AN INTRODUCTION TO KREIN
STRINGS

TIEN TRUONG

Master’s thesis
2017:E11

LUND UNIVERSITY

Faculty of Science
Centre for Mathematical Sciences
Mathematics

WNYVIILVINTHLVYIN INNYVILNIIDS WNYLNID



Abstract

Krein strings appear in the study of the motion of a vibrating string where an
irregular density is allowed. This thesis presents the theory from the perspective of
integral equations and operator theory. It will be shown that each Krein string gives rise
to a unique Stieltjes function, by utilizing the compactness of the resolvent operators for
short strings and then approximating any long string with a sequence of short strings.
The converse is also true: each Stieltjes function gives rise to a unique Krein string
and this bijection is called Krein’s correspondence. The existence part is proved by
constructing Krein strings for a special class of Stieltjes functions. Then, an arbitrary
Stieltjes function can be approximated by this class and the limiting procedure yields
a string corresponding to this Stieltjes function. The uniqueness part is not treated in
this thesis. Instead, some properties and simple examples of Krein’s correspondence
will be presented.
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Populidrvetenskaplig sammanfattning

I den klassiska modellen for en endimensionell vibrerande string antas massan vara
likformigt fordelad, vilket leder till den ordinira differentialekvationen f” = Aof, dér
densiteten ¢ dr konstant. Kreins stréangteori handlar om samma ekvation, men mass-
férdelningen tilldts variera. Denna teori anvinds dven for att losa problemet att forut-
siga framtiden med hjilp av information frén en &ndlig del —27 < t < 0 av datiden
for endimensionella stokastiska normalprocesser med vantevirde 0. Detta arbete ger en
behandling av Kreins strangteori, med fokus p& Kreins korrespondens — problemet dér
spektraldata ar givna i form av en sa kallad Stieltjesfunktion och vi vill veta s& mycket
som mojligt om stringen som funktionen kommer fran.
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1 Introduction

A general model for the motion of a vibrating elastic string in one dimension is the
linear partial differential equation

o(x)uy = (T(:t:,t)um)x + F(x,t), xz€][0,1), t>0,

where the string starts at the coordinate x = 0, ends at the coordinate z = [ < o0, and
(1) u(z,t) : R x (0,00) — R denotes the vertical displacement of the string at time ¢,
(2) o(x) denotes the density of the string at position z,
(3) T'(z,t) denotes the tension force on the string at position x and time ¢, and
(4) F(x,t) is any external force acting on the string at position = and time ¢.

If the mass of the string is uniformly distributed, the tension force is constant and there
are no external forces, we obtain the classical wave equation uy = c?ug,, which has
been thoroughly studied. In this thesis, we consider the case where the mass might be
irregularly distributed, while we set T(x,t) =1 and F(z,t) = 0:

o(x)uy = uzy, x€][0,1), t>0.
The method of separation of variables is used to obtain the eigenequation

f'(@) = zo(2) f(x), z€C

We denote the mass of the string up to and including the point x as M(z). If o(x) is
locally integrable throughout the string, we have

M) = [ oy acfo)
[0,2]
and the eigenequation in this case can be rewritten as

d .
= 1.1
dM =21 (L.1)
which motivates the formal definition of the operator

d d,

Y 1.2
TS UM dz’ (1.2)

acting on an appropriate space. In this thesis, g is allowed to be a non-negative Borel
measure, which means that we for example allow the density to contain point masses.
Krein string theory, developed in the early 1950’s by M. G. Krein, deals with the
study of this operator and the corresponding Weyl function m(z), which contains all
spectral information of 7. Moreover, it is a Herglotz-Nevanlinna function and m(—z) is
a Stieltjes function. Conversely, given a Stieltjes function h(z), a unique string can be
found with h(—z) as its Weyl function. This means that the inverse spectral problem
for Krein strings is solvable and the solution is unique. The bijection between the class
of Stieltjes functions and the class of Krein strings is called Krein’s correspondence,
which is the most intriguing feature of Krein string theory. If one considers a larger
class of strings where g is allowed to be a signed Borel measure, its Weyl function is still
a Herglotz-Nevanlinna function, but not all Herglotz-Nevanlinna functions correspond



to such a string. A characterization of the Herglotz-Nevanlinna functions corresponding
to strings with a sign-changing density is presently unknown. See [15] and [5] for more
details.

Krein string theory and its generalizations have attracted a lot of attention also due
to its vast applications in many different areas. For instance, it is used to study the
prediction of the future from a finite past segment —27 < ¢t < 0 of a real one-dimensional
Gaussian process with mean 0. Since the projection of the family {+7)} onto the
span of {7}, is not invariant under the shift f — €7 f, the theory of Hardy spaces
is not applicable, see [4, ix| and [4, pp.146-147]. Another application is within the study
of generalized diffusions, see for example Appendix II in [13], or Chapter 15 in [16].

In 2012, a group of mathematicians and physicists published results of a real-life
experiment of a special case of Krein’s correspondence, in which some weights were
attached to a thread with negligible mass at different positions. The eigenvalues were
computed and compared to the model for these types of strings made by Krein, using
Stieltjes continued fractions. The interested readers are referred to [3].

The focus of this thesis is the following:

(1) to give a treatment of Krein string theory,

(2) to study how the behavior of the mass distribution affects the behavior of its
Stieltjes function m(—z).

A common approach in Krein string theory is to use integral equations as in [10], [4]
and [13]. In the first part of the thesis, we will combine this approach with an operator
theoretical one as in [6], the focus of which is the generalized Sturm-Liouville equation
with measure-valued coefficients

d@c(lx) ( B dg((ix)y(x) + Jw y(t) dx(t)) =z2y(z), —o<a<z<b< oo,

where the measures p,¢ and x are required to meet some hypotheses as in [6, p.11].
Eigenequation (1.1) is obtained for x = 0 and ¢ the restricted Lebesgue measure on
(—o0,1) or R. The first approach provides explicit and insightful constructions. For ex-
ample, the construction of a string in Section 3.2.2 is very easy to follow and understand.
The second approach provides elegant arguments, for example the limit circle and limit
point characterization of the operator 7. Alternatively, one could also convert (1.1) into
a first-order system of differential equations with measure-valued coefficients, the theory
of which is thoroughly investigated by C. Bennewitz in [2].

In the second part, starting from some simple Krein strings, we will try to either
compute the Weyl function and the spectrum, or observe as much as possible from the
even and odd transforms between the relevant spaces. The even and odd transforms
for the classical string M(x) = x - 1,0, or equivalently for the operator d?/dz? on an
appropriate domain, are in fact

0

foocos(fa:)f(x)dx, and f sin(£2) f(x) da

0 0
respectively. This means that we can view the even and odd transforms as a general-
ization of the cosine and sine transforms, and these prove to be very efficient tools to
study Krein’s correspondence. We will also mention some famous results about Krein’s
correspondence. For example, the leading part in the eigenvalue asymptotics for a short
string depends solely on the absolutely continuous part M’(z) of the mass distribution
!
lim —— = 1 M'(z) dzx.

n—0w /Ty, T Jo




This is a discovery of M. G. Krein [14]. If o(z) is absolutely continuous, one can obtain
sharper asymptotics, as illustrated in Example 3.36, where a point mass is added to a
smooth density.

Here is an overview of the structure of this thesis. Chapter 2 is dedicated to the
formal settings of the unbounded operator 7, the domains on which 7 is a non-positive
self-adjoint operator, and the resolvent operator. One has to be careful in choosing a
domain for 7, because it is multi-valued on its maximal domain. Also, some choices
of domains on which 7 is a self-adjoint operator might cause the spectrum to contain
positive points. Chapter 3 is about Krein’s correspondence. In Section 3.1.1 and 3.1.2,
we show how a string yields a Stieltjes function. Then, in Section 3.2.2 and 3.2.3, we
first show how a string can be constructed from Stieltjes functions with some additional
assumptions and then via limiting process, we show that a string can be found for an
arbitrary Stieltjes function. In Section 3.3, we present known results about Krein’s
correspondence, and demonstrate the correspondence for Stieltjes strings, strings with
M(x) = 2% 1py) with @ > 0 and [ < o0, and a combination of these two types of
strings.

The prerequisites for this thesis are linear functional analysis, integration theory and
some knowledge in differential equations. In particular, Section 2.4 and the beginning
of Section 3.3.1 will require some acquaintance with spectral theory for unbounded
self-adjoint operators. Readers who are unfamiliar with this can skip the beginning of
Section 2.4 and go directly to the discussion of boundary conditions on pages 13 and
14.



2 Krein strings

2.1 Notation

Let f: R — R be a function. Frequently, we use the following notations:

fla=) = lim_ f(@) = lim /(@)

r—a,r<<a

flat) = lm_ f@) = lim /(@)

T—a,r>a

d-f, v _ poy_ g f@) = fla)
%(a) = fl(a) = }J}% T r_—a
dof v _ oy g £@) = fla)
;7(61) = fy(a) = 3161?(11 T r—a

Also, we will use these conventions:

f(a+) = fi(a), and [’ (a—)= f'(a).

Let o be a locally finite Borel measure. The notations for the integral bounds are to be
understood in the following way, if a and b are finite numbers:

do(y), ifa<bd

do(y), ifb<a
(y), ifa<bd

y)do(y), ifb<a
(

f(y)do(y) = { S(a,b):: y)do(y), ifa<b

Let (a,b) < R be an interval. A function g : (a,b) — R is said to be of class
ACioc((a,b),do) if g is right-continuous and it can be written as

g@)=ﬂd+mewddw7 re (ah),

where h is required to be of class L}, .((a,b),ds). The function h will be referred to as
a quasi-derivative of g in ACj,.((a,b),do).

2.2 Definition of a string and the initial-value problem

In this thesis, a string is defined by its two physical properties: its length [ and its mass
function M (z). Hence, we may refer to a string as the pair (I, M). The left endpoint
of a string is always at the coordinate x = 0 and the right endpoint is at x = [, where
l € (0,00]. The mass function M(z) : R — [0, 0] gives the mass of the string up to
and including the point x. M(x) is required to be non-negative, non-decreasing and
right-continuous. Also, M(z) = 0 for x < 0 and M is bounded on every interval of
the form [0,a) for a < [. We denote the measure associated to M(x) by p, obeying
o((—o0,x]) = M(x). It is easy to see that p is a non-negative Borel measure, locally
finite on (—oo,l). A point z is a growth point of M if for every a and b, such that
a < x < b, we have M(a) < M(b). We also require that x = 0 is a growth point, and



that x = [ is the supremum of all growth points. This implies that M(x) is constant
after x = [. In the case | + M (l—) < oo, this includes the possibility that o has a point
mass at [, which we require to be finite.

We set

I (—o0,l), ifl+M(l-)=oo
R, if [+ M(I-) < 0.

If 1+ M(l—) = oo, the string (I, M) is called a long string. Otherwise, it will be referred
to as a short string. The operator of concern has the form

d dy
T dM dz’

and 7 acts on functions in ACy,.(I, dz), with a quasi-derivative in ACj,.(I, dM). Since
functions in ACj,.(I, dM) are right-continuous, the quasi-derivative of f € AC,.(I, dx)
must be the right-derivative f,. We define 7f to be the quasi-derivative of f €
ACoe(I,dM). Given h € Lj (I, dM) with h = 7f, the function f can be recovered
from h using the formula

x §
F@) = 1O+ £ )+ | de | nmad), w0 (21)
0 0
Note that 7f is well-defined g-almost everywhere on I and not well-defined on massless
intervals — the intervals on which M (z) is constant. On massless intervals of I, we have
the convention that f(x) is linear. In particular, in the long-string case, f(x) to the left

of x =01is

f@) = f(0) + fL(0)z, we (-x,0), (2.2)
and in the short-string case, we extend f(x) on both (—o0,0) and (I, 0) as

f(l'): ( )+f/(0) ZL’E(—OO7O)
FO) + L) (x—1), x € (I, ).
D, will denote the space of functions f given by (2.1) and (2.2) in the long-string case,

or by (2.1) and (2.3) in the short-string case. Computing f” and f) from (2.1), we have
that:

(2.3)

—fjr(:z)—f’_(x)_T x), 1 T
) f(z), if o({z}) >0 (2.4)

fil@) = f(z) =0, if o({r}) =

Equation (2.4) provides an alternative way to compute 7f when o({z}) > 0
Consider the initial-value problem

(r—2)f =g, with f(c)=djand f'(c) = do, (2.5)

where ¢ € I, g € L}, (I,dM), as well as z,d1,d2 € C are given. The problem (2.5)
can be converted into a first-order system of differential equations with measure-valued
coefficients. We set F(z) = (f(x), fi.(x)) and observe that

T

f@=di+ [ fwd f@=dit [ G rgad, wel

c—



This yields the system

Fz) = (Z;) + Jx (2) dM + f CF du, (2.6)

where
dw = dz + |z|dM, (2.7)
and
0 dx
= (L %) (23)
o 0

The entries dz/dw and dM /dw are the Radon-Nikodym derivatives.

THEOREM 2.1 The initial-value problem (2.5), or equivalently the integral equation (2.6),
has a solution f of class D, and the solution is uniquely determined by its initial values.
Moreover, if g,z,d1 and do are real, then the solution is real.

Remark 2.2. For a proof, see [6, pp.156-157|. In [6], Eckhardt and Teschl consider a
more general initial-value problem, namely

(K0 = (F0) + [ e () ww,

where dw = |dpy| + |dus| for w1, pg locally finite complex Borel measures, and

0 mq
“=(m )
with the Radon-Nikodym derivatives m; = dpi/dw and mge = dug/dw. Since they
use the left derivative instead, the initial values and the integral bounds are different
from ours. This system is proved to be solvable uniquely under the condition that
(I + C(z)w({x})) is invertible for each < c. In our case, we look at F(z) = F(—x),
where F'(x) is as in (2.6), and use the result for the above system. It follows that the
invertibility of (I —C(z)w({z})) for each = > c is required instead and it is trivially met
with w and C as in (2.7) and (2.8)

F=Cwted = (i 1)

2.3 The fundamental system {A(zx, z),C(zx, 2)}

A consequence of Theorem 2.1 is that the solution space of the equation (7 — z)f =0
has dimension two. For a fixed z € C, a fundamental system of the equation (1 —z)f =0
is a basis of the solution space. For each fixed x € I, the solutions are entire functions
according to the following result, a proof of which can be found in [6, pp.161-162].

PROPOSITION 2.3 Let u(x,z) be the solution of the initial-value problem (2.5) for
each z € C. Then, u(x,z) and v (z,z) are entire functions in z for every x € 1. In
particular, for every x € [0,1), we have the estimate

u(, 2)| + | (x, 2)| < CeBVIEL

for some constants C' > 0 and B € R.
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We define the Wronski determinant, or the Wronskian, of f,g € D, by

W(f,9)(x) = f(2)d () = fi(z)g(z), wel
The Wronskian of fixed f, g is of class AC),.(I, dM), with quasi-derivative

L W(t.g) = f(rg)— (D) g.

dM
This result is called the Lagrange identity, see [6, pp.157-158]. Suppose ui,ug are
solutions to the equation (7 — z)f = 0. Then, according to the Lagrange identity, we
have

d
Fivi Wui,u2) = ug (Tug) — (Tuy) ug = uy(zuz) — (zug)ug =0,

which implies that W(ui,u2) = C on I. The Wronskian vanishes if and only if u; and
ug are linearly dependent, see |6, p.158].

Next, we introduce a convenient fundamental system for the equation (7 — z)f = 0,
for each z € C. Tt consists of solutions A(x, z) and C(x, z), with the initial values

A(0,2) ) (1 C(0,z)\ _ (0

A" (0,2))  \0)’ C'(0,2))  \1)’
yielding W(A,C) = 1. By Theorem 2.1, the solutions A(z,z) and C(z,z) are unique
in D;. We can in fact give general formulas for A(z,z) and C(x,z). We will also

construct an auxiliary solution D(z, z), which is important later on. The set {A, D} is
also a fundamental system. The initial values of D(z, z) will be

(0 62) = (D)

2.3.1 The solution Az, z)

yielding W (A, D)(x) = —1.

In this section, we will derive a power expansion of A(x,z). Let po(x) = 1 and
{pn(m)}ngl be defined by

T 3
poe) = | a | pamast). a0,

in other words, 7p, = p,_1 € D,. Define a function 121(1:, z) by
B o8]
Az, z) := 2 2" pp (). (2.9)
n=0

For A to make sense, the series should be absolutely convergent for each x, such that
x + M(z) < o0, and for each z € C. To show this, we prove the estimate

po@) < ([ Mwan)” .10
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for each n > 1, using induction. For n = 0, the estimate is immediate. Assuming that
it holds for pn,l( ), we estimate

T '3 T 3
IMW)ZJ;déo_mlﬂmdwﬂ) ‘fpnl@w% aM (1)

- | @M@ e < | tn -1y j M) dy|” b (6) de

- (n!)_l[J: M(y)dy|".

Now, the convergence of (2.9) follows from

|/1(m,z)|<§: i JM dy] = exp |z|f M(y dy) (2.11)

which is finite for each z € C, as long as z + M (z) < .
The right derivative A’ (z, 2) is

B2y =2 22 [ puamadi),
n=0 -

from which it is clear that 7A = 2A and that A(z,2) € D,. Moreover, A(0,z) = 1
and A’ (0,2) = 0, for z € C. By uniqueness of solutions in D,, we conclude that
A(z,z) = A(z,z). The power series (2.9), together with (2.11), shows that A(x, z) is
indeed entire in z for each = € I. Note that Proposition 2.3 provides a sharper estimate
for |A(x, z)| than (2.11).
If there is no confusion, we omit r and write A(z,r) as A(z) when r > 0. By
Theorem 2.1, A(z) is a real-valued function. Some properties of A(x) are:
(1) A(x) =1 when z < 0, A is non-decreasing and 74 >
(2) A(l-) < o0 if and only if SoM x)dxr < oo,
(3) A’ (I—) < o0 if and only if § xdM(z) < o0,
) §o_|AP2dM < oo if and only if ) 22 dM (z) < o0

Property (1) is obvious from (2.9). For a proof of (2)—(4), see [4, pp.162-163]. In fact,
item (4) is true for A(x, z), for all z € C, see [4, pp.171-172].

2.3.2 The solutions C(zx,z) and D(z, z)
We prove the identity

T

C(x,z2) = A(:U,z)JO [Aty,2)| 2 dy, wel, (2.12)

by showing that the right-hand side is a solution of (7 — z) f = 0 with the correct initial
values.

Let C(z, z) denote the right-hand side of (2.12). For each r > 0, the function A(x)
is bounded from below by

b =1 +rj0yM<s> de > 14 rM(e)(y — o).
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for y not too close to 0, and A(y) > 1 for y close to 0. This guarantees the convergence
of Sg A(y)~2dy for each x € I. When z ¢ (0, 0), the convergence of Sg Ay, 2)2dy is a
delicate issue, which is discussed in [4, pp.172-176].

It is easily seen that C(xz,z) has the required initial values for each z € C. It is a
solution because

dC' (z,2) = d (A, J A2 dy+ A7h
0

=dA, L A2 dy + A, A™%de — A2 Al dx
= 2CdM.

Identity (2.12) is now established.
From A(z,z) and C(x, z), we define a new solution D(z,z) by making the following
linear combination of A and C-:

l+k
D(z,2) = (JO [A(y,2)] " dy)A(:c,z) —C(x,2), we(—wl+k],  (2.13)

or equivalently

l+k
D(z,z) = A(z, 2) f [A(y, z)]_2 dy, xe€(—w0,l+k|.

€T

The constant 0 < k& < o depends on the self-adjoint domains of 7, which will be

introduced in the next section.

When there is no confusion, we write D(x,r) = D(x), for r > 0. The solution D(z)
has interesting properties — especially item (6):
(5) D(x) is non-negative, non-increasing and convex, i.e. 7D > 0;

(6) S D2 dM < o0

Item (5) is immediate. For a proof of item (6), we refer to [4, p.164-166].

2.4 Domains on which 7 is a self-adjoint operator

To apply the theory for unbounded self-adjoint operators to 7, we need to restrict
D, to an appropriate Hilbert space. This is chosen to be the complex Hilbert space
M = L*(I,dM), equipped with the scalar product

!
(F.9)o= | Sy dM1(a),
0—
where g* is the complex conjugate of g. The new domain is

Dm(w: = {f € DT : HfHQ + HTfHQ < OO}

A problem arises: we might have 7f # 7¢g on a set of positive p-measure, even if
f = g p-almost everywhere. Equivalently, there are functions f which are 0 g-almost
everywhere but satisfy 7f # 0 on a set of positive g-measure. An example of such a
function f € Dj,qz is
Coup(z), x€ (—00,0]
flx)y=+x0, z € (0,1]
Crui(x), xe(l,0)



for the case when [ + M (I—) < c0. We choose the fundamental system {ug,u;} to the
equation 7f = 0, with the initial values ug(0) = w(l) = 0 and u_ ((0) = o/, ,(I) = 1.
The function f vanishes g-almost everywhere, and yet by (2.4), we obtain

Tf = C()Il{o} + Cﬂl{l}.

This means, if o({0}) > 0 or o({l{}) > 0, 7f # 0 on a set of positive measure and 7 will
be multi-valued. See [6, pp.164-165] for a complete proof of this fact. Hence, we are
forced to work with 7 on D,,4; as a so-called relation, which is a generalization of the
notion of an operator. There are many similarities between the theory for relations and
the theory for operators. View [6, pp.213-214| for further details. We will denote an
operator by (7,D), and a relation by {7, D}.

As in the classical theory for unbounded self-adjoint operators, we specify the mini-
mal domain. Consider

Do = {f € Dynaz : supp(f) is compact in I}.

The adjoint of (7,Dy) is indeed {7, Djaz}. The minimal domain Dy, is defined as the
closure of Dy in M, and 7 on D, is always an operator. See |6, pp.168,170].

Any self-adjoint extension of (7, Dynip) lies between Dy and Dypq,. The fact that
(7, Dinin) is an operator is necessary for our search. If it is a relation, then any extension
of it will be a relation. The multi-valuedness of 7 will be carried further into all larger
domains.

We use the limit-point/limit-circle classification of endpoints, as in the classical
Sturm-Liouville theory. Let x = a be the left endpoint. The operator 7 is limit-circle
at a if for all z € C, there exists a fundamental system {u,v} to (7 — z)f = 0, such
that u and v are of the class L?([a,a + €),dM) for some € > 0, or shortly, u and v are
L2 near z = a. Let 2 = b be the right endpoint. We have a similar definition for the
limit-circle case at b, but instead with the interval (b — €,b] for some € > 0 if b is finite,
and [N, o0) for some N if b is infinite. If 7 is not limit-circle, then it is limit-point at that
endpoint. In fact, 7 is limit-circle at an endpoint if and only if for some zg € C, there is
a fundamental system which is L? near that endpoint, see Lemma 5 in [6, p.172].

In this thesis, 7 is always limit-circle at x = 0. The classification of the endpoint
x = | breaks into three cases.

Case 1: when [ + M(l—) = oo and Séi 22 dM = o, the solution A(z, z) fails to be L? near
x =1 for all z € C, according to item (4) of Section 2.3.1 . Hence, 7 is limit-point
at x = L.

Case 2: when [ + M(l—) = o0 and Séi z?dM < o, both A(z,r) and D(z,r) are L? near
x = | whenever r > 0, according to item (4) of Section 2.3.1 and item (6) of
Section 2.3.2. Hence, 7 is limit-circle at x = [.

Case 3: when | + M(l—) < o, the condition Séi 2 dM < oo is trivially satisfied. Hence,

the solutions A(z,r) and D(x,r) are L? near z = | whenever r > 0 by item (4)
and (6) in 2.3.1 and 2.3.2 respectively. Hence, 7 is limit-circle at z = [.

A complete characterization of self-adjoint extensions for each of the above cases, and
when these are operators, can be found in [6]. A lot can be simplified, using the
fundamental system {A,C}, and the facts that ¢ places a mass far from x = —o0 and
that o({l}) = 0 in case 1 and 2. The characterization depends on the endpoints’ types.
If 7 is limit-point at an endpoint, there are no requirements on how the functions should



behave at that endpoint, except that they should be L? near it. If 7 is limit-circle, we
always ask for more. For example, the boundary conditions at x = 0 are:

D (1) ={feD, : fis L near z = 0 and f’ (0) = 0}.

A function f € D, is said to satisfy the boundary conditions at x = 0 if f € D_(7).
The boundary conditions at the endpoint x = [ are given case-wise.

Case 1: Since 7 is limit-point at z = [, we only require
D, (1) ={feD, : fis L% near z = [}.

Case 2: The only choice possible for the spectrum to be non-positive is the Neumann
boundary condition

D,(r)={feD; : fis L? near z = [ and f’ () = 0}.

See [11, pp.74-T5].

Case 3: We can "tie down" the strings in many different ways thanks to the finiteness of [
and M (I) and choose among the following boundary conditions:

D, (7)={feD, : fisL?near z =l and f(I) + kf\.(I) = 0} or
D (1) ={feD, : fis L? near z = [ and f’ (1) = 0}

for 0 < k < . Only when p({l}) = 0 can the parameter k be chosen to be 0
because when k& = 0 and p({l}) > 0, we cannot erase the multi-valuedness of 7 at
z = [, see Corollary 7.8-9 in [6, pp.184-185]. The requirement f(I) + kf’ (1) =0
is the same as f(l + k) = 0.

A function f € D, is said to satisfy the boundary condition at = [ if f € Dy (7).
Because of the tying constant k, we sometimes denote the short string as (I, M, k).
Finally, the domains on which 7 is self-adjoint are given by the recipe

D(r) =D_(7) n D4 (7) N Dz

The boundary condition at z = 0 is of Neumann type, which means that we let
the string slides freely at x = 0. We may choose many other boundary conditions, for
example the Dirichlet boundary condition with f(0) = 0, or in general cos(f)f(0) +
sin(6) f.(0) = 0 for some 6 € [0,27). When 7 is limit-circle at both endpoints, there are
more complicated boundary conditions, for example the coupled boundary conditions,
see [6]. However, in this thesis, we only consider the separated boundary conditions,
which means that the boundary condition at * = 0 is not dependent on the boundary
condition at x = .

THEOREM 2.4 The operator (7,D(7)) is non-positive and self-adjoint.
For the proof of the non-positivity of (7,D(7)), we refer to [4, pp.153-156].

PROPOSITION 2.5 Fach eigenvalue of T is simple.



Proof. A consequence of Theorem 2.4 is that the eigenvalues are real and non-positive.
Let v € (—0,0] be an eigenvalue, so that (7 —v)f = 0 has two non-trivial solutions
uy and uz. Then, u; and up must be of class D_(7), hence uj (0) = uy (0) = 0.
Computing the left limit of the Wronskian at the point x = 0 gives

W (u1, u2)(0—) = u1(0—)us 4, (0—) — uy 4 (0—)uz(0—)
u(0)ugy,_(0) — uj _(0)uz(0)
—0,

which implies that u; and wuo are linearly dependent. O

Now, we can clarify the constant k£ in the definition of the solution D(z, z). In the
short-string case with (I, M, k), we have

I+k
Diz.2) = Alw.2) | (Al 2)] 2 dy,

T

and in the long-string case, we have k = 0.

LEMMA 2.6 The fundamental system {A(x,z), D(x,2)} has the properties
A(z,z)eD_(1), and D(x,z)eDi(7)

for all z € C, and
A(z,2z) ¢ Dy(1), and D(x,z)¢D_(1)

for z € C\(—0,0]. Furthermore, A(z,z) and D(x,z) are unique, up to constant multi-
ples, in D_(7) and D4 (1) respectively, for all z € C.

Remark 2.7. For a proof of D(x,z) € D4 (7), see [4, pp.164-166, 175]. The rest is easy
to prove. By construction, A’ (0, z) = 0 for all z € C. Since 7 is limit-circle at = 0, all
solutions are L% near z = 0 for all z € C. Hence, the solution A(z, ) is of class D_(7).
Let zp € C\(—o0,0] and suppose that A(x,zp) € D4 (7) n D_(7). Then, zy would be
an eigenvalue, as A(x,z9) becomes an eigenfunction. This contradicts the fact that
(1,D(7)) is non-positive and self-adjoint. Hence, A(x,z) ¢ D, (7) for z € C\(—0,0].
Let A(z, z) be another solution of class D_(7). Then, W (A, A) = 0, which shows that
the solution space as a subspace of D_(7) has dimension one. Similar arguments apply
for D(z, z).

2.5 The resolvent operator

Since (7,D(7)) is self-adjoint and non-positive, the spectrum X(7) is contained in the
non-positive real axis (—o0,0]. The resolvent set

p(t) ={2z€C: 6, = (2 —7)"tis a bounded and bijective operator on M}

includes C\(—00,0]. The map z — &, is an analytic map from p(7) to the space of
bounded linear operators on M. The resolvent operator & is called the Green operator.
Since we only treat separated boundary conditions, we have the following simplified
representation.
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THEOREM 2.8 The Green operator &, : Ml — M admits the integral representation

!
G.f=| G.lz,9)f(y)dM(y)

0—
T l
= D(e.2) | Al )1 M) + AGw.2) [ Do) f(5) dM (),
where the kernel G,(x,y) is given by

Alz,2)D(y, z), ifx
Galay) = {0 HID0)
Ay, 2)D(x, 2), ify
For a proof, see [4, pp.166-170]. A more operator-theoretical approach can be found
in [6, pp.188-189].
Remark 2.9. The function ¥’ — G,(z,y') on an interval I = [y — d,y + ] < [0,1) is

Lipschitz continuous. This is because the derivatives of A(y') or D(y’) are uniformly
bounded on I whenever they exist, and they exist A-almost everywhere on I.

<y
S

Next, we want to know when &, is compact.
COROLLARY 2.10 If 7 is limit-circle at x =1, or if (I, M) satisfies one of the following

conditions l l
J xdM(x) < o0, or J M(x)dx < o0, (2.14)

- 0

then &, is a Hilbert-Schmidt operator, meaning that

J f (2, y)|? dM () dM (y) < o

Proof. If 7 is limit-circle, then A(x,z) and D(z, z) are both of class L?(I, dM) and the
statement follows.

Suppose that (I, M) satisfies one of the conditions in (2.14). It is sufficient to prove
that &, is a Hilbert-Schmidt operator for 7 > 0. Indeed, assume (r — 7) ! is a Hilbert-
Schmidt operator for r > 0. Then, by the resolvent formula,

=7 =—(r=7)l=—z -1 -—1)" -1,  zrepl).

The right-hand side is a Hilbert-Schmidt operator because (z—7)~! is bounded. Moving
(r —7)~! from the left-hand side to the right-hand side, (z — 7) ! is a Hilbert-Schmidt
operator because it is the sum of two Hilbert-Schmidt operators.

For the real Green kernel G,(z,y), we have the inequality

Gr(z,y) < min{G.(z,2), Gr(y,y)},
implying that G,(z,y)? < G, (z,2)G,(y,y) and

J OiG(:c \y)2 dM (z) dM (y f Gy (z, ) dM (z f Gy, y) dM (y ))

If So x)dr < oo, we have A(l—) < oo by item (2) in Section 2.3.1. Using the
monotomclty of the real solutions A(z) and D(zx), we estimate:
! !

Gr(z,x)dM(z) = A(z)D(z)dM(x) < D(0)A(l—) < o0.
0— 0—
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If Slo, xdM (z) < oo, we have A’, (I—) < oo by property (5) of A(x). This gives
l l

Go(z, ) dM(z) < D(0) | A(x) dM(z) = r—2 D(0) A, (I-) < .
0— 0—

The last step in the above is obtained by differentiating the formula

T 3
A@)=1+r f de [ A@w)am),
0 0—
yielding

T

A @)= | Al dnro)

The corollary is now established.

O

If 7 is limit-circle at = = [, then 3(7) is discrete. By Proposition 2.5, the eigenvalues

must be simple.
The following estimate will come in handy.

LEMMA 2.11 Sék Gr(z,y)dM(y) < r~ L.
Proof.

l
r | Gte i)

" y
= rD(x) N A(y) dM (y) + rA(x) f D(y) dM(y)
l

=D@) | (rA)w) M)+ A [ (7D) () dM ()

T

T ! l /
- o) [ L) +aw [ e an

= D(z)A, (z) + A(z) [D',(l) — D' (z) + (TD)(Z)Q({Z})].
If o({l}) = 0, the above sum reduces to:
r&,1 = D(z)A!, (z) + A(z)[D_(1) — D', (z)]
< D()A',(2) — A@@) D, ()
=W(D,A)
= 1.

In the above inequality, we use that D is non-increasing, hence D’ (I) < 0, and that

A(z) = 0 for z € [0,1).
If o({l}) > 0, then by (2.4),

D.() - D)

which gives

= 1.

The proof is now complete.
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3 Krein’s correspondence

3.1 The Weyl function and the spectral measure o

DEFINITION 3.1 Let {6, ¢.} be a fundamental system of the equation (7+z)f = 0, such
that ¢, € D_(7) and W (6., ¢,) = 1. A singular Weyl-Titchmarsh-Kodaira function, or
just a Weyl function, is a function m(z) defined on —p(7) = {—z |z € p(7)}, such that
the linear combination

¢z = ez + m(z)¢z

is of class D4 (7). The solution 1, is called a Weyl solution associated to m(z).

From Section 2.3.2, we are provided with the formula
D(z,—z) = —C(z,—z) + D(0,—z) A(z,—2), =ze€ C\(—o0,0].

The functions C(z, —z), A(z, —2) and D(z,—z) solve the equation (7 + z)f = 0 and
meet the requirements of Definition 3.1. Hence,

I+k
m(z) = D(0, —2) = J [A(y,—2)] 2dy,  ze C\[0,0)
0
is a Weyl function, where k is the tying constant in the short-string case, and k = 0 in
the long-string case.

The Weyl function has always been of interest in the study of Sturm-Liouville opera-
tors because it contains all spectral information, which will be discussed more in details
in Section 3.3.1. As in the classical theory, m(z) is a Herglotz-Nevanlinna function, i.e.
m(z) is analytic in the upper half-plane HT = {z € C : Im(z) > 0} and it maps H"
into H*. Also, m(z*) = m(z)*, see Corollary 9.5 and Theorem 9.2 in [6].

More can be said: the function m(—z) has the limit lim,4o m(—r) = 0, and we will
prove that m(—z) belongs to the following class.

DEFINITION 3.2 A complex function f is said to be of the class S (or the class of
Stieltjes functions) if it satisfies

(1) f € Hol(C\(—,0]);

(2) Imf(2) <0if Imz > 0;

(3) f(x) =0 for x € (0,00).
Remark 3.3. Definition 3.2 is practical for our constructions. In the classical work [10],
written by Krein and Kac, the S-class is defined differently from here. Their Stieltjes

functions are analytic on C\|0,00). The definition in [10] is fulfilled for f(—z) if and
only if f € S as in Definition 3.2.

THEOREM 3.4 f €S if and only if f has the integral representation

() =C+ ff fly"g, 2 e C\(—o0, 0],

for some constant C = 0 and a unique non-negative Borel measure o, such that

C+ foo(l +79) tdo(y) < .
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Remark 3.5. For a proof, see Chapter 2 in [16]. In Theorem 3.4, it is sufficient to have the
integral representation of f € S for z € (0,00). There exists a unique analytic extension
of f to the cut complex plan C\(—o0,0] and the extension satisfies Definition 3.2.

The measure o corresponding to m(—z) as in Theorem 3.4 will be referred to as the
spectral measure associated to the string (I, M), or m(—=z). Note that o in this context
is the spectral measure associated to the operator (—7,D(7)). Instead of proving its
existence directly, we will prove the eigendifferential expansion of the real Green kernel,
which is extremely insightful, and from which we only need to set * = y = 0 and use
that G,(0,0) = D(0,r) = m(—r) to identify a spectral measure associated to m(—r),
for 7 > 0. The proof will be divided into several sections.

THEOREM 3.6 There exists a non-negative Borel measure o with support in [0, 00),
such that the real Green kernel can be expressed as

R e (3.)

forr >0, with 0 < x,y <l in the short-string case, and x,y <l in the long-string case,
as long as x and y don’t belong to the same massless interval.

3.1.1 Construction of ¢ for short strings

Proof of Theorem 3.6. Due to self-adjointness of (7,D(7)) and Corollary 2.10, the re-
solvent operator &, = (r —7) ! is self-adjoint and compact for each r > 0. There exists
an orthonormal basis {f,,}n>1 consisting of eigenfunctions f,, of &, for the space M. The
functions f,, are also eigenfunctions of 7. Because of the non-positivity of (7, D(7)), we
have (7 + v,)fn = 0, for v, € [0,0). According to Corollary 2.5, each eigenvalue is
simple. Hence, it must hold that

fn(@) = an A(z, —70),

for some complex scalars «a,,. In fact, a,, can be chosen to be real, in view of Theorem
2.1, and then «,, = |A(x, —vn)Hle because f,, has unit length.

The resolvent &, has the eigenvalues (r 4, ) !, which are all positive. Suppose the
following equality holds when x € [0,] is held fixed:

(r + )" fu(2) fu(y)

18

GT'(xv y) =

S
Il
—

(3.2)
(T + Pyn)iloé%A(wv _’Yn) A(y7 _'Y’n,)a

I
18

3
Il
—

for 0 < y <l and z,y not in the same massless interval, and where the equality is to be
understood as uniform convergence. We can then design a discrete non-negative Borel
measure o with
o(B)i= 3 |A(@,—w)| % BeBR), (3.3)
YnE€EB
Note that supp(c) < [0,00) but o is defined on the whole R. We switch the sum in (3.2)
to the integral sign:

_ [ Az, ) Aly, =)
Grag) = | HEEDTE T (),
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which is what we want to prove for 0 < z,y < [ and z,y not in the same massless
interval.
Now, we prove (3.2). We claim that the function

N
Fn (ZC y) Z T+’Yn 1fn )fn(y)

is a kernel for a non-negative integral operator for each finite N > 1, that is,
1 1
| (] Pvenswyamnw)se) ae >o,
0— NJo—
for all g € M. Indeed, since the functions f,, are real, we have

l l
f ( Fn(z,9)9(y) dM(y))g(a:)*dM(a:)

0—

— (&,9.0) - f jzrm @) ()0(0) AM (1) ) () M (2)

0

N
— (,9.9) — 3 +70) " (s 6") fo fu(@)g(x)* dM (z)
n=1 -
N
= (67“ g,g) - 2 (7” + ’Yn)il(gvfn)(fmg)
n=1
N
= (&r9,9) — D (r+7) (g, ).

i
L

Expanding g = >},,-1(9, fn) fn, We obtain now

(Q5rgvg) = Z(gafn)(ﬁT fnag) = Z(T+7n)_1|(gafn)|2'

n=1 nz=1

The claim is now apparent. An implication of this is

Fy(z,z) = Gp(x,7) — 2 (r+ ) Hfalz)? =0,
n=1

at every growth point x < [. If not, then Fy(x,z) < 0 for some growth point = < [.
Since Fy(x,x) is continuous, there is an interval (a,b) < [0,!] containing x, such that
Fy(w,w) <0 for all @ < w < b and that M(b) — M(a) > 0. Then

JOZ_ (Jol_ Fn (2, 9)X(a,0) () dM(y))x(aJ,) (z)* dM () < 0,

which is a contradiction. So Fy(x,z) > 0 at all growth points x € [0,[]. Differentiating
Fn(z,2) twice on massless intervals, we use that A’(z) > 0 and that D'(z) < 0 to
realize the concavity of F(x,z) for  on massless intervals:

Mz

F(x:c)—2(A’ (r + ) " f (2 )])\o.

n=1



Hence, we can extend the inequality F(z,x) > 0 across massless intervals. This implies
that

o6}
D+ ) (@) < Gp(, 1) < o0, (3.4)
n=1
for every 0 < x < [. This fact, together with the Cauchy-Schwarz inequality can be
used to estimate the tail of the sum
N

[ ) @ )|

3
Il

/N
N g
M=

(r +vn) 1f2 )(ir‘i‘Vn 1f2 ))

3
[
=

/N
N
M=

(r +7) " f2(@) ) Gr (),

M

3
Il

which shows that the sum >3, (r+v,) ™! fn () f1.(y) converges uniformly to a continuous
function in the variable y as N — oo and as z is held fixed. Finally, the difference
Gr(z,y) — 207 (1 + Yn) "L fu(®) fu(y) is orthogonal to every f, for each fixed z and

n=1

k=1,2,... because

fl [Grle.1) = D2+ 30 £ul0) )| ) M)
- n=1

- (eﬁrfk)< )= (r + 7)™ frla) =
which by Bessel’s inequality implies that

HGr(x y Z T+'Yn lfn fn H_’O N — o0.

So, for each fixed x € [0,1], the series in (3.2) has a uniform limit, which is a continuous
function in y. Moreover, its L2-limit is G,(x, .) in M. Since G,(z,y) is continuous in
Y, (3.2) must hold pointwise for p—almost every y € [0,[]. If = and y belong to different
massless intervals, say y € (a,b), then both sides of (3.2) are linear functions in y having
the same initial values at y = a. Hence, the equality in (3.2) also holds for this case. If
x and y belong to the same massless interval, say =,y € (a,b), then G,.(x,y) attains its
maximum at y = x. However, on the right-hand side of (3.1), because A(y, —v) is linear
on massless intervals, the series cannot attain a maximum on (a,b). By symmetry, the
same holds when y is held fixed and everything is regarded as continuous functions in
x. The claim of Theorem 3.6 is now proved.

O

3.1.2 Existence of ¢ for long strings

The idea is to approximate the long string (I, M) with a sequence of short strings
(In, My, ky) and define o as a weak limit of o, associated to (I, My, ky).
Let {Ly,};°_; be a sequence of points with the properties

o({Ln}) =0,

0< L, 1 <Ly <Iforall n, and
lim L, = 1.

n 1 oo



The short strings have lengths l,,, which are
l, = sup{z < Ly |z is a point of growth of M},

with the mass functions

M, (z) = M(x), z<lI,
"EAM), w2 >

The tying constants are
kn = Ly — .

Let (7,D(7)) be the operator from (I, M), and (1, D(7,)) from (l,,, My, ky,). If A(x) is
a solution in D_(7), then A(x) for x < L, is a solution of class D_(7,). Hence, the
solutions D, (z) are given by

Ln
me=mmj A(y)~2 dy,

which increase to the solution D(z) € D4 (7) as L, — [. Using Theorem 3.6 for short
strings, we have a spectral measure o, for each (l,, My, k), such that

e0]
G((0,0) = D, (0,7) = Jo . _il_ 5 dop(y), r>0. (3.5)
Since
D,(0,7) < D(0,r) and liTm D, (0,7) = D(0,r), (3.6)
nTaoo

the total variations of the measures dF,(y) = (1 +7) ! do, () are uniformly bounded
by D(0,1). Let F, denote the distribution functions associated to dF,. By Helly’s
Selection Theorem, there is a subsequence {F,,}, and a distribution function F(v),
such that

lim Fo (1) = F(3),
=)

for all points of continuity v of F. This suggests a candidate for the spectral function
o

do = (1+7)dF,

where dF is the bounded positive Borel measure associated to F. The measure o is
simply

do=(147) 13171]3) dFn,
= (1+7) lim (1 +~) " doy,,
k1T oo

= lim doy,,.
koo T

The convergence here is at least in the weak sense, that is, { f dF,, — §fdF, for all
bounded continuous functions f on [0,1).
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Proof of Theorem 3.6. For simplicity, we drop the index k and write do = lim,, do,.
Pick z,y not in the same massless interval and let » > 0. We examine the difference

Gr(x,y) — Gi(x,y)
= lim [ (z,y) — G (=, )]

n 1o
o * Az, —7) Ay, —) * Az, —7) Ay, —) (3.7)
= fm Uo "ty don(7) = J 1+7 dan(ﬁy)]
tim1—n [AR =AY =)
_AToo(l )JO 1+ (r+7) don(7)
Suppose the following holds:
Az, =) Aly, =) _ (7 A Ay, )
i | S ) = | S ey et 69

Then we can decompose the integrand in (3.7) and obtain

Grlany) — Ga(ay) = [ ABZDEO o [~ ALZDIWZ) o,

This means that

Grly) = [ AT A d5(5) +

in which the constant C' is independent of the spectral parameter r. To show that
C =0, we fix y and use that ¥’ — G,(z,9’) on a small interval [y —§,y + ¢] is Lipschitz-

continuous, meaning
Gr(xvy) < GT(Ivy,) + K|y - y,|v

forall y € I = [y — 4,y + 8] < [0,1) and for some constant K > 0, see Remark 2.9.
Applying Lemma 2.11, we have

y+4

y+9
Gr(z,y) < [oD)] ™ g Gr(z,y)dM(y') + [o(D] ™ B K|y —y'|dM(y)

<o) '+ [o(D)] 6 K o(1)
=o() 'r ' + 4K,

for each r > 0. Letting r — o0 and § — 0, we get that the constant term C' must be 0.
It remains to prove (3.8). We split the integrals into two pieces:

Az, =) Ay, —)
J_ ( i "Y) do‘n(’)’)

(r+7)
_J (A(z, —7)Aly, )don(v)+Jw Az, —7) Ay, =)

(L+)(r+7)

The first piece converges to the integral

LY A =AW, =) dow(n) JN A(z, =) Aly, =) do(v)
nto Jo_ (r+1) L+~ 0 (r+) 1+7’
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because the integrand % is continuous and bounded on [0, N). The sec-

ond piece goes to zero independently of n as N — oo. Indeed, for each n, we have
from (3.5), (3.6) and then from (3.4) the inequalities

“ [Aw,—)]* “ [A@@, )"
- d n < - d ~ G"' 9 9
J_ T+ 7 ) f_ T+ () < Gr(z,2)
for every x < [. Using the Cauchy-Schwarz inequality, we obtain
J * Az, =) Ay, =)

N 1+'y (r+) don(7)
( sup (1 +7) 1)J Alz, Ay, =) doy(7)

{y>N} N T+
0 2 0 2
o [TEET an] [ [T )

<N + 1) i, 2) Gy )2,

which goes to 0 as N — o when x and y are held fixed. The proof is now complete. [

3.2 The inverse spectral problem

In the prior sections, we associate each string (I, M) with a spectral measure o, which
is automatically unique in virtue of Theorem 3.4. The question now is: given any non-
negative Borel measure o with supp(o) < [0,00) and {° (1 + )"t do(y) < o, is there
a pair (I, M) with o as its spectral measure?

Krein’s correspondence has confirmed that such a string can be found. Moreover,
such a string is unique. The existence part of Krein’s correspondence will be dealt with
in this section. Due to the complexity of the proof for uniqueness, which involves for
example de Branges spaces, it will not be included in this thesis. For the interested
readers, we refer to [4] and [10].

3.2.1 Definition and structure of the space L*(R, dA)

Let (I, M) be given and let o be the associated spectral measure. We define the measure
A on (R,B(R)) by introducing the variable v = £2 in the following way: for all r > 0,

we have
r’ do(y) 1 F dAE) 1 JO— dA(€)
o Tty 2y r+& 2 ,r+&?

and o({0}) = A({0}), so that for all Borel sets B < (0,0), we have

o(B) = J do(y) = f IAE) = JAWB) 4 JAVE),  (39)
B —vBuvB

where v/B and —v/B denote the sets {v/b|b € B} and {—vb|b € B} respectively.
Naturally, if 0 € B < [0, ), then

oB)=o((0) + | o) = o((0)) + GAWBO) + A~ VEO). (10)
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We have redistributed the mass of the spectral measure o over the whole real line
symmetrically around the origin and the new measure A has a double jump at the
origin. By construction, we have

JOO do(vy) _ JOO dA(§)

- 1+7  Jp 142

< 0.

Conversely, whenever we are provided with a measure A with the properties
(1) A is a non-negative Borel measure,
(2) A distributes its mass symmetrically around the origin,
(3) §u(1 +€2)LdA() < o0,

a spectral measure o can be extracted.

DEFINITION 3.7 A measure A with property (1)—(3) is called a principal spectral mea-
sure. Given a string (I, M), we say A is the principal spectral measure associated to

(1, M) if }
pon- [ e

holds for all » > 0.

Instead of finding a string for a given measure o, we find a string for a given A with
property (1)—(3).

We denote L2(R, dA) by Z(A). Let Z.(A) be the subspace of even functions in Z(A),
and Z,(A) the subspace of odd functions in Z(A). We introduce the even transform,
which maps M isomorphically onto Z.(A), and the odd transform, which maps the
subspace S of Lebesgue square-integrable functions, which are constant on massless
intervals, onto Z,(A). For the string with [ = o0 and M(z) = x - 1}g), the even and
odd transforms correspond to the cosine and sine transforms

f— Jo cos(x)f(x)de, f — Jo sin(x) f(x) dx

respectively.
We present only a summary of the relevant results here.

THEOREM 3.8 The mapping, known as the even transform,
P i = [ A€ an
is an isomorphism from M to Z.(c). It has the inverse
fors (RO) = 1) = | A -@)7© an )

The even transform satisfies the Plancherel identity

l EEEEN ~
3= | @R = [ 1f@Faae = 17
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Remark 3.9. When [ + M (I—) = oo, the integrals in Theorem 3.8 might not exist in the
traditional sense. In such case, the even transform and its inverse are to be understood
as improper integrals

lim fe—J AfdMH _0, lim‘f—f AfedAH —0.
z 1o — A x 0— 0

The proof idea is to use the eigendifferential expansion (3.1) of G,(x,y) to prove
the Plancherel identity for functions f € M which vanish near x = [. Then, the even
transform can be extended to Z.(A). The challenging part of the proof is to show its
surjectivity. For more details, see [4, pp.186-188]. An alternative route with a spectral
theoretical approach can be found in [12], in which (3.1) is not assumed.

The appropriate domain for the odd transform is the space S < L2([0,1 + k], dx),
which consists of functions constant on massless intervals. The kernel for the odd
transform is

B(z,8) = & 1 A (z, =€),
The motivation behind B(z, &) is that the equation
TS =€

can be rewritten as the system

(i) = (e 5) ()
dg -0 0/ \y
We present the counterpart of Theorem 3.8 for the odd transform.

THEOREM 3.10 The mapping, known as the odd transform,
R I+k
frodi© = | Beos@

is an isomorphism from S to Z,(A) with the inverse

for (@) = 10 = [ B0 aa©).

The odd transform satisfies the Plancherel identity

l+k o0 - -
w@=L u%m=j|m%A=m&.
[ee]

Remark 3.11. Similar to Remark 3.9, fo € Z,(A) and (ﬁ))ve S are to be understood as
the L2-limits in the respective spaces when the integrals do not exist in the traditional
sense.

Theorem 3.8 and 3.10 have the following useful consequences.

COROLLARY 3.12 We have for 0 <z <l and x =1 only when | + M(l—) < c©

(1)
| Az, =€) = e({z}) ™ (3.11)

whenever x is a growth point of M, with x =1 excluded in the case (I, M,k = 0).
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(2)
|B(z, &)X = (z* —x.)7", (3.12)

with

xy :=sup{y < x|y is a growth point of M}

*

x* :=sup{z > x|z is a growth point of M},

and x* =1+ k when x =1 in the short-string case.

(3)

foo dA(€) _ {l +k, whenl+ M(l—) < w (3.13)

o &2 l, when | + M(l—) = oo.
Remark 3.13. For a proof, see [4, pp.185-194]. One should compare (3.11) to how o

(and hence A via (3.9)) is constructed in (3.3), as it reveals a duality between g and o

(or A).

Lastly, we discuss the dimension of Z(A). If the number of growth points of A is
finite, that is,

n n
A=) apd_g2 + > bz, 0 <ap < o0, and&f < &y, forallk = 1,...,m,
k=1 k=1 '

we observe that the dimension cannot be infinite. It must in fact equal the number of
jumps of A. Indeed, the functions

Loo—e2ys -0 Legz 2y Lz e2ys - -+ Lez o0)

belong to the equivalence class [0 ] in Z(A). Hence, the activity of any function on those
intervals will not contribute to its Z-norm. An orthogonal basis of Z(A) consists of
]1{_5%} and ]1{52}, for kK =1,...,n. This discussion prepares the way for the construction
of (I, M) when A is discrete.

3.2.2 Construction of (I, M) for discrete A

Let d < o0 denote the number of jumps of A. The key here is to define the functions
A(x7 _52)7 and B($,£)

We assume that the powers {¢"}¢_, all have finite Z-norm, and that they form a ba-
sis for Z(A). Then, there is a perpendicular basis of alternatively even and odd real
polynomials in the variable &:

A07B17A27 v 7A2naB2n+17 vy

where deg(Asy,) = 2n < d and deg(Ban+1) = 2n + 1 < d. Note that Ay, and Ba,i1
are not assumed to have unit length. The space spanned by {Asx}r=0 is Z¢(A) and the
space spanned by {Bagt1}r=0 is Zo(A).

Since €71 (A2, (€) — A2,(0)) is an odd polynomial of degree 2n — 1, it will be per-
pendicular to Bay,1(£), meaning

JOO A2n(§) - A2n(0)
—o0 §

Bont1(§) dA(§) =0
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and hence,

@ B2n+1(§) - @ B2n+1(§)
o [ 28 [ w20

In the above, £ ! Bg,;1(£) is an even polynomial of degree 2n. Hence, the right-hand
side cannot vanish for 2n + 1 < d. By the same reasoning, the quantity

© Bopy1(€) 7 Agns2(§) — A2n42(0)
Agpi2(0) J_OO ?dA(f) = J_OO ¢

is non-zero, for 2n + 2 < d. This allows us to rescale the even and odd polynomials, so
that

dA(§).

B2n+1 (é) dA (5)

Agn(0) =1, and JOO BQ"?('S)dA(g) -1, (3.14)

for 2n < d and 2n + 1 < d. The following lemma relates Ag, o and A, to By, 1 and
Bon 19, and vice versa.

LEMMA 3.14 We have:

(1) for 2 <2n+2 <d,
A2n+2(£) - AQn(g)
€B2n+1(£)

= | Ban+1ll 5%

(2) for1<2n+1<d,
Bon+1(§) — Ban-1(8)
—{ Az (§)

= HAQTLHZQv
where we define B_1 := 0.

Proof. To prove item (1) and (2) requires the same technique. For (1), let 2 < 2n+2 < d.
We consider the polynomial

pie) = Aanal® = An(®)

By (3.14), the constant term of Ag, 12— Ag, vanishes. Hence, P(§) is an odd polynomial
of degree 2n + 1. Furthermore, P(£) is perpendicular to the powers &,&3,..., &2 1
because

foo A2n+2(€) - AQn(f) . €2k+1 dA(f)
oo 3

w o0
B f Ao 2(€) £ A(E) - f A2a(€) € dA(E)
. .
where we have used that As,,2 and Ay, belong to the orthogonal complement of
span(Ao, ..., Az—2) = span(1,&%,...,€"?),

Hence, we must have

Agnt2(§) — A2n(§)

€ =c: Boy41(8),




29

which leads us to the desired equation

foo A2n+2(€) - AQn(f)
—® £

_JOO Aoy (€) B2n21(f)

—A2,(0) JOOOO an?(g)

c|Ban+1]A Bant1(€) dA(E)

dA(€)

dA(€)
= 1.

In the second line, we use that As, s is perpendicular to 5*1B2n+1, as deg(§*132n+1) =
2n. In the third line, we use that ¢! [Agn (&)—Ag, (O)] is perpendicular to By, 11 because
it is an odd polynomial of degree exactly 2n — 1. The proof for (1) is now done.

The proof for (2) is similar. For n = 0, we have Ayp = 1 and B; = ¢£. Hence, by
using (3.14), we obtain

1= [ B8 - e[ an© -l
—Q0 —Q0
Since B_1 = 0, the case when n = 0 is proved. For 1 < 2n + 1 < d, we observe that

Boni1(§) — Ban—1(§)
3

is an even polynomial of degree 2n and it is perpendicular to the powers 1,2, ..., 272,
Thus, it must be parallel to As,, and consequently,
x B n 5 - B n— §
am)h = [ P2 B, 6 ange
—00
0
Ban,
- [ Pl g ance
o §
Q0
Ban,
—4n0) [ 2 g
—00
= —1.
The proof for (2) is now complete. O

We define the masses g, and the spacings x,11 — x, by
On ‘= HA27LHZ2; and  Tp41 — Ty, = ‘|B2n+1HZ27
with xg := 0, for 2n < d and 2n + 1 < d.

THEOREM 3.15 Suppose d < oo. Let N be such that d = 2N +1 or d = 2N + 2. Let
(I, M, k) be the string

l==x

N
M(z)= ) on, ne{0,1,...,N},
Tn<T
b — IN+1 — TN, ifd=2N+2
| o, if d=2N +1°

Then, A is the principal spectral measure associated to (I, M, k).
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Remark 3.16. If d = 2N + 2, the positions of the masses are

0o is placed at x¢ = 0,

01 is placed at x1,

on is placed at xp.

While x4 1 is defined, the mass gn1 is not. So there is no mass placed at the point
TN+1, hence k = xx1 —an in this case. If d = 2N + 1, the above placements of masses
are the same up to x. However, the point x 1 is not defined, hence k = oo in this
case.

Proof. We define the function A(x, —¢2) by

Az, —€%) = Agp (&) + (x — 2,)EBon1(€), T € [Tn, Tny1) (3.15)

for 0 < n < N, and A(x, —£2?) = 1 for z < 0. On each interval [z, 7,4 1), A(z, —£2) is
linear with the slope £Ba,+1(§), meaning

A/Jr(wv _52) = £32n+1(€)7 MRS [wnaxn-i-l)v

and hence
B(l’,f) = B2n+1(§)a TE [:Enal'nJrl)- (316)

At each point z,, € [0,[], we have the left limit

1iTm A(z, —52)
= m]irarjl A2n—2(£) + (IL’ — xn_l)fBQn—l(f)

= Agp—2(&) + (zy, — Tp—1)€Ban—1(&)
= Agn—2(&) — [A2n—2(€) — A2n(€)]
= A2n<§)7

using item (1) of Lemma 3.14. The right limit is also As,(§). Hence, the function
A(x, —£?) is continuous at all points = € [0,1].

We want to check that A(x, —£2) is a solution to (7 + £2)f = 0 with A(0, —¢?) =1
and A’ (0,—&2) = 0. According to (2.4), this is the same as checking that

Al (wn, —€%) — AL (20, =€)
On

= _£2A(ZCTL7 _52)7
for 0 < x,, <, which is easily done using item (2) of Lemma 3.14

Al (2, —€2) — AL (2, =€) €[Bant1(€) — Ban-1(6)]
o({xn}) B On
= — & A(8)
= - 5214(377” _52)‘

Let A* be the principal spectral measure of the string (I, M, k). Denote L*(R, dA*)
by Z(A*). Let Z.(A*) be the subspace of even functions in Z(A*) and Z,(A*) the
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subspace of odd functions in Z(A*). The even transform from M to Z.(A*) has the
discrete form

=
o™
I
a1

T

Az, ~€) f(x) dM (z)

Az, —€%)o({a;})

<
Il
o

Il
M=
~
S

f(x;)A2;(8)0;.

|
.MZ

<
Il
o

The space M is spanned by the orthogonal basis {]]-{mj}}é‘v:()- Via the even transform, we
obtain an orthogonal basis for Z.(A*), which is

Lia,(6) = A2;(€)0),

because the even transform is a vector space isomorphism. In addition, according
to (3.11), we have

|A2;(©) A= = 0; ' = A2 (&) A

We have shown that the spaces Z.(A*) and Z.(A) share the basis {Ag; }é-V:O and the basis
elements have the same length in both spaces. It is also clear that (f,g)a* = (f,9)A.-
So, Z(A*) = Z(A).

Recall that S is a subspace of L%([0,1 + k], dz) and it consists of functions constant
on the massless intervals of M(z). By (3.16), the odd transform from S to Z,(A*) is
given by

~ Ik
o= Ba.os@a
N-1
= ), fl@j)B(z;, ) (zj11 — x;j)
=0
N—-1
= > f(zj)B2j+1(§)(j41 — 7)),
7=0

when d = 2N + 1, and

fo(f) =

M=

f(x)Baj1(§) (w541 — z5),
0

.
|

when d = 2N +2, see Remark 3.16. We take the orthogonal basis {1{[;, .,,,);} for j from

0 up to N —1or N, depending on the dimension d, in S to produce the orthogonal basis

{B2j+1} in Zo(A*). Then, we argue as in the above to establish that Z,(A*) = Z,(A).
Finally, we must check that A*(B) = A(B) for all Borel sets B, that is,

0

j " 1p(©) dA () = j 15(6) dA(E).

—o0 —0

Since
(1, Agj)ax = (1B, Agj)a,



which we denote by «;, and
(1s, B2j1)ax = (1, B2ji1)a,

which we denote by 3;, we get

J " LB(©) dAT(©) = 15[

—00
N N-1
= Z |O‘J| HAQJHA* + Z |BJ| HB2J+1HA*
Jj=0 Jj=0
N N-1
= > |yl Ag1A + D] 18511 B2j4alA
Jj=0 j=0
= 18]
Q0
_ j 15(6) dA(E),
—00

when d = 2N + 1. A similar argument works for d = 2N + 2. The proof is now
complete. 0

For d = oo, we instead construct the string as follows.
THEOREM 3.17 Suppose d = oo. Let (I, M, k) be the string with

[ = lim z,
n T oo

- Y o

Tp<T

. {07 i€ a <o

o, |t a=0
Then, A is the principal spectral measure of (I, M, k).

Remark 3.18. The tying constant k is only relevant in the case [ + M(l—) < oo.

Let A* be the principal spectral measure of the string in Theorem 3.17. As in the
finite dimensional case, we have matching moments, meaning

JOO EMAA*(€) = JOO EMAAE), n=0,1,.... (3.17)

Since the dimension is infinite, it is difficult to conclude that Z(A*) = Z(A). The
following lemma provides an essential tool.

LEMMA 3.19 Assume (3.17) holds for A and A*. Then, we have the estimate

C(x,r) - JOO dA(€) - C' (z,7)
Alz,r) ~ )oor+& = A(z,r)’

for x <l and r > 0, where the function A(x,z) is the broken line as in (3.15), and the
function C(z, z) is given by

T

C(x,z) = Alx, Z)JO [A(y, z)] -2 dy.
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Proof. Let (I, M, k) be the string in Theorem 3.17. Recall that C(z,r) is the unique
solution to the equation (7—7)f = 0 with the initial values C'(0,7) = 0 and C”_(0,7) = 1.

Define © 4 ) )
C’(ac,r) = J_OO (mjr)r_—i— 5(;7’ —&)

dA(8), (3.18)

when 0 < x < [, and C(z,r) =  when z < 0. We want to show that C(z,7) = C(z,r)
using uniqueness of a solution with given intial values. We already have that C”_ (0,7) =
C" (0,7) = 1. By the definition of C, the left limit is lim,qo C(x,7) = 0. For the right
limit, we use that A(0, —¢£2) = A(0,7) = 1 in the following

s fo A(0,7) — A(0,—€?)

C(0,r) = . e dA(€) = 0.

According to (2.4), it is sufficient to check that
C' (zn, 1) — C' (7)) = 007 Clan, ),

for all 0 < z,, <[ to show that C is a solution. On the igtervals Tp < T < Tpi1, We CaN
interchange integration and differentiation to compute C’_ and C',. Indeed, we have

d . .

i(A(xa T) - A($, _52)) = Z\/;BZnJrl(Z\/;) - gBZnJrl(g)
is a polynomial in &2 of degree n + 1 with a root {2 = —r, which implies that the
integrand

Al (z,r) = AL (x, =€)
T+ £2

is a polynomial in €2 of degree n. The hypothesis placed on A is that all even polynomials
are integrable, which implies that all polynomials are integrable and hence the integrand
is integrable. So differentiation under the integral sign is justified in this case. The left
and right derivatives of C(z,r) at 0 < & = x, <[ are

© i'\/?BZnJrl(i’\/F) - £B2n+1(£) dA

Canr) = | (©),

—w r+ &2
C! (. 1) = f; iﬁBg”‘l(lﬁg B gage).

We use item (2) of Lemma 3.14, then add and subtract g, A(x,, —£2) to obtain

Clr) = O (ner) = 2ar Clawr) + 00 | A€ dAE)

= QnTé(CCn,T) + On (A2n7AO)A
= QnTé(IL’mT),

because Ay, is assumed to be orthogonal to Ay in Z(A) for n > 1. We have now

confirmed that .

C’(.%'J“) = A(x,r) L [A(y,r)] 72dy = C(z,r).

Define

> L * A(:C, _52)
D(z,r) = JOO e dA(¢),
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for x <l and r > 0. Note that

C’(:L“,r) = JOOOO fﬁ(g A(z,r) — D(:p T)

cyen = [ B a ) - D),

.

where D', (z,7) = §2 A (z,—€%)(r+£2) 1 dA. Here, differentiation under the integral
sign can be justified as before. Replacing C by C, the proof will be complete once D > 0
and f)ﬂr < 0 is proved.

For y > z, the claim is that the integrand in (3.18) is orthogonal to A(y, —£2), that

JOO Az, ) — Az, —€%)
o r+ &2

and

18

Ay, —€%)dA(€) = 0.

Indeed, the numerator of the integrand in (3.18) is a polynomial in &2 with a root
€2 = —r. Hence, the integrand in (3.18) has a lower degree than A(y, —¢2) and these
are orthogonal to each other by construction. Letting y = x and rearranging terms, we
find that

0 T — 2112
D(z,r) = [A(:z:,r)]_IJ Mm(@.

e  THE2

Since A(z,r) > 0 for all # < and r > 0, we have D(z,r) > 0.
The right derivative of D is

B o 7! ,— 2 © B ,
L = R O]

where B(z,£) = Bopy1(€), for x, < < xp41. We repeat the argument as before to
realize that the polynomial

B, iy/F) — iy/FB(x,)

r+ &2

is of lower degree than that of B(y, &) for y > z, and thus orthogonal to B(y, £). Letting
y = x and rearranging terms again, we find that

~ /T © | B(x, 2
Dtan) = gl [, o)

Replacing B(z,iv/r) by (iy/r) "' A (x,r), then using that A’ (z,7) > 0 and r > 0, the
right derivative D', is non-positive as we can see:

- ~ r (* [B(¢)]
D) =~ s jw kA <0
We now have
0 dA (€
jwr%z 5.1) = Cw7) 2 0
© A€ ,
J r+£2 xz,r)—Cl(x,r) <0,

for x <l and r > 0, which gives the desired estimate. O
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Lemma 3.19 is sufficient to prove Theorem 3.17 for the case [ + M (I—) = o0.

Proof of Theorem 3.17 when | + M(l—) = co. The goal is to establish
foo dA(§) _ foo dA*(€)

P e THE2

for all » > 0, because the functions {(r + 52)71}»0 are dense in the class of even
continuous functions of ¢ vanishing at oo, see [4, p.179].
According to Lemma 3.19, we already have

C(z,r) - JOO dA(€) - ! (x,r)
Ax,r) ) or+e Al (z,r)’

for x <l and r > 0. When [ + M(I—) = oo, the claim is that the solutions A and C
obey

) |
lim Cla,r) ¢ e r) =0,

atl Az, r) Al (x,r)

(2) ¢ (o)
Lu%r} A (@,7) = D(0,r).

Item (1) is a consequence of the Wronskian
A(.’I), T)er ((I,', 7’) - AlJr('r7 T)C(Z’7 T) =1,
for all x < I. Rearranging terms, we find that

Cilz,r) Clar) 1 L
Al(wr)  Alx,r)  Alw,r) A (z,r)

Since [ + M(l—) = o0, | = 0 or M(I—) = o. Consequently, %Mda: or Séf x dM fails
to be finite. By item (2) or (3) in Section 2.3.1, we must have

liITr%A(m,r) = o0, or lilTT%A/_F(fL“»T‘) = 0.

Item (1) is now established. Item (2) is easy:

1 1
n L A2 Y A Aoy

which has the limit

C! (z,r)
lim ——— = D(0,7).
;%Aﬁr(x,r J Az, )2 0.7)
Representing D(0,7) = G,(0,0) as in (3.1), we obtain the desired conclusion:

5
3,

[ 9 _y,0

( B NG
T+ E2 ITZA;(QZ,T)_D(O’T)_J — for all » > 0.

e THE2
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For the case [ + M (I—) < o0, the strategy is to modify (I, M, k) to a long string and
apply the above result. The following estimate prepares the way.

LEMMA 3.20 Let p be a polynomial with deg(p) < 2n and w e C. We have

Tn

P < o] [ 1@ AP st + [ BGw) P o],

0

where A(x, —w?) is as in (3.15) and M(x) as in Theorem 3.17.
Proof. We expand p(§) for £ € R with respect to the basis {4, B1, Aa,...}:

€)= Y. arAgr(§) + ). biBak 1()
k=0 k=1

The extension of the above polynomial into C must equal p(w). We have:

n n
IpIA = ] larlPl Azl A + 3 1wl* [ Bak—1lz
k=0 k=1

n n
= > laror + Y ol (zr — 2p—1) L
k=0 k=1

The integrals are simply

[ 14 2P ar1w) = 3 14— P o

k=0
| 1B de = 3 Bl o - o).
0 k=1

Putting the pieces together and applying the Cauchy-Schwarz inequality, we find that

(2|ak||A2k |+Z|bk||B% w@)l)’
[Z |ax ot + 2 bk | (s _xkfl)il]

n

[ D7 [ Ag(w) Por + Z | Bog—1 () |*(x — xkq)]

k=0 k=1

<Ipla[ [ 1At ar@) + |

0

Tn

|B(a:,w)|2dx].

A method to modify a short string is suggested in the following lemma.

LEMMA 3.21 Letr > 0 be fized and set

5 '3
A(o.]) = j SINTGY

o— 1+ ()2

Let l:anc! M be the length and the mass function which are defined via the polynomials
Aoy, B1, Ag, ... in Z(A). Then, | + M(l—) = c0.
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Proof. We claim that we can always find a polynomial p € Z(A)
arbitrarily small and |p(i4/7)| = 1. For ¢’ € R, we have

€ —iviP = (&) +r.

The length of p in Z(A) is

- [ worame = [ de)

—w o T+ (&)?
1

:ﬁo e—m*e—m‘ da

Set p(¢') = (&' —iy/r)q(£’) + 1, where ¢ is a polynomial in Z(A). It is obvious that
(& —iy/r) L € Z(A) because §©(r+ (£)%) 1 dA(¢') < oo. Thus, we can approximate
—(&" —i4/7)~! by a polynomial ¢(¢'). The claim is established.
Lemma 3.20 gives us

1= Ipvi)P < Ipl4| f A, d f B, i) da .

Since H]DHQA can be made arbitrarily small, the estimate cannot hold unless we have
[+ M(l-) = . O
Proof of Theorem 3.17 for | + M(l—) < . Fix r = 1. Let A} denote the principal

spectral measure of the short string (I, M, k), as given in Theorem 3.17. For short
strings in general, it is easily seen that

kC', (1,1) + C(1,1)
kAL (1,1) + AL, 1)

Dy(0,1) =

using that all functions in D, have linear extensions to the right of x = [ in the short-
string case, and the definition of D(z, 7). Note that C(x,1) is of class D, and it neither
belongs to D_(7) or D4 (7). Hence, kC’, (1,1)+C(l, 1) is non-vanishing for all k. Neither
can kA’ (1,1)+A(l,1) because A ¢ D, (7) for r > 0 according to Lemma 2.6. By Lemma
3.19, we have

C(z,1) © dAE) .. C(x,1)
< < A7
211 Az, 1) J Jire SImae

For fixed r > 0, Dy(0,r) is a real continuous function in the parameter k. For k = 0
and k = oo, we have

C(x,1) C! (x,1)
1) = lim 1) = lim —/——"
Do(0,1) =lim 775> and - Deo(0,1) = J?}A (1)
Hence, we can choose k such that
e 1+ &2 o 14+ 8&2

Set,
dAF(E) = (1+ &) dAL(E), and  dA(E) == (1+ &) dA(9).
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Then, Az and A have matching moments
o) ~ 0 ~
| emane - | emanco.
—00 —00
Indeed, we can write

[ erasio- [ g

1+
£2n B _1)n * foo (_1)n *
= " dA dA(8).
| =G e+ [ Ehaaie
Observe that ¢2" — (—1)" has a zero £2 = —1. Hence, we have the factorization

e — (-1)" = (1+€)Q(€Y),

where Q(£2) is a polynomial in £2. Now, the integral becomes

[ emanro- | aerasto+ [ S aate

[ aeano+ [ S ane

o0 €2n
| Saaae

- LO £ dA(E).

In the second line, we use that A and Aj have matching moments. In the third line,

we reason backwards to return to £2"/(1 4+ ¢2). The claim is now established.

All powers have finite norm with respect to the measure A and the span of these
is dense in the space Z(A). By Lemma 3.21, the string (I, M) defined by A satisfies
[+ M(I-) = 0. So, Theorem 3.17 for the long string case applies and A = A%. Thus,
A =A7.

Lastly, we prove that k can only be either 0 or 0. Assume the contrary and consider
the odd transform of 1 ;4(7) €S L2([0,1 + k], dx) for k € (0, 0):

l+k
B(x,&)dx = B(l,§) -k € Z,(A})

l
The function 1y ;,4)(z) is non-zero whenever k£ > 0. Since the odd transform is an
isomorphism, 1y ;44)(z) cannot be mapped to 0 € Z,(Af). Hence, B(l,§) # 0. However,
by construction, B(l,&) lies in the orthogonal complement of span(f”)neN = Z(A),
which only happens when B(l,£) = 0. Hence, k can only take value 0 or oo, depending
on whether {* £°2dA(€) is finite or not, according to (3.13)

JOO E2AAE) =1+ k.
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3.2.3 Existence of (I, M, k) for general A

THEOREM 3.22 Let A be any principal spectral measure. Then, there exists a string
(I, M, k), for which A is the associated principal spectral measure.

Remark 3.23. There is a shorter proof of the fact that M;(z) — M(x) as j T o on
the set of continuity points of M implies that A;(z,r) — A(x,r) pointwise for each
r > 0. The idea is to show that A; are equicontinuous and uniformly bounded in j,
using (2.11). Then, the Arzela-Ascoli Theorem gives a subsequence A;, which converges
to A* uniformly. Using uniform convergence, A* is also a solution and using uniqueness
of a solution, A* must equal A. This proof is found in the proof of Theorem 1, in [8].

Proof. The measure A is the strong limit of the sequence {A,}>_; given by
An(B) = A(B N (=n,n)),

and A, is 0 on R\(—n,n). For each n, the space Z(A,) = L*(R,dA,) is spanned by
the powers {§j}§';0. By Theorem 3.17, A,, defines a string (I, M, k,). Motivated by
Corollary 3.12, we must have

I+k= JOO E2dA(E), (3.19)

which exists, and

" E2dA,(6) = liTm (ln + ky).

—Q0

[+ k= lim

n T oo

Next, we claim that there exists a subsequence {n;}2, for which
lim M,
jto

is convergent pointwise to a mass function on the set of continuity points at least. This
limit will be our candidate for the mass function M (z).

Fix x and 6 sothat 0 < x <[+ kand 0 <z + 9 <l + k. For N large enough, we
have

Q0
Ay,
$+5<ln+kn=J dAn(£) for all n > N.

o

The above motivates a lower bound for D, (0,r), when r > 0 is small enough and n > N

T+ < Jjo Cjﬁffz) = Dy (0,7),

from which we obtain an upper bound for M, (z), when 0 < x <[ + k is fixed:
1261 2r | G (x,y) dM,(y)
0—
> an(x,r)J dM,(y)

r (Dn(0,7) — ) My ()

=
> rd M,(x).
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In the first line, we use Lemma 2.11. In the third line, we use the estimate

x 3
Dy (z,r) = Dp(0,7) —x + T’J d¢ |  Dy(n,r)dM,(n) = D,(0,r) — z,
0 0—
because D,, = 0. The last estimate is from the lower bound for D,,(0,r). We have thus
shown that for each 0 <z <[ + k, the sequence {M,(x)};_ 5 is uniformly bounded in
n. According to Helly’s Selection Theorem, there is a non-negative, non-decreasing and
right-continuous function M, and a subsequence {My,};2, such that

lim M, (x) = M(x)

jToo

on the set of continuity points z < I + k of M, see [17, pp.319-320|. For simplicity,
the index n will be omitted and the limit of M; will be referred to as M, with the
understanding that equality holds pointwise everywhere except at the jumps of M.

We need to check that limjo M really is a mass function, that is, it also satisfies
that = = 0 is its growth point. Note that there are no negative growth points because
M;(x) =0 for all # < 0 and for all j. Assume z = 0 is not a growth point of M. Then
there is an interval [0, €), such that M(z) = 0 when 0 < z < e. Applying (2.11), we
obtain for each j and £ € R the upper bound

Aj(w, —€%) < exp [{2 :pMj(ac)], forx + M;(x) < .
Hence, for 0 < x < €, we have
‘Aj(x, —52) — 1‘ < &2 x Mj(x) exp [§2xMj(x)] — &2 M(x) exp [£2m M(a:)] =0,
as j T oo, which gives rise to the following contradiction

[ 88y, [ a9
jto

T HE2 T e THE2
© Az, )]

]lTrgJ —© T+ & ](5)
JjToo
= lim A; T, T D; z,r
tim 42, 7)D (2,7)
= lim D;(x,r
lin D7)
ljJrkj 2
— lim A;(z,r Aj(y,r)| “d
i j( )L [ J(?J )] Y
ljJrk’j 9
= lim A;j T d
it ) [ j(y )] Y
= lim [Dj(O,r) — Jx [Aj(y,r)]*2 dy]
it 0

T

=Jlin{.ng(07T)—L dy
[ e

T+ &2
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So, x = 0 must be the first point of growth of M. To complete the definition of the
string, we define

I :=sup{z <[+ k|x is a growth point of M (z)}.

The string (I, M, k) is now well-defined. It remains to show that A is the principal
spectral measure of (I, M, k), which means

Q0 dA 2
pon=-[ Sa

or equivalently,

I+k 1i+k .
J [A(y7 ’I”)] dy - hm [A] (y7 T)] dya
0 Jjloo

where A(z,r) is the solution corresponding to (I, M, k), and A;(x,r) to (I, M;, kj). We
want to show that
lim Aj(xz,r) = Az, 1),

jTo

for each fixed » > 0. To do so, we use the power series of A;(x,r) and A(z,r):

o0
lim |Aj(z,r) — Az, r)] < lim > " [plf) () — pa(2)]
J

Jj1oo

where we use (2.10) on p%) for each fixed = € [0,1 + k) and n:

. 1 T n
© il .
0 <o) < o[ | M) a]

and the fact that M; are uniformly bounded in j for each 0 < 2 < [ + £ to justify
the interchange of the sum and the limit in the second line. This also shows that the

©))

functions py;’ are uniformly bounded in j for each x and n. Now, we need to prove that

lim |p7(1])(x) —pn(z)| =0, forn=0,1,...,
Jjto

and for every z € [0,l + k). For n = 0, we have py(x) = pgj)( ) =1 for all j. Suppose
that lim; |p ( ) — pn(x)| = 0 for some n and for allxe[O I+ k). Let x € [0, + k) be

fixed. A consequence of the uniform boundedness of {pn (x)}; in j is the estimate

s 1 1
|| bRmiamm < Seanert < Seres ge ol

in which the upper bound is of class L'([0,z],dz). By the Dominated Convergence
Theorem, we have

i ), (@) ~ posa ()] < [ de lim| J o () dM; () — f pn(n) dM ()|,
jroo 0 jroo
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and now

lim
JjTo

[ sm o~ s anon)
< lm j o~ [ saanion] + 1im [ b0~ rawlanso

Jjtoo

< lim
Jj1oo

$
- im ( su G (n) — pn i ,
" ) 11,0 J,_ ot dnto|+ i (st 156 =) 146)

for all 0 < & < x. The first limit is 0 due to
lim o; = 0
jtoo

in the weak sense, which is a consequence of the convergence of M; to M in the afore-
mentioned way, see [17, pp.310, 314]. Here, the measures o; correspond to Mj;, and p

to M. If ]0(J ) converges uniformly to p, on [0, z] for each fixed = € [0, + k), the second

limit is 0, and the pointwise convergence of pg}rl for each = € |0,] + k) is clear. In the
following, we show that this is indeed the case. More specifically, we claim that the
conditions

(i) {pn)} ; 1s a sequence of non-decreasing continuous functions,

()

(ii) the pointwise limit in j of p,{’ is continuous on [0, z],

together imply that p(] ) converges uniformly in j on the interval [0, x].
Since the limit p, is continuous on [0,! + k), it is uniformly continuous on [0, z].
Hence, for each fixed € > 0, there exists a partition

O=th<ti<ta<...<tg=vx
of [0, z], for which
max pp(t)— min p,(t) <e, (3.20)
te[tj,ti+1] te[ti,ti+1]
foralli=0,1,..., K — 1. By (ii), we have for this € a natural number J, such that
polti) — € <pP(t;) < pn(ts) +e,  forall j > J, (3:21)
foralli=0,1,..., K — 1. By (i), we have
pP () < pP () <pP(tivn),  te[titin]:
Together with (3.21), we obtain new bounds for p(])( t) on [t;, t;i1]:
pn(t) —e < pO () < pu(tiv1) +¢, forall j > J.
Finally, together with (3.20), we arrive at the bounds
pn(t) — 26 < pJ(t) < pu(t) +2¢,  for all j > J, t€ [t;, tiga],

forall i =0,1,..., K — 1. This proves the claim.
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Now that the convergence of A;(x,r) to A(x,r) as j — oo for each fixed z € [0,1+ k)

is proved, the next observation is that [A;(z, r)]_2 is dominated by an L'([0,1 + k], dz)
function, which is shown by manipulating the lower bound of A;(z,r):

2 * 2
[Aj(w,r)] > [1 + TL M;(y) dy]
[1+ 7 Mj(e)(z — )]
C'[1+ (z — )],
where 0 < € < x < [ + k, for some fixed e. In the second line, it is used that M;(e)

is bounded away from 0 uniformly in j. For 0 < x < €, we can use that A; > 1 for j.
Applying the Dominated Convergence Theorem, we arrive at the desired conclusion. [
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3.3 Examples of Krein’s correspondence

In this section, given an S-class function h, the goal is to extract as much information as
possible about the string associated to h. First, we list some standard results — some are
simply the byproducts of our previous constructions and some are stated without proofs
due to their level of difficulty. Next, we restrict our attention to meromorphic S-functions
h, which are known to yield for example short strings, strings with compact resolvent
and the so-called Stieltjes strings — a finite version of which appears in Theorem 3.15.
For the non-meromorphic S-functions, we give two simple examples of strings which
can be related to a Sturm-Liouville operator and in the last example we examine the
spectrum of a short string, whose mass function has a discontinuity. In Discussion, we
discuss how to develop interesting examples further, and which parts of this theory we
would like to learn more in order to understand Krein’s correspondence better.

3.3.1 General properties of Krein’s correspondence

According to Theorem 3.4, any S-function is related uniquely to a non-negative Borel
measure o with SSO_(l +v) !do(y) < . Since the coming results are formulated using
o rather than h, a way to compute o from h is of some relevance. It is clear that h(—z2)
is a Herglotz-Nevanlinna function whenever h(z) is a Stieltjes function. Consequently,
Stieltjes’” inversion formula for Herglotz-Nevanlinna functions gives

1 Y2+0

a((v1,72]) = lim lim — Im(h(—v —i€))dy, 71 <. (3.22)
6l0 €l0 T y1+6

Let h belong to the string (I, M), with the differential operator (7, D(7)) associated to
the tying constant k, and the fundamental system {A(z, z),C(x, z)}. It is known from
before that D(0, z) = h(z) is given by

ZE”;’Z;, if 1+ M(l—) = oo,
M =3 o) kL) (3:23)
A kA M) <

limx T

with the convention o' (1. 2)
z
h(z) = ——""2  when k = 0.
Al (1, z)
From Definition 3.2, h(z) is analytic everywhere in C\(—o0,0]. In fact, it can be ana-
lytically extended to a larger set, namely C\ — supp(o), where

—supp(o) = {—r|r € supp(o)}.

More is true. Let Dj, denotes the set where h can be analytically extended, 3(7) the
spectrum of the operator (7,D(7)) and o the spectral measure of (7,D(7)). Then, we
have

(1) = —supp(o) = C\Dy,.

The first equality is a consequence of the spectral theorem for unbounded operators, see
Lemma 3.12 in [18]. For the second equality, it is not hard to realize that —supp(c) <
C\Dy,. Indeed, suppose that the Herglotz—Nevanlinna function m(z) = h(—z) is analytic
at z = zp € R, and hence in a neighborhood U, of the point zy. Then, there is a small
interval (a,b) < U,, n R, such that zg € (a,b) and m(z*) = m(x)* for all z € (a,b),
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which implies that Im(m(z)) = 0 on (a,b). It follows from (3.22) that o((a,b)) = 0,
hence zg ¢ supp(c). For a proof of the other inclusion, see Theorem 3.10 in [18]. Hence,
to identify the spectrum of 7, we identify the subset of (—o0, 0], on which A cannot be
analytically extended, that is C\Dy, or —supp(o).

The following lemma collects some properties of the string belonging to h.

LEMMA 3.24 Let h(z) €S be associated with the measure o. Then,

(1)

foo do(y) )1, if h(z) belongs to a long string
oy |l+k, if h(2) belongs to a short string’

(2) h belongs to a string (I, M) with a jump at the origin of the amount

1
o({0}) = ma
(8) h(z) belongs to a string with the total mass
1
MO =S

if 0({0}) > 0. Hence, h either belongs to a long string with M(l) < oo, or a short
string with the tying constant k = co.

Proof. Ttem (1) is item (3) in Corollary 3.12 after changing the measure A to o. Item
(2) is due to the fact that A(0,z) =1 for all z € C. By item (1) in Corollary 3.12, we

have
Q0

1 = [ o) = o((0.0).

If 0({0}) > 0, then o({0}) = A({0}) > 0. We apply the inverse even transform on the
function 140} (€) € Z¢(A) and then use the Plancherel identity:

o({0}) ™ = A0, —€})|A = J

—0

atn = [ 1g@ras© = [ ([ aw-eng© @) aw

0—

:f Az, 02 A({0})2 dM (z).
07

It is easily seen that A(z,0) =1 from (2.9). After rearrangements, we find that

1 1 f
= = 1dM(z) = M(l).
o({0})  A{0})  Joo
Since o({0}) > 0, M (1) is finite. If h belongs to a short string, then by item (1) of this
lemma, we have

O
l+k= j v tdo(y) = lim o({0}) = 0.
0 70y

O

The following proposition presents a connection between the asymptotic behavior of
the Weyl function m(z) = h(—z) and the behavior of M (z) close to x = 0.
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PROPOSITION 3.25 For a given a € (0,00), there is a constant C' > 0 such that
m(z) = €710 (=2) 74 (1 + (1)), (3.24)

with

+2
o = F<3T1) ((a + 1)2>al+1
ACHAN

as z — oo uniformly in any non-real sector, if and only if

M(z) = C'""z*(1 +0(1)), x—0. (3.25)
Remark 3.26. For a proof, see Theorem 3 in [8] or Theorem 4.1 in |2]. This proposition
will be illustrated in Example 3.35.
3.3.2 Meromorphic S-functions

An important subclass of S-functions is the meromorphic S-functions. These are analytic
everywhere in C, except at a countable sequence of isolated points

0=>—-r9>—-r1>...>—r,>..., wherer, >0. (3.26)

This implies that the associated measure o is of the form Y. aydy,. Using Theorem
3.4, we have

)

o= [ o) o) ol

o— Y+ =2 o+ 2 r+z ™ t+ 2
which offers a simpler method to compute o from h than (3.22), namely,

o({rn}) = lim (rp, —7)h(—r), forr > 0. (3.27)

r—Ty

Here are some remarkable results which connect properties of meromorphic S-functions
to properties of their strings.

PROPOSITION 3.27

(1) Suppose (I, M) is a long string. Then, the associated S-function h is meromorphic
if and only if one of the following holds true

h?} x (M(l) — M(z)) =0, ifl=o0 (3.28)
mTr; M(z)(I—z) =0, if M(l) = o0. (3.29)

(2) h belongs to a string with either
l l
J xdM(x) <o, or J M(x)dx < o (3.30)
- 0

if and only if h is meromorphic and that it has poles at the sequence (3.26) with
the property
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(8) Suppose h belongs to a short string. If h is non-rational, then the asymptotic
behavior of the sequence {rp}i_, depends solely on the absolutely continuous part
M'(z) of M(x) in the following way

n 1 (!
li =— | v~/ M'(x)dx.
nl—rgo \/Tn ﬁL (l’) r

Remark 3.28. The proof of item (1) can be found in [11]. If the string is long, the
conditions in (3.30) implies either (3.28) or (3.29), because for example

l
x(M(l)—M(x))§JydM(y)—>0, asz — [,

T

due to %7 xdM(x) < oo. The converse is not true. The proof of item (2) can be found
in, for example, Chapter 5.6 in [4]. Note that if the string is short, both conditions (3.30)
are satisfied. Item (3) is proven in [14] by Krein and this can be extended to the so-called
Pontryagin class of strings, as shown in [20].

Next, the classical Stieltjes strings, from which meromorphic S-functions can be
obtained, are presented.

EXAMPLE 3.29 (Stieltjes strings) A Stieltjes string (I, M) has a discrete measure as its
density, that is,
M(x)= )] o
TZ2T;

where 0 = g < x1 < 22 < ..., and [ = lim,, z,,. The differential equation (7 — z)f =0
associated to a Stieltjes string is a difference equation

Filas) = fL(xg) = 0 2 f(a)),
fi(z) = f(z) =0, if x ¢ {xo,x1,...}.

We have earlier adopted the convention that f is linear on massless interval. Hence,
with a Stieltjes string, f is piecewise linear on R, thus f (z;—1) = f’(z;) and

flxs) = fl@j-1) = f(25) (x) — wj1).
Let
A(wj,2) = Ay and Al (xj,2) = Agja
C(zj,2) = Cy;  and  C(xj,2) = Cyjp1.
By the above, the sequence {Ak}fzo satisfies the Wallis—FEuler recurrence relations
A2j = (:1;'] — ijfl) A2j71 + A2j72>
Agjy1 = 0j 2 Agj + Agj 1,

for j = 1,2,..., with A_; = 0 and Ay = 1. Similarly, the sequence {C}}}? , satisfies the
above recurrence relation with Cy = 0 and C; = 1. The quotients of the terms in these
sequences can be written as continued fractions

C(zj,z) Co 1 | 1| 1] 1
A(xj7z)_A2j_’QOZ ’961—930 +’Q12 et Tj— Tj—1 ’
Cl(zjz)  COyin 1| 1] 1 ‘+ L1

= = + + .
A (z5,2)  Agiy1 |z |mi—m |1z 0j2
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According to (3.23), the corresponding S-function is

L), 1 ] L 1|
+ e

n—w | 00% ’ Tr1 — X ’ On~z ’ Tn+1l — Tp

, (3.31)
in the long-string case, and

hi(z) = Dy(0,2) = lim (’ Qiz ‘+’ o xo ’—‘ ’J (3.32)

in the short-string case with tying constant k, and

W) = [ o o

if M has finitely many jumps. Let z = r > 0. The convergence in (3.31) is guaranteed
by the fact that for each fixed r, we have

Do+ (w1 — ) = o,
§=0
as the string is long, and therefore
C'() CQ C 02 j+1 CS Cl
— <= <..<lim—-"=1lim - <. <2< —.
Ay A jtao A2j jtoo Agji1 Az Ay
The limit of the odd terms and the limit of the even terms coincide, as in the above, if
and only if the string is long, see Theorem 30.1 in [19]. If the string is short, the even
terms Cy;j/A; still form a strictly increasing sequence and the odd terms Cojy1/A2541
form a strictly decreasing sequence. Since the even terms are all bounded above by
C1/A;1, the limit exists for this sequence and similarly for the odd terms. However, the
limits will never coincide. In fact, this illustrates Lemma 3.19

Clowr) [ 4049 CLlo)
Alz,r) ~ ) pr+€2 7 A (z+7)

I@iz‘+!w1—wo H H

is strictly decreasing and bounded below. Hence, the limit exists and it is exactly

- - Clx,— kC! (x;—
m Coj—2 +kCyj1 _ lim (wj—1,2) + ,+(l’g 1,2) — D(0, ).
j1oo Agj,Q + k‘Aijl jtoo A(l’j,h Z) + ]€A+ (l‘jfl, Z)

, O0<z<l.

n (3.31), the sequence

To learn more about the spectral measure o, the even transform can be consid-
ered. Solving A(z, —£?) accordingly to the above difference equation, it is found that
A(xj,—€?) is a polynomial in ¢ of order 2j. From Corollary 3.12, we have

|A(zj, —€))|A = o' < 0.
This gives that
Q0
f Y AA() <o, §=0,1,2,....
—Q0

A necessary condition for an S-function h(z) to yield a Stieltjes string is that its prinic-
ipal spectral measure has finite even moments. Adding the requirement that the even
polynomials are dense in Z.(A), we have the following correspondence result.
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PROPOSITION 3.30 Let h(z) be an S-function with the associated principal spectral
measure A, such that dim Z.(A) = n < 0. Then, h(z) belongs to a Stieltjes string, if
and only if the even polynomials are dense in Z¢(A), and all even moments are finite

| " dAge) < oo,

—Q0
for all 25 < n if n is finite, and 25 <n if n = 0.

Remark 3.31. By changing back v = &2, it is seen that the space Z.(A) is in fact
L%(R,do), and the requirement that even polynomials are dense in Z.(A) corresponds
to the requirement that polynomials in v are dense in L*(R,do). Note that in our
previous construction in Section 3.2.2, we also assume that the odd polynomials in
Z,(A), which leads to the limited choices of tying constants & = 0 or kK = co. This
proposition is proved in a different way in [11], which does not require denseness of odd
polynomials in Z,(A). For further details, see Chapter 13 in [11].

If the Stieltjes string is short, it will certainly yield a meromorphic S-function. How-
ever, not all Stieltjes strings automatically have a meromorphic S-function.

COROLLARY 3.32 Suppose (I, M) is a long Stieltjes string, that is,
n—oo0

o0
Zgnzoo or lim =z, = oo.
n=0

Then, it has a meromorphic S-function h(z), if and only if either of the following holds
true:

n e}
if nlgréo T, = 00, then ETI?O ( Z(:L'j+1 — x])) < Z Qk) =0,
7=0 k=n
e} e} n
if 2 on = 0, then lim ( Z (Tj41 — yv])) (Z Qk) = 0.
n=0 nto A k=0
Proof. This is a direct application of item (1) in Proposition 3.27. O

To close this example, we demonstrate item (3) in Proposition 3.27 by studying the
behavior of the short Stieltjes string with

0j=2"7, and wxj—x; =277, j=0,1,...

and tying constant k = oo, which is clearly of the case | + M(I—) < oo. Hence, the
associated S-function h(z) is meromorphic and has the continued-fraction form

h(z) Z}i%(léuﬁlﬂ 2’112 ‘+! 2}1 ‘*"ﬂﬁ‘)

Since it is very difficult to locate the poles of h(z) from its continued-fraction form, we
compute the poles of the approximations

R (2) =’%‘+’%‘+...+’2—_1,<7‘,




20

R P O ) Ry ) R ) R(E) e e e )
j=1 |3

j=2 | 219 12.82
j=3 | 190|982 |51.27
j=4 | 179|881 |39.31205.09
j=5 | 173|838 |35.27|157.25 | 820.37
j=6 | 171|818 |33.56 | 141.10 | 628.99 | 3281.48
j=T | 169 | 8.08 |32.76 | 134.23 | 564.38 | 2515.95 | 13125.90
j=8 |1.69|803 |3238|131.04 | 536.91 | 2257.54 | 10063.82 | 52503.60
j=9 | 168|801 |32.19|129.50 | 524.16 | 2147.63 | 9030.16 | 40255.28 | 2.10 - 10°
j=10| 168 | 8.00 |32.09 | 128.75 | 518.01 | 2096.63 | 8590.51 | 36120.63 | 1.61-10° | 8.40 - 10°
j=11] 168|799 |32.05|128.37 | 514.99 | 2072.03 | 8590.51 | 34362.02 | 1.44-10° | 6.44 - 10°
j=12| 168 | 7.99 |32.02 | 128.19 | 513.49 | 2059.94 | 8590.51 | 33546.01 | 1.37-10° | 5.78 - 10°
j=13|1.68|7.99 |3201|128.09 | 512.74 | 2053.95 | 8590.51 | 33152.43 | 1.34-10° | 5.50 - 10
j=14|1.68 | 7.99 |32.01|128.05 | 512.37 | 2050.97 | 8590.51 | 32959.09 | 1.33 - 10° | 5.37 - 10°
j=15] 168 | 7.99 |32.00 | 128.02 | 512.19 | 2049.49 | 8590.51 | 32863.27 | 1.32-10° | 5.30 - 10°

Table 1: approximations of the first ten eigenvalues from h(j)(z) belonging to the Stieltjes string
with g; =277 and x; —x;_1 =277 for j =0,1,...,15.
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(a) Convergence of the first two eigenvalues after (b) This plot illustrates the growth of the square
15 approximations. roots of the first ten eigenvalues of the 15 ap-
proximation.

Figure 1: illustrations of eigenvalue approximations from Table 1.

using the software Maple. For an overview of the approximation of the first ten eigen-
values, see Table 1 and Figure 1b. We also include a graph over the convergence of
the first two eigenvalues, see Figure la. Although one should be careful drawing con-
clusions from a finite number of eigenvalues, Figure 1b suggests that the square roots
of the eigenvalues grow much faster than linearly, which is in line with item (3) of
Proposition 3.27 where the absolutely continuous part is absent.
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EXAMPLE 3.33 In this example, the short string (I, M) with [ = 1 and
M(z) =211+ 1110,

is taken into consideration. On the interval [0, 1], the eigenequation is the differential
equation
d2
-— —z)f=0,
(de ) /
which has the general solution f with the linear extension to the left of x = 0 and to
the right of z =1

JO) + £z, v (<0,0)
f(@) =< f(0) cosh(y/z ) + 52 sinh(yzx), € 0,1)
FO) + FL (D) - 1), z e [L, o).

Since M has no discontinuity at « = 0 or z = 1, we have f’ (0) = f%(0) and f (1) =
f4(1). Plugging in the initial values of the fundamental system {A(x,z),C(z,z2)}, we
find that

C(1,2) +kC'(1,z) _ 2~Y2sinh(y/z) + k cosh(y/2)
A(l,2) + kA (1,2)  cosh(y/2) + k+/z sinh(y/2) ’

where 0 < k < 0. We want to compute and compare the spectral measures oy and oo
for £k = 0 and k = o respectively. The function hg is given by

ho(—r) = 1 sinh(y/=r) 1 isin(4/r)  tan(y/r)
0 ~ W/=rcosh(y/=r) iyr cos(yr) N
for r > 0. Since lim, .o 2~ tan(x) = 1, there is no pole at z = 0. The poles are located
at the sequence {—r;}%,

hi(2) =

1\2
rj = <j+§> 2 j=0,1,....

Employing (3.27), we find that the measure oy jumps with the amount

oo({rj}) = lim (rj —r) ho(=7)

=Ty

()" ) s
by (623 ) (e )

T ]“1‘5
1
(j—i—%)w

for all j =0,1,.... Similarly, the S-function hy on (—o0,0] is given by

(25 + D)

1

hoo(—1) = T tan(yr)’
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(a) Plots of ho(—r?) (red) and he(—r?) (b) Plots of ho(—r?) (red), hyjp(—r?) (blue)
(green) forfr € [-8,0]. The zeroes of hg are .4 heo(—72) (green) for r € [—8,0]. Let T](-O)
th 1 hoo-

© POIES OF oo and r§-oo) denote the j-th pole of hg and he

respectively. Then 7"](.0) < 7",(61/ 2) < rj(.oo) for

some k < j. Since Maple fails to recognize
the discontinuities of hy/5, the blue vertical
lines appear.

Figure 2: illustrations of poles of hj of a short string with different tying constants k.

with poles at
Tk:j2ﬂ-27 jzoa]-u"'a

yielding the spectral measure oo with the jumps

s{0)) =1, o(fr;h=2 j=1,2....

The poles of hy for 0 < k < oo are included between the poles of hg and hq, see Figure
2a and 2b for illustrations.
To close this example, we observe that the moments are all highly divergent

ZTJO{T]}Zi( ) 22—, n=01,...,

that the square roots of the eigenvalues grow at the linear rate

1 1
T joojr+m/2  w
and that
[ee]
D <
R

This illustrates Proposition 3.30 and items (3) and (2) in Proposition 3.27.
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3.3.3 Kirein strings as Sturm-Liouville operators

A Krein string (I, M) with

M(z) = J ols)ds, olz) >0, ze[0,])

has the eigenequation
d2
(g2 —e@)f =0

It is clear that the above is a Sturm-Liouville equation. We have already had an example
of a short Krein string with an absolutely continuous mass function in Example 3.33.
Here comes two examples of long Krein strings. In the last example, we examine the
eigenvalue asymptotics for a short Krein string where a point mass is added to the
smooth density o(x).

EXAMPLE 3.34 Let (I, M) be the string with
[ = o0, M(w) za:-Il[()’oo).

The associated eigenequation

d2
(W—Z)fzo, 1'6[07@),
x
has the general extended solution

fa) = {f(()) + f2(0)x, / x € (—00,0)
£(0) cosh(v/z ) + 22 sinh(y/z ), € [0,00).

Since o({0}) = 0, f' (0) = f’.(0) and hence the fundamental system consists of

A(z,z) = cosh(yv/zx), and C(z,2)= \}Esinh(ﬁx),

for z ¢ (—0,0]. By (3.23), the S-function of this string on (0, o) is
et /1 cosh(y/rz)  /r

which has an analytic extension to the cut complex plane C\(—o0,0), and which cannot
be extended analytically on the branch (—o0,0). Using (3.22), the spectral measure can
be computed

h(r) = lim sinh(yrz) 1

1 r+0
= lim lim — Im((—y —ie) Y2 dy.
o((0,r]) = Timlim S m((—y —ie) /%) dy
For y > 0 and € > 0, we have 6 = arg(y + ic) = arctan (%) € (0, %) and
1 —
= = y+28:(92+€2)_1/4(COS(E—Q>—i—z‘sin(z—g)).
=y —ie \/y2 T2 2 2 2 2
Using the double angle formula of cosine, we simplify sin(7/2 — 6/2)

sin <g — g) = cos (g) = \15(608(9) + 1)1/2 = \2(@24_3/52)1/2 + 1)1/2.




So, the integral of interest is now

((0,r]) — limlim THL( 2 2)—1/4($+1)1/2d
T T o )y 2 T (y> + )12 y

.. \/i 2 2\1/4 Yy 2
~iplp 0 (G )

r+d

0

2
U
s

To close this example, we observe that do/dr = 7~ 'h(r), and that the estimate in
Proposition 3.25 applies for the correspondence

M(z) =z (—2) 2 =m(z), witha=1.

ExampLE 3.35 Let (I, M) be the string with

for some o > 0. The eigenequation is

(Cp_wxa—l)f:o, z € [0, ),

dx?
with the general extended solution
f - [TO+ 70 ve (=,0)
Gy \/Elﬁ(y) + Cs \/El—ﬁ(y)v S [07 OO),
where I15(y) are the modified Bessel functions of the first kind, and
1 1
8=——, and yzQ«/zaﬁx;ﬁ.
a+1

The fundamental system {A(z,r),C(x,r)} for r > 0 consists of

Az,r) = T(1 = B)(ra)**5°v/z I_s(y)
Cla,r) = T(1+ B)(ra) 87V Is(y),

for x € [0,00). To compute the S-function, we only need to consider the asymptotic
behaviors of I4+3(y), which are

—1/2

Lig(y) = (2my) /= exp(y),

since Arg(y) = 0. For more details on the modified Bessel function I3, see Section
9.6.2, 9.6.10 and 9.6.11 in [1], and for more on the asymptotic behaviors of the Bessel

1
functions, see Section 9.2.1 in [1]. Plugging in y = 4/48%2rax??, then 8 = (o + 1)1,
and simplifying as much as possible, we obtain the S-function

I(53) a2\ ok =
h(r) = I‘(%ﬂ) ( a ) ra+l,

This example can be found as Example 1 in [8], where Y. Kasahara also presents the
spectral measure o corresponding to h as above.



95

In general, if the density o(x) is a sufficiently smooth function, the operator (7, D(7))
can be rewritten as a Schrédinger operator. Hence, we can use the methods as presented
in [7, pp.151-155] to obtain better eigenvalue asymptotics than item (3) in Proposi-
tion 3.27. For example, for the Dirichlet boundary condition at x = [, that is, when
k = 0, we get the following asymptotics

1
/1 = & = con + %1 + % + O($>, for large n,

where ¢ is already known to be

1 (!
co = WL\/M’(x) dz

and the coefficients ¢; and c3 depend on (I, M). Tt is possible that discontinuities of
M (x) can be found by observing the eigenvalue asymptotics. We illustrate this with a
simple example, in which the eigenvalue asymptotics is given up to c;.

EXAMPLE 3.36 Let (I, M) be the string given by
M(x) =z Tjg1)+ 01 Lz 1)+ (14 01) - L o0y
The associated eigenequation is
{(%—z)sz, ze (0,z1) v (z1,1]
filwy) = fl(@1) = 012 f(21)

with the general solution f(x) € Dyqz

f(0) + fL(0)z, , z<0
Fa) = f(0) cosh(y/z x) + f:/(;) sinki(\/E:r), x € [0,x1)

f(z1) cosh(v/z(x — x1)) + f*\(/?) sinh(v/z(z — x1)), z€[z1,1)

F)+ (1) (x - 1), r>1

from which we obtain the fundamental system

A(z, z) =cosh(y/zx1) cosh(v/z(x — x1))
+ (01v/z cosh(y/z 1) + sinh(v/z 1)) sinh(v/z(z — 21)),

and

C(z, 2) :\Z/lg sinh(+/z z1) cosh(v/2(z — 1))

1
+ (o1 sinh(yv/z z1) + 7 cosh(y/z 1)) sinh(y/z(z — z1)),
for x1 < © < 1. The Weyl function Dy(0, z) corresponding to tying constant k = 0 is
the quotient C'(1, z)/A(1, 2).

Let z1 = 5 and set z = —¢2 for £ € R. Since A(z,2) and C(z,z) do not have
common zeroes, finding the poles of Dy(0, —£2) is equivalent to finding the zeroes of

A(z,—£?). Hence, we consider the equation

cos(€) — 25 sin() = 0
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Figure 3: plots of tan(¢) and C¢~!. The functions intersect at points near nr.
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Figure 4: an illustration of &, = n7 + A,, where A, = 2- (o1n7)~! and g1 = 1.
The errors A, are positive, hence &, is always to the right of the points nm, for
n=12,....

and since cos(§) and sin(§) do not have common zeroes, we rearrange terms to have

2
01’

The values £ for which (3.33) is satisfied will indeed behave asymptotically like
nm (see Figure 3), as predicted by item (3) in Proposition 3.27. To obtain a better
asymptotic estimate, we set

tan(¢) = (3.33)

1
& =nm+ A,, for An:ﬂ—i—CQ—i—O(—).
n n

n?
By Taylor expanding the left-hand side, and the right-hand side of (3.33) near the points
& =nm 4+ Ay, we get

tan(nm + A,) = A, + O(A3)

2 2A 2A?2
= - S+ o+ 0(A3
oint  o1(nm)?  o1(nm)3 (A7)

2
or(nm + Ay)’
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and then plugging in the expression for A,,, we find that
C1 (&) 1
245 o(3)
n T2 Y
2 2 1 1
e (2 3 0()) o)
oinmt  pi(nm)2\n = n? n3 nd

2 1
-z +0(3).
o1nT n

which leads to the identification

cl = — 02:0,

and a sharper asymptotic behavior for the eigenvalues is obtained,

2 1
co(L)
o1nT n

& =nm+

which is illustrated in Figure 4.
Similarly, let x1 = % Locating the poles of Dg(0, —£2) is equivalent to finding the
solutions to the equation

cos(§) — 1€ cos <§> sin <%> =0. (3.34)
When
g=3-”(2k2“) = (3k+ )7+ 7,

the functions cos(§), cos(£/3) and sin(2¢/3) have value 0 and (3.34) is trivially satisfied.
Suppose £ # nm + 7/2 for n = 1 (mod 3). Then, we can rearrange terms to arrive at

1 cos (§> sin (2—5)
aET T w® )

Like before, the intersection of the left-hand side and the right-hand side occurs near
the points

¢E=nm, forn=0(mod3) and &=nnm— g, forn = 2 (mod 3),

see Figure 5. Set

1
&n=nm+Ap,n=0(mod3), A,= a —i—% +O<—3>
n o on n
/ / 1
§n=nW—Z+A%,nE2(mod3), A'nzc—l—i-cl—i-(?(—).
2 n  n2 n3

Taylor expanding both sides in (3.35) near nm for n = 0 (mod 3) and then identifying
coefficients gives

3
= =0.
C1 2@177'7 C2
Near the points (3k + 2)m — 7/2, we get
9
d cy = 0.

- 2917r’
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In summary, the eigenvalue asymptote depends on n in the following way

mT—i-QQ?’W%—i-(’)(%), n =0 (mod 3),
§n = nm+ 3, n =1 (mod 3), (3.36)
nﬂ—%—i-Qggmi—i-O(%), n = 2 (mod 3).

This means that near the point (3k+1)7+m/2, there will always be two eigenvalues, one
of which is always exactly (3k+1)7+7/2 and the other is on the right of (3k+1)7+7/2.
As k goes to infinity, the error Af, , will go to zero in either case, and &3p12 — {3r41
goes to 0. See Figure 6 for an illustration.

When the quotient %! is not a rational number, the asymptotic behaviors of &, will
be much more complicated.

4

9n Sn lln /6on 137 7 1
2 2 2

X

157 8x 17n /9 19¢n
2 2 2

m 2ln Iln 23n A2n 25n
2 2 2

Figure 5: plots of sin(2£/3) cos(£/3) cos(€)™! and C¢~L. The functions intersect at
points near nz for n =0 (mod 3) and nm — 7/2 for n =2 (mod 3).

Figure 6: an illustration of the eigenvalue approximations in (3.36). Near & =
nm + w/2 for n =1 (mod 3), two eigenvalues are found.
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3.3.4 Discussion

In general, a characterization of S-functions h corresponding to a string (I, M) is hard
to find if (I, M) is not a Stieltjes string. It is as difficult as characterizing all spectral
problems corresponding to a certain subclass of Herglotz-Nevanlinna functions, as men-
tioned in the introduction. The examples in this section, despite their simplicity, have
opened up some interesting paths for future investigations on Krein’s correspondence.

Example 3.36 can be developed further. For instance, the point mass can be placed
at another position on the string, more point masses can be added, or other boundary
conditions can be chosen. Everything can be computed explicitly for the simple abso-
lutely continuous part of g as in 3.36. Hopefully, we will be able to observe the number
of jumps and where they are positioned from the eigenvalue asymptotics, from which
we might be able to generalize for other more complicated absolutely continuous parts.

Another idea is to follow the steps in Example 3.29 for ¢ with the absolutely con-
tinuous part 1 and a simple discrete part, that is, for the string with

M(x) =z -1y + Z 0j, 1<j<n

Oz j<e<l

We can solve the differential equation 7f = zf for this string. From the jumps of M
and the solution, we might be able to find a basis for Z.(A) and use this to deduce a
sufficient condition for h to belong to such a string.

The convergence lim,, M, = M in the sense that lim, M,(z) = M(z) for every
continuity point x of M induces a topology on the class of mass functions, and the
convergence lim,, h,, = h in the sense that lim,, h,(r) = h(r) for every r > 0 induces a
topology on S. Krein’s correspondence (I, M) <> h is continuous with respect to these
topologies, as we have seen in Theorem 3.22. In the future, we would like to study
other topologies making Krein’s correspondence continuous. More specifically, we look
for a topology on the mass functions, such that irregular densities are approximated by
sufficiently smooth densities. Also, studying the uniqueness part of Krein’s correspon-
dence will certainly lead to a better understanding of this problem. In [5], J. Eckhardt
and A. Kostenko investigate how to extend the equation f” = zof with a signed Borel
measure o, so that the corresponding Weyl functions coincide exactly with the class
of all Herglotz-Nevanlinna functions. In particular, they do this by allowing ¢ to be
a real-valued distribution in lecl and adding a term z?vf, where v is a non-negative
Borel measure. Although this problem is about extending and ours is about restricting,
the approach made in [5] might be of interest for us.
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