they did not give conditions for that variation to be
finite.
Brandolini et al. 2013b also introduce a version of the Koksma–Hlawka inequality
for the simplex. They construct a measure of variation for the simplex and a dis-
crepancy measure for points in the simplex.
Neither Pillards and Cools 2005 nor Brandolini et al. 2013a define a sequence of
points with vanishing discrepancy.
In this chapter we describe the recent results obtained by Basu and Owen to con-
struct the points in the triangle. It is an extensible digital construction of the Van
der Corput sequence and uses a recursive partitioning of the triangle. They have
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combined the theorems of Chen and Travaglini 2007 and Brandolini et al. 2013a to
show that their points have vanishing discrepancy.
This chapter is organized as following. In Section 3.1 we introduce results from
the literature which are needed along with notation to define those results. Section
3.2 presents the Van der Corput sequence from the unit interval to an arbitrary
triangle. In Section 3.3 we show that triangular Van der Corput points give integral
estimates with vanishing error when the integrand is slightly Riemann integrable
over the triangle. Section 3.4 contains final discussion.

3.1 Background

Here we use the same notation as we presented in Chapter 2, in Section 2.3 and
define some of previous results.
Suppose A,B, and C are three non-collinear points in Rs. Using these points we
determine the non-degenerate triangle

∆(A,B,C) = {w1A+ w2B + w3C|min(w1, w2, w3) ≥ 0, w1 + w2 + w3 = 1}.

Using the following triangle leads to less challenging expressions and calculations.
For the most part the simplex is defined via the corners (0, 0, 1)T , (0, 1, 0)T and
(1, 0, 0)T . Although for some determination the points may be scaled so that the
triangle has unit area. Sometimes the triangle can be scaled to have area equal to
the number of points in a quadrature rule. Pillards and Cools 2005 worked with the
right-angle triangle defined by A = (0, 0)T , B = (0, 1)T and C = (1, 1)T .

3.1.1 Koksma-Hlawka inequality

In the triangle discrepancy measures through equidistribution over trapezoidal sub-
sets. Brandolini et al. 2013a show that triangular Van der Corput sequence has
trapezoidal discrepancy of O(N−

1
2 ). Following the idea of Section 2.1 we define

the notions of discrepancy for quadrature problems over a set H. We take H to
be a bounded Borel subset of Rs, following Brandolini et al. 2013a, and vol(.)
denotes s-dimensional Lebesgue measure. If a linear flat subset1 F of Rs con-
tains H then we define volumes as Lebesgue measure with respect to the lowest-
dimensional such F . We suppose that vol(H) > 0 to avoid uninteresting cases. Let
Ψ = (x0, ...,xN−1); ∀N > 1 be a list of (not necessarily distinct) points in Rs. For
a subset M of Rs we define the counting function

A(M, N,Ψ) :=
N−1∑
i=0

χM(xi).

Then the signed discrepancy of Ψ at the measurable setM⊂ Rs is [Matousek 1999
and Dick, Kuo, and Sloan 2013]

δN(M; Ψ,H) :=
vol(M∩H)

vol(M)
− A(M, N,Ψ)

N
.

1A subset D of Rs is called flat if for any X and Y in D, then D contains the line through X
and Y . [Hoffman 2013]
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The additive property of the signed discrepancy states that if M1 ∩M2 = ∅ then

δN(M1 ∪M2; Ψ,H) = δN(M1; Ψ,H) + δN(M2; Ψ,H).

Note that δN(∅; Ψ,H) = 0.

The absolute discrepancy of points Ψ for a class K of measurable subsets of H
is defined

DN(K; Ψ,H) := sup
M⊂K

DN(M; Ψ,H).

where DN(M; Ψ,H) := |δN(M; Ψ,H)|.
For general H, Ψ can be extended by all integer shifts, which is through assuming
all xi +m ∈ H for i = 1, ..., N and m ∈ Zs. Since H is bounded, this extension still
contains finitely many points. The extended counting function is defined

Ā(M, N,Ψ) :=
∑
m∈Zs

N−1∑
i=0

χM(xi +m).

hence we take

D̄N(K; Ψ,H) := sup
M⊂K

D̄N(M; Ψ,H).

where D̄N(M; Ψ,H) := |δ̄N(M; Ψ,H)|, and

δ̄N(M; Ψ,H) :=
vol(M∩H)

vol(M)
− Ā(M, N,Ψ)

N
.

We mention that Ā(M, N,Ψ) is divided by N , and not the number of extended
points lying in H.
A Koksma-Hlawka inequality for compact simplex is provided by Brandolini et al.
2013a. Their variation measure sums integrals over all faces of all dimensions of
the compact manifolds which is not similar to the ordinary Koksma-Hlawka in-
equality. Suppose M is a closed simplex in Rs, and V0, ..., Vs are its vertices. Let
wk1 , ..., w

k
s , ∀k = 0, ..., s be the vectors joining the vertex Vk with the other vertices,

in any order. Consider Wk as the matrix with columns wk1 , ..., w
k
s . Call Hk the

parallelepiped determined by the vectors wk1 , ..., w
k
s and the vertex Vk. Certainly,

let Mk
a be the a-dimensional face of M parallel to the directions a1w

k
1 , ..., asw

k
s , for

every multi-index a ∈ {0, 1}s. In order to figure out a Koksma-Hlawka inequality
for the triangle from the Koksma-Hlawka inequality for parallelepipeds, it satisfies
decomposing the characteristic function of the simplex M into a weighted sum of
characteristic functions of the parallelepipeds Hk.

Lemma 3.1.1. There is a constant Cs that only depends on the dimension s. Then
for every simplexM there are smooth functions φ0, ..., φs which satisfy the following
conditions:

i) φk(Vk) = 1, for every k = 0, ..., s, and the open half space determined by the
faces of M opposite to Vk contains sup(φk).

20 Chapter 3 Nilofar Mortazavi



Quasi-Monte Carlo integration over non-cubical domains

ii) For every x ∈M, we have
∑s

k=0 φk(x) = 1.

iii) For any multi-index a ∈ {0, 1}s and k = 0, ..., s,

sup
x∈M

∣∣∣∣( ∂

∂wk

)a
φk(x)

∣∣∣∣ ≤ Cs.

[Brandolini et al. 2013a]

Theorem 3.1.2. Assume a smooth compact s-dimensional simplex M, let f be
a smooth function on Rs, and Ψ = {xi + m; i = 1, ..., N,m ∈ Zs} a periodic
distribution of points. Then the total variation of the function f in the simplex M
is defined

VM(f) = Cs

s∑
k=0

∑
a∈{0,1}s

∑
b≤a

1

|Mk
a|

∫
Mk

a

∣∣∣∣∣
(

∂

∂wk

)b
f(x)

∣∣∣∣∣ dx.
A multi-index b is less than or equal to another multi-index a if bi ≤ ai, ∀i = 1, ..., s.

The discrepancy of Ψ with respect to the s + 1 parallelepipeds associated with
the simplex M is

D(M,Ψ) := max
k=0,...,s

D(Hk,Ψ).

Hence ∣∣∣∣∣
∫
M
f(x)dx− 1

N

F∑
y∈M∩Ψ

f(y)

∣∣∣∣∣ ≤ D(M,Ψ)VM(f).

Where the notation
∑F

y∈M∩Ψ f(y) means that if y belongs to a i-dimensional face of

the simplexM, then f(y) should be replaced by 2i−sf(y). Note that the integration
overMk

a is determined with respect to the a-dimensional Lebesgue surface measure.

Basu and Owen present Brandolini et al. discrepancy measure for the case of
a triangle with corners A,B and C. Let Ta,b,C be the parallelogram for real values
a and b, defined by the point C with vectors b(B − C) and a(A − C). Figure 3.1
displays such parallelogram with vertices C,D, F and E.

Assume

MC = {Ta,b,C ; 0 < b < ‖B − C‖, 0 < a < ‖A− C‖}.

MA and MB can correspondingly be defined. Thus the parallelogram discrepancy
of points Ψ in H = ∆(A,B,C) is

DP
N(Ψ,H) := DN(MP ; Ψ,H)

where MP =MA ∪MB ∪MC .

A discrepancy for simplex is also defined by Pillards and Cools 2005. Their H for
simplex with three vertices, is the triangle TPC = ∆((0, 0)T , (0, 1)T , (1, 1)T ). Then
the discrepancy is measured

DPC
N (Ψ, TPC) := DN(Mτ ; Ψ, TPC)

Chapter 3 Nilofar Mortazavi 21



Quasi-Monte Carlo integration over non-cubical domains

Figure 3.1: The construction of the parallelogram [Source: Basu 2016].

where Mτ = {[0, α); α ∈ [0, 1)2}.

Following Lemma mentions that a sequence with vanishing parallel discrepancy
has also vanishing discrepancy in the sense of Pillands and Cools.

Lemma 3.1.3. For N > 1, let Ψ be the list of points x1, ...,xN ∈ TPC. Then

DPC
N (Ψ, TPC) ≤ 2DP

N(Ψ, TPC);

and
D̄PC
N (Ψ, TPC) ≤ 2D̄P

N(Ψ, TPC).

[Basu 2016]

When sample points xi are on the boundary H then the numerical treatment of
the points is different. Suppose H is a closed polytope in Rs not placing in a flat of
dimension s− 1 or less. Then the weight function is

wH(x) =


0, x /∈ H
1, x ∈ the interior of H
2i−s, x ∈ a i-dimensional face of H

.

The integer i is the smallest dimension of any face of H that x is contained in.
Basu and Owen work instead with the relative interior of H where H lies in a lower
dimensional flat and replace s by the smallest containing dimension. GivenΨ with
the list of points x1, ...,xN and the function f on H they define

F∑
H,Ψ

f :=
N∑
j=1

∑
m∈Zs

f(xj +m)wH(xj +m).

Now the Theorem of Brandolini et al. 2013a can be specialized to the triangle.

Theorem 3.1.4. Let H = ∆(A,B,C) be a non- degenerate triangle in Rs. Given
Ψ with the list of points x1, ...,xN in Rs, then∣∣∣∣∣

∫
H
f(x)dx− 1

N

F∑
H,Ψ

f

∣∣∣∣∣ ≤ D̄P
N(H,Ψ)VH(f).
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[Basu 2016]

3.1.2 Transformation

Assuming two non-degenerate triangles ∆(A,B,C) ⊂ Rs and ∆(Á, B́, Ć) ⊂ Rd,
there exists a linear mapping M : Rd → Rs such that A = MÁ,B = MB́ and C =
MĆ. A transformation of points xi toMxi is calledMΨ, thenDP

N(Ψ,∆(Á, B́, Ć)) =
DP
N(MΨ,∆(A,B,C)), but this equality does not hold for DPC

N since a linear trans-
formation may map anchored boxes onto parallelepipeds.

3.2 Geometric Van der Corput sequences

To generate a triangular Van der Corput sequence Basu and Owen worked with a
base 4 recursive partitioning of the triangle. They first partition the triangle into 4
congruent subsets. As it is displayed in the leftmost panel in Figure 3.2 they appoint
base 4 digits 0 through 3 to the sub-triangles with 0 in the center and the others
subject to an arbitrary selection. In a similar way every such triangle can be divided
again, as presented in the second panel.

Figure 3.2: A partitioning of ∆(A,B,C) into 4 and then 16 congruent sub-triangles,
and the first 32 triangular Van der Corput points followed by the first 64. [Source:
Basu 2016].

The digital construction that they use works by improving the construction of
Van der Corput sampling (1935) from the interval [0, 1) to the triangle. In Van
der Corput sampling of the unit interval the integer i ≥ 0 can be written in the
base b > 2 as

∑
k≥1 dkb

k−1, when dk = dk(i) ∈ {0, 1, ..., b − 1}. Thus i maps to

xi =
∑

k≥1 dkb
−k and the discrepancy of the points xi ∈ [0, 1),∀ i = 0, ..., N − 1 are

O(
log(N)

N
). So the integer i ≥ 0 in base 4 can be presented as

∑Ki
k≥1 dk4

k−1, when

dk = dk(i) ∈ {0, 1, 2, 3} and Ki = (log4(i) + 1).
Given triangle T the integer i is mapped to the point fT (i) ∈ T by first identifying
a sub-triangle of T corresponding to d1, say T (d1). Then corresponding to d2 within
T (d1) getting the sub-triangle T (d1, d2) = (T (d1))(d2), and so on. Through this
process we map the integer i to the triangle T (d1, d2, ..., dKi). The center point of
the triangle T (d1, d2, ..., dKi) is the point fT (i), which is the arithmetic average of
the triangle’s vertices. Notice that the triangle T (d1, d2, ..., dKi , 0, 0, ..., 0) also has
center fT (i), and as the number of zeros beyond dKi is increased , all the three
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corners of the resulting triangle converge to the point fT (i). When i = 0, then the
point fT (0) is the center of the original triangle T .
Let we formally specify which sub-triangle of T (d1) we mean by T (d1, d2) where
d2 6= 0. For an arbitrary triangle T = ∆(A,B,C), and for dk = dk(i) ∈ {0, 1, 2, 3}
then the sub-triangle of T is defined as follows

T (dk) =



∆

(
B + C

2
,
A + C

2
,
A + B

2

)
, dk = 0

∆

(
A,

A + B

2
,
A + C

2

)
, dk = 1

∆

(
A + B

2
,B,

B + C

2

)
, dk = 2

∆

(
A + C

2
,
B + C

2
,C

)
, dk = 3

.

In figure 3.2 this pattern is shown. If the triangle T is introduced by a vector
of the three corner points A,B, and C then each component can be represented as
follows

T (0) =
A + B + C

2
− T

2
, T (1) =

A + T

2
, T (2) =

B + T

2
, T (3) =

C + T

2
.

Using this construction Owen and Basu define an infinite sequence of fT (i) ∈ T for
integers i ≥ 0. Although in case of an N point rule they take xi = fT (i − 1) for
i = 1, ..., N .
Some desirable features of this triangular Van der Corput sequence are described.
It can be extended, for example if N points are sampled and we find that we need
M points more simply the next M points can be taken in the sequence. It is
balanced, which means if N = 4k so we get the centers of a symmetric triangulation
as displayed by the last panel in figure 3.2. In case that the sample is not a multiple
of 4k, there is still reasonable balance, as shown by the third panel in figure 3.2.
There exist 32 points of which the second 16 points get in the gaps left by the first
16 points. [Basu 2016]

3.2.1 Discrepancy of Triangular Van der Corput sequence

Here we state some developments on the parallel discrepancy of the triangular Van
der Corput sequence. Since this discrepancy is similar for any triangle, we work
with an equilateral triangle ∆e of unit area to reduce computing areas and counting
points of discrepancy calculations.

Theorem 3.2.1. For an integer k ≥ 0 and non-degenerate triangle H = ∆(A,B,C),
suppose Ψ contains xi = fH(i− 1),∀i = 1, ..., N = 4k. Then

DP
N(Ψ,H) =


7

9
if N = 1

2

3
√
N
− 1

9N
otherwise

.
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[Basu 2016]

This theorem can be proved by consideration of several sub-cases. For a proof of
the theorem we refer to Basu 2016. If the nested uniform digit scrambling of Owen
1995 is applyed to the base 4 digits of i− 1, then xi = fH(i− 1),∀i = 1, ..., N = 4k

are uniformly and independent distributed within their sub-triangles. In this case
if the first derivative of f is bounded on ∆e then the triangular Van der Corput
sequence has trapezoidal discrepancy of O(N−

1
2 ).

3.2.2 Riemann Integral over the triangle

Many books such as Marsden and Hoffman 1993 or Ash and Doleans-Dade 2000
contain the definition of Riemann Integral of a bounded function on a set in R2.
Assume T is a non-degenerate closed triangle in R2. For k ≥ 0 and N = 4k, take
Tk,1, ..., Tk,N as a partition of T into N congruent triangles the same as T . If f is
a bounded function defined on T . Then f is called Riemann integrable on T if the
following limit exists for each xk,i ∈ Tk,i,

lim
k→∞

1

4k

4k∑
i=1

f(xk,i) = µ

where µ ∈ R. Thus
∫
T
f(x)dx is equal to µ× vol(T ).

For any k ≥ 1 and i = 1, ..., 4k we define mk,i = inf{f(x)| x ∈ Tk,i} and Mk,i =
sup{f(x)| x ∈ Tk,i}, then we say f is Riemann integrable if and only if

lim
k→∞

4k∑
i=1

Mk,i −mk,i

4k
= 0.

Theorem 1.6.6 of Ash and Doleans-Dade 2000 modifies an argument that the
function f is Riemann integrable if it is continuous and bounded nearly everywhere
on T . If the Riemann integral is obtained then it matches the Lebesgue integral.

Lemma 3.2.2. For N ≥ 1, let Ψ be the list of points x1, ..., xN ∈ T , where T is
a triangle. Suppose Ψ and T have parallel discrepancy DP

N(Ψ, T ). Given S as a
sub-triangle of T with sides parallel to those of T . Then

DN(S,Ψ) ≤ 6DP
N(Ψ, T ).

Proof can be found in Basu 2016.

Theorem 3.2.3. Assume f is a Riemann integrable function on a non-degenerate
triangleH. Given ΨN = (xN,1, ...,xN,N) for xN,i ∈ H, i = 0, ..., N if limN→∞D

P
N(ΨN ,H) =

0 then

lim
N→∞

vol(H)

N

N∑
i=1

f(xN,i) =

∫
H
f(x)dx.

For proof we refer to Basu 2016.
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3.2.3 Discussion

The Van der Corput construction is extendable and we can randomize the digits in
it. If f is continuously differentiable integrand, then in Owen 1995 for N = 4k, the
randomization will attain integral estimates with a root mean squared errorO(N−1).
Another advantage of randomized Van der Corput points is that they are not strictly
periodic. It is regularly advantageous in computer graphics, where unwanted visual
artifacts may be produced by periodic points.
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Chapter 4

Scrambled Digital Geometric Nets

The essential motivation in this Chapter is the application of equidistributed points
for numerical integration with QMC samplings. We define the QMC algorithms
over product spaces of the form X s when X is a bounded set of dimension d. The
cases with d = 2 such as triangles is especially interested. The Van der Corput
construction as presented in previous Chapter is generalized from the unit triangle
to some other sets and it is also replaced by digital nets in dimension s, to obtain
QMC-sample in X s. As we mentioned before the attraction of digital nets is that
we can randomize them to the extend of estimating the quadrature error via in-
dependent replications of the estimate. Compared to unrandomized QMC, these
randomizations reduced the error by about O(N−

1
2 ), where the integrand is smooth

enough. For a survey of randomized QMC (RQMC) to improve the efficiency of
simulations in finance see Lemieux 2004.

Here the aim is to study QMC and RQMC estimates, which builds on the recent
work by Basu and Owen 2015a. Namely we want to estimate

µ =
1

vol(X )s

∫
X s
f(x)dx

by equal weight

µ̂ =
1

N

N∑
i=1

f(xi), where xi = φ(yi)

yi are random points in [0, 1]s, and [0, 1) is mapped component-wisely into X by the
transformation φ. Whenever we integrate over X to simplify several expressions we
consider vol(X ) = 1.

The outline of this Chapter is as follows. Section 4.1, describes recursive geomet-
ric splits of a domain X ⊂ Rs and geometric Van der Corput points based on them.
In Section 4.2 we generalize those constructions to Cartesian products domains for
s ≥ 1. Section 4.3 presents the analysis of variance of the Cartesian products of such
sets. In Section 4.4 we study the smoothness conditions. Section 4.5 investigates the
effect of transformations τ on variation. We describe mappings from the unite cube
to some specific simplices in Section 4.6. Section 4.7 of this Chapter defines non-
uniform transformations including importance sampling. Conclusions are drawn in
the last Section.
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4.1 Splits and geometric Van der Corput points

4.1.1 Recursive geometric splits

First we need to define splitting sets. In fact splits are similar to partitions, except
that the empty intersections among their parts are not required.

Definition 4.1.1. Suppose X ⊂ Rs has finite and positive volume. A b-fold split

of X is a collection of Borel sets Xα for with X =
⋃b−1
α=0Xα, vol(Xα) =

vol(X )

b
for

α ∈ Zb, and vol(Xα ∩ Xά) = 0 for 0 ≤ α < ά < b. [Basu and Owen]

In this survey in the cases of interest, for α 6= ά, each overlap between Xα and Xά
lands on the boundaries of these sets. In QMC the unit interval [0, 1) is partitioned

into sub-intervals

[
α

b
,
α + 1

b

)
. Approaching X = [0, 1] requires exceptions that

the rightmost interval is closed and all others are half-open. In general for closed
sets X it can be difficult to keep path of which subsets have which parts of their
boundaries. Using splits we are allowed for instance to divide a closed triangle into
three congruent closed triangles as displays in Figure 4.1. Basu and Owen prefer to
use a randomization under which the probability of any sample point appearing on
a split boundary, is zero.

Figure 4.1: Splits of a triangle X for bases b = 2, 3. The sub-triangles Xα are labeled
by the digit α ∈ Zb. [Source: Basu 2016].

Figure 4.1 presents a triangle X = ABC split into sub-triangles. The left panel
has b = 2 sub-triangles and the right panel has b = 3. In case of b = 2, the vertex
A is connected to the midpoint of the opposite edge. The subset ABC0 is the one
containing vertex B. In the both cases, the new A is the mean of the old B and
C. Through an algebraic description we define the new ABC using lower case abc,
(base 2 and digit 0);  a

b
c

 =

0 1
2

1
2

1 0 0
0 1 0

 A
B
C

 .
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Definition 4.1.2. Suppose X ⊂ Rs has finite and positive volume. A recursive
b-fold split of X is a collection of Y of sets consisting of X and strictly one b-fold
split of each set in the collection. The member of Y is called cell. [Basu and Owen]

A member of a recursive split of X lies at level r ≥ 1 of the recursive split, if
it occurs after r splits of X . The subset of Xα1 corresponding to α = α2 is the cell
Xα1,α2 and similarly Xα1,α2,...,αr is an arbitrary cell at level r ≥ 2 for αi ∈ Zb. For
example the original set X is at level 0, and the cells X0, . . . ,Xb−1 are at level 1.
Since we need to specify all of the cells in a split Y, we take t =

∑r
i=1 αib

i−1 ∈ Zbr
where X(r,t) = Xα1,...,αr . Thus the cells in the split Y are X(r,t) when r ∈ N, t ∈ Zbr
and X(0,0) = X .

The first few levels of recursive splits for each of the splits from Figure 4.1 is
shown in Figure 4.2.

Figure 4.2: The base b splits from Figure 4.1 transmitted to r = 6 or 3 levels.
[Source: Basu 2016].

4.1.2 Geometric Van der Corput sequence

Given a recursive splitting of a set X in base b, a geometric Van der Corput se-
quence for the set X can be constructed. We write the integer i in base b as
i =

∑∞
r=1 αr(i)b

r−1, and then to this integer i a sequence of sets is defined as follows

Xi:R = Xα1(i),...,αR(i).

Hence xi is any point in
⋂∞
R=1Xi:R and the volume of Xi:R is b−R that converges

to zero as R → ∞. For the constructions that we are interested in, any xi is a
uniquely determined point. Like the base 3 decomposition in Figure 4.2, for de-
compositions without nice aspect ratios, some of the sequences converge to a line
segment. For example given i ∈ {0, 1, 2}, then αr(i) = 0 for r ≥ 1 and the infinite
tail of zeros tends to a point xi on one of the sides of the triangle. [Basu and Owen]
We use the notion of a sequence of sets converging nicely to a point, to get a unique
limit xi, which is a version from Stromberg 1994.
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Definition 4.1.3. The sequence Sr ∈ Rs of Borel sets for r ∈ N converges nicely to
x ∈ Rs as r → ∞ if there is γ < ∞ and s-dimensional cubes Cr such that x ∈ Cr,
Sr ⊆ Cr, 0 < vol(Cr) ≤ γvol(Sr), and limr→∞ diam(Sr) = 0.

Notice that a sequence of sets which converges nicely to x cannot also converge
nicely to any y 6= x. Generally the following condition is assumed.

Definition 4.1.4. A recursive split Y in base b is convergent if for each infinite
sequence α1, α2, . . . ∈ Zb, the cells Xα1,...,αR as R → ∞ converges nicely to a point
which is denoted by limR→∞Xα1,...,αR . [Basu and Owen]

In a geometric Van der Corput sequence, a convergent recursive split is taken
and xi is defined as follows

xi = lim
M→∞

Xα1(i−1),...,αR(i−1)

M︷ ︸︸ ︷
0, 0, ..., 0 .

when R 6= 0 is the last digit in the expansion of i − 1 and there exist M ≥ 1 zeros
above. For triangular splits of base b = 2, xi is an interior but not a central point
and for base 3, the recursive split is not convergent.

Definition 4.1.5. Suppose Y is a recursive split of X ⊂ Rs in base b. Then Y
satisfies the sphericity condition (a variation of sphericity is called ’circularity’)) if
there is a constant C <∞ that for all cells Xα1,...,αr in Y we have diam(Xα1,...,αr) ≤

Cb
−
r

s . [Basu 2016]

Here we mention that under sphericity assumption a recursive split is necessarily
convergent. The lowest value for the constant C is 1 for s = 1 so the cells are intervals
but usually C is greater than 1. Hence without loss of generality we postulate that
1 ≤ C <∞.

Definition 4.1.6. Let Y be a a convergent recursive split of X ⊂ Rs in base
b. Then the Y-transformation of [0, 1) is a function φ : [0, 1) → X such that
φ(x) = limR→∞Xx1,...,xR , where x has the base b description 0.x1x2 . . . and if x has
two descriptions, so we use the one with trailing zeros. [Basu and Owen]

4.2 Digital geometric nets and Scrambled geo-

metric nets

Given a bounded set X ⊂ Rs with finite nonzero volume. Digital geometric nets in
X d is defined via splittings. The set {1, . . . , d} for d ∈ N is denoted by 1 : d and for
i ∈ 1 : d the bounded sets X (i) ⊂ Rsi with volume 1 are given. We represent the
complement 1 : d − u for the sets of indices u ⊆ 1 : s by −u and the cardinality of
u by |u|. X u denotes the Cartesian product of X (i) for i ∈ u. Any vector x ∈ X 1:d

contains components of the form xi ∈ X i. xu defines the vector in X u with compo-
nents xi for i ∈ u. Any point in X 1:d has components of the form

∑d
i=1 si, which is

written as (x1, . . . ,xs) = x.
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Definition 4.2.1. Let Yi be a recursive split of X (i) in base b for i = 1, . . . , d. The
cells of Yi is denoted by Xi,(k,t) for k ∈ N and t ∈ Zbk . Thus a b-adic cell for those
splits is a Cartesian product

d∏
i=1

Xi,(ki,ti)

where ki ≥ 0 and ti ∈ Zbki . [Basu 2016]

Definition 4.2.2. For i ∈ 1 : d, let X (i) ⊂ Rsi have volume one. Suppose Yi

is a recursive split of X (i) in base b. Then for integers 0 ≤ p ≤ n the points
x1, . . . ,xbn ∈ X 1:s are a geometric (p, n, s)-net in base b if each b-adic cell of volume
bp−n contains exactly bp of the xj. (p, n, s)-net in base b is called a weak geometric
net if each b-adic cell of volume bp−n contains at least bp of the xj. [Basu and Owen]

Suppose the sequence x1, . . . ,xm form a (p, n, s)-net in base b and y1, ...,ym form
a nested uniform scramble of them. Let Yi be a recursive split of the unit volume set
X (i) ⊂ Rsi in base b with transformation φ. Then xj = φ(yj)(componentwise) is a
geometric (p, n, s)-net in base b and zj = φ(xj)(componentwise) is a weak geometric
(p, n, s)-net in base b with probability one. For proof see Basu 2016.

4.2.1 Preservation of Measure

Given a function φ : [0, 1)→ X , where X ⊂ Rs, which maps points in unit interval
to X according to the convergent recursive split Y, we show that this function pre-
serves the uniform distribution. Here we need to differentiate Lebesgue measures of
different dimensions, so to that end we take λ for Lebesgue measure in R and λs for
Lebesgue measure in Rs.

Let Y be a recursive split of X ⊂ Rs, with vol(X ) = 1 in base b ≥ 1. Assume φ
is a Y-transformation of the interval [0, 1) and B ⊂ X is a Borel set. Hence

λ(φ−1(B)) = λs(B),

where φ−1(B) = {x ∈ B; φ(x) ∈ B}.
Proof of this proposition can be found in Basu 2016.

Following proposition represents this uniformity under scrambling.

For i ∈ 1 : d, let X (i) ⊂ Rsi have volume one. Suppose Yi is a recursive split of
X (i) in bases bi ≥ 2 with corresponding transformations φi. If yi is a base bi nested
uniform scramble of xi for x ∈ [0, 1)d, then φ(x) = (φ−1(y1), . . . , φ−1(yd)) ∼ U(X 1:d).

Geometric scrambled nets do not require that we use the same base to define
both the transformations and the digital net. Even part of the basic properties
of scrambled nets can be applied for geometric scrambled nets without requiring
smoothness of the integrand.

Theorem 4.2.1. For i ∈ 1 : d, let X (i) ⊂ Rsi have volume one. Suppose Yi is a
convergent recursive split of X (i) in bases bi ≥ 2 with corresponding transformations
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φi. Let y1, . . . ,yN be a nested uniform scramble of a (p, n, s)-net in base b ≥ 2 and
let f ∈ L2(X 1:d). If xi = φ(yi), then:

V ar(µ̂) = o(
1

N
)

as N →∞. [Basu and Owen]

Proof. Since f ∈ L2(X 1:d) so f ◦ φ ∈ L2[0, 1]d. Therefore Theorem 2.4.2 can be
applied.

Theorem 4.2.2. Assume y1, . . . ,yN be a nested uniform scramble of a (p, n, s)-net
in base b ≥ 2 and let f ∈ L2(X 1:d) and var(f(x)) = σ2 where x ∼ U(X 1:d). Then:

V ar(µ̂) ≤ bp
(
b+ 1

b− 1

)d−1
σ2

N
.

If p = 0, then V ar(µ̂) ≤ eσ
2

N
= 2.718σ

2

N
.

Proof. Once again f ∈ L2(X 1:d) so f ◦ φ ∈ L2[0, 1]d. Thus Theorem 2.4.3 can be
applied.

4.3 Analysis of Variance (ANOVA) of X 1:d

It is well known that QMC-sampling looses the better accuracy in high dimension.
Hence it is fundamental to release the most important (in statistical sense) compo-
nents or to diminish the nominal dimension of the problem by means of ANOVA
considerations. Where f ∈ L2(X 1:d) then f can be written into the sum of orthog-
onal functions each of them defined in a different subset u ⊆ 1 : d, which only
depends on the variables in any of these subsets

f(x) =
∑
u⊆1:d

fu(x).

Now if |u| denote the cardinality of u and σ2 =
∫
X 1:d(f(x)−µ)2d(x), σ2

u =
∫
X 1:d fu(x)2dx,

σ2
∅ = 0, then assuming σ <∞ and |u| > 0 it holds

σ2 =
∑
u⊆1:d

σ2
u.

This equation partitions the total variance into parts corresponding to any subset
u ⊆ 1 : d. [Rutherford 2012]

4.4 Smoothness

Some smoothness of the integrand require to reach the main results for scrambling
geometric nets. Assume f is a real-valued function on X ⊂ Rm, where the dimension
m = d× s, for an d-fold tensor product of a s-dimensional domain. For v ⊆ 1 : m,
the mixed partial derivative of f is taken once with respect to xi for any i ∈ v
denotes by ∂vf . Since differentiating a function zero times leaves it unchanged we
have ∂∅f = f .
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Definition 4.4.1. Suppose X ⊂ Rm for m ∈ N. The function f : X → R is smooth
if ∂1:mf is continuous on X . [Basu and Owen]

Basu and Owen prove that under smoothness and sphericity assumptions, the

variance of averages over scrambled geometric nets is O
(

log(N)s−1

N1+ 2
s

)
.

4.5 Impact of Transformations on Variation

Monte Carlo sampling over a simplex domain X ⊂ Rs is usually done by obtaining
a uniformity preserving transformation τ : [0, 1]m → X , where it yields x = τ(y) ∼
U(X ). When y ∼ U([0, 1]m), then

1

vol(X )

∫
X
f(x)dx =

∫
[0,1]m

f(τ(y))dy. (1)

So we estimate µ =
∫
X f(x)dx by

vol(X )

N

N∑
i=1

f(τ(yi))

for yi
iid∼ U([0, 1]s), and often for simplicity we take vol(X ) = 1.

For QMC sampling of such regions a very standard approach is to employ the
same transformation as in MC, and replace independent random variables yi by
QMC or randomized QMC (RQMC) points.

4.5.1 Necessary and Sufficient Conditions

QMC sampling gives an error rate O
(

log(N)s−1

N

)
if the function f is of bounded

variation in the sense of Hardy and Krause (BVHK). For scrambled nets, a sort of

RQMC, to reach a root mean squared error of order O

(
log(N)

s−1
2

N
3
2

)
the function

f has to be smooth in the sense as follows

‖∂vf‖2
2 :=

∫
(∂vf(x))2dx <∞, ∀ v ⊆ 1 : s. (?)

[Dick and Pillichshammer 2010]

Following the notations from Section 2.3.1 we describe the sufficient conditions
under which f ◦τ is smooth for all f ∈ Cm(X ) in the sense of equation (?). Similarly
we define conditions on τ such that f ◦ τ ∈ BVHK for all f ∈ Cm(X ).

Theorem 4.5.1. For τ : [0, 1]m → X , where τ(y) = (τ1(y), . . . , τs(y)) and X is a
bounded and close subset of Rd, assume that ∂1:mτi exists for all i = 1, . . . , s. If∫

[0,1]s

d∏
j=1

|∂ljτkj(y)|2dy <∞
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holds for all nonempty u ⊆ 1 : m, d ⊆ 1 : |u|, for all disjoint lj with union u and
for all distinct kj ∈ 1 : s. Hence for all f ∈ Cm(X ), f ◦ τ is smooth in the sense of
equation (?). [Basu 2016]

This equation gives us sufficient conditions under which f ◦ τ is smooth for all
f ∈ Cm(X ).
Following Theorem illustrates conditions on f and τ so that f ◦ τ belongs to BVHK
for all f ∈ Cm(X ).

Theorem 4.5.2. For τ : [0, 1]m → X , where τ(y) = (τ1(y), . . . , τs(y)) and X is a
bounded and close subset of Rs, assume that ∂1:mτi exists for all i = 1, . . . , s. If∫

[0,1]|u|

d∏
j=1

|∂ljτkj(yu : 1−u)|dyu <∞

holds for all nonempty u ⊆ 1 : m, d ⊆ 1 : |u|, for all disjoint lj with union u and
for all distinct kj ∈ 1 : s. Hence for all f ∈ Cm(X ), f ◦ τ ∈ BVHK. [Basu 2016]

For QMC analysis on spheres, Brauchart et al. 2014 describe similarly that higher
dimensions requires greater smoothness to control a worst case quadrature error.

4.6 Uniformity preserving mappings

Uniformity transformations satisfy equation (1). In this Section we represent the
uniformity preserving mappings from Fang and Wang 1994. They render transfor-
mations from [0, 1]s to some particular domains for quadrature problems. Here we
consider the following domains

As = {(x1, . . . , xs); 0 ≤ x1 ≤ . . . ≤ xs ≤ 1}
Vs = {(x1, . . . , xs) ∈ R+

s ;x1 + . . .+ xs ≤ 1}
Ts = {(x1, . . . , xs) ∈ R+

s ;x1 + . . .+ xs = 1}

where R+
s is the non-negative part of Rs. As, Vs and Ts+1 are all s-dimensional

simplices. Then we show that all those mappings have components τ in BVHK and
none of them have all mixed partial derivatives in L2. Thus they are appropriated
to QMC, but they are not smooth enough to take advantage of the improved rate for
RQMC versus QMC. These transformations allow us to study them directly because
they have a separable character.

4.6.1 Mapping from the unit cube to As

The map τ = (τ1, . . . , τs) is defined by τi(y) =
∏s

k=i y
1
k
k for i = 1, . . . , s. The partial

mixed derivative of τ1 is

(∂1:sτ1)2 =
s∏

k=1

1

k2
y

2
k−2

k

which is diverged on integrating with respect to y2, so ∂1:sτ1 /∈ L2. It can be
shown that τ satisfies the BVHK conditions of Theorem 4.5.2. Given any non-
empty l ⊆ 1 : s where for k ∈ l if k < i then ∂lτi = 0. Thus we suppose that l ⊆ i : s
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so we have

∂lτi =
∏
k∈l

1

k
y

1
k−1

k

∏
k∈i:s−l

y
1
k
k .

Then this τ satisfies the conditions of Theorem 4.5.2 since all the powers of each yk
are above −1.

4.6.2 Mapping from the unit cube to Vs

Suppose s ≥ 2 to get a dimension of at least 2, then the map τ is defined as follows

τi = ys
−1

1

∏i
k=2 y

(s−k+1)−1

k (1− y(s−i)−1

i+1 ) for i = 1, . . . , s− 1

τs = ys
−1

1

∏s
k=2 y

(s−k+1)−1

k

The mixed partial derivative of τs is

∂1:sτs = s−1ys
−1−1

1

s∏
k=2

(s− k + 1)−1y
(s−k+1)−1−1
k = (s!)−1y

( s−1
s

)−1

1 y
( s−2
s−1

)−1

2 ...y
( 1
2

)−1

s−1 .

Noticing that the integral with respect to ys−1 obviously ∂1:sτs is not in L2. This
transformation satisfies Theorem 4.5.2 following the same argument as previous
Section.

4.6.3 Mapping from [0, 1]s−1 to Ts

In this case we assume s ≥ 3 and define the map τ as follows

τi =
∏i−1

k=1 y
(s−k)−1

k (1− y(s−i)−1

i ) for i = 1, . . . , s− 1

τs =
∏s−1

k=1 y
(s−k)−1

k

The mixed partial derivative of τs is

∂1:(s−1)τs = ((s− 1)!)−1y
( s−2
s−1

)−1

1 y
( s−3
s−2

)−1

2 . . . y
( 1
2

)−1

s−2 ys−1.

∂1:(s−1)τs is not in L2 and following the same argument as before this transfor-
mation also satisfies Theorem 4.5.2.

4.7 Non-uniformity preserving Transformations

In this Section we consider importance sampling methods to integrate with respect
to a non-uniform measure on X . Importance sampling QMC for the simplex is intro-
duced and it is shown that some importance sampling methods give the O(N−

3
2

+ε)
rate for RMSE on the simplex.
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4.7.1 Importance Sampling QMC for Simplex

Let τ : [0, 1]s → X , where τ(y) = x, y = (y1, . . . , ys) be a mapping in the simplex

As = {(x1, . . . , xs); 0 ≤ x1 ≤ ... ≤ xs ≤ 1}.

The mapping is defined by

xi = τi(y) =
∏
k≥i

yckk

for constant ck > 0.
In the case of the uniformity preserving mapping from Fang and Wang 1994, ck

is
1

k
. Since the Jacobian matrix for this transformation is upper triangular so the

the Jacobian determinant is

J(y) =
s∏
i=1

∂xi
∂yi

=
s∏
i=1

ciy
ci−1
i

∏
k>i

yckk = C

s∏
i=1

yici−1
i

where C =
∏

i ci.

Then 0 ≤ J(y) ≤ C and the average of J(y) equals
1

vol(As)
=

1

s!
. This choice

of Fang and Wang 1994 determines J(y) =
1

s!
for all y. Then the RQMC estimate

of

µ = s!

∫
As

f(x)dx = s!

∫
[0,1]s

f(τ(y))J(y)dy

is µ̂ =
s!

N

N∑
i=1

f(τ(yi))J(yi).

If we ignore the s! factor, the integrand on [0, 1]s is now f̃(y)) = f(τ(y))J(y),

and ∂vf̃ =
∑
w⊆v

∂w(f ◦ τ)× ∂v−wJ . In this case the definition of τi makes it suitable

to work with a simple function class consisting of integrands of the form
∏s

i=1 x
ai
i

for real values ai ≥ 0.

Theorem 4.7.1. Suppose f(x) =
∏s

i=1 x
ai
i , i = 1, . . . , s for x ∈ As and ai ≥ 0.

For y ∈ [0, 1]s, let xi = τi(y) =
∏

k≥i y
ck
k and the Jacobian be J(y) =

∏s
i=1 y

ici−1
i for

positive values of ci. Then ∂uf(x(y))J(y) ∈ L2([0, 1]s) for all u ⊆ 1 : s and all ai if

and only if ci >
3

2i
holds for i = 1, . . . , s.

Proof. Suppose Ak =
∑

i≤k ak and C =
∏

i ci, then

f̃(y)) = f(τ(y))J(y) = C
s∏

k=1

ykck−1+ckAk .

Let (∂vf̃(y)))2 for all v ⊆ 1 : s be defined as follows

C2
∏
k∈v

(kck − 1 + ckAk)
2y2(kck−2+ckAk)

∏
k∈−v

y2(kck−1+ckAk). (2)
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For all ai the coefficient (kck−1+ckAk) cannot vanish, hence (1) has a finite integral
for all ai if and only if ∀ i = 1, . . . , s and all ai, 2(ici − 2 + ciAi) > −1, which easily

holds if all ci >
3

2i
. Conversely, let ci ≤

3

2i
for some i, then we may choose Ai = 0

and v = {i} and see that (2) is not integrable. [Basu and Owen 2015b]

Theorem 4.7.1 shows that RQMC can obtain the O(N−
3
2

+ε) rate for functions of
the form

∏s
i=1 x

ai
i on the simplex As. That rate can be extended to linear combina-

tions of finitely many such functions, including polynomials. If we choose ci =
3

2i
+κ

for some small κ > 0 then for fixed s we have s!J(y) = (3/2)s + O(κ). Thus there
exists a dimension effect. The integrand becomes more spiky as s increases. It can
be expected that the lead constant in the error bound grows exponentially with
s. For s = 1, Theorem 4.7.1 requires c1 > 3/2 when in fact RQMC attains the

O(N−
3
2

+ε) RMSE with c1 = 1 in that case. The reason for this difference is that

the theorem covers more complicated integrands like x
1/2
1 whose derivative does not

belong to L2. If we work with polynomials taking only ai ∈ N, then the choice
ck = 1/k zeros out (2) when Ak = 0. So the smallest nonzero Ak is 1 and we need
to impose the coefficient 2(ici− 2 + ciAi) > −1. This can be simplified to Ak > k/2
that can only be ensured for k = 1 and thus the Fang and Wang choice ck = 1/k
will not obtain the RQMC rate for polynomials when s > 2.

In MC-sampling, the impact of nonuniform importance sampling sometimes mea-
sures via an effective sample size, see Kong, Liu, and Wong 1994. For J(y) the
effective sample size can be denoted as the nominal one multiplied by

(
∫
J(y)dy)2∫
J(y)2dy

.

Given ci =
3

2i
this factor is (

8

9
)s, that is corresponding to a mild exponential de-

creasing in effectiveness for MC-sampling. It seems to be as yet no suitable measure
of effective sample size for RQMC.

4.8 Conclusion

Quasi-Monte Carlo methods aim to achieve the convergence rate by using low dis-
crepancy sequences. These sequences render better stratification and has theoreti-
cal error bounds of size O(N−1(logN)s). [Moskowitz and Caflisch 1996] Essentially
RQMC was proposed to give a more reasonable estimation of the integration error,
because the Koksma-Hlawka bound for QMC determines unconfined error estimates
for many practical applications. Following the approach in Basu 2016, it has been
shown that a sequence of Quasi-Monte Carlo methods exists for integration over
d-fold products of simplices which has a Monte Carlo rate of convergence. Basu and
Owen 2015a give constructions for particular case of a single triangle with a higher

rate of convergence than Monte Carlo. To obtain a variance rate of O
(

log(N)s−1

N1+ 2
s

)
,
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Basu and Owen generalized a scrambled net method to construct points on the prod-
uct of d, s-dimensional spaces. Removing the dependency on d needs much more
work.
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Chapter 5

Implementation

In the numerical examples, two simple 2-dimensional integrals with bounded and un-
bounded integrands are considered and the aim is to compare the integration errors
using MC-, QMC- and RQMC-methods. Implementation of the RQMC-algorithm
according to Basu 2016 is quiet complicated which is a drawback from a practi-
cal point of view. Thus in the following Section a Matlab implementation of the
RQMC-algorithm on unite cube is presented and then we use the RQMC-algorithm
to estimate the following integrals. Later a uniformity transformation is used to map
from the unit cube to the right-angle triangle defined by A = (0, 0)T , B = (0, 1)T

and C = (1, 1)T .

5.1 Determination of Scrambling-algorithm

Due to create a nested uniform scrambling which was discussed in Section 2.4.1 we
use stream as the random generator, and then we implement a point set randomiza-
tion that performs Owen’s nested uniform scrambling. To randomize QMC, one can
take a QMC-sequence say xi and transforms it into random points yi such that yi
retain a QMC property. The easiest way to achieve it, is to have each yi ∼ U[0, 1)s,

yi = xi + u (mod 1)

where u ∼ U[0, 1)s. The idea of this algorithm is to scramble n1(k) bits of a low-
discrepancy sequence with 2k = n1(k)×n2(k) points when the number of scrambling
is n2(k). The value of n2(k) can be any positive integer as long as we are able to find
a proper Linear Congruential Generators (LCG) for it. Since the common pseudo-
random number generators are LCGs with both power-of-two and prime moduli so
one possible choice can be n1(k) = n1(k) = 2j. In this approach using LCGs as
scramblers is the main step.

5.2 Integration of a bounded integrand

In this Section we will compare the integration errors of a bounded integrand us-
ing MC-, QMC- and RQMC-methods. Suppose we want to estimate the following
integration
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J =

∫ 1

0

∫ 1

0

e(x+y) dx dy

which analytically can be computed and the true value equals (e − 1)2, so we are
able to determine the integration errors. Note that the true integration result over
the triangle ABC is the same as the true integration result over unit cube.

(a) (b)

Figure 5.1: Logarithmic Plots of Relative Integration Errors of a bounded integrand
over Unit Cube and Triangle ABC.

Figures 5.1a and 5.1b show the integration errors of MC, QMC and RQMC over
unit cube and the triangle ABC, where n is the number of points used for each
estimators. In the both cases the performance of estimation using QMC vs MC
can be pointed out when n increases. The Koksma–Hlawka inequality is proved by
Hlawka for Riemann integrable1 function f and x1, . . . , xN ∈ [0, 1]s

|Ĵ− J| ≤ VHK(f)D∗(x1, . . . , xN)

and many constructions assure that D∗(x1, . . . , xN) = O(N−1+ε) for all ε > 0. Hence
when VHK(f) <∞ Hlawka’s Theorem satisfies the asymptotic superior of QMC vs
MC for the both domains. [ Niederreiter and Talay 2006]

RQMC-method is used to provide a more sensible estimation of the integration
error, since the Koksma-Hlawka bound for QMC-method for many practical appli-
cations offers unconfined error estimations. As the Figures display the integration
errors of QMC- and RQMC- methods are quite different. Using RQMC-methods we
are allowed to reduce variance of the integration error but the consistency between
QMC errors and RQMC errors is not always promised, which is shown for such
simple integrals over unit cube and triangle ABC .

1

Theorem 5.2.1. A bounded function on a compact interval is Riemann integrable if and only if
Lebesgue measure of the set of points at which it is discontinuous is zero.[Wheeden 2015]

Since Lebesgue measure of such a set is zero, so this Theorem denotes that each bounded function
with a countable set of discontinuities is Riemann integrable.
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5.3 Integration of an unbounded integrand

In this Section we deal with the integrations of an unbounded integrand over unit
cube and triangle ABC using MC-, QMC- and RQMC-methods. Suppose the fol-
lowing integral

I =

∫ 1

0

∫ 1

0

e(norminv(x)+norminv(y)) dx dy.

where norminv computes confidence interval for P using a normal approximation to
the distribution of the estimate µ̂ + qσ̂, when q is the P -th quantile from a normal
distribution N (0, 1). The definition of the normal inverse function in terms of the
normal cdf is as follows

x = F−1(p|µ, σ) = {x : F (x|µ, σ) = p}

where

p = F (x|µ, σ) =
1

σ
√

2π

∫ x

−∞
e
−(t−µ)2

2σ2 dt

This integral can moreover be calculated analytically

I = (

∫ 1

0

enorminv(x) dx)2 ' (e1/2)2 = e.

This way we are allowed to determine the integration errors over the both do-
mains. Note that the true integration result over the right-angle triangle ABC
defined by A = (0, 0)T , B = (0, 1)T and C = (1, 1)T is the same as the true integra-
tion result over unit cube.

Figures 5.2a and 5.2b display the integration errors over [0, 1]2 and triangle ABC
using MC-, QMC- and RQMC-methods, where n is the number of points used for
each estimators.

(a) (b)

Figure 5.2: Logarithmic Plots of Relative Integration Errors of an unbounded inte-
grand over Unit Cube and Triangle ABC.
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From the Figures it can be observed that the integration errors of MC, QMC and
RQMC are totally different for the both regions. An unbounded function certainly
has infinite variation in the sense of Hardy and Krause but for some unbounded
integrands QMC obtain a O(N−1+ε) of convergence. For others QMC errors diverges
to infinity as N goes to infinity even these integrands assure D∗(x1, . . . , xN) =
O(N−1+ε) for all ε > 0. [ Niederreiter and Talay 2006] Hence here the asymptotic
inferior of QMC vs MC can be seen for the both integrals. The magnitude of the
improvement using RQMC-sampling varies for the both cases depending on the
number N = 2n of points used and the type of low-discrepancy sequence used.
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