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Abstract

Pharmacokinetics is the study of how drugs are absorbed and distributed in
the body and is used by pharmacists to ensure that they prescribe the appropri-
ate dosage of medicine. The process used to determine the drug concentration
in the body when medicine is prescribed is ADME; absorption, distribution,
metabolism and excretion. The body is viewed as consisting of compartments
between which a drug moves. This project focuses on a two compartment model
where the body proceeds at a rate that is dependent on the concentration of
the drug. Compartmental models can be described in terms of a set of linear,
first-order, constant-coefficient, ordinary differential equations. A change of con-
centration in one of the compartments is a linear function of the concentrations
in all other compartments.

There are two sets of data that were evaluated. The first is Theophylline
which is a drug used for respiratory disease. The data given consisted of twelve
patients who took one single oral dose of Theophylline and their drug concentra-
tion in blood was sampled multiple times over a period of 24 hours. The next
data was from 31 patients who were given one single oral dose of Warfarin. War-
farin is an anticoagulant used as a blood thinner. The concentration of Warfarin
was examined over a longer period of time, roughly five days.

The aim of the project was to fit and statistically evaluate the dynamics of
the concentration of the drugs administered to the subjects. When the param-
eters were estimated and the estimates were plotted an interesting occurrence
was discovered. The lack of rising concentration values for most of the Warfarin
Patients and for Patient 9 from the Theophylline data cause a poor estimate for
the rate of absorption. It proved that an over parameterization had occurred
and that a one compartment model might have given a better outcome. Patients
who had rising concentration values also had more accurate estimates, this can
also be seen in the plots. 95% confidence intervals and standard errors were also
calculated.

Lastly, correlations between the patients and the parameters were plotted
and visually evaluated. The Theophylline patients had no noticeable correlations
which could be a result of the small number of patients. The Warfarin correlation
plots appeared to have slight correlations for the weight of the subjects and the
rate of elimination as well as the volume of distribution. There may also have
been a correlation of gender and parameters for the Warfarin data, but because
there was only 5 female subjects of 31 it is unclear if there is a correlation or not.
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Populärvetenskaplig sammanfattning
Studien av hur droger, exempelvis läkemedel, absorberas och distribueras i kroppen
kallas medicinvetenskap. Apotekare använder medicinvetenskap för att garantera att
de ordinerar lämplig dosering av medicin. Processen som används för att bestämma
läkemedelskoncentrationen i kroppen när läkemedlet ordineras kallas för ADME; Ab-
sorption, fördelning, metabolism och utsöndring. Kroppen betraktas som bestående
av delar vilka läkemedel rör sig mellan. För detta projekt såg vi kroppen som en
tvåavdelningsmodell och hur kroppen bryter ner drogen är beroende på koncentratio-
nen av drogen.

Två olika data grupper användes för projektet . Den första är Theophyllin som är ett
läkemedel som används för andningssjukdomar. De givna uppgifterna bestod av tolv
patienter som tog en oral dos av Theophyllin och deras läkemedelskoncentration i blod
samlades flera gånger under en period av 24 timmar. Nästa data var från 31 patienter
som fick en oral dos av Warfarin. Warfarin är ett antikoaguleringsmedel. Koncentra-
tionen av Warfarin undersöktes under en längre tid, ungefär fem dagar.

Syftet med projektet var att statistiskt utvärdera dynamiken i koncentrationen av
drogerna som administrerats till patienterna. När parametrarna skattades och uppskat-
tningarna plottades upptäcktes en intressant förekomst. Stigande koncentrationsvär-
dena saknades för de flesta warfarinpatienterna och patient 9 från Theophyllindata or-
sakar en dålig uppskattning av absorptionshastigheten. Det visade sig att data värdena
som vi hade var för enkla för en tvåavdelningsmodell och kroppen borde ha betraktats
som en avdelningsmodell för uppskattningarna. Patienter som hade stigande koncen-
trationsvarden hade också mer exakta uppskattningar. En 95% konfidensintervall och
standarderorna beräknades också.

Slutligen plottades korrelationer mellan patienterna och parametrarna och utvärder-
ades visuellt. Theofyllinpatienterna hade inga märkbara korrelationer vilket kan vara
ett resultat av det få antal patienter. Warfarin-korrelationsplottorna verkade ha små
korrelationer för individens vikt och eliminationshastigheten samt fördelningsvolymen.
Det kan också ha varit en korrelation mellan kön och parametrar för Warfarins data,
men eftersom det bara fanns fem kvinnor av 31 är det oklart om det finns en korrelation
eller inte.
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1 Introduction
Pharmacokinetics is a branch of pharmacology which studies how substances, such as
prescription drugs, are absorbed and distributed in the body. The body is viewed
as consisting of compartments between which a drug moves and from which elimina-
tion occurs. The transfer of the drug between these compartments is represented by
rate constants [5]. The way the body reacts to the drug proceeds at a rate that is
dependent on the concentration of the drug. There are different ways for a drug to
be administered. Some examples include intravenous administration, both single and
multiple, and oral dose, both single and multiple. For the analysis here, two different
data sets were used, Theophylline and Warfarin. This project focuses on single oral
administration, in a two compartment system with rates constant, where the drug is a
first order statistic.

The main goal is to consider statistical inference for several models representing the
dynamics of the concentration of the drug administered to several subjects. Models
will be fitted to available data. This means that model parameters will be estimated
statistically for each subject and it will be of interest to check for possible correlations
between the estimates and covariates such as gender, age and weight of the subjects.
This will be done for both the warfarin and theophylline data sets. Taking into account
the fact that measurements have some random measurement "noise", and by assuming
this, an additional parameter in the form of variance noise will be estimated.

1.1 Pharmacokinetics
In pharmacology there is pharmacodynamics which is the study of how a drug affects
the organism, and pharmacokinetics which is the study of how an organism affects a
drug. It can measure anything from pesticides to food additives. The object of pharma-
cokinetics is to analyze the chemical metabolism and to discover the fate of a chemical
from the moment it is administered up to a point at which it completely leaves the
body. It is an important field used for pharmacists to ensure that they prescribe the
appropriate dosage to achieve optimal treatment and minimal toxicity [4].

The process used to determine the drug concentration in the body when medicine is
prescribed is known as ADME; absorption, distribution, metabolism, and excretion.
Absorption is the process of a substance entering the blood circulation, distribution
means the dispersion of a substance throughout the fluid and tissues of the body
and metabolism refers to the compounds breaking down when they enter the body.
As metabolism occurs, the initial compound is converted into new compounds called
metabolites. Thus, metabolism is the recognition by the body that a foreign sub-
stance is present and the irreversible transformation of parent compounds to daughter
metabolites [6]. Lastly, excretion refers to the removal of the substance from the body.
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A two compartment system is a way to interpret the ADME principle which will be
discussed further in section 2.1. Here, when the drug is absorbed into the body it
enters the first compartment. Then, it is distributed into the blood and plasma which
is the second compartment. During this process the drug is metabolized. The final
step is for the drug to leave the body through excretion. The body’s reaction to a
specific drug proceeds at a rate that is dependent on the concentration of the drug.
The pharmacokinetic properties of substances can be affected by both the route of
administration and the dose of the drug which can affect the absorption rate.

2 Theory

2.1 Compartmental analysis
A compartment is used as a model to more easily perceive the processes that take place
in the interaction between the body and the chemical substance. Inside a compartment
the drug is assumed to be uniformly distributed. If there would be a concentration
difference inside a compartment, it would be divided into two separate compartments.

The act of the drug entering the body is shown in figure 1 where C0 represents the
central compartment and Ka is the constant rate of absorption having unit t−1, where
t represents time. Commonly the elimination occurs in a peripheral compartment,
depicted as C1, by the liver and kidney breaking down the drug, but the elimination
can also occur elsewhere. The constant rate of elimination is represented by Ke, also
having unit t−1. Upon entering the body, the drug concentration will decline rapidly
in C0, then rise to a maximum in C1, and then decline as it leaves the system, see
figure 1.

Figure 1: A two compartment system

Compartmental models can be described in terms of a set of linear, first-order, constant-
coefficient, ordinary differential equations. A change of concentration in one of the
compartments is a linear function of the concentrations in all other compartments.
Pharmacokinetic compartmental analysis uses kinetic models to describe and predict
the concentration-time curve. The advantage of compartmental analysis is the ability
to predict the concentration at any time. The concentration of the drug in the body
is used to determine if the dosage regimen is effective.
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If the amount of administered drug,X0, which for this experiment is in mg, is decreasing
at a rate that is proportional to X0, then the rate of elimination of the drug is described
as:

dXt

dt
= −KX0 (1)

where Xt is the quantity of the drug at time t, K is the first order elimination rate
constant and the reaction proceeds at a rate that is dependent on the amount of X0
in the body[5]. This is known as a one-compartment model. Even when the amount
of drug administered increases, the body is still able to eliminate the drug accordingly,
preventing accumulation. Eventually, if the initial amount increases to a certain ex-
tent, all drugs will take on the form of a zero order rate constant. This means the body
will only be able to eliminate a certain amount per time. This is the case, for example,
with overdoses.

For the single oral dose data, consider the concentration versus time profile. Assuming
first-order absorption and first-order elimination for a two-compartment model as in
figure 1. The rate of change of the amount of drug in the tissue compartment, C1, in
the body is given by the differential equation:

dXt

dt
= KaXo −KeXt

Following integration, the differential equation becomes:

Xt = X0Ka[exp(−Ket)− exp(−Kat)]
Ka −Ke

Here, t is the time of the blood sample in hours, and X0 is the amount of drug ad-
ministered to the patient. The concentration, Ct of drug in plasma is given by the
equation:

Ct = X0

Vd

and thus the differential equation becomes:

Ct = X0Ka[exp(−Ket)− exp(−Kat)]
Vd(Ka −Ke)

(2)

Vd is the volume of distribution in liters which gives information on the drugs distribu-
tion in the body. It refers to the volume of plasma in which the total amount of drug
in the body would be required to be dissolved in order to reflect the drug concentra-
tion attained in plasma. This is why, in this experiment, the units of Ct are in mg/liters.
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2.2 Nonlinear Regression Models
For concentration measured at n discrete time points {tj}j=1,...,n, a statistical model
for the measurements {yj}j=1,..,n can be written as:

yj = f(tj;φ) + εj, 1 ≤ j ≤ n

Here, f is the structural model which is a parametric function of time and is dependent
on φ. In our case, f(tj;φ) = Ct The vector (t1, t2, ..., tn) is the vector of sampling times
and φ = (φ1, φ2, ..., φd) is a vector of d structural parameters which, for this project,
is φ = (Ka, Ke, Vd). (ε1, ε2, ..., εn) is the residual error. With classical nonlinear re-
gressions it is possible to make some assumptions about the error. The errors εj have
mean zero, and are uncorrelated. They have common variance σ2 and are identically
distributed for all tj. Lastly, the errors εj are normally distributed [3].

For y = yj 1 ≤ j ≤ n the aim is to estimate the models parameters, ψ. Where
ψ = (φ, σ2) is the vector of parameters to be estimated and σ2, estimated by σ̂2, is
calculated by the following equation:

σ̂2 =
∑n

j=1(yj − Ctj
)2

n− d

Then the confidence intervals of the parameters should be computed in order to evalu-
ate the reliability of the estimates. With the observed data, yt given, and the parameter
model, Ct from (2), the goal is to find the best parameter for the model. This is done
using least squares which, for the stated assumptions, on {εj} also returns maximum
likelihood estimates.

3 Approach
The data sets used are for the drug Theophylline which is a drug used for respiratory
disease, and Warfarin, an anticoagulant used as a blood thinner. The figures 2 and
3 show a part of the data sets and 4 shows the plot of the concentration values for
Patient 1 from the Theophylline data. Notice, at time t = 0 the drug is administered
orally and the time entries after that are given in hours. Then, after the drug has had
some time to appear in the plasma, the first measurement is taken. The concentration
measurements are written in mg/l and, for Warfarin, the dose is 1.5mg/kg of body
weight.
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Figure 2: A part of the data set
of Theophylline with the sub-
ject’s weight in kg.

Figure 3: A part of the data
set of Warfarin, where sex =
1 refers to male patients and
dv is the concentration in mg/l
and the subject’s weight in kg.

Figure 4: A plot of the concentrations for Patient 1 from the Theophylline data.
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Using the concentration values, yt given from the data, the goal was to estimate the
parameters Ka, Ke, and Vd that would minimize:

n∑
j=1

(yj − Ctj
)2

Using the concentrations and times given, the parameters, Ka, Ke, Vd can be estimated
by using a built in function in the R software called Optim.

3.1 Optimization
An optimization problem consists of maximizing a real function by systematically
choosing input values from within an allowed set and computing the value function. It
is a selection of a best element for some set of available alternatives[2]. Optimization in-
cludes finding "best available" values of some objective function given a defined domain.

Figure 5: An example of the Nelder-Mead method [1].

In R, optimization is attained through the function Optim. Optim is a general purpose
optimization based on Nelder-Mead, quasi-Newton and conjugate-gradient algorithms.
For this project, the Nelder-Mead optimization was used. Figure 5 shows a visual of the
Nelder-Mead method. The idea is to minimize a function of p parameters, construct
a simplex of p + 1 vertices, and evaluate the function at each vertex. A simplex is a
generalization of a notion of a triangle or tetrahedron for arbitrary dimensions. In the
figure 5 the simplex is shown as a triangle. The aim of Nelder-Mead is to walk around
the surface until it locates the minimum or maximum in a multidimensional space. It
is a heuristic search method that converges to a non-stationary point[2].

It is important to be aware of the possibility that the optimizer could fail. Some
examples include, the iteration reaching a singular gradient and being forced to stop,
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or it exceeds the maximum number of iterations without converging. These are both
quite easy to check.

3.2 Code and Output
As mentioned above, the Optim function in R was used to optimize the parameters
according to the least squares criterion, where Ct is as in equation (2). Below, are
samples from the code created as well as the output when Optim is run. In the code,
X1_0 is the amount of the drug taken orally by the patient, Y1t are the concentrations
in the blood taken throughout the process, and t1 are the times that the blood con-
centration is taken. LS.1 is the function used to obtain the least squares estimate and
for the result, Optim is used.

Figure 6: Code used for Patient 1 from the Theophylline trial.

In figure 7, the output of Optim is shown. First, par, is the estimates of the three
parameters, Ka, Ke, Vd, in that order. Next, value, is the value of the sum of squares
for the patient. Counts, is the number of iterations that occurred before convergence,
and NA is shown because the Nelder-Mead method does not use gradients. In Optim,
convergence is an integer code. If 0 is shown it means that there was a successful
completion and thus convergences has taken place. If the output 10 arises for the
convergence value, this means there is degeneracy of the Nelder-Mead simplex. If,
instead, the value for convergence is 1, the max iterations has been reached. For Nelder-
Mead, the maximum number of iterations is 500. This number can be enlarged by
entering an extra "maxit" setting. Here the iteration was less than 500 and convergence
occurred, thus, a larger maximum iteration value was omitted. Lastly, Hessian, returns
the Hessian matrix for the parameters. The Hessian of the least squares is also known as
the observed Fisher information matrix because it is a function of observe variables[5].
The Hessian matrix will be important for computing the variance-covariance matrix of
the parameter estimates, which is used to compute the standard error and confidence
intervals.
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Figure 7: Output of the Optim function

As mentioned above, there are some important output possibilities to be aware of. The
convergence value was already explained, and the result of patient 1 shows that Optim
was able to find a local minimum. For the parameter values, par, one would hope that
the first value is larger than the second value. This means that the rate that the body
absorbs the drug is quicker than the rate that the body eliminates the drug. There are
several reasons why this might not be the outcome. This will be discussed further in
the results.

Figure 8 shows the result when the starting parameters were changed. A sensitivity
analysis is then performed in order to check if it is possible to find a different local
minimum. This is done by setting in different initial values into Optim and evaluating
the resulting parameters. If completely different outcomes arise, it can be of interest
to plot the values and see which one is closest to the data values. Figure 7 and figure
8 are from the Theophylline data. During the sensitivity analysis, the Theophylline
patients had more consistent parameter estimates than the Warfarin Patients.
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Figure 8: Alternate starting points when using Optim for Patient 1 from the Theo-
phylline trial.

3.3 Confidence Intervals

Let ψk for k = 1, 2, 3 be the k-th component of the parameter vector ψ and ψ̂k be its
estimate. Here, k = 1 refers to Ka, k = 2 refers to Ke and k = 3 refers to Vd. This
estimate, ψ̂k, is the k-th component of the least squares equation. For a maximum
likelihood estimator;

ψ̂ ∼ N(ψ, I−1(ψ̂))
Here, I−1 refers to the Fisher information matrix which is estimated by the inverted
hessian matrix, H−1. An estimate of the variance is then the k-th element on the
diagonal of H−1, here denoted with H−1

kk (ψ̂):

V̂ ar(ψ̂k) = H−1
kk (ψ̂)

And the standard error is given by:

ŝ.e(ψk) =
√
H−1

kk (ψ̂k)

The Hessian matrix is a square matrix of second order partial derivatives of the log
likelihood function used to describe the local curvature of a function of multiple vari-
ables. The variance is calculated by taking the inverse of the Hessian matrix previously
obtained from Optim. The inverse of the Hessian matrix is the covariance matrix. It
is therefore important to insure that there are no negative values on the diagonal of
the inverted Hessian matrix.

4 Results

4.1 Theophylline Results
Theophylline data contained samples that were tested more frequently over a shorter
period of time, 24 hours. Because of this, it was easier to find estimated parameters to
fit the data. As it is shown in the appendix6.2, the estimates fit the data reasonably
accurately. As the plots show, the curve is more steep in the beginning of the measured
time where absorption occurs. Then once the drug has been metabolized, the elimina-
tion process begins to come into effect and the concentration of Theophylline increases
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quickly in the first few hours before it begins to slowly decrease. This results in the
estimated curve not being as accurate in the beginning, and once the drug begins to
be eliminated, the estimated curve becomes much more accurate.

Once the parameters were estimated it was possible to calculate their confidence inter-
vals and the standard errors. The goal is for the confidence intervals to be very narrow.
This result can be seen in the the 95% confidence intervals in the appendix, table 4. As
mentioned above, it was more challenging to estimate the rate of absorption compared
to the rate of elimination. The challenge of estimating the rate of absorption is the
result of the lack of data points before reaching maximum concentration. because, for
most of the patients in the Theophylline data there were only two or three points to
use for the estimate of the rate of absorption, it gave a less accurate approximation.
Most of the outcomes had narrow confidence intervals with the largest interval for the
Ke parameter having a span of 0.1068935 and, for Vd, a span of 0.2828266.

The plotted correlations can also be found in the appendix 6.3. The three parameters
were plotted against the Patients weight and sex respectively. By a simple visual in-
spection of the plots, no correlations were found between any of the above mentioned.
This could have been a result of the lack of patients in the study.

An interesting result that was discovered from the analysis was with Patient number
9. Even the plot shows an indication as to why the concentrations could result in a
more challenging estimate. Although the rate of elimination and the volume of distri-
bution had small and accurate confidence intervals, there was a problem with the rate
of absorption. This could be due to the fact that there were no values in the data that
could be used to estimate the rate of absorption. For the patient, its estimates were
Ka = 8.862, Ke = 0.0866, and Vd = 0.377 and the confidence interval for the rate of
absorption was (0.59 , 17.135).

One approach to determine the cause of the large standard error was to perform a sen-
sitivity analysis. It proved challenging to find initial values that produced estimates
of interest. They would either result in the same estimated parameters or occasionally
they would result in negative values on the diagonal of the covariance matrix. Af-
ter several trials a different result was finally discovered. The estimated values were
(0.086539245 , 8.872736848, 0.003680695), and the standard errors were (0.0115968278
1.0632046889 0.0001395465). These new standard errors are better for the rate of ab-
sorption and the volume of distribution but a worse value for the rate of elimination.
Because the new estimates had such a large rate of elimination compared to absorption,
the original values were kept and used for the tables in the appendix 6.1.
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4.2 Warfarin Results
Compared to the Theophylline data, the Warfarin data contained multiple faults.
When first evaluating the data, it was clear that some values were inaccurate. The data
from Patient 10 was not included, and some of the patients had several concentration
measurements at the same time positions. An example of this is shown for Patient 8
in the table 1.

Patient Time Concentration
8 3.0 12.7
8 3.0 8
8 6.0 12.7
8 6.0 11.5
8 9.0 12.9
8 9.0 11.4
8 12.0 11.4
8 12.0 11.0
8 24.0 9.1

Table 1: Example of problematic data entries for Warfarin.

There were similar occurrences for some of the other patients as well. It insinuates that
there is a mistake here because the drug is only administered once. It would be impos-
sible for the concentration of the drug in the body to increase, decrease and increase
again without more drug being administered. Because of this, it seemed appropriate
to remove the first value at time 3.0 and the second values at time 6.0, 9.0 and 12.0
from the data set. This was done for the other patients with similar data entries as
well. If, however, the data appears to be incorrect but it could not be proven how, it
was left as it was. An example of this was Patient 7 who had a concentration of 15
mg/l at hour 6 and 9. It would seem unlikely that the body would not eliminate any
amount of the drug in 3 hours, but both values were kept in the data set.

Once the data was altered, the parameters were estimated using Optim in the same
way as for the Theophylline patients. Unlike the previous drug, the results from Optim
were found to be more difficult to understand. Originally, the criteria for a success-
ful result were that; the rate of absorption was greater than the rate of elimination,
all the rates were positive, and that the plots were as accurate as possible. When a
sensitivity analysis was performed, the results were more temperamental than for the
Theophylline trial.

An example of the temperamentality was observed with Patient 3. For all Patients
from both data sets, the starting parameter values entered into Optim were (1, 0.1, 1).
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Then the sensitivity analysis was performed by changing the starting parameters and
evaluating the outcome. The results from the sensitivity analysis were quite different
from the Warfarin patients and further evaluations were necessary. Figure 9 shows the
result of Optim when the usual starting parameters were used. As it can be seen, the
value for the rate of absorption, Ka is smaller than the rate of elimination, Ke. This
would mean that the body does not have time to absorb any of the Warfarin before
the elimination process occurs. Because of this peculiar result, the sensitivity analysis
was performed to check if different starting values would give a better result.

Figure 9: Optim result with starting
parameters (1, 0.1, 1).

Figure 10: Optim result with starting
parameters (2, 0.1, 1).

Figure 10 shows the result of Optim when the starting parameters were changed to
(2, 0.1, 1). This outcome appears to be better than the previous result because now the
rate of absorption is larger than the rate of elimination. Now it was left to decide which
result was the better one. This was decided by plotting both of the values and seeing
which was the closest approximation to the Patients values. When this was done, it
showed that both of the resulting values created this exact same curve.

This was an interesting result. The fact that both of the plots with different estimates
created the same curve suggests that we are attempting to fit a model that is "too
high" for the data. This means that the data is not "rich enough" to estimate both the
values Ka and Ke. This is because, unlike for the Theophylline data, here the initial
"rising" curve is not present. A solution to evaluate this could have been to instead use
equation (1) and see if this gave a better fit to the data.

The other approach performed to determine the better estimates was to check the
inverse of the Hessian matrix for each patient. Although the inverted Hessian matrix
values were reasonable for Patient 3, other patients resulted in very absurd values. One
patient in particular that had challenging values was Patient 25. Figures 11-13 show
the outputs when the initial parameters were changed.
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Figure 11: Inverse Hessian matrix from
starting parameters (1, 0.1, 1) put in
Optim.

Figure 12: Inverse Hessian matrix from
starting parameters (0.5, 0.1, 2) put in
Optim.

Figure 13: Inverse Hessian matrix from starting parameters (0.11, 0.1, 2) put in Optim.

The first initial parameters used for Patient 25 were (1, 0.1 1), the same as for all of the
other patients. Figure 11 shows the inverted Hessian matrix when using those initial
parameters. The result were negative values along the diagonal. Because the inverse of
the Hessian matrix estimates the covariance matrix, it is not possible for the diagonal
to have negative values. This would mean that there is a negative variance and it
would be impossible to obtain the standard error. Because of this, different initial
parameter values were tested. Figure 12 and Figure 13 depict the inverted matrix
for different initial values. For Figure 12, the initial values were (0.5, 0.1, 2) and the
resulting parameter estimates were (10.54, 0.0015, 6.935). As the figure shows, the
inverted Hessian matrix had a very large variance for the Ka estimate. The starting
values were then changed to (0.11, 0.1, 2) which gave the estimates (0.01657, 0.09983,
1.1762) and Figure 13 shows the inverted Hessian matrix. This result appears to be
better because the variance for the estimated rate of absorption is much smaller than
that for the values in figure 12.

Figure 14: Plotting both of the estimated values.
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In order to see if one result is better than the other, both the estimated values were
also plotted in the same plot along with the the data values. Figure 14 shows the plot
of all three values. It is difficult to see if one of the curves is more accurate than the
other. The only thing that seems clear is that the value for the rate of absorption
plays a huge part in determining the shape of the curve. This is because they are the
most challenging to estimate because of the lack of data. Any change in the estimate
of the rate of absorption will change the outcome of the curve. The deciding factor in
determining which estimates to use was the smaller variance from the inverse Hessian
matrix, and (0.01657, 0.09983, 1.1762) were the values chosen for the estimates of the
parameters. This same approach was used for all other patients and their values were
saved in the tables in Figure 6.4 in the appendix.

The 95% confidence intervals, which can also be found in the appendix 7, were then
calculated using the values from the estimated parameters and standard errors. Al-
though some of the standard errors are larger than desired, these saved results were
the smallest values found without increasing the other parameters standard errors or
creating a negative value along the diagonal of the covariance matrix. Because of the
lack of data depicting the rise of concentration, it was challenging to obtain smaller
standard errors than those saved.

Lastly the correlations were evaluated and the plots can be found in Appendix, 6.6.
As was the case for the Theophylline data, it was difficult to visually notice any strong
correlations. Some possible correlations that were noticed, however, were between
weight and Ke and Vd respectively. There appears to be a slight positive correlation
between an increase in weight and an increase in the rate of elimination and the volume
of distribution. It is also unclear whether there is a correlation between gender and the
estimated parameters. This is due to the fact that of the 31 patients only 5 of them
were female. When looking at the correlation plots, the points representing female
patients appear to be more closely clumped together and the male patients appear
more spread out. But it is difficult to see if this is solely due to the lack of female
patients.

5 Conclusions
The aim of this thesis was to consider statistical inference models representing the
dynamics of the concentration of Warfarin and Theophylline administered to several
subjects. The models were fitted to the available data from both trials, where dynamics
for the concentrations were as in equation (2). The models were fitted by using the
built in function Optim in the program R. The estimated model parameters that were
returned were then evaluated. The values were plotted and their standard errors and
confidence intervals were calculated.
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Estimating the parameters proved quite easy for the Theophylline data. Every subjects
rate of absorption were greater than the rate of elimination and almost every individual
had very small standard error values. The one exception was Patient 9 with a slightly
larger standard error. The reason was because of the lack of data for the rise of the
concentration. Upon evaluation, it was noticed that the first value for Patient 9 was
much larger than the other subjects. After 30 minutes, the concentration for the other
patients was between 1.5 and 4.5 mg/l while for Patient 9 the concentration was 7.37.
Because it was unsure how the concentrations rose, it was difficult to estimate the rate
of absorption.

Next, the Warfarin data was evaluated. Estimating the parameters using Optim was
much more challenging, compared to Theophylline. At first glance, the data seemed to
have several infractions. Some subjects had multiple concentration entries saved at the
same time and some patients went several hours with the exact same concentration of
Warfarin in their bodies. This could have aided in the strange results that occurred.

After the parameters were estimated the correlations were plotted. When rising con-
centration entries existed, the plots for the Theophylline patients appeared to be fairly
accurate. As for the correlation plots, there does not seem to be any type of correlation
between the estimated parameters and age, or sex. As mentioned earlier, this could be
because of the small number of subjects.

Unlike the Theophylline correlations, the plots for the Warfarin patients appeared to
have slight correlations. The most noticeable were for weight and rate of elimination
and volume of distribution, respectively. Because of the lack of female patients, it was
difficult to see if there was a correlation between gender. Although from evaluating the
correlation plots, it seems as though the female patients are more concentrated than
the men.

When estimating the parameters it was difficult the ensure that Optim returned the
best results. Unlike for the Theophylline data, a sensitivity analysis did not suffice. It
was also increasingly important to check the values along the diagonal of the inverted
Hessian matrix. Occasionally the values were negative, and for most of the patients, if
incorrect values were entered into Optim, the inverted Hessian would have extremely
large values along the diagonal. Some values even reached the millions. When there
were multiple parameter estimates that seemed plausible for a patient, the deciding
factor would be to plot all of the curves and see which one was closest to the data
points.

An over parameterization was the cause for the strange results. Because of the lack of
rising concentration data, it was very difficult to estimate the rate of absorption. The
model used for the data was more complex than needed. If equation (1) had been used
instead and evaluated the data using a one compartment model, the rate, K, might
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have been estimated more accurately. This seems to have been the cause for both
Patient 9 from the Theophylline trial and for most of the Warfarin Patients.

5.1 Acknowledgments
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his help. He has shown tremendous patience with me throughout the process of this
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6 Appendix

6.1 Theophylline Results

Patient Ka Ke Vd

1 1.7775724 0.05394508 0.3692675
2 1.9427244 0.10165800 0.4403454
3 2.4535463 0.08142548 0.4858308
4 1.1715348 0.08746410 0.4275969
5 1.4712349 0.08843534 0.4930644
6 1.1637094 0.09952963 0.5137981
7 0.6797272 0.10224700 0.5046092
8 1.3755595 0.09195504 0.5052709
9 8.8619315 0.08662512 0.3773504
10 0.6955062 0.07396610 0.4386186
11 3.8490528 0.09812300 0.5834105
12 0.8328807 0.10557680 0.3977868

Table 2: Theophylline Estimated Parameters.

Patient Ka Ke Vd

1 0.2605278 0.008810771 0.02061797
2 0.3376771 0.016298891 0.03302997
3 0.5102277 0.013522762 0.03442040
4 0.1993916 0.015716553 0.03510647
5 0.2039570 0.012838531 0.03206065
6 0.2775899 0.024262548 0.06065350
7 0.1703963 0.027268755 0.07214965
8 0.2829847 0.018676485 0.04791871
9 4.2209571 0.013862441 0.02166746
10 0.1202974 0.013956915 0.03905449
11 0.8920121 0.016531949 0.04244057
12 0.1394723 0.018029372 0.03607481

Table 3: Standard Error Results.
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Patient Ka-lower Ka-upper Ke-lower Ke-upper Vd-lower Vd-upper
1 1.2669380 2.288207 0.03667597 0.07121419 0.3288563 0.4096787
2 1.2808773 2.604572 0.06971217 0.13360383 0.3756067 0.5050841
3 1.4535000 3.453593 0.05492087 0.10793009 0.4183668 0.5532947
4 0.7807273 1.562342 0.05665966 0.11826854 0.3587882 0.4964056
5 1.0714793 1.870991 0.06327182 0.11359886 0.4302255 0.5559033
6 0.6196332 1.707786 0.05197504 0.14708422 0.3949173 0.6326790
7 0.3457504 1.013704 0.04880024 0.15569376 0.3631959 0.6460225
8 0.8209095 1.930210 0.05534913 0.12856095 0.4113503 0.5991916
9 0.5888556 17.135007 0.05945474 0.11379550 0.3348822 0.4198187
10 0.4597234 0.931289 0.04661055 0.10132165 0.3620718 0.5151654
11 2.1007091 5.597396 0.06572038 0.13052562 0.5002270 0.6665940
12 0.5595149 1.106246 0.07023923 0.14091437 0.3270802 0.4684934

Table 4: 95% Confidence Intervals

6.2 Theophylline Patients

Figure 15 Figure 16

Figure 17 Figure 18
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Figure 19 Figure 20

Figure 21 Figure 22

Figure 23 Figure 24
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Figure 25 Figure 26

6.3 Theophylline Correlation Plots

Figure 27: Correlation of rate of ab-
sorption and weight of patients

Figure 28: Correlation of rate of elimi-
nation and weight of patients

Figure 29: Correlation of variable of distribution and weight of patients
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Figure 30: Correlation of rate of ab-
sorption and sex of patients

Figure 31: Correlation of rate of elimi-
nation and sex of patients

Figure 32: Correlation of variable of distribution and sex of patients
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6.4 Warfarin Results

Patient Ka Ke Vd

1 0.13267702 0.01446303 7.50849843
2 0.01574023 0.45836077 0.27680724
3 0.01398917 0.62400211 0.18412751
4 0.98868210 0.01452000 4.94290560
5 0.01581992 0.44091934 0.40900544
6 0.04249780 0.85868670 0.28201590
7 0.02527076 2.74939088 0.06941347
8 0.22072066 0.01622726 4.79098130
9 0.08402325 0.01192151 8.51144165
11 0.02068321 0.73728081 0.19292812
12 0.02437440 0.15404780 0.92786300
13 0.02257397 0.48867486 0.38773475
14 0.02930772 0.53260490 0.30553906
15 0.01500893 0.77133285 0.12731195
16 0.17711971 0.01691729 6.00949389
17 0.13779535 0.01372055 11.75917513
18 0.03051123 0.05903605 3.79955762
19 0.02064515 0.20299897 0.99489492
20 0.01360843 0.25598296 0.37507983
21 0.01645334 0.17475980 0.89369526
22 0.02454555 0.05168202 2.34878236
23 2.47485657 0.01520814 7.81099979
24 0.02206191 0.03182613 4.47792417
25 0.01656874 0.09987269 1.17554411
26 0.13521980 0.01465556 8.90243016
27 0.01706494 0.20505741 0.62131525
28 0.01601209 0.35004986 0.39939177
29 0.01440479 0.17920212 1.13687813
30 0.01669954 0.30977080 0.41659123
31 0.01489507 0.16658854 0.90373794
32 0.01406604 0.14077535 0.78947091

Table 5: Parameter Estimates, Warfarin
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Patient Ka Ke Vd

1 0.102470687 0.003034765 0.78530163
2 0.001667233 0.065640686 0.04926811
3 0.131515734 0.001281673 0.34165428
4 0.427804410 0.001456905 0.19450467
5 0.002406643 0.232079551 0.23406812
6 0.004615725 0.283952605 0.10296644
7 0.001735418 0.576380507 0.01473012
8 0.023932047 0.001554710 0.24209810
9 0.080925483 0.003875417 1.34169575
11 0.001598209 0.087167999 0.02754853
12 0.002700895 0.016743412 0.13279457
13 0.002358758 0.060700616 0.06172156
14 0.003131389 0.059281157 0.04550940
15 0.001396915 0.115969239 0.02267628
16 0.229989077 0.002799703 0.51330700
17 0.167821283 0.003658398 1.41608648
18 0.018261850 0.047744280 3.41065740
19 0.004494952 0.303764669 1.64282557
20 0.001889300 0.235373510 0.36458366
21 0.003181763 0.090054543 0.50879257
22 0.010747209 0.028664206 1.48366040
23 0.002351269 0.559196603 1.46886731
24 0.001786526 0.321204237 1.01170782
25 0.003153909 0.046779447 0.63656811
26 0.102257260 0.002733161 0.80588864
27 0.001931345 1.547194900 1.03853965
28 0.002151445 1.559955720 0.89201763
29 0.002482546 0.139036568 0.96369050
30 0.002310450 0.636186760 0.90455399
31 0.002077210 0.844886746 0.83494065
32 0.002904217 0.132124179 0.81471777

Table 6: Standard Errors Warfarin
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6.5 Warfarin Patients

Figure 33 Figure 34

Figure 35 Figure 36
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Figure 37 Figure 38

Figure 39 Figure 40

Figure 41 Figure 42
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Figure 43 Figure 44

Figure 45 Figure 46

Figure 47 Figure 48
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Figure 49 Figure 50

Figure 51 Figure 52

Figure 53 Figure 54
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Figure 55 Figure 56

Figure 57 Figure 58

Figure 59 Figure 60
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Figure 61 Figure 62

Figure 63

6.6 Warfarin Correlation Plots

Figure 64 Figure 65
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Figure 66 Figure 67

Figure 68 Figure 69

Figure 70 Figure 71
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Figure 72
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