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Abstract

This thesis is an attempt to understand the dynamics of qubits in the presence of a
thermally interactive environment. In order to achieve this, analytically derived models
were used as the basis for a computational system which simulates the evolution of qubits
interacting with an environment, and calculates various thermodynamic properties of
the qubits. The simulator was verified for the case of unitary evolution by comparing
the results of the simulation to analytical solutions, and for more complex evolution by
comparing the results to expected physical relations. The data produced by the simulator
were analysed and it was found that decoherence is not unbounded with respect to energy
exchange i.e. there is a specific amount of energy exchange which equates to maximal
decoherence.
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Chapter 1

Introduction

Quantum information is the study of how information is encoded in quantum states, and
how that information can be manipulated through the use of quantum operators. One of
the most exciting potential applications of this field of study is the creation of quantum
computers, which are capable of solving many problems in exponentially faster times than
traditional computers [1].

For example, determining the prime factors of a number is a notoriously computation-
ally intensive task on a traditional computer. The fastest known classical algorithm for
this problem completes in sub-exponential time (as a function of the size of the input data)
[2]. There is a quantum algorithm known as Shor’s algorithm which takes polynomial time
[3], meaning the larger the number, the faster the quantum algorithm is compared to the
classical one. This has a great deal of implications for cryptography and encryption since
most digital methods utilise the computational difficulty of computing the prime factors
of large numbers in short times. Thankfully, quantum computation also allows for even
more secure forms of cryptography [4]. It seems then that it is not only for scientific, but
practical security reasons that quantum computers should be developed.

However, one of the greatest obstacles to achieving large scale quantum computers is
that of decoherence, which is the decay of a quantum state into a classical one. Quantum
information processing relies on quantum operators (sometimes known as quantum gates)
acting as intended, with a minimal amount of error. It also requires the ability to store
quantum states for a certain amount of time. Decoherence adversely affects both these
properties; quantum gates will not work correctly if they act on decoherent states, and if
a state is not fully isolated it will decohere, making storage of that state only possible for
a limited amounts of time.

Unfortunately all physical implementations of ideal theoretical objects are imperfect
and no system is ever fully isolated, so some amount of decoherence will always occur.
Decoherence is particularly difficult to avoid at the scale required for accurate quantum
computation.

Therefore decoherence must be well understood in order to design systems that avoid
it. In this thesis we will derive an analytical model of decoherence, that makes some
reasonable assumptions about the environment and how it interacts with the system.
Analytical models of this type have been shown to be valid experimentally [5] and are
based on widely accepted theories. This model will then be used to simulate the evolution
of a qubit in an open quantum system (interacting with an environment), under the action
of a time dependent Hamiltonian, and the progression of decoherence will be studied.
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Chapter 2

Quantum Information

In this chapter, we will discuss the mathematical and conceptual foundations of Quan-
tum Information. We start in Sec. 2.1 with a overview of the concepts, definitions and
properties of a qubit. We then move onto a useful alternative definition of a quantum
state in Sec. 2.2 and multiple qubits in Sec. 2.3

2.1 Qubits

2.1.1 Overview

The word qubit is a portmanteau of quantum and bit, bit being a word that itself is a
portmanteau of binary and digit. It is the quantum analog of a bit in classical information
theory. The essential difference is that unlike a bit which is in one of two definite states
labeled “1” and ”0”, a qubit is a quantum state which is expressed in Dirac notation in
as

|ψ〉 = c0 |0〉+ c1 |1〉 . (2.1)

This allows for the qubit to not only fulfil the role of a statistical ensemble of classical
bits, but also to utilise phase differences between the states to create alternative ways of
solving problems that would not be possible with definite states, or statistical ensembles
of classical states.

A common misconception when considering the role of a qubit in quantum information
and computation, is that it makes it possible to compute multiple answers to the same
question at once. While it is true that a group of n qubits can be in a superposition of
all possible configurations of n classical bits, making it equivalent in terms of informa-
tion content to all of the separate bit configurations combined, and that a calculation
performed on this state will result in a group of qubits that are in a superposition of all
possible outcomes of the calculation, this information cannot be retrieved directly. This
is because any measurement of the state will only yield one of the outcomes, according
to the relative probabilities of the states. Instead, a faster quantum algorithm can be
created by utilising the unique characteristics of quantum systems such as coherence and
superposition. More explicitly, while a statistical distribution of a classical bit is a one
dimensional system with a single variable describing the probability to be in either the
1 or 0 state, a qubit is multi-dimensional (as will be seen in Sec. 2.1.3) and allows for
manipulations which are not possible for non quantum systems.

5



2.1.2 Operators

Operations performed on a qubit can be represented by unitary transformations. The
reason these operations must be unitary is due to one of the most fundamental features
of any quantum state, that the inner product with itself must be equal to one. From this,
we can say that any transformation of the qubit should result in another qubit where the
inner product with itself is also one. This can be developed mathematically to show that
any transformation must be a unitary transformation.

We may also wish to describe the evolution of a qubit as a function of time. This is
achieved through the use of the Schrödinger equation; a differential equation which is the
fundamental quantum mechanical description of how quantum states evolve as a function
of time. For this, an operator known as the Hamiltonian must be utilised, which acts as
the generator of time evolution. It is also related to an infinitesimal unitary operator

U(dt) = I − iHdt⇒ ∂

∂t
|ψ(t)〉 = −iH |ψ(t)〉 (2.2)

which leads to the Schrödinger equation whose form arises from an axiomatic treatment
of time evolution. A more detailed description of this process can be found in [6].

For cases in which the Hamiltonian is time independent, the Schrödinger equation can
be easily solved and the time evolution operator takes the form

U(∆t) = e−i∆tH . (2.3)

It is worth noting that throughout this particular thesis, we require only analytical de-
scriptions of time evolution in cases where the Hamiltonian is time independent. Similarly,
~ is only a scaling factor that is dependent on the units used to describe the system. In
this thesis we will use Plank units in which ~ and many other fundamental constants
equal one.

It is also worth noting that any Hamiltonian which acts on a qubit can be constructed
through a linear combination of the Pauli Matrices. In fact these matrices play key roles
throughout quantum information for many reasons, one of which will be demonstrated
in the next section. It is also useful to note that, with the addition of the unit matrix,
they form a standard basis for all two by two self adjoint matrices, meaning that any
Hamiltonian of a two level system can be represented by a linear combination of these
matrices.

2.1.3 Bloch Sphere

It can be difficult to visualise a qubit because it exists in a complex vector space which
is essentially four dimensional. However, we can limit the number of dimensions needed
by noting that the overall phase of any quantum state is irrelevant, as it is not physically
observable and therefore we can choose the component of one of the basis vectors to be
simply a real number; as long as the relative phase between the basis vectors is the same,
the state will be physically identical. Additionally, a quantum state must be normalised to
one which puts a restriction on the magnitude of the components of the vector, meaning
they can be treated as two functions of an independent variable which when squared and
then summed always returns unity. Using this knowledge we can define an alternative
definition of a qubit that is easily visualisable and reveals many properties of a qubit in
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Figure 2.1: The Bloch Sphere: a representation of a quantum state as a three dimensional
vector. θ and φ are the azimuthal and polar angles respectively. Dotted lines are shown
representing the projection of the vector onto the x-y plane and onto the x and y axes

a way that is not obvious from just the numerical representation. Mathematically it is
expressed as

|ψ〉 = cos(θ/2) |0〉+ sin(θ/2)eiφ |1〉 (2.4)

where 0 ≤ θ ≤ π and 0 ≤ φ < 2π. Additionally, it can be seen that as θ goes from zero to
π, the state goes from being in |0〉 to |1〉, while the norm of the vector remains at unity. It
can also be seen that the phase offset is directly related to φ. What is not obvious is that
the expectation values of each of the Pauli matrices are related to these two variables such
that the variables correspond to the angular components of a spherical coordinate system,
where the cartesian axis of this coordinate system represents the expectations values with
respect to the Pauli matrices. Moreover, the action of each of the Pauli matrices as an
operator on the qubit is to rotate it around the corresponding axis by π radians. This
can be seen directly by calculating the expectation values before and after the operation.
This also demonstrates the strong correlation between qubits, and spin half particles.
Although any two state system can represent a qubit, a spin half particle is a particularly
easy way to realise a qubit, since the Pauli operators for the qubit are directly associated
to the application of magnetic fields on the particle when the σz axis is aligned with the
state corresponding to spin up.
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2.2 Density Matrices

2.2.1 Definition

Density matrices are alternative definitions of quantum states that allow for classical
probability distributions of quantum states. This is a fundamental notion in quantum
information, as it allows a system to be described in a way which combines classical
statistics with quantum mechanics, something that is essential for understanding inter-
actions between qubits and their environment. They can also equivalently be used to
describe closed quantum systems, without any reference to a classical probability. In fact
this use can sometimes give a more enlightening understanding of a quantum state. A
density matrix is defined as

ρ =
∑
n

pn |ψn〉 〈ψn| (2.5)

in which pn represents the probability for the system to be in the quantum state |ψn〉,
implying 0 ≤ pn ≤ 1 and

∑
n pn = 1.

Consider a general pure state, which is constructed using the general definition of a
two level state defined in Eq. (2.4). After some algebraic manipulation we arrive at:

ρ = cos(θ/2)2 |0〉 〈0|+ 1

2
sin(θ)(e−iφ |0〉 〈1|+ eiφ |1〉 〈0|) + sin(θ/2)2 |1〉 〈1| (2.6)

Which can be expressed more compactly in matrix form:

ρ =

(
cos(θ/2)2 1

2
sin(θ)e−iφ

1
2

sin(θ)eiφ sin(θ/2)2

)
(2.7)

We can see that the diagonal terms describe the probability for the state to be found in
either |0〉 or |1〉, as they are the squared values of the coefficients of those basis states.
The off diagonal elements represent the amount of superposition between the two states,
as they are non zero only for when θ is in between zero and π, with the additional factor
of φ representing the phase difference between the two states. Note that since the state
must exist in either |0〉 or |1〉, its trace must be equal to one at all times, which is satisfied
in this representation.

It can be determined from the definition of the density matrix that it is self adjoint,
has trace equal to one, and that it is a positive operator (see Sec 2.4 of [4]). Quantum
states which can be expressed as a single outer product, are called pure states. Density
matrices which cannot be expressed this way are known as mixed states. An easy way to
analytically differentiate between the two types of density matrices is by calculating the
purity, as given by

γ = Tr (ρ2). (2.8)

The purity of a state takes of a value between one which corresponds to a pure state, and
1/n (where n is the dimensionality of the Hilbert space in question) which corresponds
to a completely mixed state, in which, for a two state system, means the two basis states
of the Hilbert space are occupied with equal probabilities.

2.2.2 Time Evolution

The time evolution of a density matrix can be determined by considering the evolution
of the component quantum states. Since the evolution of each state is described by a
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unitary operator, we need only insert this operator into the correct places whilst noting
that the unitary operator must be conjugated before acting on the bra [6]. Hence the
time evolution of a density matrix through a system described by a unitary matrix U can
be formulated by

ρ(t) =
∑
n

pnU |ψn(t0)〉 〈ψn(t0)|U † = Uρ(t0)U †. (2.9)

This can be expressed as a differential equation called the Liouville-Von Neumann
equation by using a reformulation of the Schrödinger equation in terms of the time evo-
lution operator rather than the state, and is expressed as

∂

∂t
ρ(t) = −i[H(t), ρ(t)]. (2.10)

A more explicit derivation can be found in section 3.1.1 of [7].

2.2.3 Expectation Values

One might ask why we use the density matrix at all, and why we don’t just use super-
position? It could naively be assumed that if a combination of two quantum states was
desired in such a way that it represented a probability distribution of those states, then
only a superposition of those states would be necessary: Although this would be valid
for measurements of those exact states, there are other properties which would not corre-
spond to our desired concept of a classical distribution of quantum states. In particular
the expectation value of such a state contains terms which would not exist for a classical
distribution.

Instead, we define another operation as the expectation value for a density matrix,
the trace of an operator acting on the density matrix. We can demonstrate the action of
this operation on a two level system as follows;

Aρ = pA |ψ〉 〈ψ|+ (1− p)A |φ〉 〈φ|
Tr(Aρ) = p 〈χ1|A |ψ〉 〈ψ|χ1〉+ (1− p) 〈χ2|A |φ〉 〈φ|χ2〉

= p 〈ψ|χ1〉 〈χ1|A |ψ〉+ (1− p) 〈φ|χ2〉 〈χ2|A |φ〉
= p 〈ψ|A |ψ〉+ (1− p) 〈φ|A |φ〉 .

(2.11)

As we can see, this form produces the desired result, where the expectation value of the
each of the pure states is found, with a probability equivalent to being in that state.1

2.3 Concurrent Systems and the Tensor Product

2.3.1 Definition

For systems which involve multiple qubits, we can construct a basis for the Hilbert space
which encompasses all the possible states of the system. This is done through the use of
the tensor product, which is a binary vector operation, taking two tensors and producing
a single tensor. The tensor product is a one to one mapping, with each configuration of

1|χi〉 represent an arbitrary basis, aditionally the identity
∑

i |χi〉 〈χi| = I is used. For more informa-
tion about the trace see [4]

9



the two input tensors having a unique tensor representation. More information can be
found in chapter 1.2.1 of [4]. The Hilbert space of two concurrent systems can be written
as the tensor product of their Hamiltonians,

HA ⊗HB (2.12)

and the basis states as all the possible tensor products of the basis states of the systems.
For example if the two concurrent systems are qubits, the basis states will be:

|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉 . (2.13)

Since a qubit has a Hilbert space with dimension 2, n qubits together will have a Hilbert
space of dimension 2n as there will be 2n possible combinations of n two state systems.
Similarly the density matrix of concurrent systems can also be expressed as the tensor
product of the individual density matrices comprising the component systems.

2.3.2 Seperability and the Reduced Density Matrix

If a state can be written as
ρ =

∑
k

pkρ
A
k ⊗ ρBk (2.14)

then it is a separable state, and if not, it is entangled. This can also be said of pure
states, more information can be found in [4]. A density matrix for subsystems of a larger
system can be found using the reduced density matrix. If the state of the larger system
is not a separable state, then even if the density matrix of the whole system is pure,
its reduced density matrices (the density matrices of the subsystems) will not be. The
reduced density matrices for a system are defined using the partial trace, which is similar
to the trace but only over the basis of the one of the component systems. For example
the reduced density matrix of one of the qubits in a two qubit system is defined as

ρA = 〈0|B ρAB |0〉B + 〈1|B ρAB |1〉B . (2.15)

This can be extended for larger systems thusly

ρA =
∑
k

〈k| ρAB |k〉 (2.16)

where |k〉 represents a basis of system B.
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Chapter 3

Open Quantum Systems

3.1 Classical Noise

We begin the discussion of how random fluctuations can affect the state of a system by
considering first a classical bit. A random fluctuation in this case is a probability p for
the bit to flip its values, meaning that the probability for the system to be unaffected will
be p − 1. This can be expressed as a matrix equation with the vectors representing the
probability to be in either of the two classical states,(

p− 1 p
p p− 1

)(
p0

p1

)
=

(
(p− 1) p0 + p p1

p p0 + (p− 1) p1

)
. (3.1)

We can see that the fluctuations only depend p and the populations of the initial state.
We can also consider combining this noise operator with an action we wish to perform
on the bit. For example if we wish to flip the bit, but assume that the process is only
successful with probability p, then we only need to swap the columns of the operator in
Eq. (3.1). If we were then to apply further similar operators on the bit, and assume that
the probabilities for their success are independent on the previous operator applied to
them, then the system would be described as a Markovian. This is an important property
as it greatly simplifies the system that needs to be determined. All of this can be extended
to the quantum case.

3.2 Kraus Operators

If we wish to create operators similar to those in Eq. (3.1) but for a quantum system, we
require the system to be open, meaning the system we are concerned with is interacting
with some external system. This is necessary since an operator in a closed (i.e. non
interacting) system is required to be unitary. Therefore to model a system described by
a density matrix ρS undergoing random fluctuations, we require a definition of a larger
system

ρ = ρS ⊗ ρE (3.2)

where ρE represents an external system that we will call the environment. In writing this
we assume that the system and environment are in a product state, an assumption that
is usually true since when a quantum system is initially produced it should be indepen-
dent from its enviroment. This combined system can then be subjected to some unitary
transformation

UρU † = U(ρS ⊗ ρE)U †. (3.3)
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Note that the combined system is now no longer necessarily separable as the unitary
transformation can mix terms between ρS and ρE. Detailed knowledge of the environment,
enough to define a density matrix, is in most physical cases nearly impossible to find.
Hence we will find the reduced density matrix corresponding to the system after the
evolution, by taking the partial trace

ρ′S =
∑
k

〈k|U(ρS ⊗ ρE)U † |k〉 (3.4)

where |k〉 are the basis states of the environment. As mentioned previously, the parameters
of the environment are nearly impossible to obtain. As such the basis states will not be
known. However we can simplify this system by assuming the environment initially starts
in some pure state |E〉. This assumption does not reduce the generality of the formulation,
since if the environment is not in a pure state, we can dictate that there must exist some
auxiliary system which is in a pure state1. This leads to an alternative definition of ρ′S

ρ′S =
∑
k

〈k|U(ρS ⊗ |E〉 〈E|)U † |k〉 =
∑
k

EkρSE
†
k (3.5)

where Ek = 〈k|U |E〉 is known as a Kraus operator. We also find that∑
k

E†kEk =
∑
k

〈E|U † |k〉 〈k|U |E〉

= 〈E|U †U |E〉 = I

(3.6)

since the |k〉 states form an orthogonal basis. This basis set is arbitrary and the choice of
the basis will change the Ek operators, but still represent the same interaction between
the environment and the system. The relation between these representations of Ek is a
simple unitary transformation similar to any other change of basis.

The Kraus operators allow us to define the evolution of a system interacting with an
environment, without having to determine the exact state of the enviroment. Moreover,
the Kraus operators can be defined without deriving them as we have done here. As long
as they fulfil the condition stated in Eq. 3.6 they will be valid operators for modelling
the evolution of an open quantum system. Examples of Krauss operators can be found
in Chapter 8 of [4], but here we only need note that any operator fulfilling the condition
stated in Eq. 3.6 can model the quantum analogue of the kind of operation described in
Sec. 3.1.

3.3 Master Equations and the Lindblad Equation

Although we now have a way to describe the evolution of a system in contact with an
environment whose exact characteristics are unknown, we can only work with one action
at a time. For example if we wished to know how the system evolved over two different
lengths of time, we would need two different Kraus Operators. What we define in this
section describes a continuous interaction and follows the method described in Sec. 8.4.2
of [8].

1This eventually leads to the conclusion that the quantum state of the universe must be a pure state,
since the universe is the largest possible system which any other system must be a subsystem of.
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However, this description will only be valid if the system is Markovian as described
is Sec. 3.1. What this means in terms of continuous motion is that the action of the
environment has only first order dependence of time. We can physically interpret this as
saying that the environment has no ”memory” of what it has done to the system before
and its action at each instance of time is independent of all other states. This a reasonable
assumption to make when the environment is much larger and more complex than the
system it is interacting with, since if the state of the system did have an effect on the
state of the environment it would most likely be overpowered by the environments own
internal variation.

If we consider the non-unitary evolution of a system from t to t + dt we can describe
this in Kraus operator representation as

ρ(t+ dt) =
∑
k

Ek(dt)ρ(t)Ek(dt)
† (3.7)

With the Krauss operators defined as a function of time. If we then take the limit dt→ 0
we can expand the Kraus operators as

Ek = E
(0)
k +

√
dtE

(1)
k + dtE

(2)
k +O(dt

√
dt). (3.8)

Since the Kraus operators are determined by an arbitrary choice of basis, we can choose
a basis such that the first element in the expansion is

E0 = I + dt(M − iH) +O(dt2) (3.9)

with arbitrary hermitian operators2 M and H. In order for the system to be Markovian,
we require that ρ(t+ dt) = ρ(t) + dρdt. In other words it must be a first order derivative,
since higher orders require knowledge of the interaction between the environment and
previous states. In order to fulfil this requirement, the other Kraus operators in the basis
set must be

Ek =
√
dtLk +O(dt) for k > 0 (3.10)

and all orders of dt higher than dt2 for E0 and dt for Ek>0 must be ignored, as can be
seen when these definitions are inserted into Eq. 3.7

ρ(t+ dt) = E0ρ(t)E†0 +
∑
k>0

Ekρ(t)E†k

= (I + dt(M − iH))ρ(t)(I + dt(M + iH)) + dt
∑
k

Lkρ(t)L†k

= ρ(t)− idt[H, ρ(t)] + dt{M,ρ}+ dt
∑
k

Lkρ(t)L†k

(3.11)

M can be solved for in terms of Lk since the Kraus Operators must satisfy the normali-
sation condition outlined in Eq. (3.6)∑

k

EkE
†
k = I = (I + dt(M − iH))(I + dt(M + iH)) + dt

∑
k

LkL
†
k

= I + 2dtM + dt
∑
k

LkL
†
k

⇒M = −1

2

∑
k

LkL
†
k

(3.12)

2We will see later that H can be equated with the hamiltonian of the system without the effect of the
enviroment
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Which leads to

ρ(t+ dt) = ρ(t)− idt[H, ρ(t)] + dt
∑
k

(
Lkρ(t)L†k −

1

2
{LkL†k, ρ}

)
⇒ ρ(t+ dt)− ρ(t)

dt
=
∂ρ(t)

∂t
= −i[H, ρ(t)] +

∑
k

(
Lkρ(t)L†k −

1

2
{LkL†k, ρ(t)}

)
(3.13)

which is the Lindblad master equation.
Its form is very similar to that of the Liouville-von Neumann equation, but with

an additional part, which describes the dissipation of the system. We can also now
equate the H operator with the Hamiltonian of the system, if it were not interacting
with the environment. There are very many possible Lk operators, which are known as
Lindblad operators, which represent different types of interaction with the bath. They
are operators in the Hilbert space of the system, since they are derived from the Kraus
operators which are also in the systems Hilbert space. A set of Lindblad operators that
will be particularly important in this thesis are those representing a fluctuation between
the different eigenstates of a system, when it interacts with a thermal bath. The Lindblad
operators for this interaction are

Li,j− =
√

Γ−Si,j

Li,j+ =
√
e−βνΓ−S

†
i,j

(3.14)

Where Si,j = |i〉 〈j| is a kind of ladder operator corresponding to moving from eigenvector
|j〉 to |i〉 and eliminating all other eigenvectors. ν is the difference between the eigenvalues
of the two states and β is the temperature of the environment where the environment is
assumed to be a heat reservoir where changes in energy of the system do not effect the
temperature of the enviroment. Γ− is the rate at which the state will spontaneously go
from |j〉 to |i〉, akin to the probability p in 3.1. The coefficient of S†i,j is determined as a
function of Γ− though the use of detailed balance relations, which ensure that the system
will tend to a thermal equilibrium with its environment. More information about this
formulation can be found in [8].

3.4 Quantum Thermodynamics

There are many ways in which statistical mechanics and quantum mechanics can be
combined and in this section we will cover some quantum extensions of classical ther-
modynamic notions. This will enable the study of various phenomena of open quantum
systems in a way that is more intuitive than simply looking at expectation values. How-
ever, all quantum theories that take thermodynamics into account are still completely
valid quantum theories, with no additional assumptions having to be made about the
systems involved other than the standard axioms of quantum mechanics. Additionally
there is a uniquely quantum thermodynamic analysis that can be carried out using the
process of full counting statistics, which will be discussed in Sec 3.4.3.
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3.4.1 Relation to Classical Thermodynamics

Quantum Extension of the First Law of Thermodynamics

One of the fundamental parts of classical thermodynamics is the first law, which states
that in a body which does not exchange mass with its enviroment, the change in the
internal energy is equal to the amount of work done on the system by its environment
plus the amount of heat exchanged from the environment to the system. This can be
expressed mathematically as

∆U = ∆Q+ ∆W. (3.15)

We can form a quantum version of the same law, but instead stating that the equality holds
for the averages of these values. This is not really so far from the classical version, since
these values are in actuality, statistical averages over the kinetic energy of the constituent
molecules of the system. If we define the average internal energy of the system as the
expectation of the hamiltonian, we can derive a form of the first law in the infinitesimal
case by simply considering the derivative

∂

∂t
Tr (Hρ) = Tr

(
∂H

∂t
ρ

)
+ Tr

(
H
∂ρ

∂t

)
(3.16)

Since ∂ Tr (Hρ)/∂t is the change in average energy of the system, we can consider the other
two parts, derived from the partial derivative, to be equivalent to work and heat. Since the
first term in the sum is the change in the energy of the system due to its Hamiltonian, we
can consider this work done on the system, described by its Hamiltonian. The other term
can be considered almost as the expectation value of energy for the change in the state.
Since under unitary evolution this value is always zero (see Sec. A.1.1) we can equate it
with some amount of energy exchange with the environment, without the action of the
Hamiltonian, and as such we identify this as heat. A more detailed examination of this
formula can be found in[9]. This equation is used in almost all quantum thermodynamics
and is well established.

Gibbs state

A fundamental notion in thermodynamics is the equilibrium state of a system with its
environment. This is determined by finding the state of maximum entropy, or equivalently
the state which is invariant under time evolution of the system. This is also known as the
canonical ensemble of a system. For classical systems this can be determined by

Pi =
exp(−βEi)

Z
(3.17)

where Pi is the probability to be in state i, β is the inverse temperature which is defined
as3 1/T and Ei is the energy of that state. Z is the partition function, which normalises
the probabilities so their sum is one, which is defined as

Z =
∑
i

exp(−βEi). (3.18)

Both these equations are derived in [10].

3The definition in SI is 1/(kBT )
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The quantum extension of this notion is

ρ =
exp(−βH)

Tr (exp(−βH))
(3.19)

which produces the same results as the classical version when attempting to compute the
probability to be in a particular eigenstate of the hamiltonian. The justification for this
representation is that it is necessary in order for the state to have the same probability
distribution for the energies of the system as described in the classical Gibbs state.

3.4.2 Fluctuation Theorems

There have been more recent developments which come from modern statistical mechanics,
relating the probability for a certain transition between states, the probability for the time
reversed version of the same transition and the work done on the system, as well as the
change in the free energy of the system. It is derived in [11] and defined as

P i→j
fwd

P j→i
rev

= exp(β(Wi→j)−∆F ) (3.20)

where; P i→j
fwd is the probability to go from state i to state j in the forward time regime,

P j→i
rev is the probability to go from state j to state i in the reverse time regime, Wi→j is

the work done on the system as it goes from i to j, and ∆F is the free energy difference
between the two states. This equality can be used to check the accuracy of the work
exchange distributions that will be calculated using Full Counting Statistics.

3.4.3 Full Counting Statistics

Given a description of an open system based on the density matrix, it is not immediately
apparent what the probability distribution for exchanges in work and heat are. However
there is a method which allows for calculation of these probabilities, as outlined in [12].
This method is called full counting statistics, and uses the addition of a counting field,
to keep track of the work and heat exchanges with the system, using the two point
measurement description of work an heat transfer, a description of which can be found
in [13]. These counting fields are added into parts of the Lindblad operators described in
Eq. (3.3), which leads to this form of the Lindblad equation:

ρ̇(t, u) = −i[H, ρ(t)] +
∑
k

Γ−e
νk

(
eiuSkρ(t)S†k −

1

2
{S†kSk, ρ(t)}+ e−(β+iu)S†kρ(t)Sk −

1

2
e−β{SkS†k, ρ(t)}

)
.

(3.21)

This results in the state being a function of two independent parameters, although it
should be noted that the states corresponding to u 6= 0 are unphysical and merely part of
the mathematical apparatus used in full counting statistics. From this state it is possible
to obtain the Fourier transform of the probability distributions of both work and heat. We
call the Fourier transform of a probability distribution the characteristic function and of
course the inverse Fourier transform can be taken to retrieve the probability distribution.
Additionally, the moments (average, variance, skewness, etc.) of the distribution can be
calculated by

E(Xn) = inφ
(n)
X (0) (3.22)
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where E(Xn) is the nth moment of variable X and φ
(n)
X (0) is the nth derivative of the char-

acteristic function of X evaluated at zero. The characteristic functions can be calculated
from the state ρ(t, u) as

φW (u, t) = Tr(eiuH(t)ρw(t, u)) (3.23)

φQ(u, t) = Tr(ρ(t, u)) (3.24)

where φW is the work characteristic function and φQ the heat characteristic function. Also,
when calculating the work distribution, the initial state of the system must be modified
in the following way

ρw(0, u) = e−iuH(0)ρ(0). (3.25)
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Chapter 4

Methods

In this section we will discuss the methods used to simulate the various systems described
in the analysis. The final version of the simulator uses C++ to generate the states and
perform the full counting statistics. Mathematica is used to plot and analyse the data.
The output from the C++ program is: a list of all density matrices calculated where
increasing position in the list represents time; an array of probability values where one
dimension equates to time and the other to change in work/heat and a similar array but
where the list elements are the values of the characteristic function. Additionally the
Hamiltonian for each time step calculated is output in a list, and all the previous datasets
are also output for the time reversed evolution.

4.1 Basic Method

Many iterations of the software were written over the course of this project, but they
all have the same fundamental principle; that any time evolution of an open or closed
quantum system can be approximated by applying many time invariant operators corre-
sponding to small time differences in a sequence that respects time ordering. The accuracy
of this method depends on the size of the time steps being used. Although in principle
arbitrarily sized time steps could be used, equally sized time steps were chosen for ease
of use. The accuracy of the simulation will be dependent on the resolution of these time
steps, and whether they can accurately encapsulate the time dependence of the system in
question.

The simplest example of this is when approximating closed evolution due to an arbi-
trary Hamiltonian of a state vector. The approximate time evolution can be described
via an iterative algorithm with N steps, stated in Eq. (4.2), which computes each next
state using a time evolution operator. For example if the time evolution of the state
is governed by a differential equation of a single left acting operator O, then the time
evolution operator will be

T (tn) = e−i∆tO(tn+∆t/2)

|ψ(tn + ∆t)〉 = T (tn) |ψ(tn)〉
ρ(tn + ∆t) = T (tn)ρ(tn)U †.

(4.1)
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|ψ(∆t)〉 = T (0) |ψ(0)〉
|ψ(2∆t)〉 = T (∆t) |ψ(∆t)〉

...

|ψ(tf −∆t)〉 = T (tf − 2∆t) |ψ(tf − 2∆t)〉
|ψ(tf )〉 = T (tf −∆t) |ψ(tf −∆t)〉

(4.2)

The accuracy of this method depends greatly on the size of the time steps but also
on the length of time the simulation represents. If the ratio of these two parameters is
not sufficient enough to capture the features of the Hamiltonian (something akin to the
Nyquist frequency), the simulation will not be accurate. Additionally, small errors will
become more significant over time, as the method for calculating the next state uses the
previously calculated state, which amplifies the error in the calculation of the previous
state.

4.2 Additional Techniques

This section describes the methods used in the simulation to calculate various parameters.
Most of these techniques do not add any physical interpretation to the model, and just
describe the numerical and mathematical methods used in the simulation.

4.2.1 Lindblad Superoperator and Vectorisation

To use the method exactly as described in Sec. 4.1 we require an equation which is only a
differential equation of a single left acting operator, the lindblad equation does not satisfy
this criterion. However, it can be converted into its superoperator form, which is most
easily achieved by converting the density matrix in question into a vector, and applying
a linear transformation to it which is equivalent to the action of the Lindblad equation.
The process can be achieved using these methods:[14]

ρ =

 ρ11 ρ12 · · ·
ρ21 ρ22 · · ·
...

...
. . .

→


ρ11

ρ21
...
ρ12

ρ22
...


= ~ρ (4.3)

AρB → (BT ⊗ A) ~ρ. (4.4)

4.2.2 Discrete Differentiation

To calculate the work and heat change in a system as described in Sec. 3.4.1, the derivative
of both the Hamiltonian and state is required. The derivative of the Hamiltonian in most
cases can be determined analytically, either by hand or with symbolic programming. For
the state, the derivative can be estimated by using the limit form of the derivative for any
given order, and explicitly calculating it for a small separation, rather than for the limit.
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4.2.3 Full Counting

In order to calculate the full counting statistics, a range of values for the characteristic
function must be sampled over which the function is periodic. Additionally, much like
the sampling of the states/Hamiltonian we require a small enough resolution of steps in
the characteristic parameter is required so that the system is accurately represented when
discretised. The software then simulates the same time evolution for each value of the
characteristic parameter and saves this as a subarray in a larger array of states. During
this time evolution the level spacing (separation between energy eigenvalues) must be
calculated along with the lowering/raising operator which is the outer product of two
eigenvectors, |E−〉 〈E+| for lowering and the hermitian of this operator for the raising
operator. This is then used in the Lindblad superoperator. The characteristic function is
then calculated from each of these arrays of states, to give another set of arrays which is
a discretisation of the characteristic function as a function of time and the characteristic
parameter. These arrays are then inversely Fourier transformed in order to retrieve the
probability distributions for each time step. The index of the distribution is related to
the amount of energy exchange by the level spacing.

4.2.4 Time Reversal

In order to determine the validity of the Crooks Fluctuation Theorem a reverse time
evolution must be performed. This is done via a similar process as described in Sec. 4.1
but with the order of iteration reversed, and using time reversed Liouville-von Neumann
part of the Lindblad equation, which is equivalent to taking its complex conjugate. Since
the Lindblad Operators are time invariant, they are calculated in the same way as the
forward time evolution.
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4.3 Simulation Validity

In order to test the validity of the simulation, the evolution of a qubit under a unitary
transformation with no effect from the environment was calculated. In the simulation
this is done by changing the loss rate to zero, reducing the Lindblad equation to the
Liouville-von Neumann equation. Since through much of this analysis a Rabi cycle type
Hamiltonian will be used, it is essential the the simulation reproduce the expected be-
haviour in the unitary case. Fig. 4.1 shows the difference between the main attributes of
the computed state and an analytically derived result (calculated symbolically in Mathe-
matica see B.1.2 for details).

tω/2π

(a)

tω/2π

(b)

Figure 4.1: Difference between computed and analytical state attributes with Hamiltonian
cos(t)σx + sin(t)σy, initial state |1〉, time range = 6π and (a) 1000 (b) 5000 time steps.
X-axis shows the simulated time, normalised by an arbitrary frequency ω.

The difference between the computed and analytic result is quite small, although the
error does grow over the course of the simulation as was discussed in Sec. 4.1. The
Hamiltonian used here is not one that will be used in this analysis, it used just to test
the validity of the simulator. The types of Hamiltonians that will be used in the actual
analysis are those with constant eigenvalues. As such the Hamiltonian shown in Fig. 4.2
is much more representative of the type of Hamiltonian that will be simulated. When
interactions with the environment are added to the simulation, a steady state is usually
reached around the end of the time span represented here, after this point the errors should
minimise since the state becomes static. However even in the unitary case shown here, the
error is within reasonable margins. If it becomes necessary to increase the accuracy for
a particular simulation, the time steps can be increased accordingly, which will increase
the accuracy of the simulation. This can be repeated until no significant change occurs
between the time step increases.
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tω/2π

(a)

tω/2π

(b)

Figure 4.2: Difference between computed and analytical state attributes with Hamiltonian
0.5 I + 0.01 cos(t)σx + 0.01 sin(t)σy + 0.5σz, initial state |1〉 for (a) 1000 (b) 5000 time
steps.

An analytic solution to the Lindblad equation for a time dependent Hamiltonian is
more difficult to obtain than for unitary evolution, as such validity of this simulation
will be based predominantly upon the Crooks Fluctuation Theorem, as shown in Sec.
4.3.1. Additionally some physical intuition about the expected motion of the qubit can
be applied in order to determine the validity of the simulation, if not the precision of the
numerics. Furthermore different methods of computing the same physical parameters can
be compared, and the extent to which they match can also determine the accuracy of the
simulation, which is also shown in Sec. 4.3.1.

4.3.1 Full Counting Statistics Validity

Full counting statistics is also used in the following simulations. As such, methods to
test the validity of these calculations is required, however analytic solutions are become
increasingly difficult (if they were not, there would not be much reason for simulating
them). However two approaches can be utilised by testing whether the simulations fulfil
certain theorems. One is the First Law of Thermodynamics, expressed in its quantum
form as shown in Sec. 3.4.1. The other is the Crooks Fluctuation Theorem, which is
shown in Sec. 3.4.2.

In order to test whether the simulation fulfils the First Law, we can calculate the
averages of work and heat using only the computed states, and comparing this to the first
moment of the characteristic function as described in Sec. 3.4.3.
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Figure 4.3: (a) shows the calculated values for the change in work ∆W , heat ∆Q, energy
∆U and the sum of the computed values of work and heat when using the direct method
of calculation. (b) shows the same values but when using the characteristic function
computed by using full counting statistics. The hamiltonian used is given in the appendix
(Sec. B.1). The system was simulated with a loss rate of 0.02 and an inverse temperature
of 2

Fig. 4.3 shows the same physical parameters for the two methods of calculation, and
shows how they match each other in both magnitude and time dependence. The first law
tells us that the sum of the average work and heat should be equal to the expectation
value for the energy. This is verified for both methods of calculation, however using the
characteristic function gives slightly more accurate results. This is likely due to the fact
that the characteristic function is changing less as a function of its argument, than the
states are changing in time. This means that the discrete approximation of derivative of
the characteristic function is more accurate than that of the states.

The Crooks fluctuation theorem was also tested for the same system, as shown in Fig.
4.4. This test does not always give reliable data as many of the computed probabilities
for exchanges in work and heat are close to zero. When these values are close to zero
floating point errors play a larger part and as such the ratio of any two such numbers
becomes randomly distributed and does not exhibit the expected behaviour. However,
the system can be chosen such that large probabilities are found for both probabilities (as
will be discussed in the analysis) and it was such a system that was chosen here. As can
be seen, the relation holds for work exchanges far from zero. One part of the theorem that
was unable to be fully explored is the dependence on the change in free energy. As the
eigenvalues of the system must be kept constant (in order to calculate the full counting
statistics) there can be no change in free energy. Regardless the CFT test shows that
the simulation is physically valid for all situations the will be explored here, as far as
fluctuation theorems are concerned.
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Figure 4.4: Result of the Crooks fluctuation theorem test on the same system as Fig. 4.3.
A line of x = y is shown to exemplify how well the points fit the expected values.
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Chapter 5

Results and Analysis

In this section, the results from various simulations will be analysed to gain as much
physical insight as possible. There are three important energy scales that can be ma-
nipulated in these simulations if we consider only hamiltonians which maintain constant
eigenvalues, as must be done in order to calculate the full counting statistics of a state.

5.1 Hamiltonian Form

In this investigation we will limit ourselves to two level systems with a constant energy
splitting. A physical realisation might be a spin 1/2 particle in a magnetic field with
certain characteristics, which will be defined here. In general, such a system can be
described by the Hamiltonian

H(t) = −~µ · ~B = −µ~σ · ~B (5.1)

which has eigenvalues
±µ| ~B|. (5.2)

This implies that, assuming that the interaction strength of the spin 1/2 system with
the magnetic field is time independent, the magnitude of the magnetic field vector must
be constant to maintain constant energy splitting. Such a vector can be represented in
spherical coordinates, as a function of arbitrary time dependent functions α(t) and β(t): sin(α(t)) cos(β(t))

sin(α(t)) sin(β(t))
cos(α(t))

 . (5.3)

Assuming this representation is in a basis where the initial energy splitting is along
the z axis, we should choose α(t) to be an arbitrarily chosen constant. Additionally
we can define this function such that there is a linear relationship between it and the
initial strength of the field in the z direction by choosing α(t) = arccos(s) where s is the
arbitrary constant we will use to define the magnitude of the magnetic field vector along
the z axis. As a consequence, the x and y terms will be proportional to

√
1− s2 and

since the magnetic field should not have an imaginary component (which is necessary to
ensure that the Hamiltonian is hermitian) this limits the range of our strength parameter
to −1 ≤ s ≤ 1. For ease of calculation we set the two eigenvalues to 1/2 and −1/2,
which is achieved by setting µ = −1/2 (sign choice is for convenience). We will also use
a linearly time dependent oscillation for the x and y components, by setting β(t) = ωt
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We then arrive at the final hamiltonian which will be used throughout this analysis, by
reinserting ~B into equation 5.1

H(t) =
1

2

(
s e−iωt

√
1− s2

eiωt
√

1− s2 −s

)
. (5.4)

There are three parameters which will affect the dynamics of the system: s which
determines the strength of the z component of the electric field, and consequently the
strength of the oscillatory part of the hamiltonian, the loss rate Γ− which was described
in Sec. 3.3 as determining the rate of energy loss to the environment, and the inverse
temperature β which will affect both the initial state of the system, and the rate at which
the system will gain energy from the environment.

Additionally the system will always start in the Gibbs state, as this is required in
order to use full counting statistics, and is also a requirement of the Crooks fluctuation
theorem. For this Hamiltonian, the Gibbs state is given by

1

2

[
I −

(
s e−iωt

√
1− s2

eiωt
√

1− s2 −s

)
tanh(β)

]
(5.5)

which will be the mixed state for low β and will tend asymptotically towards 1/2 I−H(t)
for higher β values.1

1Both of these formula were calculated symbolically with Wolfram Mathematica and may be quite
tedious to derive by hand but are essentially simple derivations. Code is shown in the appendix B.1.3.
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5.2 State Dynamics

5.2.1 Effect of the Hamiltonian

If s is chosen to be close to one, an oscillating effect is achieved, with the occupation
probabilities of the eigenstates oscillating in a sinusoidal manner. This effect diminishes
as s goes from 1 to −1 as shown in Fig. 5.1. If s becomes equal to either 1 or −1 the
Hamiltonian becomes time independent, which is not a situation of particular interest in
this investigation. It can also be seen in Fig. 5.1 that as s decreases the oscillations become
more rapid, but equivalently the amount of oscillation decreases. We will primarily be
concerned with situations in which there is greater oscillation of occupancy probability,
as this gives rise to more interesting dynamics.
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(a) s = 0.9, β = 1.5, Γ− = 0
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(b) s = 0.2, β = 1.5, Γ− = 0
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(c) s = −0.2, β = 1.5, Γ− = 0
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(d) s = −0.9, β = 1.5, Γ− = 0

Figure 5.1: Plots showing the occupation probabilities for the two state system undergoing
unitary evolution.

5.2.2 The Effect of Temperature

The temperature acts as an overall scale for the system, not only by determining the
initial state, but by determining how much energy the system can absorb from the envi-
ronment relative to the loss rate. At low temperatures the system will tend more slowly
to its equilibrium state, but will also start in a more mixed state. The range of inverse
temperatures to test can be limited by noting that there is a Tanh relationship to the
initial state. Over a certain value (approximately β = 2) the difference in initial state is
inconsequential and the dynamics are very similar.
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(a) s = 0.97, β = 2, Γ− = 0.02

ρ11 ρ22

5 10 15 20 25 30
tω/2π

0.40

0.45

0.50

0.55

0.60

(b) s = 0.97, β = 0.1, Γ− = 0.02
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(a) s = 0.97, β = 2, Γ− = 0.02
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Figure 5.3: Plots (a) and (b) show the upper and lower diagonal elements of the density
matrix. (c) and (d) show the purity γ and the absolute value of the upper diagonal
element of the density matrix, representing the coherence.

We can see from Fig. 5.3 that at lower temperatures the system starts in a state closer
in purity to the completely mixed state, and decays more quickly towards it. Additionally
it can also be seen that when coming into equilibrium with the environment, the state at
a lower temperature has greater purity than the one at a higher temperature, even though
the occupation levels decay to approximately the same values. This indicates that the
coherence of the state is less affected by the same losses in energy, when the temperature
is lower. This is due to the environment exchanging less heat with the system at higher
temperatures relative to the amount of work being done on the system, as can be seen in
Fig. 5.4.
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(a) s = 0.97, β = 2, Γ− = 0.02
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(b) s = 0.97, β = 0.1, Γ− = 0.02

Figure 5.4: These plots show the amount of work ∆W and heat ∆Q exchanged with the
environment per time step, Additionally the change in the expectation value of the energy
of the system ∆U is also shown.
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Fig. 5.4 also shows that the amount of heat and work exchanged is lower for higher
temperatures. Since the major difference between these two systems is the initial and
equilibrium states, we can assert that effect this is due to the system starting in a state
closer to the equilibrium state of the driven system, and hence less energy is needed to
equilibriate.

5.2.3 The Effect of Loss Rate
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Figure 5.5: Same parameters as Figure 5.3.

If we now consider the effect of loss rate on the system, for a fixed temperature, in-between
the two temperature values investigated previously, we find that for higher loss rates the
system comes into equilibrium with the driving force over fewer cycles of the oscillation, as
can be seen in Fig. 5.5. However, the equilibrium state reached is very different in the two
cases. A higher loss rate means that the system is exchanging energy with the environment
more rapidly for a given temperature. This means that not only is an equilibrium reached
more quickly, but unlike the case of higher temperatures, the eventual equilibrium state
still has a relatively high purity, and even has a higher purity then the state with a lower
loss rate. This is unexpected as more interaction with an environment, is usually assumed
to imply a greater loss of purity for the state. It could be asked whether there is some
interaction with the environment that is not described by this model which would negate
this effect, but the model represents and random fluctuations of occupancy that fulfils
both the detailed balance relation and are Markovian. This is still a very general model
of decoherence and there should not be any further physical restrictions that must be
imposed on the model, so there should be some physical situation that corresponds to
this model (see [5]).

Fig. 5.6 shows that for a higher loss rate, there is a much higher amount of heat
exchange with the system. The work and heat exchanges are also approximately equal
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at equilibrium which indicates that for higher loss rates, the work being done on the
system is balanced by the heat loss to the environment. We can see that the state is still
time dependent in Fig 5.7, indicating where the work is going. The Bloch vector is still
rotating, but it is not moving in the z axis. Since the detailed balance relation determines
the ratio between gain and loss rate, we can assume it is this relation that determines the
eventual driven equilibrium of the state for a given hamiltonian.
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Figure 5.6: Same parameters as Fig. 5.4
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Figure 5.7: These plots show the Bloch components of the state

5.2.4 Effect of Loss Rate and Temperature on State Purity

We now investigate the parameter space of temperature and loss rate, for a given strength
parameter, as shown in Fig. 5.8. From this we can interpret several things. First that
higher s is, the more susceptible the system will be to loss of purity for low loss rates,
and low temperatures. This can be attributed to the fact that low s values (close to
−1) The Hamiltonian does very little to change the state, as such equilibrating with the
Hamiltonian does not represent a great change from the Gibbs state. As s gets larger,
more is done to affect the state and as such driven equilibriums further from the Gibbs
state are reached.

Secondly, the lower the temperature, the greater difference there is between the Gibbs
state, and the final equilibrium state for the same loss rate as explained in 5.2.2. Finally
we can see that higher loss rates at the same temperature result in less difference between
the initial and equilibrium states. This is more difficult to explain, however it would
appear that the greater the loss rate, the more rapidly the system comes into equilibrium
with the driving force, leaving it in a state further away in purity from the completely
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mixed state it would have reached eventually if the loss rate was very low (but still greater
than zero which is equivalent to unitary evolution).

This last feature might mean that perhaps channels with different loss rates might
be used in order to select a particular mixed state with coherences from a nearly pure
state without such properties, and store that state without having to completely isolate it
from its environment. However, the state will still be decoherent, and it may be unlikely
to be of much use in a quantum computing scenario, in which pure states are the ideal.
Additionally since the purity will never be higher than that of the original Gibbs state,
the storage of such states would only be useful if the state to be stored was different from
the Gibbs state of the system, otherwise the operation would be trivial.
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Figure 5.8: Regions correspond to different values for the loss in purity, between a min-
imum of zero, and maximum of one half. System was sampled at β = 1 and Γ− = 0.02
spaced intervals, and over a time range of ωt = 200, assumed to be enough for the system
to reach an equilibrium state. At zero loss rate, there is no difference in purity, as no
interaction with the enviroment occurs.
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5.2.5 Full Counting Statistics

Through the use of Full Counting Statistics it was possible for the simulation to calculate
the probabilities that a an amount of energy equal to a multiple of the level spacing of
the system, was either applied to the system as work, or dissipated into the environment
through heat, over the entire duration of the evolution of the system. An example is given
in Fig. 5.9 which displays the thermal distributions calculated for the system s = 0.97,
β = 1, Γ− = 0.01. Fig. 5.9 shows each exchange probability as a function of time. The
actual number of calculated exchange probabilities is much larger than this, but most are
very close to zero.
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(a) Work and heat Distributions for s = 0.97, β = 1, Γ− = 0.01.
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(b) Work and heat Distributions for s = 0.97, β = 1, Γ− = 0.08

Figure 5.9: The colours indicate amount of exchange, in accordance with legend shown

From Fig. 5.9 we can see that although the average of heat exchange is negative,
and the average of work is positive, there is some small probability to have negative or
positive values respectively. This can tell us more about the effect mentioned in Sec. 5.2
in which lower loss rates lead to more mixed equilibrium states. We can see that for
the case of higher loss rate, the distributions spread out and drift in the positive and
negative direction for work and heat respectively. The drift is due to the fact that the
energy exchange probability being calculated is the total energy exchange of the system
up to a particular point in time, and since work and heat is constantly exchanged with
the system, the average amounts of heat and work exchanged over the entire time of the
interaction will grow. The most clear difference between these two situations is that the
distribution of energy exchange spreads out more rapidly for higher loss rates. This can
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be seen as the probability for energy exchange with the system becoming more random,
but also less likely for any specific amount of energy exchange. This means that even
though the averages for work and heat exchange are constant, the amount of heat and
work exchanged is not.

This can also be investigated by looking at the variance of work and heat, which is
calculated here via the characteristic function. In particular the effects of temperature
and loss rate are easier to determine when using this method. However, there is a much
higher sensitivity to the resolution of the full counting parameter when calculating these
quantities, since it depends on derivatives of the function. As such, a higher resolution in
the full counting parameter is necessary for accurate results. Fig. 5.10 Shows the change
in the second moment, equivalent to the variance, over the evolution of the system.
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Figure 5.10: These plots show the change in the variance of work and heat over the
evolution of the system

We can see clearly from Fig. 5.10 that the variance grows initially much more rapidly
for the highest loss rate. Although this growth does not continue for later times, as can
be seen in Fig 5.10a. In fact at this high loss rate, the growth of the variance is similar
to that of the low loss rate. However, there is a very steep change at the beginning of
the time evolution, and the variance in heat is larger than that of the work, unlike the
low loss rate situation. If we sample a much smaller time region around this moment, we
can see that the heat jumps rapidly to a constant amount of exchange, as does the work,
indicating the system jumps within half a cycle of the oscillation to its equilibrium value.
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Figure 5.11: s = 0.97, β = 1, Γ− = 1 Plots showing the system jumping rapidly into its
equilibrium state

Comparing this case to the earlier situation of low loss rates (see Fig. 5.6), we can
see that not only is an equilibrium state reached more quickly, but much less energy is
exchanged with the system on average. Fig 5.2.5 shows a comparison in the probability
distribution for a fixed time
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Figure 5.12: s = 0.92, β = 1, Comparison between distributions for Γ− = 1, Γ− = 0.1
and Γ− = 0.01 at tω/2π = 8/π

We can see that for the very high loss rate, the distribution stays centred around zero,
with some slight skew, giving rise to the average values being close to zero. We can also
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see that the heat distribution is wider than the work distribution, indicating that the heat
exchange with the system is more random, which is likely due to the greater interaction
with the enviroment. For the middle value, the probabilities are more distributed, but have
different averages, indicating they have drifted further and that there is a greater average
exchange of energy with the environment. The lowest loss rate however, is centred at zero,
and has a similar distribution to that of the high loss rate, except with less randomness
in the heat exchange.
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Figure 5.13: s = 0.92, β = 1 Comparison between distributions for Γ− = 1 and Γ− = 0.01
at tω/2π = 60/π

However Fig. 5.13 shows that at later times, the distributions for Γ− = 1 are smoother
than for Γ− = 0.01 indicating that the system has reached equilibrium, whereas for
Γ− = 0.01 the system is still exchanging amounts of heat and work that are not evenly
distributed and has not yet reached equilibrium. If we then look at the system for Γ− = 0.1
We can see that it has interacted with the environment the most. The amount of work
and heat exchange is higher than for the other two cases, and the distributions are even
more spread out than for the extremely high loss rate. From this we may conclude that as
the loss rate increases, there is some value for which interaction with the environment is
at its maximum, which can be determined by considering the rate at which the variance
of the work and heat distributions increases.
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Chapter 6

Outlook

6.1 Summary

This method of simulating qubits in open quantum systems has been able to reveal many
properties of the thermal interactions properties of qubits. The simulation was also shown
to be in agreement with various well accepted theories, such as the Crooks fluctuation
theorem, and the quantum extension of the first law of thermodynamics.

The full counting statistics method was shown to be a useful way of determining the
exact distribution of heat and work, and how this information can be used to understand
the dynamics of an open quantum system.

We have also gained more insight into the parameters determining the lindblad equa-
tion and how they affect the system in question. We have established that there is no
simple linear relationship between them, and that the equilibrium state of the driven
system is not necessarily the completely mixed state. We determined that this can be
analysed by investigating the variance of the system over time.

However the analysis of what the eventual equilibrium state is, was not completed,
and will be discussed further in Sec. 6.2

6.2 Extensions

In this section we will discuss possible extensions to the project. Most notably, the
analysis of what the eventual equilibrium state is would require more parameter space
computations, similar to Fig. 5.8. However to perform these kind of calculations with
accurate full counting statistics, takes a long amount of computing time, too much to do
rapidly on a home computer (the simulation displayed in this thesis took half a day to
complete on a laptop). Running these parameter space calculations on a High performance
computer would allow for more detailed scans to be acquired in reasonable amounts of
time.

Multiple qubit systems would also be interesting to analyse, as they are very impor-
tant in quantum computing. This could be achieved with the same theoretical model,
however care would have to be taken to ensure that the eigenvalues of the hamiltonian
stay constant. Additionally when the full counting statistics is calculated, the discrete
Fourier transform must be made over a periodic region. Since the periodicity in the char-
acteristic function will be dependent on the level spacing, care must be taken to ensure
that the level spacing allows for a periodicity, which is easily calculable (i.e some small
integer ratio).
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Appendix A

Open Quantum Systems

A.1 Quantum Thermodynamics

A.1.1 First Law Heat Relation

Using the Liouville-von Neumann equation, we can derive a constant value for TrH∂ρ/∂t
under unitary evolution:

Tr

(
H
∂ρ

∂t

)
= −iTr (H[H, ρ])

= −iTr (HHρ−HρH)

= −i(Tr (HHρ)− Tr (HρH))

= −i(Tr (HρH)− Tr (HρH)) = 0

(A.1)
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Appendix B

Results and Analysis

B.1 Simulation Analysis

B.1.1 Hamiltonian used in Fig. 4.3( √
5/6 (cos(t)− i sin(t))/10

(cos(t) + i sin(t))/10 −
√

5/6

)
(B.1)

B.1.2 Unitary Evolution

��������� H[t_] := Cos[t]*PauliMatrix[1] + Sin[t]*PauliMatrix[2]

ψ[t_] = {up[t], down[t]};

sys = {ψ'[t] ⩵ -I H[t].ψ[t], ψ[0] ⩵ {1, 0}};

sol = DSolve[sys, {up, down}, t];

ψ[t_] = Simplify[Flatten[ψ[t] /. sol], t ∈ Reals]

Figure B.1: Example code for analytic solution to Schrödinger equation, example hamil-
tonian used is cos(t)σx + sin(t)σy with initial state |1〉

B.1.3 Hamiltonian Form

�������� μ = -(1/2);

B = {Sqrt[1 - s^2] Cos[ω t], Sqrt[1 - s^2] Sin[ω t], s};

(H = -μ TrigToExp[Sum[PauliMatrix[i]*B[[i]], {i, 1, 3}]]) // MatrixForm

FullSimplify[ExpToTrig[MatrixExp[-β H]/Tr[MatrixExp[-β H]]]] // MatrixForm

Figure B.2: Code used to symbolically simplify expressions for hamiltonian and Gibbs
state expressions
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