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Abstract

Krein strings appear in the study of the motion of a vibrating string where an
irregular density is allowed. This thesis presents the theory from the perspective of
integral equations and operator theory. It will be shown that each Krein string gives rise
to a unique Stieltjes function, by utilizing the compactness of the resolvent operators for
short strings and then approximating any long string with a sequence of short strings.
The converse is also true: each Stieltjes function gives rise to a unique Krein string
and this bijection is called Krein's correspondence. The existence part is proved by
constructing Krein strings for a special class of Stieltjes functions. Then, an arbitrary
Stieltjes function can be approximated by this class and the limiting procedure yields
a string corresponding to this Stieltjes function. The uniqueness part is not treated in
this thesis. Instead, some properties and simple examples of Krein's correspondence
will be presented.
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Populärvetenskaplig sammanfattning

I den klassiska modellen för en endimensionell vibrerande sträng antas massan vara
likformigt fördelad, vilket leder till den ordinära di�erentialekvationen f2 � λ%f , där
densiteten % är konstant. Kreins strängteori handlar om samma ekvation, men mass-
fördelningen tillåts variera. Denna teori används även för att lösa problemet att förut-
säga framtiden med hjälp av information från en ändlig del �2T ¤ t ¤ 0 av dåtiden
för endimensionella stokastiska normalprocesser med väntevärde 0. Detta arbete ger en
behandling av Kreins strängteori, med fokus på Kreins korrespondens � problemet där
spektraldata är givna i form av en så kallad Stieltjesfunktion och vi vill veta så mycket
som möjligt om strängen som funktionen kommer från.
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1 Introduction

A general model for the motion of a vibrating elastic string in one dimension is the
linear partial di�erential equation

%pxqutt �
�
T px, tqux

�
x
� F px, tq, x P r0, lq, t ¡ 0,

where the string starts at the coordinate x � 0, ends at the coordinate x � l ¤ 8, and

(1) upx, tq : R� p0,8q Ñ R denotes the vertical displacement of the string at time t,

(2) %pxq denotes the density of the string at position x,

(3) T px, tq denotes the tension force on the string at position x and time t, and

(4) F px, tq is any external force acting on the string at position x and time t.

If the mass of the string is uniformly distributed, the tension force is constant and there
are no external forces, we obtain the classical wave equation utt � c2uxx, which has
been thoroughly studied. In this thesis, we consider the case where the mass might be
irregularly distributed, while we set T px, tq � 1 and F px, tq � 0:

%pxqutt � uxx, x P r0, lq, t ¡ 0.

The method of separation of variables is used to obtain the eigenequation

f2pxq � z%pxqfpxq, z P C

We denote the mass of the string up to and including the point x as Mpxq. If %pxq is
locally integrable throughout the string, we have

Mpxq :�
»
r0,xs

%pyq dy, x P r0, lq

and the eigenequation in this case can be rewritten as

d

dM
f 1� � zf, (1.1)

which motivates the formal de�nition of the operator

τ � d

dM

d�
dx
, (1.2)

acting on an appropriate space. In this thesis, % is allowed to be a non-negative Borel
measure, which means that we for example allow the density to contain point masses.

Krein string theory, developed in the early 1950's by M. G. Krein, deals with the
study of this operator and the corresponding Weyl function mpzq, which contains all
spectral information of τ . Moreover, it is a Herglotz-Nevanlinna function and mp�zq is
a Stieltjes function. Conversely, given a Stieltjes function hpzq, a unique string can be
found with hp�zq as its Weyl function. This means that the inverse spectral problem
for Krein strings is solvable and the solution is unique. The bijection between the class
of Stieltjes functions and the class of Krein strings is called Krein's correspondence,
which is the most intriguing feature of Krein string theory. If one considers a larger
class of strings where % is allowed to be a signed Borel measure, its Weyl function is still
a Herglotz-Nevanlinna function, but not all Herglotz-Nevanlinna functions correspond
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to such a string. A characterization of the Herglotz-Nevanlinna functions corresponding
to strings with a sign-changing density is presently unknown. See [15] and [5] for more
details.

Krein string theory and its generalizations have attracted a lot of attention also due
to its vast applications in many di�erent areas. For instance, it is used to study the
prediction of the future from a �nite past segment �2T ¤ t ¤ 0 of a real one-dimensional
Gaussian process with mean 0. Since the projection of the family teiγpt�T qu onto the
span of teiγtut¤T is not invariant under the shift f ÞÑ eiγT f , the theory of Hardy spaces
is not applicable, see [4, ix] and [4, pp.146�147]. Another application is within the study
of generalized di�usions, see for example Appendix II in [13], or Chapter 15 in [16].

In 2012, a group of mathematicians and physicists published results of a real-life
experiment of a special case of Krein's correspondence, in which some weights were
attached to a thread with negligible mass at di�erent positions. The eigenvalues were
computed and compared to the model for these types of strings made by Krein, using
Stieltjes continued fractions. The interested readers are referred to [3].

The focus of this thesis is the following:

(1) to give a treatment of Krein string theory,

(2) to study how the behavior of the mass distribution a�ects the behavior of its
Stieltjes function mp�zq.

A common approach in Krein string theory is to use integral equations as in [10], [4]
and [13]. In the �rst part of the thesis, we will combine this approach with an operator
theoretical one as in [6], the focus of which is the generalized Sturm-Liouville equation
with measure-valued coe�cients

d

d%pxq
�
� d

dςpxqypxq �
» x

yptq dχptq
	
� zypxq, �8 ¤ a   x   b ¤ 8,

where the measures %, ς and χ are required to meet some hypotheses as in [6, p.11].
Eigenequation (1.1) is obtained for χ � 0 and ς the restricted Lebesgue measure on
p�8, lq or R. The �rst approach provides explicit and insightful constructions. For ex-
ample, the construction of a string in Section 3.2.2 is very easy to follow and understand.
The second approach provides elegant arguments, for example the limit circle and limit
point characterization of the operator τ . Alternatively, one could also convert (1.1) into
a �rst-order system of di�erential equations with measure-valued coe�cients, the theory
of which is thoroughly investigated by C. Bennewitz in [2].

In the second part, starting from some simple Krein strings, we will try to either
compute the Weyl function and the spectrum, or observe as much as possible from the
even and odd transforms between the relevant spaces. The even and odd transforms
for the classical string Mpxq � x � 1x¥0, or equivalently for the operator d2{dx2 on an
appropriate domain, are in fact» 8

0
cospξxqfpxq dx, and

» 8

0
sinpξxqfpxq dx

respectively. This means that we can view the even and odd transforms as a general-
ization of the cosine and sine transforms, and these prove to be very e�cient tools to
study Krein's correspondence. We will also mention some famous results about Krein's
correspondence. For example, the leading part in the eigenvalue asymptotics for a short
string depends solely on the absolutely continuous part M 1pxq of the mass distribution

lim
nÑ8

n?
rn

� 1

π

» l
0

a
M 1pxq dx.
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This is a discovery of M. G. Krein [14]. If %pxq is absolutely continuous, one can obtain
sharper asymptotics, as illustrated in Example 3.36, where a point mass is added to a
smooth density.

Here is an overview of the structure of this thesis. Chapter 2 is dedicated to the
formal settings of the unbounded operator τ , the domains on which τ is a non-positive
self-adjoint operator, and the resolvent operator. One has to be careful in choosing a
domain for τ , because it is multi-valued on its maximal domain. Also, some choices
of domains on which τ is a self-adjoint operator might cause the spectrum to contain
positive points. Chapter 3 is about Krein's correspondence. In Section 3.1.1 and 3.1.2,
we show how a string yields a Stieltjes function. Then, in Section 3.2.2 and 3.2.3, we
�rst show how a string can be constructed from Stieltjes functions with some additional
assumptions and then via limiting process, we show that a string can be found for an
arbitrary Stieltjes function. In Section 3.3, we present known results about Krein's
correspondence, and demonstrate the correspondence for Stieltjes strings, strings with
Mpxq � xα � 1r0,lq with α ¡ 0 and l ¤ 8, and a combination of these two types of
strings.

The prerequisites for this thesis are linear functional analysis, integration theory and
some knowledge in di�erential equations. In particular, Section 2.4 and the beginning
of Section 3.3.1 will require some acquaintance with spectral theory for unbounded
self-adjoint operators. Readers who are unfamiliar with this can skip the beginning of
Section 2.4 and go directly to the discussion of boundary conditions on pages 13 and
14.
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2 Krein strings

2.1 Notation

Let f : RÑ R be a function. Frequently, we use the following notations:

fpa�q � lim
xÑa, x a fpxq � lim

x Ò a
fpxq,

fpa�q � lim
xÑa, x¡a fpxq � lim

x Ó a
fpxq,

d�f
dx

paq � f 1�paq � lim
x Ò a

fpxq � fpaq
x� a

,

d�f
dx

paq � f 1�paq � lim
x Ó a

fpxq � fpaq
x� a

.

Also, we will use these conventions:

f 1�pa�q � f 1�paq, and f 1�pa�q � f 1�paq.

Let σ be a locally �nite Borel measure. The notations for the integral bounds are to be
understood in the following way, if a and b are �nite numbers:» b

a
fpyq dσpyq �

# ³
pa,bs fpyq dσpyq, if a ¤ b

� ³
pb,as fpyq dσpyq, if b   a» b

a�
fpyq dσpyq �

# ³
ra,bs fpyq dσpyq, if a ¤ b

� ³
pb,aq fpyq dσpyq, if b   a» b�

a
fpyq dσpyq �

# ³
pa,bq fpyq dσpyq, if a ¤ b

� ³
rb,as fpyq dσpyq, if b   a.

Let pa, bq � R be an interval. A function g : pa, bq Ñ R is said to be of class
AClocppa, bq, dσq if g is right-continuous and it can be written as

gpxq � gpcq �
» x
c
hpyq dσpyq, x P pa, bq,

where h is required to be of class L1
locppa, bq, dσq. The function h will be referred to as

a quasi-derivative of g in AClocppa, bq, dσq.

2.2 De�nition of a string and the initial-value problem

In this thesis, a string is de�ned by its two physical properties: its length l and its mass
function Mpxq. Hence, we may refer to a string as the pair pl,Mq. The left endpoint
of a string is always at the coordinate x � 0 and the right endpoint is at x � l, where
l P p0,8s. The mass function Mpxq : R Ñ r0,8s gives the mass of the string up to
and including the point x. Mpxq is required to be non-negative, non-decreasing and
right-continuous. Also, Mpxq � 0 for x   0 and M is bounded on every interval of
the form r0, aq for a   l. We denote the measure associated to Mpxq by %, obeying
%pp�8, xsq � Mpxq. It is easy to see that % is a non-negative Borel measure, locally
�nite on p�8, lq. A point x is a growth point of M if for every a and b, such that
a   x   b, we have Mpaq   Mpbq. We also require that x � 0 is a growth point, and
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that x � l is the supremum of all growth points. This implies that Mpxq is constant
after x � l. In the case l �Mpl�q   8, this includes the possibility that % has a point
mass at l, which we require to be �nite.

We set

I �
#
p�8, lq, if l �Mpl�q � 8
R, if l �Mpl�q   8.

If l�Mpl�q � 8, the string pl,Mq is called a long string. Otherwise, it will be referred
to as a short string. The operator of concern has the form

τ � d

dM

d�
dx
,

and τ acts on functions in AClocpI, dxq, with a quasi-derivative in AClocpI, dMq. Since
functions in AClocpI, dMq are right-continuous, the quasi-derivative of f P AClocpI, dxq
must be the right-derivative f 1�. We de�ne τf to be the quasi-derivative of f 1� P
AClocpI, dMq. Given h P L1

locpI, dMq with h � τf , the function f can be recovered
from h using the formula

fpxq � fp0q � f 1�p0qx�
» x

0
dξ

» ξ
0�
hpηq dMpηq, x P r0, lq. (2.1)

Note that τf is well-de�ned %-almost everywhere on I and not well-de�ned on massless
intervals � the intervals on which Mpxq is constant. On massless intervals of I, we have
the convention that fpxq is linear. In particular, in the long-string case, fpxq to the left
of x � 0 is

fpxq � fp0q � f 1�p0qx, x P p�8, 0q, (2.2)

and in the short-string case, we extend fpxq on both p�8, 0q and pl,8q as

fpxq �
#
fp0q � f 1�p0qx, x P p�8, 0q
fplq � f 1�plqpx� lq, x P pl,8q. (2.3)

Dτ will denote the space of functions f given by (2.1) and (2.2) in the long-string case,
or by (2.1) and (2.3) in the short-string case. Computing f 1� and f 1� from (2.1), we have
that:

f 1�pxq � f 1�pxq
%ptxuq � τfpxq, if %ptxuq ¡ 0

f 1�pxq � f 1�pxq � 0, if %ptxuq � 0.

(2.4)

Equation (2.4) provides an alternative way to compute τf when %ptxuq ¡ 0.
Consider the initial-value problem

pτ � zqf � g, with fpcq � d1 and f 1�pcq � d2, (2.5)

where c P I, g P L1
locpI, dMq, as well as z, d1, d2 P C are given. The problem (2.5)

can be converted into a �rst-order system of di�erential equations with measure-valued
coe�cients. We set F pxq � pfpxq, f 1�pxqq and observe that

fpxq � d1 �
» x
c�
f 1�pyq dy, f 1�pxq � d2 �

» x
c�
pzf � gq dM, x P I.
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This yields the system

F pxq �
�
d1

d2



�
» x
c�

�
0
g



dM �

» x
c�
CF dω, (2.6)

where
dω � dx� |z|dM, (2.7)

and

C �
�

0 dx
dω

z dMdω 0



. (2.8)

The entries dx{dω and dM{dω are the Radon-Nikodym derivatives.

Theorem 2.1 The initial-value problem (2.5), or equivalently the integral equation (2.6),
has a solution f of class Dτ and the solution is uniquely determined by its initial values.

Moreover, if g, z, d1 and d2 are real, then the solution is real.

Remark 2.2. For a proof, see [6, pp.156�157]. In [6], Eckhardt and Teschl consider a
more general initial-value problem, namely�

fpxq
f 1�pxq



�

�
fpcq
f 1�pcq



�
» x�
c�

C

�
fpyq
f 1�pyq



dωpyq,

where dω � |dµ1| � |dµ2| for µ1, µ2 locally �nite complex Borel measures, and

C �
�

0 m1

m2 0



with the Radon-Nikodym derivatives m1 � dµ1{dω and m2 � dµ2{dω. Since they
use the left derivative instead, the initial values and the integral bounds are di�erent
from ours. This system is proved to be solvable uniquely under the condition that
pI � Cpxqωptxuqq is invertible for each x   c. In our case, we look at F̃ pxq � F p�xq,
where F pxq is as in (2.6), and use the result for the above system. It follows that the
invertibility of pI�Cpxqωptxuqq for each x ¥ c is required instead and it is trivially met
with ω and C as in (2.7) and (2.8)

I � Cpxqωptxuq �
�

1 0
�zρptxuq 1



.

2.3 The fundamental system tApx, zq, Cpx, zqu

A consequence of Theorem 2.1 is that the solution space of the equation pτ � zqf � 0
has dimension two. For a �xed z P C, a fundamental system of the equation pτ�zqf � 0
is a basis of the solution space. For each �xed x P I, the solutions are entire functions
according to the following result, a proof of which can be found in [6, pp.161�162].

Proposition 2.3 Let upx, zq be the solution of the initial-value problem (2.5) for

each z P C. Then, upx, zq and u1�px, zq are entire functions in z for every x P I. In

particular, for every x P r0, lq, we have the estimate

|upx, zq| � |u1�px, zq| ¤ CeB
?
|z|,

for some constants C ¡ 0 and B P R.
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We de�ne the Wronski determinant, or the Wronskian, of f, g P Dτ by

W pf, gqpxq � fpxqg1�pxq � f 1�pxqgpxq, x P I.

The Wronskian of �xed f, g is of class AClocpI, dMq, with quasi-derivative

d

dM
W pf, gq � f pτgq � pτfq g.

This result is called the Lagrange identity, see [6, pp.157�158]. Suppose u1, u2 are
solutions to the equation pτ � zqf � 0. Then, according to the Lagrange identity, we
have

d

dM
W pu1, u2q � u1 pτu2q � pτu1qu2 � u1pzu2q � pzu1qu2 � 0,

which implies that W pu1, u2q � C on I. The Wronskian vanishes if and only if u1 and
u2 are linearly dependent, see [6, p.158].

Next, we introduce a convenient fundamental system for the equation pτ � zqf � 0,
for each z P C. It consists of solutions Apx, zq and Cpx, zq, with the initial values�

Ap0, zq
A1�p0, zq



�

�
1
0



,

�
Cp0, zq
C 1�p0, zq



�

�
0
1



,

yielding W pA,Cq � 1. By Theorem 2.1, the solutions Apx, zq and Cpx, zq are unique
in Dτ . We can in fact give general formulas for Apx, zq and Cpx, zq. We will also
construct an auxiliary solution Dpx, zq, which is important later on. The set tA,Du is
also a fundamental system. The initial values of Dpx, zq will be�

Dp0, zq
D1�p0, zq



�

�
Dp0q
�1



,

yielding W pA,Dqpxq � �1.

2.3.1 The solution Apx, zq

In this section, we will derive a power expansion of Apx, zq. Let p0pxq � 1 and
tpnpxqun¥1 be de�ned by

pnpxq �
» x

0
dξ

» ξ
0�
pn�1pηq dMpηq, x P r0, lq,

in other words, τpn � pn�1 P Dτ . De�ne a function Ãpx, zq by

Ãpx, zq :�
8̧

n�0

znpnpxq. (2.9)

For Ã to make sense, the series should be absolutely convergent for each x, such that
x�Mpxq   8, and for each z P C. To show this, we prove the estimate

pnpxq ¤ 1

n!

� » x
0
Mpyq dy

	n
, (2.10)
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for each n ¥ 1, using induction. For n � 0, the estimate is immediate. Assuming that
it holds for pn�1pxq, we estimate

pnpxq �
» x

0
dξ

» ξ
0�
pn�1pηq dMpηq ¤

» x
0
pn�1pξq dξ

» ξ
0�

dMpηq

�
» x

0
pn�1pξqMpξq dξ ¤

» x
0
rpn� 1q!s�1

� » ξ
0
Mpyq dy

�n�1
Mpξq dξ

� pn!q�1
� » x

0
Mpyq dy

�n
.

Now, the convergence of (2.9) follows from

|Ãpx, zq| ¤
8̧

n�0

|z|n
n!

� » x
0
Mpyq dy

�n
� exp

�
|z|

» x
0
Mpyq dy

	
, (2.11)

which is �nite for each z P C, as long as x�Mpxq   8.
The right derivative Ã1�px, zq is

Ã1
�px, zq � z

8̧

n�0

zn
» x

0�
pn�1pηq dMpηq,

from which it is clear that τ Ã � zÃ and that Ãpx, zq P Dτ . Moreover, Ãp0, zq � 1
and Ã1�p0, zq � 0, for z P C. By uniqueness of solutions in Dτ , we conclude that
Apx, zq � Ãpx, zq. The power series (2.9), together with (2.11), shows that Apx, zq is
indeed entire in z for each x P I. Note that Proposition 2.3 provides a sharper estimate
for |Apx, zq| than (2.11).

If there is no confusion, we omit r and write Apx, rq as Apxq when r ¡ 0. By
Theorem 2.1, Apxq is a real-valued function. Some properties of Apxq are:
(1) Apxq � 1 when x ¤ 0, A is non-decreasing and τA ¥ 0,

(2) Apl�q   8 if and only if
³l
0Mpxq dx   8,

(3) A1�pl�q   8 if and only if
³l
0 x dMpxq   8,

(4)
³l
0� |A|2 dM   8 if and only if

³l
0 x

2 dMpxq   8.

Property (1) is obvious from (2.9). For a proof of (2)�(4), see [4, pp.162�163]. In fact,
item (4) is true for Apx, zq, for all z P C, see [4, pp.171�172].

2.3.2 The solutions Cpx, zq and Dpx, zq

We prove the identity

Cpx, zq � Apx, zq
» x

0

�
Apy, zq��2

dy, x P I, (2.12)

by showing that the right-hand side is a solution of pτ � zqf � 0 with the correct initial
values.

Let C̃px, zq denote the right-hand side of (2.12). For each r ¡ 0, the function Apxq
is bounded from below by

Apyq ¥ 1� r

» y
0
Mpξq dξ ¥ 1� rMpεqpy � εq,



12

for y not too close to 0, and Apyq ¥ 1 for y close to 0. This guarantees the convergence
of

³x
0 Apyq�2 dy for each x P I. When z R p0,8q, the convergence of ³x0 Apy, zq�2 dy is a

delicate issue, which is discussed in [4, pp.172�176].
It is easily seen that C̃px, zq has the required initial values for each z P C. It is a

solution because

d C̃ 1
�px, zq � d pA1

�

» x
0
A�2 dy �A�1q

� dA1
�

» x
0
A�2 dy �A1

�A
�2dx�A�2A1

�dx

� zC̃ dM.

Identity (2.12) is now established.
From Apx, zq and Cpx, zq, we de�ne a new solution Dpx, zq by making the following

linear combination of A and C:

Dpx, zq �
� » l�k

0

�
Apy, zq��2

dy
	
Apx, zq � Cpx, zq, x P p�8, l � ks, (2.13)

or equivalently

Dpx, zq � Apx, zq
» l�k
x

�
Apy, zq��2

dy, x P p�8, l � ks.

The constant 0 ¤ k ¤ 8 depends on the self-adjoint domains of τ , which will be
introduced in the next section.

When there is no confusion, we write Dpx, rq � Dpxq, for r ¡ 0. The solution Dpxq
has interesting properties � especially item (6):

(5) Dpxq is non-negative, non-increasing and convex, i.e. τD ¥ 0;

(6)
³l�k
0� D2 dM   8.

Item (5) is immediate. For a proof of item (6), we refer to [4, p.164�166].

2.4 Domains on which τ is a self-adjoint operator

To apply the theory for unbounded self-adjoint operators to τ , we need to restrict
Dτ to an appropriate Hilbert space. This is chosen to be the complex Hilbert space
M � L2pI, dMq, equipped with the scalar product

pf, gq% �
» l

0�
fpxqgpxq� dMpxq,

where g� is the complex conjugate of g. The new domain is

Dmax � tf P Dτ : }f}% � }τf}%   8u.
A problem arises: we might have τf � τg on a set of positive %-measure, even if

f � g %-almost everywhere. Equivalently, there are functions f which are 0 %-almost
everywhere but satisfy τf � 0 on a set of positive %-measure. An example of such a
function f P Dmax is

fpxq �

$'&'%
C0u0pxq, x P p�8, 0s
0, x P p0, ls
Clulpxq, x P pl,8q
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for the case when l �Mpl�q   8. We choose the fundamental system tu0, ulu to the
equation τf � 0, with the initial values u0p0q � ulplq � 0 and u1�,0p0q � u1�,lplq � 1.
The function f vanishes %-almost everywhere, and yet by (2.4), we obtain

τf � C01t0u � Cl1tlu.

This means, if %pt0uq ¡ 0 or %ptluq ¡ 0, τf � 0 on a set of positive measure and τ will
be multi-valued. See [6, pp.164�165] for a complete proof of this fact. Hence, we are
forced to work with τ on Dmax as a so-called relation, which is a generalization of the
notion of an operator. There are many similarities between the theory for relations and
the theory for operators. View [6, pp.213�214] for further details. We will denote an
operator by pτ,Dq, and a relation by tτ,Du.

As in the classical theory for unbounded self-adjoint operators, we specify the mini-
mal domain. Consider

D0 � tf P Dmax : supppfq is compact in Iu.

The adjoint of pτ,D0q is indeed tτ,Dmaxu. The minimal domain Dmin is de�ned as the
closure of D0 in M, and τ on Dmin is always an operator. See [6, pp.168,170].

Any self-adjoint extension of pτ,Dminq lies between Dmin and Dmax. The fact that
pτ,Dminq is an operator is necessary for our search. If it is a relation, then any extension
of it will be a relation. The multi-valuedness of τ will be carried further into all larger
domains.

We use the limit-point/limit-circle classi�cation of endpoints, as in the classical
Sturm-Liouville theory. Let x � a be the left endpoint. The operator τ is limit-circle
at a if for all z P C, there exists a fundamental system tu, vu to pτ � zqf � 0, such
that u and v are of the class L2pra, a� εq, dMq for some ε ¡ 0, or shortly, u and v are
L2 near x � a. Let x � b be the right endpoint. We have a similar de�nition for the
limit-circle case at b, but instead with the interval pb� ε, bs for some ε ¡ 0 if b is �nite,
and rN,8q for some N if b is in�nite. If τ is not limit-circle, then it is limit-point at that
endpoint. In fact, τ is limit-circle at an endpoint if and only if for some z0 P C, there is
a fundamental system which is L2 near that endpoint, see Lemma 5 in [6, p.172].

In this thesis, τ is always limit-circle at x � 0. The classi�cation of the endpoint
x � l breaks into three cases.

Case 1: when l�Mpl�q � 8 and
³l
0� x

2 dM � 8, the solution Apx, zq fails to be L2 near
x � l for all z P C, according to item (4) of Section 2.3.1 . Hence, τ is limit-point
at x � l.

Case 2: when l �Mpl�q � 8 and
³l
0� x

2 dM   8, both Apx, rq and Dpx, rq are L2 near
x � l whenever r ¡ 0, according to item (4) of Section 2.3.1 and item (6) of
Section 2.3.2. Hence, τ is limit-circle at x � l.

Case 3: when l �Mpl�q   8, the condition
³l
0� x

2 dM   8 is trivially satis�ed. Hence,

the solutions Apx, rq and Dpx, rq are L2 near x � l whenever r ¡ 0 by item (4)
and (6) in 2.3.1 and 2.3.2 respectively. Hence, τ is limit-circle at x � l.

A complete characterization of self-adjoint extensions for each of the above cases, and
when these are operators, can be found in [6]. A lot can be simpli�ed, using the
fundamental system tA,Cu, and the facts that % places a mass far from x � �8 and
that %ptluq � 0 in case 1 and 2. The characterization depends on the endpoints' types.
If τ is limit-point at an endpoint, there are no requirements on how the functions should
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behave at that endpoint, except that they should be L2 near it. If τ is limit-circle, we
always ask for more. For example, the boundary conditions at x � 0 are:

D�pτq � tf P Dτ : f is L2 near x � 0 and f 1�p0q � 0u.

A function f P Dτ is said to satisfy the boundary conditions at x � 0 if f P D�pτq.
The boundary conditions at the endpoint x � l are given case-wise.

Case 1: Since τ is limit-point at x � l, we only require

D�pτq � tf P Dτ : f is L2 near x � lu.

Case 2: The only choice possible for the spectrum to be non-positive is the Neumann
boundary condition

D�pτq � tf P Dτ : f is L2 near x � l and f 1�plq � 0u.

See [11, pp.74�75].

Case 3: We can "tie down" the strings in many di�erent ways thanks to the �niteness of l
and Mplq and choose among the following boundary conditions:

D�,k pτq � tf P Dτ : f is L2 near x � l and fplq � kf 1�plq � 0u or
D�,8pτq � tf P Dτ : f is L2 near x � l and f 1�plq � 0u

for 0 ¤ k   8. Only when %ptluq � 0 can the parameter k be chosen to be 0
because when k � 0 and %ptluq ¡ 0, we cannot erase the multi-valuedness of τ at
x � l, see Corollary 7.8�9 in [6, pp.184�185]. The requirement fplq � kf 1�plq � 0
is the same as fpl � kq � 0.

A function f P Dτ is said to satisfy the boundary condition at x � l if f P D�pτq.
Because of the tying constant k, we sometimes denote the short string as pl,M, kq.

Finally, the domains on which τ is self-adjoint are given by the recipe

Dpτq � D�pτq XD�pτq XDmax.

The boundary condition at x � 0 is of Neumann type, which means that we let
the string slides freely at x � 0. We may choose many other boundary conditions, for
example the Dirichlet boundary condition with fp0q � 0, or in general cospθqfp0q �
sinpθqf 1�p0q � 0 for some θ P r0, 2πq. When τ is limit-circle at both endpoints, there are
more complicated boundary conditions, for example the coupled boundary conditions,
see [6]. However, in this thesis, we only consider the separated boundary conditions,
which means that the boundary condition at x � 0 is not dependent on the boundary
condition at x � l.

Theorem 2.4 The operator pτ,Dpτqq is non-positive and self-adjoint.

For the proof of the non-positivity of pτ,Dpτqq, we refer to [4, pp.153�156].

Proposition 2.5 Each eigenvalue of τ is simple.
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Proof. A consequence of Theorem 2.4 is that the eigenvalues are real and non-positive.
Let γ P p�8, 0s be an eigenvalue, so that pτ � γqf � 0 has two non-trivial solutions
u1 and u2. Then, u1 and u2 must be of class D�pτq, hence u11,�p0q � u12,�p0q � 0.
Computing the left limit of the Wronskian at the point x � 0 gives

W pu1, u2qp0�q � u1p0�qu12,�p0�q � u11,�p0�qu2p0�q
� u1p0qu12,�p0q � u11,�p0qu2p0q
� 0,

which implies that u1 and u2 are linearly dependent.

Now, we can clarify the constant k in the de�nition of the solution Dpx, zq. In the
short-string case with pl,M, kq, we have

Dpx, zq � Apx, zq
» l�k
x

rApy, zqs�2 dy,

and in the long-string case, we have k � 0.

Lemma 2.6 The fundamental system tApx, zq, Dpx, zqu has the properties

Apx, zq P D�pτq, and Dpx, zq P D�pτq

for all z P C, and

Apx, zq R D�pτq, and Dpx, zq R D�pτq

for z P Czp�8, 0s. Furthermore, Apx, zq and Dpx, zq are unique, up to constant multi-

ples, in D�pτq and D�pτq respectively, for all z P C.

Remark 2.7. For a proof of Dpx, zq P D�pτq, see [4, pp.164�166, 175]. The rest is easy
to prove. By construction, A1�p0, zq � 0 for all z P C. Since τ is limit-circle at x � 0, all
solutions are L2 near x � 0 for all z P C. Hence, the solution Apx, zq is of class D�pτq.
Let z0 P Czp�8, 0s and suppose that Apx, z0q P D�pτq XD�pτq. Then, z0 would be
an eigenvalue, as Apx, z0q becomes an eigenfunction. This contradicts the fact that
pτ,Dpτqq is non-positive and self-adjoint. Hence, Apx, zq R D�pτq for z P Czp�8, 0s.
Let Ãpx, zq be another solution of class D�pτq. Then, W pA, Ãq � 0, which shows that
the solution space as a subspace of D�pτq has dimension one. Similar arguments apply
for Dpx, zq.

2.5 The resolvent operator

Since pτ,Dpτqq is self-adjoint and non-positive, the spectrum Σpτq is contained in the
non-positive real axis p�8, 0s. The resolvent set

ρpτq � tz P C : Gz � pz � τq�1 is a bounded and bijective operator on Mu

includes Czp�8, 0s. The map z ÞÑ Gz is an analytic map from ρpτq to the space of
bounded linear operators on M. The resolvent operator G is called the Green operator.
Since we only treat separated boundary conditions, we have the following simpli�ed
representation.
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Theorem 2.8 The Green operator Gz : MÑM admits the integral representation

Gzf �
» l

0�
Gzpx, yqfpyq dMpyq

� Dpx, zq
» x

0�
Apy, zqfpyq dMpyq �Apx, zq

» l
x
Dpy, zqfpyq dMpyq,

where the kernel Gzpx, yq is given by

Gzpx, yq �
#
Apx, zqDpy, zq, if x ¤ y

Apy, zqDpx, zq, if y ¤ x.

For a proof, see [4, pp.166�170]. A more operator-theoretical approach can be found
in [6, pp.188�189].

Remark 2.9. The function y1 ÞÑ Grpx, y1q on an interval I � ry � δ, y � δs � r0, lq is
Lipschitz continuous. This is because the derivatives of Apy1q or Dpy1q are uniformly
bounded on I whenever they exist, and they exist λ-almost everywhere on I.

Next, we want to know when Gz is compact.

Corollary 2.10 If τ is limit-circle at x � l, or if pl,Mq satis�es one of the following
conditions » l

0�
x dMpxq   8, or

» l
0
Mpxq dx   8, (2.14)

then Gz is a Hilbert-Schmidt operator, meaning that» l
0�

» l
0�
|Gzpx, yq|2 dMpxq dMpyq   8.

Proof. If τ is limit-circle, then Apx, zq and Dpx, zq are both of class L2pI, dMq and the
statement follows.

Suppose that pl,Mq satis�es one of the conditions in (2.14). It is su�cient to prove
that Gr is a Hilbert-Schmidt operator for r ¡ 0. Indeed, assume pr� τq�1 is a Hilbert-
Schmidt operator for r ¡ 0. Then, by the resolvent formula,

pz � τq�1 � pr � τq�1 � �pz � rqpz � τq�1pr � τq�1, z, r P ρpτq.
The right-hand side is a Hilbert-Schmidt operator because pz�τq�1 is bounded. Moving
pr� τq�1 from the left-hand side to the right-hand side, pz � τq�1 is a Hilbert-Schmidt
operator because it is the sum of two Hilbert-Schmidt operators.

For the real Green kernel Grpx, yq, we have the inequality
Grpx, yq ¤ mintGrpx, xq, Grpy, yqu,

implying that Grpx, yq2 ¤ Grpx, xqGrpy, yq and» l
0�

» l
0�
Grpx, yq2 dMpxq dMpyq ¤

� » l
0�
Grpx, xq dMpxq

	� » l
0�
Grpy, yq dMpyq

	
.

If
³l
0�Mpxq dx   8, we have Apl�q   8 by item (2) in Section 2.3.1. Using the

monotonicity of the real solutions Apxq and Dpxq, we estimate:» l
0�
Grpx, xq dMpxq �

» l
0�
ApxqDpxq dMpxq ¤ Dp0qApl�q   8.
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If
³l
0� x dMpxq   8, we have A1�pl�q   8 by property (5) of Apxq. This gives» l

0�
Grpx, xq dMpxq ¤ Dp0q

» l
0�
Apxq dMpxq � r�1Dp0qA1

�pl�q   8.

The last step in the above is obtained by di�erentiating the formula

Apxq � 1� r

» x
0
dξ

» ξ
0�
Apηq dMpηq,

yielding

A1
�pxq � r

» x
0
Apηq dMpηq.

The corollary is now established.

If τ is limit-circle at x � l, then Σpτq is discrete. By Proposition 2.5, the eigenvalues
must be simple.

The following estimate will come in handy.

Lemma 2.11
³l
0�Grpx, yq dMpyq ¤ r�1.

Proof.

r

» l
0�
Gpx, yq dMpyq

� rDpxq
» x

0�
Apyq dMpyq � rApxq

» l
x
Dpyq dMpyq

� Dpxq
» x

0�

�
τA

�pyq dMpyq �Apxq
» l
x

�
τD

�pyq dMpyq

� Dpxq
» x

0�

dA1�
dM

pyq dMpyq �Apxq
» l
x

dD1�
dM

pyq dMpyq

� DpxqA1
�pxq �Apxq�D1

�plq �D1
�pxq �

�
τD

�plq%ptluq�.
If %ptluq � 0, the above sum reduces to:

rGr1 � DpxqA1
�pxq �Apxq�D1

�plq �D1
�pxq

�
¤ DpxqA1

�pxq �ApxqD1
�pxq

�W pD,Aq
� 1.

In the above inequality, we use that D is non-increasing, hence D1�plq ¤ 0, and that
Apxq ¥ 0 for x P r0, lq.

If %ptluq ¡ 0, then by (2.4),

D1�plq �D1�plq
%ptluq � pτDqplq,

which gives

rGib1

� DpxqA1
�pxq �Apxq�D1

�plq �D1
�pxq

�
¤ DpxqA1

�pxq �ApxqD1
�pxq

� 1.

The proof is now complete.
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3 Krein's correspondence

3.1 The Weyl function and the spectral measure σ

Definition 3.1 Let tθz, φzu be a fundamental system of the equation pτ�zqf � 0, such
that φz P D�pτq and W pθz, φzq � 1. A singular Weyl-Titchmarsh-Kodaira function, or
just a Weyl function, is a function mpzq de�ned on �ρpτq � t�z | z P ρpτqu, such that
the linear combination

ψz � θz �mpzqφz
is of class D�pτq. The solution ψz is called a Weyl solution associated to mpzq.

From Section 2.3.2, we are provided with the formula

Dpx,�zq � �Cpx,�zq �Dp0,�zqApx,�zq, z P Czp�8, 0s.

The functions Cpx,�zq, Apx,�zq and Dpx,�zq solve the equation pτ � zqf � 0 and
meet the requirements of De�nition 3.1. Hence,

mpzq :� Dp0,�zq �
» l�k

0

�
Apy,�zq��2

dy, z P Czr0,8q

is a Weyl function, where k is the tying constant in the short-string case, and k � 0 in
the long-string case.

The Weyl function has always been of interest in the study of Sturm-Liouville opera-
tors because it contains all spectral information, which will be discussed more in details
in Section 3.3.1. As in the classical theory, mpzq is a Herglotz-Nevanlinna function, i.e.
mpzq is analytic in the upper half-plane H� � tz P C : Impzq ¡ 0u and it maps H�

into H�. Also, mpz�q � mpzq�, see Corollary 9.5 and Theorem 9.2 in [6].
More can be said: the function mp�zq has the limit limrÒ8mp�rq � 0, and we will

prove that mp�zq belongs to the following class.

Definition 3.2 A complex function f is said to be of the class S (or the class of
Stieltjes functions) if it satis�es

(1) f P HolpCzp�8, 0sq;
(2) Imfpzq ¤ 0 if Im z ¡ 0;

(3) fpxq ¥ 0 for x P p0,8q.
Remark 3.3. De�nition 3.2 is practical for our constructions. In the classical work [10],
written by Krein and Kac, the S-class is de�ned di�erently from here. Their Stieltjes
functions are analytic on Czr0,8q. The de�nition in [10] is ful�lled for fp�zq if and
only if f P S as in De�nition 3.2.

Theorem 3.4 f P S if and only if f has the integral representation

fpzq � C �
» 8

0�

dσpγq
γ � z

, z P Czp�8, 0s,

for some constant C ¥ 0 and a unique non-negative Borel measure σ, such that

C �
» 8

0�
p1� γq�1 dσpγq   8.
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Remark 3.5. For a proof, see Chapter 2 in [16]. In Theorem 3.4, it is su�cient to have the
integral representation of f P S for z P p0,8q. There exists a unique analytic extension
of f to the cut complex plan Czp�8, 0s and the extension satis�es De�nition 3.2.

The measure σ corresponding to mp�zq as in Theorem 3.4 will be referred to as the
spectral measure associated to the string pl,Mq, or mp�zq. Note that σ in this context
is the spectral measure associated to the operator p�τ,Dpτqq. Instead of proving its
existence directly, we will prove the eigendi�erential expansion of the real Green kernel,
which is extremely insightful, and from which we only need to set x � y � 0 and use
that Grp0, 0q � Dp0, rq � mp�rq to identify a spectral measure associated to mp�rq,
for r ¡ 0. The proof will be divided into several sections.

Theorem 3.6 There exists a non-negative Borel measure σ with support in r0,8q,
such that the real Green kernel can be expressed as

Grpx, yq �
» 8

0�

Apx,�γqApy,�γq
r � γ

dσpγq, (3.1)

for r ¡ 0, with 0 ¤ x, y ¤ l in the short-string case, and x, y   l in the long-string case,

as long as x and y don't belong to the same massless interval.

3.1.1 Construction of σ for short strings

Proof of Theorem 3.6. Due to self-adjointness of pτ,Dpτqq and Corollary 2.10, the re-
solvent operator Gr � pr� τq�1 is self-adjoint and compact for each r ¡ 0. There exists
an orthonormal basis tfnun¥1 consisting of eigenfunctions fn of Gr for the spaceM. The
functions fn are also eigenfunctions of τ . Because of the non-positivity of pτ,Dpτqq, we
have pτ � γnqfn � 0, for γn P r0,8q. According to Corollary 2.5, each eigenvalue is
simple. Hence, it must hold that

fnpxq � αnApx,�γnq,
for some complex scalars αn. In fact, αn can be chosen to be real, in view of Theorem
2.1, and then αn � }Apx,�γnq}�1

% because fn has unit length.
The resolvent Gr has the eigenvalues pr�γnq�1, which are all positive. Suppose the

following equality holds when x P r0, ls is held �xed:

Grpx, yq �
8̧

n�1

pr � γnq�1fnpxqfnpyq

�
8̧

n�1

pr � γnq�1α2
nApx,�γnqApy,�γnq,

(3.2)

for 0 ¤ y ¤ l and x, y not in the same massless interval, and where the equality is to be
understood as uniform convergence. We can then design a discrete non-negative Borel
measure σ with

σpBq :�
¸
γnPB

}Apx,�γnq}�2, B P BpRq. (3.3)

Note that supppσq � r0,8q but σ is de�ned on the whole R. We switch the sum in (3.2)
to the integral sign:

Grpx, yq �
» 8

0�

Apx,�γqApy,�γq
r � γ

dσpγq,
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which is what we want to prove for 0 ¤ x, y ¤ l and x, y not in the same massless
interval.

Now, we prove (3.2). We claim that the function

FN px, yq � Grpx, yq �
Ņ

n�1

pr � γnq�1fnpxqfnpyq

is a kernel for a non-negative integral operator for each �nite N ¥ 1, that is,» l
0�

� » l
0�
FN px, yqgpyq dMpyq

	
gpxq� dMpxq ¥ 0,

for all g PM. Indeed, since the functions fn are real, we have» l
0�

� » l
0�
FN px, yqgpyq dMpyq

	
gpxq� dMpxq

� pGr g, gq �
» l

0�

� » l
0�

Ņ

n�1

pr � γnq�1fnpxqfnpyqgpyq dMpyq
	
gpxq� dMpxq

� pGr g, gq �
Ņ

n�1

pr � γnq�1pfn, g�q
» l

0�
fnpxqgpxq� dMpxq

� pGr g, gq �
Ņ

n�1

pr � γnq�1pg, fnqpfn, gq

� pGr g, gq �
Ņ

n�1

pr � γnq�1|pg, fnq|2.

Expanding g � °
n¥1pg, fnqfn, we obtain now

pGr g, gq �
¸
n¥1

pg, fnqpGr fn, gq �
¸
n¥1

pr � γnq�1|pg, fnq|2.

The claim is now apparent. An implication of this is

FN px, xq � Grpx, xq �
Ņ

n�1

pr � γnq�1fnpxq2 ¥ 0,

at every growth point x ¤ l. If not, then FN px, xq   0 for some growth point x ¤ l.
Since FN px, xq is continuous, there is an interval pa, bq � r0, ls containing x, such that
FN pw,wq   0 for all a   w   b and that Mpbq �Mpaq ¡ 0. Then» l

0�

� » l
0�
FN px, yqχpa,bqpyq dMpyq

	
χpa,bqpxq� dMpxq   0,

which is a contradiction. So FN px, xq ¥ 0 at all growth points x P r0, ls. Di�erentiating
FN px, xq twice on massless intervals, we use that A1pxq ¥ 0 and that D1pxq ¤ 0 to
realize the concavity of FN px, xq for x on massless intervals:

F 2
N px, xq � 2

�
A1pxqD1pxq �

Ņ

n�1

pr � γnq�1rf 1npxqs2
	
¤ 0.
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Hence, we can extend the inequality FN px, xq ¥ 0 across massless intervals. This implies
that 8̧

n�1

pr � γnq�1f2
npxq ¤ Grpx, xq   8. (3.4)

for every 0 ¤ x ¤ l. This fact, together with the Cauchy-Schwarz inequality can be
used to estimate the tail of the sum��� Ņ

n�M
pr � γnq�1fnpxqfnpyq

���2
¤

� Ņ

n�M
pr � γnq�1f2

npxq
	� 8̧

n�1

pr � γnq�1f2
npyq

	
¤

� Ņ

n�M
pr � γnq�1f2

npxq
	
Grpy, yq,

which shows that the sum
°8
n�1pr�γnq�1fnpxqfnpyq converges uniformly to a continuous

function in the variable y as N Ñ 8 and as x is held �xed. Finally, the di�erence
Grpx, yq �

°8
n�1pr � γnq�1fnpxqfnpyq is orthogonal to every fk for each �xed x and

k � 1, 2, . . . because» l
0�

�
Grpx, yq �

8̧

n�1

pr � γnq�1fnpxqfnpyq
�
fkpyq dMpyq

�
�
Grfk

	
pxq � pr � γkq�1fkpxq � 0,

which by Bessel's inequality implies that���Grpx, yq � Ņ

n�1

pr � γnq�1fnpxqfnpyq
���Ñ 0, N Ñ8.

So, for each �xed x P r0, ls, the series in (3.2) has a uniform limit, which is a continuous
function in y. Moreover, its L2-limit is Grpx, . q in M. Since Grpx, yq is continuous in
y, (3.2) must hold pointwise for %�almost every y P r0, ls. If x and y belong to di�erent
massless intervals, say y P pa, bq, then both sides of (3.2) are linear functions in y having
the same initial values at y � a. Hence, the equality in (3.2) also holds for this case. If
x and y belong to the same massless interval, say x, y P pa, bq, then Grpx, yq attains its
maximum at y � x. However, on the right-hand side of (3.1), because Apy,�γq is linear
on massless intervals, the series cannot attain a maximum on pa, bq. By symmetry, the
same holds when y is held �xed and everything is regarded as continuous functions in
x. The claim of Theorem 3.6 is now proved.

3.1.2 Existence of σ for long strings

The idea is to approximate the long string pl,Mq with a sequence of short strings
pln,Mn, knq and de�ne σ as a weak limit of σn associated to pln,Mn, knq.

Let tLnu8n�1 be a sequence of points with the properties

%ptLnuq � 0,

0   Ln�1   Ln   l for all n, and

lim
n Ò8

Ln � l.
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The short strings have lengths ln, which are

ln � suptx   Ln
��x is a point of growth of Mu,

with the mass functions

Mnpxq �
#
Mpxq, x ¤ ln

Mplnq, x ¡ ln.

The tying constants are
kn � Ln � ln.

Let pτ,Dpτqq be the operator from pl,Mq, and pτn,Dpτnqq from pln,Mn, knq. If Apxq is
a solution in D�pτq, then Apxq for x   Ln is a solution of class D�pτnq. Hence, the
solutions Dnpxq are given by

Dnpxq � Apxq
» Ln
x

Apyq�2 dy,

which increase to the solution Dpxq P D�pτq as Ln Ñ l. Using Theorem 3.6 for short
strings, we have a spectral measure σn for each pln,Mn, knq, such that

Gpnq
r p0, 0q � Dnp0, rq �

» 8

0�

1

r � γ
dσnpγq, r ¡ 0. (3.5)

Since
Dnp0, rq ¤ Dp0, rq and lim

n Ò8
Dnp0, rq � Dp0, rq, (3.6)

the total variations of the measures dFnpγq � p1� γq�1 dσnpγq are uniformly bounded
by Dp0, 1q. Let Fn denote the distribution functions associated to dFn. By Helly's
Selection Theorem, there is a subsequence tFnku, and a distribution function Fpγq,
such that

lim
k Ò8

Fnkpγq � Fpγq,

for all points of continuity γ of F . This suggests a candidate for the spectral function
σ:

dσ :� p1� γq dF ,
where dF is the bounded positive Borel measure associated to F . The measure σ is
simply

dσ � p1� γq lim
k Ò8

dFnk

� p1� γq lim
k Ò8

p1� γq�1 dσnk

� lim
k Ò8

dσnk .

The convergence here is at least in the weak sense, that is,
³
f dFnk Ñ

³
f dF , for all

bounded continuous functions f on r0, lq.
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Proof of Theorem 3.6. For simplicity, we drop the index k and write dσ � limn dσn.
Pick x, y not in the same massless interval and let r ¡ 0. We examine the di�erence

Grpx, yq �G1px, yq
� lim

n Ò8
�
Gpnq
r px, yq �G

pnq
1 px, yq�

� lim
n Ò8

� » 8

0�

Apx,�γqApy,�γq
r � γ

dσnpγq �
» 8

0�

Apx,�γqApy,�γq
1� γ

dσnpγq
�

� lim
n Ò8

p1� rq
» 8

0�

Apx,�γqApy,�γq
p1� γqpr � γq dσnpγq.

(3.7)

Suppose the following holds:

lim
n Ò8

» 8

0�

Apx,�γqApy,�γq
p1� γqpr � γq dσnpγq �

» 8

0�

Apx,�γqApy,�γq
p1� γqpr � γq dσpγq. (3.8)

Then we can decompose the integrand in (3.7) and obtain

Grpx, yq �G1px, yq �
» 8

0�

Apx,�γqApy,�γq
r � γ

dσpγq �
» 8

0�

Apx,�γqApy,�γq
1� γ

dσpγq.

This means that

Grpx, yq �
» 8

0�

Apx,�γqApy,�γq
r � γ

dσpγq � C,

in which the constant C is independent of the spectral parameter r. To show that
C � 0, we �x y and use that y1 ÞÑ Grpx, y1q on a small interval ry�δ, y�δs is Lipschitz-
continuous, meaning

Grpx, yq ¤ Grpx, y1q �K|y � y1|,
for all y1 P I � ry � δ, y � δs � r0, lq and for some constant K ¡ 0, see Remark 2.9.
Applying Lemma 2.11, we have

Grpx, yq ¤ r%pIqs�1

» y�δ
y�δ

Grpx, y1q dMpy1q � r%pIqs�1

» y�δ
y�δ

K |y � y1|dMpy1q

¤ r%pIqs�1r�1 � r%pIqs�1δ K %pIq
� %pIq�1r�1 � δ K,

for each r ¡ 0. Letting r Ñ8 and δ Ñ 0, we get that the constant term C must be 0.
It remains to prove (3.8). We split the integrals into two pieces:» 8

0�

Apx,�γqApy,�γq
p1� γqpr � γq dσnpγq

�
» N

0�

pApx,�γqApy,�γq
p1� γqpr � γq dσnpγq �

» 8

N

Apx,�γqApy,�γq
p1� γqpr � γq dσnpγq.

The �rst piece converges to the integral

lim
n Ò8

» N
0�

Apx,�γqApy,�γq
pr � γq

dσnpγq
1� γ

�
» N

0�

Apx,�γqApy,�γq
pr � γq

dσpγq
1� γ

,
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because the integrand Apx,�γqApy,�γq
r�γ is continuous and bounded on r0, Nq. The sec-

ond piece goes to zero independently of n as N Ñ 8. Indeed, for each n, we have
from (3.5), (3.6) and then from (3.4) the inequalities» 8

0�

�
Apx,�γq�2

r � γ
dσnpγq ¤

» 8

0�

�
Apx,�γq�2

r � γ
dσpγq ¤ Grpx, xq,

for every x ¤ l. Using the Cauchy-Schwarz inequality, we obtain» 8

N

Apx,�γqApy,�γq
p1� γqpr � γq dσnpγq

¤
�

sup
tγ¡Nu

p1� γq�1
	 » 8

N

Apx,�γqApy,�γq
r � γ

dσnpγq

¤pN � 1q�1
� » 8

N

�
Apx,�γq�2

r � γ
dσnpγq

�1{2 � » 8

N

�
Apy,�γq�2

r � γ
dσnpγq

�1{2

¤pN � 1q�1Grpx, xq1{2Grpy, yq1{2,

which goes to 0 as N Ñ8 when x and y are held �xed. The proof is now complete.

3.2 The inverse spectral problem

In the prior sections, we associate each string pl,Mq with a spectral measure σ, which
is automatically unique in virtue of Theorem 3.4. The question now is: given any non-
negative Borel measure σ with supppσq � r0,8q and ³8

0�p1 � γq�1 dσpγq   8, is there
a pair pl,Mq with σ as its spectral measure?

Krein's correspondence has con�rmed that such a string can be found. Moreover,
such a string is unique. The existence part of Krein's correspondence will be dealt with
in this section. Due to the complexity of the proof for uniqueness, which involves for
example de Branges spaces, it will not be included in this thesis. For the interested
readers, we refer to [4] and [10].

3.2.1 De�nition and structure of the space L2pR, d∆q

Let pl,Mq be given and let σ be the associated spectral measure. We de�ne the measure
∆ on pR,BpRqq by introducing the variable γ � ξ2 in the following way: for all r ¡ 0,
we have » 8

0

dσpγq
r � γ

� 1

2

» 8

0

d∆pξq
r � ξ2

� 1

2

» 0�

�8

d∆pξq
r � ξ2

and σpt0uq � ∆pt0uq, so that for all Borel sets B � p0,8q, we have

σpBq �
»
B
dσpγq �

»
�?BY?B

d∆pξq � 1

2
∆p
?
Bq � 1

2
∆p�

?
Bq, (3.9)

where
?
B and �?B denote the sets t?b | b P Bu and t�?b | b P Bu respectively.

Naturally, if 0 P B � r0,8q, then

σpBq � σpt0uq �
»
Bzt0u

dσpγq � σpt0uq � 1

2
∆
�a

Bzt0u�� 1

2
∆
��a

Bzt0u�. (3.10)
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We have redistributed the mass of the spectral measure σ over the whole real line
symmetrically around the origin and the new measure ∆ has a double jump at the
origin. By construction, we have» 8

0�

dσpγq
1� γ

�
» 8

�8

d∆pξq
1� ξ2

  8.

Conversely, whenever we are provided with a measure ∆ with the properties

(1) ∆ is a non-negative Borel measure,

(2) ∆ distributes its mass symmetrically around the origin,

(3)
³
Rp1� ξ2q�1 d∆pξq   8,

a spectral measure σ can be extracted.

Definition 3.7 A measure ∆ with property (1)�(3) is called a principal spectral mea-
sure. Given a string pl,Mq, we say ∆ is the principal spectral measure associated to
pl,Mq if

Dp0, rq �
» 8

�8

d∆pξq
r � ξ2

holds for all r ¡ 0.

Instead of �nding a string for a given measure σ, we �nd a string for a given ∆ with
property (1)�(3).

We denote L2pR, d∆q by Zp∆q. Let Zep∆q be the subspace of even functions in Zp∆q,
and Zop∆q the subspace of odd functions in Zp∆q. We introduce the even transform,
which maps M isomorphically onto Zep∆q, and the odd transform, which maps the
subspace S of Lebesgue square-integrable functions, which are constant on massless
intervals, onto Zop∆q. For the string with l � 8 and Mpxq � x � 1r0,8q, the even and
odd transforms correspond to the cosine and sine transforms

f ÞÑ
» 8

0
cospξxqfpxq dx, f ÞÑ

» 8

0
sinpξxqfpxq dx

respectively.
We present only a summary of the relevant results here.

Theorem 3.8 The mapping, known as the even transform,

f ÞÑ pfepξq � » l
0�
Apx,�ξ2qfpxq dMpxq

is an isomorphism from M to Zepσq. It has the inverse

pfe ÞÑ � pfepξq�q� fpxq �
» 8

�8
Apx,�ξ2q pfepξq d∆pξq.

The even transform satis�es the Plancherel identity

}f}2% �
» l

0�
|fpxq|2 dMpxq �

» 8

�8
| pfepξq|2 d∆pξq � } pfe}2∆.
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Remark 3.9. When l�Mpl�q � 8, the integrals in Theorem 3.8 might not exist in the
traditional sense. In such case, the even transform and its inverse are to be understood
as improper integrals

lim
x Ò8

��� pfe � » x
�x
Af dM

���
∆
� 0, lim

x Ò l

���f � » x
0�
A pfe d∆

���
%
� 0.

The proof idea is to use the eigendi�erential expansion (3.1) of Grpx, yq to prove
the Plancherel identity for functions f P M which vanish near x � l. Then, the even
transform can be extended to Zep∆q. The challenging part of the proof is to show its
surjectivity. For more details, see [4, pp.186�188]. An alternative route with a spectral
theoretical approach can be found in [12], in which (3.1) is not assumed.

The appropriate domain for the odd transform is the space S � L2pr0, l � ks, dxq,
which consists of functions constant on massless intervals. The kernel for the odd
transform is

Bpx, ξq � ξ�1A1
�px,�ξ2q.

The motivation behind Bpx, ξq is that the equation

τf � �ξ2f

can be rewritten as the system�
df
dg



�

�
0 ξ
�ξ% 0


�
f
g



.

We present the counterpart of Theorem 3.8 for the odd transform.

Theorem 3.10 The mapping, known as the odd transform,

f ÞÑ pfopξq � » l�k
0

Bpx, ξqfpxq dx,

is an isomorphism from S to Zop∆q with the inverse

pfo ÞÑ � pfopξq�q� fpxq �
» 8

�8
Bpx, ξq pfopξq d∆pξq.

The odd transform satis�es the Plancherel identity

}f}2x �
» l�k

0
|f |2 dx �

» 8

�8
| pfo|2 d∆ � } pfo}2∆.

Remark 3.11. Similar to Remark 3.9, pfo P Zop∆q and � pfo�qP S are to be understood as
the L2-limits in the respective spaces when the integrals do not exist in the traditional
sense.

Theorem 3.8 and 3.10 have the following useful consequences.

Corollary 3.12 We have for 0 ¤ x   l and x � l only when l �Mpl�q   8
(1)

}Apx,�ξ2q}2∆ � %ptxuq�1, (3.11)

whenever x is a growth point of M , with x � l excluded in the case pl,M, k � 0q.
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(2)

}Bpx, ξq}2∆ � px� � x�q�1, (3.12)

with

x� :� supty   x | y is a growth point of Mu
x� :� suptz ¡ x | z is a growth point of Mu,

and x� � l � k when x � l in the short-string case.

(3) » 8

�8

d∆pξq
ξ2

�
#
l � k, when l �Mpl�q   8
l, when l �Mpl�q � 8. (3.13)

Remark 3.13. For a proof, see [4, pp.185�194]. One should compare (3.11) to how σ
(and hence ∆ via (3.9)) is constructed in (3.3), as it reveals a duality between % and σ
(or ∆).

Lastly, we discuss the dimension of Zp∆q. If the number of growth points of ∆ is
�nite, that is,

∆ �
ņ

k�1

akδ�ξ2k �
ņ

k�1

akδξ2k
, 0   ak   8, and ξ2

k   ξ2
k�1, for all k � 1, . . . , n,

we observe that the dimension cannot be in�nite. It must in fact equal the number of
jumps of ∆. Indeed, the functions

1p�8,�ξ2nq, . . . ,1p�ξ22 ,�ξ21q,1pξ21 ,ξ22q, . . . ,1pξ2n,8q

belong to the equivalence class r 0 s in Zp∆q. Hence, the activity of any function on those
intervals will not contribute to its Z-norm. An orthogonal basis of Zp∆q consists of
1t�ξ2ku and 1tξ2ku, for k � 1, . . . , n. This discussion prepares the way for the construction

of pl,Mq when ∆ is discrete.

3.2.2 Construction of pl,Mq for discrete ∆

Let d ¤ 8 denote the number of jumps of ∆. The key here is to de�ne the functions

Apx,�ξ2q, and Bpx, ξq.

We assume that the powers tξnudn�0 all have �nite Z-norm, and that they form a ba-
sis for Zp∆q. Then, there is a perpendicular basis of alternatively even and odd real
polynomials in the variable ξ:

A0, B1, A2, . . . , A2n, B2n�1, . . . ,

where degpA2nq � 2n   d and degpB2n�1q � 2n � 1   d. Note that A2n and B2n�1

are not assumed to have unit length. The space spanned by tA2kuk¥0 is Zep∆q and the
space spanned by tB2k�1uk¥0 is Zop∆q.

Since ξ�1 pA2npξq � A2np0qq is an odd polynomial of degree 2n � 1, it will be per-
pendicular to B2n�1pξq, meaning» 8

�8

A2npξq �A2np0q
ξ

B2n�1pξq d∆pξq � 0
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and hence,

A2np0q
» 8

�8

B2n�1pξq
ξ

d∆pξq �
» 8

�8
A2npξqB2n�1pξq

ξ
d∆pξq.

In the above, ξ�1B2n�1pξq is an even polynomial of degree 2n. Hence, the right-hand
side cannot vanish for 2n� 1   d. By the same reasoning, the quantity

A2n�2p0q
» 8

�8

B2n�1pξq
ξ

d∆pξq � �
» 8

�8

A2n�2pξq �A2n�2p0q
ξ

B2n�1pξq d∆pξq

is non-zero, for 2n� 2   d. This allows us to rescale the even and odd polynomials, so
that

A2np0q � 1, and

» 8

�8

B2n�1pξq
ξ

d∆pξq � �1, (3.14)

for 2n   d and 2n� 1   d. The following lemma relates A2n�2 and A2n to B2n�1 and
B2n�2, and vice versa.

Lemma 3.14 We have:

(1) for 2 ¤ 2n� 2   d,
A2n�2pξq �A2npξq

ξ B2n�1pξq � }B2n�1}�2
∆ ,

(2) for 1 ¤ 2n� 1   d,
B2n�1pξq �B2n�1pξq

�ξ A2npξq � }A2n}�2
∆ ,

where we de�ne B�1 :� 0.

Proof. To prove item (1) and (2) requires the same technique. For (1), let 2 ¤ 2n�2   d.
We consider the polynomial

P pξq :� A2n�2pξq �A2npξq
ξ

.

By (3.14), the constant term of A2n�2�A2n vanishes. Hence, P pξq is an odd polynomial
of degree 2n � 1. Furthermore, P pξq is perpendicular to the powers ξ, ξ3, . . . , ξ2n�1

because » 8

�8

A2n�2pξq �A2npξq
ξ

� ξ2k�1 d∆pξq

�
» 8

�8
A2n�2pξq ξ2k d∆pξq �

» 8

�8
A2npξq ξ2k d∆pξq

�0,

where we have used that A2n�2 and A2n belong to the orthogonal complement of

spanpA0, . . . , A2n�2q � spanp1, ξ2, . . . , ξ2n�2q.

Hence, we must have
A2n�2pξq �A2npξq

ξ
� c �B2n�1pξq,
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which leads us to the desired equation

c}B2n�1}2∆ �
» 8

�8

A2n�2pξq �A2npξq
ξ

B2n�1pξq d∆pξq

� �
» 8

�8
A2npξq B2n�1pξq

ξ
d∆pξq

� �A2np0q
» 8

�8

B2n�1pξq
ξ

d∆pξq

� 1.

In the second line, we use that A2n�2 is perpendicular to ξ
�1B2n�1, as degpξ�1B2n�1q �

2n. In the third line, we use that ξ�1
�
A2npξq�A2np0q

�
is perpendicular to B2n�1 because

it is an odd polynomial of degree exactly 2n� 1. The proof for (1) is now done.
The proof for (2) is similar. For n � 0, we have A0 � 1 and B1 � cξ. Hence, by

using (3.14), we obtain

�1 �
» 8

�8

B1pξq
ξ

d∆pξq � c

» 8

�8
d∆pξq � c }A0}2.

Since B�1 � 0, the case when n � 0 is proved. For 1   2n� 1   d, we observe that

B2n�1pξq �B2n�1pξq
ξ

is an even polynomial of degree 2n and it is perpendicular to the powers 1, ξ2, . . . , ξ2n�2.
Thus, it must be parallel to A2n, and consequently,

c}A2n}2∆ �
» 8

�8

B2n�1pξq �B2n�1pξq
ξ

A2npξq d∆pξq

�
» 8

�8

B2n�1pξq
ξ

A2npξq d∆pξq

� A2np0q
» 8

�8

B2n�1pξq
ξ

d∆pξq

� �1.

The proof for (2) is now complete.

We de�ne the masses %n and the spacings xn�1 � xn by

%n :� }A2n}�2
∆ , and xn�1 � xn :� }B2n�1}�2

∆ ,

with x0 :� 0, for 2n   d and 2n� 1   d.

Theorem 3.15 Suppose d   8. Let N be such that d � 2N � 1 or d � 2N � 2. Let
pl,M, kq be the string

l � xN

Mpxq �
¸
xn¤x

%n, n P t0, 1, . . . , Nu,

k �
#
xN�1 � xN , if d � 2N � 2

8, if d � 2N � 1
.

Then, ∆ is the principal spectral measure associated to pl,M, kq.
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Remark 3.16. If d � 2N � 2, the positions of the masses are

%0 is placed at x0 � 0,

%1 is placed at x1,

. . .

%N is placed at xN .

While xN�1 is de�ned, the mass %N�1 is not. So there is no mass placed at the point
xN�1, hence k � xN�1�xN in this case. If d � 2N �1, the above placements of masses
are the same up to xN . However, the point xN�1 is not de�ned, hence k � 8 in this
case.

Proof. We de�ne the function Apx,�ξ2q by

Apx,�ξ2q :� A2npξq � px� xnqξB2n�1pξq, x P rxn, xn�1q (3.15)

for 0 ¤ n ¤ N , and Apx,�ξ2q � 1 for x   0. On each interval rxn, xn�1q, Apx,�ξ2q is
linear with the slope ξB2n�1pξq, meaning

A1
�px,�ξ2q � ξ B2n�1pξq, x P rxn, xn�1q,

and hence
Bpx, ξq � B2n�1pξq, x P rxn, xn�1q. (3.16)

At each point xn P r0, ls, we have the left limit

lim
x Òxn

Apx,�ξ2q
� lim
x Òxn

A2n�2pξq � px� xn�1qξB2n�1pξq
� A2n�2pξq � pxn � xn�1qξB2n�1pξq
� A2n�2pξq �

�
A2n�2pξq �A2npξq

�
� A2npξq,

using item (1) of Lemma 3.14. The right limit is also A2npξq. Hence, the function
Apx,�ξ2q is continuous at all points x P r0, ls.

We want to check that Apx,�ξ2q is a solution to pτ � ξ2qf � 0 with Ap0,�ξ2q � 1
and A1�p0,�ξ2q � 0. According to (2.4), this is the same as checking that

A1�pxn,�ξ2q �A1�pxn,�ξ2q
%n

� �ξ2Apxn,�ξ2q,

for 0 ¤ xn ¤ l, which is easily done using item (2) of Lemma 3.14

A1�pxn,�ξ2q �A1�pxn,�ξ2q
%ptxnuq � ξ

�
B2n�1pξq �B2n�1pξq

�
%n

� � ξ2A2npξq
� � ξ2Apxn,�ξ2q.

Let ∆� be the principal spectral measure of the string pl,M, kq. Denote L2pR, d∆�q
by Zp∆�q. Let Zep∆�q be the subspace of even functions in Zp∆�q and Zop∆�q the
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subspace of odd functions in Zp∆�q. The even transform from M to Zep∆�q has the
discrete form

pfepξq � » l
0�
Apx,�ξ2qfpxq dMpxq

�
Ņ

j�0

fpxjqApxj ,�ξ2q%ptxjuq

�
Ņ

j�0

fpxjqA2jpξq%j .

The space M is spanned by the orthogonal basis t1txjuuNj�0. Via the even transform, we
obtain an orthogonal basis for Zep∆�q, which is

z1txjuepξq � A2jpξq%j ,

because the even transform is a vector space isomorphism. In addition, according
to (3.11), we have

}A2jpξq}2∆� � %�1
j � }A2jpξq}2∆.

We have shown that the spaces Zep∆�q and Zep∆q share the basis tA2juNj�0 and the basis
elements have the same length in both spaces. It is also clear that pf, gq∆� � pf, gq∆.
So, Zep∆�q � Zep∆q.

Recall that S is a subspace of L2pr0, l� ks, dxq and it consists of functions constant
on the massless intervals of Mpxq. By (3.16), the odd transform from S to Zop∆�q is
given by

pfopξq � » l�k
0

Bpx, ξqfpxq dx

�
N�1̧

j�0

fpxjqBpxj , ξqpxj�1 � xjq

�
N�1̧

j�0

fpxjqB2j�1pξqpxj�1 � xjq,

when d � 2N � 1, and

pfopξq � Ņ

j�0

fpxjqB2j�1pξqpxj�1 � xjq,

when d � 2N�2, see Remark 3.16. We take the orthogonal basis t1trxj ,xj�1quu for j from
0 up to N�1 or N , depending on the dimension d, in S to produce the orthogonal basis
tB2j�1u in Zop∆�q. Then, we argue as in the above to establish that Zop∆�q � Zop∆q.

Finally, we must check that ∆�pBq � ∆pBq for all Borel sets B, that is,» 8

�8
1Bpξq d∆�pξq �

» 8

�8
1Bpξq d∆pξq.

Since
p1B, A2jq∆� � p1B, A2jq∆,
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which we denote by αj , and

p1B, B2j�1q∆� � p1B, B2j�1q∆,
which we denote by βj , we get» 8

�8
1Bpξq d∆�pξq � }1B}2∆�

�
Ņ

j�0

|αj |2}A2j}2∆� �
N�1̧

j�0

|βj |2}B2j�1}2∆�

�
Ņ

j�0

|αj |2}A2j}2∆ �
N�1̧

j�0

|βj |2}B2j�1}2∆

� }1B}2∆
�
» 8

�8
1Bpξq d∆pξq,

when d � 2N � 1. A similar argument works for d � 2N � 2. The proof is now
complete.

For d � 8, we instead construct the string as follows.

Theorem 3.17 Suppose d � 8. Let pl,M, kq be the string with
l � lim

n Ò8
xn

Mpxq �
¸
xk¤x

%k

k �
#

0, if } ξ�1 }∆   8
8, if } ξ�1 }∆ � 8.

Then, ∆ is the principal spectral measure of pl,M, kq.
Remark 3.18. The tying constant k is only relevant in the case l �Mpl�q   8.

Let ∆� be the principal spectral measure of the string in Theorem 3.17. As in the
�nite dimensional case, we have matching moments, meaning» 8

�8
ξ2n d∆�pξq �

» 8

�8
ξ2n d∆pξq, n � 0, 1, . . . . (3.17)

Since the dimension is in�nite, it is di�cult to conclude that Zp∆�q � Zp∆q. The
following lemma provides an essential tool.

Lemma 3.19 Assume (3.17) holds for ∆ and ∆�. Then, we have the estimate

Cpx, rq
Apx, rq ¤

» 8

�8

d∆pξq
r � ξ2

¤ C 1�px, rq
A1�px, rq

,

for x   l and r ¡ 0, where the function Apx, zq is the broken line as in (3.15), and the

function Cpx, zq is given by

Cpx, zq � Apx, zq
» x

0

�
Apy, zq��2

dy.
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Proof. Let pl,M, kq be the string in Theorem 3.17. Recall that Cpx, rq is the unique
solution to the equation pτ�rqf � 0 with the initial values Cp0, rq � 0 and C 1�p0, rq � 1.
De�ne

C̃px, rq :�
» 8

�8

Apx, rq �Apx,�ξ2q
r � ξ2

d∆pξq, (3.18)

when 0   x   l, and C̃px, rq � x when x ¤ 0. We want to show that Cpx, rq � C̃px, rq
using uniqueness of a solution with given intial values. We already have that C̃ 1�p0, rq �
C 1�p0, rq � 1. By the de�nition of C̃, the left limit is limxÒ0 C̃px, rq � 0. For the right
limit, we use that Ap0,�ξ2q � Ap0, rq � 1 in the following

C̃p0, rq �
» 8

�8

Ap0, rq �Ap0,�ξ2q
r � ξ2

d∆pξq � 0.

According to (2.4), it is su�cient to check that

C̃ 1
�pxn, rq � C̃ 1

�pxn, rq � %n r C̃pxn, rq,

for all 0   xn   l to show that C̃ is a solution. On the intervals xn ¤ x   xn�1, we can
interchange integration and di�erentiation to compute C̃ 1� and C̃ 1�. Indeed, we have

d�
dx
pApx, rq �Apx,�ξ2qq � i

?
rB2n�1pi

?
rq � ξB2n�1pξq

is a polynomial in ξ2 of degree n � 1 with a root ξ2 � �r, which implies that the
integrand

A1�px, rq �A1�px,�ξ2q
r � ξ2

is a polynomial in ξ2 of degree n. The hypothesis placed on ∆ is that all even polynomials
are integrable, which implies that all polynomials are integrable and hence the integrand
is integrable. So di�erentiation under the integral sign is justi�ed in this case. The left
and right derivatives of C̃px, rq at 0   x � xn   l are

C̃ 1
�pxn, rq �

» 8

�8

i
?
rB2n�1pi

?
rq � ξB2n�1pξq

r � ξ2
d∆pξq,

C̃ 1
�pxn, rq �

» 8

�8

i
?
rB2n�1pi

?
rq � ξB2n�1pξq

r � ξ2
d∆pξq.

We use item (2) of Lemma 3.14, then add and subtract %nApxn,�ξ2q to obtain

C̃ 1
�pxn, rq � C̃ 1

�pxn, rq � %n r C̃pxn, rq � %n

» 8

�8
A2npξq d∆pξq

� %n r C̃pxn, rq � %n
�
A2n, A0

�
∆

� %n r C̃pxn, rq,
because A2n is assumed to be orthogonal to A0 in Zp∆q for n ¥ 1. We have now
con�rmed that

C̃px, rq � Apx, rq
» x

0

�
Apy, rq��2

dy � Cpx, rq.

De�ne

D̃px, rq :�
» 8

�8

Apx,�ξ2q
r � ξ2

d∆pξq,
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for x   l and r ¡ 0. Note that

C̃px, rq �
» 8

�8

d∆pξq
r � ξ2

Apx, rq � D̃px, rq

and

C̃ 1
�px, rq �

» 8

�8

d∆pξq
r � ξ2

A1
�px, rq � D̃1

�px, rq,

where D̃1�px, rq �
³8
�8A

1�px,�ξ2qpr�ξ2q�1 d∆. Here, di�erentiation under the integral

sign can be justi�ed as before. Replacing C̃ by C, the proof will be complete once D̃ ¥ 0
and D̃1� ¤ 0 is proved.

For y ¥ x, the claim is that the integrand in (3.18) is orthogonal to Apy,�ξ2q, that
is » 8

�8

Apx, rq �Apx,�ξ2q
r � ξ2

Apy,�ξ2q d∆pξq � 0.

Indeed, the numerator of the integrand in (3.18) is a polynomial in ξ2 with a root
ξ2 � �r. Hence, the integrand in (3.18) has a lower degree than Apy,�ξ2q and these
are orthogonal to each other by construction. Letting y � x and rearranging terms, we
�nd that

D̃px, rq � �
Apx, rq��1

» 8

�8

�
Apx,�ξ2q�2

r � ξ2
d∆pξq.

Since Apx, rq ¡ 0 for all x   l and r ¡ 0, we have D̃px, rq ¥ 0.
The right derivative of D̃ is

D̃1
�px, rq �

» 8

�8

A1�px,�ξ2q
r � ξ2

d∆pξq �
» 8

�8

ξBpx, ξq
r � ξ2

d∆pξq,

where Bpx, ξq � B2n�1pξq, for xn ¤ x   xn�1. We repeat the argument as before to
realize that the polynomial

ξBpx, i?rq � i
?
rBpx, ξq

r � ξ2

is of lower degree than that of Bpy, ξq for y ¥ x, and thus orthogonal to Bpy, ξq. Letting
y � x and rearranging terms again, we �nd that

D̃1
�px, rq �

i
?
r

Bpx, i?rq
» 8

�8

�
Bpx, ξq�2

r � ξ2
d∆pξq.

Replacing Bpx, i?rq by pi?rq�1A1�px, rq, then using that A1�px, rq ¥ 0 and r ¡ 0, the
right derivative D̃1� is non-positive as we can see:

D̃1
�px, rq � � r

A1�px, rq
» 8

�8

�
Bpx, ξq�2

r � ξ2
d∆pξq ¤ 0.

We now have

D̃px, rq �
» 8

�8

d∆pξq
r � ξ2

Apx, rq � Cpx, rq ¥ 0

D̃1
�px, rq �

» 8

�8

d∆pξq
r � ξ2

A1
�px, rq � C 1

�px, rq ¤ 0,

for x   l and r ¡ 0, which gives the desired estimate.
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Lemma 3.19 is su�cient to prove Theorem 3.17 for the case l �Mpl�q � 8.

Proof of Theorem 3.17 when l �Mpl�q � 8. The goal is to establish» 8

�8

d∆pξq
r � ξ2

�
» 8

�8

d∆�pξq
r � ξ2

,

for all r ¡ 0, because the functions
 pr � ξ2q�1

(
r¡0

are dense in the class of even
continuous functions of ξ vanishing at 8, see [4, p.179].

According to Lemma 3.19, we already have

Cpx, rq
Apx, rq ¤

» 8

�8

d∆pξq
r � ξ2

¤ C 1�px, rq
A1�px, rq

,

for x   l and r ¡ 0. When l �Mpl�q � 8, the claim is that the solutions A and C
obey

(1)

lim
x Ò l

Cpx, rq
Apx, rq �

C 1�px, rq
A1�px, rq

� 0,

(2)

lim
x Ò l

C 1�px, rq
A1�px, rq

� Dp0, rq.

Item (1) is a consequence of the Wronskian

Apx, rqC 1
�px, rq �A1

�px, rqCpx, rq � 1,

for all x   l. Rearranging terms, we �nd that

C 1�px, rq
A1�px, rq

� Cpx, rq
Apx, rq �

1

Apx, rq
1

A1�px, rq
.

Since l �Mpl�q � 8, l � 8 or Mpl�q � 8. Consequently,
³l
0M dx or

³l
0� x dM fails

to be �nite. By item (2) or (3) in Section 2.3.1, we must have

lim
x Ò l

Apx, rq � 8, or lim
x Ò l

A1
�px, rq � 8.

Item (1) is now established. Item (2) is easy:

C 1�px, rq
A1�px, rq

�
» x

0

1

Apx, rq2 dy �
1

Apx, rq
1

A1�px, rq
,

which has the limit

lim
x Ò l

C 1�px, rq
A1�px, rq

�
» l

0

1

Apx, rq2 dy � Dp0, rq.

Representing Dp0, rq � Grp0, 0q as in (3.1), we obtain the desired conclusion:» 8

�8

d∆pξq
r � ξ2

� lim
x Ò l

C 1�px, rq
A1�px, rq

� Dp0, rq �
» 8

�8

d∆�pξq
r � ξ2

, for all r ¡ 0.
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For the case l�Mpl�q   8, the strategy is to modify pl,M, kq to a long string and
apply the above result. The following estimate prepares the way.

Lemma 3.20 Let p be a polynomial with degppq ¤ 2n and ω P C. We have

|ppωq|2 ¤ }p}2∆
� » xn

0�
|Apx,�ω2q|2 dMpxq �

» xn
0

|Bpx, ωq|2 dx
�
,

where Apx,�ω2q is as in (3.15) and Mpxq as in Theorem 3.17.

Proof. We expand ppξq for ξ P R with respect to the basis tA0, B1, A2, . . .u:

ppξq �
ņ

k�0

akA2kpξq �
ņ

k�1

bkB2k�1pξq.

The extension of the above polynomial into C must equal ppωq. We have:

}p}2∆ �
ņ

k�0

|ak|2}A2k}2∆ �
ņ

k�1

|bk|2}B2k�1}2∆

�
ņ

k�0

|ak|2%�1
k �

ņ

k�1

|bk|2pxk � xk�1q�1.

The integrals are simply» xn
0�

|Apx,�ω2q|2 dMpxq �
ņ

k�0

|Apxk,�ω2q|2 %k» xn
0

|Bpx, ωq|2 dx �
ņ

k�1

|Bpxk�1, ωq|2pxk � xk�1q.

Putting the pieces together and applying the Cauchy-Schwarz inequality, we �nd that

|ppωq|2 ¤
� ņ

k�0

|ak| |A2kpωq| �
ņ

k�1

|bk| |B2k�1pωq|
	2

¤
� ņ

k�0

|ak|2%�1
k �

ņ

k�1

|bk|2pxk � xk�1q�1
�

�
� ņ

k�0

|A2kpωq|2%k �
ņ

k�1

|B2k�1pωq|2pxk � xk�1q
�

¤ }p}2∆
� » xn

0�
|Apx,�ω2q|2 dMpxq �

» xn
0

|Bpx, ωq|2 dx
�
.

A method to modify a short string is suggested in the following lemma.

Lemma 3.21 Let r ¡ 0 be �xed and set

∆̃pr0, ξsq �
» ξ

0�

1

r � pξ1q2 d∆pξ1q.

Let l̃ and M̃ be the length and the mass function which are de�ned via the polynomials

Ã0, B̃1, Ã2, . . . in Zp∆̃q. Then, l̃ � M̃pl̃�q � 8.



37

Proof. We claim that we can always �nd a polynomial p P Zp∆̃q such that }p}2
∆̃

is

arbitrarily small and |ppi?rq| � 1. For ξ1 P R, we have

|ξ1 � i
?
r|2 � pξ1q2 � r.

The length of p in Zp∆̃q is

}p}2
∆̃
�

» 8

�8
|ppξq|2 d∆̃pξq �

» 8

�8

|ppξ1q|2
r � pξ1q2 d∆pξ1q

�
» 8

�8

��� 1

ξ1 � i
?
r
� ppξ1q � 1

ξ1 � i
?
r

���2 d∆pξ1q.

Set ppξ1q � pξ1 � i
?
rqqpξ1q � 1, where q is a polynomial in Zp∆q. It is obvious that

pξ1 � i
?
rq�1 P Zp∆q because ³8�8pr � pξ1q2q�1 d∆pξ1q   8. Thus, we can approximate

�pξ1 � i
?
rq�1 by a polynomial qpξ1q. The claim is established.

Lemma 3.20 gives us

1 � |ppi?rq|2 ¤ }p}2
∆̃

� » l̃
0�
|Ãpx, rq|2 dM̃pxq �

» l̃
0
|B̃px, i?rq|2 dx

�
.

Since }p}2
∆̃

can be made arbitrarily small, the estimate cannot hold unless we have

l̃ � M̃pl̃�q � 8.

Proof of Theorem 3.17 for l �Mpl�q   8. Fix r � 1. Let ∆�
k denote the principal

spectral measure of the short string pl,M, kq, as given in Theorem 3.17. For short
strings in general, it is easily seen that

Dkp0, 1q �
kC 1�pl, 1q � Cpl, 1q
kA1�pl, 1q �Apl, 1q ,

using that all functions in Dτ have linear extensions to the right of x � l in the short-
string case, and the de�nition of Dpx, rq. Note that Cpx, 1q is of class Dτ and it neither
belongs toD�pτq orD�pτq. Hence, kC 1�pl, 1q�Cpl, 1q is non-vanishing for all k. Neither
can kA1�pl, 1q�Apl, 1q because A R D�pτq for r ¡ 0 according to Lemma 2.6. By Lemma
3.19, we have

lim
x Ò l

Cpx, 1q
Apx, 1q ¤

» 8

�8

d∆pξq
1� ξ2

¤ lim
x Ò l

C 1�px, 1q
A1�px, 1q

.

For �xed r ¡ 0, Dkp0, rq is a real continuous function in the parameter k. For k � 0
and k � 8, we have

D0p0, 1q � lim
x Ò l

Cpx, 1q
Apx, 1q , and D8p0, 1q � lim

x Ò l
C 1�px, 1q
A1�px, 1q

.

Hence, we can choose k such that» 8

�8

d∆�
kpξq

1� ξ2
� Dkp0, 1q �

» 8

�8

d∆pξq
1� ξ2

.

Set
d∆̃�

kpξq :� p1� ξ2q�1d∆�
kpξq, and d∆̃pξq :� p1� ξ2q�1d∆pξq.
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Then, ∆̃�
k and ∆̃ have matching moments» 8

�8
ξ2n d∆̃�

kpξq �
» 8

�8
ξ2n d∆̃pξq.

Indeed, we can write» 8

�8
ξ2n d∆̃�

kpξq �
» 8

�8

ξ2n

1� ξ2
d∆�

kpξq

�
» 8

�8

ξ2n � p�1qn
1� ξ2

d∆�
kpξq �

» 8

�8

p�1qn
1� ξ2

d∆�
kpξq.

Observe that ξ2n � p�1qn has a zero ξ2 � �1. Hence, we have the factorization

ξ2n � p�1qn � p1� ξ2qQpξ2q,

where Qpξ2q is a polynomial in ξ2. Now, the integral becomes» 8

�8
ξ2n d∆̃�

kpξq �
» 8

�8
Qpξ2q d∆�

kpξq �
» 8

�8

p�1qn
1� ξ2

d∆�
kpξq

�
» 8

�8
Qpξ2q d∆pξq �

» 8

�8

p�1qn
1� ξ2

d∆pξq

�
» 8

�8

ξ2n

1� ξ2
d∆pξq

�
» 8

�8
ξ2n d∆̃pξq.

In the second line, we use that ∆ and ∆�
k have matching moments. In the third line,

we reason backwards to return to ξ2n{p1� ξ2q. The claim is now established.
All powers have �nite norm with respect to the measure ∆̃ and the span of these

is dense in the space Zp∆̃q. By Lemma 3.21, the string pl̃, M̃q de�ned by ∆̃ satis�es
l̃ � M̃pl̃�q � 8. So, Theorem 3.17 for the long-string case applies and ∆̃ � ∆̃�

k. Thus,
∆ � ∆�

k.
Lastly, we prove that k can only be either 0 or 8. Assume the contrary and consider

the odd transform of 1rl,l�kspxq P S � L2pr0, l � ks, dxq for k P p0,8q:» l�k
l

Bpx, ξq dx � Bpl, ξq � k P Zop∆�
kq

The function 1rl,l�kspxq is non-zero whenever k ¡ 0. Since the odd transform is an
isomorphism, 1rl,l�kspxq cannot be mapped to 0 P Zop∆�

kq. Hence, Bpl, ξq � 0. However,
by construction, Bpl, ξq lies in the orthogonal complement of span

�
ξn
�
nPN � Zp∆q,

which only happens when Bpl, ξq � 0. Hence, k can only take value 0 or 8, depending
on whether

³8
�8 ξ

�2 d∆pξq is �nite or not, according to (3.13)» 8

�8
ξ�2 d∆pξq � l � k.
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3.2.3 Existence of pl,M, kq for general ∆

Theorem 3.22 Let ∆ be any principal spectral measure. Then, there exists a string

pl,M, kq, for which ∆ is the associated principal spectral measure.

Remark 3.23. There is a shorter proof of the fact that Mjpxq Ñ Mpxq as j Ò 8 on
the set of continuity points of M implies that Ajpx, rq Ñ Apx, rq pointwise for each
r ¡ 0. The idea is to show that Aj are equicontinuous and uniformly bounded in j,
using (2.11). Then, the Arzelà-Ascoli Theorem gives a subsequence Ajk which converges
to A� uniformly. Using uniform convergence, A� is also a solution and using uniqueness
of a solution, A� must equal A. This proof is found in the proof of Theorem 1, in [8].

Proof. The measure ∆ is the strong limit of the sequence t∆nu8n�1 given by

∆npBq � ∆pB X p�n, nqq,

and ∆n is 0 on Rzp�n, nq. For each n, the space Zp∆nq � L2pR, d∆nq is spanned by
the powers tξju8j�0. By Theorem 3.17, ∆n de�nes a string pln,Mn, knq. Motivated by
Corollary 3.12, we must have

l � k �
» 8

�8
ξ�2 d∆pξq, (3.19)

which exists, and

l � k � lim
n Ò8

» 8

�8
ξ�2 d∆npξq � lim

n Ò8
�
ln � kn

�
.

Next, we claim that there exists a subsequence tnju8j�0, for which

lim
j Ò8

Mnj

is convergent pointwise to a mass function on the set of continuity points at least. This
limit will be our candidate for the mass function Mpxq.

Fix x and δ so that 0   x   l � k and 0   x � δ   l � k. For N large enough, we
have

x� δ   ln � kn �
» 8

�8

d∆npξq
ξ2

, for all n ¥ N.

The above motivates a lower bound for Dnp0, rq, when r ¡ 0 is small enough and n ¥ N

x� δ  
» 8

�8

d∆npξq
r � ξ2

� Dnp0, rq,

from which we obtain an upper bound for Mnpxq, when 0   x   l � k is �xed:

1 ¥ rGpnq
r 1 ¥ r

» x
0�
Gpnq
r px, yq dMnpyq

¥ rDnpx, rq
» x

0�
dMnpyq

¥ r
�
Dnp0, rq � x

�
Mnpxq

¥ r δMnpxq.
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In the �rst line, we use Lemma 2.11. In the third line, we use the estimate

Dnpx, rq � Dnp0, rq � x� r

» x
0
dξ

» ξ
0�
Dnpη, rq dMnpηq ¥ Dnp0, rq � x,

because Dn ¥ 0. The last estimate is from the lower bound for Dnp0, rq. We have thus
shown that for each 0   x   l � k, the sequence tMnpxqu8n�N is uniformly bounded in
n. According to Helly's Selection Theorem, there is a non-negative, non-decreasing and
right-continuous function M , and a subsequence tMnju8j�0 such that

lim
j Ò8

Mnj pxq �Mpxq

on the set of continuity points x   l � k of M , see [17, pp.319�320]. For simplicity,
the index n will be omitted and the limit of Mj will be referred to as M , with the
understanding that equality holds pointwise everywhere except at the jumps of M .

We need to check that limjÒ8Mj really is a mass function, that is, it also satis�es
that x � 0 is its growth point. Note that there are no negative growth points because
Mjpxq � 0 for all x   0 and for all j. Assume x � 0 is not a growth point of M . Then
there is an interval r0, εq, such that Mpxq � 0 when 0 ¤ x   ε. Applying (2.11), we
obtain for each j and ξ P R the upper bound

Ajpx,�ξ2q ¤ exp
�
ξ2 xMjpxq

�
, forx�Mjpxq   8.

Hence, for 0   x   ε, we have��Ajpx,�ξ2q � 1
�� ¤ ξ2 xMjpxq exp

�
ξ2xMjpxq

�Ñ ξ2xMpxq exp
�
ξ2xMpxq� � 0,

as j Ò 8, which gives rise to the following contradiction» 8

�8

d∆pξq
r � ξ2

� lim
j Ò8

» 8

�8

d∆jpξq
r � ξ2

¤ lim
j Ò8

» 8

�8

�
Ajpx,�ξ2q�2

r � ξ2
d∆jpξq

� lim
j Ò8

Gpjq
r px, xq

� lim
j Ò8

Ajpx, rqDjpx, rq

� lim
j Ò8

Djpx, rq

� lim
j Ò8

Ajpx, rq
» lj�kj
x

�
Ajpy, rq

��2
dy

� lim
j Ò8

» lj�kj
x

�
Ajpy, rq

��2
dy

� lim
j Ò8

�
Djp0, rq �

» x
0

�
Ajpy, rq

��2
dy
�

� lim
j Ò8

Djp0, rq �
» x

0
dy

�
» 8

�8

d∆pξq
r � ξ2

� x.
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So, x � 0 must be the �rst point of growth of M . To complete the de�nition of the
string, we de�ne

l :� suptx ¤ l � k
��x is a growth point of Mpxqu.

The string pl,M, kq is now well-de�ned. It remains to show that ∆ is the principal
spectral measure of pl,M, kq, which means

Dp0, rq �
» 8

�8

d∆pξ2q
r � ξ2

,

or equivalently, » l�k
0

�
Apy, rq��2

dy � lim
j Ò8

» lj�kj
0

�
Ajpy, rq

��2
dy,

where Apx, rq is the solution corresponding to pl,M, kq, and Ajpx, rq to plj ,Mj , kjq. We
want to show that

lim
j Ò8

Ajpx, rq � Apx, rq,

for each �xed r ¡ 0. To do so, we use the power series of Ajpx, rq and Apx, rq:

lim
j Ò8

|Ajpx, rq �Apx, rq| ¤ lim
j Ò8

8̧

n�0

rn |ppjqn pxq � pnpxq|

�
8̧

n�0

rn
�

lim
j Ò8

|ppjqn pxq � pnpxq|
	
,

where we use (2.10) on p
pjq
n for each �xed x P r0, l � kq and n:

0 ¤ ppjqn pxq ¤ 1

n!

� » x
0
Mjpyq dy

�n
and the fact that Mj are uniformly bounded in j for each 0 ¤ x   l � k to justify
the interchange of the sum and the limit in the second line. This also shows that the

functions p
pjq
n are uniformly bounded in j for each x and n. Now, we need to prove that

lim
j Ò8

|ppjqn pxq � pnpxq| � 0, forn � 0, 1, . . . ,

and for every x P r0, l � kq. For n � 0, we have p0pxq � p
pjq
0 pxq � 1 for all j. Suppose

that limj |ppjqn pxq � pnpxq| � 0 for some n and for all x P r0, l � kq. Let x P r0, l � kq be
�xed. A consequence of the uniform boundedness of tppjqn pxquj in j is the estimate» ξ

0�
|ppjqn pηq| dMjpηq ¤ 1

n!
ξnMjpξqn�1 ¤ 1

n!
ξnC, ξ P r0, xs,

in which the upper bound is of class L1pr0, xs, dxq. By the Dominated Convergence
Theorem, we have

lim
j Ò8

|ppjqn�1pxq � pn�1pxq| ¤
» x

0
dξ lim

j Ò8

��� » ξ
0�
ppjqn pηq dMjpηq �

» ξ
0�
pnpηq dMpηq

���,
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and now

lim
j Ò8

��� » ξ
0�
ppjqn pηq dMjpηq �

» ξ
0�
pnpηq dMpηq

���
¤ lim
j Ò8

��� » ξ
0�
pnpηq dMjpηq �

» ξ
0�
pnpηq dMpηq

���� lim
j Ò8

» ξ
0�
|ppjqn pηq � pnpηq| dMjpηq

¤ lim
j Ò8

��� » ξ
0�
pnpηq dMjpηq �

» ξ
0�
pnpηq dMpηq

���� lim
j Ò8

�
sup
ηPr0,ξs

|ppjqn pηq � pnpηq|Mjpξq
	
,

for all 0 ¤ ξ ¤ x. The �rst limit is 0 due to

lim
j Ò8

%j � %

in the weak sense, which is a consequence of the convergence of Mj to M in the afore-
mentioned way, see [17, pp.310, 314]. Here, the measures %j correspond to Mj , and %

to M . If p
pjq
n converges uniformly to pn on r0, xs for each �xed x P r0, l� kq, the second

limit is 0, and the pointwise convergence of p
pjq
n�1 for each x P r0, l � kq is clear. In the

following, we show that this is indeed the case. More speci�cally, we claim that the
conditions

(i) tppjqn uj is a sequence of non-decreasing continuous functions,

(ii) the pointwise limit in j of p
pjq
n is continuous on r0, xs,

together imply that p
pjq
n converges uniformly in j on the interval r0, xs.

Since the limit pn is continuous on r0, l � kq, it is uniformly continuous on r0, xs.
Hence, for each �xed ε ¡ 0, there exists a partition

0 � t0   t1   t2   . . .   tK � x

of r0, xs, for which
max

tPrti,ti�1s
pnptq � min

tPrti,ti�1s
pnptq   ε, (3.20)

for all i � 0, 1, . . . ,K � 1. By (ii), we have for this ε a natural number J , such that

pnptiq � ε ¤ ppjqn ptiq ¤ pnptiq � ε, for all j ¡ J, (3.21)

for all i � 0, 1, . . . ,K � 1. By (i), we have

ppjqn ptiq ¤ ppjqn ptq ¤ ppjqn pti�1q, t P rti, ti�1s.

Together with (3.21), we obtain new bounds for p
pjq
n ptq on rti, ti�1s:

pnptiq � ε   ppjqn ptq   pnpti�1q � ε, for all j ¡ J.

Finally, together with (3.20), we arrive at the bounds

pnptq � 2ε   ppjqn ptq   pnptq � 2ε, for all j ¡ J, t P rti, ti�1s,

for all i � 0, 1, . . . ,K � 1. This proves the claim.
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Now that the convergence of Ajpx, rq to Apx, rq as j Ñ8 for each �xed x P r0, l�kq
is proved, the next observation is that

�
Ajpx, rq

��2
is dominated by an L1pr0, l�ks, dxq

function, which is shown by manipulating the lower bound of Ajpx, rq:�
Ajpx, rq

�2 ¥
�
1� r

» x
0
Mjpyq dy

�2

¥ �
1� rMjpεqpx� εq�2

¥ C 1r1� px� εqs2,

where 0   ε ¤ x   l � k, for some �xed ε. In the second line, it is used that Mjpεq
is bounded away from 0 uniformly in j. For 0   x   ε, we can use that Aj ¥ 1 for j.
Applying the Dominated Convergence Theorem, we arrive at the desired conclusion.
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3.3 Examples of Krein's correspondence

In this section, given an S-class function h, the goal is to extract as much information as
possible about the string associated to h. First, we list some standard results � some are
simply the byproducts of our previous constructions and some are stated without proofs
due to their level of di�culty. Next, we restrict our attention to meromorphic S-functions
h, which are known to yield for example short strings, strings with compact resolvent
and the so-called Stieltjes strings � a �nite version of which appears in Theorem 3.15.
For the non-meromorphic S-functions, we give two simple examples of strings which
can be related to a Sturm-Liouville operator and in the last example we examine the
spectrum of a short string, whose mass function has a discontinuity. In Discussion, we
discuss how to develop interesting examples further, and which parts of this theory we
would like to learn more in order to understand Krein's correspondence better.

3.3.1 General properties of Krein's correspondence

According to Theorem 3.4, any S-function is related uniquely to a non-negative Borel
measure σ with

³8
0�p1� γq�1 dσpγq   8. Since the coming results are formulated using

σ rather than h, a way to compute σ from h is of some relevance. It is clear that hp�zq
is a Herglotz-Nevanlinna function whenever hpzq is a Stieltjes function. Consequently,
Stieltjes' inversion formula for Herglotz-Nevanlinna functions gives

σppγ1, γ2sq � lim
δÓ0

lim
εÓ0

1

π

» γ2�δ
γ1�δ

Imphp�γ � iεqqdγ, γ1   γ2. (3.22)

Let h belong to the string pl,Mq, with the di�erential operator pτ,Dpτqq associated to
the tying constant k, and the fundamental system tApx, zq, Cpx, zqu. It is known from
before that Dp0, zq � hpzq is given by

hpzq �

$''&''%
limx Ò l

Cpx, zq
Apx, zq , if l �Mpl�q � 8,

Cpl, zq � k C 1�pl, zq
Apl, zq � k A1�pl, zq

, if l �Mpl�q   8,
(3.23)

with the convention

hpzq � C 1�pl, zq
A1�pl, zq

, when k � 8.

From De�nition 3.2, hpzq is analytic everywhere in Czp�8, 0s. In fact, it can be ana-
lytically extended to a larger set, namely Cz � supppσq, where

�supppσq � t�r | r P supppσqu.

More is true. Let Dh denotes the set where h can be analytically extended, Σpτq the
spectrum of the operator pτ,Dpτqq and σ the spectral measure of pτ,Dpτqq. Then, we
have

Σpτq � �supppσq � CzDh.

The �rst equality is a consequence of the spectral theorem for unbounded operators, see
Lemma 3.12 in [18]. For the second equality, it is not hard to realize that �supppσq �
CzDh. Indeed, suppose that the Herglotz�Nevanlinna functionmpzq � hp�zq is analytic
at z � z0 P R, and hence in a neighborhood Uz0 of the point z0. Then, there is a small
interval pa, bq � Uz0 X R, such that z0 P pa, bq and mpx�q � mpxq� for all x P pa, bq,
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which implies that Impmpxqq � 0 on pa, bq. It follows from (3.22) that σppa, bqq � 0,
hence z0 R supppσq. For a proof of the other inclusion, see Theorem 3.10 in [18]. Hence,
to identify the spectrum of τ , we identify the subset of p�8, 0s, on which h cannot be
analytically extended, that is CzDh, or �supppσq.

The following lemma collects some properties of the string belonging to h.

Lemma 3.24 Let hpzq P S be associated with the measure σ. Then,

(1) » 8

0�

dσpγq
γ

�
#
l, if hpzq belongs to a long string

l � k, if hpzq belongs to a short string
,

(2) h belongs to a string pl,Mq with a jump at the origin of the amount

%pt0uq � 1

σpr0,8qq ,

(3) hpzq belongs to a string with the total mass

Mplq � 1

σpt0uq ,

if σpt0uq ¡ 0. Hence, h either belongs to a long string with Mplq   8, or a short

string with the tying constant k � 8.

Proof. Item (1) is item (3) in Corollary 3.12 after changing the measure ∆ to σ. Item
(2) is due to the fact that Ap0, zq � 1 for all z P C. By item (1) in Corollary 3.12, we
have

%pt0uq�1 � }Ap0,�ξ2q}2∆ �
» 8

�8
1 d∆pξq �

» 8

0�
1 dσpγq � σpr0,8qq.

If σpt0uq ¡ 0, then σpt0uq � ∆pt0uq ¡ 0. We apply the inverse even transform on the
function 1t0upξq P Zep∆q and then use the Plancherel identity:

∆pt0uq �
» 8

�8
1t0upξq2 d∆pξq �

» l
0�

� » 8

�8
Apx,�ξ2q1t0upξq d∆pξq

	2
dMpxq

�
» l

0�
Apx, 0q2 ∆pt0uq2 dMpxq.

It is easily seen that Apx, 0q � 1 from (2.9). After rearrangements, we �nd that

1

σpt0uq �
1

∆pt0uq �
» l

0�
1 dMpxq �Mplq.

Since σpt0uq ¡ 0, Mplq is �nite. If h belongs to a short string, then by item (1) of this
lemma, we have

l � k �
» 8

0�
γ�1 dσpγq ¥ lim

γ Ó 0

σpt0uq
γ

� 8.

The following proposition presents a connection between the asymptotic behavior of
the Weyl function mpzq � hp�zq and the behavior of Mpxq close to x � 0.



46

Proposition 3.25 For a given α P p0,8q, there is a constant C ¡ 0 such that

mpzq � C�1C 1p�zq �1
1�α p1� op1qq�1, (3.24)

with

C 1 �
Γ
�
α�2
α�1

	
Γ
�

α
α�1

	�pα� 1q2
α

	 1
α�1

as z Ñ8 uniformly in any non-real sector, if and only if

Mpxq � C1�αxαp1� op1qq, xÑ 0. (3.25)

Remark 3.26. For a proof, see Theorem 3 in [8] or Theorem 4.1 in [2]. This proposition
will be illustrated in Example 3.35.

3.3.2 Meromorphic S-functions

An important subclass of S-functions is the meromorphic S-functions. These are analytic
everywhere in C, except at a countable sequence of isolated points

0 ¥ �r0 ¡ �r1 ¡ . . . ¡ �rn ¡ . . . , where rn ¡ 0. (3.26)

This implies that the associated measure σ is of the form
°8
n�0 anδrn . Using Theorem

3.4, we have

hpzq �
» 8

0�

dσpγq
γ � z

� σptr0uq
r0 � z

� σptr1uq
r1 � z

� . . .� σptrnuq
rn � z

� . . . ,

which o�ers a simpler method to compute σ from h than (3.22), namely,

σptrnuq � lim
rÑrn

prn � rqhp�rq, for r ¡ 0. (3.27)

Here are some remarkable results which connect properties of meromorphic S-functions
to properties of their strings.

Proposition 3.27

(1) Suppose pl,Mq is a long string. Then, the associated S-function h is meromorphic

if and only if one of the following holds true

lim
x Ò l

x
�
Mplq �Mpxq� � 0, if l � 8 (3.28)

lim
x Ò l

Mpxq �l � x
� � 0, if Mplq � 8. (3.29)

(2) h belongs to a string with either» l
0�
x dMpxq   8, or

» l
0
Mpxq dx   8 (3.30)

if and only if h is meromorphic and that it has poles at the sequence (3.26) with
the property

8̧

n�1

1

rn
  8.
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(3) Suppose h belongs to a short string. If h is non-rational, then the asymptotic

behavior of the sequence trnu8n�0 depends solely on the absolutely continuous part

M 1pxq of Mpxq in the following way

lim
nÑ8

n?
rn

� 1

π

» l
0

a
M 1pxq dx.

Remark 3.28. The proof of item (1) can be found in [11]. If the string is long, the
conditions in (3.30) implies either (3.28) or (3.29), because for example

x
�
Mplq �Mpxq� ¤ » l

x
y dMpyq Ñ 0, asxÑ l,

due to
³l
0� x dMpxq   8. The converse is not true. The proof of item (2) can be found

in, for example, Chapter 5.6 in [4]. Note that if the string is short, both conditions (3.30)
are satis�ed. Item (3) is proven in [14] by Krein and this can be extended to the so-called
Pontryagin class of strings, as shown in [20].

Next, the classical Stieltjes strings, from which meromorphic S-functions can be
obtained, are presented.

Example 3.29 (Stieltjes strings) A Stieltjes string pl,Mq has a discrete measure as its
density, that is,

Mpxq �
¸
x¥xj

%j ,

where 0 � x0   x1   x2   . . . , and l � limn xn. The di�erential equation pτ � zqf � 0
associated to a Stieltjes string is a di�erence equation

f 1�pxjq � f 1�pxjq � %j z fpxjq,
f 1�pxq � f 1�pxq � 0, if x R tx0, x1, . . .u.

We have earlier adopted the convention that f is linear on massless interval. Hence,
with a Stieltjes string, f is piecewise linear on R, thus f 1�pxj�1q � f 1�pxjq and

fpxjq � fpxj�1q � f 1�pxjq pxj � xj�1q.
Let

Apxj , zq � A2j and A1
�pxj , zq � A2j�1

Cpxj , zq � C2j and C 1
�pxj , zq � C2j�1.

By the above, the sequence tAku8k�0 satis�es the Wallis�Euler recurrence relations

A2j � pxj � xj�1qA2j�1 �A2j�2,

A2j�1 � %j z A2j �A2j�1,

for j � 1, 2, . . ., with A�1 � 0 and A0 � 1. Similarly, the sequence tCku8k�0 satis�es the
above recurrence relation with C0 � 0 and C1 � 1. The quotients of the terms in these
sequences can be written as continued fractions

Cpxj , zq
Apxj , zq �

C2j

A2j
� 1

%0z
� 1

x1 � x0
� 1

%1z
� . . .� 1

xj � xj�1
,

C 1�pxj , zq
A1�pxj , zq

� C2j�1

A2j�1
� 1

%0z
� 1

x1 � x0
� 1

%1z
� . . .� 1

%jz
.
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According to (3.23), the corresponding S-function is

hpzq � Dp0, zq � lim
nÑ8

1

%0z
� 1

x1 � x0
� . . .� 1

%nz
� 1

xn�1 � xn
, (3.31)

in the long-string case, and

hkpzq � Dkp0, zq � lim
nÑ8

� 1

%0z
� 1

x1 � x0
� . . .� 1

%nz
� 1

k

	
, (3.32)

in the short-string case with tying constant k, and

hkpzq � 1

%0z
� 1

x1 � x0
� . . .� 1

%nz
� 1

k
,

if M has �nitely many jumps. Let z � r ¡ 0. The convergence in (3.31) is guaranteed
by the fact that for each �xed r, we have

8̧

j�0

%jr � pxj�1 � xjq � 8,

as the string is long, and therefore

C0

A0
  C2

A2
  . . .   lim

j Ò8
C2j

A2j
� lim

j Ò8
C2j�1

A2j�1
  . . .   C3

A3
  C1

A1
.

The limit of the odd terms and the limit of the even terms coincide, as in the above, if
and only if the string is long, see Theorem 30.1 in [19]. If the string is short, the even
terms C2j{A2j still form a strictly increasing sequence and the odd terms C2j�1{A2j�1

form a strictly decreasing sequence. Since the even terms are all bounded above by
C1{A1, the limit exists for this sequence and similarly for the odd terms. However, the
limits will never coincide. In fact, this illustrates Lemma 3.19

Cpx, rq
Apx, rq ¤

» 8

�8

d∆pξq
r � ξ2

¤ C 1�px, rq
A1�px� rq , 0   x   l.

In (3.31), the sequence

1

%0z
� 1

x1 � x0
� . . .� 1

%nz
� 1

k

is strictly decreasing and bounded below. Hence, the limit exists and it is exactly

lim
j Ò8

C2j�2 � kC2j�1

A2j�2 � kA2j�1
� lim

j Ò8
Cpxj�1, zq � kC 1�pxj�1, zq
Apxj�1, zq � kA1�pxj�1, zq � Dp0, zq.

To learn more about the spectral measure σ, the even transform can be consid-
ered. Solving Apx,�ξ2q accordingly to the above di�erence equation, it is found that
Apxj ,�ξ2q is a polynomial in ξ of order 2j. From Corollary 3.12, we have

}Apxj ,�ξ2q}2∆ � %�1
j   8.

This gives that » 8

�8
ξ4j d∆pξq   8, j � 0, 1, 2, . . . .

A necessary condition for an S-function hpzq to yield a Stieltjes string is that its prinic-
ipal spectral measure has �nite even moments. Adding the requirement that the even
polynomials are dense in Zep∆q, we have the following correspondence result.
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Proposition 3.30 Let hpzq be an S-function with the associated principal spectral

measure ∆, such that dim Zep∆q � n ¤ 8. Then, hpzq belongs to a Stieltjes string, if

and only if the even polynomials are dense in Zep∆q, and all even moments are �nite» 8

�8
ξ4j d∆pξq   8,

for all 2j ¤ n if n is �nite, and 2j   n if n � 8.

Remark 3.31. By changing back γ � ξ2, it is seen that the space Zep∆q is in fact
L2pR, dσq, and the requirement that even polynomials are dense in Zep∆q corresponds
to the requirement that polynomials in γ are dense in L2pR, dσq. Note that in our
previous construction in Section 3.2.2, we also assume that the odd polynomials in
Zop∆q, which leads to the limited choices of tying constants k � 0 or k � 8. This
proposition is proved in a di�erent way in [11], which does not require denseness of odd
polynomials in Zop∆q. For further details, see Chapter 13 in [11].

If the Stieltjes string is short, it will certainly yield a meromorphic S-function. How-
ever, not all Stieltjes strings automatically have a meromorphic S-function.

Corollary 3.32 Suppose pl,Mq is a long Stieltjes string, that is,

8̧

n�0

%n � 8 or lim
nÑ8xn � 8.

Then, it has a meromorphic S-function hpzq, if and only if either of the following holds

true:

if lim
nÑ8xn � 8, then lim

nÒ8

� ņ

j�0

pxj�1 � xjq
	� 8̧

k�n
%k

	
� 0,

if
8̧

n�0

%n � 8, then lim
nÒ8

� 8̧

j�n
pxj�1 � xjq

	� ņ

k�0

%k

	
� 0.

Proof. This is a direct application of item (1) in Proposition 3.27.

To close this example, we demonstrate item (3) in Proposition 3.27 by studying the
behavior of the short Stieltjes string with

%j � 2�j , and xj � xj�1 � 2�j , j � 0, 1, . . .

and tying constant k � 8, which is clearly of the case l �Mpl�q   8. Hence, the
associated S-function hpzq is meromorphic and has the continued-fraction form

hpzq � lim
j Ò8

� 1

z
� 1

1
� 1

2�1z
� 1

2�1 � . . .� 1

2�jz

	
Since it is very di�cult to locate the poles of hpzq from its continued-fraction form, we
compute the poles of the approximations

hpkqpzq � 1

z
� 1

1
� . . .� 1

2�kz
,
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r
pjq
1 r

pjq
2 r

pjq
3 r

pjq
4 r

pjq
5 r

pjq
6 r

pjq
7 r

pjq
8 r

pjq
9 r

pjq
10

j � 1 3.
j � 2 2.19 12.82
j � 3 1.90 9.82 51.27
j � 4 1.79 8.81 39.31 205.09
j � 5 1.73 8.38 35.27 157.25 820.37
j � 6 1.71 8.18 33.56 141.10 628.99 3281.48
j � 7 1.69 8.08 32.76 134.23 564.38 2515.95 13125.90
j � 8 1.69 8.03 32.38 131.04 536.91 2257.54 10063.82 52503.60
j � 9 1.68 8.01 32.19 129.50 524.16 2147.63 9030.16 40255.28 2.10 � 105

j � 10 1.68 8.00 32.09 128.75 518.01 2096.63 8590.51 36120.63 1.61 � 105 8.40 � 105

j � 11 1.68 7.99 32.05 128.37 514.99 2072.03 8590.51 34362.02 1.44 � 105 6.44 � 105

j � 12 1.68 7.99 32.02 128.19 513.49 2059.94 8590.51 33546.01 1.37 � 105 5.78 � 105

j � 13 1.68 7.99 32.01 128.09 512.74 2053.95 8590.51 33152.43 1.34 � 105 5.50 � 105

j � 14 1.68 7.99 32.01 128.05 512.37 2050.97 8590.51 32959.09 1.33 � 105 5.37 � 105

j � 15 1.68 7.99 32.00 128.02 512.19 2049.49 8590.51 32863.27 1.32 � 105 5.30 � 105

Table 1: approximations of the �rst ten eigenvalues from hpjqpzq belonging to the Stieltjes string
with %j � 2�j and xj � xj�1 � 2�j for j � 0, 1, . . . , 15.

(a) Convergence of the �rst two eigenvalues after
15 approximations.

(b) This plot illustrates the growth of the square
roots of the �rst ten eigenvalues of the 15th ap-
proximation.

Figure 1: illustrations of eigenvalue approximations from Table 1.

using the software Maple. For an overview of the approximation of the �rst ten eigen-
values, see Table 1 and Figure 1b. We also include a graph over the convergence of
the �rst two eigenvalues, see Figure 1a. Although one should be careful drawing con-
clusions from a �nite number of eigenvalues, Figure 1b suggests that the square roots
of the eigenvalues grow much faster than linearly, which is in line with item (3) of
Proposition 3.27 where the absolutely continuous part is absent.
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Example 3.33 In this example, the short string pl,Mq with l � 1 and

Mpxq � x � 1r0,1s � 1 � 1p1,8q,

is taken into consideration. On the interval r0, 1s, the eigenequation is the di�erential
equation � d2

dx2
� z

	
f � 0,

which has the general solution f with the linear extension to the left of x � 0 and to
the right of x � 1

fpxq �

$''&''%
fp0q � f 1�p0qx, x P p�8, 0q
fp0q coshp?z xq � f 1

�
p0q?
z

sinhp?z xq, x P r0, 1q
fp1q � f 1�p1qpx� 1q, x P r1,8q.

Since M has no discontinuity at x � 0 or x � 1, we have f 1�p0q � f 1�p0q and f 1�p1q �
f 1�p1q. Plugging in the initial values of the fundamental system tApx, zq, Cpx, zqu, we
�nd that

hkpzq �
Cp1, zq � k C 1�p1, zq
Ap1, zq � k A1�p1, zq

� z�1{2 sinhp?zq � k coshp?zq
coshp?zq � k

?
z sinhp?zq ,

where 0 ¤ k ¤ 8. We want to compute and compare the spectral measures σ0 and σ8
for k � 0 and k � 8 respectively. The function h0 is given by

h0p�rq � 1?�r
sinhp?�rq
coshp?�rq �

1

i
?
r

i sinp?rq
cosp?rq � tanp?rq?

r
,

for r ¡ 0. Since limrÑ0 x
�1 tanpxq � 1, there is no pole at x � 0. The poles are located

at the sequence t�rju8j�0

rj �
�
j � 1

2

	2
π2, j � 0, 1, . . . .

Employing (3.27), we �nd that the measure σ0 jumps with the amount

σ0ptrjuq � lim
rÑrj

prj � rqh0p�rq

� lim
rÑrj

��
j � 1

2

	2
π2 � r

	 sinp?rq?
r cosp?rq

� lim
rÑrj

��
j � 1

2

	
π �?

r
	��

j � 1

2

	
π �?

r
	 sinp?rq
?
rp�1qj sin

��
j � 1

2

	
π �?

r
	

� p2j � 1qπ 1�
j � 1

2

	
π

� 2,

for all j � 0, 1, . . . . Similarly, the S-function h8 on p�8, 0s is given by

h8p�rq � � 1?
r tanp?rq ,
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(a) Plots of h0p�r2q (red) and h8p�r2q
(green) for r P r�8, 0s. The zeroes of h0 are
the poles of h8.

(b) Plots of h0p�r2q (red), h1{2p�r2q (blue)
and h8p�r2q (green) for r P r�8, 0s. Let rp0qj
and r

p8q
j denote the j-th pole of h0 and h8

respectively. Then r
p0q
j ¤ r

p1{2q
k ¤ r

p8q
j for

some k ¤ j. Since Maple fails to recognize
the discontinuities of h1{2, the blue vertical
lines appear.

Figure 2: illustrations of poles of hk of a short string with di�erent tying constants k.

with poles at
rk � j2π2, j � 0, 1, . . . ,

yielding the spectral measure σ8 with the jumps

σpt0uq � 1, σptrjuq � 2, j � 1, 2, . . . .

The poles of hk for 0   k   8 are included between the poles of h0 and h8, see Figure
2a and 2b for illustrations.

To close this example, we observe that the moments are all highly divergent

8̧

j�0

rnj σ0ptrjuq �
8̧

j�0

�
j � 1

2

	2n
π2n � 2 � 8, n � 0, 1, . . . ,

that the square roots of the eigenvalues grow at the linear rate

1

π
� lim

jÑ8
j

jπ � π{2 � 1

π

» 1

0
1 dx,

and that 8̧

j�0

1�
j � 1

2

	2
π2

  8.

This illustrates Proposition 3.30 and items (3) and (2) in Proposition 3.27.
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3.3.3 Krein strings as Sturm-Liouville operators

A Krein string pl,Mq with

Mpxq �
» x

0
%psq ds, %pxq ¡ 0, x P r0, lq

has the eigenequation � d2

dx2
� z %pxq

	
f � 0.

It is clear that the above is a Sturm-Liouville equation. We have already had an example
of a short Krein string with an absolutely continuous mass function in Example 3.33.
Here comes two examples of long Krein strings. In the last example, we examine the
eigenvalue asymptotics for a short Krein string where a point mass is added to the
smooth density %pxq.
Example 3.34 Let pl,Mq be the string with

l � 8, Mpxq � x � 1r0,8q.

The associated eigenequation� d2

dx2
� z

	
f � 0, x P r0,8q,

has the general extended solution

fpxq �
#
fp0q � f 1�p0qx, x P p�8, 0q
fp0q coshp?z xq � f 1

�
p0q?
z

sinhp?z xq, x P r0,8q.

Since %pt0uq � 0, f 1�p0q � f 1�p0q and hence the fundamental system consists of

Apx, zq � coshp?z xq, and Cpx, zq � 1?
z

sinhp?z xq,

for z R p�8, 0s. By (3.23), the S-function of this string on p0,8q is

hprq � lim
xÒ8

sinhp?r xq?
r coshp?r xq �

1?
r
,

which has an analytic extension to the cut complex plane Czp�8, 0q, and which cannot
be extended analytically on the branch p�8, 0q. Using (3.22), the spectral measure can
be computed

σpp0, rsq � lim
εÓ0

lim
δÓ0

1

π

» r�δ
δ

Impp�y � iεq�1{2q dy.

For y ¡ 0 and ε ¡ 0, we have θ � argpy � iεq � arctan
�
y
ε

� P �0, π2 � and
1?�y � iε

�
?�y � iεa
y2 � ε2

� py2 � ε2q�1{4
�

cos
�π

2
� θ

2

	
� i sin

�π
2
� θ

2

		
.

Using the double angle formula of cosine, we simplify sinpπ{2� θ{2q

sin
�π

2
� θ

2

	
� cos

�θ
2

	
� 1?

2

�
cospθq � 1

�1{2 � 1?
2

� y

py2 � ε2q1{2 � 1
	1{2

.
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So, the integral of interest is now

σpp0, rsq � lim
εÓ0

lim
δÓ0

1

π

» r�δ
δ

1?
2
py2 � ε2q�1{4

� y

py2 � ε2q1{2 � 1
	1{2

dy

� lim
εÓ0

lim
δÓ0

?
2

π
py2 � ε2q1{4

� y

py2 � ε2q1{2 � 1
	1{2 ���r�δ

δ

� 2

π

?
r.

To close this example, we observe that dσ{dr � π�1hprq, and that the estimate in
Proposition 3.25 applies for the correspondence

Mpxq � xØ p�zq�1{2 � mpzq, with α � 1.

Example 3.35 Let pl,Mq be the string with

l � 8, Mpxq � xα � 1r0,8q,
for some α ¡ 0. The eigenequation is� d2

dx2
� zα xα�1

	
f � 0, x P r0,8q,

with the general extended solution

fpxq �
#
fp0q � f 1�p0qx, x P p�8, 0q
C1

?
x Iβpyq � C2

?
x I�βpyq, x P r0,8q,

where I�βpyq are the modi�ed Bessel functions of the �rst kind, and

β � 1

α� 1
, and y � 2

?
zα β x

1
2β .

The fundamental system tApx, rq, Cpx, rqu for r ¡ 0 consists of

Apx, rq � Γp1� βqprαqβ{2ββ?x I�βpyq
Cpx, rq � Γp1� βqprαq�β{2β�β?x Iβpyq,

for x P r0,8q. To compute the S-function, we only need to consider the asymptotic
behaviors of I�βpyq, which are

I�βpyq � p2πyq�1{2 exppyq,

since Argpyq � 0. For more details on the modi�ed Bessel function I�β , see Section
9.6.2, 9.6.10 and 9.6.11 in [1], and for more on the asymptotic behaviors of the Bessel

functions, see Section 9.2.1 in [1]. Plugging in y �
a

4β2rα x
1
2β , then β � pα � 1q�1,

and simplifying as much as possible, we obtain the S-function

hprq �
Γ
�
α�2
α�1

	
Γ
�

α
α�1

	�pα� 1q2
α

	 1
α�1

r
�1
α�1 .

This example can be found as Example 1 in [8], where Y. Kasahara also presents the
spectral measure σ corresponding to h as above.
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In general, if the density %pxq is a su�ciently smooth function, the operator pτ,Dpτqq
can be rewritten as a Schrödinger operator. Hence, we can use the methods as presented
in [7, pp.151�155] to obtain better eigenvalue asymptotics than item (3) in Proposi-
tion 3.27. For example, for the Dirichlet boundary condition at x � l, that is, when
k � 0, we get the following asymptotics

?
rn � ξn � c0n� c1

n
� c3

n3
�O

� 1

n5

	
, for large n,

where c0 is already known to be

c0 � 1

π

» l
0

a
M 1pxq dx

and the coe�cients c1 and c3 depend on pl,Mq. It is possible that discontinuities of
Mpxq can be found by observing the eigenvalue asymptotics. We illustrate this with a
simple example, in which the eigenvalue asymptotics is given up to c1.

Example 3.36 Let pl,Mq be the string given by

Mpxq � x � 1r0,1s � %1 � 1rx1,1s � p1� %1q � 1p1,8q.
The associated eigenequation is#�

d2

dx2
� z

	
f � 0, x P p0, x1q Y px1, 1s

f 1�px1q � f 1�px1q � %1 z fpx1q
with the general solution fpxq P Dmax

fpxq �

$'''''&'''''%
fp0q � f 1�p0qx, x   0

fp0q coshp?z xq � f 1
�
p0q?
z

sinhp?z xq, x P r0, x1q
fpx1q coshp?zpx� x1qq � f 1

�
px1q?
z

sinhp?zpx� x1qq, x P rx1, 1q
fp1q � f 1�p1qpx� 1q, x ¥ 1

from which we obtain the fundamental system

Apx, zq � coshp?z x1q coshp?zpx� x1qq
� �

%1

?
z coshp?z x1q � sinhp?z x1q

�
sinhp?zpx� x1qq,

and

Cpx, zq � 1?
z

sinhp?z x1q coshp?zpx� x1qq

� �
%1 sinhp?z x1q � 1?

z
coshp?z x1q

�
sinhp?zpx� x1qq,

for x1 ¤ x   1. The Weyl function D0p0, zq corresponding to tying constant k � 0 is
the quotient Cp1, zq{Ap1, zq.

Let x1 � 1
2 and set z � �ξ2 for ξ P R. Since Apx, zq and Cpx, zq do not have

common zeroes, �nding the poles of D0p0,�ξ2q is equivalent to �nding the zeroes of
Apx,�ξ2q. Hence, we consider the equation

cospξq � %1ξ

2
sinpξq � 0,
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Figure 3: plots of tanpξq and Cξ�1. The functions intersect at points near nπ.

Figure 4: an illustration of ξn � nπ � ∆n, where ∆n � 2 � p%1nπq�1 and %1 � 1.
The errors ∆n are positive, hence ξn is always to the right of the points nπ, for
n � 1, 2, . . ..

and since cospξq and sinpξq do not have common zeroes, we rearrange terms to have

tanpξq � 2

%1ξ
. (3.33)

The values ξ for which (3.33) is satis�ed will indeed behave asymptotically like
nπ (see Figure 3), as predicted by item (3) in Proposition 3.27. To obtain a better
asymptotic estimate, we set

ξn � nπ �∆n, for ∆n � c1

n
� c2

n2
�O

� 1

n3

	
.

By Taylor expanding the left-hand side, and the right-hand side of (3.33) near the points
ξn � nπ �∆n, we get

tanpnπ �∆nq � ∆n �Op∆3
nq

� 2

%1nπ
� 2∆n

%1pnπq2 �
2∆2

n

%1pnπq3 �Op∆3
nq

� 2

%1pnπ �∆nq ,
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and then plugging in the expression for ∆n, we �nd that

c1

n
� c2

n2
�O

� 1

n3

	
� 2

%1nπ
� 2

%1pnπq2
�c1

n
� c2

n2
�O

� 1

n3

		
�O

� 1

n5

	
� 2

%1nπ
�O

� 1

n3

	
,

which leads to the identi�cation

c1 � 2

%1 π
, c2 � 0,

and a sharper asymptotic behavior for the eigenvalues is obtained,

ξn � nπ � 2

%1nπ
�O

� 1

n3

	
,

which is illustrated in Figure 4.
Similarly, let x1 � 1

3 . Locating the poles of D0p0,�ξ2q is equivalent to �nding the
solutions to the equation

cospξq � %1ξ cos
�ξ

3

	
sin

�2ξ

3

	
� 0. (3.34)

When

ξ � 3 � πp2k � 1q
2

� p3k � 1qπ � π

2
,

the functions cospξq, cospξ{3q and sinp2ξ{3q have value 0 and (3.34) is trivially satis�ed.
Suppose ξ � nπ � π{2 for n � 1 pmod 3q. Then, we can rearrange terms to arrive at

1

%1ξ
�

cos
�
ξ
3

	
sin

�
2ξ
3

	
cospξq . (3.35)

Like before, the intersection of the left-hand side and the right-hand side occurs near
the points

ξ � nπ, forn � 0 pmod 3q and ξ � nπ � π

2
, forn � 2 pmod 3q,

see Figure 5. Set

ξn � nπ �∆n, n � 0 pmod 3q, ∆n � c1

n
� c2

n2
�O

� 1

n3

	
ξn � nπ � π

2
�∆1

n, n � 2 pmod 3q, ∆1
n �

c11
n
� c12
n2

�O
� 1

n3

	
.

Taylor expanding both sides in (3.35) near nπ for n � 0 (mod 3) and then identifying
coe�cients gives

c1 � 3

2%1π
, c2 � 0.

Near the points p3k � 2qπ � π{2, we get

c11 �
9

2%1π
, c12 � 0.
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In summary, the eigenvalue asymptote depends on n in the following way

ξn �

$''&''%
nπ � 3

2%1π
1
n �O

�
1
n3

	
, n � 0 pmod 3q,

nπ � π
2 , n � 1 pmod 3q,

nπ � π
2 � 9

2%1π
1
n �O

�
1
n3

	
, n � 2 pmod 3q.

(3.36)

This means that near the point p3k�1qπ�π{2, there will always be two eigenvalues, one
of which is always exactly p3k�1qπ�π{2 and the other is on the right of p3k�1qπ�π{2.
As k goes to in�nity, the error ∆1

3k�2 will go to zero in either case, and ξ3k�2 � ξ3k�1

goes to 0. See Figure 6 for an illustration.
When the quotient x1

l is not a rational number, the asymptotic behaviors of ξn will
be much more complicated.

Figure 5: plots of sinp2ξ{3q cospξ{3q cospξq�1 and Cξ�1. The functions intersect at
points near nπ for n � 0 (mod 3) and nπ � π{2 for n � 2 (mod 3).

Figure 6: an illustration of the eigenvalue approximations in (3.36). Near ξ �
nπ � π{2 for n � 1 (mod 3), two eigenvalues are found.



59

3.3.4 Discussion

In general, a characterization of S-functions h corresponding to a string pl,Mq is hard
to �nd if pl,Mq is not a Stieltjes string. It is as di�cult as characterizing all spectral
problems corresponding to a certain subclass of Herglotz-Nevanlinna functions, as men-
tioned in the introduction. The examples in this section, despite their simplicity, have
opened up some interesting paths for future investigations on Krein's correspondence.

Example 3.36 can be developed further. For instance, the point mass can be placed
at another position on the string, more point masses can be added, or other boundary
conditions can be chosen. Everything can be computed explicitly for the simple abso-
lutely continuous part of % as in 3.36. Hopefully, we will be able to observe the number
of jumps and where they are positioned from the eigenvalue asymptotics, from which
we might be able to generalize for other more complicated absolutely continuous parts.

Another idea is to follow the steps in Example 3.29 for % with the absolutely con-
tinuous part 1 and a simple discrete part, that is, for the string with

Mpxq � x � 1r0,lq �
¸

0¤xj¤x l
%j , 1 ¤ j ¤ n.

We can solve the di�erential equation τf � zf for this string. From the jumps of M
and the solution, we might be able to �nd a basis for Zep∆q and use this to deduce a
su�cient condition for h to belong to such a string.

The convergence limnMn � M in the sense that limnMnpxq � Mpxq for every
continuity point x of M induces a topology on the class of mass functions, and the
convergence limn hn � h in the sense that limn hnprq � hprq for every r ¡ 0 induces a
topology on S. Krein's correspondence pl,Mq Ø h is continuous with respect to these
topologies, as we have seen in Theorem 3.22. In the future, we would like to study
other topologies making Krein's correspondence continuous. More speci�cally, we look
for a topology on the mass functions, such that irregular densities are approximated by
su�ciently smooth densities. Also, studying the uniqueness part of Krein's correspon-
dence will certainly lead to a better understanding of this problem. In [5], J. Eckhardt
and A. Kostenko investigate how to extend the equation f2 � z%f with a signed Borel
measure %, so that the corresponding Weyl functions coincide exactly with the class
of all Herglotz-Nevanlinna functions. In particular, they do this by allowing % to be
a real-valued distribution in H�1

loc and adding a term z2νf , where ν is a non-negative
Borel measure. Although this problem is about extending and ours is about restricting,
the approach made in [5] might be of interest for us.
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