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Abstract

The use of wireless communication has grown rapidly over the last three decades.
The Swedish Post and Telecom Authority estimates that more than 80% of all
mobile traffic is received or transmitted from within buildings and the number is
expected to reach over 90% in the near future. Meanwhile, the number of energy
efficient buildings on the Swedish housing market has increased. This type of
buildings blocks nearly all electromagnetic waves and makes it difficult to rely
on outdoor antennas to provide sufficient coverage indoors. Subsequently, the
need for indoor antenna systems has arisen.

In this master’s thesis, a new antenna placement optimization algorithm is pro-
posed. The algorithm aims to minimize the number of antennas required to
provide sufficient indoor coverage, thus minimizing the cost of equipment and
installation work. The semi-deterministic dominant path model was utilized
by the optimization algorithm to predict coverage. Finding the most adequate
dominant paths is essential to get accurate predictions using the dominant path
model. This master’s thesis proposes a new method of finding the dominant
path by employing the path finding algorithms, A* and Θ*. The resulting
algorithms were tested and evaluated at three test sites.
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Chapter 1

Introduction

1.1 Background

The use of wireless communication for personal and commercial use has grown
rapidly over the last three decades. More devices than ever can communicate
over radio frequencies. Combined with an increasing demand of high quality
services, such as streaming high resolution video, calls for a well-planned and
optimized network.

The Swedish Post and Telecom Authority (PTS) estimates that more than 80%
of all mobile traffic is received or transmitted from within buildings and the
number is expected to reach over 90% in the near future. PTS also concludes
that more than 50% of all telephone calls are made through mobile devices and
that the majority of the use of mobile data communication services, such as
UMTS and LTE, are made indoors. Moreover, 30% of all Swedes rely solely on
mobile phones for making calls and, consequently, have no access to traditional
communication techniques, i.e. landlines [25].

In Sweden, most of the radio coverage indoors comes from base stations placed
outside. If the penetration of radio waves through the building walls is good, the
end user will experience full services. However, in the opposite case when the
waves cannot penetrate sufficiently, the end user will experience poor services
or, at worst, the use of radio devices will be impossible. As energy efficient
buildings have been introduced to the Swedish housing market in recent years,
an issue regarding the indoor radio coverage has arisen [1]. Good isolation and
energy windows has proven to be an efficient damper of radio waves and is now
a major cause of poor indoor coverage. This type of buildings reflect nearly
all electromagnetic waves and makes it difficult to rely on outdoor antennas to
provide good or even descent coverage indoors. Furthermore, recently imposed
European Union regulations state that all new buildings shall be energy efficient
as of the end of 2020. The issue of poor indoor radio coverage is thus likely to
increase within the European Union over the coming years [24]. Consequently,
new solutions need to be developed to meet the future demand of indoor mobile
device usage.
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1.1.1 Solutions for indoor coverage

Repeaters and base stations

The search for new technology to improve the indoor coverage has resulted in
a few solutions that have been tested and evaluated. One of them is repeaters.
Repeaters are often installed on the exterior of a building and their main task
is to receive the signal from the closest outdoor base station and retransmit it
using antennas mounted indoors. It also works in the opposite direction, i.e., it
receives signals from mobile devices inside the building and retransmits them
back to the outdoor base station. One of the main challenges with repeaters
is the importance of installing them correctly. It must be performed correctly
or the repeters may interfere with the general mobile network outside. If the
interference is severe, this might even block calls to emergency services. An
alternative to the use of repeaters is to dedicate a base station to each building.
This is then often placed inside the building and is then connected to antennas
within the building [25].

Distributed antenna systems

Regardless of whether a repeater or a base station solution is chosen, the signal
must still be distributed to all areas inside the building. This can be done using
a distributed antenna system (DAS). The DAS is an infrastructure consisting of
cables, hardware, and antennas, which has the task to transfer signals through-
out the building. An example of a DAS system can be seen in figure 1.1. Three
exterior antennas are placed on the roof of the building and the signal is fed to
a repeater placed in the basement. The repeater in turn repeats the signal and
feeds it to distributed antennas placed on every floor including the basement.

DASs connected to repeaters or base stations can improve the coverage indoors
considerably but they come at a cost. The infrastructure needed for the DAS
is expensive, at least in the sense of costs compared to the expected number of
users. As a consequence distributed antenna systems are often limited to larger
buildings such as shopping malls, larger apartment buildings and business com-
plexes. Furthermore, the placement of the interior antennas are of importance,
not only for good coverage but also to minimize the interference on the radio
network outside the building. This is not an issue if the exterior walls are good
blockers of the radio waves [25].

Wi-Fi

Due to the high cost of DAS relative to the number of users, focus has been
switched to a commonly existing indoor radio network infrastructure, namely
Wi-Fi. Wi-Fi can be advantageous compared to previous technology since the
access points needed are commodity hardware, i.e., it is easy to install and
in most cases professional help is not require to do so. Wi-Fi antennas are
often present in modern homes and companies, and no additional hardware
therefore needs to be installed in order to use it as a communication source.
Wi-Fi networks also operates at other frequencies than regular mobile traffic,

4



Figure 1.1: An example of a distributed antenna system (DAS) connected to a
repeater placed in the basement.

resulting in zero interference with the mobile network. However, Wi-Fi networks
are mainly developed to handle data communication and not traditional services
such as phone calls and text messaging. As technology progresses in the future,
this will probably change. Text messages have, in some sense, already been
challenged by applications such as Facebook Messenger and voice calls over
the internet protocol have been around for a couple of years with applications
such as Microsoft Skype and Facebook Messenger. Recently, a new generation
telecommunication system has been developed to support mobile voice, data,
and multimedia over internet protocol networks, namely Wi-Fi calling. Wi-Fi
calling makes the use of third party applications unnecessary when calling using
internet protocol networks [12].

A disadvantage of Wi-Fi networks is that antennas are mainly controlled by
the consumers. In densely populated areas, such as apartment buildings, in-
terference between local networks is often inevitable as every consumer installs
their own access points with no regards to their neighbours. Uncoordinated
Wi-Fi transmitters prevents the full potential of the network. To prevent this
issue, one recent solution is to build so called carrier Wi-Fi networks. Instead
of referring the responsibility of managing Wi-Fi networks to the consumers,
the property owner builds a coordinated network. All the residents then share
the available antennas. Carrier networks make it possible to reduce interference
and efficiently provide coverage throughout the building [25].
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1.1.2 Network planning

Today, when implementing a radio network indoors, antenna placement is often
based on the experience of the radio planner. Though software assisting antenna
placement is available on the market, they are usually expensive and sometimes
overly sophisticated 1 2.

When implementing a Wi-Fi network or a distributed antenna system in large
buildings such as shopping malls, apartment buildings, train stations, airports
or office complexes, it is important to plan the network properly to get good
coverage. The placement of the antennas are critical in order to optimize the
network. In an existing building, this parameter is often limited to practical
conditions such as where the wall sockets are located as well as aesthetic char-
acteristics of visible or non-visible antennas. The range of antennas used in
Wi-Fi and DASs are strictly limited. The outputted power of Wi-Fi antennas is
restricted by legal regulations in most countries [2], whereas DAS antennas are
instead limited as they need to not interfere with the mobile network outside the
building [25]. Because of the limited range, more antennas are needed to pro-
vide sufficient coverage. However, more antennas will necessitate more cables,
additional hardware and consequently generate higher costs. Even though for
instance Wi-Fi hardware and antennas are relatively cheap today, the number
of access points required to cover large buildings can be considerable. Signifi-
cant savings could be made if parts of the used access points could be removed
without reduction of the network quality.

1.2 Problem formulation

A question that often arises when planning a network in residential buildings
is: if an antenna is put in a staircase, will it be able to provide coverage to all
apartments on the current floor? In cases like this, accuracy, i.e., how strong
the received signal will be, is not the primary concern. Rather, the relevant
question is whether the required coverage is provided or not. Such answers can
be provided by advanced techniques, using ray-trace models, but it would be
preferable if one could move such conditions without resorting to such methods.

This master’s thesis was initiated to investigate if there are simple radio prop-
agation models that are able to provide a good answer to questions such as the
one above. It is also desirable to investigate if such propagation models can be
used to suggest appropriate locations of the antennas to ensure sufficient cover-
age. As the current practice of radio planning indoors is experience based, i.e.,
the placement of antennas is based on the knowledge and experience of the radio
planner, a key feature of the chosen propagation model should be its simplicity.

1.2.1 Aim

The aim of this master’s thesis is divided into two parts.

1Tommy Lundgren, radio planner, HI3G Access, personal communication, August 27, 2016.
2Johan Jober, CTO, North Net Connect, personal communication, June 22, 2016.
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1. The first part is to find an existing radio propagation model that can
predict the received signal strength in a given point in an indoor envi-
ronment, given the locations of the antennas. The propagation model is
not required to predict precise values of the received signal strength with
high precision, rather the model should allow for a reliable prediction as
to tell whether or not a given point will have sufficient coverage. Since
the propagation model should be pertinent, it must balance low compu-
tational load and accuracy loss well. It must also be fairly independent of
building details. In the ideal case, the model would only require a simple
floor plan to generate accurate predictions.

2. The second aim is to use the established propagation models to minimize
the number of antennas required in order to get a sufficient coverage in a
given area. The solution to this optimization problem should thus yield a
set of appropriate antenna locations.

1.3 Scope

Nearly all frequencies are of interest when planning a radio network. However,
it is difficult to optimize an existing distributed antenna system since hardware,
cables and antennas are not mobile. Hence, this master’s thesis will only con-
sider Wi-Fi networks and by that only frequencies in the 2.4 GHz band. The 5
GHz frequency band is excluded since mobile frequencies in Sweden are located
closer to 2.4 GHz. The main advantages of working with Wi-Fi networks are
the hardware, simplicity of moving antennas, and as well as the abundance of
software available to measure signal strength.

Radio signals propagate in all directions in the three-dimensional space. Not
only will they penetrate walls and objects, they also go through floors and
ceilings. Although it is clear that some radio waves will penetrate floors and
contribute to the received signal strength, this effect may be excluded to con-
struct easier models. Consequently, the thesis only consider the two-dimensional
case.

1.4 Thesis outline

This thesis is organized as follows:

Chapter 1 This chapter introduces the background of the master’s
thesis by covering the basis of network implementation
and planning. The background makes up the foundation
of the problem formulation which is also presented in the
chapter.

Chapter 2 The next chapter gives a brief introduction to radio
propagation modelling. It then introduces four differ-
ent radio propagation models developed especially for
indoor applications.
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Chapter 3 This chapter deals with the implementations of the
propagation models described in the previous chapter.

Chapter 4 This chapter evaluates all the propagation models de-
scribed and implemented in chapter 2 and 3, respec-
tively. It covers the theory of estimating the model pa-
rameters as well as how to analyse the result.

Chapter 5 This chapter addresses the antenna placement optimiza-
tion part of the thesis. The optimization problem is for-
mulated and an antenna placement selection algorithm
is presented and tested.

Chapter 6 The final chapter discusses the results obtained in the
thesis. It also suggests further development and im-
provements.
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Chapter 2

Propagation Models and
Theory

There are plenty of radio propagation models available, of which many have
been developed to predict signal strength in indoor environments. Propagation
models can mainly be divided into three categories: empirical models, determin-
istic models, and semi-deterministic models [17]. Empirical models are based on
observations of the channel and are often formulated as simplified mathemati-
cal formulas. Its parameters are fitted to a data set of channel measurements
collected from indoor environments similar to the modelled environment. Thus,
empirical models generally have low computational load but since they do not
take specific propagation details into account, they lack good accuracy. By con-
trast, deterministic models, which generally are based on Maxwell’s equations,
are very dependent on the propagation environment and require accurate de-
tails about the environment in order to perform well. The deterministic models
have high computational load which make them less preferable in the context
of this thesis. Semi-deterministic models are a trade-off between empirical and
deterministic models. They are expressed as simplified mathematical formulas
with some of the parameters based on the specific propagation environment.
These models have been proven to improve the accuracy compared to empirical
models and still retain low computational load [27].

2.1 Units

The received signal strength is measured in watts (W). However, the signal
power is known to vary considerably. As this variation can range several orders
of magnitude, it is impractical to use a linear scale. Thus, it is often more
convenient to express the power as a ratio compared to a base line of 1 milliwatt.
The ratio is expressed in the dimensionless unit decibel (dB). In this way, the
power Pw expressed in milliwatts (mW) can be expressed in a logarithmic scale
as

PdBm = 10 log10

(
Pw

1 mW

)
(2.1)
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which is thus expressed in the dimensionless unit decibel-milliwatts (dBm). A
signal power of 0 dBm corresponds to 1 mW and a decrease of power with 10
dBm means that the power has been reduced 10 times its previous value. The
formula to convert from dBm to mW is

Pw = 10
PdBm

10 . (2.2)

2.2 Free space model

Before introducing propagation models for indoor use, it is worth taking a closer
look at models for radio propagation in free space. The free space path loss
model is possibly the simplest model in the field of radio propagation. It de-
scribes to what extent the signal strength of an electromagnetic wave has dimin-
ished at a certain distance from the transmitter in the absence of obstacles. The
model is based on Friis’ transmission equation, which states that the received
power, Pr, at a receiving antenna with antenna gain Gr is

Pr = PtGtGr

(
λ

4πd

)2

(2.3)

where Pt is a outputted power from a transmitting antenna and Gt is its gain
[22]. The parameter λ is the wavelength of the electromagnetic wave and d is
the straight-line distance between the location x of the transmitting antenna
and the location p of the receiving antenna, more formally defined as

d = ||x− p||2 (2.4)

Power is expressed in watts (W) but as mentioned in section 2.1, it is often
convenient to express power in decibels instead. In that case, Friis’ equation is
modified to

Pr|dBm = Pt|dBm +Gt|dBi +Gr|dBi + 20 log10

(
λ

4πd

)
(2.5)

with power now being expressed in decibel-milliwatts (dBm) and the gain in
decibel-isotropic (dBi). If the transmitting and receiving antenna are assumed
to be isotropic, i.e., broadcasting and intercepting an equal amount of energy
in all directions, the antenna gains can be excluded. An isotropic antenna is
purely hypothetical and can not be constructed in reality. Nevertheless, they
can be adopted in modelling in order to simplify the use of the propagation
model. With these assumptions, the ratio of the antenna gains are equal to one,
which in logarithmic scale is equivalent to

Gt|dBi = Gr|dBi = 0. (2.6)

This simplifies Friis’ equation to

Pr|dBm = Pt|dBm + 20 log10

(
λ

4πd

)
. (2.7)
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The path loss, L, which is the difference between transmitted power and received
power is then

L(d) = Pt|dBm − Pr|dBm = 20 log10

(
4πd

λ

)
= 20 log10

(
4π

λ

)
+ 20 log10(d).

(2.8)

Henceforth, the signal power will always be expressed in dBm in the thesis.

2.3 Signal fading

The free space model can be used as an efficient predictor for received signal
strength in ideal conditions. However, in indoor environments there are many
obstacles that weaken the signal strength. The signal will reflect, refract and
diffract around walls, floors, furniture, human bodies and so forth. This causes
the signal to fluctuate in a random manner. As a consequence, several rays from
the transmitter will reach the receiver using different paths. This phenomena
is referred to as multipath propagation. The effects of multipath propagation
is destructive or constructive interference between different paths which makes
the signal amplitude fluctuate rapidly over short distances.

Another cause of fading is shadowing. Shadowing occurs when the receiver is
caught behind an obstacle relative to the transmitter, for example behind a
corner or wall. This causes long-term random fluctuations in the received signal
power. It is common to model shadowing as a random variable Ψ which follows
a log-normal distribution with probability density function [19]

fΨ(ψ) =
10

ψσπ
√

2ln(10)
e−

(10 log10(ψ)−µ)2

2σ2 (2.9)

where µ is the mean and σ the standard deviation of Ψ, respectively. The effects
of fading can make it challenging to model the received signal strength indoors,
especially when empirical models are used.

2.4 Indoor propagation models

One of the important goals of this master’s thesis is to find a radio propagation
model suitable for prediction in indoor environments. It must also manage to
make predictions within a reasonable time frame. Since deterministic models
are known for their high computational load, the focus has been directed toward
empirical and semi-deterministic models. This section presents the models that
were selected for testing and evaluation.

2.4.1 One-slope model

The one-slope model is an empirical model inspired by the free space model
in (2.8). It states that the path loss at a straight-line distance d from the
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Table 2.1: Some typical values for the path loss exponent γ used in the one-slope
radio propagation model [18].

Environment Path loss exponent (γ)
inside a building - line-of-sight 1.6 - 1.8
free space 2
obstructed in a factory 2 - 3
obstructed in a building 4 - 6

transmitting antenna, defined in (2.4), is

L(d) = L0 + 10γ log10(d) +Xσ (2.10)

where L0 is the path loss at a reference distance of 1 meter from the transmitter
[9][17][4][27]. The path loss exponent γ describes the radio environment. It is
typically calculated from measurements in some similar locations. The random
variable Xσ with standard deviation σ models the random attenuation of the
signal. The corresponding random variable

Z = 10
Xσ
10 (2.11)

which expresses the gain in watts may be modelled as a log-normal random
variable if only shadowing is present. If multipath effects are present with
no shadowing, then the random variable might instead be better modelled as
following a Rayleigh or Ricean probability distribution [3][15].

When dealing with Wi-Fi antennas, the outputted power is often not known.
Manufacturers of Wi-Fi access points do not usually provide details about the
exact power, making it difficult to set the L0-parameter in (2.10). Because
Wi-Fi antennas are the preferred choice in this thesis, the one-slope model is
slightly modified to overcome this issue. The introduced modification is

Pr(d) = Pr|d0
− 10γ log10(d) +Xσ (2.12)

where Pr(d) is the received signal strength at a straight-line distance d, as de-
fined in (2.4). The parameter Pr|d0

is the received signal strength at a reference
distance of 1 meter from the transmitter and γ is, as before, the path loss
exponent describing the radio environment.

The path loss exponent γ is in most cases not known. Therefore, it needs to be
estimated from measurements or extracted from a similar environment where
the exponent is known. Some possible values of γ can be found in table 2.1.

2.4.2 Dual-slope model

The attenuation of the signal can be influenced in varying degrees depending
on if the propagation occurs in line-of-sight (LOS), i.e., there is a straight, not
obstructed, path between the transmitter and the receiver, or in non-line-of-
sight (NLOS) [9]. It seems reasonable to assume that the signal will decay
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(a) (b)

Figure 2.1: The one-slope and dual-slope models are dependent on the direct
path between the transmitter and the receiver, as seen in (a), even if the signal
is unlikely to take this path. The dominant path model uses paths that go
around obstacle for predictions, as seen in (b).

quicker in a NLOS scenario as compared to a LOS scenario. The dual-slope
model uses two different slopes for LOS and NLOS and can be formulated as

Pr(d) = Xσ +

{
Pr1|d0

− 10γ1 log10(d), if LOS

Pr2|d0
− 10γ2 log10(d), if NLOS.

(2.13)

The path-loss exponents γ1 and γ2 are estimated from measurements from LOS
and NLOS environments, respectively.

2.4.3 Dominant path model

The one-slope dominant path model is a semi-deterministic model proposed to
enhance the accuracy of simple empirical models such as the one-slope model.
The one-slope and dual-slope models assume a direct propagation path between
the transmitter and the receiver. However, this is not likely to be true in
indoor propagation environments. Consider the case shown in figure 2.1. The
transmitter is placed in a room located in the upper left part of the building.
The receiver is placed in the room to the far right. In between, an elevator shaft
with concrete walls and metal cover is blocking the direct path, as seen in figure
2.1a. In this situation, empirical models based on the direct path are likely to
miss this significant information and will predict the received signal strength
inaccurately. A perhaps more likely scenario would be that most of the signal
energy would go around the solid obstacle to reach the receiver as seen in shown
2.1b.

The dominant path model rely on the fact that in most situations, more than
90 percent of the signal energy will flow through not more than three rays
between the transmitter and the receiver [10]. For instance, in figure 2.2, due to
multipath effects, many rays will use different paths to reach the receiver. All
the received rays are superimposed at the receiver to reconstruct the sent signal.
However, it is likely that the rays, shown as being solid lines, will carry most
of the signal energy since its path does not penetrate many obstacles that will
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Figure 2.2: Multiple rays reach the receiver by different paths. The dashed rays
will be attenuated more than the solid ones.

Figure 2.3: The dominant path model approximates the rays carrying the most
energy by one dominant path.

attenuate the signal. In contrast, the dashed rays will be highly attenuated due
to the number of walls that are penetrated. The idea is to approximate the rays
that carry most of the signal energy and replace them with one dominant path
as seen in figure 2.3. The dominant path found is used as input to the model.
The dominant path is defined by N waypoints between a transmitter located at
x1 and a receiver located at xN every location i /∈ {1, N} indicates a location
where the path changes direction. Then, the length ddom of the dominant path
is

ddom =

N−1∑
i=1

||xi+1 − xi||2 (2.14)

The predicted received signal strength is calculated based on the dominant path
using the one-slope model as

Pr(ddom) = Pr|d0
− 10γ log10(ddom) +Xσ. (2.15)

The dominant path model has been showed to significantly improve the accuracy
as compared to simple empirical models [10][27]. The complexity in the model
lies in computing the dominant path. One proposed way of computing them is
by using machine learning techniques taking in consideration the geometry of
the rooms [26]. However, machine learning requires a lot of data in order to get
good results. In this thesis we aim to find a good on-line method to calculate
the dominant paths which also can do it fast enough. This is proposed in the
next chapter.
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2.4.4 Dual-slope dominant path model

The dual-slope dominant path model is the LOS and NLOS extension of the
dominant path model. It is formulated as

Pr(ddom) = Xσ +

{
Pr1|d0

− 10γ1 log10(ddom), if LOS

Pr2|d0
− 10γ2 log10(ddom), if NLOS.

(2.16)

where the parameters have the same purpose as in the dual-slope model.
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Chapter 3

Dominant paths

In the previous chapter two empirical and two semi-deterministic propagation
models for indoor environments were studied. Two of them, the one and two-
slope dominant path models, are dependent on an approximation of the highest
energy carrying rays, called dominant path. In this chapter, a new method
of finding dominant paths will be introduced. The method proposed contains
path-finding algorithms frequently used in the design of computer games and in
robotics. Finding the most adequate dominant path as possible is essential in
order to get accurate predictions using the dominant path model.

3.1 A* search algorithm

The A* search algorithm is a widely used algorithm in computer science for path
finding and graph traversal, i.e., the process of finding an efficiently traversable
path between points, called nodes. The algorithm was first proposed by Pe-
ter Hart, Nils Nilsson, and Bertram Raphael in 1968 [21] and has since been
noted for its speed and accuracy. The algorithm is an extension of the famous
Dijkstra’s algorithm.

3.1.1 Dijkstra’s algorithm

Dijkstra’s algorithm has gotten its name after the Dutch computer scientist
Edsger W. Dijkstra who conceived the algorithm in 1959 and published it three
years later [8]. The algorithm is used to find the path associated with the least
cost to traverse between two nodes in a given graph. It works by visiting adjacent
nodes of the start node. It then selects the node with the lowest cost to visit
and expands its adjacent neighbours. It then repeats the process by selecting
the node that has lowest cost, calculated from the starting node, among all
the expanded nodes. If the graph is a grid, then the algorithm will expand all
nodes surrounding the starting node in a square shape until the goal node is
reached. In this way, the Dijkstra’s algorithm is guaranteed to find the path
with the lowest cost. However, since Dijkstra’s algorithm will expand every
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possible node until the best path is found it can be rather slow, especially if the
graph contains a large set of nodes and vertices.

3.1.2 Greedy best-fit-search

An alternative to Dijkstra’s algorithm is the greedy best-fit-search algorithm.
Greedy best-fit-search works in a similar way as Dijkstra’s algorithm but instead
of selecting nodes closest to the starting node, it selects nodes closest to the
goal node for expansion. Because the optimal path is unknown, the greedy
algorithm can never know for sure how close it is from the goal node. Instead,
it uses some estimate to determine the distance left to the target. This estimate
is usually referred to as a heuristic. Due to the heuristic, the greedy best-fit-
search will only expand nodes towards the goal node, thus avoiding expansion
towards nodes in the opposite direction relative to the goal node. Hence, the
algorithm will generally be very fast compared to Dijkstra’s algorithm. The
main disadvantage of the greedy best-fit-search is that, since it uses a heuristic
to determine the direction of expansion, it leaves no guarantee that the optimal
path, or even a suboptimal path, will be found. For instance, when an obstacle
is located in between the start and the goal node, the greedy best-fit-search
algorithm might head right into it before finding a way around. Therefore, there
is always a risk of detours when deploying the greedy best-fit-search algorithm
[20].

3.1.3 The A* algorithm

The A* search algorithm combines Dijkstra’s algorithm and the greedy best-fit-
search to extract the best out of both algorithms, namely speed and accuracy.
It does this by adding the cost of the path travelled, to the heuristic estimate
of how far it has left. More formally, if n is the current node that is being
examined and g(n) is the cost to travel from the start node to n and h(n) is the
heuristic estimate of the distance between the current node and the goal node,
then the A* search algorithm uses the function f(n) defined as

f(n) = g(n) + h(n) (3.1)

to evaluate which nodes to expand. Note that Dijkstra’s algorithm is a special
case of the A* search algorithm when no heuristic is used, i.e., h(n) ≡ 0, and
greedy best-fit-search is the opposite case, when the travelled cost is neglected,
i.e., g(n) ≡ 0. When the algorithm finds the goal node, it needs to backtrack
the expanded nodes in order to find the path. This is accomplished by saving
the parent of every node, i.e, where it came from during the traversal, and then
traversing the graph backwards.

The A* search algorithm used in this master’s thesis was implemented in Matlab
from pseudo code printed in an article by K. Daniel et al. from the University
of Southern California [11]. The pseudo code for the A* search algorithm is
summarized below in Algorithm 1. Some brief notes about the algorithm; sstart

is the start node and sgoal is the goal node. The set denoted ”open” is the
set of all nodes that has been expanded and are about to be checked. The set

17



Algorithm 1 A* search algorithm

1: procedure Astar
2: g(sstart) := 0
3: parent(sstart) := sstart

4: open := ∅
5: open.Insert(sstart, g(sstart) + h(sstart))
6: closed := ∅
7: while open 6= ∅ do
8: s := open.Pop
9: if s = sgoal then return success

10: closed := close ∪{s}
11: for each s′ ∈ nghbrs(s) do
12: if s′ /∈ closed then
13: if s′ /∈ open then
14: g(s′) :=∞
15: parent(s′) := NULL

16: UpdateVertex(s, s′)
return failed

17: procedure UpdateVertex
18: if g(s) + c(s, s′) < g(s′) then
19: g(s′) := g(s) + c(s, s′)
20: parent(s′) := s
21: if s′ ∈ open then
22: open.remove(s′)

23: open.Insert(s′, g(s′) + h(s′))

denoted ”closed” is the set of all nodes that has been evaluated. The method
”open.Insert” adds a node to the set with its corresponding estimate, as defined
in (3.1). The method ”open.Pop” retrieves and removes the node in the set
”open”, which minimizes f(n). The method ”nghbrs” retrieves a set containing
all the adjacent neighbours of a node. The method ”open.Remove” simply
removes a node from the set ”open”, and c is the cost function which will be
defined in the following equations, (3.8) and (3.9).

3.2 Floor plan format

A good radio propagation model must not only be fairly accurate and have
low computational load, it must also be easy to use. Radio network planning
indoors are typically experience based. Consequently, mathematical models are
generally not utilized. The result might be unnecessarily oversized networks
or individual receivers that lack proper coverage. To compete with experience
based methods, a useful model should minimize the need for preparation by
being able to make sufficient predictions without requiring more advanced input
than a two-dimensional floor plan.
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Figure 3.1: An example of a floor plan used to construct a binary image which
is used in prediction [7].

Typically, more advanced models such as the ones based on ray-tracing require
3-dimensional floor-plan databases, including details of all obstacles etc., in
order to work properly. Generally, it can be difficult to acquire such plans, if
they exists for the building in question. Even if they do exist, small errors in
the floor description can cause large deviations as ray-tracing models are very
sensitive to changes. On the other hand, 2-dimensional floor plans, such as the
one displayed in figure 3.1 often exist and are commonly digitalized.

It is common, especially in computer game design and robotics, to use a grid
graph as base for the A* search algorithm. Every tile in the grid is considered a
node and a node is generally connected to its four or eight adjacent neighbours,
as shown in figure 3.2, depending on if diagonal movement is allowed. A grid is
an intuitive way to discretize a two-dimensional space. If any tile represents a
no-go zone it is disconnected from its neighbours. A natural representation of
this kind of grid is a binary matrix where zeros represent free space and ones
represent the no-go zones such as walls. An example of a simple binary image
and its corresponding matrix can be seen in figure 3.3.

Figure 3.2: In a grid graph, every tile is considered a node and is often connected
to its eight adjacent neighbours.
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1 1 1 1 1 1 1 1
1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1
1 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1

 =⇒

Figure 3.3: An example of a simple binary image representing a floor plan and
its corresponding matrix. The ones in the matrix are representing walls and the
zeros are free space. The figure is based on Giovanni Soldi’s representation of
binary grids [23].

The simplicity of a grid image and its compatibility with traditional path finding
algorithms makes it an ideal floor plan format in this thesis. Regular floor plans
are usually created in software based on computer-aided design (CAD) and it
should therefore pose no difficulty to construct binary floor plans out of such
plans.

3.3 The modified A* algorithm

The idea behind introducing the A* search algorithm in radio originates from
Giovanni Soldi’s masters thesis published in 2011 [23]. Soldi used the A* to
enhance accuracy of positioning algorithms based on the received signal strength
indoors where the GPS-coverage is poor. In this master’s thesis, the A* search
algorithm will be deployed to determine the dominant paths used in (2.15) and
(2.16). Thus, the premise will be reversed; if the positions are known, what will
the signal strength be?

Before A* can be deployed, some aspects regarding the material of the walls
need to be resolved. Consider the case where a thick concrete wall is blocking
the path between the transmitter and the receiver. The radio signal passing
through the wall will be highly attenuated. If an alternative way around the
wall exists, perhaps through a doorway a few meters away or an another wall
made of a material with more favourable attenuation properties, then most of
the energy might reach the receiver that way instead. However, if there is no
such path available or the path available is too much of a detour, the dominant
path might be through the concrete wall. The A* search algorithm should
be able to determine which one it is. It seems proper to state the following
definition of a dominant path in the discussed graphs.

Definition 1. A dominant path between the nodes sstart and sgoal in a search
graph is the path associated with the lowest cost to traverse.

Dijkstra’s algorithm will always find the dominant path, since it is guaranteed
to find the path associated with the lowest cost. However, the computational
time might be prolonged, especially for large grids. The A* search algorithm
will also find the dominant path but at a faster pace as long as the heuristic
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does not overestimate the cost of reaching the goal [6].

To account for the properties of the walls, the floor plan format has to be
modified. Here, we propose to instead assigning a cost to every pixel in the
floor plan image that represents how ”easily” a radio wave enters the space
represented by the pixel. The cost of traversing a material is then compared
to the cost of traversing free space. In this thesis, the path loss in materials is
approximated by a linear function over short distances, such that

L(d) = −αd (3.2)

where L is the path loss, d is the Euclidean distance of the path, and α is a
an attenuation coefficient unique to the material, having dimensions m−1. Free
space, however, is a bit more tricky to approximate since the path loss varies a
lot over large distances and is non-linear. However, to find a suitable cost, α,
for pixels representing free space, the following observations may be made. If
the length of one pixel corresponds to ∆d meters, the path loss associated with
traversing one pixel horizontally or vertically in free space may be expressed as

∆L(d) = L(d+ ∆d)− L(d)

= 20 log10(d+ ∆d)− 20 log10(d) = 20 log10

(
1 +

∆d

d

)
(3.3)

where d is the Euclidean distance between the n:th pixel’s location, pn, and the
transmitters location x, i.e.,

d = ||pn − x||2. (3.4)

The free space path loss of two common Wi-Fi frequency bands, namely 2.4
and 5 GHz, are displayed in figure 3.4a. After 30 meters, the path loss is
around 70 dBm for the 2.4 GHz band and around 76 dBm for the 5 GHz band.
Ergo, the signal will, in indoor environments, almost certainly be lost at this
distance. Furthermore, the signal strength within a radius of 5 meters from the
transmitter is generally not of interest since the coverage is then guaranteed to
be good in most cases anyway. The differentiated free space path loss function,
(3.3), is plotted in figure 3.4b. Most of the energy of the signals will spread out
the first five meters, thereafter the energy will not decrease as fast.

In the light of the previous section, the interval between 5 and 30 meters can
justifiably be used to estimate a constant representing the path cost in free
space. The mean of the path loss per pixel may then be as an estimate of this
cost. If the differentiated path loss function in (3.3) is discretized for every
pixel n located at distances ∆d, 2∆d, 3∆d, . . . from the transmitter, it may be
expressed

∆L(n∆d) = 20 log10

(
1 +

1

n

)
. (3.5)

Using the assumed range between 5 and 30 m implies that the function is sam-
pled between L = b 5

∆de and U = b 30
∆de, where bxe denotes the nearest integer

function which rounds a real number x to nearest integer. In this case, the
samples can be used to calculate the pixel mean path loss as

µ∆d =
∆d

25

U∑
n=L

∆L(n∆d). (3.6)
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(a)

(b)

Figure 3.4: In (a), free space path losses for Wi-Fi frequencies 2.4 and 5 GHz. In
(b), the differentiated path loss function of the path losses in (a). The derivative
will be the same since they only differ by a constant.
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The approximated linear path loss in free space per pixel is then normalized
such that the cost cn to traverse a pixel n with a certain medium in a grid is
set to

cn =

{
1, if free space,

α
∆dµ∆d

, if a material.
(3.7)

Similarly, the total cost of moving into a pixel n from one of its adjacent neigh-
bours nadj is

g(n)− g(nadj) = %+ cn (3.8)

if movement was made horizontally or vertically and

g(n)− g(nadj) = %
√

2 + cn (3.9)

if movement was done diagonally, where % is the basic cost of moving horizontally
or vertically. % is usually set to be one.

3.3.1 Simulation results

In order to test the algorithm, we proceed to test it on simulated data. The
modified A* search algorithm was deployed on a binary image modified to the
correct format, as described in the previous sections. The pixel width was
selected as

∆d = 0.0562 m. (3.10)

Unfortunately, exact measurements of the attenuation of different materials were
unavailable when this project was performed. As a replacement, standard values
used in different radio design tools was used. A concrete wall will, according
to the standard values, attenuate a signal at 2.4 GHz approximately 26 dBm,
a standard window will attenuate the signal 4.4 dBm, and a energy efficient
window will attenuate the signal 33.8 dBm [25]. The concrete walls at the test
site were approximately 20 cm thick. Thus, an approximation of the attenuation
coefficient, α, for a 20 cm thick concrete wall can be approximated by assuming
that the attenuation of the wall will be 26 dBm. Consequently, the α-value used
for a concrete wall will in the simulations be:

α = 130 dBm/m (3.11)

Figure 3.5: The A* search algorithm used to find dominant paths between one
transmitter location and several potential receiver locations.
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The heuristic used was the Euclidean distance

h(n) = %
√

(ig − i)2 + (jg − j)2 (3.12)

where (i, j) is the coordinates of the current node n and (ig, jg) is the coordinates
for the goal node. This heuristic is used as it is the shortest possible path left
in reality between the current node n and the goal node. The multiplication by
% is done to weight h as compared to g.

As a simulation, many potential receiver locations were selected in an office
corridor. Dominant paths were then found from one transmitter location to all
the receivers using the A* search algorithm. The result of the simulation can
be seen in figure 3.5.

3.4 Θ* search algorithm

Some well-known flaws of using the A* search algorithm for a grid based graph
became clear during the simulations. The possible directions when travelling
from a node to another is strictly limited to eight options: horizontal, vertical
and diagonal movement. Consequantly, the paths might be longer than the
corresponding paths in reality, as it is limited to the grid edges. It is desired
to allow any possible heading in order to get realistic distances of the paths.
An algorithm developed to manage this is the Θ* search algorithm. The Θ*
search algorithm is an extension of the A* search algorithm which supports
any-angle path finding. It was developed by Kenny Daniel, Alex Nash, Sven
Koenig, and Ariel Felner in 2010. The extension is simple to implement and
adds only a minor computational load, making it effectively as fast as the A*
algorithm. However, Θ* solves the issue of a limited path directions by not
restricting the path to adjacent nodes. The path is thus allowed to ”jump” to
the next appropriate node, even if it is not adjacent, to build a smooth path. It
should be noted that, similar to the A*, Θ* is not guaranteed to find the truly
shortest path [11].

The only difference between the code of A* and Θ* is in the UpdateVertex pro-
cedure seen in algorithm 1. The updated version can be seen in algorithm 2. The

Figure 3.6: The Θ* search algorithm manage any angle path finding by not
restricting the path to traverse only adjacent nodes.
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Figure 3.7: The Θ* search algorithm used to find dominant paths.

main changes in the UpdateVertex procedure is the new method LineOfSight.
This method evaluates if two nodes are visible to each other, i.e., if there are
obstacles in the way of a straight line between them. If the procedure evaluates
to true, the shortest path between them is simply the straight line and Θ* will
record a ”jump” between the nodes as part of the path. If it is evaluated as
false, then the algorithm must continue to search for a path around the obstacle.
The LineOfSight procedure is equivalent to determine which pixels to select
when drawing a straight line in a raster display. An algorithm that does this is
Bresenham’s line-drawing algorithm. The algorithm can be implemented with
only integer operations which makes it very fast.

The Θ* search algorithm was also implemented in Matlab and simulated in the
same way as the A* search algorithm detailed in subsection 3.3.1. An example
of the result can be seen in figure 3.7.

Algorithm 2 Θ* search algorithm

1: procedure UpdateVertex
2: if LineOfSight(parent(s), s′) then
3: if g(parent(s)) + c(parent(s), s′) < g(s′) then
4: g(s′) := g(parent(s)) + c(parent(s), s′))
5: parent(s′) := parent(s)
6: if s′ ∈ open then
7: open.Remove(s′)

open.Insert(s′, g(s′) + h(s′))

8: else
9: if g(s) + c(s, s′) < g(s′) then

10: g(s′) := g(s) + c(s, s′)
11: parent(s′) := s
12: if s′ ∈ open then
13: open.remove(s′)

14: open.Insert(s′, g(s′) + h(s′))

3.5 Source code

The source code for the Matlab implementation of the A*/Θ* search algorithms
is available on Github at https://github.com/Thoronion/Astar-Thetastar-
MATLAB.
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Chapter 4

Propagation model
evaluation

In chapter 2, four propagation models for indoor environments were introduced.
In chapter 3, algorithms to implement the models were described. In this chap-
ter, all the models are tested and evaluated at three different test sites and the
results are presented.

4.1 Experimental set-up

4.1.1 Test sites

To evaluate the radio propagation models detailed in chapter 2, a few test sites
were required. Three different floors with various characteristics were chosen in
two separate buildings.

GH - Greenhouse

The first test site (GH) was the entrance floor of a ten story apartment building
called Greenhouse, located in Malmö, Sweden. GH is constructed to be as
energy efficient as possible, with windows and isolation specialized to keep the
heat energy within the building. Consequently, radio signals will experience
difficulties penetrating the walls and the radio coverage inside the building is
poor. As a counter measure, a repeater has been installed in the basement which
receives signals from an antenna mounted on the roof top and redistributes the
signal to indoor antennas mounted in the stairway on every floor. However, the
antennas in the stairway do not guarantee sufficient coverage in the apartments
and common areas. As access to the apartments was highly restricted, the
entrance floor was used as a surrogate. The binary representation of the floor
can be seen in figure 4.1.
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Figure 4.1: A binary image map over the test site Greenhouse.

Figure 4.2: A binary image map over the office corridor in the Centre for Math-
ematical Sciences which was used as a test site.

Figure 4.3: A binary image map over the foyer in the Centre for Mathematical
Sciences which was used as a test site.
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MH1 - Office corridor in the Centre for Mathematical Science

The second test site (MH1) was an unoccupied office floor in the building of
the Centre for Mathematical Sciences at Lund University in Lund, Sweden. A
main corridor of 27 meters runs across the entire floor. The corridor is further
flanked by adjacent offices and storage rooms as seen in figure 4.2. Since the
corridor was unoccupied, it was easy to gain access to the offices to conduct
measurements without disturbing daily work. To minimize the prediction area
and speed up the calculations, the measurements were restricted to the offices
and the corridor. This was justifiable as storage areas are visited sporadically
and generally for shorter periods, and are thus generally not prioritized during
network planning.

MH2 - Foyer in the Centre for Mathematical Science

The third, and last, test site (MH2) was the foyer at the Centre for Mathematical
Sciences, as shown in figure 4.3. It is approximately 65 meters long and 7 meter
wide. It consists mainly of an open area, except for two pillars located on either
side of the foyer. The walls and the pillars are made of bricks. This test site
was selected to represent a large open area, such as a shopping mall or a metro
station.

4.1.2 Equipment and Measurement

To measure the received signal strength, a Sony Z3 smart phone was used. The
smart phone is a simple hand-held device which makes it easy to use and carry
around. The use of smart phones for making calls and using data communication
services indoors is widespread, thus making the smart phone a suitable test
device for this project.

The measurements of the received signal strength were collected by walking
around the corridor area with the smart phone. The sampling of the sig-
nal strength was carried out automatically using an application called TEMS
Pocket, which was installed on the smart phone. Since the GPS-coverage in-
doors is strictly limited and rather inaccurate, manual pinpointing was used to
register the walking path. Consequently, measurements collected lack informa-
tion about location and only contains time stamp and received signal strength
value. Thus, the measurements must be manually interpolated. For instance,
consider a measuring session that ends up with N waypoints that were man-
ually pinpointed, called w1, w2, . . ., wN , respectively. These waypoints were
pinpointed at times T1, T2, . . ., TN , which are the times elapsed since the session
started. Thus, the i:th measurement, provided by the smart phone, has time
stamp ti and its location pi is to be determined. This was performed by finding
indices L and U such that

ti ∈ [TL, TU ] (4.1)

is fulfilled. For the interpolation to work, the time, ti, must be normalized on
the interval (4.1) as

t̂i =
ti − TL
TU − TL

. (4.2)
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After that, the linear interpolation between corresponding way points wL and
wU is performed as

pi =
(
1 t̂i

)( 1 0
−1 1

)(
wL

wU

)
. (4.3)

To handle the interpolation, a program was written in C# to handle the con-
version between the formats. A Matlab script was further created to import the
data and interpolate the measurements between the extracted way points.

4.1.3 Parameter estimation

The propagation models presented in chapter 2 are formulated as

Pr(d) = Pr|d0
+ 10γ log10(d) (4.4)

where Pr|d0
and γ are treated as unknown parameters. Therefore, these pa-

rameters need to be estimated from measurement data. A simple and effective
method for estimating these parameters is the ordinary least square method.
Ordinary least squares selects the parameters that minimizes the squared sum
over the model residuals. Let di denote the Euclidean distance between the
transmitter location x and the i:th measurement location pi, i.e.,

di = ||x− pi||2. (4.5)

The relationship between the received signal strength in location i, denoted ri,
and the distance di can be expressed as

ri = xTi β + εi (4.6)

where

xi =

(
1

10 log10(di)

)
, β =

(
Pr|d0

γ

)
(4.7)

with εi denoting the error between the measured signal strength and the pre-
dicted value, i.e.,

εi = ri − xTi β. (4.8)

The relationship in (4.6) can be expressed more compactly as

r = Xβ + ε (4.9)

where

r =


r1

r2

...
rN

 , X =


xT1
xT2
...

xTN

 and ε =


ε1

ε2

...
εN

 , (4.10)

assuming there are N data samples. The sum of the squared residuals is used as
a measure of how well the model fits the data. Thus, the estimated parameters
are the ones that minimize the sum, i.e.,

β̂ = arg min
β

||r−Xβ||22 (4.11)
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where β̂ is the optimal solution to the optimization problem. The solution to
the ordinary least square problem is well known [16] and may be expressed in
matrix form as

β̂ =
(
XTX

)−1
XT r. (4.12)

The estimated parameters β̂ are then used to form the predictor

r̂ = Xβ̂. (4.13)

4.1.4 Normal distribution fitting

To get an idea of the accuracy of the predictions, the estimated residuals

ε̂ = r− r̂ (4.14)

are formed. As stated in section 2.4.1, the residuals of the models may be ex-
pected to fit the normal distribution which has the probability density function

φ(x) =
1√

2σ2π
e−

(x−µ)2

2σ2 (4.15)

where µ is the mean and σ the standard deviation of the distribution. These
parameters are unknown and need to be estimated. The estimated mean, µ̂,
and the variance, σ̂2, are estimated according to

µ̂ =
1

N
1
T
N ε̂ and σ̂2 =

1

N − 1
||ε̂− µ̂1N ||22. (4.16)

where

1N =


1
1
...
1


N ones. (4.17)

The cumulative distribution function of the fitted normal distribution is then

Φ(x) =

∫ x

−∞
φ(t) dt (4.18)

which compared to the empirical distribution function is calculated as

Φ̂(x) =
1

N

N∑
i=1

1ri≤x (4.19)

where
1ri≤x = |{i : ri ≤ x}|. (4.20)

The indicator function 1ri≤x indicates how many population samples ri that
are less than or equal to x.
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Table 4.1: Comparison between propagation models evaluated at Greenhouse.

model mean error std. deviation
one-slope 8.20 9.93
dual-slope 4.45 5.71
dominant path, A* 6.52 8.04
dominant path, Θ* 6.30 7.74
dual-slope dominant path, A* 3.63 4.49
dual-slope dominant path, Θ* 3.73 4.67

4.2 Evaluation of models

The test site GH was utilized to evaluate the radio propagation models in chap-
ter 2. In this scenario, an access point was placed at GH, as shown in figure
2.1a. This placement corresponds to the real positioning of access points in the
building. The intention of this placement was that it would hopefully provide
coverage throughout the floor. However, as seen in the figure, an elevator shaft
is located between the access point and the lower part of the rightmost room. If
a device is placed there will it experience enough coverage from the transmitter?

In order to determine this measurement data were collected at the test site.
Then, model parameters were estimated to make predictions. The predictions
were then compared to the measurements to get an idea about the models under
ideal condition when plenty of measurement data is available.

4.2.1 Summary of the results

All the models were evaluated at GH. The mean error and the estimated stan-
dard deviation for every model have been summarized in table 4.1. As can be
seen, the one-slope model does have problems with accuracy, as expected. Fur-
thermore, the dominant path model shows an improvement compared to the
one-slope model. There was also a slight difference between using the A*, as
shown in figure 4.8a, or Θ*, shown in figure 4.8b. The Θ* algorithm showed
a slightly better result, except for the dual-slope dominant path model that
showed the opposite. The dual-slope extension of both models enhanced the
prediction accuracy considerably.

The estimated parameters for all the evaluated models at GH have been sum-
marized in table 4.2. The reference parameter Pr|d0

varies between -38 and -27
dBm and the path loss exponents varies in the range 3.1 to 3.9, which was ex-
pected according to the exemplary values in table 2.1. In the LOS environment,
the path loss exponent is below the free space value of 2, which also corre-
sponded to the expectations since there are no obstacles in its way and due to
wave guiding, i.e., walls, floors, and ceiling will reflect signals that in free space
would not reach the receiver.

Most of the residuals seemed to follow a normal distributed pattern. In figure
4.4a, a normal probability plot compared to the residual data is shown for the
best performed model in GH, the dual-slope dominant path model. The cor-
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Table 4.2: Estimated model parameters for all the evaluated propagation models
at Greenhouse.

model β1 β2 βlos1 βlos2 βnlos1 βnlos2

one-slope -33.3 3.1 – – – –
dual-slope – – -35.8 0.6 -38.3 3.2
dominant path, A* -27.2 3.7 – – – –
dominant path, Θ* -27.0 3.7 – – – –
dual-slope dominant path, A* – – -35.5 0.6 -29.2 3.9
dual-slope dominant path, Θ* – – -35.5 0.6 -28.5 3.9

(a) (b)

Figure 4.4: In (a), normal probability plot for the residuals of the dual-slope
dominant path model. In (b), the empirical cumulative distribution function
(blue) of the residuals compared to the estimated cumulative distribution func-
tion (red).

responding empirical cumulative distribution function of the residuals together
with the true cumulative distribution function of the fitted normal distribu-
tion is shown in figure 4.4b. The predictions made by the dual-slope dominant
path model compared to the measurements along with residuals are displayed
in figure 4.9.

4.2.2 LOS and NLOS classification

The dual-slope model and the dual-slope dominant path model require every
sample to be classified as LOS or NLOS prior to the estimation of the model
parameters. Since the floor is represented by a binary format, Bresenham’s
algorithm can easily be applied to determine LOS/NLOS relations. Figure 4.7
shows the result of the algorithm when deployed at GH. Blue samples indicate
LOS condition and red samples are NLOS. As the figure shows, the algorithm is
very accurate. The data was then separated in two sets and fitted to two different
slopes. Figure 4.5b shows all the measurements collected at GH together with
the LOS/NLOS-classification. The figure supports the idea that the accuracy
can be enhanced by modelling LOS and NLOS separately.
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(a)

(b)

Figure 4.5: The one slope model fitted to measurement data in GH (a) compared
to the dual-slope model fitted to the same data set (b).
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(a)

(b)

Figure 4.6: The dominant model fitted to measurement data in GH (a) com-
pared to the dual-slope dominant path model fitted to the same data set (b).
The A* search algorithm was used to retrieve the paths.
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Figure 4.7: Bresenham’s algorithm is used to determine if a sample is line-of-
sight (blue) or non-line-of-sight (red) from the transmitter.

(a) (b)

Figure 4.8: Dominant paths found by the A* search algorithm (a), and the Θ*
search algorithm (b), at GH.
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(a)

(b)

(c)

Figure 4.9: Predictions at GH using the dual-slope dominant path model. The
paths were calculated using the A* search algorithm. Figure (a) depicts the
measurements, (b) the predicted values, and (c) the difference between mea-
surement and prediction.
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Table 4.3: Comparison between models evaluated at test site MH1.

Model Mean error Std. deviation
one-slope 5.89 7.37
dual-slope 5.50 7.00
dominant path, A* 5.73 7.27
dominant path, Θ* 5.65 7.18
dual-slope dominant path, A* 5.50 7.00
dual-slope dominant path, Θ* 5.48 7.02

4.3 Comparison between sites

In the previous section, all the models were evaluated at GH. In conclusion,
the dominant path models showed an improved prediction accuracy compared
to their direct path counterparts when a high attenuating obstacle, such as
an elevator shaft, is situated in a critical location. To strengthen the results
of the evaluation, the models were evaluated by further applying them at the
two remaining test sites, MH1 and MH2. The evaluation followed the same
procedures as GH.

MH1

A comparison between the models evaluated at MH1 can be seen in table 4.3.
Compared to GH, there are no apparent difference in the models performances.
The mean error is around 5.7 dBm and the standard deviation around 7.2 dBm.
This behaviour could perhaps be explained by looking at the dominant paths
generated in the corridor by the A* and Θ* search algorithms, as shown in
figures 3.5 and 3.7. Since there are no critical obstacles hindering the paths, the
dominant paths are similar to the direct paths.

The estimated model parameters for MH1 has been summarized in table 4.4.
Compared to GH, the reference parameters Pr|d0

was in the range -46 to -42
dBm, which is a bit lower than at GH. An explanation could be that other types
of access points were mounted in the corridor. The path loss exponents appear
to be in the range 1.8 to 2.7, which is close to free space. This could indicate
that the wave guiding effect in the corridor contributes to the relatively small
path loss. Even the NLOS exponents are small, which would indicate that the
walls do not attenuate the signal heavily.

The model that performed the best, considering result, speed, and implemen-
tation, was the dual-slope model. The slopes fitted to the data can be seen
in figure 4.10. It is clear that there is no big difference between the LOS and
NLOS conditions. The normality plots for the model can be seen in figure 4.11.
Except for some outliers, the residuals appear to fit a normal distribution. The
predictions compared to measurements as well as residuals are plotted in fig-
ure 4.12. All plots corresponding to the remaining model evaluations can be
found in the appendix.
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Table 4.4: Estimated model parameters for all the propagation models evaluated
at test site MH1.

model β1 β2 βlos1 βlos2 βnlos1 βnlos2

one-slope -45.4 2.3 – – – –
dual-slope – – -45.7 1.8 -42.3 2.7
dominant path, A* -44.1 2.3 – – – –
dominant path, Θ* -44.6 2.3 – – – –
dual-slope dominant path, A* – – -45.7 1.8 -42.3 2.7
dual-slope dominant path, Θ* – – -46.2 1.8 -42.8 2.6

Figure 4.10: The dual-slope model fitted to measurement data from test site
MH1 using ordinary least squares.

(a) (b)

Figure 4.11: In (a), normal probability plot for the residuals of the dual-slope
model at test site MH1. In (b), the empirical cumulative distribution func-
tion (blue) of the residuals compared to the estimated cumulative distribution
function (red).
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(a)

(b)

(c)

Figure 4.12: Predictions at MH1 using the dual-slope model. Figure (a) depicts
the measurements, (b) the predicted values, and (c) the difference between
measurement and prediction.

39



Table 4.5: Comparison between propagation models evaluated at MH2.

Model Mean error Std. deviation
one-slope 3.88 4.96
dual-slope 3.67 4.84
dominant path, A* 3.86 4.96
dominant path, Θ* 4.01 5.30
dual-slope dominant path, A* 3.67 4.84
dual-slope dominant path, Θ* 3.78 5.05

Table 4.6: Estimated model parameters for all the propagation models evaluated
at MH2.

model β1 β2 βlos1 βlos2 βnlos1 βnlos2

one-slope -46.1 2.7 – – – –
dual-slope – – -45.0 2.7 -69.7 0.5
dominant path, A* -45.6 2.7 – – – –
dominant path, Θ* -42.2 2.3 – – – –
dual-slope dominant path, A* – – -45.0 2.7 -69.7 0.5
dual-slope dominant path, Θ* – – -42.0 2.3 -69.2 0.4

MH2

The last test site used for evaluation was MH2. The foyer is mainly an open
without any obstructing obstacles. Thus, the majority of the area is considered
LOS environment. The comparison between the propagation models has been
summarized in table 4.5, where it can be seen that there are no big differences
between the models. The model parameters are listed in table 4.6. The reference
parameter are in the same range as the office corridor, which is to be expected
as the same type of access point is used. The path loss exponents are very
stable, probably due to the non-obstructive environment. However, the NLOS
parameters are significantly different as compared to the LOS. Since most of
the area was considered LOS environment and a significant amount of NLOS
measurement were missing, the parameters should not be trusted.

The dual-slope model fitted to the measurement data can be seen in figure 4.13.
The normality plots is shown in figure 4.14 and, as can be seen from the figure,
the residuals do not appear to be normally distributed. The comparison between
predictions and measurement along with residuals can be seen in figure 4.15.
All other plots corresponding to the evaluation of the remaining models at MH2
can be found in the appendix.
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Figure 4.13: The dual-slope model fitted to measurement data at MH2 using
ordinary least squares.

(a) (b)

Figure 4.14: In (a), normal probability plot for the residuals of the dual-slope
model at test site MH2. In (b), the empirical cumulative distribution func-
tion (blue) of the residuals compared to the estimated cumulative distribution
function (red).
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(a)

(b)

(c)

Figure 4.15: Predictions at MH2 using the dual-slope model. Figure (a) depicts
the measurements, (b) the predicted values, and (c) the difference between
measurement and prediction.
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Chapter 5

Antenna placement

In the previous chapter, the propagations models were evaluated at different
test sites. The evaluation showed that some of them have potential to produce
fairly accurate predictions given well estimated parameters. In this chapter,
the problem of choosing the best subset of antennas that guarantees a certain
coverage, given suitable antenna locations, is studied.

5.1 Coverage decision

Radio planning in indoor environments can be challenging. It is difficult to
predict the coverage based on the location of the antennas. However, as pointed
out in chapter 1, it is not often necessary to know the exact coverage at a specific
location. Instead, it can be sufficient to know if the coverage will most likely
be over a certain threshold. From our previous discussions, it has been seen
that the residuals for some of the models followed a pattern corresponding to
the normal distribution. This information is very useful for the accuracy of the
predictions. For instance, assume that in one location i, it is desired that the
coverage will exceed a threshold ti. Since the residuals are normal distributed,
it follows that

ri ∼ N(xTi β, σ
2) (5.1)

where σ is the standard deviation of the residuals. Let the estimated variance of
the residuals be denoted s2, then the estimated expected value of the received
signal strength, given the log-distance vector xi, may be expressed as

Ê(ri|xi) = xTi β̂, (5.2)

where ri is approximately distributed as

ri ∼ N(xTi β̂, s
2). (5.3)

Furthermore, assume that if a target is predicted to be over the threshold, it is
necessary to be certain down to a probability p that the prediction is true, i.e.,

P (ri > ti|xTi β̂) ≥ p ∀i. (5.4)
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(a) (b)

Figure 5.1: Measurement and predictions in Greenhouse using the dual-slope
dominant path model. Green samples are received signal strength values that
are over −70 dBm. Red represents samples that are not. Figure (a) depicts the
measured signal strength and (b) depicts predicted signal strength using a 95
percent marginal.

The inequality requires the prediction to be at least

xTi β̂ ≥ ti + s
√

2 erf−1(2p− 1) (5.5)

to guarantee coverage over the threshold with 100p percent probability. Here,
the function erf−1 is the inverse error function, defined as

erf(x) ,
2√
π

∫ x

0

e−t
2

dt. (5.6)

To demonstrate the concept, lets go back to the entrance floor at GH, recalling
the scenario described in section 4.2. One access point was placed at the test
site with the assumption that it would provide coverage in all areas. Assume
that the threshold for coverage has been set to −70 dBm, i.e.,

ti = −70 ∀i. (5.7)

Furthermore, assume that the model used for prediction is the dual-slope dom-
inant path model using the modified A* search algorithm for finding the dom-
inant paths, where the model parameters given in table 4.2. The estimated
standard deviation of the residuals was then

s = 4.49. (5.8)

If p is set to 0.95, then the minimum predicted value, rlim, that with at least 95
percent probability will be over the threshold will be

rlim ≈ −63. (5.9)

Figure 5.1 shows the comparison between measurements and predictions. The
locations that according to the measurements have a coverage over −70 dBm
is shown in (a) with green color while the locations that do not are red. It can
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be seen from the measurements that the coverage will not be sufficient in the
room to the far right probably due to the elevator shaft in between the access
point and the targets. In (b), the decisions based on the predictions are shown.
Green locations indicate that it is 95 percent certain that the coverage is over
-70 dBm and red indicate that the coverage might or might not be over the
threshold. It is clear that the model also draws the conclusion that the coverage
is not sufficient in the room to the far right.

5.2 Problem formulation

In the previous section, it was concluded that one access point was not enough
to provide good coverage in all areas at GH. Since this was a requirement, the
question arises where to place additional access points - or will one be enough
if at another location? It is often desired to minimize the number of antennas.
Few antennas means less hardware and cables, which will reduce the cost for
equipment as well as installation work. Physical space is also an important
parameter since the potential locations to mount antennas might be restricted
to were the wall sockets are located, and/or aesthetic conditions.

Antenna selection is closely related to sensor selection in a network [5]. The
antenna selection problem can be formulated as an optimization problem. Let
N be the number of target locations, with ti denoting the desired minimum
coverage at a specific target location i ∈ Ω = {1, 2, . . . , N}. Furthermore, let M
be the number of possible antenna locations where j refers to a specific antenna.
Then, an M ×N prediction matrix can be constructed as

R̂ =


r̂11 r̂12 · · · r̂1N

r̂21 r̂22 · · · r̂2N

...
...

. . .
...

r̂M1 r̂M2 · · · r̂MN

 (5.10)

where r̂ji denotes the predicted value at target location i from antenna j. Fur-
thermore, let ei denote a N × 1 vector with all components set to zero, except
one at place i, which is set to one. Then, R̂ei will be a vector containing all the
antenna contributions at target location i. Thus, the optimization problem can
be formulated as follows

w∗ = arg min
w

||w||0 (5.11)

s.t. ||w ◦ R̂ei||∞ > ti ∀i ∈ Ω (5.12)

w ∈ {0, 1}M . (5.13)

where w is an antenna selection vector with components wj indicating whether
an antenna j is selected (1) or not (0). Here, the `0-(quasi)norm is defined as
the number of non-zero elements in a vector, i.e.,

||w||0 , |{j : wj 6= 0}|. (5.14)

Thus, equation 5.11 expresses the desire to minimize the number of antennas.
The point-wise vector multiplication, w ◦ R̂ei, results in a vector were the j:th
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component represents the predicted coverage from antenna j at target i. The
`∞-norm is defined as the maximum component in w ◦ R̂ei. If x is a vector of
size n, then the `∞-norm is defined as

||x||∞ , max(|x1|, |x2|, . . . , |xn|). (5.15)

The maximum norm in (5.12) simply extracts the strongest antenna contribution
at every target location. Hence, it is a set of conditions that makes sure every
target location gets sufficient coverage over the threshold ti. Note that the
formulation above requires the coverage to be expressed in linear scale, as it is
necessary that r̂ji > 0, for all i and j.

The problem in 5.11 is combinatorial and involves finding a solution w∗ that
fulfils the conditions in 5.12 out of 2M possible combinations of w. The prob-
lem gets practically impossible to solve as M grows by iterating through every
possible combinations. There can be many solutions that fulfils the optimiza-
tion problem but since only one sufficient solution is needed this can be used
to simplify the problem. The decision function δ decides whether a predicted
value r̂i is over the threshold ti or not by assigning a one if it is over, and zero
otherwise, i.e.,

δti(r̂i) =

{
1, r̂i > ti

0, r̂i ≤ ti.
(5.16)

A new matrix can then be constructed as

T̂ =


δt1(r̂11) δt2(r̂12) · · · δtN (r̂1N )
δt1(r̂21) δt2(r̂22) · · · δtN (r̂2N )

...
...

. . .
...

δt1(r̂M1) δt2(r̂M2) · · · δtN (r̂MN )

 (5.17)

where every element T̂j,i indicates if a target location i has coverage over the
threshold ti from antenna j. With the transformation, the optimization problem
can be formulated as

w∗ = arg min
w

||w||0 (5.18)

s.t. T̂Tw ≥ 1N (5.19)

w ∈ {0, 1}M . (5.20)

5.3 Antenna selection algorithm

To solve the antenna selection problem in 5.18 only one feasible solution is
required. The proposed algorithm to solve the problem is a greedy-search al-
gorithm. The resulting algorithm is fast and easy to implement and finds a
solution even if the number of targets and possible antenna location is large.
The algorithm starts by summing the columns in T̂ and checks if any of the
sums equals to one. This is the equivalent of checking if a target is only covered
by one antenna and if that is the case the antenna must be selected. In the
opposite case, when all targets can be covered by multiple antennas, the algo-
rithm sums the rows in T̂. This is the equivalent of checking how many targets
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Algorithm 3 Greedy search antenna selection algorithm

1: procedure optimizeAntennas
2: i := 1
3: w := 0M
4: V := ∅
5: while T̂(i) 6= ∅ do
6: s := 1

T
M T̂(i)

7: if s1N = 0 then return No solutions exist

8: if sj = 1 for any j then

9: find corresponding row in T̂(i) and denote it k.
10: else
11: p := T̂(i)

1N

12: find largest value in p and denote its position k.
13: if a tie then
14: select the row in R̂(i) which maximize a predefined utility

function and denote that row k
15: V .addLast(k)
16: find all targets that antenna k covers and remove them from T̂(i) and

R̂(i) thus creating T̂(i+1) and R̂(i+1)

17: i := i +1

18: for each k ∈ V do
19: wk := 1

return w

a certain antenna covers. The antenna that covers most targets is selected. If
there is a tie, then the antenna that maximizes a predefined utility function is
chosen. This function can be adapted to fulfil different requirements. In either
case, the antenna selected is removed from both the indicator matrix T̂ and the
predicted coverage matrix R̂ and the algorithm starts over again with the new
matrices. This continues until all targets are covered. The pseudo code of the
algorithm can be found in algorithm 3.

5.4 Optimizing

To test the greedy search antenna selection algorithm, five possible locations to
mount access points and six target locations where good coverage is important
were selected at GH, as shown in figure 5.2.

To evaluate which antenna alternatives that fulfils the desired coverage, one
access point was placed at one of the possible antenna locations and measure-
ments were performed. Then, the access point was moved to next location and
new measurements were taken. The same procedure was carried out using two
access points that were varied over all possible combinations. Three or more
access points were never evaluated since several alternatives with two access
point were enough to provide coverage. The different antenna alternatives and
their measurements can be seen in table 5.1.

In order to rank the antenna alternatives, the following utility function was

47



Figure 5.2: The greedy search antenna selection algorithm was tested at GH.
Five possible antenna locations and six target locations were selected.

constructed

uj =

N∏
i=1

δti(ri)

N∑
i=1

(ri − ti). (5.21)

where uj is the utility of antenna alternative j and N is the number of targets.
The utility function sums the excess coverage over the threshold for every target,
and if any target does not meet the threshold, the utility is set to zero. The
different alternatives and their corresponding utility are plotted in figure 5.3.
It can be seen that antenna alternative number 14 is the one that maximizes
the utility function. However, the alternatives 6 through 8, as well as 11, are
fulfilling the coverage requirement.

The dual dominant path with the modified A* search algorithm was used to
predict the received signal strength on all targets, from all possible antenna
locations. The result given in dBm was

R̂dBm =


−48 −38 −68 −72 −67 −71
−40 −38 −62 −68 −57 −64
−66 −56 −37 −39 −67 −73
−71 −66 −40 −37 −57 −68
−68 −65 −65 −55 −38 −61

 . (5.22)

The greedy search antenna selection algorithm was deployed upon the result
with a desired threshold of -70 dBm and a requirement of 95 percent certainty
that the suggested antenna combination will cover the targets. The algorithm
suggested that antenna 2 combined with antenna 5 would be sufficient to provide
coverage on all targets. The alternative corresponds to alternative 7 in table
5.1 and is marked with red in the utility plot in figure 5.3. This alternative
does clearly meet the desired requirement of -70 dBm. Also note that according
to the predictions in 5.22, antenna 2 and 5 would alone, independently of each
other, not provide sufficient coverage on all targets. Hence, the extra marginal
provided by the 95 percent certainty requirement is important to reduce the risk
of over-minimizing the antennas.
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Table 5.1: Different antenna alternatives and their corresponding measured re-
ceived signal strength in six different target locations at GH.

Index Antennas p1 p2 p3 p4 p5 p6

1 1 -44 -40 -66 -73 -70 -62
2 2 -44 -38 -63 -74 -56 -68
3 3 -64 -58 -40 -43 -71 -78
4 4 -74 -69 -45 -42 -67 -78
5 5 -72 -70 -70 -61 -45 -53
6 1 & 5 -45 -43 -60 -60 -40 -52
7 2 & 5 -46 -40 -65 -57 -40 -55
8 3 & 5 -63 -55 -40 -49 -37 -62
9 4 & 5 -77 -74 -43 -40 -40 -57
10 3 & 4 -62 -53 -40 -40 -63 -70
11 2 & 4 -46 -40 -50 -39 -57 -61
12 1 & 4 -49 -41 -47 -47 -65 -66
13 1 & 3 -49 -39 -44 -49 -68 -67
14 2 & 3 -41 -46 -43 -40 -56 -60
15 1 & 2 -43 -38 -57 -69 -65 -64

In the scenario above, the model parameters were estimated using ordinary least
squares out of a total of 224 measurement samples collected all over the test
site. Out of these, 85 were collected in LOS from the transmitter and 139 were
collected NLOS. This was enough to select an antenna alternative that fulfilled
the coverage requirements, but what if less samples were available? Would the
prediction model still be sufficiently good to determine a descent alternative?
In the ideal case, it is not desired to conduct a full measurement survey on all
areas prior to running the optimization. It would be desirable to spend as little
time as possible on measuring to estimate the parameters.

Since the residuals were assumed to be normal distributed, it follows that the
estimate of the model parameters, β̂, are also normal distributed, with expected
value [16]

E(β̂) = β (5.23)

and variance
Var(β̂) = σ2(XTX)−1. (5.24)

If β̂nlos are the estimated parameters for the NLOS part of the model used to
predict 5.22 and s is the estimated standard deviation of the residuals, then the
estimate is approximately distributed as [16]

β̂ ∼ N(β̂nlos, s
2(XTX)−1). (5.25)

Assuming that the parameters for the LOS scenario are known and the param-
eters for NLOS are unknown; how likely is it that the optimization algorithm
yields a solution containing the optimal number of antennas and an antenna
alternative that gives the required coverage, given n NLOS samples to estimate
the model parameters? This was simulated as follows,
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Figure 5.3: The utilities for the antenna alternatives in table 5.1. The red
alternative is the one selected by the greedy search antenna algorithm using the
dual-slope dominant path model for predictions.

1. Set n to 2.

2. Draw n samples uniformly at random from the NLOS locations of X.

3. Draw 10000 estimated parameters from equation 5.25.

4. Calculate R̂ and run the antenna optimization algorithm for every param-
eter drawn in 3.

5. Save the number of times the algorithm succeeds selecting one of the
optimal solutions.

6. Increment n by one and repeat the steps from 2.

The simulation was done with samples ranging from n = 2 to 139. This was
summarized in figure 5.4, which shows the likelihood that the optimization algo-
rithm selects one of the antenna alternatives containing the optimal number of
antennas that sufficiently fulfils the coverage requirements. In (a) the reference
parameter, Pr2|d0

, has been treated as known while in (b) it is unknown. It
can be seen that the optimization algorithm is approximately 90 percent likely
to select an optimal solution at GH if the whole test site is sampled and the
reference parameter is known and approximately 80 percent if the parameter is
unknown. The same probabilities are approximately 75 and 65 percent if the
number of samples available are reduced by half.

50



(a)

(b)

Figure 5.4: The likelihood that the optimization algorithm selects an antenna
alternative containing the optimal number of antennas that sufficiently fulfils
the coverage requirements given n samples to estimate the model parameters.
In (a), the reference parameter Pr2|d0

is known and in (b) it is unknown.
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Chapter 6

Conclusions and Discussion

6.1 Summary

In this master’s thesis, several indoor radio propagation models have been stud-
ied. They have been tested and evaluated at three different test sites. The first
test site, GH, was a compact area that contained several obstacles. The main
obstacle was an elevator shaft situated in the centre of the floor that effectively
blocked the radio signals. Greenhouse represented a residential scenario. The
second test site, MH1, was a long corridor flanked by adjacent offices. The wall
material was homogeneous and the floor outline was symmetrically designed.
This test site represented an office scenario. The third, and last, test site, MH2,
was a 65 meter long foyer in the same building as the previous test site. It
represented a scenario with large open areas, e.g. a shopping mall or metro
station.

In GH, the dominant path models significantly improved the predictions com-
pared to their direct path counterparts. The elevator shaft is the most probable
explanation to this as it will block the signals from the transmitter. The dom-
inant path model, with path finding algorithms, could find paths around the
shaft in contrast to the one-slope and the dual-slopes models that assumes a
straight path through the shaft. Thus, the dominant path model will give a
better representation at GH than the other two.

At MH1, there were no obstacles, except for the walls, that attenuate the signals.
Interestingly, the difference between the prediction quality of the dominant and
direct path model was insignificant. The most likely explanation to this is the
lack of obstacles, e.g., the elevator shaft at GH. As MH1 and MH2 display
rather similar characteristics, i.e., no major obstacles, it is not surprising that
they also showed similar results, i.e., no significant difference between the models
was identified.

To find the dominant paths, two path finding algorithms were used, namely the
A* and Θ* search algorithms. The latter was introduced as an extension of
the A* algorithm aiming to improve the paths by allowing them to expand in
any angle, compared to the A* that can only expand in eight directions. This
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would allow the path to constitute a better representation of the true distance
of the path. However, no significant difference related to the search algorithms
was identified. In conclusion, the distances between the paths found by the two
search algorithms is probably insignificant.

The model parameters where estimated using ordinary least squares of mea-
surements from the area of interest. The standard deviation of the predictions
ranged between 4 and 10 dBm, depending on model and test site. For most of
the models, the residuals appeared to follow a normal or an approximately nor-
mal distribution pattern. This is an important observation since it it is helpful
when making conclusions about the certainty in a prediction. Since the thesis
deal with empirical or semi-deterministic indoor propagation models it is not
surprising that the standard deviation is relatively high. This is a well known
fact. However, the purpose of this master’s thesis was to investigate if the pre-
diction could be useful to make general conclusions about the coverage, i.e., if
the received signal strength exceeds a desired threshold or not, and be utilized
for optimization purposes.

GH was further utilized for the optimization part of the thesis. There were five
possible antenna locations and six target areas, i.e., areas where the coverage
should exceed -70 dBm. It was important that the suggested antennas pro-
vide the desired coverage. Therefore, this threshold was modified so that the
probability of a predicted RSS value exceeding -70 dBm was 95%. At GH, the
modified threshold was estimated to -63 dBm, as predicted values higher than
this exceed -70 dBm with 95% certainty. Furthermore, it was desirable to min-
imize the number of antennas to reduce the costs of hardware and installation.
A greedy search algorithm was proposed and implemented to suggest antenna
locations that satisfy the requirements given the predictions.

To evaluate the result of the optimization algorithm, antennas were positioned in
all possible combinations at GH and measurements were carried out for all target
locations. The measurements revealed that two antennas would be sufficient
and that multiple combinations would fulfil the requirements. The results of
the optimization algorithm also suggested that two antennas would provide
sufficient coverage and the suggested location matched one of the measured
antenna alternatives. Hence, the optimization provides a satisfying solution.

However, the quality of the optimization is tightly linked to the quality of the
estimation of the model parameters. At GH, the parameters are estimated
from measurements obtained from the entire test site which yields a good set of
parameters. Thus, this evaluation is carried out under ideal circumstances, but
what would happen if the available measurements were fewer and obtained from
random parts of the floor, e.g. if a limited area was available for measurements?

To answer this question the normality property of the residuals were utilized.
Since the residuals can be considered normally distributed, it follows that the
estimation of the parameters are normally distributed as well when using ordi-
nary least squares. Thus, the variance can be calculated and depends on the
number of samples. This information was used to simulate different scenarios
where different parameters were utilized. The scenarios yielded different pre-
dictions which was then used to optimize the antennas. The number of times
the optimization algorithm succeeded was recorded and compared to the total
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number of times tested to estimate a probability of success. This revealed that
there was approximately a 90% chance that the optimization algorithm could
find the optimal solution at GH when measurements was collected all over the
test site. When the number of measurements were dropped to half, on the other
hand, the probability of success was approximately 75%.

6.2 Sources of uncertainty

6.2.1 Signal fading

The estimation of parameters has been shown to be vital to achieve good predic-
tions and optimization results. High quality and comprehensive measurements
lay a good foundation for sufficiently estimated parameters. Yet, a large amount
of comprehensive measurements do not counteract measurement errors.

The measured received signal strength are characterized by its non-static manor,
i.e., its tendency to fluctuate over time. Signal fading explains this random
fluctuations. The sources of signal fading are many and a couple of relevant
examples are given in this section.

Measuring received signal strength can be be a difficult task. It has been re-
ported that the standard deviation can vary as much as 3 dBm when conducting
measurements with a smart phone [13]. Furthermore, the radio propagation en-
vironment indoors is very sensitive. Multipath effects, i.e., the effect of two
or more radio signals from the same source arriving at the destination using
different paths, are a common phenomena indoors. Multipath may result in
destructive interference that result in sudden fading, i.e., a sudden loss in sig-
nal power. This phenomenon might explain the small number of anomalies in
the MH1 measurements. The attenuation in the corridor is generally decreas-
ing rather smoothly as the distance from the transmitter increase. In a small
number of measurements, however, this is not the case, figure 4.12a.

Multipath effects can also be caused by the human body. The technician that
holds the smart phone will obstruct the signal and affect the received power
dependent on if he or she is standing in the LOS direction of the radio wave or
not. Variations of as much as 20 dBm caused solely by whether or not the body
of a technician is placed between the reciever and the transmittor or not in a
point has been reported [14].

6.2.2 Reusing parameters

One common assumption when using empirical models, such as the one-slope
model, is that parameters, such as the path loss exponent, can be estimated
at typical locations to then be reused at other similar locations. This allows
predictions and optimization of sites without the need for collecting measure-
ments. To test this methodology, another corridor, similar to the test site MH1,
was selected in the Centre for Mathematical Sciences, figure 6.1. The walls had
the same properties as the MH1 and the adjacent offices were about the same
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(a)

(b)

(c)

Figure 6.1: Predictions at a similar corridor as the test site MH1 reusing the
model parameters from the latter. Figure (a) depicts the measurements, (b) the
predicted values, and (c) the difference between measurement and prediction.

size. The dimensions of the corridor is roughly the same as MH1. Since no
model performed significantly better than the other in the evaluation corridor
the dual-slope model was selected because of its simplicity and speed.

The access point is mounted in the ceiling in the left part of the corridor. The
offices located on the right side of the corridor have experienced poor coverage.
To validate this claim, measurements were taken in the corridor as well as
in the two offices where poor coverage has been reported. The result of the
measurements clearly showed that the coverage is poor, i.e., around -80 dBm, in
the two offices, figure 6.1a. To examine if it could be possible to predict the poor
coverage without location specific measurement based parameter estimates, a
prediction using the parameters from its sister corridor was conducted, as shown
in figure 6.1b. The residuals in figure 6.1c reveals that the predictions in the two
offices are bad, as it differ 15 dBm from the measured received signal strength.
Thus, reusing parameters did not work sufficiently in this case.
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6.2.3 Assumptions

Many assumptions and simplifications have been employed during this master’s
thesis. To begin with, all antennas are modelled as isotropic antennas, i.e.,
they distributes their signal energy equally in all directions, floor penetration is
neglected etc. In fact, even the empirical models are making huge assumptions
when they bundle all the information in just one exponent. Also using a regular
smart phone for measuring the true received signal strength which is then used
for the comparison for the predictions is also risky since the deviation of the
measurements is high. All this contributes to error-prone results; this is a well
known problem but as the option is often to guess antenna locations based on
experience, it is still interesting how much could be said with the presented
simple methods.

When finding the dominant paths, the material properties of the walls are impor-
tant parameters in order to approximate the paths correctly. However, when
calculating the paths, no such information was available. In the start of the
project, it was our intent that such measurements were going to be done by a
company in collaboration with this project. Unfortunately, the measurements
were not performed in time and as a replacement standard values needed to
be used. Therefore, the dominant paths might be approximated under wrong
premisses in this thesis and will affect the accuracy of the predictions.

6.3 Convex optimization

The optimization problem in 5.18 was proposed to be solved using a greedy
search algorithm. The greedy search algorithm is fast and easy to implement.
Initially, the idea was to solve the optimization problem by relaxing it to a
convex form to obtain a suboptimal solution but instead gain speed. The `0-
(quasi) norm is non-convex, as is the constraint on the boolean set w ∈ {0, 1}M
where M is the number of possible antenna locations. The relaxation is done by
replacing the boolean constraint with the convex box constraint [0, 1]M . Fur-
thermore, the non-convex `0-norm was replaced by a known efficient heuristic,
namely the `1-norm. The optimization problem can then be formulated as

w∗ = arg min
w

||w||1 (6.1)

s.t. T̂Tw ≥ 1N (6.2)

w ∈ [0, 1]M (6.3)

where the `1-norm is defined as

||w||1 ,
M∑
m=1

|wm|. (6.4)

This optimization problem can be solved fast and efficiently using interior-point
methods [5]. A solver implemented for Matlab to solve convex problem is the
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CVX-solver. It was used to solve the optimization problem. However, this
approach was abandoned in favour for the greedy search algorithm since it was
hard to interpret the selection vector w when the box constraint was used.
Normally, every component of w is rounded to nearest integer and that will
be the final decision, but the constraint in (6.2) was not enough to push the
solution over 1

2 , making it hard to decide on how many antennas to choose.

6.4 Conclusions

As mobile devices have become a vital part of peoples life, consumers expect mo-
bile coverage indoors to make phone calls and browse the internet. Meanwhile,
energy efficient houses makes it difficult or in some cases impossible for the radio
waves to penetrate the walls. This raises the need for alternative solutions, such
as indoor radio networks, in order to maintain sufficient coverage.

Network planning indoors is a difficult task. The possible locations to place
antennas can be limited by practical and aesthetic reasons. It is often necessary
to limit hardware cost due to budget restrains, consequently, minimizing the
number of antennas. Indoor network planning is often performed on the basis
of experience rather than utilizing prediction and optimization methods.

The main aim of this master’s thesis was to propose an optimization algorithm
that suggests the minimum number of antennas needed to fulfil a threshold
requirement by selecting the best subset of all possible locations. To achieve
this, a reasonable good prediction model is required. Both the prediction and
optimization need to be fast in order to compete with experience based radio
planning.

This master’s thesis studied four different propagation models. The empirical
one- and dual-slope models, the semi-deterministic dominant path model and,
its dual-slope extension. These models were evaluated on three test sites with
different characteristics. The models performed reasonably well. The dominant
path models seemed to performed better than their straight path counterparts
when the environment became more complex.

The optimization algorithm proposed was a greedy search algorithm. The ap-
proach was chosen for its simplicity and speed. The algorithm was able to
find a sufficient solution for the test sites given the best performing prediction
model. However, the result strongly depends on the model parameters which
were estimated from measurements taken on the site. The parameters are in-
tended to be calculated based on measurements taken on typical locations and
then reused on a different site where measurements are not available to make
predictions. However, a simple test showed that this is difficult and can yield
erroneous results. Hence, the idea of making simulations and optimizations in
buildings where measurements are not collected seems difficult. Nevertheless,
the optimization part turned out to be rather accurate. If measurements were
taken from all parts of the test site, it showed a 90% probability of finding an
optimal solution if the path loss exponent is the only parameter unknown. If
the reference parameter is unknown as well then the probability is around 80%.
If measurements were only covering half the test site, the probabilities were
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around 75% and 65%, respectively.

6.5 Further development

Modelling unmeasured buildings with empirical models seemed difficult. Nev-
ertheless, if some measurements are available they can be used to suggest a
design of an indoor radio network. For instance, a test antenna can be tem-
porarily placed somewhere in the building and measurements can be collected to
estimate the model parameters. These parameters can then be used to optimize
the network and suggest antenna locations. These calculations are fast if using
the models presented in this master’s thesis, and can easily be implemented to
run as an application on a mobile device. If research is further conducted on
converting floor plans to the binary image format proposed in this thesis, the
built-in camera of a mobile device could be used to photograph the floor plan
and automatically convert it to the required format. Then, measurements can
be collected and pinpointed using the application, and the optimization can be
run on the same application as well.

There are plenty of propagation models not mentioned in this thesis. It would
be interesting to research spatial statistical models that can fill in the blanks of
a site survey.
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Appendix A

Additional plots

A.1 Plots for GH

(a) (b)

Figure A.1: In (a), normal probability plot for the residuals of the one-slope
model at GH. In (b), the empirical cumulative distribution function (blue) of
the residuals compared to the estimated cumulative distribution function (red).
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(a) (b)

Figure A.2: In (a), normal probability plot for the residuals of the dual-slope
model at GH. In (b), the empirical cumulative distribution function (blue) of
the residuals compared to the estimated cumulative distribution function (red).

(a) (b)

Figure A.3: In (a), normal probability plot for the residuals of the dominant
path model at GH. In (b), the empirical cumulative distribution function (blue)
of the residuals compared to the estimated cumulative distribution function
(red).
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(a)

(b)

(c)

Figure A.4: Predictions at GH using the one-slope model. Figure (a) depicts
the measurements, (b) the predicted values, and (c) the residuals between mea-
surement and prediction.
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(a)

(b)

(c)

Figure A.5: Predictions at GH using the dual-slope model. Figure (a) depicts
the measurements, (b) the predicted values, and (c) the residuals between mea-
surement and prediction.
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(a)

(b)

(c)

Figure A.6: Predictions at GH using the dominant path model. The paths
were calculated using the A* search algorithm. Figure (a) depicts the measure-
ments, (b) the predicted values, and (c) the difference between measurement
and prediction.
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Figure A.7: The dominant path model fitted to measurement data collected at
GH using ordinary least squares. The paths were retrieved using the Θ* search
algorithm.

(a) (b)

Figure A.8: In (a), normal probability plot for the residuals of the dominant
path model using the Θ* search algorithm at GH. In (b), the empirical cumu-
lative distribution function (blue) of the residuals compared to the estimated
cumulative distribution function (red).
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Figure A.9: The dual-slope dominant path model fitted to measurement data
from GH using ordinary least square method. The paths were retrieved using
the Θ* search algorithm.

(a) (b)

Figure A.10: In (a), normal probability plot for the residuals of the dual slope
dominant path model using the Θ* search algorithm at GH. In (b), the em-
pirical cumulative distribution function (blue) of the residuals compared to the
estimated cumulative distribution function (red).
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(a)

(b)

(c)

Figure A.11: Predictions at GH using the dominant path model. The paths
were calculated using the Θ* search algorithm. Figure (a) depicts the measure-
ments, (b) the predicted values and (c) the difference between measurement and
prediction.
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(a)

(b)

(c)

Figure A.12: Predictions at GH using the dual-slope dominant path model.
The paths were calculated using the Θ* search algorithm. Figure (a) depicts
the measurements, (b) the predicted values and (c) the difference between mea-
surement and prediction.
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A.2 Plots for MH1

Figure A.13: The one-slope model fitted to measurement data from MH1 using
ordinary least square method.

(a) (b)

Figure A.14: In (a), normal probability plot for the residuals of the one-slope
model at MH1. In (b), the empirical cumulative distribution function (blue) of
the residuals compared to the estimated cumulative distribution function (red).
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(a)

(b)

(c)

Figure A.15: Predictions at MH1 using the one-slope model. Figure (a) de-
picts the measurements, (b) the predicted values and (c) the difference between
measurement and prediction.
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Figure A.16: The dominant path model fitted to measurement data from MH1
using ordinary least square method. The paths were retrieved using the A*
search algorithm.

(a) (b)

Figure A.17: In (a), normal probability plot for the residuals of the dominant
path model using the A* search algorithm at MH1. In (b), the empirical cumu-
lative distribution function (blue) of the residuals compared to the estimated
cumulative distribution function (red).
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(a)

(b)

(c)

Figure A.18: Predictions at MH1 using the dominant path model. The paths
were calculated using the A* search algorithm. Figure (a) depicts the measure-
ments, (b) the predicted values and (c) the difference between measurement and
prediction.
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Figure A.19: The dominant path model fitted to measurement data from MH1
using ordinary least square method. The paths were retrieved using the Θ*
search algorithm.

(a) (b)

Figure A.20: In (a), normal probability plot for the residuals of the dominant
path model using the Θ* search algorithm at MH1. In (b), the empirical cumu-
lative distribution function (blue) of the residuals compared to the estimated
cumulative distribution function (red).
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(a)

(b)

(c)

Figure A.21: Predictions at MH1 using the dominant path model. The paths
were calculated using the Θ* search algorithm. Figure (a) depicts the measure-
ments, (b) the predicted values and (c) the difference between measurement and
prediction.
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Figure A.22: The dual-slope dominant path model fitted to measurement data
from MH1 using ordinary least square method. The paths were retrieved using
the A* search algorithm.

(a) (b)

Figure A.23: In (a), normal probability plot for the residuals of the dual-slope
dominant path model using the A* search algorithm at MH1. In (b), the em-
pirical cumulative distribution function (blue) of the residuals compared to the
estimated cumulative distribution function (red).
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(a)

(b)

(c)

Figure A.24: Predictions at MH1 using the dual-slope dominant path model.
The paths were calculated using the A* search algorithm. Figure (a) depicts
the measurements, (b) the predicted values and (c) the difference between mea-
surement and prediction.
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Figure A.25: The dual-slope dominant path model fitted to measurement data
from MH1 using ordinary least square method. The paths were retrieved using
the Θ* search algorithm.

(a) (b)

Figure A.26: In (a), normal probability plot for the residuals of the dual-slope
dominant path model using the Θ* search algorithm at MH1. In (b), the em-
pirical cumulative distribution function (blue) of the residuals compared to the
estimated cumulative distribution function (red).
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(a)

(b)

(c)

Figure A.27: Predictions at MH1 using the dual-slope dominant path model.
The paths were calculated using the Θ* search algorithm. Figure (a) depicts
the measurements, (b) the predicted values and (c) the difference between mea-
surement and prediction.
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A.3 Plots for MH2

Figure A.28: The one-slope model fitted to measurement data from MH2 using
ordinary least square method.

(a) (b)

Figure A.29: In (a), normal probability plot for the residuals of the one-slope
model at MH2. In (b), the empirical cumulative distribution function (blue) of
the residuals compared to the estimated cumulative distribution function (red).
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(a)

(b)

(c)

Figure A.30: Predictions at MH2 using the one-slope model. Figure (a) de-
picts the measurements, (b) the predicted values and (c) the difference between
measurement and prediction.
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Figure A.31: The dominant path model fitted to measurement data from MH2
using ordinary least square method. The paths were retrieved using the A*
search algorithm.

(a) (b)

Figure A.32: In (a), normal probability plot for the residuals of the dominant
path model using the A* search algorithm at MH2. In (b), the empirical cumu-
lative distribution function (blue) of the residuals compared to the estimated
cumulative distribution function (red).
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(a)

(b)

(c)

Figure A.33: Predictions at MH2 using the dominant path model. The paths
were calculated using the A* search algorithm. Figure (a) depicts the measure-
ments, (b) the predicted values and (c) the difference between measurement and
prediction.
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Figure A.34: The dominant path model fitted to measurement data from MH2
using ordinary least square method. The paths were retrieved using the Θ*
search algorithm.

(a) (b)

Figure A.35: In (a), normal probability plot for the residuals of the dominant
path model using the Θ* search algorithm at MH2. In (b), the empirical cumu-
lative distribution function (blue) of the residuals compared to the estimated
cumulative distribution function (red).
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(a)

(b)

(c)

Figure A.36: Predictions at the MH2 using the dominant path model. The paths
were calculated using the Θ* search algorithm. Figure (a) depicts the measure-
ments, (b) the predicted values and (c) the difference between measurement and
prediction.
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Figure A.37: The dual-slope dominant path model fitted to measurement data
from MH2 using ordinary least square method. The paths were retrieved using
the A* search algorithm.

(a) (b)

Figure A.38: In (a), normal probability plot for the residuals of the dual-slope
dominant path model using the A* search algorithm at MH2. In (b), the em-
pirical cumulative distribution function (blue) of the residuals compared to the
estimated cumulative distribution function (red).
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(a)

(b)

(c)

Figure A.39: Predictions at MH2 using the dual-slope dominant path model.
The paths were calculated using the A* search algorithm. Figure (a) depicts
the measurements, (b) the predicted values and (c) the difference between mea-
surement and prediction.
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Figure A.40: The dual-slope dominant path model fitted to measurement data
from MH2 using ordinary least square method. The paths were retrieved using
the Θ* search algorithm.

(a) (b)

Figure A.41: In (a), normal probability plot for the residuals of the dual-slope
dominant path model using the Θ* search algorithm at MH2. In (b), the em-
pirical cumulative distribution function (blue) of the residuals compared to the
estimated cumulative distribution function (red).

86



(a)

(b)

(c)

Figure A.42: Predictions at MH2 using the dual-slope dominant path model.
The paths were calculated using the Θ* search algorithm. Figure (a) depicts
the measurements, (b) the predicted values and (c) the difference between mea-
surement and prediction.
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