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Abstract

Cardiac magnetic resonance is widely used to non-invasive image the heart,
for both clinical and research purposes. Segmenting different parts of the
heart provides important diagnostic information. Performing this task man-
ually is time-consuming and operator dependent, hence it would be bene-
ficial to automate this process.

The aim of this thesis is to implement an algorithm to segment the right
ventricle in cardiac magnetic resonance images. The right ventricle is geo-
metrically complex, which makes it complicated to introduce prior knowl-
edge to aid the segmentation. Therefore, the chosen segmentation approach
was the Active Shape Model (ASM). Based on training data, ASM creates
a shape model that will adapt to features in an image, making it likely to
segment the object of interest.

The project was conducted at the company Medviso AB, and all imple-
mentations were done in the software, Segment, a platform for cardiovas-
cular image analysis. The data used included image sets from 115 sub-
jects; 53 heart patients and 62 healthy volunteers. 20% of these image sets
were randomly selected as test data, while the rest were used to train the
shape model. As validation, segmented volumes were compared to the
volumes from manual delineation, and the Dice-Sörensen coefficients were
computed. The results were generally good for the mid-ventricular slices,
with some errors in the most apical slices.

In conclusion, the presented approach is promising for right ventricle seg-
mentation, but will need further improvements before final implementation
in Segment and clinical usage.
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Populärvetenskaplig sammanfattning

Utlinjering av höger kammare i magnetisk resonanstomografi-bilder

Att tydligt urskilja olika delar av kroppens vävnader kan bidra till ökade kunskaper
om fysiologin men också vara behjälpligt vid medicinska undersökningar. För att
bidra till effektivisering av denna process presenteras följande arbete där en metod
för utlinjering av höger kammare har utformats.

Magnetisk resonanstomografi är en av många metoder för att undersöka
kroppens inre utan kirurgiska ingrepp och att kunna visualisera ett hjärta
möjliggör nya sätt att studera kroppens viktigaste muskel. Hjärtat pumpar
runt blod i kroppen och ser på så sätt till att nytt syre hämtas upp hos lun-
gorna innan det transporteras ut till resterande organ i kroppen. Denna
process är livsviktig och dess effektivitet är direkt påverkad av hjärtats
funktionalitet och potentiella hjärtbesvär. En tydlig avbildning av hjärtat
kan till exempel hjälpa läkare att diagnostisera sjukdomar och forskare att
få en bättre förståelse av hjärtats fysiologi.

Fokus har i detta projekt varit höger kammare, ett av de fyra hjärtrummen.
Från denna kammare pumpas blodet till lungorna via lungartären. Höger
kammare har en relativt komplex form, som påminner om en halvmåne,
men med stor variation mellan individer.

För att bestämma storleken på höger kammare i en magnetisk resonansto-
mografibild behöver man utlinjera den, vilket innebär att man markerar
dess kontur för att kunna beräkna dess volym. Om detta görs manuellt
är det tidskrävande och kan ge ett resultat som varierar beroende på er-
farenheten hos den som utfört utlinjeringen. För att förenkla denna pro-
cess är det fördelaktigt att använda automatiska metoder. Active shape-
modellen är en iterativ och anpassningsbar metod och dess egenskaper gör
den lämplig att använda för denna typ av problem, varvid det fokuserades
på denna metod i detta projekt.

Genom att studera bilder med kända utlinjeringar av höger kammare hittar
modellen olika skillnader och likheter mellan de kända formerna. Meto-
den skapar en medelvärdesform och genom träning lär den sig hur den
kan variera denna form. För att sedan utlinjera höger kammare i en ny
bild undersöker modellen egenskaper i den okända bilden och deformerar
medelvärdesformen iterativt tills dess att höger kammare är funnen.

För att undersöka styrkor och svagheter hos den utformade modellen valid-
erades resultatet genom att kända manuella utlinjeringar jämfördes med de
utlinjeringar som den automatiska modellen erhöll. Resultaten var generellt
bra, med en lite större felmarginal för bilderna från hjärtats nedre snitt.
Slutsatsen är att den utformade modellen har utrymme för förbättringar
men är en lovande grund för vidareutveckling av metoden.
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Chapter 1

Introduction

Magnetic resonance imaging, MRI, has been used for medical purposes
since 1977, when the first images of a human were produced by Raymond
Damadian [1]. The first image showed a rough depiction of a thorax, and
started an evolution of a new medical imaging technique. During the fol-
lowing years, different fields of applications were tested and the impor-
tance of MRI was realized. The development for a commercial product
started, and the first whole-body scanner entered the market in 1980. From
here on, the progress continued and the first images of a heart was achieved
in 1981 [6]. These images contained a lot of noise and blurring, much due
to cardiac and respiratory motion. Today, numerous techniques have been
developed to overcome this problem. One method is to use electrocardio-
graphy gating to gather electrical activity of the cardiac cycle. Doing this
over several heart beats help achieve images from each phase of the cardiac
cycle [17].

Cardiac MR images have a wide range of use within medical research and
clinical use. They can help give a better understanding of the heart mus-
cle and its functions in a non-invasive and safe way for the patient. To
easily compare certain areas, or make further computations, delineation of
different parts can be useful. This process is called segmentation and is time-
consuming if done manually. The resulting segmentations can also vary,
depending on the judgment and experience of the person performing it.
Automatic methods can thus help to create reliable and comparable results
and also save time and money.

Today, there are several methods to automatically segment the left ventri-
cle [21]. Multiple methods have been implemented and tested, using both
image-based techniques and deformable models, giving various results. A
very promising approach is to use a combination of mentioned methods
(for further reading, see [8]). The ellipsoidal shape of the left ventricle
makes it suitable for automatic segmentation. The right ventricle has a cres-
cent shape, when viewed in the direction of the hearts shorter axis, and a
triangular shape when viewed in the longer axis of the heart. The complex
structure of the right ventricle makes it a harder task to automatically seg-
ment. The left ventricle has also previously been considered more important
than the right ventricle, since it is the subject of pumping blood to the whole
body. The right ventricle is merely pumping blood to the lungs and thus has
not been in the center for the same amount of research. Hence, the number
of articles about right ventricle segmentation is much less abundant than
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the amount written about left ventricle segmentation. Nevertheless, efforts
have been made with more or less successful results [18].

Delineation of the right ventricle in MR images is today manually per-
formed in clinical routines and reliable automatic methods are requested.
Thus, Medviso AB offered a master thesis opportunity with the ambition of
creating a segmentation algorithm for this specific purpose. The project has
been conducted in collaboration with the Lund Cardiac MR Group at Lund
University, a research team with both engineers and physicians. The fu-
ture goal is to implement an automatic algorithm in Segment, the Medviso
created software for cardiovascular image analysis.
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Chapter 2

Background

2.1 Human heart

As a vital muscular organ inside the human body, the heart pumps blood
through the vessels, the body’s circulatory system, to provide the body with
nutrients and oxygen as well as removing metabolic waste from the cells
[10]. After travelling through the body, the oxygen-depleted blood returns
to the heart through the veins and ends up in the right atrium before contin-
uing to the right ventricle. Here, the blood is pumped to the lungs, through
the pulmonary artery, to retrieve fresh oxygen. The left atrium then re-
ceives the oxygenated blood, which then enters the left ventricle before be-
ing pumped out to the rest of the body through the aorta. The blood flow
through the heart and the hearts anatomy is illustrated in Figure 2.1.

FIGURE 2.1: Schematic illustration of the human heart and
its parts. Image adapted from [24].
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To pump the blood through the body, the heart muscle alternately relaxes
and contracts, allowing its chambers to fill up with blood and then force
it out. The state of relaxation is when the heart has its maximum volume
and is referred to as end-diastole, while the state of contraction is when the
heart has its minimum volume and is referred to as end-systole. The walls of
the cardiac muscle are called myocardium, where the outer and inner walls
are referred to as epicardium and endocardium respectively. Being subject to
much less pressure, and only pumping blood to the lungs, the myocardium
of the right ventricle is much thinner than the walls of the left ventricle,
which have to withstand a much higher load while pumping blood out to
the whole body [10].

2.2 Medical imaging

Making it possible to visually represent the inside of the human body is
an important noninvasive technique to help doctors and scientists. Med-
ical imaging can, for example, help diagnose and choose treatments for
diseases. It also enables potential databases of normal anatomy to help
researchers get better understanding of physiology and to easier identify
potential abnormalities, etc.

2.2.1 Cardiac imaging

There are multiple different imaging methods for medical purposes, and
they all have their advantages and disadvantages. For cardiac imaging, a
method that clearly depicts soft tissues is preferable. Some medical image
modalities are also able to image in planes that are angulated to the hearts
long and short axis. Short axis images show a cross section of the left and
right ventricles, in a series of slices perpendicular to the long axis as shown
in Figure 2.2.

The topmost part of the heart is referred to as the basal part and the bottom
part is referred to as the apical part. Cardiac images on the short axis are
usually sorted from the basal to the apical slices [10].

2.2.2 Magnetic resonance scanning

A magnetic resonance, MR, scanner (Figure 2.3) applies a magnetic field
on a body placed in the scanner. Different magnetic characteristics of the
tissues within the body makes it possible to depict the various structures
[19].
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FIGURE 2.2: Illustration of the long and short axis of the
heart. Image adapted from [2].

The scanner contains a large superconductor magnet, which causes the
atoms in the body to align with the magnetic field. Low-frequent electro-
magnetic energy is then applied, alternately turned on and off, causing the
atoms to change their directions before quickly returning to their relaxed
state. Returning to the equilibrium, the atoms transmit their excess energy
as radio waves, which are caught by a receiver. A computer is then able to
analyse the data and create an image of the information from the radio sig-
nals. Because of the magnetic properties of particularly hydrogen atoms,
which exist in abundance in fat and water, MR imaging distinguish soft
tissues very well.

FIGURE 2.3: A magnetic resonance scanner for medical use
[9].
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The electromagnetic field applied on the patient is created by gradient coils.
MR images show cross sections of the internal body without harming the
patient and by using gradient coils in multiple directions it is possible to
image the patient in desired directions, such as long and short axis planes
depicted in Figure 2.2 and 2.4.

(A) Short axis view. The right ventricle
can be seen to the left and the left ven-

tricle can be seen to the right.

(B) Long axis view, showing a cross sec-
tion of all four chambers.

FIGURE 2.4: Example of cardiac imaging, captured with an
MR scanner.

2.3 Software

Segment is a program developed in MATLAB by the Lund Cardiac MR
Group at Lund University and is a validated software for cardiovascular
image analysis [7]. Segment is freely available in a source code format for
research purposes. For clinical use, the spin-off company Medviso sells
two commercial versions, Segment CMR and Segment CT. The first version
developed was Segment CMR for cardiac MR imaging, and later came Seg-
ment CT for computed tomography imaging. Both versions share the same
platform, thus making all algorithms available from both versions.
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Chapter 3

Aim of the Thesis

The aim of this thesis is to develop a semi-automatic segmentation algo-
rithm for the right ventricle in MR images of the heart, based on the active
shape model method. The goal is to use as few inputs as possible from the
user. The focus of the segmentation is on one time-frame, the end-diastole,
in short axis images. Due to the small thickness of the right ventricle my-
ocardium, only the endocardium will be segmented. The results should
be close to the manual segmentations, the computational time should be
reasonable for clinical use and the final segmentations should generate sat-
isfying result for the test data. The algorithm should also be implemented
into Segment.
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Chapter 4

Theory

Image segmentation is the task of partitioning an image into multiple seg-
ments, simplifying the analysing process of the image. The segmentation
algorithm will be performed using the active shape model. To easier ex-
plain this process, this chapter will begin with a short mathematical back-
ground, explaining different techniques required in the active shape model,
before explaining the main method. All images used in this thesis are in
gray scale and are therefore represented as matrices with all values between
0 and 1, where 0 being the black pixels and 1 being the white pixels.

4.1 Mathematical background

4.1.1 Curve orientation

The orientation of an arbitrary curve can be found by analysing the sign of
the angle at any vertex of the convex hull of the polygon. The convex hull
of a curve is the minimal convex set still containing the curve, see Figure
4.1. Three sequential points on the edge of the convex hull make up two
vectors in the plane, and the angle in between them is directly related to
the sign of the cross product of the two vectors. Inserting the coordinates
of the three points from the edge into an orientation matrix, O, as seen in
Equation (4.1), the sign of the cross product can be computed as the sign of
the determinant of O [23].

O =

1 x1 y1
1 x2 y2
1 x3 y3

 (4.1)

The determinant of O will give a positive answer if the orientation is in the
positive direction, and vice versa. If the answer is equal to 0 it means the
three chosen points are in a straight line.

It is important to use the convex hull for this task because it removes the
possibility of choosing points within a local concavity, since these might
give a false answer.
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FIGURE 4.1: The blue area shows the convex hull of the red
polygon, image adapted from [16].

4.1.2 Procrustes Analysis

Two shapes in the same plane can be aligned using rotation, translation
and scaling through similarity transformation, a spatial mapping method
where parallelism and angels are preserved.

In two dimensions, the orthogonal rotation matrix is given by

R =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
where θ is the rotation angle. The translation vector is given by

t =

(
tx
ty

)
where tx and ty is the movement in x and y direction respectively. Finally,
since the scaling is given by a positive scaling scalar, s, the transformation
is given through Equation (4.2) [3].

T (x) = sRx + t (4.2)

To align one shape to another, the best matching transformation variables
needs to be computed. This is achieved by minimizing the difference be-
tween the two shapes, i.e. finding R, t and s, that solves Equation (4.3),
where ui and vi are the coordinates of the corresponding landmarks in two
different shapes, and N is the number of landmarks in the shapes.

min
N∑
i=1

‖ ui − t− sRvi ‖2 (4.3)

The unknown variables, R, t and s, in (4.3) can be estimated using so called
procrustes analysis.

Starting by computing the mean values of the coordinates in ui and vi re-
spectively, pursuant to
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ū =
1

N

N∑
i=1

ui

v̄ =
1

N

N∑
i=1

vi

before introducing two new variables

ũi = ui − ū

ṽi = vi − v̄

Let

H =
N∑
i=1

ṽiũ
T
i

and use singular value decomposition to get H = UDVT .

Finally, the estimated variables, denoted ∗, are given by Equation (4.4), (4.5)
and (4.6) (for further derivation see [15]). The transformation can then be
done as shown in Equation (4.2).

R∗ = U diag(1, 1,det(UVT )) VT (4.4)

s∗ =

N∑
i=1

ṽT
i R∗ũi

N∑
i=1
‖ũi‖2

(4.5)

t∗ = v̄ − s∗R∗ū (4.6)

4.2 Image segmentation

The task of partitioning certain features in a digital image is called image
segmentation. This is a procedure to enhance complexity and simplify the
analysis of images. There are numerous methods for this process and the
applications are, more or less, unlimited. For this thesis two of these meth-
ods were used, one numerical and one statistical, both of which will be
described in the following section.

4.2.1 Fast marching method

The fast marching method can be used to numerically find an approximated
solution to boundary value problems of the Eikonal equation [20], seen be-
low.
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|∇v(x)| = 1

f(x)
for x ∈ Ω

v(x) = 0 for x ∈ ∂Ω

Given an initial curve, v, the algorithm finds the arrival time from the curve
to all other points within the concerning area using a constant speed, f(x).
This method is used for problems where the speed function is always prop-
agating in the direction of the normal of the curve. This makes it possible
to change the formulation to a stationery problem, making it a very fast ap-
proach to solve the problem. The method sweeps through the surrounding
area of L points in L logL steps. The result is a mapping of the given curve,
and its surrounding area, of the time it takes for the speed function to arrive
at each point individually.

4.2.2 Active shape model

When trying to segment an object whose appearance can vary, it is bene-
ficial to use an adaptable method. The active shape model builds a model,
computed from training data, and tries to match the model to data in a new
image. By comparing similarities and looking for variations in the training
data, various possible deformations can be found and used to adjust the
model to a desired object and the underlying image.

To create an active shape model, it initially needs to be trained using man-
ually segmented images of the desired structure. These segmentations are
preferably done by an expert in the field and contain various different shapes
to cover a big spectrum of variations and appearances. This training data
must also be consistent with the same number of points evenly distributed
along the edge of the segmented structure and using the same starting po-
sition [22].

Assume the set of training data consists of M images, each with N corre-
sponding landmarks, for which the coordinates are known. Initiating the
algorithm, the training data must be aligned, for instance by using pro-
crustes analysis.

For a model to be able to generate an arbitrary shape of the desired struc-
ture, common patterns and different variations among the shapes in the
data set needs to be found. This could be done using principal component
analysis, PCA, where a new basis that best represent the shapes will be
found. The principal components are the underlying structure of the data
and they will show the directions of the most variance in the landmarks.
The N points in the set, with two coordinates (x and y) each, will then span
the new space, hence the new vectors will represent the shapes in the 2N -
dimensional space. These vectors will thus represent a new basis to use for
creating the coveted shape model [4].

The first step of the PCA is to compute the mean shape of all the pre-
segmented shapes, as done in Equation (4.7), where u is the N × 2-matrix
with the coordinates of the landmarks and j denotes shape number. The
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deviation from the mean for each shape in the set is then computed as per
Equation (4.8).

ū =
1

M

M∑
j=1

uj (4.7)

duj = uj − ū (4.8)

The difference vectors, du, can be used to find the covariance matrix, S, as
per Equation (4.9), where the 1

M -term makes sure S is unbiased.

S =
1

M

M∑
j=1

duj(duj)
T (4.9)

The final step of the PCA is to compute the eigenvalues and eigenvectors of
S, as in Equation (4.10).

SP = λP (4.10)

The eigenvectors, P, gives the dominant directions in the 2N -dimensional
space, each of them representing a different variational mode in the training
data. The eigenvalues, λ, will be presented in decreasing order and will
each give the variance of data in the direction P, ordered from the most
to the least significant one. Since all eigenvectors are orthogonal, the total
variance is given by

T =

2N∑
i=1

λi.

where i denotes the point number. Any of the original shapes can now be
expressed as in Equation (4.11), where P = (p1p2 . . .p2N ) is the transfor-
mation matrix and b is a vector with 2N elements, denoting the coordinates
of the shape in the new basis. b can also be interpreted as the appropriate
weights for each of the deformation vectors in P.

u = ū + Pb (4.11)

It is required to use the principal components with most variation to cover
the relevant deformations of the training data. Therefore, the K largest
eigenvalues should be used to account for the majority of the total vari-
ance, since the last modes comes from the noise in the training data. Only
using the K first vectors of P thus gives an approximation of a shape, see
Equation (4.12), which is the sought after shape model and completes the
training process.

u ≈ ū + PKbK (4.12)
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The variational modes are now found and the model can be applied to data
in a new image. To be able to compute the still unknown bK , some infor-
mation from the new image needs to be extracted. One method is to create
a rough edge map, v, of the structure aimed to be segmented, e.g. using the
fast marching method. v will present a good starting position for the model
in the new image, and bK could be interpreted as the weights needed to fit
the model in Equation (4.12) to the desired shape. Hence, bK is depending
on the distance between the mean shape, ū, and the new data, v. Rewrit-
ing Equation (4.12), using the orthogonal properties of the vectors in PK

and the rough approximated shape v, the expression in Equation (4.13) is
acquired [3].

bK = PT
K(v − ū) (4.13)

To make sure the weights do not become too big, they are limited by the
constraint in Equation (4.14) [4].

− 3
√
λK ≤ bK ≤ 3

√
λK (4.14)

After the deformations have been applied to the model, it is yet again aligned
to the edge map before new displacements are computed and the algorithm
is iterated until convergence.

4.3 Validation

4.3.1 Dice-Sörensen coefficient

The Dice-Sörensen coefficient is very suitable to use as a validation method for
segmentations. It gives a statistic value of similarity for two samples, two
segmentations in this case. The coefficient is given by Equation (4.15) where
TP denotes the true positive values in the segmentation, i.e. the correctly
segmented pixels, FP denotes the false positives, the part in the segmenta-
tion that is not in the original image, while FN denotes the false negatives,
the parts of the original image not within the segmentation [5].

cDS =
2TP

2TP + FP + FN
(4.15)

See Figure 4.2 as an example, where the red circle represents the true shape
and the blue circle represents the segmentation. The true positives, TP , are
the pixels in the area within both circles coloured in purple. The light gray
area displays the false positives, FP , while the dark gray area displays the
false negatives, FN . The coefficient will be a number between 0 and 1, with
0 being no common area at all and 1 being complete coverage.
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FIGURE 4.2: Schematic illustration of the different variables
in Equation (4.15).
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Chapter 5

Implementation

5.1 Data set

The data set used consisted of 115 short axis image sets, provided by the
cardiac MR group at Lund University. An example of such a set can be seen
in Figure 5.1, where the manual segmentations of the right ventricle can be
seen as overlay in magenta. The data came from 62 healthy volunteers and
from 53 consenting patients with various heart conditions. All images were
manually segmented by a physician and the right ventricle could be found
in between 9 and 14 slices of each set. From each of these groups were 20%
of the data sets randomly selected to be used as test image sets, while the
rest were kept as training data for the algorithm, resulting in 23 test sets
and 92 training sets.

FIGURE 5.1: An example of a short axis image set, sorted
from the base to the apex of the heart, showing manual seg-

mentations of the right ventricle.
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A challenge was to determine where the transition from the right ventricle
to the pulmonary artery is taking place in the basal slices. In a few of the
sets the most basal images show segmentations where there are no clear
borders present and the manual segmentations have been completed using
the physician’s knowledge and previous experiences. Thus, it was decided
to exclude the most basal slices due to this challenge.

5.2 Preparation of data

A manual segmentation of a mid-ventricular slice can be seen in Figure 5.2,
where the left ventricle myocardium is marked with green (epicardium)
and red (endocardium), while the right ventricle endocardium is segmented
with a magenta coloured line. Due to the small thickness of the right ven-
tricle myocardium, it is hard to distinguish both the endo- and epicardium.
Hence, only the endocardium is segmented and therefore solely the endo-
cardium is sought after in this thesis.

Using Segment, the coordinates of the manual segmentations of the right
ventricle in all training sets were extracted.

FIGURE 5.2: A mid-ventricular slice, where the epi- and en-
docardium of the left ventricle is segmented with green and
red lines respectively, and the right ventricle endocardium
is segmented with the magenta coloured line. The upper
insertion point between the right and left ventricle can also

be seen, marked with an annotation point.

The upper insertion point, between the right and left ventricle, were man-
ually marked by the author in a mid-ventricular slice in all sets, using a
built-in annotation point tool in Segment. The coordinates of these points
were also extracted. The landmarks in each shape were sorted so the first
one would be the one closest to the insertion point, and the rest following
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in clockwise order, to ensure they all had the same starting position. Most
segmentations consisted of 80 landmarks and those few shapes that did not
were resampled to concur with the standard.

5.2.1 Orientation of the points

Since all shapes later will be compared point wise, it is important that they
all have the same orientation of their points.

Using MATLABs function CONVHULLN [12], the convex hull of the current
shape was found, see Figure 5.3a. Extracting the coordinates of three points
known to be on the edge of the convex hull (Figure 5.3b), and inserting
them into the orientation matrix, as seen in Equation (4.1), made it possible
to compute the determinant and thus finding their orientation.

(A) The convex hull, plotted in black, of
a right ventricle shape, plotted in red.

(B) Close up of three points on the con-
vex hull of a right ventricle shape.

FIGURE 5.3

Since most of the segmented shapes in the training data were oriented
clockwise, this was set as the default orientation. Those segmentations
with a counter-clockwise orientation had their points rearranged to the cor-
rect order. If the determinant of the orientation matrix (Equation (4.1)) was
equal to 0, the three chosen points were in a straight line and three new
points on the same convex hull were chosen instead.

5.3 Training phase

The training phase is important for the active shape model, since it is used
to gather and prepare all data making it possible to create a model. A priori
knowledge about the structure and expertise from a physician are impor-
tant contributions to the model, which both can be added during this phase.

5.3.1 Aligning the shapes

Since all image slices in a short axis set comes from the same heart, it is
expected that they are related to each other and have the same orientation



Chapter 5. Implementation 18

within the body. The shapes in different slices can vary a lot from set to set,
but the mid-ventricular slices are quite similar. Thus, the initial alignment
was solely performed on the mid-ventricular slices, in which the right ven-
tricle insertion point was applied earlier. This also contributed to reducing
the computational time. The segmentations from these slices were extracted
separately from the training data. An overview of the aligning process can
be seen in Figure 5.4.

Initialize
Align all shapes

to first shape

Compute
mean shape

Align mean shape
to first shape

Align all shapes
to mean shape

Compute new
mean shape

Old and new
mean shape
converged?

Finish
Yes

No

FIGURE 5.4: Flow chart showing the iterative process of
aligning the mid-ventricular right ventricle shapes.

The mid-ventricular shapes were first aligned to the first shape in the set.
All alignments were made by finding the variables R∗, t∗ and s∗ that best
solves Equation (4.3), as described in Section 4.1.2. A mean shape was then
computed by calculating the mean value for each point, as in Equation (4.7).
To ensure convergence, the mean shape was then aligned to the first shape
as well, before letting all shapes in the set align to the mean shape. A new
mean shape was then computed and this process was iterated until conver-
gence, i.e. when the difference between the old and new mean shape was
practically 0. All mid-ventricular slices, before and after alignment, can be
seen in Figure 5.5.
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(A) Before alignment. (B) After alignment.

FIGURE 5.5: All mid-ventricular shapes from the training
data.

The resulting R∗, t∗ and s∗ after all iterations, were saved for each slice.
These were later used to transform the rest of the slices from the same image
set as the corresponding mid-ventricular slice.

5.4 Segmentation

The segmentation problem was approached treating each slice separately
in two dimensions (2D), thus creating a model for each slice. An overview
of the complete segmentation process can be seen in Figure 5.6.

5.4.1 Initialization

Some input was required from the user to be able to execute the segmenta-
tion on the test data. An image set from the test set was loaded in Segment
and, as in the preparation step of the training data, the right ventricle in-
sertion point was marked in one of the mid-ventricular slices. A seed point
was also placed somewhere in the middle of the right ventricle, marked +
in Figure 5.7.

By looking at a cross section image from a long axis view, the user also es-
tablished the first and last slice in the short axis set that included the right
ventricle. The total number of slices desired to be segmented in the test
image set was then computed and all sets in the training data were interpo-
lated to contain the same number of slices.
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Extract contours

Align contours

User inputs

Interpolate training data

Create edge map

Find transformation
matrix using PCA

Apply and initialize model

Align model

Compute weights

Apply deformation

Iterate until convergence

FIGURE 5.6: Flow chart showing the basic steps of the com-
plete segmentation process, blue boxes denoting the train-

ing process and red denoting the segmentation process.
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FIGURE 5.7: A mid-ventricular slice with the manually
placed inputs marked; the right ventricle insertion point

and the seed point.

5.4.2 Create edge map

The edge map for the mid-ventricular slice can be created after the initial
inputs have been made. First, the current image is converted to a binary
image, using the MATLAB function GRAYTHRESH [13], to find a normalized
intensity value of the image to be used as a threshold. Applying BWLABEL

[11], an image is given showing all different structures in the input image,
all marked with different labels, as the example in Figure 5.8a. The struc-
ture containing the seed point is extracted, which gives a binary image, just
containing the right ventricle, as seen in Figure 5.8b.

(A) An example of a labeled binary im-
age.

(B) The right ventricle extracted from
the binary image.

FIGURE 5.8
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To get rid of possible, but unwanted, holes in the structural shape of the
right ventricle, as well as creating smoother edges, fast marching is per-
formed on the image, using the seed point as the starting point. Once the
arrival time is obtained, see example in Figure 5.9, the intensity at the posi-
tion of the right ventricle insertion point was used as a threshold, and the
resulting shape was found.

FIGURE 5.9: The arrival time displayed in a plot, showing a
distinct right ventricle structure.

The edge was extracted from the resulting shape before the orientation was
inspected to be in the correct direction and the output was interpolated to
contain the default number of points. An example of a mask of an edge
map can be seen in Figure 5.10.

FIGURE 5.10: A mask of an edge map example from the test
image set.
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5.4.3 Principal component analysis

To find the deformation parameters for the model, principal component
analysis was performed on all sets of slices, one at a time, as the last part of
the training phase. First, the covariance matrix for each set was computed,
as explained in 4.2.2. Using Equation (4.10), the transformation matrices,
Pj , were computed, as well as the eigenvalues, λj .

Since this process was performed in the 2N -dimensional space, where N
denotes the number of points, which as a default is 80, P will contain 160
deformation vectors and correspondingly the number of eigenvalues will
be 160 as well, for each slice.

In order to choose the amount of deformation vectors to use in the trans-
formation matrices, the eigenvalues were observed. Figure 5.11 shows an
example of the 50 first eigenvalues from a mid-ventricular slice in one of the
test images. It can easily be seen how most of the eigenvalues are approx-
imately 0 after the rapid decrease in the beginning. To make sure enough
variational modes were used, it was decided to use 20% of the vectors in P.

FIGURE 5.11: The 50 first eigenvalues from a mid-
ventricular slice in a test image set. The dashed line mark-

ing the 20% of the values that were used in the model.

5.4.4 Applying the model on mid-ventricular slices

Since all input data from the user is set in a mid-ventricular slice, the model
is first applied on this slice before being adjusted to the remaining slices.

Initially, bK is set to 0, making the first approximation of the segmentations
equal to the final mean shapes from the alignment process; i.e. u = ū, in
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consistency with Equation (4.12). The mid-ventricular segmentation, umid,
was then aligned to the edge map, v, using procrustes analysis.

The mean shape was now roughly positioned close to the corresponding
edge map, making it possible to compute the weights, bK , as in Equation
(4.13). Creating an approximate segmentation, using Equation (4.12), ap-
plied the deformation modes in PK . This new rough segmentation was
aligned to the edge map so new weights could be computed and the pro-
cess was iterated until convergence was achieved.

5.4.5 Applying the model on remaining slices

The resulting R∗, t∗ and s∗ variables used for the alignment of the mid-
ventricular slice, were saved so that they could be used for transforming the
other mean shapes in the set, in order to give a rough starting segmentation.

The edge maps for the rest of the slices were created in a similar manner
as explained in Section 5.4.2, although no manual seed points or insertion
points were marked in these images. As a seed point the centroid of the
transformed mean shapes was used. This point was found using the MAT-
LAB function REGIONPROPS [14] on the binary mask of the mean shape. The
intensity at the right ventricle insertion point in the arrival time image for
the mid-ventricular slice was saved, so the same threshold could be used
for the rest of the slices in the corresponding set. These two adjustments
made it possible to create the rest of the needed edge maps, vj .

Then, for each shape, the weights were computed, as in Equation (4.13)
where the transformation matrix was applied, coherent with Equation (4.12).
To make sure the weights did not grow too fast, they were limited using
Equation (4.14). The segmentations were then aligned before new weights
were computed and the process was iterated until convergence.

5.5 Attempted approach

Once a satisfying 2D model was created, an attempt on a three dimensional,
3D, approach was conducted. Each set in the 3D case was treated as a co-
herent volume, making the segmentation process create a model for the
complete set. The extraction and preparation of the data in the 3D case was
the same as for the 2D case.

5.5.1 Principal component analysis

For the last part of the training phase in the 3D case, principal component
analysis was performed to find the transformation matrix. The same pro-
cess, as described in Section 4.2.2, was used. In this case the process took
place in the 2NM -dimensional space, withM denoting the number of slices
containing the right ventricle in the current test image set. For example, if
a set was to depict the right ventricle in 12 of its slices, the space would
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become 2 · 80 · 12 = 1920 dimensional. The covariance matrix, S, was com-
puted so the transformation matrix could be found, in this case consisting
of 2NM possible vectors to use as deformation modes.

Figure 5.12 shows an example of the first 50 eigenvalues for one image set
in the test set. In the 3D case were different amounts of deformation vectors
tried.

FIGURE 5.12: The 50 first eigenvalues for one of the test
image sets.

5.5.2 Applying the model

For the first iteration, bK was initially set to 0, making u = ū, according to
Equation (4.12). Since the user input was only made for the mid-ventricular
slice, this was the only slice with an edge map thus far and the complete
set could not be aligned, as one complete vector, yet. Since all slices from
the set were in the same vector, all transformations had to be done at the
same time. The transformation variables were therefore computed, using
procrustes analysis, for the mid-ventricular slice. R∗, t∗ and s∗ were then
applied on the complete mean shape set.

The remaining edge maps in the 3D case were found in the same way as in
the 2D case. Since no manual insertion points were present in these images
the intensity at the insertion point in the mid-ventricular arrival time image
was saved to be used as a threshold for the rest of the slices. As a seed point
the centroid in the corresponding transformed mean shape was used.

All edge maps were inserted into the same NM × 2-vector, v, after which
the distance between the edge maps and the mean shapes could be com-
puted and the weights, bK , could be determined using Equation (4.13) and



Chapter 5. Implementation 26

limited using Equation (4.14). The model was then deformed, using Equa-
tion (4.12), and the process was iterated for the entire set until convergence
was achieved.

5.6 Validation

The test data used for validation consisted of 23 image sets; 11 sets from
patients and 12 sets from healthy volunteers. The right ventricle could be
found in between 7 to 13 slices in these sets. Since the images from the
transition area between the right ventricle and the pulmonary artery were
difficult to use in the training data and therefore removed, these images
were removed from the test data as well.

After the segmentation algorithm had been completed, the resulting seg-
mentations were validated against the manual segmentations in all test sets.
The results generated from the attempted 3D case had too poor quality and
were not validated.

The physiological volumes of the segmented sets were computed, enabling
comparison with the true volumes. This was done according to Equation
(5.1), where M denotes number of slices, A is the area within the segmenta-
tion, rx and ry is the resolution in the x and y directions respectively, and t
denotes the thickness of the slices.

V =
M∑
i

Airxryt (5.1)

Comparing volumes could be a misleading method, since it does not take
into consideration if the segmentation is correctly located. Thus, the Dice-
Sörensen coefficient was computed as well, by using Equation (4.15). This
was performed on the complete volumes, as well as for only the mid-ventricular
slices.
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Chapter 6

Results

6.1 Example segmentations

Two examples of successful segmentations of mid-ventricular slices, can be
seen in Figure 6.1 and 6.2; one from a healthy volunteer and one from a
patient. Figure 6.3 shows another mid-ventricular slice from a patient, this
one a bit less successful where surrounding fat has been included in the
segmentation. Figure 6.4 shows two different slices from the same image
set where the segmentation failed completely.

FIGURE 6.1: A successful segmentation of a mid-ventricular
slice from a healthy volunteer’s image set. The magenta
coloured dots show the reference segmentation and the yel-
low dots show the automatic segmentation from the created

model.
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FIGURE 6.2: A successful segmentation of a mid-ventricular
slice from a patient’s image set. The magenta coloured dots
show the reference segmentation and the yellow dots show

the automatic segmentation from the created model.

FIGURE 6.3: A less successful segmentation from another
patient’s set. The magenta coloured dots show the refer-
ence segmentation and the yellow dots show the automatic

segmentation from the created model.
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(A) Slice three of ten. (B) Slice seven of ten.

FIGURE 6.4: Two less successful segmentations from the
same patient’s image set. The magenta coloured dots show
the reference segmentations and the yellow dots show the

automatic segmentations from the created model.

The results for the 3D case were quite bad with a lot of incorrect boundaries,
even though they managed to produce segmentations of reasonable size
in most slices. An example of two segmentations can be seen in Figure
6.5, where the same slice was segmented using 20 and 160 deformation
vectors respectively. Due to the discouraging results the 3D approach was
not validated further.

(A) Automatic segmentation using 20
deformation vectors.

(B) Automatic segmentation using 160
deformation vectors.

FIGURE 6.5: Two examples of segmentations of the same
slice, using the 3D approach. The magenta coloured dots
show the reference segmentations and the yellow dots show

the automatic segmentations from the created model.

6.2 Validation results

The results from the volume computations and Dice-Sörensen coefficients
can be seen in Table 6.1.

The volume comparisons can be seen in Figure 6.6, where the agreement is
reasonable even though there were a few outliers. The correlation coeffi-
cient, R, was computed to approximately 0.39. The differences between the
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Subject
Reference

volume (ml)
Segmented

volume (ml)
DS for

complete set (%)
DS for mid-

ventricular slice (%)
1 116.6 484 34 78
2 197.2 260 82 92
3 112.8 108.1 80 80
4 124.7 129.8 91 95
5 216.9 317.2 68 89
6 60.1 147.4 52 91
7 122.5 154.1 82 88
8 162 205.7 79 88
9 168.5 180.3 94 97

10 194.8 306.2 78 81
11 171.4 474.5 50 84
1 130.1 179.1 84 86
2 187 186.7 95 97
3 177.4 192.7 91 94
4 235.9 304.1 86 92
5 168.2 212.4 81 94
6 220 269.3 89 92
7 143.9 157.8 93 96
8 107.3 153.9 78 92
9 155.8 187.4 90 94

10 132.7 159.7 85 96
11 181.5 202.8 92 96
12 133.7 183.1 83 90

TABLE 6.1: Results from the validation of the test data. Blue
area representing the patient sets while the red area repre-

sents the healthy volunteers.

true volumes and the segmented volumes were also compared and plotted
in a Bland-Altman plot, see Figure 6.7, where a bias is noticed. The bias
obtained a value and variability of 67± 90.

The Dice-Sörensen coefficients for all total 229 slices from all sets, can be
seen in Figure 6.8. The coefficients for the complete volumes, as well as for
solely the mid-ventricular slices, can be seen in Figure 6.9. In Figure 6.10
can the Dice-Sörensen coefficients for the most basal and the most apical
slices be seen respectively.

In all plots the results from patients are marked with blue circles and the
results from healthy volunteers marked with red crosses.
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FIGURE 6.6: The segmented volumes compared to the refer-
ence volumes. The dashed line indicates the line of identity.

FIGURE 6.7: The differences between the reference volumes
and the segmented volumes plotted as a function of the ref-

erence volumes.
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FIGURE 6.8: The Dice-Sörensen coefficients for all slices,
in all sets, plotted. The dashed line represents the median

value.

FIGURE 6.9: The Dice-Sörensen coefficients plotted, both
for the complete volume as well as solely the mid-
ventricular slices. The dashed lines denote the mean values.
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FIGURE 6.10: The Dice-Sörensen coefficients plotted for the
most basal slices and the most apical slices. The dashed

lines denote the mean values.
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Chapter 7

Discussion and conclusion

In this thesis a segmentation method for the right ventricle in MR images
has been presented. The algorithm was based on the active shape model
and developed using the Segment software. The achieved results were gen-
erally good, except for a few outliers. The results will be discussed further
in the following chapter before conclusions are drawn.

7.1 Discussion

The mid-ventricular slices, in which all inputs from the user were made,
generally acquired good segmentations, which can be supported by the re-
sults in the right column in Figure 6.9. The Dice-Sörensen coefficients for
these slices had a minimum value of 0.78 and a maximum of 0.97, indicat-
ing satisfying segmentations. The intensity threshold for each data set was
computed from the mid-ventricular slices, which together with the manu-
ally placed seed points and right ventricle insertion points, aided the cre-
ation of accurate edge maps. This helped the model with alignment and de-
formation, leading to good segmentations of desired shapes in these slices,
thus giving good results.

The closest slices to the mid-ventricular slice in each data set, did not differ
too much in shape and size, and did therefore achieve good segmentations
as well. The further away from the mid-ventricular slice in each set, the
more the shapes changed in size, position and structure and they became
harder to segment. The shape model mostly created very rough segmen-
tations for the apical slices, like the examples in Figure 7.1. The left image
shows an example where the model found different edges than the correct
ones in the process. In a few apical slices the model could not create a seg-
mentation at all, as in Figure 7.1b. In these images the contrast between the
myocardium and surrounding tissue was too low, and the model could not
find any edges at all. The Dice-Sörensen coefficients for the apical slices can
be seen to the right in Figure 6.10. It is noticed in the plot that a group of
sets have very low values and these represent the failed segmentations.

The basal slices in the sets did not differ too much in shape and intensity
from the mid-ventricular slices and thus got fairly good segmentations as
well. In Figure 7.2a segmentations are shown with slight jagged edges.
Apart from the jagged edges, the algorithm did manage to find the correct
shape and position. In Figure 7.2b another example of a basal segmenta-
tion is shown, this one with smoother edges. However, another part of the
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image, with a similar intensity got included in the segmentation. The Dice-
Sörensen coefficients for the basal slices can be seen to the left in Figure 6.10,
where the minimum value is observed at 68% and the maximum value is
observed at 97%.

(A) The apical slice, from a healthy vol-
unteer’s image set, where the model

found the wrong edges.

(B) The apical slice, from a patient’s im-
age set, where the model could not find

any good edges at all.

FIGURE 7.1: Example segmentations of two apical slices
from different image sets. The magenta coloured dots show
the reference segmentations and the yellow dots show the

automatic segmentations.

(A) The basal slice, from a healthy vol-
unteer’s image set, where the model
created a segmentation with somewhat

jagged edges.

(B) The basal slice, from a patient’s im-
age set, where the model created a good
segmentation. However, an extra struc-
ture was falsely included in the seg-
mentation, as seen in the bottom left

corner of the image.

FIGURE 7.2: Example segmentations from two basal slices
from different image sets. The magenta coloured dots show
the reference segmentations and the yellow dots show the

automatic segmentations.

In Figure 6.8 the Dice-Sörensen coefficients from all slices can be observed.
As can be seen, the coefficients of the resulting segmentations vary quite a
lot, but the median at 86% is still sufficiently high. It can also be observed
how most of the failed segmentations are from patient sets. The same can
be noticed in the left side of Figure 6.9, where the Dice-Sörensen coefficients
are plotted for the complete volumes. The mean from these results is 80%,
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and the four sets with bad final segmentations shown in the plot did all
come from patients. Possibly, the variational modes used in the model did
not cover the deformations needed to create a patient’s specific shape and
thus bad segmentations were obtained.

Two examples of bad segmentations can be seen in Figure 6.3 and 6.4. In
the first one the segmentation includes the right ventricle, as well as some
surrounding fat. This segmentation defect is present in the entire set and
arises from the edge shape, where the similarities between the intensity of
fat and that of the right ventricle make it hard for the model to differentiate
between the two structures. In the second image set the model is able to
segment a few correct edges, as seen in Figure 6.4a, while it does not find
any edges at all in Figure 6.4b. All slices in this set have very low inten-
sity, making all edges very hard to detect, even with the naked eye. This
makes it very difficult to create an edge map, thus leading to a bad final
segmentation. Both of these data sets were from patients, contributing to
the previously mentioned poorer results of the patients.

In Figure 6.6 volumes from the automatic segmentations are plotted as a
function of the reference volumes. It is possible to see a linear dependence,
even though almost every segmentation has a larger volume than its refer-
ence, with a bias at 67, see Figure 6.7. The two patient outliers are the two
bad segmentations shown in Figure 6.3 and 6.4. The same two outliers can
be seen in Figure 6.7.

Observing Figure 5.11, it can be noticed how the eigenvalues approach 0
after about the 13th value. Different amounts of variational modes were
tried, as seen in Figure 7.3. In the left image were 10 deformation vectors
used, and in the right image were 20% of the vectors used, i.e. 32 vec-
tors. The left image shows a satisfying segmentation whilst the right image
shows a more detailed final segmentation. However, the different amounts
of vectors were more noticeable in the more apical slices, due to their big-
ger variations in size and shape, see Figure 7.4. In the left image, the few
variational modes do not really converge to the edge, as they manage to do
in the right image. Due to the better results and since it was no noticeable
difference in computational time, it was decided to use 20% of the vectors
in the model.
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(A) Automatic segmentation using 10
deformation vectors.

(B) Automatic segmentation using 32
deformation vectors.

FIGURE 7.3: Two examples of the same image, but with dif-
ferent amounts of variational modes. The magenta coloured
dots show the reference segmentations and the yellow

coloured dots show the automatic segmentations.

(A) Automatic segmentation using 10
deformation vectors.

(B) Automatic segmentation using 32
deformation vectors.

FIGURE 7.4: Two examples of the same apical image, but
with different amounts of variational modes. The magenta
coloured dots show the reference segmentations and the
yellow coloured dots show the automatic segmentations.

7.2 Attempted 3D approach

The attempted 3D approach did not receive as much work as the 2D case,
which may be an explanation for the discouraging results. The problem
may be in the code or perhaps the proposed model. Intuitive about 20 of
the deformation vectors would be used, when observing Figure 5.12. As
seen in Figure 6.5a this would result in a smoother segmentation, but not as
detailed. In Figure 6.5b the segmentation is better aligned, but with a much
more jagged edge. Neither of these methods did converge to the edge map.

Since all slices in the same set will contribute when computing the weights,
using all slices, as well as the five most central ones, was tested in order to
compare the differences, see Figure 7.5. In both cases 10% of the deforma-
tion vectors were used. In Figure 7.5b the edge is a little less ragged than in
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Figure 7.5a. A bad segmentation in one slice will contribute to big weights
and thus give bad results in the other slices of the same set. Hence, this
might not be the best approach before a better method for creating the edge
maps has been implemented.

(A) All slices in the set was used to cre-
ate the model.

(B) Only five mid-ventricular slices
were used to create the model.

FIGURE 7.5: Two examples of segmentation using the 3D
approach. The magenta coloured dots show the reference
segmentations and the yellow coloured dots show the auto-

matic segmentations.

7.3 Limitations and future work

A major limitation for the implementation of the active shape model is its
dependence on the edge map. If the edge map fails, so does the model.
Without a good edge map the active shape model cannot compute as ac-
curate weights and the deformation will not be as desired. A possibility is
to use a contrast image instead, where every pixel in the image can give
information in which direction the model should look for the edge. Using
this iterative process, no intensity information will be lost and new weights
will be computed for a new edge map in every iteration.

The model cannot handle images with bad contrast, as seen in Figure 6.4,
and it has difficulties separating between different tissues with similar in-
tensities, as seen in Figure 6.3. These are two problems that might be solved
with a better edge map as well.

Improving the edge detection technique might improve the segmentation
of the apical slices as well. This could also be helped by relating the dif-
ferent slices to each other in some way. Currently, all slices are analysed
separately and connecting them to each other, e.g. by looking at previous
slices translations etc., could benefit the model.

Today, the user must give some inputs to be able to run the segmentation al-
gorithm. For future implementations, a more user friendly interface would
be to prefer. The results may even be a bit too independent of the inputs.
Moving the right ventricle insertion point may give totally different results.



Chapter 7. Discussion and conclusion 39

7.4 Conclusion

To conclude, an algorithm using the active shape model has been created to
solve the difficult task of segmenting the right ventricle. The model used 92
subjects with manual delineations for training, and then validated the final
algorithm on 23 test subjects, also with manual delineations. The algorithm
gave good results for most image sets, but could not handle images with
bad contrast.

The mean Dice-Sörensen coefficient of 80% for the complete volumes could
be higher, and it has been discussed that this could be achieved by improv-
ing the process of creating edge maps. The image set with the best results
gave a coefficient mean of 95% for the complete volume.

The suggested approach is promising, however the algorithm needs fur-
ther improvements before final implementations. This model has only been
adapted for the end-diastole state of the heart, and in the future, it would
be beneficial to have an algorithm for the complete cardiac cycle. Differ-
ent methods of improvements have been discussed and this algorithm is a
good base for further development.
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