
Reducing False Triggers In Surveillance
Systems Using Sensor Fusion

Madeleine Boström
dat11mbo@student.lu.se

Tobias Claesson
ada10tcl@student.lu.se

March 9, 2017

Master’s thesis work carried out at Axis Communications AB.

Supervisors: Kalle Åström, kalle@maths.lth.se
Magnus Oskarsson, magnuso@maths.lth.se
Mazdak Farzone, mazdak.farzone@axis.com

Examiner: Carl Olsson, calle@maths.lth.se

mailto:dat11mbo@student.lu.se
mailto:ada10tcl@student.lu.se
mailto:kalle@maths.lth.se
mailto:magnuso@maths.lth.se
mailto:mazdak.farzone@axis.com
mailto:calle@maths.lth.se




Abstract

Sensor fusion has been widely adopted in the last couple of years, espe-
cially in the automobile industry. Their main goal is to gain a more robust
system and increase security by e.g. predicting and preventing collisions.

Surveillance systems, based on video motion detection, face similar issues
by having numerous problems with false triggers, particularly when there are
big variations in the lighting of the scene, e.g. shadows or light beams. To
address this issue, the effect of adding a radar sensor, whilst the video system
is used as a black box, is investigated.

There exists a presentiment that a number of detections that are identified
should not decrease noteworthy, as the two different systems complement each
other. The validation is not necessarily identical with reality, however, it is
a clear indication that sensor fusion is more reliable than using only video
motion detection.

Keywords: Sensor fusion, Information fusion, Radar, Video,Motion detection, Surveil-
lance system
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Glossary

CW Continuous Wave.

FFT Fast Fourier Transform.

FM Frequency Modulation.

FMCW Frequency Modulated Continues Wave.

FOV Field of View.

FPS frames per second.

MOTE Motion Object Tracking Engine.

PDF Probability Density Function.

RCS Radar Cross Section.

VMD Video Motion Detection.
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Chapter 1

Introduction

In surveillance systems, the video motion detection software plays a significant role. Mod-
ern surveillance cameras with motion detection are widely used for monitoring break-ins
and to prevent crime, where the system notifies if any unexpected activity is detected.
However, there are times when the surveillance system has difficulties to distinguish ob-
jects i.e. under poor light or weather conditions. There are also problems that the system
notifies when there is no human activity, e.g. dynamic backgrounds such as wind beams
in trees. If this occurs too often the security of this system is impaired.

1.1 Main Objective
The primary focus of this master’s thesis is to investigate how combining radar with classic
motion detection could reduce false triggers, the ideal would be to only find human activity
and nothing else. Particularly this thesis will focus on the fusion process after video and
radar analysis has been calculated. In other words, there should not be any need to modify
current systems, only add extra functionality, see Figure 1.1. The scenes this master’s
thesis will analyze are outdoors and called sterile, i.e. scenes where there are only one or
a few people at the same time. Furthermore, the camera setup is assumed to be installed
in a fixed position and will not be moving around.

In order to combine the two sensors in a way that will reduce the number of false
triggers, the individual sensors’ advantages and disadvantages need to be found. Some
of the sensor characteristics are documented, however, for a complete comparison, some
test scenarios need to be set up. Furthermore, there are some questions that need to be
investigated, for instance: Which sensor should the system rely on? Are there external
factors that can affect the sensors’ reliability? Is it possible to keep the true positives at
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1. Introduction

Figure 1.1: The flowchart describes the system’s pipeline

the same level while reducing the false positives?

1.2 Problem Description

This thesis will be done with a videomotion detection system used as a black box, meaning
that it can only be viewed in terms of inputs and outputs, the internal logic is unknown. The
video motion system is normally installed on the camera and works directly with the video
stream as an input. Therefore there is no possibility for the radar sensor to communicate
and affect the video motion system.

The video motion system has known problems including false alarms, missed alarms,
and incorrect tracking behavior, the primary focus will be on improving the false alarms
but it is important that the number of missed alarms does not increase.

The video motion system outputs tracked sources, in order to evaluate the two systems
on an equal level and fuse the results, the radar information needs to be clustered and
tracked. These algorithms need to be implemented since there is not any clustering or
tracking implemented as of yet.

Even though the result could be greatly affected by different implementations of these
steps it is not in focus of this thesis. As stated in Section 1.1 the focus is to examine if the
result can be improved by adding a radar sensor.

It is possible to look at the problem of reducing false triggers in different ways, ei-
ther that the correct frames trigger or that the trigger is located correctly in the frames.
These different approaches will both be investigated to some extent. Because the tracking
behavior is not in focus, the first approach will be of greater importance.

1.3 Utilities

This master’s thesis will be using an Axis Communications AB (referred to as Axis) cam-
era setup and motion detection software, also known as, Motion Object Tracking Engine
(MOTE), as a base setup.

2



1.3 Utilities

1.3.1 Hardware
The camera setup consists of an Axis F41 main unit [1] together with an Axis F1005-
E sensor unit [2]. A radar system with a 24 GHz radar sensor was attached. During
approximately half of this thesis time, the radar sensor was located above and slightly to
the right of the camera sensor and openly displayed, as can be seen in Figure 1.2. Due
to the importance of test scenes with diversified weather conditions, the radar sensor was
placed inside a plastic box together with the camera sensor.

Figure 1.2: Camera setup usedwhile radar sensor is exposed. Left
image is a closeup of the sensors while the right image shows the
entire camera setup.

The radar system can detect an object in a 2-dimensional environment by detecting and
separating objects according to their speed, range and azimuth angle. The radar system
has a documented ±55° angle measurement range and ±1° angle accuracy. Furthermore,
it has a detectable radial speed from 0 km/h up to 34 km/h with a speed resolution of 0.15
m/s and detects a person (Radar Cross Section (RCS) = 0.75m2, see Section 2.1.1) up to
a distance of 50 m from the radar unit, with a distance resolution of 0.9 m.

1.3.2 Software
The image analysis will be performed by Axis’ own software called MOTE, that normally
is available within the camera’s firmware. This thesis will simulate MOTE offline on a
computer which will give additional information to the resulting tracked object masks, in
the form of a motion and a foreground mask for each frame. These masks can be made
available as outputs from the system in a future revision of MOTE if necessary.

The parameters used when running MOTE offline will be kept the same as the system
running on cameras today. Specifically an analysis resolution of 480 × 270, an analysis
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1. Introduction

frame rate at 10 frames per second (FPS) (whilst the output is kept at 5 FPS) and grayscale
images. All the implementation will be done in MATLAB.

Axis has a program called Video Motion Detection (VMD), which lets the user filter
results from MOTE by the individual needs e.g. include/exclude areas and minimum ob-
ject duration to trigger an alarm. There may arise some confusion because of the name
but this thesis will not include Axis’ VMD but assume some similar software will be able
to filter the output generated from this thesis.

1.4 Limitations and Delimitations
At the time of this thesis there is no available radar system running on a camera at Axis,
therefore the radar and video stream will be saved and later used offline on a desktop com-
puter. Hence the real-time performance will not be taken into account. Unfortunately, the
radar and camera stream is recorded separately without timestamps, resulting in a man-
ually synchronization. There are no guarantees that the data is correctly synced in time,
which might impact the accuracy of the fusion.

The radar operates slightly slower than 5 FPS, whilst, MOTE has a specified output
of 5 FPS. This increases the difficulty of manually synchronizing the two streams, since
there is no direct mapping between a radar frame and a camera frame. This leads to that
the fusion could to be more difficult when there exists a synchronization error especially
in scenes where two objects are close to each other.

The motion detection software does not have a limitation in distance only a minimum
object detection size of 1.3% × 2.2% of the image with the used camera chip ARTPEC-5.
Themaximumvelocity of amoving object to be detected by the same software is 1/2 FOV/s
(Field of View per second). In comparison, the radar system has a documented distance
limitation of 50 meters, although it may happen that objects further away are detected.

The radar sensor used has a documented Field of View (FOV) 110° while the practical
FOV is quite larger, see Figure 1.3. Since the camera sensor’s FOV is 113° the same FOV
can be used for radar as well and still maintain a good accuracy.

The radar sensor used during this thesis is not calibrated, which results in some larger
angle and distance errors than documented. The magnitude measurement has also been
affected, therefore harder to use and the time spent on the RCS values has been limited.
Since the angle measurement is of greater importance when combining the two sensors,
the calibration graph in Figure 1.3 has been taken into account and the angle measurements
from the radar have been adapted to counteract the angle errors.

What should trigger the alarm is oftenwell defined, however, there are gray areas where
the alarm might need to trigger. For example, humans or cars should trigger the alarm
while birds and rabbits should not. One might argue that bigger or dangerous animals
such as a bear might need to trigger the alarm for safety reasons. This topic is out of the
scope for this thesis and will therefore not be discussed further, the main focus is to trigger
on human activity and not trigger on light rays, shadows or trees.

The radar information will give a new perspective which could be used for improving
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1.5 Outline

Figure 1.3: Calibration graph for angle measurements

the tracking behavior, but will not be prioritized due to the limited time of this thesis.

In the beginning of the thesis, there were hopes of being able to have the camera setup
filming during a longer period of time, in order to capture more realistic scenarios. Due
to reasons out of the hands of the authors, this was not possible resulting in only stage-
managed scenarios, which may induce bias in the dataset.

1.5 Outline
The outline for the rest of this thesis is as follows:

Chapter 2 Relevant background theory will be introduced, along with concepts that are
of importance for this report.

Chapter 3 The gathering process along with a description of the retrieved data is de-
scribed in detail in this chapter.

Chapter 4 In this chapter the different steps and methods are described.

Chapter 5 The results obtained will be presented in this chapter.

Chapter 6 Have the purpose been fulfilled and what possibilities exist for future works.

Chapter 7 Conclusion
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Chapter 2

Background

In this chapter, some of the theoretical backgrounds that this thesis is built upon or uses is
described, along with concepts that are of importance for this report.

2.1 Radar Technology
RAdioDetection And Ranging (RADAR) is an object-detection system that has been used
in the military since World War II. Radio waves are used to determine the range, angle,
or velocity of objects [3]. The modern uses of radar are highly diverse including anti-
missile systems, public health surveillance and it has recently become widely used in the
automobile industry, partly to detect people or other vehicles for collision warning and
emergency braking [4].

The simplest form of a radar system consists of a radio transmitter and a receiver.
The transmitter radiates electromagnetic energy which is reradiated in many directions.
When an object intercepts the wave, some of the reradiated (echo) energy is collected by
the receiver [5]. Since electromagnetic energy travels at the speed of light, the range or
distance to a target can be obtained by measuring the time it takes for the radiated energy
to travel to the target and back [3]. The distance R [m] is given by

R =
c0 · ∆t

2
(2.1)

where c0 is the speed of light in free space (3 · 108 m/s) and ∆t is the round-trip time [s].

There are two types of radar signals; pulse, which transmits a sequence of pulses, and
Continuous Wave (CW), which transmits a continuous signal. The later one usually uses
separate transmit and receive antennas. Because it is hard to receive with full sensitiv-
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2. Background

ity through an antenna while it transmits a high power signal. Pulsed radar on the other
hand only needs one antenna, the pulsed radar emits short powerful pulses during transmit
time, waits for echo, and then sends out the next pulse. In contrast to the CW radar, the
transmitter is switched off until the measurement is finished. [3, 6]

There is no way to determine target range with a continuous wave radar without Fre-
quency Modulation (FM). Because of the lack of necessary time marks to accurately cal-
culate the round trip time ∆t in Equation 2.1. Such a time reference can be obtained by
using Frequency Modulated Continues Wave (FMCW) radar, which can modify the oper-
ating carrier frequency periodically. The basic idea is to use a linear frequency ramp as a
transmit signal. When an echo signal is received, a delay ∆t is obtained by the change of
frequency. The Equation 2.1 can be rewritten as

R =
c0 · ∆t

2
=

c0 · |∆ f |
2 · (d f /dt)

(2.2)

where ∆ f is the measured frequency difference [Hz] and d f /dt is the frequency shift per
unit of time. [7]

For CW-radars the velocity can be given as a Doppler shift since the transmitter of
the radar emits a signal at a constant frequency. Therefore, the velocity can be calculated
by the frequency shift in the returning echo. When an object moves directly towards the
radar, the receiver frequency increases at a faster rate compared to an object that moves
in another direction. This is called the Cosine Effect and explains why the Doppler speed
can be slightly slower than the actual speed. [8]

In order to determine both range and velocity with FMCW-radars, the information
from one frequency ramp is not sufficient, because it is ambiguous. To separate the fre-
quency shifts generated by range from the Doppler frequency, several subsequent ramps
are needed. To do this Fast Fourier Transform (FFT) can be used. For more detailed infor-
mation the reader is encouraged to read ”Range Doppler Detection for automotive FMCW
Radars” by Volker Winkler. [9]

2.1.1 Radar Cross Section
Radars can sometime classify detected objects depending on the returned echo signal.
The Radar Cross Section (RCS), denoted as σ, is a measurement of the target’s ability to
reflect radar signals in the direction of the radar receiver. RCS depends mainly on the size,
geometry, and material of the object, where a high value of RCS indicates a high visibility.
[10]

The RCS value can be solved by first modifying the radar equation:

Pr =
PtGt

4πr2σ
1

4πr2 Ae f f (2.3)

such that the RCS value σ is given by

σ =
Prr4

c
(2.4)
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2.2 Video Motion Detection

where Pr is power received back from the target by the radar, r is the distance from the
radar to the target and c is a constant depending on the radar sensors abilities see Equation
2.5, where Pt is power transmitted by the radar, Gt is gain of the radar transmit antenna
and Ae f f is the effective area of the radar receiving antenna. [11]

c =
PtGt Ae f f

16π2 (2.5)

The RCS value of the target can be seen as a comparison between, the strength of the
reflected signal from the target and the reflected signal from a perfectly smooth sphere,
with a cross-sectional area of 1 m2. The echo of a sphere is independent of the observation
angle, compared to the echo of a human that is dependent on the observation angle and
varies significantly. [10, 12, 13]

In theory, the RCS does not vary with the distance. However, due to the FOV of the
radar and the compensation for the free space path loss, the measured RCS varies signif-
icantly over distance. Furthermore, at near distances, it is not certain that the target is
scanned over its complete height. [13, 14]

2.2 Video Motion Detection
There are many approaches for detecting motion in a video stream. All of them are based
on comparing the current video frame with the previous one or with a background model.
One of the most common and the simplest form of a video motion detection system is
to compare the current video frame in grayscale with the previous one and calculate the
difference for each pixel. If the pixel difference is greater than a selected threshold there
is motion in this area. It is also fairly common to set a threshold for the least amount of
connective pixels with motion detected that should be allowed. [15]

Another common approach is to save the first video frame as a background model and
then calculate the pixel differences from the current frame to the backgroundmodel instead
[15]. Drawbacks that can occur with this is when the background is changed i.e. a parked
car drives away. This means that the system sees the absence of the car as a new object
that is stationed where the car was before, a so-called ghost object.

The simple motion detection described in the first paragraph has some problem with
slow moving objects, while foreground detection has some other problems as mentioned
and therefore it is good to combine these two methods. MOTE uses a combination of the
two but with an adaptive background model, with a decision matrix, that is based on the
advantages and disadvantages of motion and foreground detection.

2.3 Clustering
The goal of clustering is to divide data into groups based on some measure of similarity or
characteristics. As a result, objects in the same cluster are similar and objects in different
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2. Background

clusters are distinct. There are various clustering algorithms and they differ significantly
in their notation of what constitutes a cluster. There are two broad groups of clustering
algorithms, hard and soft clustering. Hard clustering, where each data point only belongs
to one cluster. Soft clustering, where each data point belongs to each cluster to a certain
degree. [16, 17, 18]

There are lots of different clustering algorithms and models. One of the most common
is the K-means clustering algorithm, which belongs to the centroid model techniques, each
cluster is represented by a single mean vector. K-means aim to divide n observations into
K clusters, each observation belongs to the cluster with the nearest mean. The K-means
is simple and the method is described in Algorithm 1, where K is user-specified, namely,
the number of clusters desired. However, it is sensitive to outliers, therefore it is a good
idea to discover and eliminate them beforehand. [16, 18, 19]

Algorithm 1: Basic K-means algorithm
1 Select K points as initial centroids;
2 repeat
3 Form K clusters by assigning each point to its closest centroid;
4 Recompute the centroid of each cluster;
5 until Convergence has been reached;

Another widely used clustering algorithm is the hierarchical clustering, which belongs
to the connectivity models, and builds on distance connectivity. There are two basic ap-
proaches for generating a hierarchical clustering. Agglomerative (bottom-up) approach,
which starts with all points as individual clusters, is by far the most common hierarchical
approach. For each step the closest cluster pair merge, a notation of proximity is required,
see Algorithm 2. The divisive (top-down) approach, starts with one cluster (including
all points). For each step, a cluster is divided into new clusters, until only clusters of
individual points remain. Hierarchical clustering can be displayed graphically with a den-
drogram, which is a tree-like diagram. The dendrogram shows both clusters, sub-clusters,
their relationship and the order of merge/split. [16, 18]

Algorithm 2: Basic agglomerative hierarchical clustering algorithm
1 Compute the proximity matrix, if necessary;
2 repeat
3 Merge the closest two clusters;
4 Update the proximity matrix to reflect the proximity between the new cluster

and the original clusters;
5 until Only one cluster remains;

In agglomerative hierarchical clustering, see Algorithm 2, there are different ways to
calculate the proximity between the clusters, this can be done using linkage methods. The
following three linkage methods differ in how the distance between two clusters is mea-
sured: [16, 18]
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2.4 Tracking

Single linkage (or nearest neighbor) calculates the distance as the shortest distance be-
tween a point in each cluster.

Complete linkage calculates the distance as the longest distance between a point in each
of the clusters.

Average linkage the distance is calculated as the average distance between each point in
one cluster to every point in the other cluster.

2.4 Tracking
Tracking is the process of associating and locating objects over consecutive time frames.
There can be detection at consecutive frames, without a guarantee that they are relevant.
For instance, some of them could come from the object of interest and some could come
from other objects or noise. Therefore there is a need for amodel over how an object change
over time. Objects that are moving fast in relation to the frame rate can be aggravating for
this process, as well as frequent orientation changes. [20]

Two commonways of tracking objects are tracking by detection and tracking bymatch-
ing. The first method requires distinct characteristics between the objects, such that the
algorithm can separate and associate the objects, for example, a red and a blue ball on a
green background. The algorithm only needs to search for red or blue pixels in the image
and match that position with previous frames. [20]

The second method utilizes how the object moves. That is, if an object moves from
(x, y) in frame i to (x + d1, y + d2) in frame i + 1, were d1 and d2 are chosen based on the
frame rate and the distance that an object could have moved to during the time period. Due
to missing data points, for each track, there can be frames where there are not any mea-
surements. Thus, there is a need to estimate where the object could have been and use that
point for the next frame to see if the track is still alive. How long a track should live with-
out a new measurement is based on how reliable the system is to have a measurement of
existing objects. Furthermore, there exists a possibility in which two measurements could
be assigned to two tracks, in that case, one could implement a method to find which one
is more likely to be assigned to each track, a simple example being the shortest distance.
[20]

2.5 Information Fusion
In some cases, the term information fusion is used to describe a fusion where the data has
been preprocessed. Whereas, data fusion is used to describe a fusion where the fusion is
based on raw data; usually the terms are used as synonyms. [21] In this thesis information
fusion will be used and referred to as the fusion of preprocessed data. Another commonly
used term is sensor fusion which describes a fusion of different sensors regardless if the
data has been preprocessed or not.
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2. Background

When utilizing sensor fusion, the goal is to achieve lower detection error rate and in-
crease the reliability of the system. [21] There is also a possibility to decide which level
of uncertainty is accepted, such as when a car decides if it can drive in a specific lane,
there must be a high level of certainty that e.g. there is not a pedestrian walking there. To
achieve this, a requirement could be that both sensors must decide that it is safe to drive
there. This leads to some miss-classifications, yet the goal is to not have a collision. [22]

2.6 Parameter Estimation
There might be times when it is desirable to estimate points between two points in order to
describe a discrete system as if it was continuous. For instance, assume a set of timestamps
S = s1, ..., sN where one or many measurements xk are given at the timestamps tk ∈ S ,
with k = 1, ..., n. For each timestamp s there can be zero, one or many measurements.
Consequently, an algorithm to generate a smooth curve f in the interval [t1, tn] is needed.
This can be achieved by minimizing the minus log likelihood of the measurements (tk, xk)
assuming that xk = f (tk) + ek where e are random Gaussian variables with mean 0 and
variance σ. Furthermore, there is a prior e.g. fi+1 = fi + ei where e are random Gaussian

variables with a mean of zero and a variance σ. Denote z =


f1
...
fN

 and find z that minimizes

g(z) =

n∑
k=1

|xk − f (tk)|2 +

N−1∑
i=1

| fi+1 − fi |2

which is a linear least squares problem and can be solved using linear algebra.

2.7 Probability Theory
Probability theory is the mathematical study of random or uncertain events, including
various methods to describe and calculate random events. Events and outcomes are often
studied in form of probability distributions, describing how likely an outcome is.

Probability is the ratio of how many times an outcome can occur compared to all pos-
sible outcomes. The probability is denoted by a number in the closed interval from 0
to 1, where an event’s occurrence or failure to occur is random. The intervals extremes
represent impossible and certain respectively.

2.7.1 Normal Distribution

A normal distribution with expected value µ and variation σ2 has the Probability Density
Function (PDF):

P(x) =
1

σ
√

2π
e−(x−µ)2/2σ2
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The curve is symmetrical around the mean of the distribution and the probability of a
value to be within two standard deviations from the mean value is roughly 95%. Data
which has; strong tendency to be close to the expected value, equally probable deviations
on both sides and decreasing occurrence frequency for values further away, can be well
described with normal distribution. [23]

2.7.2 Logistic Distribution
A logistic distribution with expected value µ and a scale parameter proportional to the
standard deviation s has the PDF:

P(x) =
e−

x−µ
s

s
(
1 + e−

x−µ
s
)2

It is similar to normal distribution in shape but with longer tails and higher kurtosis. Hence,
logistic distribution is more tolerant when there are more big misses but still most values
are focused close to the expected value. [23]

2.7.3 Bayes’ Theorem
Bayes’ Theorem is a mathematical formula used for calculating conditional probabilities,
and is written as:

P(A | B) =
P(B | A) P(A)

P(B)
(2.6)

Where P(A | B) is the conditioned probability that A occur given that B is true and P(B | A)
is the reverse. P(A) and P(B) are the probabilities of A and B individually without regard
to each outer. [24]

2.8 Classification Tree
A decision tree can be used to classify different problems to given class labels. When used
for classification problems it is more fitting to refer to the tree as a classification tree. One
way to answer a question, such as ”What kind of animal is this?”, is to use a classification
tree. The procedure is to ask a new question such as how many legs the animal has or if it
has a tail. For each question answered a new question should be asked until a conclusion
is reached of what animal it was. The sequence of questions and the possible answers
can be represented as a classification tree, which is a hierarchical structure with different
nodes. Namely, one root node symbolizing the starting point, internal nodes which can
be in multiple layers, each node with multiple outputs and lastly, the leafs nodes which
indicate the classification. [25, 26]
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2. Background

2.9 Related Work
During the last couple of years, there has been a lot of work on combining both video and
radar information, especially in the automobile industry. These two technologies comple-
ment each other well as radar is excellent for measuring range and Doppler speed, while
cameras recognize objects and measures lateral movement well. [27]

In the automobile industry, it is important to predict where cars and pedestrians will
be in the near future to avoid a collision. This is crucial in achieving safety in traffic. This
area has been researched a lot with, but not limited to, radar and video fusion. [28, 29]
This is not implemented in this project, but it could be used if there is a part of the area
covered by the system that is a restricted area. For this problem, the system could trigger
the alarm if a pedestrian is predicted to go inside the restricted zone.

There has also been work done for surveillance systems using sensor fusion. Particu-
lar one paper focused on data fusion where the measurements from different sensors, that
monitors the same scene, are fused together to obtain a more accurate estimation of the
tracked object. The system can also monitor a bigger area with multiple sensors, conse-
quently, a track can still be continuous when an object moves outside the FOV of a sensor
if another sensor covers that area. [30]

Furthermore, there is another master’s thesis work at Axis that is closely related, which
combines radar and video using data fusion, with the focus on tracking objects in world
coordinates.
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Chapter 3

Data

In this chapter, the data from the different sensors are described. Data retrieved from radar
and camera are in different dimensions, which means that fusion between them is not a
trivial problem. Additionally, the dataset used during this master’s thesis is described.

3.1 Sensor Data

The output information retrieved by MOTE is in the form of polygons representing the
tracked objects, with x and y coordinates for pixel position. The output representing ob-
jects’ position from the radar sensor are the distance in meters and angle in azimuth de-
grees. The angle is converted to image coordinate x using the camera lens correction
matrix. Due to the lack of the object’s elevation knowledge, some errors occur in addition
to the angle scattering.

In addition to the object position, the radar outputs two more parameters, velocity
and magnitude. The velocity is the object’s Doppler speed in meters per second and the
magnitude is the loss of signal strength in decibel (dB). It is possible to calculate the RCS
for the objects, using Equation 2.4, where Pr represent the magnitude.

The output from the radar sensor can consist of one or many hits per detected object
depending on the range, material, velocity and size of the object. In Figure 3.1 the radar
data is visualized from a camera perspective and radar perspective. Unfortunately, the
radar data is preprocessed in partly unknown ways, what is known is that some clustering
with discrete steps is performed.
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3. Data

Figure 3.1: Representation of radar data with and without the
camera’s perspective. The blue lines in the right image represents
±57.5° FOV and 50 m from the radar, each intermediate line is an
increment of 10 m.

3.2 Sensor Fusion
The camera and radar sensors are heterogeneous; it is not trivial to combine them. How-
ever, there are benefits to gain, a summery of the sensors advantages and disadvantages
can be seen in Table 5.1. Clearly radar seems like a good complementary sensor to video.

Table 3.1: Radar and video characteristics

Characteristic Radar Video
Good azimuth detectability -
Background model -
Good Doppler detectability -
Only physical objects -
Distance -

Surveillance systems have different uses of radar than e.g. the automotive industry.
For instance, a car needs to know the exact location in both distance and angle in order
to know when to use the breaks. Whilst, the exact distance or angle is not as crucial for a
surveillance system.

Furthermore, the radar can detect objects just as clear at night time as in day time.
Therefore, if an area that is not sufficiently illuminated it can be monitored both day and
night with sensor fusion. The goal with adding another sensor dimension is to achieve a
higher level of certainty when decisions are made.

3.3 Datasets
All data used for analyzing and testing has been produced throughout the project since
there was not anymaterial available created with the correct combination of hardware. The
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3.3 Datasets

data was gathered at multiple locations and dates to get a broader variety of data. However,
as mentioned in Section 1.4 it was not possible to perform any long time recording, which
probably would have resulted in more realistic empty scenes with some false triggers.

The film scenarios consist of mostly sterile scenes where one or two persons moves
in a variety of ways to simulate how a typical surveillance scene could look like. Many
of the filmed scenarios are based on parts of the i-LIDS sterile zone monitoring datasets,
which is the UK government benchmark for video analytics systems [31]. In contrast, the
scenes used during this thesis are shorter and contains mostly the parts with actual moving
objects.

In addition, film scenarios that are known to be problematic for MOTE have been
attempted to be recreated. Including scenes with light variations, reflections, and dynamic
backgrounds. Furthermore, film scenarios for easier analyzing of radar data were created,
using environments which avoid generating numerous radar reflections.

Finally, a workshop was held, around the question ”What are the most critical test
scenarios that should be evaluated?”, to increase the likelihood of a dataset containing the
most critical test scenarios. The workshop was performed using the KJ-Method, which
allows groups to quickly reach a consensus on priorities of subjective, qualitative data
[32].

For a complete list of film scenarios see Appendix A.1. The films have been combined
into different smaller datasets, to test different characteristics and to reduce the skewness
of the complete dataset. Eight different datasets have been used which can be seen in
Appendix A.2. Focus will be on four of themMixed dataset,Mixed without dark dataset,
Filtered dataset andDark dataset. The results for the remaining datasets will be presented
in Appendix B without a detailed discussion.
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Chapter 4

Methodology

This chapter describes the methods used in order to combine the sensors with data de-
scribed in Chapter 3, and how the evaluation was done. All implementation has been done
using MATLAB on a desktop computer.

4.1 Synchronization of Data

The radar and video are recorded separately, as described in Section 1.4, in consequence,
the data need to be manually synchronized. This is not a trivial problem, hence there are
multiple factors that affect the dispersion of radar hits. Influencing factors are; uncali-
brated radar sensor, angle accuracy, image skewness due to the fisheye camera, frame rate
disparities between sensors and also the uncertainty about which part of the object the
radar hit represents (e.g. left or right arm).

Initially, an assumption has been made, that radar hits are normally distributed around
the object’s center of mass. With this in mind, an estimated density function of the radar
hits’ dispersion has been calculated. Based on the expected value and the assumption
that it should be zero, readjustments over time was made, until the expected value was
sufficiently close to zero.

All the synchronization has also been verified visually by the authors to avoid corrupt
data. The difficulties with synchronization increases if there are multiple objects in the
scene. In scenes where objects are moving in opposite direction to each other, visual
synchronization has almost exclusively been used. Because their error caused by faulty
synchronization in time, cancel each other out.
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4. Methodology

4.2 Radar Filter

Only radar hits within 50 m are kept and the rest are filtered out, see Section 1.4. Addi-
tionally, all objects with a speed slower than ±16 cm/s are filtered out as well. Because the
used FMCW radar antenna have problems to distinguish between moving and stationary
objects in this area. This has been done since detections with these velocities was found
in all scenes and nearly all frames, even empty ones.

4.3 Radar Cluster

Even though some clustering is done in the preprocessing phase an additional clustering
is needed. The goal is to associate each real world object in the frame to one cluster. The
clustering method is inspired by hierarchical clustering using average linkage, the criteria
for a detection to be assigned to a cluster depends on the distance and angle measure-
ments. When a new measurement has been added to a cluster the mean of the cluster is
recalculated. The distance and angle differences are weighted differently depending on
the distance, this was mainly done because the radar gives more hits on body parts on a
shorter range.

There are some challenges with clustering the radar detections so that one cluster rep-
resents one object. For instance, to cluster a car as one object could be very similar to
cluster two persons that are standing close to each other, as one object, see Figure 4.1.

4.4 Radar Tracker

The main focus for this thesis has been on sterile environments, see Section 1.1, therefore
a simple tracker was implemented due to time limitations. Tracking by matching was best
suited for this problem, considering the lack of a strong model for identifying objects.

The flowchart is shown in Figure 4.2 describes the process for a radar detection, until
it becomes a track or classified as noise. When there are missing data, it needs to be
estimated, this has been done linearly using the two last positions. The estimations are not
included in the resulting track, it is only used to associate the track with new data points.

To limit the number of false triggers, a condition needs to be fulfilled before the radar
detections are counted as a real object and a track is started. On the contrary, a hard
condition will reduce the number of true detections and potentially miss objects before
they are tracked. The condition was set to that at least two out of five frames need to have
a detection. In order to limit the number of misses in the beginning of each object, the
whole large practical FOV of the radar is used.
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4.5 Ground Truth

Figure 4.1: Visualization of a clustering problem. The left figures
shows radar hits for two persons and the right ones shows radar hits
for one car.

4.5 Ground Truth
Comparing the fusion system andMOTEwith real world objects, also referred to as ground
truth, is not a trivial task. The process of creating ground truth usually consist of at least
some part manual creation which could lead to errors caused by human error. Ground truth
was used both to analyze and validate data, there was a need for several types of ground
truth, in order to evaluate different perspectives. The different types evaluate; radar tracker,
how accurate the objects are located in each frame, how many objects are detected and the
number of correctly alarmed frames.

Ground truth for radar tracker was generated by manually selecting all measurements
associated with an object. This was done by dividing the data into different steps, where
the measurements are represented as points from the different features; distance, angle,
velocity and magnitude each over time and finally distance over angle. These were iterated
through one at a time and only the chosen points from a feature were passed along to the
next feature. In Figure 4.3, some of the different features described can be seen where
there are distinct patterns for each object.

Radar can have multiple measurements per object and frame and sometimes it can
fail to detect an object. To compensate for this, interpolation using parameter estimation
with a smoothening was used. The evaluation is performed visually to see how the tracker

21
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Figure 4.2: A flow chart that displays the different steps in the
tracking algorithm and when a track will be killed or which clus-
tered detections that will be seen as noise.
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4.5 Ground Truth

Figure 4.3: Images to show how the ground truth was generated
based on patterns. The purple color is a person that starts from
the left side and runs to the right side and then back again. Yellow
and red color is a person that starts from the right side and runs to
the left side and is outside of FOV for a couple of frames and then
runs back to the right side. This example is from Victoriastation
7 see Appendix A.1.2.

appears versus how the ground truth appears.

Ground truth for how accurate the objects is located was created similar to how the
ground truth for the radar tracker was created. But instead of radar data, it was generated
from the video sequence where the features are maximum and minimum x, y coordinates
of each object for both foreground and motion masks. Next, the two ground truths are
visually analyzed and the mask that matches the real object the best for different intervals
throughout the film is selected for the respective interval. Parameter estimation is used
here as well. Finally, if needed the position or size of the ground truth can be modified.

To test how many objects that were detected, a list of frame intervals was created for
each film that each represents one object. Finally, to test how many correctly alarmed
frames that were triggered, a similar list was created, but a frame can only belong to one
interval since it is not of interest to know if there are one or five objects that trigger the
alarm.
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4.6 Data Analysis
In order to analyze possibilities of classifying objects using the measured magnitude from
radar detections Equation 2.4 was used. Because of the uncalibrated radar sensor and
lack of documentation about the radars internal values and underlying functionalities, the
constant c given by Equation 2.5 needed to be estimated. This was done by assuming that
the RCS for a human would be approximately 0.75m2. In this thesis RCS is referred to as
this calculated value and does not correspond to the actual RCS.

RCS values for human, car and dog was analyzed, from some selected scenes, over the
distance. Lower and upper boundaries for the different objects’ RCS values was created in
order to see if it was possible to distinguish between them.

In order to analyze which sensor is best suited for different type of scenes, some kind of
probability estimation needed to be calculated. Bayes’ theorem was used to calculate the
probability of an object given the information about sensor detections. First, two matrices
was constructed Pobj and P¬obj representing the number of sensor detections when there is
an object and when there is not. The first matrix was designed as

Pobj =

[
x0,0 x0,1
x1,0 x1,1

]
where the value of i in xi, j represents if MOTE has detected the object correctly and value
j represents the same for radar. The second matrix was similarly designed as

P¬obj =

[
x0,0 x0,1
x1,0 x1,1

]
where i and j represents which sensor that detected occurrences of faulty objects, and x0,0
is the number of frames that did not have any faulty detections.

Using the matrices, the probability for object occurrences is given by

P(obj) =

∑
Pobj∑

Pobj +
∑

P¬obj

where 1ᵀPobj1 is denoted as
∑

Pobj. Furthermore, the probability for a sensor combination,
(i, j), to yield detections is given by

P(i, j) =
Pobj(i, j) + P¬obj(i, j)∑

Pobj +
∑

P¬obj

and the probability for the sensor combination, (i, j), given the information that it is an
object is given by

P(i, j | obj) =
Pobj(i, j)∑

Pobj
.

Using Bayes’ theorem the probability of an object given that the sensor combination, (i, j),
is calculated by:

P(obj | i, j) =
P(i, j | obj)P(obj)

P(i, j)
=

Pobj(i, j)
Pobj(i, j) + P¬obj(i, j)

(4.1)
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Similar calculation yields the probabilities of a faulty detection.

These calculations have been performed on the different datasets described in Section
3.3. With the goal of finding which sensor that is more likely to be correct, for various char-
acteristics of scenarios. These calculations have only been done on films in the datasets,
due to the time consumption of generating ground truth for objects’ position.

4.7 Decision Making
As stated in Section 3.2, video and radar has different strengths and weaknesses and com-
plement each other in a very efficient way. However, different scenarios were analyzed to
find how the sensors performed in various situations.

Due to, time and data limitations as well as the consistency of both sensors, as can be
seen in Figure 4.4, the only special treated situation was when scenes were dark.

Figure 4.4: The performance of the sensors in various datasets.

As long as the scene is sufficiently illuminated, both sensors need to have detected the
object in order to trigger. For how many frames the object should continue to trigger, is
for the radar decided, in a similar fashion as to its’ tracker. This is due to the fact that the
radar can fail to detect objects in a couple of isolated frames, e.g., on larger distances or
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when the object has low Doppler speed. On the contrary, if this is needed for the image
analysis, then it probably already has been implemented in MOTE.

4.8 Validation methods
Only films that were divided into data sets was tested based on where objects are located
in each frame. This is a consequence of that it is very time-consuming to generate ground
truth. The validation process was based on how big part of the detected objects’ intersected
with the ground truth when there was a MOTE object and if there were only a radar object
the x position was compared with a specified threshold that was based on the dispersion
of the radar hits.

Almost all scenes are used to test the amount of correctly alarmed frames and most
of them are used to test how many correct objects trigger the alarm in each frame. The
evaluation is performed on both MOTE and fusion to be able to analyze how the resulting
system performs compared to MOTE. A list of frames the system should trigger in is
compared to the actual frames that the system trigger in to count the correct number of
trigger frames. Similarly, a list with the number of objects in each frame is used to count
the number of objects that correctly trigger.

For different reasons, some of the films were cut. For example, in some films, there
were objects already standing in the scene when the recording started, but MOTE utilizes
the first four seconds with gathering information about how the background looks like and
therefore the first few seconds will perform worse. Another example is when an object
stands still for a longer period of time, it is not specified how the system should handle
these situations and therefore not used when validating. Due to the limitation of 50 m for
the radar module all scenes with objects further away than this is cut. This is done since
otherwise MOTE would get false triggers when it triggers on an object further away, even
though it is a human activity. The main reason why some scenes were cut is to make sure
that fusion and MOTE is validated based on the same premises for a fair judgment.
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Chapter 5

Result

In this chapter the different results obtained using the methods specified in Chapter 4 will
be presented. Additional results for the performance of MOTE and fusion for individual
scenes and datasets will be included in Appendix B.

5.1 Radar
The resulting radar tracker obtained by the simple method described in Section 4.4 was
only visually validated, therefore, these results are not presented. However, its result will
influence the fusion’s forthcoming result. The resulting radar tracker is good enough since
it is not important that each object belongs to only one track, since the fusion works even
when the tracker id changes over time. However, the reliability of the fusion is slightly
higher when the tracker id is constant. In Figure 5.1 an example of a resulting track over
125 frames can be seen.

The RCS values calculated can be seen in Figure 5.2 and the resulting upper and lower
boundaries for human, car and dog can be seen in Figure 5.3.

5.2 Sensor and Fusion Validation
In this section the results obtained by the fusion will be presented, the validation will be
performed in different ways as described in Section 4.8, this was done because reducing
false trigger may be ambiguous. The goal was to present results for, correct frames, the
correct number of objects in frames and also for correctly locating the objects in the frames.
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5. Result

Figure 5.1: The output of a track of two persons which is later
used in the fusion process. From the film Victoriastadion 9 where
one person walking from the right side diagonally away from the
camera and another person running from the left side diagonally
to the right side.

(a) Human RCS over dis-
tance.

(b) Car RCS over distance. (c) Dog RCS over distance.

Figure 5.2: Plot of how RCS values change over distance for hu-
man, car and dog.

The resulting probabilities for an object, given which sensors that had the detection is
displayed in Table 5.1, see Equation 4.1. The values given in columns MOTE and Radar
are representing the probabilities for an object when only that sensor triggered and without
a detection of the other sensor. In addition, the probability for an object given fusion trigger
is presented in the same table.

5.2.1 Localization
The results of how the different sensors and fusion correctly located objects in frames can
be seen in Figure 5.4 and 5.5. The first shows the amount of correctly located objects,
while the second shows the number of false detections (observe the scale on the x-axis).
The same result is displayed in Figure 5.6 where the relation between true and false triggers
is easier to read. For the results of additional datasets see Appendix B.1.
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Figure 5.3: Plot of how RCS boundaries over distance for human,
dog and car.

Table 5.1: The probability that it is an object given which sensors
that detected.

Dataset Both MOTE Radar Fusion

Mixed 0.99925 0.089147 0.86693 0.96387
Mixed without dark 0.99924 0.1675 0.77236 0.98062

Filtered 1 0.7 0.1875 0.98851
Dark 0.86364 0.0035907 0.91724 0.9182

Figure 5.4: The graph shows how the true positives is distributed
between the sensors for the selected datasets, as well as how the
fusion performs.
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Figure 5.5: The graph show how the false positives is distributed
between the sensors and fusion for the selected datasets.

Figure 5.6: The performance of the fusion and sensors in various
datasets.
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5.2.2 Number of Objects
The results for the correct number of detected objects in each frame are presented in Table
5.2, where the true positives are presented as the ratio between detected true objects and
total number of true objects. Whilst the false positives are presented as the number of
faulty detected objects per frame. Additional results for individual films are presented in
Appendix B.2.

Table 5.2: Validation of number of objects in frames.

Fusion MOTE

True Positives 0.8997 0.9222
False Positives 0.2499 0.6351

5.2.3 Correctly Triggered Frames
The results for triggering at the correct frames are presented in Table 5.3. The true positives
are presented as the ratio between correct detected frames and the true number of trigger
frames, whilst, false positives is presented as the ratio between false detected frames and
empty frames. The results for individual films can be found in Appendix B.3.

Table 5.3: Validation of correctly triggered frames.

Fusion MOTE

True Positives 0.9926 0.9576
False Positives 0.1231 0.3818
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Chapter 6

Discussion

In this chapter, the results obtained are discussed. Additionally, important comments,
potential drawbacks, and skewed test data are commented. Finally, potential future work
is presented.

6.1 Performance of the Fusion

When evaluating the performance it is important to understand how the system will be
used. When an alarm is triggered in a frame it is sent to another system, which is also
running software to filter out false alarms. If the detection is still classified as a threat
it notifies an operator, that often monitors multiple scenes simultaneously. The operator
needs to visually analyze if the detection is a threat or not. A problem with false triggers
is that the workload of an operator can be too much to handle. Therefore it is important to
minimize the number of false triggers, but also that the alarms are located correctly in the
frame so that an operator quickly can see if the threat is real or not.

All in all, the performance of the fusion implemented imply that the number of false
triggers is reduced. Neither MOTE or fusion miss an entire object over its lifetime in
any of the films. Yet MOTE picks up the objects faster, as expected since the condition
used needs MOTE to trigger in order for the fusion to do so (whilst the scene is sufficient
illuminated).
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6.1.1 Localization
The results for correctly localizing objects seen in Figure 5.6 indicates that the fusion and
radar perform similarly. Worth mentioning is that the condition for MOTE/fusion to be
correctly localized is harder. For the radar, it is enough that the detection is within 6% of
the image width from the ground truth, while the others need to have a common area with
the ground truth of at least 40%. The tougher requirement also results in a greater impact
on any errors in the ground truth, which may arise out of the human factor.

The focus of this master’s thesis was to investigate the possibility of reducing the num-
ber of false triggers in today’s camera software and not to replace the camera sensor. There
may be several reasons for additional visual confirmation received by the camera, e.g. ad-
ditional software with object detection/face detection or similar.

When comparing the results for MOTE and fusion, seen in Figure 5.6, the loss of true
positives are restricted even without dark scenes, while the decrees of false positives are
distinct. Additionally, the fusion performs remarkably better under poor lighting condi-
tions.

6.1.2 Number of Objects
Counting the number of correctly triggered objects for each frame is a good indication of
how well the system can handle multiple objects in a scene. This measurement is not nec-
essarily the most important validation in restricted sterile environments. However, when
evaluating how well the algorithms work it is still important information.

These results may be partly faulty, the intention when generating the ground truth was
that an object is present even if it is passing behind a solid object which covers the visibility
of the moving object. This was done because the sensors have different abilities to detect
objects. Since the implemented fusion needs a MOTE object to keep the fusion object,
these objects are never detected by the system, but there are times when MOTE triggers
e.g. on a flagpole at the same time resulting in a faulty true positive.

Even though there might be partly skewed results as mentioned, the fusion will never
benefit in respect to MOTE of this, since fusion can’t false trigger if MOTE does not
(except for dark scenes). The number of false triggers has greatly decreased, both overall
and for each individual film. The true positives are slightly lower but still keeps a high
level, there are some films where there are larger drops, e.g. Victoriastadion 8 which was
caused by an extremely slow moving object and Axis Parking Lot 2 which was affected by
what was discussed in the previous paragraph.

6.1.3 Correctly Triggered Frames
When monitoring a restricted area, the information about how frequent a false trigger
occurs is a good indication of how often manual work is required by an operator. It is
good to note that the false triggers obtained from this method are actual false triggers
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where there is no human activity, whereas the other methods do not give any indication of
if there is an actual object in the scene that should trigger an alarm. The results obtained
using this method indicates that using sensor fusion can greatly reduce the number of false
triggers while still maintaining a good amount of true positives as can be seen in Table 5.3.
In this table, the fusion is triggering on even more frames than MOTE, this is due to the
fact that there are dark scenes in the data set.

6.2 Classification with Radar
The possibility to classify objects with the additional information was lightly investigated
using the RCS values. The RCS boundaries for human, car and dog was quite overlapping
were only the highest values for a car could be separated from humans, as well as the
lower values for the dog. The variety of data for dogs and cars were strongly limited to
only consisting of one dog and one car. In addition, the dog ran with high speed which
resulted in less radar detection, especially on longer distances. This could imply that the
boundaries for these object types should bewider. Even though the used films for analyzing
human RCS values were larger, with up to seven different persons, the boundaries did not
get significantly wider compared to using only one human to calculate RCS. There may
still be a wider variety in the RCS value, all the people that were tested on was between
20-30 years of age with normal height and physique.

6.3 Future Work
Even though the results proved to be good, there could still be improvements to the system
to make it even better. In this section, the authors will try to list and discuss all ideas that
they came up with during this thesis but due to some limitation, e.g. lack of time, could
not test.

When an object only was detected by radar but still classified as a human activity, the
output is only a vertical line on the x position of the object. This could be improved by
using the available foreground and motion masks to see if the radar detection could be
mapped to an object at either of the two masks to produce an output of a polygon.

The masks described could also be used in a classification tree. One of the masks could
detect an object even if MOTE did not detect it. In that case, if radar detected an object and
there is some motion detected in the same area the system could detect the object. This
could decrease missed alarms, however, it could also increase the number of false alarms.

The algorithms for radar clustering and tracking objects could be improved and gen-
erate better results. This could make the system more stable on more difficult scenes and
not be limited to sterile environments.

Throughout the thesis, there were some experiments with RCS, unfortunately with no
greater success. However, the authors believe that it could be possible to combine RCS
with information about the radar hits for the object, e.g. how many hits, to reduce even
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6. Discussion

more false triggers from trees. There need to be more data collected from scenes where
there are only trees that are detected. Machine learning is also worth investigating to see
if it can make the system learn how the response from trees looks like.
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Chapter 7

Conclusion

The aim of this master’s thesis was to explore the possibility of reducing the number of
false triggers in a motion detection system without changing the current system while
aiming for remaining the number of true positives.

It was a clear indication that the information fusion was able to keep the number of
true object detections around the same level, at the same time as reducing false triggers
drastically. The methods used are good groundwork, but there are many parameters, and
different combinations thereof, that needs to be taken into consideration if worked upon.

The results gave an indication that it could be enough to only use a radar sensor and
receive results as good as the ones for fusion or potentially even better. For these kinds of
scenes, it could be sufficient to use only radar if a visual validation is not required. Some
problems with this could be that it could be difficult to distinguish between a deer and a
burglar. Looking at the history of radar data after a burglary can’t identify the burglar so
the legal actions that can be taken are limited. However, scenes that weren’t specified for
this thesis have not been sufficiently tested upon to draw a conclusion.

There are external factors that affect the reliability of the sensors. It is mostly the visual
factors that affect MOTE, such as night time but also if objects are moving towards the
camera; this results in both true positives and false positives. Radar has more problems
with lateral movements or scenes with a lot of metallic objects which causes reflections;
this results in false triggers. If object movement and scenes are correctly identified then
sensor fusion could be greatly improved if basing decisions on the probability that each
sensor is correct.
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Appendix A

Datasets

Presentation of the complete list of film scenarios and description about datasets that has
ground truth used for testing.

A.1 Film scenarios
Short summaries of the filmed scenarios, sorted by the location.

A.1.1 Park (Stadsparken)
Stadsparken 1 Lots of people, one camouflaged in the bushes.

Stadsparken 2 Several single persons, bikers.

Stadsparken 3 Single persons, stopping for a long time, wind beams in trees.

Stadsparken 4 A lot of noise; birds, bushes, trees. There are also single persons and
groups.

Stadsparken 5 Big trees directly above camera, single persons, and groups.

Stadsparken 6 Big trees directly above camera, single persons, and groups.

Stadsparken 7 Fountain with several single persons in complex paths.
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A. Datasets

A.1.2 Open field, football stadium (Victoriastadion)
Victoriastadion 1 Sunny with dog and person.

Victoriastadion 2 Sunny with a single person walking straight from the camera, rabbit
runs by.

Victoriastadion 3 Sunny, a person with a metal object and a single person walking across
FOV on 10 m distance.

Victoriastadion 4 Sunny, a person with a metal object and a single person walking across
FOV on 25 m distance.

Victoriastadion 5 Sunny, a person with a metal object and a single person walking across
FOV on 45 m distance.

Victoriastadion 6 Sunny with two people crouching across.

Victoriastadion 7 Sunny with two people running across.

Victoriastadion 8 Sunny with two people walking real slow across.

Victoriastadion 9 Sunny with a person walking and running diagonally.

Victoriastadion 10 Sunny with the single person running diagonally towards the camera.

Victoriastadion 11 Person walking holding the metal object.

Victoriastadion 12 Single person walking straight away from the camera.

Victoriastadion 13 Single person walking straight away from the camera.

Victoriastadion 14 Single person walking straight away from the camera.

Victoriastadion 15 Single person walking straight away from the camera.

Victoriastadion 16 Single person walking straight away from the camera.

Victoriastadion 17 Single person walking straight away from the camera.

Victoriastadion 18 Single person walking straight away from the camera.

Victoriastadion 19 Groups of people walking, sensors shaking.

Victoriastadion 20 Groups walking randomly, high loaded scene, dog at the end.

Victoriastadion 21 Dog running around.

Victoriastadion 22 Group walking away from camera and back.

Victoriastadion 23 Snow on the ground, a single person walking away and back, ice
blocking radar.
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A.1 Film scenarios

Victoriastadion 24 Snow on the ground, a single person walking away and back tossing
snow.

Victoriastadion 25 Ice blocking camera, a person running.

Victoriastadion 26 Snow on the ground, two persons throwing snowballs.

Victoriastadion 27 Snow on the ground single person running around.

Victoriastadion 28 Snow, three people walking randomly.

Victoriastadion 29 Snow, three people throwing snowballs, and push one around.

Victoriastadion 30 Snow, three people building an ugly snowman.

A.1.3 Empty parking lot (Near Axis)
Parking Lot 1 Empty scene one parked car.

Parking Lot 2 Car driving away, a single person walking with a metal object.

Parking Lot 3 Car drive straight.

Parking Lot 4 Car drive zig zag.

Parking Lot 5 Bike drive straight.

Parking Lot 6 Bike drive zig zag.

Parking Lot 7 Snow, a single person walking close in front of the camera.

Parking Lot 8 Snow, a car driving zig zag.

Parking Lot 9 Snow, car driving fast.

A.1.4 Busy parking lot (Axis)
Axis Parking Lot 1 Lots of cars parked, cars drive by, single people walking, a metal

object thrown, a car comes in and park, swaying flags.

Axis Parking Lot 2 Single people walking around between lots of parked cars, swaying
flags, car drive by.

Axis Parking Lot 3 Lots of cars parked, car drives by, single persons walking around,
swaying flags.

Axis Parking Lot 4 Lots of cars parked, car drive by, two person does jumping jacks in
front of the camera, swaying flags.
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A.1.5 Indoor
Indoor 1 Single person walking around and down in stairs.

Indoor 2 Single person walking up from stairs.

Indoor 3 At an office, a single person walking back and forth, a single person with a metal
object.

Indoor 4 At office, single person walking back and forth.

A.1.6 Dark open field (Värpinge)
Värpinge 1 Dark night scene, a single person walking.

Värpinge 2 Empty dark night scene with a light beam.

Värpinge 3 Dark night scene, two persons walking on different distances.

Värpinge 4 Dark night scene, a single person walking around, light beam sweep in.

Värpinge 5 Dark night scene, a single person walking with a flashlight.

Värpinge 6 Dark night scene, a single person walking and begins to dazzle the camera.

Värpinge 7 Dark night scene, one person standing in still and dazzle the camera while
other person walking.

Värpinge 8 Dark night scene, four persons walking around.

Värpinge 9 Dark night scene, light beams from car sweep by.

Värpinge 10 Dark night scene, light beams from car sweep by.

A.1.7 In front of a tree (Kemicentrum)
Kemicentrum 1 Directly in front of a tree, with small wind beams.

Kemicentrum 2 Directly in front of a tree, with small wind beams.

Kemicentrum 3 Directly in front of a tree, with small wind beams, with big branch flap-
ping in front of the camera.

Kemicentrum 4 Directly in front of a tree, with small wind beams and a branch in the
tree that flaps.
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A.2 Divided subsets of data

A.1.8 Open field (Lophtet)
Lophtet 1 Two plastic bags moving around.

Lophtet 2 One person walking in from the side and drops a plastic bag and run away. Two
plastic bags moving around.

Lophtet 3 Plastic bags moving around.

Lophtet 4 Cardboard dragged towards the camera.

Lophtet 5 Sundown, Single person walking from left to right at approximately 5 meters
from the camera.

Lophtet 6 Sundown, single person walking from right to left at approximately 5 meters
from the camera.

Lophtet 7 Single person walking from left to right at approximately 10 meters from the
camera.

Lophtet 8 Single person walking from right to left at approximately 10 meters from the
camera.

Lophtet 9 Single person running from left to right at approximately 10 meters from the
camera.

Lophtet 10 Single person running from right to left at approximately 10 meters from the
camera.

Lophtet 11 Single person walking from left to right at approximately 30 meters from the
camera.

Lophtet 12 Single person walking from right to left at approximately 30 meters from the
camera.

Lophtet 13 Single person walking directly towards the camera.

A.1.9 Other
Other Near office, between buildings with parked cars, several people, one of which

sneaks around the cars.

A.2 Divided subsets of data
The complete dataset of film scenarios in Appendix A.1 have been divided into different
smaller subsets to test different characteristics.
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A.2.1 Mixed dataset
This dataset have a broad mix of scene types, the individual films used are;

Victoriastadion 2, 4, 5, 6, 7, 9, 10 and 12

Lophtet 1, 3, 4, 5, 8, 10, 11 and 13

Parking Lot 5

Värpinge 2, 3, 4 and 10

A.2.2 Mixed without dark dataset
This dataset have a broad mix of scene types and contains the same films as the Mixed
dataset, except that it does not contain any of the dark ones, the individual films used are;

Victoriastadion 2, 4, 5, 6, 7, 9, 10 and 12

Lophtet 1, 3, 4, 5, 8, 10, 11 and 13

Parking Lot 5

A.2.3 Filtered dataset
This dataset contains just a few film scenarios which should not be of any problem for
either of the sensors, the individual films used are;

Lophtet 5, 6, 7, 8, 9 and 10

A.2.4 Dark dataset
This dataset contains only dark scenes, some with light beams, flash lights and some com-
pletely dark, the individual films used are;

Värpinge 3, 4, 5, 6, 9 and 10

A.2.5 Dark with lights dataset
This dataset contains only dark scenes with lights e.g. light beams and flash lights, the
individual films used are;

Värpinge 2, 4, 5, 6, 7, 9 and 10
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A.2.6 Dark without light dataset
This dataset contains only completely dark scenes, the individual films used are;

Värpinge 3 and 8

A.2.7 Non-human dataset
This dataset only contains objects that should not trigger an alarm, e.g. plastic bag and
cardboard, the individual films used are;

Lophtet 1, 3 and 4

A.2.8 Azimuth dataset
This dataset only contains objects that moves along the horizontal FOV, the individual
films used are;

Lophtet 5, 6, 7, 8, 9, 10 and 11

Victoriastadion 3, 4 and 5
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Appendix B

Results

Presentation of additional validation results, for the datasetsDark with lights,Dark without
light, Non-human and Azimuth dataset, when validating of localization. As well as, the
validation of number of objects in frames and correctly trigged frames.

B.1 Localization
Results for true positives for each validated dataset is presented in Table B.1, where the
numbers are calculated by Equation 4.1. The false positive rates for the same datasets is
presented in Table B.2, and the numbers are calculated in a similar way.

Table B.1: True positives rate

Dataset True Positives
Both Radar MOTE Any Fusion

Mixed 0.6864 0.9141 0.7219 0.9496 0.8915
Mixed without dark 0.8845 0.9483 0.9295 0.9933 0.9174

Filtered 0.9580 0.9695 0.9847 0.9962 0.9847
Dark 0.0294 0.8516 0.0325 0.8547 0.8501

Dark with lights 0.0503 0.8783 0.0556 0.8836 0.8624
Dark without light 0 0.8521 0 0.8521 0.8535

Non-human - - - - -
Azimuth 0.8603 0.9051 0.9249 0.9698 0.9208
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B. Results

Table B.2: False positives rate

Dataset False Positives
Both Radar MOTE Any Fusion

Mixed 0.0004 0.0288 0.2945 0.3229 0.0271
Mixed without dark 0.0006 0.0178 0.2052 0.2224 0.0166

Filtered 0 0.0473 0.0109 0.0582 0.0109
Dark 0.0030 0.0510 0.5580 0.6060 0.0490

Dark with lights 0.0029 0.0485 0.5808 0.6264 0.0466
Dark without light 0 0.0738 0.0123 0.0862 0.0277

Non-human 0 0.0046 0.6598 0.6644 0.0183
Azimuth 0 0.0200 0.0173 0.0372 0.0145

B.2 Number of Objects
Results for each validated scenario is presented in Table B.3. For each frame, the number
of objects that should trigger is defined and if it is equal to the number of detected objects
then the frame gives 100% true positives. However, if the detected number is larger it
will still give 100% true positives but the additional detections will be counted as false
positives. Furthermore, if the detected number is lower the percentage for the frame will
decrease. For this validation method, the percentage of true positives is calculated by the
number of true detected divided by the number of real objects.

The column Objects in Table B.3 under True Positives indicates the maximum number
of true positives, e.g. a film with 3 objects that is present under 10 frames each will be
displayed as 30.

False positives are represented as the number of false detections in total for each sys-
tem, an additional column is presented in Table B.3 indicating total validated frames for
the scenario.

Table B.3: Results of validation on number of objects in each
frame for individual scenarios.

Scenarios True Positives False Positives
MOTE Fusion Objects MOTE Fusion Frames

Stadsparken 1 100% 99.23% 391 1024 685 405
Stadsparken 2 99.73% 99.20% 375 660 264 440
Stadsparken 5 99.68% 99.68% 308 4766 2103 405
Stadsparken 6 - - - 376 119 66

Victoriastadion 1 - - - 1 0 61
Victoriastadion 2 95.71% 95.71% 280 6 4 489
Victoriastadion 3 92.31% 89.74% 117 9 2 99
Victoriastadion 4 100% 100% 196 0 0 196
Victoriastadion 5 100% 100% 141 1 0 141

Continued on next page
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B.2 Number of Objects

Table B.3 – Continued from previous page

Scenarios True Positives False Positives
MOTE Fusion Objects MOTE Fusion Frames

Victoriastadion 6 98.33% 92.50% 240 0 0 120
Victoriastadion 7 97.83% 95.65% 138 0 0 82
Victoriastadion 8 100% 78.30% 507 20 0 259
Victoriastadion 9 96.28% 91.63% 215 3 0 158

Victoriastadion 10 100% 100% 119 51 4 136
Victoriastadion 11 97.50% 97.50% 80 37 10 154
Victoriastadion 12 100% 99.34% 152 48 10 237
Victoriastadion 13 96.18% 96.18% 157 34 0 225
Victoriastadion 14 100% 99.43% 174 123 0 208
Victoriastadion 15 100% 100% 107 10 9 107
Victoriastadion 16 94.92% 94.92% 118 0 0 118
Victoriastadion 17 99.31% 99.31% 145 20 0 194
Victoriastadion 18 100% 100% 106 57 0 106
Victoriastadion 23 100% 100% 139 89 0 139
Victoriastadion 24 99.75% 99.75% 394 6 6 466
Victoriastadion 26 100% 96.41% 1756 0 0 981
Victoriastadion 27 99.71% 99.71% 341 0 0 454
Victoriastadion 28 85.98% 77.89% 1248 9 2 626
Victoriastadion 29 89.64% 79.57% 2394 16 0 798
Victoriastadion 30 88.20% 84.06% 4128 16 3 1376

Parking Lot 1 - - - 0 0 44
Parking Lot 2 98.95% 97.90% 95 39 20 77
Parking Lot 3 100% 99.03% 103 11 0 161
Parking Lot 4 99.53% 99.05% 211 40 0 230
Parking Lot 5 99.04% 99.04% 104 0 0 187
Parking Lot 6 99.62% 99.62% 261 15 0 301
Parking Lot 8 100% 98.85% 174 0 0 600
Parking Lot 9 99.20% 99.20% 125 0 0 245

Axis Parking Lot 1 98.36% 96.72% 427 282 132 328
Axis Parking Lot 2 99.43% 90.17% 529 449 176 370
Axis Parking Lot 3 97.45% 94.90% 392 13 3 244
Axis Parking Lot 4 100% 99.11% 112 61 14 107

Värpinge 1 - - - 0 0 48
Värpinge 2 - - - 57 0 198
Värpinge 3 1.63% 88.16% 245 0 6 169
Värpinge 4 36.49% 98.65% 148 56 2 183
Värpinge 5 96.00% 100% 100 45 2 175
Värpinge 6 15.00% 97.00% 100 4 1 157
Värpinge 9 - - - 129 0 139

Värpinge 10 - - - 224 0 155
Kemicentrum 1 - - - 22 16 123

Continued on next page
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B. Results

Table B.3 – Continued from previous page

Scenarios True Positives False Positives
MOTE Fusion Objects MOTE Fusion Frames

Kemicentrum 2 - - - 277 100 106
Kemicentrum 3 - - - 147 77 58
Kemicentrum 4 - - - 59 27 88

Lophtet 1 - - - 86 0 143
Lophtet 2 100% 99.12% 113 59 5 235
Lophtet 3 - - - 164 0 247
Lophtet 4 - - - 39 8 133
Lophtet 5 100% 100% 37 0 0 60
Lophtet 6 100% 100% 49 11 1 55
Lophtet 7 100% 100% 61 0 0 91
Lophtet 8 94.87% 94.87% 78 0 0 105
Lophtet 9 96.67% 96.67% 30 0 0 52

Lophtet 10 85.29% 85.29% 34 0 0 56
Lophtet 11 95.94% 95.94% 123 0 0 140
Lophtet 12 100% 99.20% 125 0 0 125
Lophtet 13 100% 100% 31 0 0 31

Other 100% 92.93% 99 7 0 125

B.3 Correctly Trigged Frames
The results for each of the validated scenarios can be seen in Table B.4. True positives
mean that the frame contains at least one real object that should trigger the alarm and that
the sensor has found at least one object. There is no guarantee that the found object is the
one that should trigger the alarm, e.g. there can be a person on the right side of the image
that should trigger the alarm while the sensor finds a flagpole on the left part of the image,
this would count as a true positive. False positives are represented as the ratio between the
number of trigger frames that should not trigger and the number of frames that should not
trigger, resulting in a percentage.

Both true and false positives are calculated for MOTE and fusion. In addition to the
percentage of the different systems, the number of frames, which is representing 100%, is
presented in Table B.4.

As mentioned in Section 4.8, all frames for each scenario is not validated. For instance,
if an object starts in the image the start is cut, because of MOTE include the object as a
part of the background model and detection may be delayed.
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B.3 Correctly Trigged Frames

Table B.4: Results of validation on correct triggered frame for
individual scenarios.

Scenarios True Positives False Positives
MOTE Fusion Frames MOTE Fusion Frames

Stadsparken 1 100% 99.23% 391 21.43% 0% 14
Stadsparken 2 100% 100% 363 42.47% 10.96% 73
Stadsparken 5 100% 100% 474 100% 88.09% 235
Stadsparken 6 - - - 100% 54.55% 66
Stadsparken 7 100% 100% 543 - - -

Victoriastadion 1 100% 100% 125 1.64% 0% 61
Victoriastadion 2 99.63% 99.63% 267 0% 0% 233
Victoriastadion 3 100% 100% 99 - - -
Victoriastadion 3 100% 100% 196 - - -
Victoriastadion 5 100% 100% 141 - - -
Victoriastadion 6 100% 100% 128 - - -
Victoriastadion 7 100% 100% 82 - - -
Victoriastadion 8 100% 100% 259 - - -
Victoriastadion 9 95.81% 95.81% 191 0% 0% 8

Victoriastadion 10 100% 100% 119 41.18% 11.77% 17
Victoriastadion 11 97.50% 97.50% 80 50.00% 13.51% 74
Victoriastadion 12 100% 99.34% 152 56.47% 11.77% 85
Victoriastadion 13 96.18% 96.18% 157 48.53% 0% 68
Victoriastadion 14 100% 99.43% 174 100% 0% 34
Victoriastadion 15 100% 100% 107 - - -
Victoriastadion 16 94.92% 94.92% 118 - - -
Victoriastadion 17 99.31% 99.31% 145 34.69% 0% 49
Victoriastadion 18 100% 100% 106 - - -
Victoriastadion 19 100% 100% 237 74.42% 26.74% 86
Victoriastadion 20 100% 100% 379 - - -
Victoriastadion 21 100% 100% 27 - - -
Victoriastadion 22 97.57% 97.57% 371 25.68% 0% 74
Victoriastadion 23 100% 100% 139 - - -
Victoriastadion 24 99.75% 99.75% 394 0% 0% 72
Victoriastadion 26 100% 99.89% 883 0% 0% 98
Victoriastadion 27 99.71% 99.71% 341 0% 0% 113
Victoriastadion 28 100% 100% 429 0.51% 0.51% 197
Victoriastadion 29 99.89% 99.67% 896 0% 0% 55
Victoriastadion 30 99.72% 99.72% 1425 0% 0% 197

Parking Lot 1 - - - 0% 0% 44
Parking Lot 2 100% 100% 109 0% 0% 26
Parking Lot 3 100% 99.03% 103 15.52% 0% 58
Parking Lot 4 99.53% 99.05% 211 0% 0% 19
Parking Lot 5 99.27% 99.27% 137 0% 0% 83
Parking Lot 6 99.63% 99.25% 268 0% 0% 40

Continued on next page
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Table B.4 – Continued from previous page

Scenarios True Positives False Positives
MOTE Fusion Frames MOTE Fusion Frames

Parking Lot 7 100% 100% 73 54.47% 0.81% 123
Parking Lot 8 100% 98.85% 174 0% 0% 426
Parking Lot 9 99.40% 98.80% 166 0% 0% 120

Axis Parking Lot 1 100% 100% 257 49.30% 16.90% 71
Axis Parking Lot 2 100% 100% 265 81.91% 27.62% 105
Axis Parking Lot 3 100% 100% 221 1.15% 1.15% 87
Axis Parking Lot 4 100% 100% 105 19.15% 0% 47

Indoor 1 90.08% 89.31% 131 0% 0% 8
Indoor 2 98.44% 98.44% 64 0% 0% 17

Värpinge 1 - - - 0% 0% 48
Värpinge 2 - - - 27.27% 0% 198
Värpinge 3 2.61% 98.69% 153 0% 9.62% 52
Värpinge 4 36.49% 98.65% 148 0% 2.86% 35
Värpinge 5 96.00% 100% 100 26.67% 2.67% 75
Värpinge 6 15.00% 97.00% 100 1.75% 1.75% 57
Värpinge 7 0% 93.10% 29 0% 28.57% 28
Värpinge 8 0% 97.42% 155 - - -
Värpinge 9 - - - 84.17% 0% 139

Värpinge 10 - - - 66.45% 0% 155
Kemicentrum 1 - - - 11.38% 10.57% 123
Kemicentrum 2 - - - 69.81% 52.83% 106
Kemicentrum 3 - - - 68.97% 58.62% 58
Kemicentrum 4 - - - 47.73% 27.27% 88

Lophtet 1 - - - 36.36% 0% 143
Lophtet 2 100% 99.12% 113 18.03% 4.10% 122
Lophtet 3 - - - 66.40% 0% 247
Lophtet 4 - - - 28.57% 6.02% 133
Lophtet 5 100% 100% 37 0% 0% 23
Lophtet 6 100% 100% 49 0% 0% 6
Lophtet 7 100% 100% 61 0% 0% 30
Lophtet 8 94.87% 94.87% 78 0% 0% 27
Lophtet 9 96.67% 96.67% 30 0% 0% 22

Lophtet 10 85.29% 85.29% 34 0% 0% 22
Lophtet 11 95.94% 95.94% 123 0% 0% 17
Lophtet 12 100% 99.20% 125 - - -
Lophtet 13 100% 100% 31 - - -

Other 100% 100% 289 36.11% 12.50% 72
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