
A Study of Gradient-Based Algorithms

Rasmus Hallén

02 - 03 - 2017

Abstract

Gradient-based algorithms are popular when solving unconstrained
optimization problems. By exploiting knowledge of the gradient of the
objective function to optimize, each iteration of a gradient-based algo-
rithm aims at approaching the minimizer of said function.

In the age of web-scale prediction problems, many venerable algorithms
may encounter difficulties. However, as the data sets grow larger, so
does our capability to interpret them. Thanks to developments in the
computer-science subfield called Machine Learning, it is possible to pro-
duce self-adapting optimizers able to deal with different challenging sce-
narios, without requiring the user to rewrite algorithms specialized for the
experiment at hand.

This thesis shall compare the performance of two different gradient-based
algorithms; Gradient Descent (GD) and Stochastic Gradient Descent (SGD).
Firstly, a synthetic linear regression model is considered. Performance of
the algorithms are evaluated by comparison with the maximum likelihood
estimator (MLE). Thereafter, a convergence study is presented. Lastly,
SGD is evaluated over increasingly large, random subsets of the data.
Such a subset is known as a mini-batch.

When transitioning to multinomial logistic regression setting, a model
to recognize handwritten digits is constructed. The data is provided by
Mixed National Institute of Standards and Technology (MNIST) database.
Each digit is represented by a vector with pixel weights as entires. The al-
gorithms are assessed by how well they estimate a model to predict which
vector belongs to which number.

In the case of linear regression, it is found that SGD outperform GD
as the data sets grow larger. Furthermore, the precision of SGD does not
necessarily improve when increasing the mini-batch size. For multinomial
logistic regression, GD produces the most accurate model with a 73.39%
success rate. However, the training of the model is time consuming and
by partitioning the data into mini-batches, SGD achieves 70.49% success
rate in a more resonable timeframe.

1

Contents

1 Introduction 3
1.1 Background . 3
1.2 Motivation and research question 4
1.3 Goals . 4

2 Theory 5
2.1 Framework . 5
2.2 Gradient descent (GD) . 7
2.3 Stochastic gradient descent (SGD) 8
2.4 Mini-batch stochastic gradient descent 8
2.5 Outline . 9

3 Simulation studies for linear models 11
3.1 Model description . 11
3.2 Results . 12

3.2.1 Comparison of RMSE, bias and cost. 12
3.2.2 Rate of convergence . 16
3.2.3 Mini-batch SGD . 18

4 Logistic regression on the MNIST dataset 19
4.1 Introduction . 19
4.2 Results . 20

5 Conclusion 23
5.1 Summary . 23
5.2 Discussion . 24
5.3 Acknowledgements . 25

2

1 Introduction

1.1 Background

In 1959 Arthur Samuel defined Machine learning as a subfield of computer sci-
ence that ”gives computers the ability to learn without being explicitly pro-
grammed” [1]. It refers to the automated identification of patterns in data.
As such it has been a fertile ground for new statistical and algorithmic devel-
opments. The interweaving of statistics and machine learning have gradually
become more apparent as computing power has increased. In 1959, a large
dataset might have consisted of only a few bytes. However, computers today
handle significantly larger quantities of information.

Despite the convergence of the two fields, machine learning and statistics re-
main separate. In this thesis, the terminological differences are highlighted in
the framework section and will be used interchangeably.
Whether working with statistical models or learning machines new algorithms,
the problem of optimization is of importance. That is, given a task, how to
choose a model that completes said task in the most optimal way. Of course,
a great range of problems fit this description. This thesis focus on solving an
unconstrained minimization problem, which is to find parameters that minimize
some function [2].

Naturally, this is not an unfamiliar problem for any statistician or computer
scientist. The solution methods vary with the complexity of the problem, but
one of the most popular approach is to utilize the gradient of a function. Such
methods are artlessly named gradient methods.

Two popular algorithms for gradient approximation of a function are

1. Gradient Descent [3].

2. Stochastic Gradient Descent [4].

As with many algorithms, these contain inputs that are selected by the user.
Such input parameters are referred to as hyper parameters. How to select the
hyper parameters is not trivial and poor choices may result in the divergence
of the algorithms. This thesis will shed light on the interaction of the hyper
parameters for some common optimization problems.

3

1.2 Motivation and research question

With databases of petabyte size the need for accurate algorithms is consider-
able. If the hyper parameters are not well chosen, the resulting model may not
have any predictive capabilities. As such, it is necessary to provide information
on how context and data impact these choices.

The extent of modern datasets requires study of the different methods used
for organizing them. To randomly select a subset of the data, and instead iter-
ating over this set is known as mini batching. The size of the mini batch need
to be manually tuned and faulty sizes may cause misleading results. Therefore,
knowledge on how these sizes affect performance is important.

Both Gradient Descent and Stochastic Gradient Descent require tweaking of
hyper parameters to run smoothly. This thesis aim to answer:

• What are appropriate values of these hyper parameters given different
datasets?

• Is it possible to minimize the amount of time the algorithms spend looking
for solutions by varying the mini-batch size?

• Are the results consistent when moving from an OLS setting to multinomial
logistic regression?

1.3 Goals

Both statistical estimation and machines learning considers the problem of min-
imizing a function of the form

f(θ) =
1

n

n∑
i=1

Ci(θ) (1)

Using different gradient methods, the goal is to compute the solution to this
problem. Furthermore, to analyze how varying the hyper parameters affect
the performance of the algorithms used to find this solution. Specifically, how
choosing different subsets of the data affect the precision of the solution. Ad-
ditionally, the aim is to provide insight whether the results are consistent when
transitioning from a linear regression to a classification setting.
Lastly, the analysis shall be conducted in a statistically robust way and appli-
cable on large scale datasets.

4

2 Theory

2.1 Framework

Machine learning and statistics share important features, but use a somewhat
different terminology. In statistics, linear regression is the task of modeling a
relationship between a dependent variable Y and a dataset X. In a machine
learning context, this is called a predictive or supervised learning problem. The
set Ω = {(xi, yi)}mi=1 is called the training set, a single vector value pair xi, yi
is called a training example and m is the number of training examples [5].
Each xi ∈ Ω is a row vector of dimension p, often referred to as the predictor
in statistical literature. Interchangageable terms are attributes, features or co-
variates. The outputs yi ∈ Ω are called the responses, or more classically the
dependent variables.
The purpose of a regression model is to construct prediction rules given input
data. Let X = (X1, X2, ..., Xp) where xk,i ∈ Xk and i = 1, ...,m. Given the
input matrix X, since the problem is linear, the output Y is predicted via the
model

Ŷ = Xθ̂ (2)

A linear model is given by picking the coefficients θ that minimize the residual
sum of squares [6]. Which is equivalent to solving the unconstrained optimiza-
tion problem with respect to the vector θ

min
θ
C(θ) = (Y −Xθ)T(Y −Xθ) (3)

Denote the solution of (3) by θ̂.
For the simulation studies, a synthetic model is constructed for the data gener-
ation.

Y = XTθ + ε where ε ∼ N (0, σ2Im) (4)

If J denotes the number of simulations, then

Ωj = {Xj,Yj} where j = 1, ..., J. (5)

The goal of minimizing (1) translates to estimating the vector θ̂ as close as
possible to the known parameter values θ of the model in (3).
Two measurements that compare a computed estimate θ̂ with the true vector
θ are the root mean square error (RMSE) and the mean absolute bias (MAE).
These measurements will be used over a number of simulations J to evaluate
performance. Note that bias and RMSE are calculated for a specific element
in the vector θ. The notation RMSEd, respectively biasd will emphasize which
parameter is referred. For parameter d = 1, .., p, consider

RMSEd =

√√√√ 1

J

J∑
j=1

(θ̂
(d)
j − θ∗(d))2 (6)

5

And

biasd =
1

J

J∑
j=1

|θ̂(d)j − θ
(d)| (7)

Consequently, for each simulation, p values of RMSE and bias are presented.
By the introduction of a hypothesis h to be determined given some input data
X, the linear regression problem in (3) may be rewritten as

min
θ
C(θ) =

1

2m

m∑
i=1

(hθ(X)−Yi)
2 (8)

One way of solving this problem is to utilize gradient methods. These are al-
gorithms that incorporate the gradient of differentiable functions and like any
algorithms their efficiency can be monitored. Primarily, the efficiency of an
algorithm depends on how accurate of an estimate it produces. Secondly, its
ability to produce such an estimate within a feasible timeframe.

Gradient methods produces sequences of numbers {θk}. To be efficient these
sequences should converge to the optimal value. In this thesis, for some small
δ, an algorithms efficiency is evaluated by measuring the duration to produce
an estimate θ̂ within δ precision

|θ − θ̂| < δ (9)

Instead of a continuous Y , the response could be binary, i.e. Y ∈ {0, 1}. In
statistics, this is a logistic regression (logit) model. Given certain predictors, it
is indeed a supervised learning problem as well. The premises for solving a logit
problem are similar to that of a continuous one. Consider the function

J(θ) = − 1

m
[

m∑
i

Yi log hθ(X) + (1−Yi) log (1− hθ(X))] (10)

Where

hθ(X) =
1

1 + e−θTX
(11)

This is a convex and smooth function. Therefore, the solution process is similar
to that of (8). But here, the dependent variable Y is categorical. If Y have more
than two possible outcomes, the model is called multinomial logistic regression.

6

2.2 Gradient descent (GD)

Computing the solution of the optimization objective is achieved by minimizing
the cost function (8). Its gradient, denoted by ∇C, reveals in which direction
the function decreases the fastest. Utilizing ∇C it is possible to repeatedly step
towards a local minimum.
The learning rate α is a hyper parameter and is manually tuned. There are
methods that approximates a learning rate [7] speeding up convergence, but
here Gradient descent is kept in a pure form. When α is chosen far from its
optimal value α∗ the algorithm will diverge if α > α∗and converge very slowly
if α < α∗ [8].

Recall the optimization objective C(θ) in (8). Let

hθ(x) = θTx (12)

If the number of training examples is m, the number of parameters j = 1, ..., p
and e1, ..., ep is the standard basis, then

∇C(θ) =
∂C(θ)

∂θ1
e1 + ...+

∂C(θ)

∂θp
ep (13)

Where

∂C(θ)

∂θj
=

1

m

m∑
i=1

(θTx(i) − y(i))x(i)
j (14)

The pseudocode for gradient descent is presented in algorithm 1. The initial θ0

is chosen arbitrarily.

Algorithm 1 Gradient descent

1: Initialize θ0

2: Set iterations L
3: Set learning rate α
4: for k = 0 to L do
5: Evaluate gk = ∇C(θk)
6: θk+1 ← θk − αgk
7: end for

Convergence of gradient descent is dependent on choosing an accurate learning
rate, as well as enough iterations. But given a convex optimization problem as
in (8) and appropriate hyper parameters, i.e. 0 < α < 1, the algorithm will
converge [9].

In (10), which is the optimization objective for logistic regression, another cost
function is defined. Given the structure of gradient descent, it is apparent why
J has been defined in such a way.

7

Consider

∂J(θ)

∂θj
=

1

m

m∑
i=1

x(i)(hθ(x
(i))− y(i)) (15)

The gradient of this function can be computed as in (13).

Furthermore, since J is a convex, gradient based algorithms can be applied
to minimize (10). Formally, this is a logistic regression problem and the model
in section 4 will be weighted using (15).

2.3 Stochastic gradient descent (SGD)

Another algorithm for solving the optimization problem is the stochastic ver-
sion of gradient descent. Instead of having to evaluate the sum of all training
examples when computing the gradient, only one training example is used. To
clarify,

∂Ci(θ)

∂θj
= (θTx(i) − y(i))x(i)

j (16)

Where the i:th training example is randomly chosen in the dataset. In this
thesis, one epoch of stochastic gradient descent is one run through the entire
dataset. Therefore, the loop will initialize at 1 and finish when there are no
more training examples to compute.

Algorithm 2 Stochastic gradient descent

1: Initialize θ0

2: Set number of epochs, L
3: Set learning rate α
4: for k = 1 to L do
5: θ0 ← θm
6: for i = 0 to m do
7: Evaluate gk = ∇Ci(θk)
8: θk+1 ← θk − αgk
9: end for

10: end for

Note that in algorithm 2, m denotes the number of training examples. Conse-
quently, one epoch will run through all these training examples.
Given the same premises as gradient descent, SGD may also be applied to solve
a logistic regression problem.

2.4 Mini-batch stochastic gradient descent

A method that sometimes achieves better performance than both SGD and GD
is to run the algorithm over portions of the data. Such a portion is referred to as

8

a mini batch, whereas the whole training set is called batch. These mini-batches
are generated by randomly selecting row vectors from the training set X.

Algorithm 3 Mini-batch stochastic gradient descent

1: Initialize θ0

2: Set number of epochs, L
3: Set learning rate α
4: for k = 1 to L do
5: Randomly pick a mini batch of size n.
6: θ0 ← θn
7: for i = 0 to n do
8: Evaluate gk = ∇Ci(θk)
9: θk+1 ← θk − αgk

10: end for
11: end for

In algorithm 3, the mini-batches are of dimension (nxp). Since n < m, one
epoch will complete faster that the algorithms batch counterparts.
Intuitively, the algorithm converges if SGD converges, but there exist more
rigorous study of the convergence rate of mini-batch SGD [10].

2.5 Outline

To evaluate how the algorithms preform in different contexts a simulation study
in a linear regression setting is conducted. By varying the complexity of the
models, the algorithms may be evaluated by analyzing the parameter estimates
individually by (7) and (8), but also the algorithms total cost (3).
The average of bias and RMSE over all simulations are presented in tables. The
cost of the final estimate of each simulation is plotted. Also the evaluation time
of the algorithms is presented in the results section.

Stochastic gradient descent is random by design. As such, to understand how its
estimates are affected by this, an investigation of the convergence is conducted.
By choosing a small δ in (9), the randomness of the algorithm is evaluated.

As gradient descent loops through the entire dataset every iteration, it does
not scale very well with an increase in data. Given a larger data set, larger mini
batches should be used. Therefore, when comparing the mini batches, only
stochastic gradient descent is considered.

MNIST (Mixed National Institute of Standards and Technology) is a large
database of handwritten digits [11]. This is a common dataset used for compar-
ing and learning machine learning techniques. When transitioning to a multi-
nomial logistic regression setting, this dataset will be used to evaluate the al-
gorithms. Instead of comparing individual thetas (the model contains 741 of

9

them), the studies are conducted with respect to a test set provided by MNIST.
The entire dataset consists of 60 000 images (training set), and the test set
contains 10 000. First the algorithms will weigh (estimate) the parameters by
looping through the training set. Then, the model is put to the test by classi-
fying the remaining 10 000 images.

First, the results of gradient descent is presented. The resulting estimators
are equal over all simulations if the hyper parameters are kept constant. Plots
of two different step sizes are presented.
When investigating stochastic gradient descent, an analysis of the step size and
how it affects performance is followed by a cost analysis when varying the mini
batch sizes.

In the case of multinomial logistic regression, the success rate of GD and and
mini-batch SGD are presented in tables. Also an analysis of how different step
sizes may cause difficulties is given.

10

3 Simulation studies for linear models

3.1 Model description

The study covers the performance of different gradient algorithms over varying
data sizes. Simulations are conducted by randomly generating data from a
known correlation with added noise. Three models are used throughout the
simulations follow the linear relation specified in (4). These synthetic models
are

(i) X is a 200x4 matrix with entries uniformly drawn from (0, 1). The noise
follows standard normal distribution.

(ii) X is a 20000x7 matrix with entries uniformly drawn from (0, 1). The noise
again follows the standard normal distribution.

(iii) X is a 2000000x14 matrix with entries uniformly drawn from (0, 1). The
noise is the same as above.

The starting value for each element of the vector parameter θ has been inde-
pendently drawn from a uniform distribution on (0,10). Therefore, the first
iterations tend to heavily improve the estimation θ̂.
Throughout the batch simulations, Stochastic Gradient Descent will run only
one epoch, while Gradient Descent will run 100 epochs. If 100 epochs is not
computationally feasible, the batch size of GD will be chosen to match the speed
of SGD.

When working with model (iii), the amount of iterations have been reduced
so that the evaluationtime is roughly the same for the two algorithms. The
computer used for the simulations is a macbook air with a 1.8 gHz Intel Core
i5 processor and 4 GB of ram.

The algorithms are evaluated over 30 simulations by comparing the root mean
squared error (7), the mean absolute error (8) and then an analysis of conver-
gence is presented. The evaluation time of the algorithms are also presented.
The comparisons are conducted with a gold estimate, θ∗ obtained by Matlabs
backslash operator. Which in the case of linear regression is the same as the
maximum likelihood estimator (MLE).

Following the simulations is an investigation of convergence. Here, the stochas-
ticity of SGD is demonstrated.
In the experiments, average time to convergence is measured, given some thresh-
hold δ.

Lastly, the datasets are distributed into random mini-batches of size L. Us-
ing the average of multiple runs of stochastic gradient descent its performance
is evaluated over these mini-batches. Because GD scales poorly with larger

11

datasets [12], and as the data grows, so does the mini batches necessary to pro-
duce a fair estimate. Hence, the data cap is higher for SGD and more interesting
to investigate.

3.2 Results

The main result of the simulation studies is that the performance of stochastic
gradient descent scales well with an increase in data. Furthermore, the preci-
sion does not markedly improve when increasing iterations, which is a reason
for partitioning the data.

3.2.1 Comparison of RMSE, bias and cost.

For model (i) in table 1, one run of stochastic gradient descent does not produce
a valuable estimate. However, gradient descent does indeed preform well. Of
course, the RMSE and bias could be reduced further by increasing the amount
of iterations. Table 2 displays the results of the simulations.

0 20 40 60 80 100 120

Iterations

-2

0

2

4

6

8

10

T
h
e
ta

v
a
lu

e

Gold estimate

(a) θ1

0 20 40 60 80 100 120

Iterations

-4

-2

0

2

4

6

8

10

T
h
e
ta

v
a
lu

e

Gold estimate

(b) θ2

0 20 40 60 80 100 120

Iterations

-4

-2

0

2

4

6

8

10

T
h
e
ta

v
a
lu

e

Gold estimate

(c) θ3

0 20 40 60 80 100 120

Iterations

-2

0

2

4

6

8

10

T
h
e
ta

v
a
lu

e

Gold estimate

(d) θ4

Figure 1: Convergence plot for each theta in the first model (gradient descent).

12

Figure 1 displays how the thetas are approaching the gold estimate per iteration.
Note that first few iterations change the precision of the approximations quite
a lot. This is because the initial guess is very far from the true values.

0 20 40 60 80 100 120 140 160 180 200

Iterations

-4

-2

0

2

4

6

8

10

T
h
e
ta

v
a
lu

e

Gold estimate

(a) θ1

0 20 40 60 80 100 120 140 160 180 200

Iterations

0

1

2

3

4

5

6

7

8

9

10

T
h
e
ta

v
a
lu

e

Gold estimate

(b) θ2

0 20 40 60 80 100 120 140 160 180 200

Iterations

-1

0

1

2

3

4

5

6

7

8

9

T
h
e
ta

v
a
lu

e

Gold estimate

(c) θ3

0 20 40 60 80 100 120 140 160 180 200

Iterations

-2

0

2

4

6

8

10

T
h
e
ta

v
a
lu

e

Gold estimate

(d) θ4

Figure 2: Convergence plot for each theta in model (i), Stochastic gradient descent.
It is clear that this approximation is not as well behaved as the thetas in figure 1.

Comparing the convergence of the thetas in model (i) it is clear that Gradient
descent works better.

RMSE bias
θ1 0.2680 0.2243
θ2 0.2998 0.2530
θ3 0.3530 0.3020
θ4 0.2394 0.2004
Average 0.2901 0.2449

(a) Gradient descent

RMSE bias
θ1 2.6799 2.2765
θ2 3.1866 2.5035
θ3 2.7812 2.4122
θ4 2.0638 1.6841
Average 2.6779 2.2191

(b) Stochastic gradient descent

Table 1: Comparison for model (i).

13

In table 1, we can clearly see how GD outperform the stochastic version in terms
of precision. The thetas are not near the gold estimate. Hence, the amount of
data points provided by model (i) is not enough for SGD to provide a valid
estimate. But as the data increase so does the reliability of SGD.

RMSE bias
θ1 0.8986 0.7351
θ2 0.3404 0.2822
θ3 0.3098 0.2568
θ4 0.2811 0.2328
θ5 0.3084 0.2570
θ6 0.2856 0.2260
θ7 0.2934 0.2291
Average 0.3882 0.3170

(a) Gradient descent

RMSE bias
θ1 0.0779 0.0662
θ2 0.0659 0.0534
θ3 0.0943 0.0806
θ4 0.0499 0.0385
θ5 0.0676 0.0534
θ6 0.0796 0.0658
θ7 0.0639 0.0569
Average 0.0713 0.0592

(b) Stochastic gradient descent

Table 2: Comparison for model (ii).

As the data size increases, the precision of SGD is heightened. For model (ii),
SGD outperforms GD as shown in table 2.

RMSE bias
θ1 3.4799 2.9844
θ2 2.1227 1.8957
θ3 1.5178 1.3441
θ4 1.2883 1.1263
θ5 1.7536 1.3983
θ6 1.5374 1.3414
θ7 1.4010 1.2269
θ8 2.0179 1.7741
θ9 1.5522 1.3789
θ10 1.2556 0.9804
θ11 1.7202 1.4324
θ12 1.5264 1.2604
θ13 1.3458 1.2138
Average 1.7322 1.4890

(a) Gradient descent

RMSE bias
θ1 0.0222 0.0174
θ2 0.0228 0.0189
θ3 0.0260 0.0218
θ4 0.0225 0.0179
θ5 0.0235 0.0185
θ6 0.0205 0.0160
θ7 0.0244 0.0180
θ8 0.0279 0.0235
θ9 0.0308 0.0236
θ10 0.0256 0.0209
θ11 0.0234 0.0197
θ12 0.0289 0.0213
θ13 0.0216 0.0176
Average 0.0246 0.0196

(b) Stochastic gradient descent

Table 3: Comparison for model (iii).

For model (iii), gradient descent performs even worse. In table 3, GD runs for 40
iterations and is not able to produce an accurate estimate in a viable timeframe.

14

RMSE bias α
Model (i) 0.2901 0.2449 0.6
Model (ii) 0.3882 0.3170 0.3
Model (iii) 1.7322 1.4890 0.1

(a) Gradient descent

RMSE bias α
Model (i) 2.6779 2.2191 0.1
Model (ii) 0.0713 0.0592 0.05
Model (iii) 0.0246 0.0196 0.01

(b) Stochastic gradient descent

Table 4: Comparison of average result after 30 simulations.

It is clear that gradient descent is outmatched by its stochastic counterpart
when the data sets are sufficiently large. Looking at not only individual thetas,
but at total cost confirms those results.

0 10 20 30 40 50 60 70 80 90 100

Iterations

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
o
s
t

(a) GD, model (i).

0 20 40 60 80 100 120 140 160 180 200

Iterations

0

1

2

3

4

5

6

7

8

9

10

C
o
s
t

(b) SGD, model (i).

0 10 20 30 40 50 60 70 80 90 100

Iterations

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
o

s
t

(c) GD, model (ii).

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
o
s
t

(d) SGD, model (ii).

0 5 10 15 20 25 30 35 40

Iterations

-10

0

10

20

30

40

50

60

70

80

90

100

C
o
s
t

(e) GD, model (iii).

0 50 100 150 200 250 300 350 400

Iterations

0

50

100

150

200

250

300

C
o
s
t

(f) SGD, model (iii).

Figure 3: Total cost for the estimates produced every iteration for model (i) - (iii).

15

Time (s)
Model (i) 0.0016
Model (ii) 0.0492
Model (iii) 5.4512

(a) Gradient descent

Times (s)
Model (i) 0.0007
Model (ii) 0.0625
Model (iii) 6.5890

(b) Stochastic gradient descent

Table 5: Comparison of running time.

Figure 3 shows how the cost (3) of the algorithms is increasingly more difficult
to minimize as the data set grows. Note the scale of the axes for the latter
models.
As stated, the evaluation time of the simulations is roughly the same (as seen in
table 5). But for computational purposes, only the first 400 iterations are shown
for SGD in figure 3 (f). Hence, the cost is considerably lower than displayed as
indicated by the study of individual parameters (table 3).
In figure 3, the α used to produce the plots are displayed in table 4.

3.2.2 Rate of convergence

The results in section 3.1 covers the precision of the algorithms, but that is not
the whole story. It is possible to reshuffle the data and run stochastic gradient
descent another epoch. With an appropriate learning rate, it may theoretically
reach machine precision in less iterations than its non-stochastic counterpart,
even with smaller datasets.
In figure 4, a 3 parameter model with 2000 data points is used to evaluate
convergence, stopping value is set to δ = 0.001. It is a display of the stochasticity
of the algorithm.

0 20 40 60 80 100 120 140 160 180 200

Iteration

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
rr

o
r

GD

SGD

Threshhold = 0.05

(a) SGD 90 iterations

0 50 100 150 200 250 300 350

Iteration

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
rr

o
r

GD

SGD

Threshhold = 0.05

(b) SGD 332 iterations

Figure 4: Two different runs on the same dataset, GD converges in 192 iterations.

As mentioned in section 3.1, SGD scales better than GD when the datasets grow
larger. When n = 2000, SGD have to be restarted after every epoch (with the

16

new parameter values) to find the minimum. If the new estimate keeps missing
the thetas that minimize the cost, the algorithm runs for a longer time.

figure GD SGD
(a) 0.0082 1.0253
(b) 0.0137 4.0625

Table 6: Execution time (s) of the algorithms in figure 4.

In the following figure, the x-axis is the number of iterations to convergence,
where each circle is a stopping point for stochastic gradient descent. The batch
counterpart is the blue line, steadily approaching convergence at 192 iterations.

0 100 200 300 400 500 600 700 800
-0.05

0

0.05

0.1

0.15

GD

SGD stopping points

Figure 5: Convergence behavior of SGD.

It is difficult to foresee the convergence behavior of SGD as indicated by the
spread of the stopping points in figure 5. Here, SGD runs 30 times on the
same dataset, its mean value for number of iterations is 233.4 until convergence.
Execution times of the algorithms vary per iteration, their means are displayed
in table 7.

GD SGD
Time 0.0069 2.3156

Table 7: Execution time (s) over 30 simulations.

17

3.2.3 Mini-batch SGD

It is time to investigate what happens with SGD when the sizes of the mini-
batches are varied.

0 5 10 15 20 25 30

Simulations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
o
s
t

100

250

500

1000

10 000

Figure 6: One epoch of SGD over varying mini-batch sizes. Model (iii) is used for
the simulations.

The cost is steadily high with a mini-batch of 100 (except simulation number
14 and 15). However, when increasing the mini-batch size, figure 6 shows that
the variance is reduced.
A mini batch size of 250 still yields some awkward simulations, but at 500, the
cost is very close to that of 1000 and 10 000.

18

4 Logistic regression on the MNIST dataset

4.1 Introduction

MNIST is a dataset of handwritten digits, comprising 60 000 training examples
and a test set of 10 000 training examples. Each vector in the training set is a
flatned 28x28 matrix, where each matrix entry is a pixel intensity.

5 10 15 20 25

5

10

15

20

25

0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 x x x x x x 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x x x x 0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0

Figure 7: The digit 1 is converted to a matrix with pixel densities x as the nonzero
entries.

Given the vectors x(i) ∈ X, where X ∈ Ω, each x(i) is simply the concatenated
rows of the matrix in figure 10. Let y = {0, ..., 9}, y(i) ∈ y and θ a matrix of
dimension 784x10 representing how the pixels are weighted in the model. In eq.
(10), the cost function for a binary problem is presented, however, transitioning
to a multivariate setting requires some modifications.
The sought probability is Pr(y(i) = k|x(i);θ) for k = 0, ..., 9. Consequently, the
hypothesis is the vector containing all such probabilities

hθ(x(i)) =

Pr(y(i) = 0|x(i);θ)
. . .

Pr(y(i) = 9|x(i);θ)

 (17)

Please note that these probabilities sum up to one. Furthermore, the probabil-
ities may be computed using the softmax function

Pr(y(i) = k|x(i);θk) =
exp (θTk x(i))∑K
j=1 exp(θTj x(i))

(18)

As a decision rule, the category y(k) corresponding to the highest probability in
hθ(x(i)) is chosen.
Given y(i) = j ∈ {0, ..., 9}, the objective is to find the θ̂ that maximize Pr(y(i) =
j). That is equivalent to solving

min
θ̂
J(θ) = − 1

m

m∑
i=1

K∑
j=1

I(y(i) = j) log(Pr(y(i) = k|x(i);θ) (19)

19

Equation 16 is convex, why gradient methods can be used to solve the problem.
The gradient with respect to parameter j is denoted

∇θjJ(θ) = − 1

m

m∑
i=1

x(i)(I(y(i) = j)− Pr(y(i) = j|x(i); θ)) (20)

As the parameters are so many, it is unfeasible to compare them individually
as in section 3. Therefore, the cost function will be studied, as well as the pre-
dictive accuracy on the test set provided.

4.2 Results

In the following sections the results will be presented. The MNIST data pro-
vides a test set as well as a training set. Therefore the algorithms performances
will be evaluated by, not only their ability to minimize the cost, but how well
they classify the digits in the test set.
The parameters are always initialized at zero and the α are chosen to appropri-
ate values.

0 50 100 150 200 250 300 350 400 450 500
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

alpa = 0.01

alpha = 0.1

(a) Changes in cost over 500 iterations

0 5 10 15 20 25 30 35 40 45 50
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

alpha = 0.1

(b) Hitting minima after 50 iterations.

Figure 8: Gradient descent on the MNIST dataset.

Figure 8 shows how Gradient Descent overshoots the solution if the learning
rate is too high. In table 11, the results are sumarized.

Cost Time
50 iterations (α = 0.1) 0.8246 172s
500 iterations (α = 0.01) 0.8925 1620s

Table 8: Time and cost for GD.

The learning rate has significant impact on the convergence rate of Gradient
descent and the best result is with a learning rate of 0.1 running only 50 itera-

20

tions. Using this model, it correctly predicts 7339 of the 10 000 images in the
test set. Corresponding to a 73.39% accuracy.

Stochastic gradient descent may also overshoot the solution if the α is too large.
In figure 9, SGD runs one epoch (m = 60000), but it is computationally heavy
to plot every iteration, therefore only the first 1000 are displayed. The different
α correspond to a higher volatility in cost.

0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1.5

2

2.5

3

(a) α = 0.01.

0 100 200 300 400 500 600 700 800 900 1000

0.5

1

1.5

2

2.5

3

(b) α = 0.001.

Figure 9: Gradient descent on the MNIST dataset using SGD.

The cost is very random for stochastic gradient descent when only considering
a single training example, which is to be expected. Performing the updates like
so still yields results above random guessing. Different values of the step size
correspond to different volatility in cost, as shown in figure 9. This is consistent
with the results of linear regression.

Note that when arbitrarily picking the thetas (as the initial guess), one can
expect a success rate of about 10% (or 9.8% in the case of the initial parame-
ters). In table 11, the test score over 10 simulations are presented. The average
score of α = 0.001 is 6979 and for α = 0.01 that number is 4284.

α 1 2 3 4 5 6 7 8 9 10
0.01 4812 3193 4545 2452 3666 5590 5145 5673 4179 3587
0.001 7357 6137 6899 7371 7466 6201 6821 7385 7513 6647

Table 9: Test score over 10 simulations.

When instead iterating numerous times over mini batches, as opposed to running
through the entire set. The results do differ.

21

0 5 10 15 20 25 30 35 40 45 50

Iterations

1.7

1.8

1.9

2

2.1

2.2

2.3

C
o
s
t

(a) Batch 10

0 5 10 15 20 25 30 35 40 45 50

Iterations

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

C
o
s
t

(b) Batch 50

0 5 10 15 20 25 30 35 40 45 50

Iterations

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

C
o
s
t

(c) Batch 100

0 5 10 15 20 25 30 35 40 45 50

Iterations

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

C
o
s
t

(d) Batch 500

Figure 10: Cost function over varying sizes of mini batches.

After some iterations, the change in cost is unaffected of mini-batch size. This
is consistent with the results from the simulations studies of linear regression.
However, with a larger mini-batch size, less iterations are required.

Average Highest Lowest Avg. time per iteration
10 4981 6712 3122 0.3317s
50 6800 7410 5660 0.3111s
100 7049 7849 6534 0.3270s
500 6790 7242 6312 0.3493s

Table 10: Results of stochastic gradient over 10 simulations.

Table 12 summarize the results of the stochastic section. The best prediction
was achieved with a batch size of 100, with its highest simulation hitting 78,5%
accuracy on the test set.
It is interesting that increasing the batch size does not significantly impact the
time per iteration. However, it must be noted that the larger the mini batch,
the longer it takes to reorder the data.

22

5 Conclusion

5.1 Summary

This thesis shows how varying hyper parameters affect the performance of gra-
dient based algorithms. In the first section, a comparison of gradient descent
and stochastic gradient descent is presented. Here, the algorithms performance
are evaluated by comparing the convergence of individual parameters, as well
as the cost function (3).
Table 4 gives a comprehensive summary of the main results of section 3.2.1. It
describes how stochastic gradient descent gradually outperform its non stochas-
tic relative. If the data set is small, then there are not enough steps for SGD
to find its way to the minimum. However, the opposite is true for larger data
sets. In the simulations, model (ii) was large enough to produce valid parameter
estimates.

The next section is dedicated to a comparison of convergence. Here, the stochas-
ticity of SGD is demonstrated by simulating data from a three parameter model
with 2000 data points. Gradient descent has no problem finding a solid estimate
within a feasible timeframe given such a data set.

Stochastic gradient descent may be reinitialized after every epoch (or some-
times just converge very quickly), on average, gradient descent needs 0.4664s to
produce estimates within epsilon precision. Whereas stochastic gradient descent
takes on average 1.6516s to produce the same result.
As seen in table 5 the time per iteration for gradient descent takes longer when
the data set grows. This is where SGD really shines. Since only one data exam-
ple is necessary for a parameter update, the speed of algorithm is not as affected
by an increase in data. Keep in mind, that in model (iii), gradient descent runs
40 iterations, whereas SGD runs 2 000 000 in roughly the same amount of time.

A comparison of mini batches concludes section 3. Figure 6 shows how varying
sizes affect the cost in equation (3). It is interesting that after a certain point,
it seems that increasing the mini batch size does not markedly affect the cost.
At size 100, the estimates are not very good, which can be expected. However,
they do significantly improve at size 250, but fluctuations do occur. When the
mini batch size is 500, there are only smaller fluctuations in cost.
To summarize, when precision is at key, a larger mini batch is suggested. Al-
though, at size 1000, the increase in precision may not compensate for the
computational disadvantage of choosing a batch size of 10 000.

Lastly, the consistency of the results are studied by transitioning to a logis-
tic regression setting. A model to recognize handwritten digits provided by
MNIST is set up. The optimization target is equation (19) and the study is
conducted as follows. First, a solid estimate is produced by gradient descent.
Here, the crucial hyper parameter is the learning rate α which can make or break

23

the model. In figure 8, two different α are shown to have significant impact on
the cost (19). With a well chosen α the model can find a good fit after about
50 iterations. A safer convergence may be achieved by reducing the size of α at
the cost of time which scales linearly with number of iterations.

Success rate Time (s)
Gradient Descent 73.39% 172.3
Stochastic Gradient Descent 69.79% 183
Stochastic Gradient Descent (L = 10) 49.81% 3.317
Stochastic Gradient Descent (L = 50) 68.00% 15.555
Stochastic Gradient Descent (L = 100) 70.49% 32.70
Stochastic Gradient Descent (L = 500) 67.90% 174

Table 11: Success rate of gradient based algorithms on the MNIST data set. L
denotes mini batch size.

In table 11, the success rate for standard GD is highest, but using SGD with
a mini batch size of 50 or 100 drastically reduce the computation time. The
precision of the estimators still are close to those of GD. Increasing the mini
batch size from 50 has the contradictory effect of decreasing precision (in the
case of L = 500).

Figure 10 displays the cost function (19) over 10 simulations with different
mini batch sizes. The larger the batch size, fewer iterations are required for
convergence.

5.2 Discussion

There are multiple ways to improve the efficiency of gradient based algorithms.
By regularizing one can prevent the common problem of overfitting, improving
the error rate for handwritten digit recognition [13]. By also introducing a con-
volutional neural network, the error have been reduced to 0.48% [14].
The purpose of this thesis is primarily to study how the success of the algorithms
is affected by varying the hyper parameters. As well as to present a compari-
son of GD and SGD, which is why the algorithms have been kept in a pure form.

In a linear regression setting, stochastic gradient descent outperform gradient
descent when the data set is larger than that of model (ii). If a smaller model
is considered (e.g. model (i)), then gradient descent is a sound choice as the
stochasticity of SGD may cause problems. Of course, it is possible to tweak
the learning rate to reach valid estimations, but with a smaller data set, the
simplicity of gradient descent is preferred.

When working with stochastic gradient descent and the MNIST data set a mini

24

batch size of 50-100 is proposed. A larger size may improve consistency, but as
seen table 11, it actually increased the error rate. Of course, this result may
stem from the fact that only 10 simulations are considered. Looking at the plots
in figure 10, similar cost is expected over 50 iterations for batches 50-500.
An alternative to reducing mini batch size would be to reduce the amount of
iterations. Figure 10 (d) seems to converge solely after 5-10 runs.

The subject of gradient based algorithms is very well studied. But it is inter-
esting to see how the convergence and cost of the algorithms vary with different
hyper parameters and model premises. There are capitalizable similarities when
working in different settings, but as a whole, the choices are very data depen-
dent. There is no universal answer that is applicable on all data. However, with
an understanding of the underlying workings of the algorithms, it is possible to
speed up the process of picking the hyper parameters.

5.3 Acknowledgements

I would like to thanks my supervisor Umberto Picchini for his patience and good
advice. He readily answered any questions that arose during this process.

Also thanks to anyone who has contributed in the proof reading process.

25

References

[1] Arthur J. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 3(3):210.

[2] Stephen Boyd and Lieven Vandenberghe. Convex Optimization, volume 7.
Cambridge University Press, 2009.

[3] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012.

[4] Leon Bottou. Large-scale machine learning with stochastic gradient de-
scent. http://leon.bottou.org/papers/bottou-2010, August 2012.

[5] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The
MIT Press, 2010.

[6] Robert Hastie, Trevor Tibshirani and Jerome Friedman. The Elements of
Statistical Learning. Springer, 2001.

[7] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
2006.

[8] Andrew Ng. Gradient descent in practice ii - learning rate.
https://www.coursera.org/learn/machine-learning/lecture/

3iawu/gradient-descent-in-practice-ii-learning-rate.

[9] Geoff Gordon and Robert Tibshirani. Gradient descent revisited. https://
www.cs.cmu.edu/~ggordon/10725-F12/slides/05-gd-revisited.pdf.

[10] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal dis-
tributed online prediction using mini-batches. Journal of Machine Learning
Research, (13):165–202, 2012.

[11] Yann LeCun, Corinna Cortes, and Christopher Burges J.C. The mnist
database of handwritten digits. http://yann.lecun.com/exdb/mnist/.

[12] Sebastian Ruder. An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747, 2016. URL http://arxiv.org/abs/1609.04747.

[13] LISA lab. Deep learning 0.1. http://deeplearning.net/tutorial/

gettingstarted.html.

[14] Dan C. Ciresan, Ueli Meier, Jonathan Masci, M. Gambardella Luca, and
Jürgen Schmidhuber. Flexible, high performance convolutional neural net-
works for image classification. Joint Conference on Artificial Intellegence,
2011.

26

