
Application security for embedded systems

Mikael Bäckman
dic12mba@student.lu.se

Fredrik Hagfjäll
dic12fha@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Martin Hell, Fredrik Larsson

Examiner: Thomas Johansson

April 19, 2017

c© 2017
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

With the rise of Internet of Things (IoT) accessories such as network attached
cameras, light bulbs and thermostats are all constantly connected to the Internet
and security concerns must be taken seriously. If a bug exists in an application
it could be hacked by a malicious adversary that then could harm the underlying
system, leak information or attack other devices or networks.

Applications should not be allowed to damage the underlying system and there
exists many isolation techniques for the general purpose computer, but these so-
lutions are not designed for the embedded world and needs to be evaluated. This
thesis compares isolation techniques in Linux for a specific embedded system and
benchmarks performance and security. The thesis concludes that there are many
non working isolation techniques for embedded systems and that further work is
needed to enable them. However the best current solutions in this dissertation is
Bubblewrap, Firejail and TOMOYO.

i

ii

Foreword

We would like to thank Axis Communications AB for allowing us to pursue and
complete this thesis. Thanks are in order to the teams of Linux Firmware Platform:
Event and Linux Firmware Platform: Network and Security for putting up with
all of our very time consuming and specific questions. Special thanks are set out
to Niklas Hjern, Mattias Hansson and our supervisor Fredrik Larsson.

Secondly we would like to thank LTH and our advisor Martin Hell for being
there to help us plan and structure our work.

iii

iv

Popular Science Summary

In all operating systems applications should be executed in a fashion
that has no possibility of harming the underlying operating system
or other applications. This kind of protection already exists in many
flavours for ordinary systems, but for the use in embedded systems the
already running protections have to be tested and evaluated regarding
disc space usage, CPU usage and other limited resources. The solution
proposed in this dissertation for achieving operating system protection
is isolation of applications in a Linux environment.

The isolation part in this thesis is aimed at embedded systems and after elabo-
rating the basics regarding how applications can be isolated in a Linux environment
and what general threats exist for an isolation technique the actual techniques are
presented. There exists various tools in the Linux kernel that helps to do this iso-
lation, for example seccomp, capabilities and namespaces. However these cannot
provide enough isolation by themselves and should only be seen as parts of the
operating system that will be used by more elaborate tools to achieve isolation.

Linux Security Modules is one of the more evolved candidates that can achieve
this type of isolation and with it being built into the kernel the possible benefits
are large. Other solutions presented include containers and other tools that can
be seen as sandboxes. In total 11 different implementations were chosen to be
described further and applied on the embedded system. However not all of them
turned out to be suited for our embedded system and were not able to be run due
to various reasons.

One crucial part for the embedded system used in this thesis was the extra
size required by the implementation and two had to be discarded straight away
since they required too much disc space to function. Other problems included un-
supported architectures, lack of user space tools and support for transfer an entire
Linux file system to the embedded system. The thesis presents implementations
that are running on the system and recommendations on which one to use based
on security evaluation and performance, but it also provides some valuable insight
as to where the focus and continued work should be regarding implementations
that did not run.

One conclusions of the thesis is that even though some isolation techniques
that is being used in embedded systems today it might not work on the embedded
system within the scope of this thesis. The reason for this is that all embedded

v

systems are so fundamentally different with architectures, available memory and
use cases. The final recommendations of implementations that should be used are
TOMOYO and Bubblewrap. TOMOYO is recommended since it almost does not
add extra overhead and the user space tools is easy to use and activate. Bub-
blewrap is recommended since it isolates the applications very easily and runs
unprivileged which means that if an isolation breakout is achieved the resulting
damage would be limited on the system.

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scope . 2
1.3 Layout . 2

2 Preliminaries 5
2.1 Access control . 5
2.2 Virtualization . 6
2.3 Sandboxing . 7
2.4 Containers . 7
2.5 Linux Kernel built in tools . 8
2.6 Possible vulnerabilities and weaknesses in isolation techniques 13
2.7 Licenses . 15
2.8 Benchmarking tools . 16
2.9 Related work . 17

3 Description of the system 19
3.1 Hardware . 19
3.2 Software . 19

4 Methodology 21
4.1 Use case . 23

5 Isolation techniques 25
5.1 Linux Security Modules . 25
5.2 Sandboxes . 28

6 Results 37
6.1 Non running isolation techniques . 37
6.2 Techniques with theoretical possibility of execution 38
6.3 Running isolation techniques . 39
6.4 Security evaluation . 40
6.5 Licenses . 47

vii

7 Discussion 49
7.1 Results . 49
7.2 Fault sources, possible solutions . 50

8 Conclusions 53
8.1 Recommendation . 53
8.2 Future work . 53

References 55

A Kernel flags 61
A.1 Firejail, Bubblewrap . 61
A.2 TOMOYO . 61
A.3 AppArmor . 62
A.4 SMACK . 62
A.5 SELinux . 63
A.6 LXC . 64
A.7 nspawn . 64

viii

List of Figures

2.1 Flow chart of access control . 5
2.2 Traditional architecture versus server virtualization 7
2.3 Architechtural overview of the OCI-developed tool stack. 9
2.4 LSM Hook architecture . 10
2.5 Concept of linux namespaces . 12

6.1 Numeric sort performance . 40
6.2 String sort performance . 41
6.3 Bitfield "bit twiddling" performance 41
6.4 Emulated floating-point performance 42
6.5 Fourier coefficients performance . 42
6.6 Assignment algorithm performance 43
6.7 Huffman compression performance 43
6.8 IDEA encryption performance . 44
6.9 LU Decomposition performance . 44
6.10 I/O performance . 45
6.11 Image size comparison . 45

ix

x

List of Tables

5.1 LSM comparison . 26
5.2 Sandbox comparison . 29
5.3 Continued sandbox comparison . 29

xi

xii

Chapter1
Introduction

With the rise of the Internet of Things (IoT), accessories such as network attached
cameras, light bulbs and thermostats have become increasingly popular. Many of
these IoT devices have the possibility of running applications and programs that
are developed and maintained by both the vendors and third party developers.
This could raise concerns about the security and robustness of the underlying
operating system and other installed application in the system. These applications
can often be dependent on other applications and system features which helps
to increase the ever growing concern of what will happen to the system if the
application is malicious. The applications do not even have to be intentionally
malicious but instead have bugs or vulnerabilities that an adversary could use as
an advantage to damage the underlying system.

1.1 Motivation

The number of IoT devices are increasing for every year, and will according to
estimates from IHS, grow by 57.8 million devices until the year 2025 [1]. With this
massive projected growth of the IoT-markets in general, and the possible gains for a
company by continuing to develop these devices there should be a way of protecting
the underlying operating system from harm when running applications. Software
bugs will continue to exist and in order to limit the damage some sort of isolation
of the applications should be enabled on the device. This dissertation is going
to make a study regarding the most suitable solution for isolating applications on
embedded systems that have limited resources. The study will test a set of already
existing isolation techniques of different natures and finally reach a conclusion of
what techniques that fit embedded systems better.

1.1.1 Security threats

As with all complex systems and attack preventions there is not a single threat to
take into consideration and not one single solution. If an application is executed
with an unique user id and group id on a Linux system the application will have
limited access to parts of the system, i.e. permissions for different files. This
solution is not always suitable and does not limit which kernel calls can be made,
and does not generally restrict access on what executables that can be executed

1

2 Introduction

on the system. If a binary is malicious or becomes compromised it can damage
the system and other applications, especially if the permissions have not been
restricted properly. In general, read permission of files and other system resources
are not restricted. By isolating a whole user or group and the application together
with some of the techniques described in this dissertation the necessary amount
of security for the system and other applications can be achieved.

1.2 Scope

Isolation can be made on various operating systems but since Linux is a widely
used operating system in embedded systems the dissertation will focus on a specific
Linux distribution. The actual Linux distribution and hardware is developed and
maintained by a company and presented in Chapter 3 and 4.

Since embedded systems often are resource constrained and the use case, that
will be presented in Chapter 4, is to only isolate applications, this thesis will
not focus on full virtualization (explained in Section 2.2) but instead focus on
just isolating the applications on the host OS. This isolation technique will have
a smaller performance impact on the system as opposed to full virtualization.
When looking at the various isolation techniques, there exists a very wide variety
of different techniques that has the possibility of being supported by the system
running on to the cameras. This dissertation is time limited and the actual phase
for implementing and enabling the techniques is limited as well, which means that
not all of the techniques that are going to be covered will have the possibility to be
specifically rewritten to best suite the test environment. Most of the techniques
are going to be run as generically as possible, which also means that changing the
source code of the isolation technique could solve possible forthcoming problems
but is outside the scope for this dissertation.

1.3 Layout

The organization of the report is:

• Chapter 1 Introduction: Introduction to the specified problem with the main
focus of providing an insight into why there is a need for running applications
in a secure fashion.

• Chapter 2 Preliminaries: Explains the theory needed to understand how
the isolation can be achieved. It covers a variety of techniques such as
virtualization, sandboxing and system call filtering that will work as the
base for the comparison.

• Chapter 3 Description of the system: Gives a system description that is
used as a base for the use case in the methodology.

• Chapter 4 Methodology: Explains the methodology that is being used to
reach the final conclusion and recommendations.

Introduction 3

• Chapter 5 Isolation techniques: Compares and elaborates the techniques
that has been chosen and provides an insight in what the comparison is
going to focus on.

• Chapter 6 Results: Covers the results of the implementation and has an
security evaluation of the working isolation techniques.

• Chapter 7 Discussion: Contains a discussion about the results, both in the
project aims and the general level. Some possible error sources are discussed
as well.

• Chapter 8 Conclusions: Concludes the dissertation and opinions as to where
continued work should be focused.

4 Introduction

Chapter2
Preliminaries

Isolation can be done in a variety of ways and the various concepts as well as
relevant background information on these concepts are covered in this chapter. The
chapter will also cover needed information on Linux kernel features that various
isolation techniques are using together with licensing information.

2.1 Access control

Access control in operating systems is needed since the operating system should
provide confidentiality and integrity, i.e., a user should be able to deny other users
read access to his files and in the same way protect these files from modification
and deletion by other users. The actual active user/process is called the subject
and the passive part being the file or resource is called the object. The subject
is going to request an access right (read, write or such) that in turn is going to
be checked by the reference monitor that is going to grant or deny access on this
object based on the access rights as shown in Figure 2.1. The access rights can
basically be in two directions, either to tell what a subject is allowed to do or what
may be done to an object.

Figure 2.1: Flow chart of access control

On an elementary level there has to be only two access operations on an object.
To observe and look at the contents of an object or to alter the contents of said
object. For most cases however this is too general to be applied on large scale and
some other access control model has to be implemented. If a subject can control
an access control mechanism so that it allows or denies object access then it is
called discretionary access control (DAC). If the system decides the access rights
it is called mandatory access control (MAC). Even if they are very different they
can be used together, and if both MAC and DAC is used both mechanisms must
grant a subject access to an object.

One of the most famous models of enforcing access control is the state machine
described in the Bell-LaPadula Model [2]. This access control scheme is used for

5

6 Preliminaries

enforcing the access control in military and governmental usages. The scheme
describes access control rules that use labels on the objects within the system and
specific clearances for the subjects.

Another, security model is the Access Control Matrix (ACM) that helps char-
acterize each subject’s access right on each object in the system. In practice this
is not a feasible option since the matrix size will be very large, there will be much
redundancy and the management will require extensive work. The ACM can be
separated so that each column is by itself, and is then called an Access Control
List (ACL). This list will then contain which subject has what access rights for
the specified object. It however gets difficult to get an overview of the individual
subjects permissions if this is used. The other way around is also possible, i.e.,
separate each row so that the subjects contains a list called capabilities that states
the access rights on objects. This of course brings the opposite problem that it is
difficult to see who has access to the objects.

There are two principles that should be used in the aspects of access control.
The principle of least privileged, meaning that a subject only should have access
to the necessary objects and the other is separation of duties where functionality
critical to security must be done by more than one user [3].

2.2 Virtualization

In computer science the term virtualization means that something is creating a
virtual version of something. This virtual version could be for example storage
devices, operating systems, hardware platforms, network resources and so on. The
virtualization goal is to abstract away the underlying hardware and software from
the the applications, data or operating system running on top of the virtualization
software. One key technique in computer science is server virtualization where a
layer called hypervisor is used to emulate the underlying hardware, which is shown
in Figure 2.2.

The operating system is, when the hypervisor is used, the hypervisor itself
and it handles the communication between the guest OSes and the hardware by
simulating the hardware to the guest OS. The performance is not equal to the
execution on true hardware but many guest operating systems does not need the
full capacity of the underlying hardware but instead can make use of the greater
flexibility, isolation and control that is gained [4].

Application virtualization is when the application layer is abstracted away from
the operating system and allows applications to execute on a system, but with some
virtualization activated. This could be achieved by providing a virtual file system
with unique settings/registries and thus no modifications on the underlying system
can be made. Heavy operating system integrated applications such as modifying
the look of the GUI or user’s settings will not be possible to put in a application
virtualization environment since no modifications will be made to the real system
[5].

There exists many other forms of virtualization, but in the context of running
applications isolated in an embedded system these two are the most relevant ones.
For example network virtualization is when the bandwidth is split into channels

Preliminaries 7

Figure 2.2: Traditional architecture versus server virtualization

that can be used separately and storage virtualization is when physical storage
from many sources is pooled together to be seen as only one storage location that
is managed from one place.

2.3 Sandboxing

In the context of computer security a sandbox is a mechanism to separate running
programs with the aspect of keeping the operating system and other applications
isolated and safe when running programs. The sandbox does so by isolating or
virtualizing an environment where the program can be executed in, limiting the
possible access to the underlying operating system and other applications. Moni-
toring in a sandbox can occur as well as trying to check whether or not the program
executing is malicious or not [6].

Exactly how a sandbox works differs but there are some main focuses. One
solution is to let the sandbox act as a standalone program that basically allows
other executable code to be run inside of this program and thus the program itself
restricts access to the global system resources. One example of this is Chromium
[7]. Another solution is to restrict every executable on the system by letting the
OS itself sandbox every process from the system and each others [8]. The sandbox
can be in use for just a short period of time, scanning the unknown content and
when it has finished the scan the content is moved to the trusted part of the
system, but it can also run for the entire time of the execution and limit the use
of certain functions and continuously scan the operations.

2.4 Containers

Where a sandbox is a way to check and isolate programs from doing potentially
malicious operations in a confined area, a container is a virtual place for the appli-
cation to exist which runs for the entire time of execution. This definition means
that a container is a subset of sandbox. Basically a container consists of the entire
runtime environment (the application including the dependencies, other needed bi-
naries, libraries and configuration files) packed together. When making a container

8 Preliminaries

the underlying operating system and hardware is abstracted away. Containers can
sometimes be mixed with virtualization, and while this is true to some aspects
the main difference is that with virtualization an entire virtual machine including
hardware and operating system is abstracted away while the containerized version
share kernel with the other containers and the host OS. These shared parts of the
operating system are read only and a new file system is mounted within these for
writing. One major advantage of containers to virtualization is that they are more
lightweight than fully virtualized systems. Containers and application virtualiza-
tion can be seen as the same within this dissertation (definitions differ slightly
from various sources and in some cases they are not the same).

For security aspects the general consensus is that virtualization and fully virtu-
alized machines are more secure compared to containers. The reason for this being
that if a kernel vulnerability is found, it could be used to access the containers
or to break the isolation provided by the container. This could also be stated for
the hypervisors, but since hypervisors provide less functionality than the kernel it
means that the possible attacks are fewer (or at least in theory) [9].

2.4.1 Open Container Initiative

This initiative’s aim is to specify the configuration, execution environment and
lifecycle of a container and by focusing all major companies to one standard the
hope is that balkanization will be avoided. Some of the companies behind the
initiative are Google, Docker and CoreOS (developers for rkt, see Section 5.2.6).
This dissertation will only describe the most relative parts of the specification
that is used by both Docker (see Section 5.2.4) and rkt. Open Container Initiative
(OCI) has also created tools to help follow and implement the specification.

runC is one of these tools for spawning and running containers. It makes use
of libcontainer as the underlying mechanism, as shown in Figure 2.3. Libcontainer
is the actual containerization implementation and it uses the isolation techniques
on Linux to achieve the isolation, which will be described later in this disserta-
tion. Some of these techniques are capabilities (see Section 2.5.2), namespaces (see
Section 2.5.5), file system access control and system resource limitations. Extra
security can be applied by either SELinux (see Section 5.1.3) or AppArmor (see
Section 5.1.1) policies [10] which will be described later on in this thesis as well.

The container’s format defines how the container should be packed and bundled
to include all necessary data and corresponding metadata needed to startup and
run the container. Besides the container’s OS file system a file named config.json
must be included that defines environments, capabilities, namespaces, rlimits and
mounts so that the container software can be setup and executed as intended. This
can enable shared resources with both the host OS as other containers.

2.5 Linux Kernel built in tools

The Linux kernel has some built in tools for isolation of processes but each of them
with limited functionality. These tools are stand-alone and have no dependencies
outside of the kernel. Many of the isolation techniques that will be discussed
later will include or be based on these tools, but most of them are not assessed

Preliminaries 9

Figure 2.3: Architechtural overview of the OCI-developed tool stack.

individually since they do not provide the desired level of isolation on their own
but are instead covered in these preliminaries to give the reader an underlying
understanding of the more high-level techniques.

2.5.1 Linux Security Modules

Linux Security Modules (LSM) is a design principle in the kernel that supports
loading of modules for security purposes. The goals with support of LSMs were
to allow a truly generic security module that is conceptually simple, minimally
invasive, efficient and supports existing capabilities logic (POSIX.1e). The LSM
places hooks in the kernel before the access to the object is granted, and is enforced
by policies created by these modules, as shown in Figure 2.4. The system calls
first go through the existing logic for allocating and finding resources, and has the
error checks as in the usual DAC access controls but just before the kernel would
grant access to the object the LSM hook is enabled and makes an call to the LSM
and checks whether access should be granted or not [11].

This design results in that the LSM access control decisions are restrictive.
The module can only really deny access to objects, and all the usual errors and
security checks results in that access can be denied before it reaches the LSM.
MAC systems are usually implemented the other way around and for Linux it
limits the flexibility of LSMs but limits the performance penalty on the kernel
[12].

2.5.2 Capabilities

The original UNIX privilege mechanism did suffice for some time, but it had one
significant flaw; programs that require some privilege that is more than a normal
user must in fact run will full privileges. This is for example when a process has to
open network sockets with port below 1025 that will require root access. To allow
the process to opens ports below 1025 there can basically be two solutions, one
is to give the process root access and thus full access to the system (it can open

10 Preliminaries

Figure 2.4: The LSM hook architecture with example of reading
from a file (inode).

up to system abuse as backdoors, circumventing access control and data changes)
and the other is to use what is called capabilities [13].

Capabilities are flags that inform the kernel what the specified process is al-
lowed to do and does so system wide regardless of which user id that is currently
executing the process or what object is being accessed by the process. When doing
this the usage of root with full access can be avoided and instead different capabili-
ties can be set, one can see it as capabilities trumps root privileges. This technique
divides the root privilege into a set of capabilities that break the superusers priv-
ileges, for example the ability to switch between UID’s that are configured by
CAP_SETUID and the ownership of objects that is changed by CAP_CHOWN [13].

2.5.3 Berkeley packet filter

The classic Berkeley packet filter is a method that was used to filter network
packets and did so by letting the kernel analyze the packets before preceding them
for the sake of ensuring no harm was done to the running system. Today there
exists an extended (eBPF) version where all system calls, file descriptors and so on
can be filtered. The filtering should be done by white-listing allowed system calls
with a map and then loading the eBPF program into the kernel which will run
a statical analysis of the program to make sure no other calls are made than the
white-listed ones [14]. By white-listing instead of black-listing future implemented
syscalls will be blocked and blacklist bypass will be mitigated [15].

The classic BPF for network packet filtering is used in many applications
such as Wireshark, tcpdump/libpcap, DHCP and nmap. The extended version
is integrated in seccomp (see Section 2.5.4) and is used by Chrome, Firefox and

Preliminaries 11

OpenSSH to name some of them [16].
BPF kernel internals have been developed and implemented to mimic the un-

derlying architecture native instruction sets thus increasing the speed. The in-
structions are compiled to bytecode and executed by the kernel. The design is to
be just in time compiled with one to one mapping and generate optimized code
that performs almost as fast as code compiled natively. This optimization is made
with the x86_64 architecture in focus. The 10 registers in BPF are mapped one
to one with the 64-bit architecture [17]. An application (any binary) to be filtered
with BPF will ask the kernel to execute the BPF program.

The reason BPF can be seen as secure and controlled is due to the filtration and
execution of the BPF program. The BPF program is kept in check and reduced in
complexity by the limitations of the bytecode. Some examples on how it is limited
are [16]:

• All the jumps made by the program are forward only so that there can
not be any loops in the BPF program and the program is also bound to
terminate

• All the instructions are within range and valid

• A single BPF program has a limited numbers of instructions (maximum
4096)

These limitations makes sure the BPF programs within the kernel will run fast
and not get stuck in loops.

2.5.4 Seccomp

Seccomp, short for Secure Computing, is a tool for sandboxing, integrated in the
Linux kernel. It has been in the kernel since version 2.6.12 [18]. When seccomp is
enabled the process that is using it enters a "secure computing mode" where just
four basic system calls are available; read(), write(), exit(), and sigreturn().
This first version was very limited and getting code to run with only these four
calls was difficult.

seccomp-bpf

The second version of seccomp was released in the kernel version 3.5 [19] and added
a second mode for seccomp; SECCOMP_MODE_FILTER. With this command the pro-
cess can specify which system calls should be available and by using BPF programs
(based on eBPF) the process can restrict system calls entirely or for certain argu-
ments. When using these seccomp-bpf programs all the positive functionality on
the kernel will follow from eBPF (as stated in Section 2.5.3). BPF data is inserted
into seccomp and has some different fields that tells us what system call is made.
It has the system call number (which differs from architecture to architecture),
what type of architecture is being used, the instruction pointer and system call
arguments. It is received as a read-only buffer that the current process can use
but not change [20].

12 Preliminaries

2.5.5 Linux namespaces

Historically the Linux kernel only had one process tree, but with namespaces Linux
got the possibility to isolate a global system resource to a namespace and make
the processes within that namespace believe that they have their own instance of
that global resource, i.e., nested process trees. This technique was implemented
in kernel version 2.6.24 [21]. The reason for nested process trees is that if you
run multiple services it is essential to the security concerns that these services are
isolated from each other. If namespaces are not used an adversary might be able to
use one compromised service to attack other services, but if the services are isolated
the effects of these kinds of attacks are minimized. Containers for Linux often use
this technique [22]. To make and manage namespaces in Linux there exists three
system calls; clone(2), setns(2) and unshare(2). The clone(2) system call is
made to create a new process and creates namespaces for that process and the
child processes depending on what kind of input is given to the call. setns(2) is
a system call for allowing processes to join already existing namespaces with a file
descriptor as input. Finally the unshare(2) system call takes the process that is
calling it and moves it to a new namespace. An illustration on how a namespace
can be seen graphically is shown in Figure 2.5.

Figure 2.5: Linux namespaces example; process 1-4 can communi-
cate with each other but not with any other processes running
in the system. Process 7 will be completely isolated to any
other processes but process 5-6 will see process 7.

This kind of isolation can be made on seven different aspects in the Linux
kernel [23]:

• Cgroup sets the root directory of the namespace to an arbitrary path in the
system. For example if a namespace has its cgroup set to
/home/user/applications/app1 processes in that namespace will have their
/ (root) linked to /home/user/applications/app1.

• Interprocess communication isolates System V IPC objects and POSIX

Preliminaries 13

message queues. Objects created in a namespace are visible to all other
processes within that namespace but not to other namespaces. All objects
are destroyed when the namespace is destroyed.

• Network isolates and separates different networks from each other and one
namespace will, to each process, present a unique network interface. The
loopback interface is also different for each namespace.

• Mount sets different mount points for each namespace and provides
umount(8) and mount(8) capabilities for every process without touching
the global mount points. Note that changes to the file system will still be
reflected globally and not just for the current namespace.

• PID namespaces isolates the process ID number space. With PID names-
pace isolation the child namespaces do not know that the parent’s process
exists, but the parent namespace has a complete view of the child processes
exactly as if it were another ordinary process. These namespaces can be
nested, i.e., a child process spawns another child process in a new PID
namespace, and so on. PID namespaces can only be created by using the
clone() system call at the time a new process is spawned.

• User isolates the user and group ID space within the namespace from the
outside. This will make it possible for a process inside the namespace to have
root privileges only inside the namespace but not outside the namespace.

• UTS makes it possible to set other host names and domain names than the
system has.

2.6 Possible vulnerabilities and weaknesses in isolation tech-
niques

Some of the previously described techniques were developed for the sake of adding
security to the operating system, while some were developed for other reasons
but ended up providing more security and are used for that purpose within the
limitations of this thesis. Whatever the reasons for implementing these techniques
in the first place was for security perspective or not there exists various ways for an
malicious application to circumvent the isolation(s). Below we will discuss some
vulnerabilities and weaknesses.

Privilege escalation is when an application is exploiting a bug or design flaw
in the operating system to obtain a higher access grade than it is meant to have.
When an application gets higher privileges than it is supposed to it can execute
a wide variety of malicious operations such as reading more files or deleting infor-
mation [24].

For isolation techniques there exists many attacks and new ones pop up each
day. Some of the main attack vectors [25]:

• Kernel exploitation: Since the kernel is shared among the sandboxes and
the host this magnifies the importance of having a secure kernel. If a security
flaw is found or if the sandbox causes the kernel to crash the entire host goes

14 Preliminaries

down. In pure VM this is not as big of a problem since the attack has to
reach the hypervisor, which generally is harder.

• Denial of service (DoS): This attack is also tied to the fact that only one
operating system is used. If one sandbox uses all of the system resources
then the others will be left out and a DoS has occurred. This can be achieved
through for example privilege escalation.

• Isolation breakout: If an adversary gains access to an application inside
a sandbox he should not be able to gain access to the isolation technique
itself since if he does he gets the same access rights as the sandbox has. This
means that if the sandbox requires root access and is broken an adversary
also has root access to the system.

• Poisoned images: If the sandbox uses images the image could have been
tampered with. If a malicious image is being run both applications and the
data inside the containers are at risk. Even though the images may not
intentionally contain malicious code there still can be versions of software
inside them that is old and contain security bugs.

In a study from 2015 conducted by Forrester Consulting on the behalf of Red
Hat apparently 53% of IT operations in North America see the security concerns
as the biggest problem for not using containers. This means that there should
be steps taken to ensure the actual security before integrating containers in a
production environment [26].

For the sake of LSMs one of the major concerns regarding the security is
the complexity of the actual LSM. If the generation of policies or profiles is too
complex there will always be the possibility of forgetting or lacking something in
the configuration of the products. This can lead to applications that can break
the isolation if the correct access rights have not been set on all the various files
for example.

2.6.1 Common Vulnerabilities and Exposures

Common Vulnerabilities and Exposures (CVE) is a reference model for publicly
known security vulnerabilities and is maintained by a corporation called MITRE
and funded by the National Cyber Security Division of the United States Depart-
ment of Homeland Security. Each CVE has an id number to make it easy to share
the data among databases and tools so a baseline for coverage can be established.
When creating a new CVE first a potential security vulnerability has to be found
and reported, then this information is assigned a CVE id number by a CVE Num-
bering Authority (CNA) and gets posted on the CVE List (MITRE is the primary
CNA but there exists some others as well). The CVE Numbers may take some
time to appear on the list if the vulnerabilities are not made public, and it could
take years for them to appear [27].

Preliminaries 15

2.7 Licenses

Since all software is licensed under different licenses we must assert that it can
be used in our use case and test suite (the use case and suite will be covered in
Chapter 3 and 4. There exist a wide variety of licenses but only those that is being
used by the isolation techniques is going to be covered in this dissertation.

2.7.1 GNU GPL

GNU GPL, short for General Public License and originally written by Richard
Stallman. It is based on four levels of freedom. The levels are;

• Freedom 0: Freedom to use the software in optional purposes.

• Freedom 1: Freedom to examine the program to understand its use and
use this knowledge for own purposes.

• Freedom 2: Freedom to distribute copies freely to help others.

• Freedom 3: Freedom to modify the software, adapt it to your own require-
ments and distribute the improvements to others.

The first version dates back to 1989 and currently version 3 is the most recent
version. Version 1 is obsolete but both version 2 and 3 are still being used where
version 2 is the more successful one [28]. The accessibility of source code is a
requirement to be able to meet the above freedoms. Another aspect is that GPL
is a copyleft license, which implies that work and software developed from the
source code with GNU GPL license has to be released under the same license
terms.

2.7.2 GNU LGPL

GNU Lesser General Public License (LGPL) is as well as GPL published by the
Free Software Foundation. This license follow the same version numbering as
GPL for parity. LGPL allows other people and businesses to integrate software
that is released under this license without being forced to release their own source
code. However LGPL has the requirement that code released under it has to be
modifiable by end users (through the source code). LGPL is mostly used when
releasing software libraries [29].

2.7.3 Apache Licence, version 2.0

The Apache License allows the modification of other programs, but to do this one
has to explicitly explain what your own code is. It provides freedom to change,
distribute and distribute modified versions of the software without having to be
concerned about royalties. The Apache License also requires the preservation of
the copyright notice and disclaimer. All software that is licensed under this has to
include a copy of the license in a text document. Version 2.0 was released in 2004
and the main changes from previous versions was that it became easier to use the
license and that the compatibility with GPL-based software was improved [30].

16 Preliminaries

2.8 Benchmarking tools

Since embedded systems more often than not are dependent on running software in
an efficient way and have a very small performance buffer the possible performance
overhead needs to be measured. The measurements are made by two different
benchmark tools, and are described in the following sections. These two tools are
well used and the tests cover most parts of the system.

2.8.1 NBench-byte

NBench-byte is a benchmark program that was developed in 1995 by BYTE mag-
azine and is used to measure the CPU, FPU and memory speed of the system.
The benchmark runs in its original mode ten different tests [31]:

• Numeric sort: Array sorting of long integers, and is meant to test perfor-
mance of cache.

• String sort: Sorting of an array with various sized strings and is designed
to test the non-sequential performance of caches.

• Bitfield: Runs bit manipulation functions and are meant to see the "bit
twiddling" performance.

• Emulated floating-point: Calculates floating-points and points towards
the overall performance of the system.

• Fourier coefficients: Does numerical analysis for waveform approxima-
tions and is used to test the performance of the floating point unit (especially
transcendental and trigonometric performance).

• Assignment algorithm: Moves large chunks of integer arrays in both row-
wise and column-wise fashion. This test should give high results if the cache
or memory has good sequential performance (since memory is just altered
in one place and not moved around as in sorting operations).

• Huffman compression: This is a combination of "bit twiddling", byte
operations and overall integer manipulation. The test should point to the
general performance and be a good measurement in general.

• IDEA encryption: Is a block cipher algorithm and moves data sequentially
in 16-bit chunks. Is designed to provide a pointer to the raw speed of the
system.

• Neural net: Does floating point tests on small arrays that depend on
exponential functions. It does not show that much since the arrays are
small (and thus the cache/memory architecture would not come in to play)
and it is not so dependent on floating point unit performance due to the
small arrays. Is meant to show overall performance of the system.

• Lu Decomposition: This is an algorithm for solving linear equations and
tests floating points through movement of arrays in row-wise and column-
wise fashion.

Preliminaries 17

NBench has some shortcomings though. The benchmark is only testing the
theoretical limits of the CPU, floating point unit and memory architecture of
the system and can not measure disk or network throughput which then has to be
tested elsewhere. NBench also does not support multi-threading, which means that
the benchmarks use a single execution thread. This leads to that the performance
of scalability when more tasks are executed simultaneously is not explored.

2.8.2 dbench

dbench is a tool to benchmark performance of the file system or a NFS server. It
emulates the file system load that is made from the Netbench benchmark and does
so by doing the same system calls and I/O operations as the samba server would
produce if it was executed in Netbench. The benchmark can be used to stress the
file system to see how many applications that can be executed concurrently before
the operating system starts to lag but also to see at which workload the server
becomes saturated. The benchmark is a simulation but if we see the operating
system as a server for applications it reproduces what many applications running
at once would do, i.e., large amount of files/directories that have to be created,
written, deleted and read. Loading a description file that is derived from an actual
capture of a netbench run makes the actual benchmark. The file is called client.txt
and is about 25MB and contains roughly 500 000 operations.

dbench supports running on multiple threads and if executed with multiple
threads all will get the same workload [32][33]. The benchmark runs for 600
seconds with a 120 second warm up phase and measures the number of operations
that had the time to be made, which means that a larger number is better and
the throughput is also better with a higher value.

2.9 Related work

Isolation of applications, processes and virtualization on Linux has been imple-
mented many times before, for example in [34], [35], [36] and [37]. However the
work before has mainly been focusing on doing the most effective implementation
for hardware where there exists support for all modern techniques (for example
hardware virtualization, x86 support and so on). There has been some work done
for embedded systems regarding the isolation of various things, as can be seen in
[38] and [39] but they focus mainly on achieving isolation, the limitations and how
to use virtualization in embedded systems. This thesis will start analyzing a va-
riety of proposed isolation techniques and check the compatibility for the specific
use case that is going to be presented in Chapter 4 with limitations specified in
Chapter 3 and make an evaluation to which technique should be pursued further.

18 Preliminaries

Chapter3
Description of the system

The embedded system that will be used for implementation is the Axis camera
model M1065-L [40], which implies that all tests and conclusions will be made
according to the results on that specific camera model.

3.1 Hardware

The chip on the camera is an Ambarella S2L63 SoC that includes an ARM Cortex-
A9 CPU that runs at 816 MHz on a single core. It provides 512 MiB of DDR3
memory of which 226 MiB is available for the operating system.

The firmware, all the third party applications and data are stored on an inter-
nal flash memory with physical capacity of 512 MiB. In order to support flashing
of the device over the network, maximum half of the memory can be used, i.e.,
256 MiB. Otherwise new firmware would not be possible to store on the device
during the upgrade. The available space of 256 MiB is then further divided to
different internal partitions where one of them is used for third-party software and
is limited to 26 MiB.

3.2 Software

The tested firmware is built on Linux baseline kernel version 4.4.19. By default
no isolation techniques are activated and since it is an embedded system these
techniques are removed from the kernel before shipping to reduce the size of the
firmware. This includes but is not limited to namespaces, eBPF, seccomp, etc.
Systemd is used for init system and installed applications will get its own UID
and GID. The file system in use is UBIFS, which is a file system that supports
extended file attributes that is needed for some LSM modules. UBIFS also has the
possibility to compress all the files stored in the file system and decompress them
on the fly when accessed. This function is activated for this camera to reduce the
flash memory usage.

3.2.1 Build system

The build system is based on the OpenEmbedded framework, BitBake and the
Yocto project. OpenEmbedded is a framework that is aimed for creating Linux

19

20 Description of the system

distributions for embedded systems (however it can be used for non embedded
systems as well). The Yocto project is a collaboration project that brings templates
to be used for various hardware architectures and is used by developers with many
different underlying architectures in their products (for example ARM and MIPS-
processors).

BitBake is the actual build tool used and was first a part of OpenEmbedded
until it was separated out and is now co-maintained by the Yocto project and the
OpenEmbedded project.

BitBake works by specifying how various packages are built and includes pack-
age dependencies, where the source code can be fetched from and configuration
instructions (where to install, how to build and so on). All different packages has
a specific recipe that tracks these dependencies and will perform cross compilation
of the package and package that so it can be installed on the target device. There
exists a stack of recipes called layers that can be added entirely and thus not has
to be added one by one, and are maintained by the creator of that specific layer.

3.2.2 Updates

In order to update any software that is included in the firmware a new firmware
must be distributed to and updated on each camera. The firmware updates must
be manually installed either by using the AXIS Camera Management [41] or by
downloading the firmware from Axis web page and then uploading it through a
web interface or FTP.

3.2.3 Installation of third-party software

The third-party software can be both developed and installed by integrator, reseller
or the end user [42]. The developing company itself is not in control of what
software is being developed or installed on each individual device, thus backdoors
or security related bugs can be implemented by previously mentioned partners.

The application to be installed must be cryptographically signed by Axis server
prior to installation for them to be accepted and executed by the camera. A
manifest file must be shipped with the application, this manifest file describes
the application such as name, how to start the application, what requirements
are needed such as API-calls, dbus and more. With the manifest file the package
manager opkg [43] sets up systemd to include the service file created for this newly
installed application.

Chapter4
Methodology

This thesis aim is to reach a recommendation for the use of one or many isolation
techniques in embedded systems and specifically the embedded system described
in Chapter 3. The techniques are first going to be compared in the aspects of
which are supported as well as lack of support with embedded systems in mind.
The techniques will be a mix of containers, general sandboxes and LSMs that are
well known and widely used to ensure good quality of the product. The techniques
within each field were chosen to try and cover the most popular techniques based
on search engine hits but also to cover as many different underlying techniques
as possible. In general there were difficulties finding useful information regarding
what techniques even exist on the market. The dissertation tries to cover every
relevant technique we could find.

The elaboration of techniques and comparison is made so that the reader
will get a grip on a variety of techniques, what security measurements are being
supported and how different techniques solves the same problem. Also for the sake
of bringing substance to why these techniques even will provide enough isolation
for them to be used in a release grade operating system. This part of the thesis
is, as stated, going to be made completely detached from the embedded system
world and just focus on providing enough substance to be further investigated and
in the long run made possible to be used on the embedded system of our use case.
During this elaboration phase the licensing part is also going to be covered, and
made sure that all of the techniques being used is available to be used within the
limitations of license requirements.

When the found techniques have been elaborated and explained the actual
implementation was going to be made. There are no certainties that all of the
mentioned techniques are possible to use in our system, and thus the result is
divided in to three parts. Running techniques, non-running techniques and tech-
niques that had the theoretical possibility of running but are either too difficult
or too time consuming to be added to this thesis. To prepare for the work on
the actual embedded systems all of these techniques were tried out on x64 virtual
machines first, for the sake of making sure that they were running on systems
with practically no limitations and to get familiar with the techniques. Embedded
systems imply more limitations than ordinary systems and thus there are some
aspects that have to be taken in consideration when choosing the technique or im-
plementation that is best suited for the use in this dissertation [44]. These aspects
are the following:

21

22 Methodology

• The system must be dependable. For example if the device is to be used in
the video surveillance business the cameras and other units that are using
the operating system must be reliable. Thus the isolation technique must
be reliable, but also have high maintainability so that if there exist some
errors in the code it can be fixed quickly and deployed. These two aspects
together gives us availability which is the term we will be using to address
these issues.

• The system must be efficient. An embedded system should use the available
hardware and operating system functions as much as possible. For example
containers should provide minimal overhead, unnecessary functions should
be avoided and the code should be minimal to increase the efficiency.

With the limitations described in Chapter 3 the goal is to find one or many
techniques that are recommended to be used and further researched. One solution
can of course be to combine many different techniques, but that leaves the question
whether the security will be improved by an acceptable level or if it just adds more
complexity and overhead. The selection will be made according to the techniques
by themselves and how they fit in to the requirements and not according to how
many different tools they can be combined with. The Linux kernel features that
were explained in Section 2.5 will not be taken in consideration in the comparison.
Containers and LSM are often using these features and alone the Linux kernel
features are not flexible and usable enough to use in real practice.

When all possible candidates are tested and possibly running on the camera
test suites will be executed and validated with regards to CPU usage, memory
usage, possible added latency for execution, input and output performance of file
operations and disk usage. If the results do not point to a single specific technique
that stands out as better all others factors of usability, maintainability, stability
and possible security aspects will be taken in to consideration and added to the
final assessment of the recommended technique. The tests and benchmarks are
going to be made on the same physical camera for all the tests. Since continuous
updates of the source code and upstream packages are being made same source
code revision is used in the entire thesis to ensure that all the benchmarks is as
valid and accurate as possible.

Another approach to the testing phase would have been to beforehand choose
one technique from the chosen techniques after comparing them theoretically and
go deeper to just ensure so that specific technique is running and perhaps start
the work of automating the process of auto enabling an isolation technique when
an application is loaded to the camera. This approach was however discarded
since had no prior experience at all testing isolation techniques within their build
system and since the isolation techniques in their base form are not designed for
embedded systems a complete evaluation is needed.

When assessing the security features they are supporting the assumption is
going to be that these isolation techniques are providing what they are promis-
ing and does so bug free (otherwise much time has to be spent on elaborating
the different attack vectors of the chosen techniques). However there will be an
assessment regarding how many weaknesses/vulnerabilities that has ended in a
Common Vulnerabilities and Exposures (CVE) has on them and the possible ef-

Methodology 23

fects from these that possibly is going to factor in on the recommended technique
or techniques.

The thesis will also assess if the technique is under active development so that
if (most likely when) any bugs are found the maintainers or other people/organi-
zations can supply a patch and fix the problem.

4.1 Use case

The end user is Axis. Wishes has been expressed that they are interested in a
solution that helps them add extra security to the application section of their
cameras. The usual scenario is going to be that an end user (i.e., Axis customer)
buys a camera for the purpose of surveillance. This customer may then want to
add some of their own functionality or applications to the camera and that is where
this thesis will try to improve the cameras. Axis cameras should be flexible enough
to allow users adding their own application but should do so in a responsible way
and these applications should not crash or make the system panic.

4.1.1 Use case

Application execution use case:

• Use case 1: An application is executed to the camera

• Actor: Customer who bought an Axis camera

• Stakeholder: Axis

• Use case overview: The customer wants to add some extra functionality
to the camera for surveillance purposes, and does so by developing an own
application that is loaded to the camera and executed

• Trigger: Application is executed on the camera

• Precondition 1: The application is transferred to the camera

• Precondition 2: There is space left on the camera

Basic Flow: Ordinary execution

• Description: This scenario describes the situation where an application is
executed with no malicious attempts and is the main success scenario.

• 1: User starts the application

• 2: An isolated environment is started

• 3: The application is executed

• 4: The application makes all needed system calls

• 5: The application runs its course and is terminated

• 6: The isolated environment is removed

Alternative Flow: Execution with malicious attempt

24 Methodology

• Description: This scenario describes the situation where an application,
intentionally or unintentionally does malicious operations.

• 1: User starts the application

• 2: An isolated environment is started

• 3: The application is executed

• 4: The application tries to do malicious things

• 5: The application is denied of doing these malicious things

• 6: The application is terminated

• 7: The isolated environment is removed

Chapter5
Isolation techniques

The different isolation techniques will be introduced and explained one by one
divided into LSMs and sandboxes. The explanation of each technique will focus
on the parts that is relevant for this dissertation, i.e., the security properties.
Since each technique is unique in how and what in the system that can be secured
examples will be shown how a certain acceptable level of security can be achieved
by each technique.

5.1 Linux Security Modules

Ever since LSMs were included in the Linux kernel there has been a growing
number of security modules being developed. This section is going to cover the four
largest security modules that are included in the kernel and that are available on
the operating system flavor that the use case of this thesis is focusing on. There is
one more available LSM called YAMA that has the possibility of being used within
the range of the use case but was discarded as the amount of information regarding
it is parsimonious. A brief comparison between the considered LSMs is shown in
Table 5.1 but are further examined and explained in the coming subsections. Each
row in the table is defined as below:

• Version - specifies what version each technique used throughout this whole
dissertation.

• License - that applies for each techniques, see Section 2.7 for description.

• Policy generation - states if there exists tools to automatically generate
policy based on the learning mode.

• Label or path enforcement - defines if the technique requires labels on
the file attributes or is using the path to enforce the access control.

• Learning mode - means support in the technique for a specific mode where
all calls will be allowed but logged so that application specific inspection is
later possible.

• Configuration - states how the configuration of the LSM is done.

• System call overhead - show in percent how much overhead each tech-
nique adds compared to a system running without any LSM activated.

25

26 Isolation techniques

Name SELinux AppArmor SMACK TOMOYO
Version 2.6 2.3 4.4 2.5
License GPL v2 GPL GPL v2 GPL v2
Policy generation Yes Yes No Yes
Label or path enforcement Label Path Label Path
Learning mode Yes Yes Yes Yes
Configuration C-like ACL Domain table Interface
System call overhead [45] 7% 2% 5-10% N/A

Table 5.1: Matrix comparison over the covered LSMs.

5.1.1 AppArmor

AppArmor is a running daemon that restricts programs by a set of rules stated
by the profile for that binary by using path name based security. White-listing of
allowed rules are stated in the profile file. AppArmor has been integrated in the
Linux kernel since version 2.6.36 [46].

By using Linux Security Modules (LSM) the daemon can check that the spe-
cific application is allowed the resources it asks for. AppArmor has two states,
enforcement or complain. The enforcement state will report violations to syslogd
and also enforce the program to follow the rules stated in the profile. Complain
will only report violations but still allow the program to run even after a violation
of the rule.

AppArmor applies the profile to a process when exec(3) is called. The profiles
are text files that contains the following access control: system capabilities, files
access and modifications, mount, network, dbus, IPC and rlimit [47] [48].

AppArmor is often seen as easier to use than other LSMs while still having
powerful access control and is still under development.

5.1.2 Smack

Smack is an acronym for Simplified Mandatory Access Control Kernel and has
been in the Linux kernel since 2.6.25 and is still under development [49].

The MAC scheme that is used in Smack is based on labels that can be attached
to processes and typically file objects. To receive clearance that a process can have
access to the object the labels must match (there exists some pre-defined system
labels but the majority has to be set). Smack only allows privilege to be a factor
when labels of tasks shall be changed, and leads to that the security in Smack is
more seen as an attribute of the process and not the program. If a label is given
to a new storage object only a process that is privileged has the ability to change
that label. Smack uses but do not require extended attributes (xattrs) to store the
labels on the file system objects. If the xattrs support is lacking a default label can
be used for the whole file system[50]. In order to change labels of a file the process
also must have CAP_MAC_ADMIN (see capabilities(7) in the Linux manual).

The labels have different access rules that are in a predefined order and are
defined in text files located under different directories below /etc/smack The
precedence and rules are[50]:

Isolation techniques 27

• * - star: The star label is set on some objects that needs to have universal
access. A process with this label does not have access to other objects (even
including others with star label). Vice versa all other labels have access to
objects with a star label.

• _ - floor: This is the default label for system files and system processes.
Every process has read access to objects with this label.

• ^ - hat: Processes with hat label has read access to all other objects.

• Matching labels: If a process has the same label as an object the process
will get access (except the star label).

• Unmatching labels: Since users can define their own accesses explicitly
one could give access to process and object labels without them matching.
So if there exist such an access defined it gets access, otherwise not.

Smack works on any Linux distribution and is used on embedded systems with
Tizen (open source mobile operating system based on Linux) and Intel IoTs open
source project although in modified versions. It can control access to files, IPC,
sockets and processes.

5.1.3 SELinux

SELinux, short for Security-Enhanced Linux is a LSM that provides MAC, en-
forcement and Bell & LaPadula sensitivity for Linux and has been in the kernel
since version 2.6 [51]. SELinux puts a label with each program that states the
security characteristics of a process that runs that specific program and supports
learning mode. The way labels are set on the objects is in the file system xattrs
field and supports restrictions on file system, network, IPC and more.

By default SELinux denies access to objects. A subject or object is governed
by a security context divided into three different parts; user, role and domain:

• User in SELinux is separated from the Linux DAC and contains information
of what privileges the user has. A user in this context is either a user or a
daemon.

• Role can be seen as Linux equivalent of group, i.e., a user can be a member
of several roles. But SELinux only allows one role at a time and switches
between different roles must be explicitly allowed for that user.

• Domain can be seen as a kind of namespace, any combinations of subjects
and objects within in the same domain will be able to interact with each
other.

A system that enforces SELinux must take into account applications that run
other applications and processes. The profile for these applications must have all
the sub-processes permissions set in the profile as well in order to fully function.
This can thus lead to large profiles to include all needed resources. This can be a
drawback for embedded systems. If we take Busybox (a software that has several
stripped-down Unix tools in a single binary) as example this means that it has
to be given all the rights for what the program can do and the policy must then

28 Isolation techniques

be programmed to take into consideration these aspects which can create massive
policies that are hard to incorporate to third party programs (since Busybox can
be changed when updated). The policies for these binaries will generally be large
(excess of 800 000 lines is not uncommon) and when the binaries are changed the
policies and file system might need an update.

5.1.4 TOMOYO

TOMOYO uses MAC with support for learning and supervisor mode for restric-
tion of applications. Configuration files are used to fine-grain policy for every
application on the system. TOMOYO sets restrictions of the application based on
the path to the executable. It comes in two different versions, version 1.8 and 2.5,
both being very different from each other in terms of modification of the kernel
[52].

Version 1.8, which is not classed as a LSM but modify the kernel in a way
that requires recompilation of the kernel to extend the possibilities for it to run.
Support for kernel versions prior the introduction of LSM is possible and version
1.8 can be implemented on kernel version 2.4.37 [53]. Version 2.5 is developed as
a LSM without having to modify the kernel and is included in the kernel from
version 2.6.30 [54]. This dissertation will focus on the latter since upstream LSMs
in the kernel is preferable compared to patch the kernel to support version 1.8.

TOMOYO can apply access control on files access and modifications, mount,
network, dbus and IPC and TCP-wrapper-like TCP/IP packet filtering. The latter
can be based on both address and ports that could operate as a firewall for each
connection being made from running applications. It even allows restriction of the
environments variables names that are passed to system calls so that dangerous
environment variables (like LD_PRELOAD to execve()) won’t be passed around
freely. One downside could be the overhead, however according to their own tests
the amount of overhead is acceptable in most cases [55], but of course our own
tests were made.

TOMOYO uses path name based access control, which can be discussed to be
seen as less secure than label based access control. For example if a binary changes
name the access control will fail. This disadvantage exists for other techniques that
also use path based access control. In this dissertation AppArmor is an example
of that. It can be difficult to maintain and update policies if and when renaming
of files in the system occur. TOMOYO has some assists to this and the damage
it may have on the system by restricting path names, which each application can
request but it still remains a possible drawback.

5.2 Sandboxes

This section will describe some sandboxing implementations developed for Linux
with the use of the kernel capabilities mentioned in the previous chapter. Observe
that the versions used for the different techniques might not be the absolute latest.
The reason for that are limitations in the build system described in Section 3.2.1.
A brief comparison that can be used as an overview for the techniques is shown

Isolation techniques 29

in Figure 5.2 and 5.3 and each row is described below:

• Version - specifies what version each technique used throughout this whole
dissertation.

• License - that applies for each techniques, see Section 2.7 for description.

• Isolates network - separates the network from the underlying network so
no applications with isolation of the network can see packets outside of this
network. Could be to only show a private loop-back interface.

• Requires root - states if the sandbox needs to be run as root to function.

• Configurable auditing - states if the technique support individual con-
figuration for each application, isolate network for example or only allow
read/write access from some specific path.

• Requires separate file system - for the sandbox to function, i.e., a com-
plete separate operating file system.

Name LXC Firejail Bubblewrap Docker
Version 2.0.0 0.9.38 0.1.6 1.13
License LGPL 2.1+ GPL v2 LGPL 2+ Apache v2
Isolates network Yes Yes Yes Yes
Requires root Partially Yes No Partially
Configurable auditing No Yes Yes* No
Requires separate file system Yes No No Yes

Table 5.2: Matrix comparison over the covered sandboxes.
*: With support of seccomp and SELinux policies (these tech-
niques must then be activated in the kernel)

Name Systemd-nspawn Systemd-service Rkt
Version 231 231 1.25
License LGPL 2.1+ LGPL 2.1+ Apache v2
Isolates network Yes Yes Yes
Requires root Yes Yes Partially
Configurable auditing No Yes No
Requires separate file system No No Yes

Table 5.3: Continuation of the matrix comparison over the covered
sandboxes.

5.2.1 LXC

LXC, or Linux containers, is an application that uses namespaces (see Section
2.5.5) to achieve process or complete virtual OS isolation. LXC was added to

30 Isolation techniques

the Linux kernel in 2.6.32 but required then to be privileged to start a container.
Support for unprivileged mode was added in version 3.13 of the Linux kernel [56]
[57]. LXC is developed under the license GNU LGPLv2.1+ and is maintained by
people working at Canonical Ltd.

The containers made by LXC can, as previously stated, be either privileged or
unprivileged, i.e., root or normal user. The privileged containers should only be
used in specific environments where unprivileged containers are not available (this
is since the container’s users get root access to the host which is insecure). For both
privileged and unprivileged container Linux Security Modules (see Section 2.5.1)
SELinux or AppArmor can be applied as well as seccomp or capabilities to add an
extra layer of security [57]. A container can be seen as privileged if UID 0 of the
container is mapped to UID 0 of the host. If a container is privileged the security
comes from MAC, seccomp filters, namespaces and dropping of capabilities. If an
error or bug exists in these security mechanisms it will be possible to escape the
isolation and then the application escaped would have root privileges on the host.
The privileged containers can typically be used to prevent damage on the host
such as reconfiguring hardware, kernel or accessing the file system.

Unprivileged containers are safer by design, as explained in the preliminaries
(Section 2.6). The UID 0 inside the container is then mapped to an unprivileged
user outside of the container and can thus only access the owners privileges. When
creating and starting a container as an unprivileged user, setuid is used for the
parts that needs to be run as a privileged user.

As stated LXC does not require root to isolate applications and can use policies
from seccomp, SELinux or AppArmor. Since isolation of a complete OS is possible
multiple processes can be isolated together under LXC and can provide higher
usability and maintainability for inter-process communication. It supports all file
systems and is still being developed. On the network part however there can only
be disconnection from the network but not filtering. It does lack the possibility to
run a trace mode to test the applications system resource usage.

Configuration to achieve isolation

First a container needs to be downloaded that contains a complete OS file system.
The application to be executed must then be copied to the container’s file system
since the container will be isolated from the host’s file system. To execute the
application in an isolated environment the following command should be used:
lxc-start -n name-of-container name-of-application
Note that execution of lxc-start is available without any special privileges once
LXC has been installed and setup to allow a specific user to handle containers. All
the containers are run under the same PID as the user executing the commands.
Root is only needed when setting up the container the first time and the sticky
bit on the binary achieves this.

5.2.2 Firejail

Firejail is a sandboxing program that tries to restrict the environment that is run-
ning untrusted software using Linux namespaces (see Section 2.5.5) and seccomp-

Isolation techniques 31

bpf (see Section 2.5.4). To achieve this isolation it requires root to run. Firejail
can be used by itself or combined with other isolation programs to add more
functionality.

It is lightweight with very few dependencies as it only requires the Linux ker-
nel of version 3.5 or higher to run. It supports, among other things, sandboxing
servers, user login sessions and graphical applications. Firejail comes with cer-
tain profiles pre-built for various Linux applications such as Chromium, VLC and
Firefox, and if no profile is made for an application a generic one is used. The
profile that the sandboxing is made according to can also be changed to a custom
version where each user in the system can specify their own profile. To launch an
application sandboxed by firejail it has to be passed as an argument to firejail [58].

A simple example how Firejail can be used is shown below:

firejail --net=eth0 --dns=8.8.8.8 \
--netfilter=/etc/firejail/nolocal.net \
--private=/home/firejail/fake-home/ firefox

This example launches Firefox but changes so that it uses one of Google’s
public DNS server [59]. It also adds restrictions to the private network so only
connection outside of the local network can be made. $HOME is set to
/home/firejail/fake-home/ so no files from the user’s home folder can be read
by the Firefox binary and the files written will be stored persistently in the same
path.

Firejail provides a private view of the global system resources, for example
network, processes and mount table. It can be run in an SELinux or AppArmor
environment and can wrap anything in seccomp easily even if the underlying appli-
cation does not support it. It supports all file systems, and is being continuously
developed and maintained. Firejail supports tracing, and can show exactly what
the application needs access to.

5.2.3 Bubblewrap

Bubblewrap is a tool for wrapping. The main goal for Bubblewrap is to sandbox
applications where the access is restricted to parts of the operating system or the
user data. To create the sandbox an executable is passed on as an argument and
then the executable is executed in a custom namespace. This namespace starts
out empty and then the actual sandbox is built from arguments in the command
line [60]. Bubblewrap can be run as a normal user and thus privilege escalation
will not be as damaging since the user executing Bubblewrap is limited in the
system [61]. This leads to some limitations where some techniques in the kernel
cannot be used for Bubblewrap, one of those is iptables for advanced filtering
on the network but denying of non-local network is possible. System resources
can be isolated and seccomp-filter is supported. Bubblewrap is continuously being
developed.

Each application to isolate needs to be passed as an argument to Bubblewrap
(binary is named bwrap). To achieve the isolation for one application an example
script is shown below.

32 Isolation techniques

bwrap --ro-bind /bin /bin \
--ro-bind /usr /usr \
--ro-bind /lib /lib \
--ro-bind /lib64 /lib64 \
--ro-bind /etc/resolv.conf /etc/resolv.conf \
--chdir / \
--proc /proc \
--unshare-pid \
name-of-application

5.2.4 Docker Engine

Docker engine provides a way to run applications in a container, with support for
specific versions of libraries for each container. The Docker engine can run on
several different host OS (Linux, macOS and Windows) and thus adds capabilities
to run a docker instance on several different OSes. The Docker engine described
here is the one running on a Linux host and relies on containerd, runC and libcon-
tainer. The latter two is part of the Open Container Initiative (OCI). Containerd
is a daemon for controlling the OCI tools. To run, create and manage containers
the docker command must be executed as root.

Docker is mainly focused for development and testing and not deployment
even though the focus has shifted to deployment. Docker imitates an entire OS
and requires space for the container’s filesystem. Docker is still under development
and is built on running a single process in a single container with its own private
network or several images connected to the same isolated network. No system
resources are passed on to the container by default so Docker gives complete iso-
lation, and thus cannot provide tracing. Docker states itself as "quite secure" and
general opinions has stated that Docker is less secure than competitors [62].

5.2.5 Systemd

Systemd is an init system for various Linux distributions and has the ability
to bootstrap all the processes and user space. It runs as PID 1 and starts up
the system while providing aggressive parallelization, d-bus and socket activation
for starting services, starting daemons in an on-demand fashion, process tracking
through cgroups, maintaining mounts and mount points and supports snapshot-
ing and restoring. Its main focus is being an init system but it has some security
aspects as well. One is the use of unit files and the other is nspawn, which will be
described in the coming sections.

Nspawn

Systemd-nspawn is a part of systemd that provide containerization capabilities
and tools to manage these containers. It makes the file system, process tree and
inter-process communication namespaced [63].

Isolation techniques 33

Note that even though these security precautions are taken systemd-
nspawn is not suitable for secure container setups. Many of the se-
curity features may be circumvented and are hence primarily useful
to avoid accidental changes to the host system from the container.
The intended use of this program is debugging and testing as well as
building of packages, distributions and software involved with boot
and systems management.

This quote comes from the manual and proves that this tool perhaps not should
be used as a function meant for security [64].

This tool supports both booting of complete OSes as well as running a single
process within the container. It needs to be run as root and supports system
resource isolation as well as simple network filtration with support for exposing
specific ports. Several different containers can be combined in the same virtual
network. One possible drawback can be that if there is a stability problem with
systemd the whole system will crash due to it being used as init.

To sandbox a complete OS (an Alpine image is used for this purpose) the
Alpine Linux image needs to be downloaded and extracted to an arbitrary location
then the application to be run needs to be moved in to the file system of the
Alpine file system. To execute the binary with no network capability the following
command can be used:
systemd-nspawn –directory=/var/lib/machines/alpine
–private-network /bin/APPLICATION

Unit

In systemd a unit is a resource that the system can operate and manage and is
configured using configuration files that are called unit files. Systemd has the
possibility of also isolating certain things without using nspawn as a container but
instead by specifying in the actual unit file what that service is allowed to do.
It does so by using capabilities and namespaces and only supports restriction of
processes instead of entire OSes as can be the case in nspawn (and shall not be
mixed with nspawn even though they use the same basic kernel functions).

When compared to other init systems a unit can be seen as a job but a unit has
a more wide definition and supports the abstraction of service, network resources,
devices, file system mounts and resource isolation. There exists many types of
units, for example .socket, .device, .mount, .service and many more. Socket
units describes network or IPC sockets, device units describes designated devices
that needs systemd management and mount units defines mountpoints on the
system. The unit most interesting to this dissertation is the service unit. It
describes how an application or service is being managed on the server, which
includes how to start it, stop it, if it is to be automatically started, what it should
restrict in terms of resources and so on.

For these units there exists various options to modify that unit service, but
those most important for the isolation part of the processes are:

Systemd.exec(5) supports the loading of SELinux (see Section 5.1.3), AppAr-
mor (see Section 5.1.1) or SMACK (see Section 5.1.2) policies when executing a

34 Isolation techniques

service as well as set restricted access to certain system resources. The restrictions
in systemd.exec(5) includes but not limited to:

• Directory and files: change root and working directory as well a private
/tmp directory and specify which directories are prohibited and not. Options
to set umask for files created by the process. The option to do this is called
RootDirectory. Through InaccessiblePaths there exists options to set
up a new file system namespace that can limit process access to the file
system hierarchy. The responding for users can be done as well, through
PrivateUsers, that will set up a new user namespace for the process and
makes a minimal user and group for that process.

• CPU and memory consumption: set limitations on memory and CPU
usage and prioritizing of the process and is done for example by the options
LimitCPU, CPUAffinity and MemoryLimit.

• Devices: only allow certain devices such as /dev/sda and set private net-
work so only a private loop back interface will be accessible to the pro-
cess. Device management can also use the option PrivateDevices to turn
off physical device access by the running process, which may add security.
There exists an option called ProtectSystem that also can make the system
more secure through mounting directories as read only that can need the
device access to be configured to work as intended.

• Syscall: filter on predefined system call sets that are allowed for the process.
SystemCallFilter is the option used and uses seccomp filtering to do the
actual system call control.

An example of an unit file that starts nbench and outputs the results to a file
while limiting access to some paths and devices, runs as a new user and only allows
system calls for changing resource limits, memory and scheduling parameters is
shown below:

[Unit]
Description=nbench
InaccessiblePaths=/
ProtectSystem=true
PrivateUsers=true
PrivateDevices=true
SystemCallFilter=@resources

[Service]
ExecStart=/bin/sh -c "nbench 2>&1 > /usr/local/addon/nbench.txt"

[Install]
WantedBy=multi-user.target

5.2.6 Rkt

Rkt [rock-it] is a container manager for Linux. The main focuses while being
developed was that it should focus on security, simplicity and composability. It is

Isolation techniques 35

designed to run individual applications and not a whole OS. It requires root for
managing the containers and works together with systemd and can use nspawn for
the creation of namespaces for containers. It is still under development. Instead
of having a background daemon rkt uses an interface that compromises a single
executable. Rkt requires root to run and requires the container to be made of
images following the OCI specification. These containers needs to be created from
somewhere and tools to build them are for example acbuild, acttool and goaci.
Rkt also has the possibility of running Docker images. Even though parameters
are defined in the config.json in the container image they can be overridden at
runtime, and as an example rkt run will allow users to input their own execution
arguments to images.

Since Rkt is compatible with the OCI standard different containers can share
resources such as network to communicate with each other. Rkt itself states that
it is designed and developed with the feature of being "secure-by-default" and is
bundled with support for running various LSMs, make TPM measurements and
having hardware-isolated VMs [65].

36 Isolation techniques

Chapter6
Results

The result part of the thesis is going to be split in three parts, implementations
that had no possibility of being run within our specified use case, implementations
that had the theoretical possibility of being added and executed on the camera,
but because of various reasons could not be added to the final image and lastly
implementations that were able to run.

6.1 Non running isolation techniques

There were two implementations that had no possibility to be added to the image
at all. Rkt lacks support for the ARMv7-processor that is used and without
upstream support addition for ARMv7-processors by CoreOS (developers of rkt)
this implementation will most likely never be able to run.

For Docker some recipes already existed in various layers in Yocto. To be able
to fully run Docker the layers meta-virtualization, meta-python,
meta-networking and meta-filesystems had to be added. This proved to be
a moderately complex task since it was necessary to rewrite and specify our own
manifests (BitBake file that basically states where to fetch various sources from
and what to include) to get these layers to be added to the build tree. These
layers come stacked with many different things, which also add some overhead in
our firmware. The first approach was to split the Docker source recipes from these
layers and just add them to an already existing layer. This however proved to be
impossible since the main source code is dependent on python version 3 support.
Axis does not currently need python 3 for any of its packages. This python support
together with dependencies of other recipes lead to the addition of very many stand
alone packages which later on has to be maintained by Axis by themselves, so in
unison with Axis we choose to have the extra overhead by adding the entire layers
(layers caan be maintained by Yocto and does not have to be Axis burden to do
so). This addition of all the layers lead to that the image needed 564916224 byte
(or roughly 565 Mb) space. With about 221 Mb available for the entire operating
system including addons this is about 2,5 times larger than that and could thus
not be tested on the camera.

37

38 Results

6.2 Techniques with theoretical possibility of execution

Some of the techniques that were covered by the comparison could not be added
to the operating system within the limitations of this thesis but still has the
theoretical possibility of being added to the image. These techniques could be
a better fit than the ones that actually managed to run, so they should not be
discarded completely. However in the benchmarking and final results they will be
discarded.

LXC can be run as long as namespaces is activated in the kernel, but once
the init sequence of the container gets to the part where it is going to connect to a
pseudoterminal (a bidirectional communication channel that works like an ordinary
terminal but is virtual, also called pty) it fails even though pseudoterminals are
included in the build. The actual problem is not the pty but rather in the creation
and transfer of the container file system to the camera. The camera system is
very limited and Busybox version of xz to unpack a tar-ball, that contains the
container file system, lacks support for the majority of the flags that LXC is using
after downloading the container file system. So in order to get LXC fully working
the need is to find a solution on how to move the container file system fully intact
in to the firmware during build time or transfer it to the camera during runtime.
It was not possible to use LXC own tools to retrieve a container file system.

Systemd-nspawn is supported through systemd, but the same problem as
LXC had with movement and/or creation of a container file system is a factor
here. For nspawn to function, namespaces and most likely pseudo terminal has to
be enabled in the kernel. The pseudo terminal dependency has not been verified
since a boot of a container has not been possible, see Appendix A.7 for kernel flags
to enable.

AppArmor did actually run on the kernel and was showed as activated, how-
ever to be able to setup it the user space tools have to be installed. These tools
were dependent of swig and native python which proved to be a difficult task to
implement in BitBake, if even possible. The user space tools is for making profiles
and enforcing the security and is not required for AppArmor to run - but AppAr-
mor has to be configured through the kernel setup phase if not using them. Since
Axis is using BitBake as build tool these kernel changes proved to be overwritten
and changed in so many ways that the result did not persist to the actual built
image. The user space tools did exist as a recipe in Yocto but the flavors of them
were not written for the same version as Axis is using. This recipe would have
required massive rewriting and configuration to be able to run since just adding
the currently existing layers resulted in compile errors (of the type where the Axis
main layers were incompatible with the added layers).
If the actual configuration of AppArmor could have been made by the user space
tools or setup during build there would have existed a way to use it but since
AppArmor requires a policy for every binary on the system (if it should be con-
strained by AppArmor) these policy-files must be generated and included in the
firmware. How these policy files should be generated for the addons is out of scope
of this dissertation but is still something that needs to be taken into consideration
when choosing a LSM as a way to isolate each application.

SELinux can be built with the kernel, but since SELinux is using policies for

Results 39

every application there has to be policies for all of them. These rules will be loaded
during boot from a policy database. The main problem with adding SELinux to the
kernel is with these policy files. When the policy files are automatically generated
by the recipes that exists in Yocto the image gets too large. A possible solution
here would be to craft some automatically generated reference-policies that can
fit Axis needs, however we did not get that solution to run due to build and
configuration problems with BitBake. The user space tools needed for SELinux
could be added from a layer called meta-selinux but as stated the build failed
when enabling the policies. With SELinux enabled the tar ball size was 53835041
byte and when extracted too large to be fit in a cameras image. Worth mentioning
is that SELinux with the user space tools but without policies could be run on the
image, however since no policies are there no actual improvement of security is
made. The same drawback exists as for AppArmor, policies needs to be generated
and maintained for all binaries to be isolated.

6.3 Running isolation techniques

The techniques that are up and running within the limitations of our use case is
the one that are going to be most elaborated and graphs with benchmark com-
parisons are shown in Figures 6.1-6.10. When the benchmarks were being made
all extraneous services were stopped on the cameras so that there would be only
the bare minimum of the system that was running (only Axis own built services
was stopped since they can generate various loads on the camera and then the
benchmark may differ, for example if there is motions in the video data). In some
cases kernel flags had to be changed in the operating system for the techniques to
work, exactly what flags were changed can be found in the appendix.

For nbench there was one test that required external files, and that one was
neural net benchmarks and those files could not be added to the camera. For this
thesis the benchmark was modified in order to run on the destined camera and
the part of neural net had to be removed. As explained in the preliminaries the
neural net tests does not add that much information to the benchmark so that
part of the benchmark was discarded.

Firejail was able to compile with the kernel only by adding a BitBake recipe
and a dependency to that recipe, it however needed some kernel configuration
for it to be able to run as planned. Namespaces and the belonging flags were not
activated in the kernel, so once those flags were activated and built with the kernel
Firejail was able to start and function as intended.

Bubblewrap was like Firejail able to be included only by adding recipes,
namespaces in the kernel and dependency for the recipe. The recipe had to be
made from scratch but did not provide any special difficulties.

Systemd unit isolation does not require any extra binary in the running
operating system but namespaces must be activated to fully function and only
service files (regular text files) need to be created for each application to isolate.
This helps with the resource aspect. The benchmarks change a bit since there are
some extra kernel features (i.e., namespaces) that had to be made through and
the question whether it is safe enough is still present.

40 Results

SMACK could be enabled through configuration of the kernel flags and the
user space tools needed to be added as a separate layer in BitBake. SMACK is
used by Intels IoT open source department and the layer was already developed
[66]. There had to be some modifications done in order to make it run on Axis
specific build system though (for example some versions of sshd had to be changed
and reconfigured).

Since TOMOYO is a LSM the activation could just happen through the
additions of kernel flags to the kernel during build as done with SMACK (however
a completely changed set of flags). TOMOYOs user space tools was pre-added
to the meta-oe-layer and just needed activation to be able to run. During the
benchmarks TOMOYO was executed with policies that enabled all access.

Figure 6.1: Numeric sort performance

The final sizes of the images when running these techniques is shown in Figure
6.11 and the data is taken from the compressed file systems before it is split into
different partitions.

6.4 Security evaluation

This evaluation is going to cover only running techniques and is meant to give
some insight to the current security aspects of these. The information regarding
security concerns is based on reported Common Vulnerabilities and Exposures
(CVE) and the number of occurrences should not be seen as an guidance but
rather the severity of the errors since the amount could just reflect the size of the
project or amount of users that tries to find weaknesses.

systemds unit isolation has the main issue that if a malicious application
breaks the isolation the attacker could get access to the entire systemd and root

Results 41

Figure 6.2: String sort performance

Figure 6.3: Bitfield "bit twiddling" performance

42 Results

Figure 6.4: Emulated floating-point performance

Figure 6.5: Fourier coefficients performance

Results 43

Figure 6.6: Assignment algorithm performance

Figure 6.7: Huffman compression performance

44 Results

Figure 6.8: IDEA encryption performance

Figure 6.9: LU Decomposition performance

Results 45

Figure 6.10: The throughput of file write and reads

Figure 6.11: Total image size when running the isolation techniques
as compared to a clean image.

46 Results

access to the system since the services are started by root. This brings many
possible attack scenarios since systemd is also responsible for the init and various
other things. When checking the current CVEs 13 weaknesses exists for systemd
overall, however none can be found for just the specific isolation part of services.

Bubblewrap is a small and new technique, so it does not have as many CVEs
as systemd. There exists two CVEs as of this day (2017-03-01), one that is a local
privilege escalation that only occurs when Bubblewrap is installed with SUID or
file capabilities (which it does not need to run) and the other has a problem with
TIOCSTI ioctl (which is used to simulate terminal input) where the sandbox can
add input to the controlling tty. This seems to still be a factor when writing this
text, but there are workarounds for this problem and that is to use seccomp to
filter TIOCSTI ioctl or using a new command that is called –new-session (added
in v 0.17). The former problem was fixed in version 0.13, so the usage of newer
versions is encouraged. The tests were made on version 0.16 since version 0.17
was released during the actual tests and there was no time to update the firmware
with the later version.

Firejail is actually affected by a similar problem as Bubblewrap that involves
TIOCSTI ioctl and since Firejail requires root it becomes more severe than for
Bubblewrap since an attacker can execute arbitrary commands through this se-
curity hole that is going to be executed outside the sandbox (CVE-2016-9016).
This problem is mainly for version 0.9.38.4 and should be solved in later versions.
There exist two more CVEs (CVE-2017-5180 and CVE-2017-5940) of which one is
not fixed as of today (2017-03-07). The fix for the first CVE actually lead to the
second CVE because of an incomplete fix. The first CVE was regarding a local
code-execution vulnerability where a local attacker could execute their own code
in within the sandbox context and can lead to denial of service attacks. The fix
for this CVE lead to that an attacker could escalate their privileges and as stated
is still not fixed. This CVE was released one month before this evaluation was
written which one could argue is a long time ago and should be fixed and thus can
be seen as a negative thing with Firejail.

The two other isolation techniques that are running on the embedded system
is LSMs which was introduced to the kernel in 2008. Even though they were
introduced long ago there only exists one CVE for TOMOY (CVE-2011-2518 and
has to do with a mount system call not filtering the input which could allow a
denial of service attack, and is solved since 2011 with update 2.6.39.2) and not
a single one for SMACK. This could be due to various factors, as for example
that few people are using these techniques, few people are actively trying to find
weaknesses or because of the factor that an LSM is only an added layer of security
(which means there is only one more hook before the call is being passed through
and the possible errors could be fewer than with a container). Whatever the reason
there is not enough substance to make the result only dependent on that there
does not exist CVEs.

Results 47

6.5 Licenses

As can be seen in the matrices 5.1, 5.2 and 5.3 the licenses for the various techniques
is GNU GPL, GNU LGPL and Apache V2. All of these licenses can be used with
Axis software and are being used today by many of Axis applications.

48 Results

Chapter7
Discussion

7.1 Results

The results are based on many iterations, for example in the nbench case the results
are based on tests executed several times to obtain statistically meaningful results
(and before the actual tests there is a calibration phase) and in the case of dbench
the tests are made on roughly 500 000 files which also will provide a statistically
meaningful result. That being said, the nbench results are roughly equivalent
which should mean that the running techniques do not limit the CPU, caches or
FPU of the system. This seems correct since the underlying techniques used in the
kernel to achieve isolation runs the calculations on the hardware directly without
any hardware virtualization. However the results regarding throughput of disk
usage differs quite a bit and the reason for this could be that a lot of system calls
to the kernel is being made frequently like creating new files, reading files and so
on. The kernel needs to check that the process is allowed to make all the calls
and what results that should be reported back (in case of virtual file system for
example)

Since the same version of the base firmware was used for all the tests, just
the specific isolation technique was added so only small differences in the result
was expected. But as can be seen in Figures 6.1-6.10, the results differ and even
with isolation activated some benchmarks got better results than a clean firmware.
The results from dbench could perhaps be explained by the fact that Firejail and
Bubblewrap limits the access to the file system so that the dbench tests just gets
"no access" when trying to read/write to files on various locations and does not
print an error message about this. In theory the "clean" version should have the
highest result. We did try to get some error messages about this in dbench, but it
seems like it does not support printing out this kind of information, and in general
dbench is possibly not meant to test out the I/O of sandboxes so these kinds of
errors may not have been thought of during development of the software. Even
though we turned off most of the running services some of the still running services
could of course vary the system load, which could explain the varying dbench
results. But we did the measurements several times, on top of the benchmarking
tools itself that iterates several thousand times, and still got similar results as seen
in the figures.

SMACK is the one technique that varied vastly compared to the other tech-

49

50 Discussion

niques when benchmarking the file system throughput. When looking at other
embedded systems using SMACK degrades of 12% in performance for file sys-
tem actions was noted [67]. This is not near as much as the performance loss we
measured and reason for this big difference is not clear, the policy activated for
the benchmark was set to allow all. UBIFS which is the file system used on the
camera uses another compression technique than the tar.gz that we have taken
numbers from and compared in figure 6.11. Since compression is used this might
not give an exactly equal measurement but a good and close enough comparison
between the different techniques use of disc space. Perhaps the underlying file
system, UBIFS, has not been taken into account when optimizing for performance
on SMACK or some parts with the specific ARM architecture differs that much so
caching or other related parts to file handling is changed which SMACK has not
been developed for.

7.2 Fault sources, possible solutions

These techniques are sometimes not meant or designed for the embedded world,
which means that in some cases they can be very blunt when used for an embedded
system. They can require way too much space or presume that the processing,
memory or disk space is rather unlimited. Even if some are meant for embedded
systems there is no guarantee that it is designed for our system with a single core
processor based on ARM architecture. We recommend that tests should be done
on more architectures before the performance aspect can be finally put to rest.

LXC and systemd-nspawn has the same basic problem, that there is no
feasible way to unpack a container file system. For the future regarding these
techniques we recommend some more work as to how to either make it possible
to unpack or transfer a complete container file system to the camera. The rsync
version we used is not supportive of all the special files that had to be moved.
Another solution could possibly be to find a way to include it during build phase,
but these are solutions that we could not make work or had the time to fully
implement.

Since Firejail, Systemd units and Bubblewrap are running the future
work could focus on generating profiles/isolation for them to automatically depend
on the manifests for the running applications.

Docker is as stated dependent on various levels of middleware software, and
will possibly be able to run without having to include the entire Docker Engine.
Libcontainer is a possible way to go henceforth and first of all try to add all the
various recipes one by one to existing layers instead of trying to add whole layers.
We tried to add some of the recipes as singles, but realized there were some major
requirements and cross dependencies so it is not certain that this is possible. This
also raises the question whether adding single recipes that have to be maintained
(and in this case we are talking about at least 40-50 recipes) by Axis is an applicable
strategy. There then has to be people assigned to just maintain the functionality
of Dockers core functions, which can be debated already is being done through the
upstream existing layers containing this technique. Our opinion is that there is
too much work to do this and that this solution should be avoided if possible and

Discussion 51

instead rely on the complete layers (if and when the cameras hardware reaches the
point where Docker can be supported).

Rkt has support for ARMv8 and could possibly be ported to support ARMv7-
processors but we cannot say how much work this would require. Even though
it possibly could be ported the question whether it can be used is still there as
to the size of the download for x64 is roughly 100Mb and it contains various
features that can be seen as overhead for this specific purpose. Our opinion and
recommendation is to not pursue with Rkt for embedded systems based on the
overwhelming features it provides and also because of the few architectures it does
support.

Even if it is possible to use AppArmor without using the user space tools
no new profiles could be applied without flashing a new firmware. This limits the
use to only isolate applications included in the firmware or known to be installed
in a later stage. Our recommendation is to find a solution to add the user space
tools needed to control AppArmor so that if and when a third party software is
installed limitations can be set to that application. The technique itself is reliable
and widely used so the support and development will most likely continue.

SELinux is still in our opinion a candidate worth exploring since it is used
with Android and thus has the possibility of working in an embedded system.
However the camera model in our use case is very limited compared to the current
cell phones when looking at flash memory and RAM. As stated before SELinux is
a rather tricky technique to use and requires a massive amount of understanding
before it can be put in to use, which could be a limiting factor. During the build
phase only needed and used policies must be included in the firmware in order to
reduce the space usage, other than that it should be possible to use the existing
tools to generate policies for running software to set proper limitations.

SMACK lacked specially in the area of throughput in the sense of input
and output so to be able to look at why this is such a limiting factor would be
a good place to start. There could of course have been something wrong with
the polices made for SMACK when running our benchmark which accidentally
limited throughput, however it is not very likely since the policies were made to
allow access to basically everything and consisted of very few lines of rules. Since
SMACK is used in other embedded devices we think it is a good candidate to do
further work on if the performance aspect can be solved.

Some concerns regarding TOMOYOs learning mode was raised during the
learning phase, with it not generating the policy and just remained empty as
if there was no system calls being made by the programs. The reason for this is
unclear since the TOMOYO was activated and enabled and when manually adding
the system calls to the polices they worked as destined. The learning mode has
to be usable and the generation of polices automatical otherwise it is too time
consuming to write all the policies manually. We believe that the future work
of TOMOYO in Axis case is to find a fix for the lack of learning mode so that it
works since the performance is quite good and the user tools already exists without
having to add more layers to the build.

52 Discussion

Chapter8
Conclusions

8.1 Recommendation

When seeing the pure test results the implementations performed roughly equiva-
lent on all but one test, the I/O-performance. Since SMACK decreased the perfor-
mance of I/O-operations to roughly 10 percent of the normal it will be discarded
because of that reason. When looking at systemd unit there are some security con-
cerns about systemd in general [68], and when only using the services as an addon
security patch some of the services must be executed as root and thus if broken can
result in an adversary gaining root access. The configuration is however simple,
and can be used by just adding support for namespaces in the kernel. Firejail also
has the "problem" of needing root to be run, which just as systemd unit leads to
the fact that if the sandbox is broken the adversary gains root access to the system.
If the extra functionality Firejail provides compared to Bubblewrap is needed and
the known risks regarding root requirements is worth it Firejail would also be a
suitable and recommended implementation. If the implementations should avoid
root to any cause it leaves just two techniques - TOMOYO and Bubblewrap. If
the fix for TOMOYOs learning mode is an easy sustainable fix this is a really good
candidate since the user space tools already exist within Axis layers for BitBake.
Bubblewrap could be added with just support for namespaces and a small recipe,
which makes it fairly easy to maintain. It achieves the isolation well and the con-
figuration for each application is fairly flexible. The use of an LSM opposed to
a container can of course be further evaluated, but both techniques provide the
required safety measures while still being small and simple enough to not be a
burden to maintain.

8.2 Future work

This thesis was meant to do an exploratory study of which techniques that were
suitable for embedded systems with the limitations they provide. When some tech-
niques had been rolled out of the decision due to various factors the benchmarking
could begin, and our hope was that this dissertation could point further work in
the correct direction straight away and not focus so much on the basics but instead
work more in depth. Axis allows third party applications on their cameras and in
the manifest for each application there could be a section that described how and

53

54 Conclusions

what they will require from the system. The natural next step is in our opinion
to extend the study to try to make an automated sandboxing environment based
upon these manifests that denies anything outside the scope of the manifest and
does so by using Bubblewrap or TOMOYO.

References

[1] Sam Lucero et. al. Iot platforms: enabling the internet of things. Technical
report, IHS, 03 2016.

[2] Leonard J. Bell, D. E. ; LaPadula. Secure Computer Systems: Mathematical
Foundations. MITRE, nov 1973.

[3] H. Lindqvist. Mandatory Access Control. Umeå University, may 2006.

[4] Raj Jain and Subharthi Paul. Network virtualization and software defined
networking for cloud computing: a survey. IEEE Communications Magazine,
51(11):24–31, 2013.

[5] An introduction to virtualization. https://www.infoq.com/articles/
virtualization-intro. Accessed: 2016-11-16.

[6] Randi Thomas Ian Goldberg, David Wagner and Eric Brewer. A secure en-
vironment for untrusted helper applications (confining the wily hacker). In
Sixth USENIX UNIX Security Symposium, Jul 1996.

[7] Linux sandboxing. https://chromium.googlesource.com/chromium/src/
+/master/docs/linux_sandboxing.md. Accessed: 2017-03-14.

[8] V. Prevelakis and D. Spinellis. Sandboxing applications. In USENIX Annual
Technical Conference, FREENIX Track, pages 119–126, Jun 2001.

[9] P Rubens. What are containers and why do you need them?
http://www.cio.com/article/2924995/enterprise-software/
what-are-containers-and-why-do-you-need-them.html. Accessed:
2017-02-27.

[10] Open container initiative runtime specification. https://github.com/
opencontainers/runtime-spec/releases/download/v1.0.0-rc5/
oci-runtime-spec-v1.0.0-rc5.pdf. Accessed: 2017-03-09.

[11] Linux security modules: General security hooks for linux. http://www.hep.
by/gnu/kernel/lsm/. Accessed: 2016-11-17.

[12] et. al. C Wright. Linux security module framework. http://www.kroah.com/
linux/talks/ols_2002_lsm_paper/lsm.pdf. Accessed: 2017-02-27.

55

https://www.infoq.com/articles/virtualization-intro
https://www.infoq.com/articles/virtualization-intro
https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md
https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md
http://www.cio.com/article/2924995/enterprise-software/what-are-containers-and-why-do-you-need-them.html
http://www.cio.com/article/2924995/enterprise-software/what-are-containers-and-why-do-you-need-them.html
https://github.com/opencontainers/runtime-spec/releases/download/v1.0.0-rc5/oci-runtime-spec-v1.0.0-rc5.pdf
https://github.com/opencontainers/runtime-spec/releases/download/v1.0.0-rc5/oci-runtime-spec-v1.0.0-rc5.pdf
https://github.com/opencontainers/runtime-spec/releases/download/v1.0.0-rc5/oci-runtime-spec-v1.0.0-rc5.pdf
http://www.hep.by/gnu/kernel/lsm/
http://www.hep.by/gnu/kernel/lsm/
http://www.kroah.com/linux/talks/ols_2002_lsm_paper/lsm.pdf
http://www.kroah.com/linux/talks/ols_2002_lsm_paper/lsm.pdf

56 References

[13] S. E. Hallyn and A. G. Morgan. Linux capabilities: making them
work. https://landley.net/kdocs/mirror/ols2008v1.pdf#page=163.
Accessed: 2017-02-27.

[14] bpf(2) - linux manual page. http://man7.org/linux/man-pages/man2/bpf.
2.html, oct 2016. Accessed: 2016-11-15.

[15] seccomp(2) - linux manual page. http://man7.org/linux/man-pages/
man2/seccomp.2.html, oct 2016. Accessed: 2016-11-15.

[16] Bpf – in-kernel virtual machine. http://events.linuxfoundation.
org/sites/events/files/slides/bpf_collabsummit_2015feb20.pdf, feb
2015. Accessed: 2016-11-15.

[17] Alexei Starovoitov Jay Schulist, Daniel Borkmann. Linux socket fil-
tering aka berkeley packet filter (bpf). https://www.kernel.org/doc/
Documentation/networking/filter.txt, oct 2016. Accessed: 2016-11-15.

[18] Linux 2 6 12. https://kernelnewbies.org/Linux_2_6_12. Accessed: 2016-
11-29.

[19] Linux 3.5. https://kernelnewbies.org/Linux_3.5. Accessed: 2016-11-29.

[20] A seccomp overview. Accessed: 2016-11-16.

[21] Linux 2 6 24. https://kernelnewbies.org/Linux_2_6_24. Accessed: 2016-
12-06.

[22] M. Ridwan. Namespaces tutorial: Isolate your
linux system. https://www.toptal.com/linux/
separation-anxiety-isolating-your-system-with-linux-namespaces.
Accessed: 2016-11-17.

[23] namespaces(7) - linux manual page. Accessed: 2016-11-17.

[24] S. Niu. et al. Overview of linux vulnerabilities. In International Conference
on on Soft Computing in Information Communication Technology, 2014.

[25] 5 security concerns when using docker - o’reilly media. https://www.
oreilly.com/ideas/five-security-concerns-when-using-docker. Ac-
cessed: 2017-03-16.

[26] A. Bettany. Vulnerability exploiation in docker container envi-
ronments. https://www.blackhat.com/docs/eu-15/materials/
eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.
pdf. Accessed: 2017-02-27.

[27] Cve - about cve. https://cve.mitre.org/about/. Accessed: 2017-03-08.

[28] Top open source licenses. https://www.blackducksoftware.com/
top-open-source-licenses. Accessed: 2016-12-14.

[29] Free Software Foundation. Gnu lesser general public license v2.1 -
gnu project - free software foundation. https://www.gnu.org/licenses/
old-licenses/lgpl-2.1.en.html. Accessed: 2016-11-22.

https://landley.net/kdocs/mirror/ols2008v1.pdf#page=163
http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man2/seccomp.2.html
http://man7.org/linux/man-pages/man2/seccomp.2.html
http://events.linuxfoundation.org/sites/events/files/slides/bpf_collabsummit_2015feb20.pdf
http://events.linuxfoundation.org/sites/events/files/slides/bpf_collabsummit_2015feb20.pdf
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://kernelnewbies.org/Linux_2_6_12
https://kernelnewbies.org/Linux_3.5
https://kernelnewbies.org/Linux_2_6_24
https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces
https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces
https://www.oreilly.com/ideas/five-security-concerns-when-using-docker
https://www.oreilly.com/ideas/five-security-concerns-when-using-docker
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf
https://cve.mitre.org/about/
https://www.blackducksoftware.com/top-open-source-licenses
https://www.blackducksoftware.com/top-open-source-licenses
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html

References 57

[30] The Apache Software Foundation. Apache licence, version 2.0. https://www.
apache.org/licenses/LICENSE-2.0. Accessed: 2016-11-22.

[31] Nbench-byte results. http://www.math.cmu.edu/~florin/bench-32-64/
nbench/. Accessed: 2017-02-21.

[32] dbench(1) - linux manual pages. https://linux.die.net/man/1/dbench.
Accessed: 2017-02-21.

[33] Dbench. https://dbench.samba.org/. Accessed: 2017-02-21.

[34] Et. al G. Papaux. Processor virtualization on embedded linux systems, 2014.

[35] P. B. Menage. Adding generic process containers to the linux kernel.

[36] Ye Li, Richard West, and Eric Missimer. A virtualized separation kernel for
mixed criticality systems. SIGPLAN Not., 49(7):201–212, March 2014.

[37] Et. al M.S.U. Haq. Design and implementation of sandbox technique for
isolated applications, 2016.

[38] Et. al W. Kanda. Spumone: Lightweight cpu virtualization layer for embed-
ded systems. In 2008 IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing, volume 1, pages 144–151, Dec 2008.

[39] G. Heiser. The role of virtualization in embedded systems. In Proceedings
of the 1st Workshop on Isolation and Integration in Embedded Systems, IIES
’08, pages 11–16, New York, NY, USA, 2008. ACM.

[40] Axis m1065-l network camera. https://www.axis.com/se/sv/products/
axis-m1065-l. Accessed: 2017-03-07.

[41] Axis camera management. http://www.axis.com/global/en/products/
axis-camera-management/overview. Accessed: 2017-01-19.

[42] Axis camera application platform. http://www.axis.com/ng/en/support/
developer-support/axis-camera-application-platform. Accessed:
2016-12-03.

[43] Yocto project | open source embedded linux build system, package metadata
and sdk generator. https://www.yoctoproject.org/. Accessed: 2016-12-12.

[44] P. Marwedel. Embedded System Design: Embedded Systems Foundations of
Cyber-Physical Systems. Embedded Systems. Springer Netherlands, 2010.

[45] Erik Karlsson. Evaluation of linux security frameworks. http://www8.cs.
umu.se/education/examina/Rapporter/ErikKarlsson.pdf, 2010.

[46] Linux 2 6 36. https://kernelnewbies.org/Linux_2_6_36. Accessed: 2016-
11-17.

[47] Apparmor core policy reference. http://wiki.apparmor.net/index.php/
AppArmor_Core_Policy_Reference. Accessed: 2016-11-17.

[48] Apparmor - ubuntu wiki. https://wiki.ubuntu.com/AppArmor. Accessed:
2016-11-17.

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
http://www.math.cmu.edu/~florin/bench-32-64/nbench/
http://www.math.cmu.edu/~florin/bench-32-64/nbench/
https://linux.die.net/man/1/dbench
https://dbench.samba.org/
https://www.axis.com/se/sv/products/axis-m1065-l
https://www.axis.com/se/sv/products/axis-m1065-l
http://www.axis.com/global/en/products/axis-camera-management/overview
http://www.axis.com/global/en/products/axis-camera-management/overview
http://www.axis.com/ng/en/support/developer-support/axis-camera-application-platform
http://www.axis.com/ng/en/support/developer-support/axis-camera-application-platform
https://www.yoctoproject.org/
http://www8.cs.umu.se/education/examina/Rapporter/ErikKarlsson.pdf
http://www8.cs.umu.se/education/examina/Rapporter/ErikKarlsson.pdf
https://kernelnewbies.org/Linux_2_6_36
http://wiki.apparmor.net/index.php/AppArmor_Core_Policy_Reference
http://wiki.apparmor.net/index.php/AppArmor_Core_Policy_Reference
https://wiki.ubuntu.com/AppArmor

58 References

[49] Linux 2 6 25. https://kernelnewbies.org/Linux_2_6_25. Accessed: 2016-
11-18.

[50] C. Schaufler. Smack in embedded computing. In Proceedings of the Linux
Symposium, Jul 2008.

[51] Jaroslav Šoltỳs. Linux kernel 2.6 documentation. http://diplomovka.sme.
sk/zdroj/2847.pdf, 2006.

[52] Tomoyo linux functionality comparison table. http://tomoyo.osdn.jp/
comparison.html.en. Accessed: 2016-11-30.

[53] Jonathan Corbet. Tomoyo linux and pathname-based security. https://lwn.
net/Articles/277833/, 2008.

[54] Chapter 2: Why do i need tomoyo linux? http://tomoyo.osdn.jp/2.5/
chapter-2.html.en. Accessed: 2016-11-30.

[55] Whatis - pukiwiki. http://tomoyo.osdn.jp/wiki-e/index.php?WhatIs#
w3a12f9d. Accessed: 2016-12-13.

[56] Linux containers - lxc - introduction. https://linuxcontainers.org/lxc/
introduction/. Accessed: 2016-11-21.

[57] Linux containers - lxc - security. https://linuxcontainers.org/lxc/
security/. Accessed: 2016-11-21.

[58] Firejail. Firejail | security sandbox. https://firejail.wordpress.com/.
Accessed: 2016-11-17.

[59] Google. Public dns | google developers. https://developers.google.com/
speed/public-dns/. Accessed: 2016-11-17.

[60] Github - projectatomic/bubblewrap: Unpriviledged sandboxing tool. https:
//github.com/projectatomic/bubblewrap. Accessed: 2016-11-17.

[61] Alexander Larsson. Using bubblewrap in xdg-app - alexan-
der larsson. https://blogs.gnome.org/alexl/2016/04/29/
using-bubblewrap-in-xdg-app/. Accessed: 2016-11-17.

[62] Docker security - docker. https://docs.docker.com/engine/security/
security/. Accessed: 2016-12-14.

[63] J. M. Harris. Container technologies in fedora: systemd-
nspawn - fedora magazin. https://fedoramagazine.org/
container-technologies-fedora-systemd-nspawn/. Accessed: 2016-
11-21.

[64] systemd-nspawn(1). http://manpages.ubuntu.com/manpages/xenial/
man1/systemd-nspawn.1.html. Accessed: 2017-01-23.

[65] coreos/rkt: rkt is a pod-native container engine for linux. it is composable,
secure and built on standards. https://github.com/coreos/rkt. Accessed:
2017-02-23.

https://kernelnewbies.org/Linux_2_6_25
http://diplomovka.sme.sk/zdroj/2847.pdf
http://diplomovka.sme.sk/zdroj/2847.pdf
http://tomoyo.osdn.jp/comparison.html.en
http://tomoyo.osdn.jp/comparison.html.en
https://lwn.net/Articles/277833/
https://lwn.net/Articles/277833/
http://tomoyo.osdn.jp/2.5/chapter-2.html.en
http://tomoyo.osdn.jp/2.5/chapter-2.html.en
http://tomoyo.osdn.jp/wiki-e/index.php?WhatIs#w3a12f9d
http://tomoyo.osdn.jp/wiki-e/index.php?WhatIs#w3a12f9d
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/security/
https://linuxcontainers.org/lxc/security/
https://firejail.wordpress.com/
https://developers.google.com/speed/public-dns/
https://developers.google.com/speed/public-dns/
https://github.com/projectatomic/bubblewrap
https://github.com/projectatomic/bubblewrap
https://blogs.gnome.org/alexl/2016/04/29/using-bubblewrap-in-xdg-app/
https://blogs.gnome.org/alexl/2016/04/29/using-bubblewrap-in-xdg-app/
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://fedoramagazine.org/container-technologies-fedora-systemd-nspawn/
https://fedoramagazine.org/container-technologies-fedora-systemd-nspawn/
http://manpages.ubuntu.com/manpages/xenial/man1/systemd-nspawn.1.html
http://manpages.ubuntu.com/manpages/xenial/man1/systemd-nspawn.1.html
https://github.com/coreos/rkt

References 59

[66] 01org/meta-intel-iot-security: A collection of loosely related openembedded
layers providing several security technologies. https://github.com/01org/
meta-intel-iot-security. Accessed: 2017-02-21.

[67] Embedded alley solutions, inc. smack for digital tv. http://www.
webcitation.org/6As4D4a0R. Accessed: 2017-03-14.

[68] Argumentation against systemd - without systemd. http:
//without-systemd.org/wiki/index.php/Arguments_against_systemd.
Accessed: 2017-03-07.

https://github.com/01org/meta-intel-iot-security
https://github.com/01org/meta-intel-iot-security
http://www.webcitation.org/6As4D4a0R
http://www.webcitation.org/6As4D4a0R
http://without-systemd.org/wiki/index.php/Arguments_against_systemd
http://without-systemd.org/wiki/index.php/Arguments_against_systemd

60 References

AppendixA
Kernel flags

Listed below is the additional kernel flags (needed on the system described in
Chapter 3) for each technique to fully function.

A.1 Firejail, Bubblewrap

CONFIG_NAMESPACES=y
CONFIG_USER_NS=y
CONFIG_PID_NS=y
CONFIG_UTS_NS=y
CONFIG_IPC_NS=y
CONFIG_NET_NS=y

A.2 TOMOYO

CONFIG_SECURITY=y
CONFIG_SECURITY_TOMOYO=y
CONFIG_DEFAULT_SECURITY_TOMOYO=y
CONFIG_DEFAULT_SECURITY="tomoyo"
CONFIG_SECURITY_TOMOYO_MAX_ACCEPT_ENTRY=2048
CONFIG_SECURITY_TOMOYO_MAX_AUDIT_LOG=1024
CONFIG_SECURITY_TOMOYO_OMIT_USERSPACE_LOADER=n
CONFIG_SECURITY_TOMOYO_POLICY_LOADER="/usr/bin/tomoyo-init"
CONFIG_SECURITY_TOMOYO_ACTIVATION_TRIGGER="/usr/lib/systemd/systemd"
CONFIG_NAMESPACES=n
CONFIG_NETLABEL=y
CONFIG_IMA=n
CONFIG_EVM=y
CONFIG_INTEGRITY=n
CONFIG_INTEGRITY_SIGNATURE=n
CONFIG_INTEGRITY_AUDIT=n
CONFIG_SECURITY_SELINUX=n
CONFIG_SECURITY_SMACK=n
CONFIG_SECURITY_APPARMOR=n
CONFIG_SECURITY_YAMA=n

61

62 Kernel flags

CONFIG_IP_NF_SECURITY=y
CONFIG_IP6_NF_SECURITY=y

A.3 AppArmor

CONFIG_KEYS=y
CONFIG_DEFAULT_SECURITY_APPARMOR=y
CONFIG_SECURITY=y
CONFIG_SECURITYFS=y
CONFIG_SECURITY_APPARMOR=y
CONFIG_DEFAULT_SECURITY="apparmor"
CONFIG_SECURITY_APPARMOR_BOOTPARAM_VALUE=1
CONFIG_SECURITY_NETWORK=y
CONFIG_SECURITY_APPARMOR_HASH=y
CONFIG_NETLABEL=y
CONFIG_IP_NF_SECURITY=y
CONFIG_IP6_NF_SECURITY=y
CONFIG_SECURITY_SELINUX=n
CONFIG_SECURITY_SMACK=n
CONFIG_SECURITY_TOMOYO=n
CONFIG_SECURITY_YAMA=n
CONFIG_INTEGRITY=y
CONFIG_INTEGRITY_SIGNATURE=y
CONFIG_INTEGRITY_AUDIT=y
CONFIG_IMA=n
CONFIG_EVM=n
CONFIG_TCG_TIS_I2C_ATMEL=y
CONFIG_TCG_TIS_I2C_INFINEON=y
CONFIG_TCG_TIS_I2C_NUVOTON=y
CONFIG_TCG_ATMEL=y
CONFIG_TCG_TIS_ST33ZP24=y
CONFIG_SYSTEM_TRUSTED_KEYRING=n
CONFIG_TRUSTED_KEYS=n
CONFIG_INTEGRITY_ASYMMETRIC_KEYS=n
CONFIG_EVM_ATTR_FSUUID=y
CONFIG_TCG_TIS_ST33ZP24_I2C=y
CONFIG_TCG_TIS_ST33ZP24_SPI=y
CONFIG_PKCS7_MESSAGE_PARSER=y
CONFIG_PKCS7_TEST_KEY=y
CONFIG_SIGNED_PE_FILE_VERIFICATION=y

A.4 SMACK

CONFIG_NAMESPACES=n
CONFIG_SECURITY_PATH=y
CONFIG_DEFAULT_SECURITY="smack"

Kernel flags 63

CONFIG_DEFAULT_SECURITY_SMACK=y
CONFIG_SECURITY_SMACK_BRINGUP=y
CONFIG_IP_NF_SECURITY=m
CONFIG_IP6_NF_SECURITY=m
CONFIG_SECURITY=y
CONFIG_SECURITY_SMACK=y
CONFIG_SECURITY_SELINUX=n
CONFIG_SECURITY_APPARMOR=n
CONFIG_SECURITY_TOMOYO=n
CONFIG_SECURITY_YAMA=n
CONFIG_TMPFS_XATTR=y
CONFIG_INTEGRITY=y
CONFIG_INTEGRITY_SIGNATURE=y
CONFIG_INTEGRITY_AUDIT=y
CONFIG_IMA=n
CONFIG_EVM=n
CONFIG_INTEGRITY_ASYMMETRIC_KEYS=n
CONFIG_PKCS7_MESSAGE_PARSER=y
CONFIG_PKCS7_TEST_KEY=y
CONFIG_SIGNED_PE_FILE_VERIFICATION=y
CONFIG_SYSTEM_TRUSTED_KEYRING=n
CONFIG_TRUSTED_KEYS=n
CONFIG_SYSTEM_TRUSTED_KEYS=n

A.5 SELinux

CONFIG_NAMESPACES=n
CONFIG_AUDIT=y
CONFIG_AUDITSYSCALL=y
CONFIG_AUDIT_WATCH=y
CONFIG_AUDIT_TREE=y
CONFIG_NETLABEL=y
CONFIG_IP_NF_SECURITY=m
CONFIG_IP6_NF_SECURITY=m
CONFIG_NETFILTER_XT_TARGET_AUDIT=m
CONFIG_NETFILTER_XT_TARGET_SECMARK=n
CONFIG_FANOTIFY_ACCESS_PERMISSIONS=y
CONFIG_NFSD_V4_SECURITY_LABEL=y
CONFIG_SECURITY=y
CONFIG_SECURITY_NETWORK=y
CONFIG_SECURITY_PATH=y
CONFIG_LSM_MMAP_MIN_ADDR=65536
CONFIG_SECURITY_SELINUX=y
CONFIG_SECURITY_SELINUX_BOOTPARAM=y
CONFIG_SECURITY_SELINUX_DISABLE=y
CONFIG_SECURITY_SELINUX_DEVELOP=y

64 Kernel flags

CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE=1
CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE=1
CONFIG_SECURITY_SELINUX_ENABLE_SECMARK_DEFAULT=y
CONFIG_SECURITY_SELINUX_AVC_STATS=y
CONFIG_DEFAULT_SECURITY_SELINUX=y
CONFIG_DEFAULT_SECURITY="selinux"
CONFIG_SECURITY_SELINUX_POLICYDB_VERSION_MAX=n
CONFIG_INTEGRITY=n
CONFIG_SECURITY_SMACK=n
CONFIG_SECURITY_APPARMOR=n
CONFIG_SECURITY_TOMOYO=n
CONFIG_SECURITY_YAMA=n

A.6 LXC

DEVPTS_MULTIPLE_INSTANCES=y
CONFIG_CPUSETS=y
CONFIG_PROC_PID_CPUSET=n
CONFIG_CGROUP_DEVICE=y
CONFIG_VETH=y
CONFIG_MACVLAN=y
CONFIG_MACVTAP=n
CONFIG_MEMCG=y
CONFIG_CGROUP_MEM_RES_CTLR=y
CONFIG_CGROUP_FREEZER=y
CONFIG_CGROUP_PIDS=y
CONFIG_CGROUP_DEVICE=y
CONFIG_CPUSETS=y

A.7 nspawn

CONFIG_NAMESPACES=y
CONFIG_USER_NS=y
CONFIG_PID_NS=y
CONFIG_UTS_NS=y
CONFIG_IPC_NS=y
CONFIG_NET_NS=y
CONFIG_UNIX98_PTYS=y
CONFIG_INPUT_LEDS=n
CONFIG_INPUT_FF_MEMLESS=y
CONFIG_INPUT_POLLDEV=y
CONFIG_INPUT_SPARSEKMAP=y
CONFIG_INPUT_MATRIXKMAP=y
CONFIG_INPUT_MOUSEDEV=n
CONFIG_INPUT_JOYDEV=n
CONFIG_INPUT_EVDEV=n

Kernel flags 65

CONFIG_INPUT_EVBUG=n
CONFIG_INPUT_KEYBOARD=n
CONFIG_INPUT_MOUSE=n
CONFIG_INPUT_JOYSTICK=n
CONFIG_INPUT_TABLET=n
CONFIG_INPUT_TOUCHSCREEN=n
CONFIG_INPUT_MISC=n
CONFIG_VT_CONSOLE=y
CONFIG_VT_HW_CONSOLE_BINDING=y
CONFIG_SND_SOC_CS42L56=n
CONFIG_I2C_HID=n

	Introduction
	Motivation
	Scope
	Layout

	Preliminaries
	Access control
	Virtualization
	Sandboxing
	Containers
	Linux Kernel built in tools
	Possible vulnerabilities and weaknesses in isolation techniques
	Licenses
	Benchmarking tools
	Related work

	Description of the system
	Hardware
	Software

	Methodology
	Use case

	Isolation techniques
	Linux Security Modules
	Sandboxes

	Results
	Non running isolation techniques
	Techniques with theoretical possibility of execution
	Running isolation techniques
	Security evaluation
	Licenses

	Discussion
	Results
	Fault sources, possible solutions

	Conclusions
	Recommendation
	Future work

	References
	Kernel flags
	Firejail, Bubblewrap
	TOMOYO
	AppArmor
	SMACK
	SELinux
	LXC
	nspawn

