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Abstract

This thesis addresses three topics in income inequality. First, a cross-
sectional dataset of 30 countries is used to investigate the causes of between-
country differences in income inequality. Secondly, a panel of the same
countries is used to examine the drivers behind the change in inequality
between 1985 and 2013. This part of the thesis utilizes dynamic regres-
sion models for panel data, and compares the estimates from the two most
common dynamic panel models. The problem of endogenity of explana-
tory variables is addressed, and possible solutions to this problem are dis-
cussed, with an emphasis on techniques based on the generalized method
of moments (GMM). The main findings are that the trade-to-GDP ratio,
the industrial employment share and the political color of the government
are the most important explanatory variables of income inequality over
time. The final question addressed in the thesis concerns cross-country
income inequality convergence over time. Notably, inequality is shown to
converge at slightly slower rate than reported by previous studies.
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1 Introduction

In the wake of the late-2000s financial and economic crisis, the topic of in-
come inequality has again become prominent in the national political debate in
many countries. Income inequality, technological change, as well as a perceived
increase in distance between ordinary people and the ”establishment” are gen-
erally considered to be important factors in explaining the rise of new political
and social movements on both sides of the traditional left-right spectrum. For
example, the slogan of the Occupy Wall Street movement, ”We are the 99%”,
refers to the bottom 99% of the income distribution as compared to the top 1%.
The 2015-16 presidential campaign of U.S. senator Bernie Sanders was highly
focused on highlighting the perceived increase in societal income disparity. This
development has been mirrored in Europe, where left-wing political parties such
as Podemos in Spain and Syriza in Greece have gained momentum. Moreover,
the election of Donald Trump as President of the United States, as well as the
UK vote to leave the European Union (”Brexit”) are considered by many to
be at least partially related to economic globalization and the loss of high-paid
industrial jobs in certain parts of these countries. Additionally, the financial
sector, considering its rapid expansion in virtually all nations of the world, has
frequently been scapegoated for increased income inequality.

The purpose of this thesis is threefold. Firstly, to examine which factors
affect the difference in income inequality between countries. Secondly, to assess
why some countries have experienced an increase in income inequality, while
others have not. Finally, the thesis will examine if there has been convergence
in income inequality between countries. That is, if inequality is decreasing in
countries where it is high, and conversely, increasing in countries with low in-
come inequality. Specifically, in answering the first question, a cross-sectional
dataset on 30 countries for the year 2013 is used, whereas a panel of the same
countries between 1985 and 2013 is used for answering the second and third
questions.

In the thesis, models based on the so-called generalized method of moments
(Hansen 1982) will be emphasized in order to answer the questions formulated
above. Hence, a rigorous introduction to this important parameter estimation
technique will be given.

The thesis is structured in the following way. The problem of measuring
income inequality is discussed in Section 2. In Section 3, a methodological back-
ground to the theories and models employed in the analysis of income inequal-
ity are presented, including a literature review. Section 4 outlines theoretical
models for static and dynamic regression, with an emphasis on the generalized
method of moments technique, which forms the basis for both the cross-sectional
and panel data analyses. In Section 5, the data is presented and the regression
models described in Section 4 are implemented to the empirical data. Finally, in
Section 6, the results obtained in the previous parts are analyzed and discussed.
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2 Fundamentals of income analysis

Income can be viewed both as a discrete and as a continuous variable. Assuming
first that income is discrete, let y = (y1, ..., yN )′ be the vector of incomes, where
0 ≤ y1 ≤ y2 ≤ · · · ≤ yN . It is well-known that the mean income may be defined
as µ = 1

N

∑N
i=1 yi. Also, F (y) = (#yi : yi = y) /N denotes the cumulative

probability.
Income may also be seen as a continuous variable. Denoting the sample

space by Ω, it is possible to define the random variable income as a measurable
function, Y : Ω→ R+. The corresponding probability density function (p.d.f.),
f(y) describes how the income is distributed on R+. The cumulative density
function (c.d.f.) is denoted F (y), and the cumulative probability is F (y) =∫ y
0
f(s)ds. The mean income is µ =

∫∞
0
yf(y)dy. It is usually easier, from a

mathematical perspective, to view income as a continuous variable.

2.1 Lorenz curves

The cumulative income distribution can be graphically represented by the so-
called Lorenz curve (Lorenz 1905). It displays on the x-axis the cumulative
share of the population and on the y-axis the corresponding cumulative income.
Hence, if income is uniformly distributed, the slope of Lorenz curve is equal to
the diagonal of the unit square. An example of this would be if 50% of the
population would have exactly 50% of income. Mathematically, let ξp denote
the p:th quantile of f(y); p ∈ [0, 1]. Also ξp = F−1(p) = inf{y ∈ R+ : F (y) ≥ p}.
Let now

Yp = Y 1(Y≤ξp) (1)

Then, the Lorenz curve is defined as

L(p) =
E(Yp)

E(Y )
(2)

This may equivalently be expressed as

L(p) =
1

µ

∫ p

0

F−1(y)dy (3)

From (3) it is follows that

L′(p) =
dL(p)

dp
=
F−1(p)

µ
≥ 0

Also,
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L′′(p) =
d2L(p)

dp2
=

1

µ

[
d

dp
F−1(p)

]
=

1

µ

[
1

F ′(F−1(p))

]
=

1

µ

[
1

f(ξp)

]
≥ 0

where the second-to-last equality follows from the inverse function theorem.
Since L′(p) ≥ 0 and L′′(p) ≥ 0 for all p, the Lorenz curve is an increasing,
monotonic and convex function that is differentiable on [0,1]. The convexity
of the Lorenz curve makes intuitive sense since the rate at which incomes are
added to curve as p→ 1 is increasing. In addition, convexity here implies that
the curve is always below the diagonal, and if the Lorenz curve would touch the
diagonal at one point, then it would have to be equal to the diagonal over the
entire range.

2.2 The Gini coefficient

The most common measure of income inequality is the so-called Gini coefficient,
or Gini index (Gini 1912). It will be denoted as G throughout this thesis. It can
be interpreted and derived in many different ways, and its simplicity has made
it popular especially amongst economists. There are several other measures of
income disparity; this topic is, however, beyond the scope of this paper. The
Gini coefficient is named after the Italian statistician Corrado Gini (1884-1965),
who developed the measure in the early 20th century.

2.2.1 Definition

There are several ways of viewing the Gini coefficient. The simplest approach is
geometrical and is based on the Lorenz curve. If income in a certain population
were evenly divided; i.e. if everyone had the same income, the Lorenz curve
would be a straight line and L(p) = p. Thus, one may examine the deviation of
the empirical Lorenz curve from the 45 degree line. Since the Lorenz curve has
percentages on both the x- and y-axes, the area of the unit square in which the
Lorenz curve is located is equal to one. Thus, each of the two triangles that are
formed by constructing the 45 degree line has an area of 1/2. Viewed from this
geometrical perspective, the Gini coefficient is calculated as

G =
A

A+B
(4)

where A is the area between the line of perfect equality and the Lorenz curve,
and B is the area between the Lorenz curve and the line of perfect inequality.
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Figure 1: Three different Lorenz curves. The blue curve, L(1), corresponds to perfect
equality of incomes (G = 0). The red one, L(2), represents perfect inequality (G = 1).
The brown curve, L(3), corresponds to G = 0.34. The areas A and B correspond to
L(3).

2.2.2 Interpretation

From the definition, it follows that G ∈ [0, 1]. There are two extreme cases,
G = 0 and G = 1. If all individuals in the population have the same income,
G = 0. This is a state of perfect income equality. On the other hand, G = 1 in
the limiting case (for N large) when all income is concentrated at one point. The
latter case, representing a situation with perfect inequality, can be viewed as a
bimodal distribution with two modes, y = 0 and y = ymax. In this case, only
one person in the population attains ymax, while the N−1 remaining individuals
have y = 0. This is obviously a situation with extreme income inequality.

Figure 1 shows three different Lorenz curves. The blue curve represents
perfect equality of incomes, i.e. G = 0, the red curve corresponds to G = 1,
where only one person holds all income, while the brown curve represents the
empirically more realistic situation where G = 0.34. The areas A and B in
Figure 1 correspond to this final situation.

Proposition 1. The Gini coefficient is can be expressed by the formula

G = 2

∫ 1

0

[p− L(p)] dp

= 1− 2

∫ 1

0

L(p)dp (5)
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The above statement is of importance, as it relates the Gini coefficient to the
Lorenz curve directly, without having to define the areas A and B.

2.2.3 Estimation - covariance approach

This section considers the practical calculation of the Gini coefficient, introduc-
ing two distinct estimation methods, yielding the estimates Ĝ1 and Ĝ2, respec-
tively. First, the Gini coefficient can be seen as the covariance between Y and
the empirical c.d.f. F̂y. In order to see this, substitute (3) into (5). This yields

G = 1− 2

µ

∫ 1

0

∫ F−1(p)

0

ydF (y)dp

= 1− 2

µ

∫ 1

0

∫ x

0

ydF (y)dF (x)

= 1− 2

µ

∫ ∞
0

=F (∞)−F (y)︷ ︸︸ ︷∫ ∞
y

dF (x) ydF (y)

= 1− 2

µ

∫ ∞
0

yS(y)dF (y)

= 1− 2

µ

∫ ∞
0

[1− F (y)]ydF (y)

= 1− 2

µ

∫ ∞
0

ydF (y) +
2

µ

∫ ∞
0

yF (y)dF (y)dy

= 1− 2

µ

=µ︷ ︸︸ ︷∫ ∞
0

yf(y)dy+
2

µ

∫ ∞
0

yF (y)f(y)dy

=
2

µ

∫ ∞
0

yF (y)f(y)dy − 1

The plug-in estimator of G is clearly

Ĝ1 =
2

µ̂

∫ ∞
0

yF̂N (y)f̂N (y)dy − 1 (6)

where f̂N (y) is the kernel density estimator and F̂N (y) is the empirical c.d.f.
It is possible apply the Lindeberg-Lévy central limit theorem to (6); it can be

shown that
√
N(Ĝ −G)

L−→ N (0,VĜ), where VĜ is the asymptotic variance of

Ĝ; see e.g. Davidson (2009) for further details.
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Since E[Y ] = µ, E[F (Y )] = 1
2 and E[Y F (Y )]− E[Y ]E[F (Y )] = C[Y, F (Y )], the

expression for the Gini coefficient can be written as

G =
2

µ

[∫ ∞
0

yf(y)F (y)dy − µ

2

]
=

2

µ
{E[Y F (Y )]− E[Y ]E[F (Y )]}

=
2

µ
C[Y, F (Y )] (7)

Hence, the Gini coefficient is proportional to the covariance between income
and the cumulative distribution of income. However, it is possible to estimate
G without having to estimate the density of income. In fact, it is not even
necessary to assume that income has a density, which would be the case for
discrete models. Let y(i), i = 1 . . . , N denote the order statistics, Ri denote the

rank of the observations, R̄ denote the mean rank, and F̂N (y) be the mean of
F̂N (y) = (F̂N (y1), . . . , F̂N (yN )). Now, equation (7) can be estimated as

Ĝ2 =
2

ȳN

N∑
i=1

(yi − ȳ)(F̂N (yi)− F̂N (y))

=
2

ȳ

[
1

N

N∑
i=1

y(i)F̂N (y(i))− ȳF̂N (y)

]

=
2

ȳN

(
1

N

N∑
i=1

yiRi − ȳR̄

)
(8)

Thus, from (8), it is clear that it suffices to know the rank of incomes in addition
to the observations {yi}, in order to estimate the Gini coefficient.

2.2.4 Estimation - expected gains approach

Another approach to the Gini coefficient is the so-called expected gains method.
It was first proposed by Pyatt (1976). Assume that one person from the sample
and one income from y = (y1, . . . , yN )′ is selected at random, say yj . The
individual selected is then offered to move to that income level; the individual’s
current income is denoted by yi. Note that Pr(yi = yj) = 1/N . The average
expected payoff, or expected gain, for all individuals in the sample is

E[gain|i→ j] =
1

N

N∑
j=1

max(0, yj − yi), ∀i (9)

Clearly, an individual would not switch incomes if yj < yi, and if yj = yi, the
individual would be indifferent between moving and staying. In order to derive
the Gini coefficient, it is assumed that income is divided into k groups of equal
size. This setting is slightly more realistic and eases calculations considerably.
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Now, let µ = (µ1, ..., µk)′ be the vector of mean incomes, where each element
of µ is the mean income of group i. The proportion of individuals in group i
is denoted by pi. It holds that

∑k
i=1 pi = 1. The pi:s are stacked into p =

(p1, ..., pk)′. Furthermore, let E be a k x k matrix where the element Eij is

Eij = max(0, µj − µi)

which implies that tr(E) = 0. Using this notation, the Gini index can then be
calculated as

Ĝ3 = (µ′p)−1p′Ep (10)

3 Methodology

3.1 Background

This section briefly discusses some different aspects of income inequality in a
non-technical fashion. It also provides some insight into previous empirical
research on the matter.

3.2 Empirical topics in income inequality

3.2.1 General outline on covariates affecting income inequality

One of the most comprehensive studies is due to Jaumotte et al. (2008). In
that paper, the Gini coefficient is used as the dependent variable in a panel
model of 51 countries, both advanced and developing; the time period covered
being 1981-2003. The findings suggest that the most significant variables for
explaining change in income inequality are credit to the private sector, the
ratio of inward FDI (Foreign Direct Investment) to GDP and the industrial
employment share. The first two variables have a positive correlation with
income inequality; that is, an increase in one of the two causes an increase
in Gini, while industrial employment share is negatively associated with Gini.
Furthermore, the export-to-GDP ratio as well as the inverse of the tariff rate
are both significantly negatively correlated with Gini, which suggests that trade
globalization is associated with lower income inequality (ibid.).

3.2.2 Globalization variables

When it comes to trade globalization, most studies have focused on developing
countries, rather than on advanced economies. Chakrabarti (2000) uses a panel
of both high- and low-income countries, and finds that an increase in trade-to-
GDP significantly reduces income inequality. Other papers, for example Arad-
hyula et al. (2007) have reached the opposite conclusion. Consequently, more
empirical studies are likely required in order to over-bridge the current research
gap regarding the effect of trade flow increases on societal income disparity.
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As mentioned before, another globalization variable is industry’s share of
total employment. It has been decreasing in most developed economies as a
consequence of globalization; lower tariff rates means that it is cheaper to ex-
port from low-wage countries, and hence production has shifted from high-wage
countries to low-wage countries. On the other hand, if it is true that trade-to-
GDP-ratio is negatively correlated with income inequality, there exists a glob-
alization paradox, at least in countries where globalization has caused a decline
in the relative importance of the industrial sector. Consequently, it is not a
priori clear which of the two effects dominates. It is also likely that the share
of the labor force employed in the agricultural sector is important in explain-
ing cross-country income inequality, as agricultural jobs are often comparatively
poorly paid. However, agricultural employment is likely not a suitable variable
in explaining the change in inequality over time, since the share of labor force
employed in the agricultural sector is declining, and has been doing so for over
a century, in virtually all countries of the world.

3.2.3 Domestic variables

Apart from globalization variables, such as the trade-to-GDP-ratio and the in-
dustrial employment share, inequality of incomes is likely affected by domestic
policy, such as regulatory changes, which can be difficult to quantify. However,
it is reasonable to believe that left-wing parties exhibit a greater willingness to
reduce income inequality, while right-wing parties are more focused on economic
growth. Empirical research give support to the claim that growth rates tend to
increase during the tenure of right-wing governments (Aidt et al. 2016). Given
this result, an interesting question would therefore be if income inequality as
measured by Gini is decreasing at times of left-leaning governments, or equiv-
alently, increasing during right-wing governments. To the best of this author’s
knowledge, the effect of political ideology on income inequality as measured by
Gini has never been empirically investigated.

Government actions, regardless of its political color, can also be a contribut-
ing factor in reducing or increasing inequality. For example, Dabla-Norris et
al. (2015) has shown that increased government spending over time reduces
income inequality. Additionally, it is reasonable to believe that countries with
higher government expenditure have lower values of Gini than countries with
lower levels of government expenditure. Government-funded social programs
usually target the bottom earners in a society; hence, higher government spend-
ing should, to some extent, equalize income distribution. However, empirical
research has not found a definite evidence on this matter. For example, cross-
country studies by Lundberg and Squire (2003), de Mello and Tiongson (2006)
and Jauch and Watzka (2012) have found that government spending has in
fact exacerbated income inequality. A country-specific study using only data
from Brazil points in the same direction (Clements 1997). One plausible reason
may be that increased education spending, which is often a great proportion
of government expenditure, does not benefit the low income earners, since it
is often directed at universities and other institutions of higher education. In
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many countries, the working class does not have access to tertiary education,
and hence, government spending on education can in fact worsen inequality.

3.2.4 Financial globalization

The financial sector has grown considerably in size in virtually all countries.
For example, in the United States, the financial sector contributed to 7.2% of
total GDP in 2015, compared to 4.8% in 1980 (Bureau of Economic Analysis
2017). More importantly, empirical research (cf. Philippon and Reshef 2012)
has shown that workers in the financial sector tend to earn more than workers
in other sector with the same education level. For top executives, this premium
can be as high as 250% (ibid.). Moreover, higher dividends and greater capital
gains on the stock market will disproportionally benefit those with large holdings
of liquid assets, further increasing income inequality. However, while it is true
that wealthy individuals tend to invest more in stock market than low-income
earners, since the early 1980s, the relative importance of risky assets in the sav-
ings portfolio of the broad middle-class in many Western countries has increased
(Keister 2000, p. 70-71). The emergence of Internet-based platforms for asset
trading has further exacerbated this trend. Instead, credit expansion is likely a
better predictor for income inequality than stock market returns, since credit is
even more unequally distributed than income (Denk and Cournède 2015).

There have been quite a few empirical studies on the relationship between
income inequality and credit expansion. Focusing on middle- and high-income
countries, Beck et al. (2007) and Clarke et al. (2006) have found that private
credit decreases inequality as measured by Gini. Other studies, for example
Gimet and Lagoarde-Segot (2011), Fournier and Koske (2013), and the afore-
mentioned Jaumotte et al. (2008) and Jauch and Watzka (2012) have obtained
the opposite result.

3.2.5 Between-country convergence

Solow (1956) and Swan (1956) independently claimed that per capita income
will converge between countries; this is an important feature of the eponymous
Solow-Swan neoclassical growth model. Basically, this implies that poorer coun-
tries should grow faster than richer ones, until their economies have reached the
same per capita income. However, according to the Solow-Swan model, there
can be full convergence only if all countries have access to the same technology.
Since this is an unrealistic assumption, there will only be partial convergence in
practice. Several empirical studies have tried to estimate the speed of growth
convergence. A highly-cited paper by Barro and Sala-i-Martin (1991) put the
rate at 2% per year; this has given rise to the ”two percent convergence rule”
(Burda and Wyplosz 2013, p. 85). Decades after the development of the Solow-
Swan model, it was shown that convergence of income is limited not only to
the mean, but that it can also be applied to the variance of incomes (Bénabou
1996). However, convergence of income inequality has received considerably less
attention in the literature. Bénabou (1996) estimates the average rate of con-
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vergence at −3.9%, Ravallion (2003) at −2.8%, while Bleaney and Nishiyama
(2003) put the figure at approximately −1.3%, and Dhongde and Miao (2013)
at −2.4%. Hence, the average convergence speed seems to be hovering around
1-3% on a yearly basis.

Additionally, both for inequality convergence and growth convergence, the
speed of convergence is decreasing according to most studies (Abreu et al. 2005).
This means that the cross-country gap seems to be closing at a decreasing pace.

3.3 Problems in analyzing income inequality

As with any problem involving empirical analysis, there are a number of issues
arising when analysing income inequality. Often, data from national statistics
agencies is used. Hence, definitions on some variables might differ between coun-
tries. This is particularly true for the Gini coefficient. For example, in some
studies, the Gini coefficient net of tax is used; in other papers, the gross measure
is used. Moreover, there are several different organizations that provide Gini
data (Milanovic and Squire 2005).

To remedy the problem of different data sources, Solt (2016) has devel-
oped the so-called Standardized World Income Inequality Database (SWIID),
with the purpose of standardizing Gini observations from different sources. To
briefly summarize the SWIID approach, it uses data from several databases,
wherein one of the databases, namely the Luxembourg Income Study (LIS), is
chosen as the ”reference” data, to which all other series are harmonized. How-
ever, the LIS has relatively few data points, and hence, requires imputation.
By using loess regression on the data points of each of the other series used in
constructing the harmonization, it is possible to predict the missing points using
the coefficients from those regressions. For each point estimate, the SWIID uses
five-year moving average smoothing, with twice as much weight on the estimate
for the current year. To further account for the uncertainty associated with the
imputation, each of the predicted variables is re-generated 1,000 times using
Monte Carlo simulations, of which 100 are reported in the database. Then, it
is possible to calculate the mean of these 100 observations, in order to obtain
point estimates and the corresponding confidence intervals for each year. In the
empirical section of this thesis, the SWIID will be used as the data source.

Another problem arises when analyzing the trade-to-GDP ratio. There is a
reason to believe that the trade-to-GDP ratio, if used as an explanatory vari-
able for income inequality, may be endogenous, that is, correlated with the error
term. In the trade-to-GDP case, the reason for endogenity is likely that richer
countries tend to trade more, for reasons other than trade openness (Frankel
and Romer 1999). Hence, Frankel and Romer (1999) construct an alternative
measure of the trade share, based on geographical variables such as proximity
between trading partners. Geographical factors are likely not affected by vari-
ables omitted from the model, and given this, the constructed trade share is
highly correlated with the true trade share. Hence, it is reasonable to use this
variable in lieu of the actual trade share. A variable that is used instead of an
endogenous variable in this fashion, is called an instrument for that variable. In
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Section 4.1, endogenity and instruments will be discussed from a more technical
perspective.

Additionally, there are a number of statistical issues that arise when intro-
ducing time-dependence, mainly concerning the stationarity of panel models.
These will be discussed in Section 4.2.3.

4 Regression models for income inequality

In this thesis, the goal is to study which variables affect income inequality today,
as well as how the change over time in certain variables has affected income
inequality. Section 4.1 presents the theory behind the time-invariant regression
models, while Section 4.2 deals with the time-dependent models.

4.1 Static linear regression models

Assume the standard regression model

yi = xiβ + ui (11)

for i = 1, . . . , N , where yi and ui are scalars, xi is 1×K and β is K × 1. Note
that the above expression defines a generic regression model, so yi does not need
to be related to income or income inequality. Stacking the xi:s into one matrix
gives X, which is N ×K. Moreover, let y = (y1, . . . , yN )′. The expression for
the least squares estimate of β is then

β̂ = (X ′X)−1X ′y (12)

An estimator β̂ of β is said to be asymptotically consistent if limβ̂ = β as
N −→ ∞. By rewriting (12) and applying Slutsky’s theorem, it is possible to
show that the limit condition stated above is satisfied if and only if E[xi|ui] = 0
so that E[xiui] = 0. In practice, this means that an observation xi must not
be correlated with the random error term ui. However, in econometrics, it is
often the case that there is some sort of dependence between one or several of
the independent variables and the error term. An independent variable that
is correlated with the error term is said to be endogenous, while a variable
uncorrelated with the error term is called exogenous. In the case of endogenity,
β̂ is not a consistent estimator of β. To remedy this problem, the well-known
concept of instrumental variables will be briefly reviewed.

4.1.1 Instrumental variables estimation

Following White (1982), introduce a sequence of independent, not necessarily
identically distributed random L× 1 vectors {zi} that for all i satisfy the prop-
erties E[|u2i |1+δ] < ∆, E[|zilui|1+δ] < ∆ and E[|zilx1+δ

ik |] < ∆ for some finite
constants δ ∈ R+ and ∆ ∈ R+, where (k = 1 . . .K) and (l = 1 . . . L), as well
as E[ziui] = 0 for all i. The last assumption means that there must not be
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any correlation between zi and the random error term ui. A sequence {zi}
that satisfies these conditions is called a sequence of instrumental variables vec-
tors. Stacking the N instrumental variables vectors zi, gives the N × L matrix
Z. Note that the matrix Z contains both the exogenous variables in X as
well as the instrumental variables for the endogenous variables in X. Now, the
instrumental variables estimator β?IV of β is

β?IV = (P̂ ′NZ
′X)−1P̂ ′NZ

′y (13)

where P̂N is an L×K projection matrix. It can be shown, for example in the

appendix of White (1982), that
√
NΩ

−1/2
N (β?IV − β)

L−→ N (0, IK), where ΩN

is the asymptotic covariance matrix of β?IV . Depending on the choice of PN ,
different estimators of β are obtained. Setting PN = I, yields

β̂IV = (Z ′X)−1Ẑ ′y (14)

which is the instrumental variables version of the LS estimator (12). This esti-
mator only works if L = K. If, however, L > K, set PN = (Z′Z)−1Z ′X and
the corresponding estimator (15) is called the two-stage least-squares estimator,
β̂2SLS . Some algebra yields the compact form for the analytical expression,

β̂2SLS = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y (15)

The name ”two-stage least squares” is because the procedure can be done by
two separate regressions: First, LS regression of X on Z, to obtain the fitted
values X̂, and then a second LS regression of X̂ on y to obtain β̂2SLS . Later
in this thesis, it will be shown that this is also the so-called generalized method
of moments (GMM) estimator of β.

4.1.2 GMM estimation

The problem is to estimate the unknown parameter vector θ ∈ Θ, where Θ
denotes the set of all possible parameter vectors. In order to do this, the i.i.d.
sample {(y1,x1), (y2,x2), . . . , (yN ,xN )} is drawn. Throughout this thesis, it is
assumed that {(yi,xi), i ≥ 1} was generated by a stationary and ergodic stochas-

tic process. An estimator θ̂M of θ of the type

θ̂M = arg max
θ∈Θ

1

N

N∑
i=1

ω(yi,xi,θ) (16)

where ω(yi, xi,θ) is a continuous and twice differentiable function, is known as
an M-estimator (van der Waart 1998, p. 41). Two special cases of M-estimators
are the maximum likelihood estimator, where ω(y,x,θ) = log [f(y|x, θ)] and

the least squares (LS) estimator, in which ω(y,x,θ) = − [y − f(x, θ)]
2
.

Another class of estimators are the Z-estimators, where ”Z” means ”zero”
(ibid.). Assuming that the true parameter value θ is the unique solution to the
population moment restriction

f(θ) ≡ E[f(y,x,θ)] = 0 (17)
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then a Z-estimator θ̂Z of θ is an estimator that solves the corresponding system
of equations

gN (θ) ≡ 1

N

N∑
i=1

f(yi,xi,θ) = 0 (18)

Naturally, there is no guarantee that a solution to (18) exists. Hence, in practice,
it is more common to minimize the squared norm of this function, that is, to
solve the optimization problem

arg min
θ∈Θ
‖gN (θ)‖2W

where the squared Euclidean norm ‖‖2 has been replaced by the squared weighted
norm ‖‖2W , defined as ‖x‖2W = x′Wx, where W is a positive definite weighting
matrix. The estimator that solves the minimization problem defined above is
known as the generalized method of moments estimator (GMM) of θ, and can
be defined as

θ̂GMM = arg min
θ∈Θ

gN (θ)′WNgN (θ) (19)

where WN is some positive definite weighting matrix that converges to in prob-
ability to W (Hansen 1982); the choice of WN for the IV regression case will be
discussed in Section 4.1.4. Looking at the definition of Z estimators, it is clear
that the maximum likelihood method can be seen as a special case of the GMM.
In the ML case, the moment restriction is that the score function must be equal
to zero. Four important asymptotic theorems related to the GMM follow below.

Theorem 1. The estimator θ̂GMM is a consistent estimator of the unknown
parameter vector θ.

Proof. See Appendix 1 of this thesis. �

Theorem 2. Under the assumptions above,
√
N(θ̂GMM − θ) is asymptotically

normal with mean zero and covariance matrix Ω.

where
Ω =

[
(G′WG)−1G′WΥW ′G(G′W ′G)−1

]
(20)

and

G = E
[
∂f(yi,θ)′

∂θ

]
Υ = E [f(yi,θ)f(yi,θ)′]

Proof. Se Appendix 2 of this thesis. �

However, setting W = Υ−1, equation (20) simplifies to

Ω? = (G′Υ−1G)−1 (21)

Theorem 3. Ω? has the smallest possible asymptotic variance amongst all
weight matrices.
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Proof. See Appendix 3 of this thesis. �

As a consequence of the result established above, using the inverse of the covari-
ance matrix of the sample moment vector as a weighting matrix minimizes the
asymptotic variance matrix Ω. Consequently, Ω? is called the optimal weight
matrix.

Theorem 4. The 2SLS estimator is efficient in the class of all IV estimators
for instruments linear in Z.

Proof. Omitted, see Wooldridge (2002), p. 96-97. �

Hence, GMM estimators are consistent and asymptotically normal. In addition,
Theorem 4 says that the GMM estimator β̂2SLS of β is efficient.

4.1.3 Advantages and disadvantages of the GMM

The main advantage of the GMM framework is that it does not require the
distribution of the disturbances to be known. Assuming normality of the er-
rors, it would be possible to estimate the parameters using maximum likelihood.
However, if the normality assumption fails, the resulting parameter estimates
are be inconsistent (Wooldridge 2002, p. 385). In economics and finance, the
distribution of the data usually has heavier tails than does the normal distribu-
tion. Two examples of heavy tailed data frequently encountered in practice are
income distributions, covered in this thesis, and asset returns in finance. The
obvious drawback of the GMM is the efficiency issue described above; hence, in
cases where it is easy to specify the full model including the distribution of the
disturbances, the maximum likelihood method is usually preferred.

4.1.4 GMM estimation for instrumental variables

For instrumental variables regression, the objective function is

gN (β) =
1

N

N∑
i=1

zi(yi − x′iβ) =
1

N
(Z ′y −Z ′Xβ)

The weight matrix is

WN =
1

N

N∑
i=1

ziz
′
i =

1

N
Z ′Z

for which it holds (according to the weak law of large numbers) thatWN
P−→W .

Then

Q(β) =
1

N
(Z ′y −Z ′Xβ)′(Z ′Z)−1(Z ′y −Z ′Xβ)

The partial derivative with respect to β of the above expression is

∂Q(β)

∂β
=

2

N
X ′Z(Z ′Z)−1(Z ′y −Z ′Xβ) (22)
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Setting (22) to 0 and solving for β̂2SLS , yields

2

N
X ′Z(Z ′Z)−1(Z ′y − Z′Xβ̂2SLS) = 0

⇐⇒X ′Z(Z ′Z)−1Z ′y −X ′Z(Z ′Z)−1Z ′Xβ̂2SLS = 0

⇐⇒ β̂2SLS = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y (23)

given that the matrix X ′Z(Z ′Z)−1Z ′X is nonsingular. Note that (23) is equal
to the previously presented expression (15).

4.1.5 Covariance matrix of the 2SLS under homoscedasticity

Assuming that the variance of the error terms {ui}Ni given zi is equal for all i,

that is, E
[
u2i |zi

]
= σ2, where a consistent estimator of σ2 is σ̂2 = N−1

∑N
i=1 û

2
i

= N−1
∑N
i=1(yi − xiβ̂)2, the estimator of Ω under homoscedasticity is

Ω̂ = E
[
(β̂2SLS − β)(β̂2SLS − β)′

]
(24)

= σ̂2
[
X ′Z(Z ′Z)−1Z ′X)

]−1
= σ̂2

X ′Z =I︷ ︸︸ ︷
(Z ′Z)(Z ′Z)−1(Z ′Z)−1(Z ′X)


−1

= σ̂2
{[
Z(Z ′Z)−1Z ′X

]′ [
Z(Z ′Z)−1Z ′X

]}−1
= σ̂2(X̂ ′X̂) (25)

where X̂ = Z(Z ′Z)−1Z ′X.

4.1.6 Covariance matrix of the 2SLS under heteroscedasticity

Relaxing the assumption of homoscedasticity of the errors, and using the same
definition of X̂ as above, it is possible to write the 2SLS form of (20) as

Ω̂ = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1

(
N∑
i=1

û2i x̂ix̂
′
i

)
×

(Z ′Z)−1Z ′X(X ′Z(Z ′Z)−1Z ′X)−1

= (X̂
′
X̂)−1

(
N∑
i=1

û2i x̂ix̂
′
i

)
(X̂
′
X̂)−1 (26)

The heteroscedasticty-adjusted covariance matrix (26) is known as the Eicker-
Huber-White covariance matrix.
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4.1.7 Testing for endogenity

There are several tests for endogenity, see for example Holmquist et al. (2011).
The most commonly used is the Durbin-Wu-Hausman test (Durbin 1954, Wu
1973, Hausman 1978), which has the test statistic

(β̂IV − β̂LS)′D+(β̂IV − β̂LS) (27)

where D = VIV − VLS , and D+ denotes the Moore-Penrose pseudoinverse
of D. Under the null hypothesis, both estimators are consistent, but β̂LS is
more efficient. Under the alternative hypothesis, β̂IV is consistent whereas
β̂LS is inconsistent. The distribution of the test statistic under the null is
asymptotically chi-squared with number of degrees of freedom equal to the rank
of D.

4.1.8 Inferences about β

The results described in previous sections can be used for testing hypotheses
about β. Consider for example the linear hypotheses

H0 : Rβ = r

versus
H1 : Rβ 6= r

where R is q ×K and r is q × 1. The test statistic

N(Rβ̂2SLS − r)′(RŴNR
′)−1(Rβ̂2SLS − r) (28)

is due to Wald (1943). The distribution of (28) is asymptotically chi-squared
with q degrees of freedom, which means that it is possible to use the Wald test
in practice when testing the significance of β.

4.1.9 Testing for instrument validity

If there are more instruments than endogenous regressors, it is possible to test
the validity of the instruments by using the Sargan (1958) test, which has test
statistic

J =
û′Z(Z ′Z)−1Z ′û

û′û/N

L−→ χ2
L−K(α) (29)

where u is the vector of residuals. As an alternative to using (29) directly, the
Sargan test can be done in two steps: First, estimate the residuals from the
regression, then regress the estimated residuals û on all exogenous variables. It
is well-known that the resulting R2 value multiplied by the sample size N is
asymptotically chi-square distributed. The null hypothesis is that the instru-
ments utilized in the regression are uncorrelated with the error term. If at least
one of the instruments is in fact endogenous, the null hypothesis is rejected at
the significance level α. The Sargan test is also known as the Sargan-Hansen
test, since Hansen (1982) showed that it could be applied in a GMM setting.
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4.1.10 Weak instruments

An instrument is said to be weak if it is only weakly correlated with the en-
dogenous regressor. This can cause serious problems when estimating a model
with endogenous variables, since β?IV will be inconsistent and biased, and its
asymptotic distribution will not be normal (Staiger and Stock 1997). In fact,
it is possible to show that under weak instruments, both the IV and LS es-
timators will be biased, but the bias of the instrumental variables estimator
will be larger. Let Wbias be a set of instrumental variables matrices such that
Wbias = {Z : B ≥ b}, where B is a measure of the relative bias of the instru-
mental variables model relative to the least squares (cf. Stock and Yogo 2005),
and b is the desired maximal bias of the IV estimator compared to the LS. Let
also M = I −Z(Z ′Z)−1Z ′. A test of the null hypothesis

H0 : Z ∈ Wbias

against
H1 : Z /∈ Wbias

was proposed by Cragg and Donald (1993) and is defined by

C = mineval(Λ) (30)

where mineval() denotes the minimum eigenvalue, and

Λ = (Σ̂−1/2X ′Z ′Z−1Z ′XΣ̂−1/2)/L (31)

and
Σ̂ = (X ′MX)/(N −K) (32)

Hence, failure to reject the null indicates the presence of weak instruments.
It is possible to show that the test statistic follows the noncentral chi-squared
distribution; the critical values for the 2SLS estimation method are given in
Stock and Yogo (2005). These depend on the number of endogenous regressors,
the number of instrumental variables and the allowed maximal bias of the 2SLS
estimator relative to the LS estimator, b.

4.2 Capturing the time effect - dynamic panel data models

This section of the thesis considers models for analysing the change in income
inequality between countries over time. This requires the use of panel data.
In economics, it is often the case that a lag of the dependent variable is used
as a regressor; such a model is called a dynamic panel model. The two most
frequently encountered models for estimating equations of the dynamic-panel
type are the first-differenced GMM estimator and the system GMM estimator.
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4.2.1 First-differenced GMM

Consider first the so-called first-differenced GMM estimator, introduced by Arel-
lano and Bond (1991). The model is built upon the AR(1) time series model

yt = φyt−1 + ut (33)

for time t = 1, . . . , T and |φ| < 1. This model can be extended by using a
sample of N individuals, so that i = 1, . . . , N . This gives the model

yit = φyi,t−1 + uit (34)

where the disturbance term uit can be divided into ηi, the error specific to each
individual, and the idiosyncratic error, νit, that varies both across individuals
and over time. In this thesis, yit is the income inequality of country i at time
t, and ηi is the country-specific error. Since yit depends on ηi, and ηi is the
same for all time periods, the explanatory variable yi,t−1 also depends on ηi.
Hence, the model described by (34) is endogenous. A further assumption is that
E[νit] = 0 and that E[νitνis] = 0 for all s 6= t.

Augmenting the model described above by adding (K − 1) independent ex-
planatory variables, the model can be written as

yit = φyi,t−1 + β′xit + uit (35)

where the assumption of strict exogenity of the explanatory variables normally
encountered in panel models is relaxed. This allows for E[xitνis] 6= 0 for s < t
and E[xitνis] = 0 for s ≥ t. It was shown by Nickell (1981) that, because
endogenity, the standard fixed-effects panel model is biased when using the
lagged dependent variable as an explanatory variable, even as N → ∞. This
potentially serious problem can be solved in two steps. First, take the first
difference of equation (35), which yields

yit − yi,t−1 = φ(yi,t−1 − yi,t−2) + β′(xit − xi,t−1) + uit − ui,t−1 (36)

This expression can be written more compactly as

∆yit = φ∆yi,t−1 + β′∆xit + ∆uit (37)

In equation (37) above, ∆yi,t−1 is correlated with ∆uit. This is because the
term yi,t−1, which is in ∆yi,t−1, contains ui,t−1, which is also in ∆uit. To solve
this problem, Anderson and Hsiao (1981) suggest that lags of the dependent
variable are used as instruments. For ∆yi,t−1, the suggestion is to use ∆yi,t−2
that is uncorrelated with ∆ui,t given that the errors are serially uncorrelated.
Expanding this approach, Holtz-Eakin et al. (1988) propose the utilization of
all available lags as instruments. For example, for t = 3, the model can be
written

yi3 − yi2 = φ(yi2 − yi1) + (x′i3 − x′i2)β + ui3 − ui2 (38)

and the available instruments are yi1,x
′
i1 and x′i2. For t = 4, it is easy to

see that the instruments available are yi1, yi2,x
′
i1,x

′
i2 and x′i3. The number of
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available lags is highest for the time period closest to the final time T , that is,
for t = T . For this period, the model can be written as

yi,T − yi,T−1 = φ(yi,T−1 − yi,T−2) + (x′i,T − x′i,T−1)β + ui,T − ui,T−1 (39)

for which the instruments yi1, yi2, . . . , yi,T−2 and x′i1,x
′
i2, . . . ,x

′
i,T−1 are aval-

able. Thus, the instrument matrix Zi is the block diagonal matrix Zi =
diag([yi1, x

′
i1, x

′
i2], [yi1, yi2, x

′
i1, x

′
i2, x

′
i3], . . . , [yi1, . . . , yi,T−2, x

′
i1,

. . . , x′i,T−1]). Even for relatively small T , there will be more instruments than
parameters. Hence, a GMM approach is appropriate. A possible estimator of
ψ = (φ,β′)′ would thus be the solution to the GMM optimization problem

ψ̂AB = arg min
ψ∈Ψ

(
1

N

N∑
i=1

∆u′iZ
′
i

)
AN

(
1

N

N∑
i=1

Zi∆ui

)
(40)

where Ψ is the set of all possible parameter vectors. This estimator was first
proposed by Arellano and Bond (1991). The estimate of the weighting matrix
AN is

ÂN =

(
1

N

N∑
i=1

Z ′iHZi

)
(41)

where H is the tridiagonal (T − 1)× (T − 1) matrix

H =


2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

...
...

0 0 0 −1 2

 (42)

Define also

X̃i =


yi2 − yi1 x′i3 − x′i2
yi3 − yi2 x′i4 − x′i3

...
...

yi,T−1 − yi,T−2 x′i,T − x′i,T−1

 (43)

and

∆yi =


yi2 − yi1
yi3 − yi2

...
yi,T−1 − yi,T−2

 (44)

Using this, a closed-form solution the the optimization problem in (40) can be
written as

ψ̂AB = (X̃′ZAZ′X̃)−1X̃′ZAZ ′∆y (45)

where ∆y = IN ⊗ ∆y′i, X̃ = IN ⊗ X̃ ′i, Z = IN ⊗ Z ′i, and ⊗ denotes the
Kronecker product.
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Since the number of available instruments grows very quickly as T increases,
most statistical software enable the user to limit the instruments used in the
model, so that the number of instruments does not exceed the total observations.

While it is not required that E [∆uit∆ui,t−1] = 0, since the uit:s are first
differences of serially uncorrelated errors, it can be shown that the consistency
of the model relies heavily on the assumption that E [∆uit∆ui,t−2] = 0. With
this in mind, Arellano-Bond (1991) have developed a test for second-order serial
autocorrelation. The test statistic is

m =
∆û−2∆û?

(∆û′∆û)1/2
L−→ N(0, 1) (46)

where ∆û is the vector of first-differenced residuals from the regression, ∆û−2
is the vector of the first-differenced residuals lagged twice, and ∆û? is the vector
of trimmed first-differenced residuals to match ∆û−2.

4.2.2 System GMM

The Arellano-Bond model has been shown to preform poorly in the presence
of weak instruments (Blundell and Bond 1998). In the dynamic panel setting,
the weak instruments issue arises when the absolute value of the autoregressive
parameter φ in (35) is close to unity (ibid.). Moreover, Soto (2009) has shown
that the Arellano-Bond estimator underestimates the true value of β when N
is low. Hence, an alternative approach when estimating a dynamic panel data
model with endogenous variables was developed by Arellano and Bover (1995)
and Blundell and Bond (1998). This model is an extension of the Arellano-Bond
approach described in Section 4.2.1. The model is again

yit = φyi,t−1 + β′xit + uit (47)

for i = 1, . . . , N and t = 1, . . . , T . The Blundell-Bond model uses lagged differ-
ences as extra moment conditions. For example, for t = T , the model is

yiT = φyi,T−1 + x′iTβ + uiT (48)

and the available extra instruments are ∆yi1, . . . ,∆yi,T−2 and ∆x′i1, . . . ,∆x
′
i,T−1.

The instrument matrix can then be written as Ui = diag(Zi, Z̃i), where Zi is as
defined in the Arellano-Bond model, and Z̃i is a block diagonal matrix defined
by Z̃i = diag([∆yi2,∆x

′
i2,∆x

′
i3], [∆yi2,∆yi3,∆x

′
i2,∆x

′
i3,∆x

′
i4], . . . , [∆yi2, . . . ,

∆yi,T−2, ∆x′i2, . . . , ∆x′i,T−1]). Further, let U = IN ⊗ U ′i , and the weighting
matrix is now A = diag(A, IT−1). Let also

X̃i =



yi2 − yi1 x′i3 − x′i2
yi3 − yi2 x′i4 − x′i3

...
...

yi,T−1 − yi,T−2 x′i,T − x′i,T−1
yi3 x′i2
...

...
yiT x′iT


(49)
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and

∆y?i =



yi2 − yi1
yi3 − yi2

...
yi,T−1 − yi,T−2

yi3
...
yiT


(50)

Then, the corresponding Blundell-Bond estimator of ψ is

ψ̂BB = (X̃′UÃU ′X̃)−1X′UÃU ′∆y? (51)

where X̃ = IN ⊗ X̃ ′i and ∆y? = IN ⊗∆y?′i. This model is also known as the
system GMM. Since this model does not use first differences of the dependent
variable, it is not appropriate to use in situations when φ ≥ 1. This slightly
limits the usability of the system GMM, as compared to the Arellano-Bond
model, which does not require stationarity; cf. Madsen (2008). Another issue is
that while consistent, asymptotically normal and asymptotically efficient, both
the Arellano-Bond and Blundell-Bond GMM have an asymptotic bias that is
O(
√
T/N). This is, obviously, a weakness of the model. As N/T −→ ∞, the

asymptotic bias disappears (Alvarez and Arellano 2003).
There are a number of additional approaches using even more moment re-

strictions besides the Arellano-Bond and Blundell-Bond models; see for example
Cameron and Trivedi (2005, p. 766). However, in this thesis, the number of
models is limited to the two most common.

4.2.3 Panel unit root tests

As mentioned before, the Blundell-Bond model is more robust when the au-
toregressive parameter φ is close to unity. Hence, unit root tests are of great
importance in panel settings.

By the mid-1990s, several studies had found that conventional univariate
unit root tests, such as the Dickey-Fuller test, have low power in panel settings
(cf. Oh 1996). To remedy this problem, several tests of unit roots in panel data
have emerged. Letting the model of interest be

yit = φiyi,t−1 + uit (52)

a unit root is present if φ = 1. Im, Pesaran and Shin (2003) propose a test of
the hypotheses

H0 : φi = 1 ∀i

against
H1 : φi < 1, i = 1 . . . N1 and φi = 1, i = (N1 + 1) . . . N

that is, in the Im-Pesaran-Shin test, rejecting the null hypothesis means that N1

of the N individual time series are stationary, while the others have unit roots.
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Another panel unit root test of this type is due to Hadri (2000). The difference
between the tests is that the Hadri test statistic is based on the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test, while the Im-Pesaran-Shin test is based on
the augmented Dickey-Fuller (ADF) test.

5 Empirical analysis

The focus of the thesis will now shift towards the empirical analysis of income
inequality. The empirical analysis consists of three parts. First, a cross-section
of countries is used in order to construct a multiple linear regression model with
the Gini coefficient as the dependent variable. Then, a dynamic panel model
is fitted to the data in order to analyze what factors have influenced income
inequality over time. Finally, in the third section, the focus is on inequality
convergence.

The statistical software used in the empirical analysis are R, version 3.2.2,
EViews, version 9.5, and Matlab, version R2016a.

5.1 Data description

5.1.1 Dependent variable

Figure 2: Histogram of the values of the Gini coefficient from 1985 to 2013 for all
countries. The red curve is the normal distribution.

The dataset consists of 30 countries listed in Table 1. Also in Table 1, the ear-
liest and most recent value of the Gini coefficient (net of tax) for each country
is presented, together with the average yearly change in Gini for each country.
For most of the countries, the time range is between 1985 and 2013; the ex-
ceptions being Cyprus, Iceland and Romania, for which the time series start
slightly later, respectively. The countries for which Gini has decreased during
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this period are Brazil, Chile, France, Greece, Ireland, Norway, Switzerland and
Turkey. This implies that income inequality has increased in all other countries.

The total number of observations on the dependent variable is 840. Figure 2
shows the histogram of all 840 observations with the normal distribution super-
imposed. Considering the heavy tails of the distribution in Figure 2, the data
is clearly non-Gaussian.

Figure 3 highlights the trend in Gini between 1985 and 2013 for seven coun-
tries: Brazil, Turkey, the United States, the United Kingdom, Poland, Germany
and Sweden. The countries with the highest level of income inequality in 1985 -
Brazil and Turkey - have seen a decrease in Gini over the 28-year period, while
the other five countries have experienced an increase in Gini. Hence, it seems
reasonable to believe that there has been at least some degree of convergence
in income inequality during the sample period. This is further supported by
Table 1, from which it is apparent that income inequality has increased in most
countries. However, with the exception of the United States, inequality has
decreased in all countries that in the year 1985 had a Gini value of over 32.

Figure 3: The values of the Gini coefficient for Brazil, Turkey, the United States, the
United Kingdom, Poland, Germany and Sweden between 1985 and 2013.

The Gini data comes from the Standardized World Income Inequality Database
(SWIID); the statistical methodology used in constructing the SWIIID was de-
scribed in detail in Section 3.3.

5.1.2 Independent variables

Table 2 below presents the explanatory variables used in the models. The ratio
of government expenditures to GDP, the ratio of trade (imports and exports)
to GDP, and the ratio of domestic credit to the private sector to GDP are all
used in both the static and dynamic models. The credit variable measures the
total credit given by domestic banks and other financial institutions to domestic
firms, both public and private.
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Country Gini, 1985 Gini, 2013 Avg. ann. change, %
Australia 29.20 30.90 0.21
Austria 25.00 29.00 0.57
Belgium 23.00 23.00 0.00
Brazil 50.10 45.00 -0.36
Canada 28.50 31.30 0.35
Chile 50.50 47.20 -0.23
Czech Republic 19.50 24.60 0.93
Cyprus 22.10 (1989) 32.40 1.66
Denmark 25.20 26.80 0.23
Finland 20.50 25.40 0.85
France 32.60 30.10 -0.27
Germany 26.30 28.80 0.34
Greece 33.30 33.00 -0.03
Iceland 22.60 (1992) 24.60 0.42
Ireland 32.20 29.00 -0.35
Italy 31.00 31.60 0.07
Japan 25.60 29.10 0.49
Hungary 22.10 28.30 1.00
Netherlands 24.00 25.00 0.15
New Zealand 26.70 32.80 0.82
Norway 23.10 22.80 -0.05
Poland 26.40 30.70 0.58
Portugal 26.60 34.20 1.02
Romania 19.50 (1989) 32.30 2.74
Spain 28.50 33.90 0.68
Sweden 20.50 24.90 0.77
Switzerland 30.20 28.50 -0.20
Turkey 45.00 36.80 -0.65
United Kingdom 29.10 35.00 0.72
United States 32.40 37.80 0.60

Table 1: The values of the Gini coefficient (net of tax) in 1985 and 2013 for the
30 countries used in the empirical analysis, together with the average annual change
during this time period.

27



Variable Type Used in
Government-expenditure-to-GDP ratio continuous both models
Trade-to-GDP ratio continuous both models
Dom. credit-to-private sector GDP ratio continuous both models
Agricultural employment share dichotomous static only
Industrial employment share continuous dynamic only
Country population dichotomous static only
Country government dichotomous dynamic only

Table 2: Summary of the independent variables used in static and dynamic regression
models.

There are two labor market variables, one agricultural employment dummy,
and one continuous variable that measures the proportion of the labor force
employed in the industrial sector. The first variable is used only in the static
model, while the final is used only in the dynamic model. From the discussion
in Section 3.2.3, it is reasonable to believe that agricultural employment, albeit
being useful when analyzing cross-country income inequality, is unsuitable in
the dynamic model. Instead, the labor market variable in the dynamic model
is the industrial employment share. In the static model, the final covariate is
a size dummy; more populous countries are assumed to have greater income
diversity. The dynamic model utilizes a dichotomous variable taking the value
0 when the country is governed by a left-wing parties, and 1 when it is ruled
by a right-wing government. The logic behind this variable will be discussed in
greater detail in Section 5.3.1.

The static model includes the constructed trade share defined in Section 3.3
as an instrument for the possible endogenous trade-to-GDP-ratio. Since the
Frankel and Romer paper uses data from 1985, the measure has been corrected
by multiplying the constructed trade shares by the ratios of actual trade-to-
GDP ratios in 2013 to the trade-to-GDP ratios in 1985.

The World Bank provides the data on government expenditure (World Bank
2017a), trade share (World Bank 2017b) and domestic credit-to-GDP-ratio
(World Bank 2017c), while the data on the two labor market variables comes
from the International Labour Organization (ILO 2017). Finally, the CIA World
Factbook (Central Intelligence Agency 2017) is used for the data on population
and government.

Some descriptive statistics of the data are summarized in Appendix A4. The
correlation between the constructed trade share and the actual trade share is
of great importance for the validity of the model. In the dataset used in this
thesis, it is 0.91.
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5.2 Static model

5.2.1 Model specification and main results

The model is

log (yi) = β0 + β1log (x1i) + β2log (x2i) + β3log (x3i) + β4x4i + β5x5i + ui (53)

for i = 1 . . . 30, where yi is the income inequality of country i in the year 2013,
x1 is government expenditure as share of GDP, x2 is the sum of exports and
imports divided by GDP, x3 is the domestic credit to the private sector as share
of GDP, and the dummy variables x4 and x5 are defined as

x4 =

{
1 if employment in agriculture ≥ 5% of total employment

0 otherwise

x5 =

{
1 if country population is ≥ 15 million

0 otherwise

The corrected constructed trade share described in Section 5.1 is the sole in-
strument for the endogenous variable. Table 3 shows the results from the static
model. The column denoted by (1) gives the result assuming homoscedasticity,
while the column denoted by (2) gives the estimates when using the Eicker-
Huber-White estimator. Finally, column (3) presents the LS estimates for com-
parison. It is possible to conclude that the logarithms of government expen-
diture and trade-to-GDP-ratio are both significant variables for explaining the
cross-country differences in the logarithm of Gini. Both of these have negative
coefficients, that is, an increase in any of these decreases inequality. The dummy
variable high level of agricultural employment, x4, is also highly significant. The
size dummy x5 is significant at the 10% level for the heteroscedasticity-adjusted
instrumental variables and LS models, whereas it is insignificant in the non-
adjusted instrumental variables model. Both of the dummy variables have pos-
itive coefficients. The sole insignificant variable according to all three models is
the logarithm of the domestic credit to the private sector.

Moreover, the p-value of the Durbin-Wu-Hausman test indicates that trade-
to-GDP is endogenous. Additionally, the Wald and F-tests show that the joint
parameter vector β̂ = (β0, β1, β2, β3, β4, β5)′ is also highly significant. The
Cragg-Donald weak instruments test indicates that the instruments in the model
are strong. This result was fairly expected given the high correlation between the
actual and constructed trade shares. Finally, the R2 value is well above 70%,
implying that the model explains almost three-quarters of the cross-country
variation in income inequality.

5.2.2 Model diagnostics

Figure 4 above shows the quantile-quantile (Q-Q) plot and the plot of the resid-
uals versus the fitted values for both models; above, the 2SLS model and below,
the LS model. The residuals-versus-fitted-plot does not look too worrying. In
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(1) (2) (3)

Intercept, β̂0 4.38??? 4.38???? 4.11???

(8.65) (7.61) (8.32)

log(Gov.exp./GDP), β̂1 −0.19? −0.19? −0.18?

(−2.72) (−2.47) (−2.42)

log(Trade/GDP), β̂2 −0.15? −0.15? −0.12?

(−3.07) (−2.35) (−2.24)

log(Domestic credit), β̂3 0.03 0.03 0.05
(0.59) (0.65) (1.05)

High level of agric. emp., β̂4 0.16?? 0.16?? 0.17??

(3.71) (3.28) (3.61)

Population above 15 mil., β̂5 0.08 0.08 0.10�

(1.47) (1.38) (2.02)
Cragg-Donald p-value < 0.001??? < 0.001???

Durbin-Wu-Hausman p-value < 0.001??? < 0.001???

Wald p-value < 0.001??? < 0.001???

F-test p-value < 0.001???

Kolmogorov-Smirnov p-value 0.58 0.58 0.62
Breusch-Pagan p-value 0.59 0.59 0.48
R2 73.26% 73.26% 72.93%

Table 3: The results of the three regressions. Column (1) corresponds to instrumental
variable regression with heteroscedastic covariance matrix, column (2) is instrumental
variables regression assuming homoscedasticty of the errors, and column (3) are the
least squares estimates ignoring possible endogenity. In brackets the corresponding
t-statistics. Achieved level of significance: ? ? ? = 0.001, ?? = 0.01, ? = 0.05, � = 0.10.

30



Figure 4: The top figures show the Q-Q plot and residual versus fitted values for the
2SLS. The bottom figures correspond to the least squares model.
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Table 3, the value of the standard Breusch-Pagan (Breusch and Pagan 1979)
residuals test is presented. This indicates that is not possible to reject the null
hypothesis of residual homoscedasticity.

Since the sample size is relatively small (N = 30) and the data is heavy-
tailed, at least some of the residuals should be far away from the straight line.
However, the log-transformation seems to have partially remedied this problem,
and the Q-Q plot looks quite decent. Moreover, the Kolmogorov-Smirnov test
(Kolmogorov 1933, Smirnov 1948) gives p-values of 0.62 for the LS model and
0.58 for the IV model. Hence, it is not possible to reject the null hypothesis of
normality of the residuals. Hence, both models seem acceptable from a residuals
perspective.

5.3 Dynamic model

5.3.1 Model specification

The model is
log yit = φlog (yit−1) + β′xit + uit (54)

for and i = 1, . . . , 30 and t = 1985, . . . , 2013. As before the dependent variable
is income inequality, x1 is the logarithm of government expenditure as share of
GDP, x2 is the logartihm of the sum of exports and imports divided by GDP,
and x3 is the logarithm of domestic credit to the private sector as share of GDP.
However, x4 is now industry’s share of total employment. x5 is a dichotomous
variable defined as

x5 =

{
1 if a country is governed by a right-wing government

0 if a country is governed by a left-wing government

In this slightly simplified approach, a government is either classified as right-
wing or left-wing. Governments consisting of solely socialist or social-democratic
parties are left-wing; conversely, if conservative or Christian democrat parties
form the government, it is classified as right-wing. Coalition governments are
given either a 0 or a 1 depending on the main party of that particular govern-
ment. For example, the current (April 2017) German government is classified
as right-wing, since the largest party is the Christian democratic CDU/CSU,
even though it forms a coalition with the social-democratic SPD. There are four
countries in the dataset with presidential systems: Brazil, Chile, Cyprus and
the United States. This means that the head of government is also the head
of state. In these cases, the value of x5 is set depending on the political party
of the president. In the US case, x5 = 1 when a Republican is president, and
x5 = 0 under Democratic presidents. Additionally, the variable x5 is lagged
one year. This is because it usually takes a certain amount of time until a new
political regime has fully implemented its economic policy. If an election leading
to a change in government is held in the last quarter of a given year, x5 is lagged
two calendar years.
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Test P-value
Im-Pesaran-Shin <0.001
Hadri 0.0013

Table 4: Panel unit root tests for the 1985-2013 Gini data.

5.3.2 Results of the dynamic model

First, the tests described in Section 4.2.3 are calculated for the dependent vari-
able. Both the Hadri and Im-Pesaran-Shin tests indicate that there are some
stationary time series in the data. The results of the dynamic model are as
presented in Table 5. The middle column of the table gives the Arellano-
Bond (first-differenced GMM) estimates, while the rightmost column shows the
Blundell-Bond (system GMM) estimates. The time period analyzed is 1985 to
2013, and the countries are the same as in the static model. Table 5 shows
that the autoregressive parameter is highly significant and over 0.85 in value in
the Blundell-Bond model, and almost 0.80 in the Arellano-Bond model. The
explanatory variables trade-to-GDP-ratio, industry’s share of total employment
and the dummy right-wing government are all highly significant according to
both models. The signs of the coefficients for the industrial employment and
trade variables are negative, whereas it is positive for the government dummy.
That is, a decrease in either trade-to-GDP-ratio or employment share in the
industrial sector will be associated with an increase in inequality, assuming that
the other variables are kept constant. Similarly, a change from a left-wing to
a right-wing government should increase income inequality. The numerical ef-
fect of such a change is an increase in Gini by between 0.4 and 0.5 percentage
points. When it comes to the credit variable, it is positive but not close to
being significant in the Blundell-Bond model, whereas it is significant on the
10% level and negative in the Arellano-Bond model. A similar conclusion can
be reached regarding the government expenditure variable, which is significant
in the Arellano-Bond model and insignificant in the Blundell-Bond setting.

5.3.3 Model evaluation

Regarding the parameter values, the absolute values of the βi:s are higher for
all significant variables using the Blundell-Bond model. This does not come
as a surprise, considering the discussion in Section 4.2.2. The value of the
autoregressive parameter is also higher in the system GMM. Also, the p-value of
the Sargan-Hansen indicates that it is not possible to reject the null hypothesis of
instrument validity. Finally, the Arellano-Bond test for AR(2) serial correlation
in that model indicates that there is no serial correlation of significance in the
AR(2) term.

Moving on to residual analysis, Figure 5 shows the histogram of the residuals
as well as the plot of the standardized residuals against the fitted values for each
of the models. Table 6 shows the values of the third and fourth moments for
the residuals from both models. The kurtosis is much higher than 3, which is
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(1) (2)

AR parameter, φ̂ 0.778??? 0.852???

(48.06) (51.67)

log(Gov.exp./GDP), β̂2 −0.0183??? −0.000895
(−7.66) (−0.31)

log(Trade/GDP), β̂1 −0.0365? −0.0627???

(−5.24) (−12.89)

log(Domestic credit), β̂4 −0.00569� 0.00379
(−1.84) (1.22)

Industry’s share of total employment, β̂5 −0.0608? −0.0935???

(−2.57) (−4.02)

Right-wing government, β̂3 0.00424??? 0.00484??

(6.19) (3.33)
Sargan-Hansen p-value 0.56 0.37
Arellano-Bond p-value 0.40
Kolmogorov-Smirnov p-value < 0.001??? < 0.001????

Table 5: Coefficient estimates and in brackets, the t-statistics, from the dynamic panel
models. In column (1), the results using the Arellano-Bond (difference GMM) model,
in column (2) the results of the Blundell-Bond (system GMM) model. Achieved level
of significance: ? ? ? = 0.001, ?? = 0.01, ? = 0.05, � = 0.10.

Figure 5: The top left exhibit shows the histogram from the Arellano-Bond model,
while the bottom left exhibit is the histogram corresponding to the Blundell-Bond
model. The two figures on the right are the corresponding plots of residuals versus
fitted values.
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Measure Estimate, AB model Estimate, BB model
Skewness 0.25 0.40
Kurtosis 15.97 5.50

Table 6: Sample skewness and kurtosis for the residual plots from the dynamic re-
gression.

the value for the normal distribution, for both models. This is especially true
for the difference GMM, for which the kurtosis is almost 16. However, since the
Sargan p-value indicates that the instruments are valid, the non-gaussianity of
the residuals is not of immense importance.

Considering the residuals-versus-fitted values plots in the right-hand side
of Figure 5, the Arellano-Bond model has more outlier values compared to
the Blundell-Bond model. For example, one observation has a residual equal
to almost eight units, which is a relatively large figure, considering that Gini
values usually fall in the range of 20 to 40. This is an additional drawback of
the AB model.

5.4 Analysis of convergence

The model for analyzing τ -period convergence is

1

τ
log

(
Ginii,T
Ginit,T−τ

)
= α+ βlog(Ginii,T−τ ) + ui (55)

where i = 1, . . . , N , T = 1985, . . . , 2013 and τ = 1, . . . , 28. The model is
the same as in Bleaney and Nishiyama (2003) and Dhongde and Miao (2013).
Note that the model described by (55) is a standard linear regression, that is,
the GMM technique is not used in this case. Set τ ∈ {5, 10, 15, 20, 25, 28};
hence, five-year increments are used. The slightly non-standard value τ = 28 is
included to illustrate the average convergence over the entire sample period. The
average yearly convergence β̂ is given for each τ and for different starting years
T in Table 7. From this table, it is clear that the average yearly convergence
of income inequality is has been slightly less than 2%. For the entire sample
period, the average yearly convergence is 1.28 %.
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T/τ 5 10 15 20 25 28

1985 -0.0192 -0.0169 -0.0181 -0.0157 -0.0128 -0.0128
(-1.8867) (-1.9689) (-3.1961) (-4.1271) (-4.8723) (-4.9107)

1990 -0.0134 -0.0181 -0.0151 -0.0125
(-0.9624) (-2.4579) (-3.5954) (-4.2968)

1995 -0.0291 -0.0196 -0.0164
(-2.5279) (-4.0983) (-4.2501)

2000 -0.0185 -0.0156
(-2.2708) (-2.592)

2005 -0.0140
(-1.3945)

Table 7: The estimates of the average yearly convergence β for different starting years
T and time periods τ . In brackets the corresponding t-statistics for β.

There is a slight tendency of decreasing absolute values of the βi:s towards the
end of the sample period; this is consistent with the literature as described in
Section 3.2.5. Not surprisingly, the average convergence rates are less volatile
for higher τ , due to the sample period being longer.
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6 Conclusion

This thesis has attempted to answer three questions. What factors affect in-
come inequality between countries today? What factors explain the change in
inequality over time? And finally, has there been convergence of inequality be-
tween countries? The empirical analysis gives strong support for the hypothesis
that countries with low levels of agricultural employment have lower inequality,
and vice versa. Additionally, countries with high government expenditures have
lower levels of inequality, which is consistent with the hypothesis that extensive
social safety nets serve to flatten the income distribution. Moreover, a high
trade openness as measured by the trade-to-GDP-ratio is also associated with
lower income inequality.

Looking back on the period from 1985 to 2013, the income inequality has in-
creased, with some exceptions, in most of the countries sampled. Two variables
that are significant in explaining this development are the trade-to-GDP ratio
and the relative share of industry employment in the national labor markets.
Both of these are negatively associated with income inequality. However, most
countries that have seen a rise in one of these variables, have experienced a
decrease in the other, giving rise to a globalization paradox. Also, the political
color of the government is important in explaining inequality; periods of left-
wing government are associated with decreasing levels of income inequality and
vice versa. The importance of government political color in explaining income
inequality is a new contribution to the existing literature.

Furthermore, the thesis has included a discussion on the performance of
the of the most common GMM-based dynamic panel regression models − the
Arellano-Bond and Blundell-Bond models. The analysis has confirmed previous
empirical research on the matter, that is, that the Blundell-Bond model yields
higher parameter estimates, both of the independent regressors, but also of the
autoregressive term. Further analysis of the results of the dynamic models shows
that the residuals from the Blundell-Bond estimates are more close to a normal
distribution than the residuals from the Arellano-Bond model. This result, to-
gether with previous theoretical studies on the performance of the two models
in Blundell and Bond (1998) and Soto (2009), indicates that the Blundell-Bond
model is more robust when the value of the autoregressive parameter is close to
unity, as was the case in this thesis.

The analysis of cross-country convergence of income inequality points to-
ward an annual yearly convergence of around 1.5%, which is slightly lower than
reported by other studies. However, empirical research on this issue has been
relatively scarce. An interesting question for future analysis would be to further
investigate the robustness of the two dynamic models under different settings.
In particular, the effect of non-stationarity of the time series in the dynamic
model is a potential research question.
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Appendix

Proof of Theorem 1

Theorem 1. The estimator θ̂GMM is a consistent estimator of the unknown
parameter vector θ.

Proof. The proof is based on Yoshimoto (2008). In order to show consistency
of the GMM estimator, it first needs to be shown that sup

θ∈Θ
|QN (θ)−Q(θ)| con-

verges in probability to 0. To simplify notation, let {wi} = {yi,xi}. Expanding
terms and using the triangle inequality together with some standard algebra,
yields

sup
θ∈Θ
|QN (θ)−Q(θ)| = sup

θ∈Θ
|gN (θ)′WNgN (θ))− E[f(wi,θ)]′WE[f(wi,θ)]|

= sup
θ∈Θ
|gN (θ)′WNgN (θ)− gN (θ)′WNE[f(wi,θ)]

+ gN (θ)′WNE[f(wi,θ)]− gN (θ)′WE[f(wi,θ)]

+ gN (θ)′WE[f(wi,θ)]− E[f(wi,θ)]′WE[f(wi,θ)]|
≤ sup
θ∈Θ
|gN (θ)′WNgn(θ)− gN (θ)′WNE[f(wi,θ)]

+ sup
θ∈Θ
|gN (θ)′WNE[f(wi,θ)]− gN (θ)′WE[f(wi,θ)]|

+ sup
θ∈Θ
|gN (θ)′WE[f(wi,θ)]− E[f(wi,θ)]′WE[f(wi,θ)]|

= sup
θ∈Θ
|gN (θ)′WN {gN (θ)− E[f(wi,θ)}]

+ sup
θ∈Θ
|gN (θ)′(WN −W )E[f(wi,θ)]

+ sup
θ∈Θ
| {gN (θ − E[f(wi,θ])′}WNE[f(wi,θ)]|

= sup
θ∈Θ
|gN (θ)′WN |

P−→0︷ ︸︸ ︷
sup
θ∈Θ
|gN (θ)− E[f(wi,θ)]

+ sup
θ∈Θ
|gN (θ)′|

P−→0︷ ︸︸ ︷
sup
θ∈Θ
|(WN −W )| sup

θ∈Θ
|E[f(wi,θ)]|

+

P−→0︷ ︸︸ ︷
sup
θ∈Θ
|gN (θ)− E[f(wi,θ])| sup

θ∈Θ
|WNE[f(wi,θ)]|

Since all three terms of the final equality converge in probability to 0, it holds
that

sup
θ∈Θ
|QN (θ)−Q(θ)| P−→ 0 (56)
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Finally, by Lemma 3 of Amemiya (1973), the result in (56) implies that

θ̂GMMM
P−→ θ

which shows that θ̂GMM is indeed a consistent estimator of the unknown pa-
rameter vector θ. �
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Proof of Theorem 2

Theorem 2. The quantity
√
N(θ̂GMM−θ) is asymptotically normal with mean

zero and covariance matrix Ω.

Proof. The below proof follows Yoshimoto (2008), albeit slightly modified. Since

θ̂GMM = arg min
θ∈Θ

gN (θ)′WNgN (θ), take the partial derivative of the quadratic

form in order to find the argument of the minimum. This yields

∂

∂θ
QN (θ) =

∂

∂θ
[gN (θ)′WNgN (θ)]

=
∂

∂θ
[gN (θ)′]

∂

∂gN (θ)
[gN (θ)′WNgN (θ)]

= 2
∂gN (θ)′

∂θ
WNgN (θ) (57)

Set (57) equal to 0:

∂gM (θ̂GMM )′

∂θ
WNgN (θ̂GMM ) = 0 (58)

Now, according to the mean value theorem it is possible to write gN (θ̂GMM ) as

gN (θ̂GMM ) = gN(θ) +
∂gN (θ̃)

∂θ′
(θ̂GMM − θ) (59)

where θ̃ lies between θ̂GMM and θ. Substitute (59) into (58) and obtain

∂gN (θ̂GMM )′

∂θ
WN

[
gN (θ) +

∂gN (θ̃)

∂θ′
(θ̂GMM − θ)

]
= 0

⇐⇒ ∂gN (θ̂GMM )′

∂θ
WNgN (θ) +

∂gN (θ̂GMM )′

∂θ
WN

∂gN (θ̃)

∂θ′
(θ̂GMM − θ) = 0

⇐⇒ ∂gN (θ̂GMM )′

∂θ
WN

∂gN (θ̃)

∂θ′
(θ̂GMM − θ) =

∂gN (θ̂GMM )′

∂θ
WNgN (θ)

⇐⇒ (θ̂GMM − θ) =

[
−∂gN (θ̂GMM )′

∂θ
WN

∂gN (θ̃)

∂θ′

]−1
∂gN (θ̂GMM )′

∂θ
WNgN (θ)

Multiplying by
√
N on both sides gives

√
N(θ̂GMM−θ) =

[
−∂gN (θ̂GMM )′

∂θ
WN

∂gN (θ̃)

∂θ′

]−1
∂gN (θ̂GMM )′

∂θ
WN

√
NgN (θ)

Given that the sequence of observations {wi} are i.i.d., E [f(wi,θ)] < ∞ and
V [f(wi,θ)] <∞, it is possible to apply the Lindeberg-Lévy CLT to

√
NgN (θ),
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which yields

√
NgN (θ) =

1

N

N∑
i=1

g(wi,θ)
P−→ N {0,E [f(wi,θ)f(wi,θ)′]} (60)

Now, by utilizing first the sum rule of differentiation and then the weak law of
large numbers, it holds that

∂gN (θ̂′)

∂θ′
=

∂

∂θ′

[
1

N

N∑
i=1

g(wi,θ)

]

=
1

N

{
∂

∂θ′

[
nN∑
i=1

g(wi,θ)

]}

=
1

N

N∑
i=1

∂g(wi,θ)

∂θ′
P−→ E

[
∂f(wi,θ)

∂θ′

]
A similar exercise can be done in order to show the convergences of the partials
of gN (θ̂GMM )′ and gN (θ̃). Since it is known from the weak law of large numbers

that WN
P−→W , applying the continuous mapping and Slutsky theorems yields

[
−∂gN (θ̂GMM )′

∂θ
WN

∂gN (θ̃)

∂θ′

]−1
∂gN (θ̂GMM )′

∂θ
WN

√
NgN (θ0)

P−→

{
−E

[
∂f(wi,θ)′

∂θ

]
WE

[
∂f(wi,θ)

∂θ′

]−1}
E
[
∂f(wi,θ)′

∂θ

]
W

And thus, using the result in (60),

√
N(θ̂GMM − θ)

P−→ N (0,Ω)

where Ω is as defined in the main body of the text. �
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Proof of Theorem 3

Theorem 3. Ω? has the smallest possible asymptotic variance amongst all
weight matrices.

Proof. Following Pesaran (2015, p. 232), let Ω? = (G′Υ−1G)−1 and Ω =
(G′WG)−1G′WΥW ′G(G′W ′G)−1 as before. The goal is to show that Ω−Ω?

is positive semi-definite (p.s.d). This is equivalent to (Ω?)−1−Ω−1 being p.s.d.
First, utilize the Cholesky decomposition Υ = CC ′ and define R = C−1G,
B = C ′W ′ and L = BG. Now,

(Ω?)−1 −Ω−1 = (G′Υ−1G)−
[
(G′WG)−1G′WΥW ′G(G′W ′G)−1

]−1
= (G′C−1′C−1G)− (G′W ′G)(G′WCC ′W ′G)−1(G′WG)

= (G′C−1′C−1G)− (G′

=I︷ ︸︸ ︷
C−1

′
C ′W ′G)(G′WCC ′W ′G)−1

× (G′W

=I︷ ︸︸ ︷
C−1CG)

=

G′C−1′ −G′
=I︷ ︸︸ ︷

C−1
′
C′W ′G(G′WCC ′W ′G)−1G′WC


×C−1G

= G′C−1
′ [
I −W ′G(G′WCC ′W ′G)−1G′WC

]
C−1G

= R′
[
I −BC(G′BB′G)=−1G′B′

]
R

= R′
[
I −L(L′L)−1L′

]
R

Now, the final step is to show that R′
[
I −L(L′L)−1L′

]
R is p.s.d. It suffices

to show that
[
I −L(L′L)−1L′

]
is p.s.d., because for any p.s.d. matrix A, the

linear combination q′Aq is p.s.d. as well.
Multiplying

[
I −L(L′L)−1L′

]
with itself and expanding terms, yields[

I −L(L′L)−1L′
] [
I −L(L′L)−1L′

]
= I − 2L(L′LL′)−1L′ +L(L′LL′)−1

=I︷ ︸︸ ︷
L′L(L′L)−1L

= I − 2L(L′L)−1L′ +L(L′L)=1L′

= I −L(L′L)−1L′

Since
[
I −L(L′L)−1L′

]
is idempotent, it is p.s.d., and hence (Ω?)−1 −Ω−1 is

p.s.d. This completes the proof of Theorem 3. �
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Summary statistics

Tables 6 and 7 show the correlation matrix and data summary for the entire
sample, 1985-2013. Similarly, tables 8 and 9 show the correlation matrix and
the data summary for the subsample used in the static model, i.e. for the year
2013 only.

Gini Gov.exp. Trade/GDP Credit Ind. share
Gini 1 -0.58 -0.43 -0.11 -0.20
Gov.exp. -0.58 1 0.26 0.01 0.01
Trade/GDP -0.43 0.26 1 0.00 0.04
Credit -0.11 0.01 -0.32 1 -0.32
Ind. share -0.20 0.00 0.04 -0.32 1

Table 8: Correlation matrix for the entire dataset.

Variable min Q1 mean Q3 max
Gini 18.98 25.79 30.46 33.00 52.65
Gov.exp. 4.58 14.63 16.69 19.39 26.70
Trade/GDP 14.39 47.21 69.50 84.29 197.22
Credit 7.09 49.01 89.38 117.49 312.15
Industry’s share of emp. 15.78 22.40 26.23 29.60 44.29
Right-wing govt. ≥ 15 mil. 0 0 0.56 1 1

Table 9: The descriptive statistics for the dataset used dynamic model.

Variable min Q1 mean Q3 max
Gini 22.80 26.80 30.62 32.80 47.20
Gov.exp. 7.16 16.86 18.32 20.06 25.23
Trade/GDP 25.60 60.70 87.89 103.30 194.00
Const. trade share. 4.01 14.71 27.69 43.05 56.56
Credit 33.86 81.67 115.25 142.33 253.57
High agric. emp. 0 0 0.28 1 1
Population ≥ 15 mil. 0 0 0.48 1 1

Table 10: The descriptive statistics for the year 2013 only.

Gini Gov.exp. Trade/GDP Cons. trd. sh. Credit
Gini 1 -0.53 -0.53 -0.58 0.05
Gov.exp. -0.53 1 0.06 0.04 -0.06
Trade/GDP -0.53 0.06 1 0.91 -0.24
Cons. trd. sh. -0.58 0.04 0.91 1 -0.25
Credit 0.05 -0.06 -0.24 -0.25 1

Table 11: Correlation matrix for the 2013 subsample.
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