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Abstract

The electrical power grid is one of modern society’s most important in-
frastructures and both power distributors and the Swedish government are
investing large amount of resources to ensure continuous delivery of power.
By predicting future outages with an automatic prediction system, the dis-
tributors could prevent long restoration times and economic loss. In this
work, the authors evaluate the possibility of predicting outages based on
statistical and machine learning methods and the relative importance of the
different factors. The study uses open weather data and data on the power
grid gathered from Swedish Meteorological Institute and E.ON, respectively.

The result shows that while maintaining the same false positive rate as
currently used manual prediction methods, the automatic prediction is able
to increase the true positive rate from 20% to 33%. The authors conclude
that wind gust is the most important factor in predicting weather related
outages and that the models are better to predict outages during stronger
winds. However, further data analysis is warranted before the automatic
prediction can be implemented in a real world context.

Keywords: outages, prediction, negative binomial regression, logistic re-
gression, decision tree
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Chapter 1

Introduction

In 2005, a storm made 730,000 people in southern Sweden powerless for up
to 45 days, see [7]. The Swedish power distribution companies were not
organized to handle such an extensive power outage. Hence, few customers
were compensated and the society incurred severe economic loss. After this,
the Swedish government [8] changed the energy legislation to strengthen
the customer’s rights with requirements of a maximum of 24 hours of co-
herent power failure and of compensation rights after 12 hours of coherent
power failure. In order to follow the new legislation, power distribution
companies increased their efforts to minimise the impact of weather related
disturbances. Data collection and data analysis are crucial elements in this
process.

By increasingly relying on data analysis in its decision process, the energy
industry is following a global trend. According to Gartner [9], the leading
information technology research and advisory company, one of top trends
in technology in 2017 is machine learning and artificial intelligence. These
methods are used to help companies utilize data more efficiently. Gart-
ner [I0] also estimates that by 2018 more than half of the world’s largest
organizations will be using advanced analytics and algorithms.

This thesis is written in cooperation with the operations department at
E.ON. The operations department is already using data driven decision tools
to predict mechanical and operational failures in the power grid [I1], but
not in the case of weather related disturbances. Failing to predict weather
related outages is costly. Overestimating the disturbances causes unneces-
sary restoration costs while underestimating them causes delays in repair
and later on compensation costs to customers. Increasing the prediction ac-
curacy is therefore highly important and this thesis investigates if this can
be achieved by introducing machine learning and data driven decision tools.
The operations department furthermore makes the current prediction using
data on wind strength only. However, machine learning facilitates incorpo-
rating many more factors in the decision process. This thesis will therefore

9



10 CHAPTER 1. INTRODUCTION

also investigate the importance of including other factors in prediction of
weather related outages. Specifically, the effects of historical weather data,
grid structure, and ground conditions will be investigated.

1.1 Purpose and research questions

The purpose of this master thesis is first to examine and identify causali-
ties between weather conditions and power grid disturbances and second to
propose an approach for resource allocation based on disturbance prediction
data. The aim of the thesis can be summarised as the following research
questions (RQ):

RQ1: Can we design an automatic prediction program that increases the
prediction as compared with current manual prediction methods?

RQ2: Which factors have a significant impact on disturbances in the elec-
trical power grid?

1.2 Scope

The thesis focuses on using three different classification and regression meth-
ods. Regarding data accessibility, due to the nature of the provided historical
outage data the thesis investigates only outages from 2015. Furthermore,
only weather stations which have been updated between 2015-01-01 and
2016-09-30 are considered.

Regarding the number and the type of factors considered, the thesis
uses existing research as basis together with human experience from the
operations department. An important aspect according to the operations
department is to find the variables that explain most of the disturbances.
In this thesis, weather related disturbances relate to disturbances caused by
falling trees and strong winds. Other weather related disturbances such as
ice storms or lightning strikes are less frequent or costly to the company.

We decided to focus on developing general models, which can describe
differences between regions as well as be implemented for the total grid.
For this reason, only the most important variables describing regions are
included. If the analysis is deemed useful, it can easily be extended to
include factors related to the total power grid. The thesis only focuses on
the local grid, as the regional grid is almost completely protected from falling
trees. The analysis focuses on ten substation areas in the southern part of
Sweden. These were chosen based on the length of overhead lines in the
forest and that during the last three years the area has been affected by
strong winds and disturbances.
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1.3 Related articles

Zhou et al. [I2] aim to help decision makers decide maintenance need for
overhead lines based on weather related disturbances, specifically daily wind
gust speed and the logarithm of lightning stroke current. Zhou et al. use
two methods, a Poisson regression and Bayesian network model, and con-
clude that historical data most likely follow a Poisson distribution due to
rare events of large numbers and a variance that increases with the mean.
However, the Bayesian model is easier to implement and update and it cap-
tures the distribution of failure events. Moreover, Zhou et al. find evidence
that overhead lines are the most vulnerable parts, and that weather related
failures are random and difficult to completely prevent.

Billinton et al. [I3] and Alvehag and Soder [14] discuss the use of two-
state and three-state models based on high wind conditions. Billington et al.
use a Markov approach and find that distribution lines are highly affected
by weather conditions and that this is best captured through a three-state
model with normal, adverse and major adverse weather condition states.
The two-state model with only normal and adverse weather conditions un-
derestimates the failure rate of extreme weather conditions. Alvehag and
Soder use a time-varying reliability model and conclude that two- and three-
state models simplify important factors. Both the failure rate and restora-
tion time are assumed to be constant in the state-models while in the real
world these factors are time-varying.

Radmer et al. [I5] investigate the connection between tree-caused fail-
ures and annual average daily minimum and maximum temperature, annual
daily precipitation and time since tree trimming. Using linear, multivariate
and exponential regression models and an artificial neural network model,
they find that a model which directly uses growth vegetation variables to
capture failure rates is better than integrating a vegetation model with a
failure rate model. The multivariate and neural network performed best
based on lowest root-weighted mean-square error. The neural network cap-
tured the historical data better than the multivariate, but due to a limited
data set, it had the largest prediction error. The multivariate model was
slightly better at predicting unknown failure rates.

Another approach to model power outages is to use a negative binomial
regression model which Liu et al. [16] use when analysing hurricane related
failures in the Gulf Coast of the United States region. They conclude that
falling trees cause the most damage and that maximum wind gust is related
to outages, but as a single parameter, it poorly predicts their occurrence. For
this reason, seven types of data were used in the model: hurricane-related
outage rates, electric power system inventories, wind speed, rainfall, land
cover type, tree type and soil drainage level. Including company and hur-
ricane indicators as explanatory variables improved the fit, but a drawback
is that the results are not applicable to other situations and the possibility
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to make predictions is limited. Liu et al. also test two different area res-
olutions: grid of one square kilometer and zip code for the United States.
The zip code resolution provided predictions that are more accurate. The
analysis demonstrates that high resolution data such as land cover type, tree
type and soil drainage level were not providing better predictions. They find
that larger resolution better captures the variability in outages and that for
the zip code model, the Poisson variability was therefore less important.

Han et al. [I7] revisit the issue in Liu et al., and attempt to find com-
pany and hurricane specific variables that can be used instead of the indica-
tor variables. They focus on variables describing the electric power system
structure, such as number of transformers, length and type of lines and
number of customers and on variables characterising the hurricane, such as
landfall of the hurricane, time since previous hurricane, radius of maximum
wind and central pressure difference. The data set had both collinearity and
overdispersion, which was taken into account by using a negative binomial
regression and a transformation of the variables by a principal components
analysis. Due to the geographical differences between the investigated areas,
different variables had substantial impact on the predictions. For example,
the impact of the wind variables were not consistent across the regions where
some of the variables had a positive correlation with outages. They discuss
that a possible explanation could be that some of the regions had experi-
enced outages caused by more flooding or thunderstorms and less by strong
winds. In general, they conclude that having more overhead components
leads to higher number of outages during hurricanes.

In addition to previous related literature, this thesis makes several con-
tributions. We investigate the relationship between outages and weather
conditions in Sweden using a new data set. The relationship is analysed in
several ways, such as by probability distribution functions and by modelling
data based on different wind limits, number of outages and characteristics
of the region. Drawing on previous research we develop prediction models
where wind limits, number of outages and characteristics of the region are
important input variables. In contrast to previous literature, we use decision
trees as prediction method in the analysis and additional evaluation criteria
(ROC curves and AUC values). Moreover, the model comparison metrics,
such as the different objective functions, are of interest since they relate
to implementation and integration with businesses. Business integration is
something that has not been addressed in previous research and is especially
of interest. With this, we hope to contribute with insights for future work.

1.4 Thesis outline

In Chapter 2, brief information about the Swedish energy market and E.ON
is described. Thereafter relevant theory for the analysis is presented. In
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Chapter [4] the data and some of the limitations are described. The method-
ology and the result are presented in the two following chapters. Finally,
the results are discussed and evaluated in Chapter [/l Chapter [§| contains a
conclusion and Chapter [9] outlines some suggestions for future work.

For a short condensed reading of the thesis, see and
Chapter describes the routines and current situation at E.ON.
Chapter discusses the different objective functions used in the analysis.
Chapters and show results related to the relationship between
wind gusts and outages while show results related to the different
models in question.
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Chapter 2

E.ON and the Swedish
energy market

In this chapter, a summary of the company and the Swedish energy mar-
ket is presented. Information about the Swedish energy market and E.ON
has been gathered from interviewing employees at E.ON and from internal
information systems.

2.1 The Swedish energy market

The Swedish energy market is regulated by the governmental transmission
company, Svenska kraftndt (SVK), which is responsible for ensuring that
Sweden’s transmission system for electricity is safe, environmentally sound
and cost-effective [6]. SVK ensures that the supply-demand energy relation-
ship is in balance and owns the national grid connected to the power plants.
Most of the Swedish energy production is in the northern part while the
majority of the energy consumption is in the southern part.

The power is transformed from 400 kV to lower distribution voltages
by several substations, before it is consumed by households and companies.
Figure gives a more detailed description of the Swedish energy distribu-
tion system. The system is divided into three parts: the national, regional
and local power grid. These are distinguished by the various substations
and electrical currents.

Once the electricity has been transformed at the primary substation,
private companies are responsible for the delivery and quality of the energy.
Around 50% of the total regional and local grid is owned by the three largest
power distribution companies: E.ON, Vattenfall and Elevio.

15
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Secondary
substation

Low voltage 300 v
(Local network)

Figure 2.1: The value chain from production to consumption where the local
grid is called Local network in the figure and the ten substations relate to
Substation in the figure, as illustrated by E.ON [I§].

2.2 Disturbances on the power grid

The higher the voltage, the more households are connected and affected by
disturbances on the power grid. Therefore, large investments are made to
secure the regional grid from disturbances. Weather related disturbances,
such as falling trees caused by strong winds, ice storms and lightning strikes,
are unpredictable. The most harmful disturbance is falling trees, which
require extensive preventive work. The lines are, for example, secured from
falling trees by forest gates which ensure space between the grid and the
forest. Another method is to cut down trees with dangerous height and
width outside of the forest gate with the help of helicopters. However, this
cost intensive effort is mostly done on the regional grid due to the widespread
area and length of the local power grid.

As described in [19], most of the local grid has forest gates but these are
usually only 10 to 15 meters and thus not completely secured from falling
trees. A preventive method is to have underground lines or isolated lines so
that a fallen line is still functional. Both these methods are used on the local
grid to some extent, but costs are too large for securing the complete grid.
Hence, the reconstruction of the power grid is mostly focused on certain high
risk regions to optimize investments and consequences from disturbances.
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2.3 E.ON

E.ON is a global energy provider, with its headquarter located in Diisseldorf,
Germany. Globally, E.ON has over 33 million customers whereof approxi-
mately one million are in Sweden. The Swedish office, located in Malmo,
covers both the Swedish and Danish market. E.ON is one of the largest
power grid owners in Sweden, with a power grid stretching over 130,000 km.
The majority of the power grid is located in the southern areas of Sweden.

2.3.1 Operations Department

The operations department of E.ON is responsible for supervising and mon-
itoring the power grid. Its two operation centers handle all disturbances and
are responsible for communicating information to all affected parties within
the company. E.ON does not maintain their power grid by themselves. In-
stead, the company has several framework agreements with subcontractors
in different regions of Sweden. The subcontractors are responsible for the
actual work and maintenance of the power grid as well as the repair in case
of normal disturbance levels. In case of larger disturbances, which are often
caused by strong weather conditions, E.ON can order extra work force from
the subcontractors. This work force will be mobilised to restore the power
grid to a functional state after the storm has passed the affected areas.

2.3.2 Routines during major disturbances

The person in charge of ordering extra work force is called Vakthavande In-
genjor (VHI). This person is also in charge of the organisation during major
weather related disturbances. Today, E.ON has nine employees that have
this role in addition to their normal duties. The VHIs have worked or are
working in the operations department and have experience and knowledge
about daily operations, disturbances in general and what affects the power
grid. The main task for the VHI is to receive reports and forecasts from
the Swedish Meteorological and Hydrological Institute (SMHI) and decide
whether internal and external workforce need to be mobilised. The VHI is
also the primary contact for the operations center in case of a larger dis-
turbance and it is his or her responsibility to further initiate contact with
affected parties within and outside the organisation.

The nine employees assume the role as VHI every ninth week. During
this week, the designated employee receives both mail and text message
alerts from SMHI if the weather forecasts indicate severe weather conditions
within the next coming days. The main information source for the VHI
is Blast och Sno [20], which is a subscription service from SMHI especially
developed for energy providers. The portal contains detailed information
about the coming weather with focus on wind speed, rain- and snowfall and
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lightning. If needed, the VHI can also contact a meteorologist at SMHI for
a more detailed forecast. With this information, the VHI decides if certain
areas of Sweden need extra mobilised workforce.

In very severe weather conditions, e.g. storms affecting large parts of
Sweden, there can be a need of mobilising more than one subcontractor or
even the complete organisation. In these cases, a central disturbance organ-
isation will be formed within E.ON with the aim to coordinate the resources
and to lead the reconstruction work. The operations department is in charge
of this temporary organisation. Hence, the extra resource allocation needed
is currently based on the wind and weather forecast from SMHI and previous
knowledge and experience of the VHI about power grid disturbances.



Chapter 3

Theory

The aim of this chapter is to provide sufficient information to understand
the theories and concepts used in the thesis. The different models in the
thesis use both statistical and decision tree methods and are evaluated by
methods such as goodness of fit, confusion matrix, ROC curves and hold
out testing.

3.1 Negative binominal regression

Negative binomial regression [4] is often used when the response variable is
countable and when there is overdispersion in the Poisson regression. Most
regression models are derived from an underlying probability distribution
function (PDF). The negative binomial regression is normally derived from
a Poisson-gamma mixed distribution but can also be derived directly from
the generalised linear distribution or from other mixed distributions. The
negative binomial regression used in R is derived from a Poisson model with
gamma heterogeneity where the gamma noise has a mean of one. R [2]] is an
open source programming language and software environment for statistical
computing and graphics.

The variance for the mixed distribution, V(Y) = u + “72, consist of the
first term being the Poisson variance and the second term being the variance
from the one-parameter gamma distribution. By transforming the gamma
scale function, v to «, the variance can be expressed in a direct relationship
of and the amount of overdispersion as, V(Y) = u + a * p?.

The expression is called the negative binomial ancillary or heterogeneity
function, which often is referred to as the overdispersion parameter. In
this form, the variance is related to an otherwise normal Poisson model.
The parameter is estimated using maximum likelihood and in the case of
being statistically close to zero, overdispersion can be neglected and a normal
Poisson model can be used. The negative binomial regression can be thought
of as an extension to the Poisson model as the basic regression to model count
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20 CHAPTER 3. THEORY

responses. Count responses are non-negative integers, heteroskedastic and
right-skewed with an increasing variance per mean.

In some cases negative binomial models cannot fully explain the variance
in the data set, i.e. the variance produced by the model is larger than the
negative binomial distribution and the model is overdispersed. This is often
due to the limitation that the negative binomial distribution defines specific
expected values of count. In data sets that don’t include zeros or have an
excess of zeros, other forms of negative binomial and Poisson models are
developed such as zero-inflated and zero-truncated models. These models
are more advanced and therefore less used.

3.1.1 Overdispersion

Hilbe [4] defines overdispersion as when the response variance is greater than
the mean. The problem with overdispersion is that standard errors may be
underestimated and hence predictors appear to be significant when this is
not the case. Before dealing with overdispersion, the significant p-values
cannot be truly accepted and need to be used with caution.

Overdispersion is tested by the Pearson-based dispersion statistic. It is
defined as the ratio of the Pearson statistic to the degrees of freedom a =
nx—_zp. Here the degrees of freedom is calculated as the number of observations
less predictors.

The Pearson chi-square statistic,

)2
ey el 1)

is defined as the sum of square of the raw residuals divided by the variance.
The raw residual is the observation less the mean. There is no overdispersion
in the data if @ = 1 while a value above one indicates overdispersion. For
large data sets a value of 1.05 is large enough to consider the data set to be
overdispersed.

Data with dispersion statistics over one are not always truly overdis-
persed. Apparent overdispersion can happen when the model omits im-
portant predictors, the data includes outliers, the model fails to include a
sufficient number of interaction terms, a predictor needs to be transformed
to another scale or the link function is misspecified. In these cases, the
overdispersion can be dealt with by for example removing the outliers from
the data or transforming the explanatory variables to other scales. There
are also several methods such as scaling of standard errors that deal with
transforming the standard errors when they appear to be overdispersed.
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3.2 Logistic regression

A logistic regression is often used when the response variable is binary, see
[4]. A binary response variable has a special relationship between its mean
and variance, since V[Y] = p(1 —p) is a function of the mean E[Y] = P(Y =
1) =p.

The model can explain the often nonlinear relationship between probabil-
ity p and the possible explanatory variables. The mean becomes a monotone
function for each variable when all the other explanatory variables are fixed
where

;o exp(x'f)
p—f@ﬁ)—m (3.2)
can only take a value between zero and one for all x and 6.

The inverse of the logistic function, logit, log(%) = 2/0 is linear in the
parameter 6 and can be interpreted in the same way as a linear model. Logit
is therefore easier to understand than the previous Equation where the
right-hand side is a nonlinear function of the predictors. The logit can be
interpreted as that 6; represents the effect on the probability of increasing
the i-th predictor by one unit while holding all other variables constant.

3.3 Goodness of fit

Goodness of fit-methods describe how well a statistical model fits a set
of observations. The Pearson chi-squared test and the Akaike information
criterion (AIC) are two of the methods mentioned by Claeskens et al [IJ.
The AIC is defined as

AIC(M) = 2(loglikelihoodpaq (M) — dim(M)) (3.3)

where the dim(M) is length of Model M’s parameter vector. A larger model
will always have a higher maximum log-likelihood, since it increases with the
number of parameters. However, a less complex model is preferable and by
penalising the larger model with dim(M ) the AIC score can be used to find
the optimal model. The model with the highest AIC score is the preferred
one. One drawback with AIC is that while it can be used to find the optimal
model, it does not test the quality of the models.

The optimal subset of parameters can be found using two different algo-
rithms: stepwise forward selection and stepwise backward elimination. The
stepwise forward method starts with an empty set of parameters and suc-
cessively adds more, while the stepwise backward method starts with the
total set of parameters and successively eliminates the ones with low AIC.
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3.4 Decision Tree

Decision trees are often used as a classification method in data mining, as it
serves as a white box model where every step is observable. Decision trees
were first described by Breiman et al. [3] in 1984.

The data set in a decision tree consists of objects with a set of attributes
or properties. Each attribute, discrete or continuous, measures some im-
portant feature of an object. Each object belongs to one class. A simple
example of a decision tree is shown in Figure 3.1} All nodes in the tree are
connected through branches, with questions or tests for each possible out-
come. In the example, the example questions is ”Is wind gust above 16.25
m/s?”.

No

outage Dutage
Figure 3.1: A decision tree for predicting outages. Note that this is an
example and not part of the result.

The goal of the decision tree is to predict the class of an object. By
starting at the root of the tree, evaluating each test and taking the appro-
priate branch, one can classify new objects. The process continues until a
leaf is encountered and the object is asserted to belong to a class.

With a large amount of splits and increased complexity of a decision
tree, the training set can be classified with a low amount of falsely classified
objects. However, the essence of the decision tree is to move away from the
training set and have the ability to classify future observations. If given a
choice between two trees that correctly classify the training set, the simpler
one is preferred as it is more likely to capture structure inherent in the
problem.

There are several methodologies used for decision trees. Classification
and Regression Tree (CART) is one of the most used algorithms for decision
trees. Other common tree methods are ID3 and C4.5.
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3.4.1 CART methodology

The CART methodology was developed by Breiman et al. [3] in 1984. It
uses learning samples, a set of historical data with pre-assigned classes for
each observation. By representing the decision tree by a set of questions,
the learning samples can be split into smaller and smaller parts.

CART methodology consists of three parts: construction of maximum
tree, choice of the right tree size and classification of new data using con-
structed tree. Constructing the tree is most time consuming. The tree is
built following the splitting rule which splits the learning sample into smaller
trees. Two splitting rules in CART are the Gini criterion and the Twoing
rule. The Gini criterion works by attempting to separate classes by focusing
on the largest or most important class in a node. The Twoing rule focuses
on segmenting the classes into two groups that add up to 50 percent of the
data. Example of these two rules are shown in Figure and

Class A 40
Class B 30
Class C 20
Class D 10

T
Is age < 657
Yes | No
[

Class B 30
Class A 40 Class C 20
Class D 10

Figure 3.2: The Gini criterion classifies the largest or most important class
in one node, as illustrated by Salford Systems [22].

Class A 40
Class B 30
Class C 20
Class D 10

1
Is age < 657
Yes I No
|

Class A 40 Class B 30
Class D 10 Class C 20

Figure 3.3: The Twoing rule separates into two equally large nodes, as
illustrated by Salford Systems [23].

Advantages of CART are that the methodology is non-parametric and
does not require the input variables to be specified in any specific form and
that it works well with both continuous and categorical variables. CART
does not require the variables to be selected in advance, and will eliminate
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the insignificant ones from the final decision tree. Another advantage of
decision trees in general are that they are easy to interpret.

Disadvantages are that all splits produced by CART are perpendicular
to axis and if the underlying data have a more complex structure, it may
not be caught by the methodology. According to Timofeev [24] and [25],
if the underlying data is nonlinear, the methodology might not be suitable
and a more complex tree is needed to explain the data.

3.5 Confusion matrix

A confusion matrix, or contingency table as described by Fawcett [2], is a
matrix commonly used within statistics and machine learning for visualizing
the performance of an algorithm or a classification method. The columns
represent the predictions of the algorithm classifying the case of an event
occurring and not occurring, while the rows represent the actual outcome.
The matrix comprises the number of true positives, false positives, false
negatives and true negatives.

True positive (TP) if the instance is positive and classified as positive
False positive (FP) if the instance is negative but classified as positive
False negative (FIN) if the instance is positive but classified as negative
True negative (TN) if the instance is negative and classified as negative

False positive and false negative are also called Type I error and Type 11
error, respectively. Based on these counts, several metrics can be calculated,
such as the true positive rate (TPR).

true positive events

TPR

= — (3.4)
total positive events

is calculated as the true positive events divided by the total number of

positive events. The total positive events consists of all TP and FN.

3.6 ROC curves

Receiver operating characteristic (ROC) curves [2] are a common way of
investigating the performance of a binary classifier outputted score. The
curve is acquired by plotting the true positive rate and false negative rate
of each method. A tuning parameter is introduced and affects the outcome
by biasing the classifier and changing its decision boundary.

The theoretically best classifier would have its ROC curve close to the
top left corner, where the true positive rate is one and the false positive rate
(FPR) is zero. This point is in practice impossible to reach, since classifiers
are usually never perfect. Closeness to the top left corner can be measured
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by the area under the curve (AUC). This is a metric to transform the two-
dimensional representation of the ROC curve into a scalar measure.

One should aim for as high true positive rate as possible to the lowest
false positive rate. If a model has a higher true positive rate at a certain false
positive within a specific range, this model should be the most preferable in
this range. A hybrid model can be created whose combined AUC is larger
than the two classifiers separately. Research by Flach and Wu [26] show
that any concavities in a hybrid model can also be equalised.

3.7 Hold out test

When training and testing different models, it is common to divide the data
set into two sets. Hold out testing is a popular way of testing the accuracy
of a forecasting method. This is done by choosing two independent sets as
training and test sets, respectively. The training set is used for training the
model, and the other one for testing. By conducting a test with a data set
that has not been used in training, one can measure the model’s performance
on unseen (future) data. According to Var [27] using hold out testing is a
good way to validate the estimated function and make sure it performs well
when applied on another sample. However, Tan et al. [28] point out that
having a holdout sample reduces the estimation sample.

The size of the test set should correlate to the forecast horizon. For
classification problems, one typically uses stratified sampling, so that the
test set contains roughly the same proportions of class labels as the original
sample. K-hold out test is a variant of the standard hold out test, where
k% of the original data set is used as test set. Sampling is done without
replacement. The hold out is usually repeated n times, yielding n random
partitions of the original sample. The n results are averaged (or otherwise
combined) to produce a single estimation.
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Chapter 4

Data description

The data used in this thesis is provided by E.ON and SMHI. The SMHI
data is public and available through their open API. [29]

The initial data set contains outage data from year 2015 to 2016 for
ten chosen substations in Sweden. The weather data is from the same time
period. The time period was chosen because the system E.ON uses today
was implemented in 2014 and full data exists from this time period and
onwards. Data before 2015 exists, but is not stored in the same way.

4.1 Weather data

The variable used is wind gust (m/s), which is defined as the highest 2-
second wind during an hour by SMHI [30]. The data is gathered from the
closest weather station which is based on the shortest distance on the surface
between the substation and the weather station. Each weather station is
updated hourly. One limitation with the data set is that the location of the
weather station and the power grid is most likely different and therefore an
observed data point from the weather station might not describe the exact
weather condition at the power grid. This problem could be overcome by
for example interpolating the data between the weather stations by using a
geographical information system program.

4.2 Disturbances

When there is a disturbance on the regional or local grid down to 10 kV
the disturbance is registered in one of E.ON’s databases. The outage is
logged with an outage ID and other relevant information such as number of
affected customers, cause of disturbance, affected components, feeder and
the location of the outage. The exact location of the broken line is unknown
and instead the outage is located to the closest protective device. The dis-
turbance could be between 0.5 and 2 kilometers from the protective device
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depending on the structure of the grid. The line could also be broken at
several places that all have the same protective device. Since most of the
grid structure is circular, the broken line can be switched off and the elec-
tricity can be transported through another line. By switching on and off
lines combined with human investigation the exact location can be found.
Disturbances on the local grid with lower voltage than 10 kV are not reg-
istered automatically in the system, but registered when customers report
that they are powerless.

There are some limitations with the disturbance data set that can affect
the result. First, the exact location of the disturbance is unknown and one
outage ID can actually capture several disturbances. Second, the cause of
disturbance is manually adjusted in the system and categorised after the
outage is resolved. Therefore, there is a risk that the categorisation of data
used in this thesis, is not correct and that there are other categories which
could explain falling trees on the lines.

4.3 Substation area information

Data about the grid structure combined with the terrain in the substa-
tion area is provided by E.ON. There exists information about the type
and length of the line in a substation area. Lines are specified as belong-
ing to three different types: isolated overhead line, not isolated overhead
line and underground line. E.ON uses the terrain map from Lantmdteriet,
the Swedish National Land Survey [31I], for risk analyses and grid plan-
ning. The data is specified by both the type of line and the type of land it
passes through in a substation area. The information is specified as meter
of length. A higher land resolution could affect the result positively but due
to implementation and integration reasons for E.ON, this type of data was
not possible to obtain.

4.4 Data preprocessing

The data described in chapters [4.1H4.3] was downloaded into separate files
and then preprocessed and merged into one single data file. Three different
time periods were used (one, six and 24 hours) and thus three different data
files were created. Each row in the data file represents one single time period
for a specific substation. The state of the other parameters for this specific
time and substation was then added to the row. Outages are logged both
as countable and binary for each row in the data set. There could occur
several outages during the different time periods since the outage is logged
with the exact time. Rows with missing values are removed to reduce bias
in the data set.
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hapter 5

Method

We have aimed to develop generalised models which can easily be applied
to other geographical areas. This paper mainly focuses on a subset of power
stations in Sweden, but we believe that the models can cover a larger area
with similar results.

5.1 Choice of parameters

The parameters in question for model design are displayed in Table
where Variable is the name of the parameter, Variable description describes
the parameter and Type describes the format of the parameter.

Table 5.1: Parameters in question for model design.

Variable Variable description Type

Y1 Outage Binary

Yo Number of outages Integer

x1 Wind gust Real number
o Length of overhead line, isolated Real number
3 Length of overhead line, not isolated Real number
x4 Length of overhead line, in forest Real number
x5 Length of overhead line, not in forest Real number
g Length of overhead line, in forest, isolated Real number
T7 Length of overhead line, in forest, not isolated Real number
xs Length of underground line, in forest Real number
T9 Length of underground line, not in forest Real number
210 Substation 1D String

els.

There are two responses, y; and s, which are used in different mod-
Negative binomial regression requires a countable response variable,

while logistic regression requires a binary response variable. For evaluation
reasons, the models that use yy as response variable are converted into .
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Of the eight explanatory variables, only five were used in the final models.
The name of the substations, x19, was not included. This was because of
previous work, Liu et al. [I6] and Han et al. [17], which discuss the issues
with description variables and that the attributes that characterise a station
can be explained by other variables. By using parameters as forest type
distribution and length of each power line type, the substation ID variable
could be omitted.

Other parameters that were not used are those related to underground
line since these parameters are not affected by wind. Hence, xg and xg were
not included. Variables zg and z7 are subsets both of x4 and of x9 and of x3,
respectively. Several initial tests with different combinations of the variables
were conducted where a combination of x1, x99, x3, ¢ and x7 provided the
best results. To conclude the parameters which are considered in the final
models are

y1‘|3/27931,$2,$3a1‘63$77 (51)

where the response variable changes for the negative binomial regression.

5.2 Implementation of models

A set of different models was developed based on combinations of three
different classification and regression methods, one wind gust limit and three
different time periods. In total, these combinations resulted in 18 different
models.

The different time periods were chosen to one, six and 24 hours. The
reason is that the original data received from SMHI is per one hour, the
prognoses the VHI receives from the service Blast och Sno is updated every
six hours and finally, the VHI does a prognosis on a daily basis. The param-
eter x1,which describes wind gust, was adjusted for each time period where
the maximum value for the time period was used. All the other explanatory
variables were not affected by the different time periods.

A hold out test was conducted where all models were trained on data
for 2015, while data for 2016 was used for testing and evaluation. For each
time period, two models were developed. One model which tried to explain
all future data and another that only concerned future data with wind gusts
over 15 m/s. The wind limit was set to 15 m/s because the first warning
from Blast och Snd starts at 15 m/s and because the VHI is only concerned
about wind gusts above this limit.

The regression models were evaluated using the AIC-criteria where the
model resulting in lowest AIC was used as the final model. The stepwise-
forward method was used to find the optimised model due to computational
reasons and the small data set used for training the methods.

The decision tree models used the CART methodology and the Gini
criterion as the splitting rule. The models used a maximum number of
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splits of 10 and a cost function of 1:10 between the false positive and false
negative error. Several different splits were investigated where the 10-splits
provided the best result in relationship to complexity. The cost function is
related to the objective function which is described in Chapter

5.3 Final models

The table below shows the final models used and their respective model
number which will be used as reference throughout the thesis. The method
of the models are decision tree (DT), negative binomial (NB) and logistic

regression (LOG).

Table 5.2: The final models with their respective model number.

Model Method Time Wind
1 DT 1 0
2 DT 6 0
3 DT 24 0
4 NB 1 0
5 NB 0
6 NB 24 0
7 LOG 1 0
8 LOG 0
9 LOG 24 0
10 DT 1 15
11 DT 6 15
12 DT 24 15
13 NB 1 15
14 NB 6 15
15 NB 24 15
16 LOG 1 15
17 LOG 6 15
18 LOG 24 15

5.4 Model evaluation

In order to evaluate the different models, an objective function was devel-
oped. As a complement, ROC curves were plotted and AUC calculated. The
estimation behind the objective function is described in the two following

chapters.
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5.4.1 Objective function

By minimising the objective function, the model with the best performance
can be found. This objective function sets the proportion between the cost
of a real outage not being classified as an outage and the cost of falsely
predicting an outage when nothing happened in reality. Hence, the function
weights the false positive and false negative errors for each model.

The cost associated with the false positive error is the cost of mobilising
extra workforce,

crp = cost x number of workers = 2,500 x 4 = 10, 000, (5.2)

which is an estimation based on the following assumptions. The cost is regu-
lated through framework agreements between E.ON and its subcontractors.
Since these agreements vary between subcontractor areas, a mean cost of
2,500 SEK per worker is used. According to several VHIs, four workers per
affected area is usually ordered. Therefore, a mean number of four workers
is used in the cost estimation. It should be noted, that the cost are approx-
imations and the estimated cost may differ from real costs. However, the
estimated cost makes it possible to compare different models in relation to
each other.

Putting subcontractor workers in preparation is a way of minimising the
risk of not being prepared in case of an outage. It is when an outage occurs
and the subcontractors are not prepared that the large costs occur for E.ON.
This is due to the change in energy legislation for power failures and other
costs associated with outages, such as goodwill and damage costs.

When a customer is affected by an outage for over 12 hours, E.ON will
compensate the customer with a minimum of 900 SEK. For every additional
day with coherent power failure, the compensation will increase with the
same minimum amount per day according to public information from E.ON
[32]. The other costs are difficult to estimate and therefore the cost associ-
ated with the false negative error is limited to the compensation cost. This
is represented as

compensation x number of customers

Cfn = = 100, 000 (5.3)

number of outages
whereof it is the minimum cost E.ON needs to pay per outage. The mean
compensation per outage is calculated by the total compensation paid be-
tween 2015 and 2016 divided by the number of outages during the same
period.

The cost constants are summarised into the following objective function

C=Nfp*kCpp+ Npn * Cpn, (5.4)

where ny, and ny, are associated with the number of false positive and
false negative errors while cy, and cy, are the costs associated with the two
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types of errors. The two cost constants have a factor of 1:10 and hence, the
relationship between the false positive and false negative errors is 1:10.
The objective function is adjusted to take into account the time period
for each data set. A false prediction for an outage in the one hour data set
is not believed to be equivalent to one in the 24-hour data set. In reality,
a VHI needs to decide if extra workforce is required two days in advance
to cover the non-normal working hours (evenings and weekends) and the
person makes only one decision every 24 hours. Therefore, a model cannot
be punished more than once every 24 hours for falsely predicting an outage
or failing to predict an outage. The constants in the adjusted objective
function are divided by the number of times each time period occurs per 24
hours. Thus, the objective function for the one-hour data set is divided by
24 and the six-hour data set is divided by four,
(5.5)

C C
CAdjust = N fp * ( Iz + N * n

1 or 4 or 24) (1 or 4 or 24)
and these adjusted constants are summarised in Table Notice that the
constants for the objective function are the same as for the 24 hour adjusted
objective function.

Table 5.3: Constants used in the adjusted objective function.
Constant Value

Cfp,24h 10000
Cfn.24h 100000
Ciph 2500
Cnh 25000
Cfp,1h 417
Cfn,1h 4167

5.4.2 VHI objective function

By estimating the current objective function for E.ON, a reference point can
be made to all the other models. The VHI objective function is calculated
with the same cost estimations as the objective function. The number of
occurrences, i.e. the number of false positive errors and false negative er-
rors, are estimated by cross-checking all the times a VHI had ordered extra
workforce within the dates of outages. Since the VHI only makes a decision
once, as described above, the VHI objective function is calculated based on
the 24-hour data set. Also, the VHI bases his or her decision on Blast och
Snd’s first warning at wind gust forecasts above 15 m/s and hence only data
above 15 m/s is relevant.

Only data for 2016 was available and the VHI objective function is there-
fore calculated for 2016-01-01 to 2016-09-30. During this time period, extra
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workforce was ordered two times in the investigated subcontractor area of
which one was a correctly predicted outage. The wrongly predicted outage
happened during the high season for strike lightning and will therefore not
be considered as a false positive error. Hence, in the VHI objective function
there are no false positive errors. During the same period, five outages oc-
curred in total of which one was predicted. Thus, the false negative error
is four. The number of times where there was no outage and the VHI did
not order extra workforce were 142 in the data set. This is displayed in the
confusion matrix in Table It is important to notice that the confusion
matrix for the VHI consists of no false positive errors.

Table 5.4: Confusion matrix of the VHI during 2016-01-01 and 2016-09-30
Not order workforce Order workforce
No outage 142 0
Outage 4 1

5.5 Relative importance of variables

Four tests are conducted to investigate the relative importance of the pa-
rameters and their characteristics. Three of the tests analyse if higher wind
gusts, overhead lines in forest and if not isolated overhead lines are better
predictors than their opposite. The fourth test analyses if there are similari-
ties or differences between substations based on number of outages. All tests
are based on the total data set and hence, a hold out test is not conducted.

The wind gust test is done by splitting the data set by the wind gust
limit of 15 m/s. The models are based on data with wind gusts below 15 m/s
and data with wind gusts above 15 m/s, respectively. For the substation
test, the data set is divided based on the number of outages. The models
are based on data with five substations with the highest number of outages
and on data with five substations with the lowest number of outages.

The two other tests are conducted differently. Instead of splitting the
data set, different parameters are included in the models. In the forest test,
models including parameter x1, wind gust, and x4, length of overhead line,
in forest, are tested against models including parameter x1, wind gust, and
x5, length of overhead line, not in forest. Similarly, the type of line test,
tests models including parameter x1, wind gust, and x3, length of overhead
line, not isolated, against models including parameter z;, wind gust, and
T9, length of overhead line, isolated.

To see if the models better predict outages based on any one of the data
sets or parameters, the average of each comparison metrics is calculated.
This since the result from each specific method is not of interest, but the
relative importance of the variables are.



Chapter 6

Results

The aim of this chapter is to show concise results to highlight the important
insights from the conducted analysis. The various tests in this chapter aim to

answer the RQs, where Chapter address RQ1, while Chapter
and [6.6] address RQ2.

The tables are truncated, due to limited space and ease of readability.
The complete result tables can be found in Appendix for the interested
reader.

6.1 Plots of wind gusts and outages

To understand the relationship between outages and wind gusts, plots of
wind gusts against outages are produced. In Figure [6.1} it can be seen that
outages have happened on a wide spread of wind gusts, from less than 5
m/s to as high as 30 m/s. In addition, outages have occurred during the
whole period, but with two large numbers of outages in January 2015 and
December 2015. This coincides with two large wind gust peaks above 25
m/s. However, observe that there is a wind gust peak above 25 m/s in
February 2016, but without the large number of outages seen during 2015.
In addition, the black horizontal line in Figure marks the 15 m/s wind
gust limit used in splitting the data for other tests conducted in the thesis.

The same plot of wind gusts and outages is produced for each substation
area, which can be seen in the subplots of Figure[6.2] Note that the wind gust
distribution is not equally the same for all substations, but some substations
have been exposed to a larger number of outages such as Substation 4, 6,
7, 8,9 and 10. In January 2015, the storm Egon hit Sweden and as seen
for each substation area at least one outage occurred at that time. When
the storms Gorm and Helga hit Sweden in the end of November in 2015,
all substations except Substation 1 and 3 had outages. In addition, observe
that all substations had outages on a wide spread of wind gusts and during
the whole period.
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Figure 6.1: Plot of outages against wind gusts with the limit of 15 m/s
marked as a black line.

40 Substation 1 40 Substation 2
20 20
0
Jan 2015 Jul2015 Jan2016 Jul 2016 Jan2015 Jul2015 Jan2016 Jul2016
40 Substation 3 40 Substation 4
20 20 |
Jan 2015 Jul2015 Jan2016 Jul 2016 Jan2015 Jul2015 Jan2016 Jul2016
40 Substation 5 40 Substation 6
20 | 20
. W Siindn?
Jan 2015 Jul2015 Jan2016 Jul 2016 Jan2015 Jul2015 Jan2016 Jul2016
40 Substation 7 40 Substation 8
20 E E E | 20 % ; ﬁ ﬁ |
0 0
Jan 2015 Jul2015 Jan2016 Jul 2016 Jan2015 Jul2015 Jan2016 Jul2016
Substation 9 Substation 10
40 40
20 ﬁ @ @ ii 20 E ﬂ
0 0
Jan2015 Jul2015 Jan2016 Jul 2016 Jan2015 Jul2015 Jan2016 Jul2016

Figure 6.2: Plots of outages against wind gusts for each substation area.
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6.2 Probability distribution function

Another way of presenting the relationship between wind gusts and outages
is to consider the probability distribution function for wind gusts and out-
ages and to visualise them. The histogram for wind gust is shown in Figure
Notice that the distribution of wind gust seems to be right-skewed
Gaussian. This indicates that the likelihood for wind gusts to reach above
15 m/s or higher is relatively low. Of the 152,875 data points, only 1.6%
were above 15 m/s and 0.1% were above 20 m/s.

The PDF for wind gusts and outages are visualised together in Figure
Taking into account that the frequency of strong wind gusts is low, the
probability that an outage happens is relatively high for wind gusts above
15 m/s. With the same reasoning, the probablity of outages below 15 m/s
is approximately zero, even though there are a total of 72 outages in this
interval.

A 90% one-sided confidence interval is also calculated, which corresponds
to the dashed line in Figure[6.4l Since the confidence interval is wide, this in-
dicates that the shown probability distribution function cannot statistically
be said to be true.
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Figure 6.3: Histogram of the frequency of wind gust between 2015-01-01
and 2016-09-30.
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Relation Between Wind Gust and Outages
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Figure 6.4: The probability distribution function for wind gusts and outages
where the dashed line is a 90% one-sided confidence interval.

6.3 Overdispersed data

A Poisson regression model is developed for the data set with least number
of zeros, i.e. the 24-hour data period with wind gust limit of 15 m/s. The
Pearson-based dispersion statistic, o = 1.5931, is calculated for the Poisson
model. The result indicates that the data set is overdispersed.

6.4 Model comparison metrics

The three best models and the worst are displayed together with the VHI
model for both the objective function, the adjusted objective function and
the true positive rate. The tables consist of eight columns, where Method
describes the type of method used, such as VHI, DT, NB and LOG. Time
describes the time period of one, six and 24 hours and Wind describes the
wind limit of 15 m/s or none. The last four columns show each model’s
confusion matrix. All tests are sampled three times and the average result
is shown below. This was due to that TP, FP, TN and FN are generated
by drawn samples for the negative binomial and logistic probability distri-
bution. Hence, each sample changes slightly for each simulation.

In tables and the best models for the objective function and the
adjusted objective are the same. It is important to make a remark on the
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models’ confusion matrices. The best model predicts one true positive count
while the second and third best models have zero true positive counts. The
false negative counts are expensive and hence the second and third model are
more expensive despite having fewer false positive counts. The magnitude
of the objective and adjusted objective function is shown from the worst
model’s result. Notice that the VHI model is among the top four models for
the objective function, while this is not the case for the adjusted objective
function.

Table 6.1: The three best models, the worst and the VHI model based on
the objective function.

Method Time Wind | Objective | TN FP FN TP
function

VHI 24h 15 400,000 142 0 4 1

DT 1h 15 350,000 723 15 2 1

LOG 1h 15 410,000 727 1 3 0

NB 1h 15 420,000 726 123 0

LOG 1h 0 2,470,000 65392 47 20 O

Table 6.2: The three best models, the worst and the VHI model based on
the adjusted objective function.

Method Time Wind | Adjusted TN FP FN TP
objective
function
VHI 24h 15 400,000 142 0 4 1
DT 1h 15 14,583 723 15 2 1
LOG 1h 15 17,083 727 11 3 0
NB 1h 15 17,500 726 12 3 0
DT 24h 0 2,280,000 2651 68 16 4
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The best models for both the objective and the adjusted objective func-
tion are not included as one of the three best models for the last metric, the
true positive rate. In Table the best models are a mix of DT and NB
models.

Table 6.3: The three best models, the worst and the VHI model based on
the true positive rate.

Method Time Wind | TPR | TN FP FN TP
VHI 24h 15 0.200 | 142 0 4 1
DT 24h 15 0.800 | 91 51 1 4
DT 6h 15 0.500 | 200 43 2 2
NB 24h 15 0.400 | 123 19 3 2
LOG 1h 0 0.000 | 65392 47 20 O

Notice that the best models for all three metrics are composed of the
15 m/s wind limit, while the worst model is composed of the 0 m/s wind.
Comparing the different methods, decision tree is the best method for all
three metrics. The difference between the three methods is smaller for the
objective functions than for the true positive rate metric. The VHI model
is not the best model for any metric. In Table the three models with
time interval of 24-hour and wind limit are compared to the VHI model.
Notice that the objective function for the VHI is better while the TPR is
worse compared to at least two of the models. The objective function of
NB is relatively close to the VHI and its TPR is twice as the VHI but it is
still relatively low. DT has four times better TPR than the VHI but the
objective function is 1.5 times worse.

Table 6.4: The models with 24-hour time period and wind limit of 15 m/s.

Method Time Wind | Objective | TPR TN FP FN TP
function

VHI 24h 15 400,000 0.200 142 0 4 1

NB 24h 15 490,000 0.400 123 19 3 2

LOG 24h 15 560,000 0.200 126 16 4 1

DT 24h 15 610,000 0.800 91 51 1 4

6.5 ROC curves

ROC curves are plotted to compare the models with each other and with
the VHI model. In figures 6.8 each method has a specific colour where
different shades of green, red and blue describe decision tree, negative bi-
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nomial regression and logistic regression, respectively. The VHI model is
viewed as a red dot in all plots.

In Figure [6.5] all models are plotted. The main interpretation is that
no single model greatly outperforms any of the other models. The different
line styles in the figure relate to the three time periods: solid line for one,
dashed for six and dotted for 24 hours.
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Figure 6.5: ROC curves for all models, where the red dot is the performance
of the VHI. None of the models greatly outperform the others. Model 13
and 16 seem to be closest to the left-top corner.

Figure [6.6] shows a portion of Figure [6.5] where the performance of the
VHI compared to the models is more clearly shown. With the same false
positive rate as the VHI, there is only one model with a greater true positive
rate, Model 17. This model has a rate of 0.25, which is 0.05 higher than the
VHI model. Model 18 has the same performance as the VHI. Both Model
13 and 16 have approximately a zero false positive rate with a true positive
rate of 0.33 which is over 1.5 times better than the VHI. All other models
show a worse performance in the zero false positive rate point.
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Figure 6.6: Portion of ROC curves for all models. At the same FPR, Model
17 has better performance and Model 18 has the same performance as the
VHI. Model 13 and 16 have approximately a zero FPR and therefore out-
perform all other models, including the VHI, with a TPR of 33%.

Figure[6.7| comprises three subplots where each subplot shows all models
where the data is aggregated into one specific time period. Throughout the
various subplots, the red and blue lines representing NB and LOG, show
very similar performance. This is especially true for the solid lines which
represent the models with no wind limit.

NB and LOG models are in most cases better than the DT models.
This is especially true for the one-hour time period, where both green lines
are below the red and blue lines. The green solid line, representing DT
without wind limit, has almost the same performance as if one would classify
randomly. In the six-hour and 24-hour time period, the DT model with wind
limit performs better than NB and LOG without wind limit. In the one hour
time period, LOG and NB perform better than both the DT models.

The difference between models with a wind limit of 15 m/s and models
without is relatively large. The models with wind limit perform better since
they are closer to the top-left corner for all time periods. None of the models
outperform the other models and NB and LOG is only significantly better
than DT for the one hour time period.
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Figure 6.7: ROC curve for models with one-, six- and 24-hour time period.
Note that NB and LOG show a similar performance which decrease for
higher time periods, while DT performs better, especially the dashed line.
The dashed lines are more left-corner centred and thus, the models with
wind limit perform better.

In Figure all models without a wind limit and all models with a

wind limit of 15 m/s are shown in the top and bottom subplot, respectively.
NB and LOG are better for all the time periods for the models without a
wind limit. The one-hour time period gives the best performance for these
models while the six-hour time period gives the best performance for DT.
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This is also true for the models with a wind limit. An interesting finding is
that NB and LOG perform better with a lower time period.
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Figure 6.8: ROC curve for models with 15 m/s as wind limit and without.
Note that the NB and LOG have similar performance and outperform DT
in the data set without wind limit. With wind limit, none of the models
distinguishably outperform the others, where the best model for DT is the
six-hour data set while the one-hour data set is best for LOG and NB.



6.6. FURTHER ANALYSIS 45

6.5.1 AUC

In Table AUC is measured for the three best models and the worst.
Note that the three best models are based on the one- and six-hour data set
with wind gusts above 15 m/s. These have very similar AUC values where
the LOG model performs slightly better than the NB model.

Table 6.5: The three best models and the worst based on AUC.

Model Method Time Wind AUC
13 LOG 1h 15 0.874
16 NB 1h 15 0.873
11 DT 6h 15 0.833
1 DT 1h 0 0.525

The VHI model has a zero false positive rate, and therefore high values
of false positive rates are probably irrelevant. In order to adjust for this,
AUC is calculated up to a false positive rate of 0.1. The three best models
and the worst based on the smaller AUC are summarised in Table [6.6l The
same models as for the total AUC give the best performance. LOG and NB
models have the largest area under their ROC curves. Notice that Model 13
and 16 had approximately a zero false positive rate and outperformed the
VHI model, as seen in Figure in the earlier chapter. Those models also
have the highest AUC up to the false positive rate of 0.1.

Table 6.6: The three best models and the worst based on AUC 0.1.

Model Method Time Wind AUC 0.1
13 NB 1h 15 0.047
16 LOG 1h 15 0.045
11 DT 6h 15 0.036
10 DT 1h 15 0.010

6.6 Further analysis

To further investigate the variables’ impact on outages, different test are
carried out and tabulated in The first test focuses on analysing
the relationship between wind gusts and the occurrence of outages, while
the other tests focus on the relationship between grid structure, ground
condition and the occurrence of outages.

The metrics used for comparison are the mean of the model comparison
metrics and the AUC metrics. It is important to remember that a low value
of the objective functions is preferred while a high AUC value is preferred.
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These should all be considered in relation to the TPR which indicates the
accuracy of the models, where a higher value is preferred. Mean number of
outages in each data set is also included for the first two tests. All tests were
sampled three times respectively and the average result is shown below.

The first test is summarised in Table[6.7} In the test, the performance of
the classification and regression methods are measured based on data with
wind gusts below 15 m/s and data with wind gusts above 15 m/s. The
(15,00) interval outperforms the [0,15] interval for all metrics. Since the
objective functions are lower and the AUC value is higher, the methods
are better at predicting outages in data with strong wind gusts than in
the lower interval. In addition, the mean number of outages is higher for
the (15,00) interval, which also confirms that the methods are better at
predicting outages in data with strong wind gusts.

Table 6.7: Mean comparison metrics for wind gusts [0,15] and (15, 00) re-

spectively.
Wind gust [0,15] (15, 00)
Mean number of outages 55 64
Mean for objective function 5,835,556 4,897,778
Mean for adjusted objective function 1,973,611 1,873,380
Mean TPR 0.011 0.352
Mean for AUC 0.690 0.808

The second test investigates if there is a difference between substations
which have experienced many and few outages, respectively. There were two
substations which had experienced the same amount of outages and hence
they were separated by chance. The result is summarised in Table The
substations with many outages have higher objective and adjusted objective
function and TPR but a slightly lower AUC. It is important to notice that
this data set includes 65 outages on average whereas the other data set with
the few outages includes only 27 outages on average. The metrics should be
higher for the larger data set.

Table 6.8: Mean comparison metrics for substations based on number of

outages.
Substation, number of outages Few Many
Mean number of outages 27 65
Mean for objective function 2,328,333 5,266,111
Mean for adjusted objective function 953,472 1,800,579
Mean TPR 0.251 0.337

Mean for AUC 0.821 0.800




6.6. FURTHER ANALYSIS 47

In Table the result from the comparison between large and small
amounts of overhead line in forest is summarised. The third test is conducted
by including different parameters in the models on the same data set. The
two different parameters show very similar results and hence neither param-
eter x4, length of overhead line, in forest, and x5, length of overhead line,
not in forest can be said to be more important than the other.

Table 6.9: Mean comparison metrics for substations based on length of
overhead line in forest.

Substation, length of overhead line Forest Not forest
Mean for objective function 8,097,222 8,023,889
Mean for adjusted objective function 2,976,713 2,983,681
Mean TPR 0.236 0.260

Mean for AUC 0.799 0.798

To compare the relative importance of the type of overhead lines, a fourth
test is conducted by including different types of overhead lines parameters
in the models. The result is summarised in Table [6.10] and the conclusion
is similar to the previous test. None of the two parameters xa, length of
overhead line, isolated, and x3, length of overhead line, not isolated, is more
important than the other.

Table 6.10: Mean comparison metrics for substations based on type of over-

head line.
Substation, Isolated or not isolated Isolated Not isolated

Mean for objective function 5,516,667 5,621,667
Mean for adjusted objective function 2,042,361 2,030,093
Mean TPR 0.304 0.287

Mean for AUC 0.796 0.800
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Chapter 7

Discussion

In order to answer if an automatic prediction program can increase the
prediction in comparison to current manual prediction methods, several au-
tomatic models are evaluated and compared to the VHI model. In addition,
several analyses are made to investigate the relationship and impact between
the considered variables. Theoretically, the outages registered as caused by
wind in E.ON’s database should indeed be caused by wind. However, this
does not explain why and when it occurs, nor the impact of the grid structure
and ground condition for weather related disturbances.

7.1 Impact of variables

The impact of wind gust is interesting since wind gust is the current basis for
E.ON’s resource allocation and is also the most commonly analysed variable
in previous research. There seems to be no clear relationship between wind
gusts and the spread of outages over time. Outages occur throughout the
whole year and for wind gusts of different severity, as seen in Figure A
correlation between peaks of wind gust and outages may exist. In the data
set, three peaks of wind gust occurred whereof the first two caused several
outages.

The lack of outages in the latter could be because most of the dangerous
trees had already fallen in the previous peaks. In Figure the substations
with large numbers of outages in 2015 did not have any outages at the peak
in 2016, while the substations with outages in 2016 had very few in the
previous peaks. This finding could indicate a time dependency between
outages for different peaks of wind gust, but this was not possible to further
analyse due to the few peaks in the current data set.

The result from Chapter [6.2] also indicates a relationship between peaks
of wind gust and outages even though it is not significant. The probability
of outages are highly based on the frequency of the peaks of wind gust, while
it is approximately zero for wind gusts below 15 m/s.
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By comparing the performance of the classification methods for two dif-
ferent data sets, wind below and above 15 m/s, respectively, we hope to
confirm that stronger wind gust is a better predictor than lower wind gust.
The result in Chapter shows that the methods are able to better predict
an outage in the higher interval, (15, 00) for all evaluation metrics. There-
fore, using wind gusts below 15 m/s as a predictor is not as good as using
wind gusts above in explaining why outages occur.

In addition, from a business perspective and in terms of compensation
costs included, outages below a wind limit of 15 m/s are less important than
for the higher interval. This is since the VHI is only concerned about the
warnings from Blast och Sné. Nevertheless, had the models below the wind
limit performed better, we would have recommended E.ON and other power
distribution companies to consider wind gusts below as predictor.

Another interesting analysis is to understand the relationship between
ground condition, power grid structure and outages. When different param-
eters are included in the models, the mean metrics show similar result as
seen in Chapter The x3 and x5 give a slightly better performance but
the difference is very small. It can be interpreted such as that the parameter
x3, length of overhead line, not isolated, is more sensitive to disturbances.
The same applies for x5, length of overhead line, not in forest. The result is
somewhat contradicting reality since most of the disturbances are believed
to be caused by trees falling on the lines and hence parameter x4, length
of overhead line, in forest, should provide better results. The parameter x3
could indeed provide better results since the not isolated lines are in reality
more sensitive than the isolated lines. Since the differences are too small
between the different parameters on a relatively small data set, a larger data
set would be needed to confirm this observation.

In the case of the substation test, the data set with fewer outages pro-
vides sufficiently better results for the AUC and the objective functions. In
relation to the TPR, the data set with more outages is better. Due to the
large difference in number of outages, the results are probably skewed for
the metrics. A larger number of outages should increase both the objective
functions and the TPR as well as decrease the AUC. To be able to draw any
conclusions, the skewness needs to be considered. By weighting the metrics
based on for example the number of outages the skewness could be solved.
Other weighting methods could also be used.

7.2 Model selection and comparable metrics

There are various methods to use when comparing models based on the same
data set. The problem increases when models based on different data sets are
compared, since the results often need to be transformed to be comparable.
The adjusted objective function considers this by weighting the objective
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function based on the different time periods, but both gave the same results.
However, none of the other metrics were weighted nor did any consider the
differences in number of outages, which may affect the results as mentioned
previously. To interpret the values is therefore difficult as well as to conclude
which model actually provides the best results and should be recommended.
However, it can be concluded that negative binomial regression is to be
preferred over the simpler Poisson regression. This is because the data set
with the least number of zero counts is overdispersed and hence all other
data sets should result in worse dispersion statistics.

When developing the models, we have strived for simplicity over com-
plexity. This applies to both the statistical and machine learning methods.
The assumption is that a simpler model is preferable to a more complex, as
the simpler is easier to understand and interpret. The methods used show
sufficient results given their complexity but more advanced methods, such as
the zero-inflated regression and black box algorithms, could be more precise.
Those models would however be more difficult to understand and interpret,
and hence also to implement.

The statistical models use AIC to find the optimal model and the DT
models are designed for the same reason with a maximum number of splits of
10. A higher splitting would most likely give more accurate results but the
models would be harder to apply on other data sets. A lower splitting would
cause higher errors but be easier to interpret. Judging from the results, the
splitting rule of 10 seems sufficient, since DT is more accurate than NB and
LOG in terms of TPR but also has higher errors.

In order to select models, good model comparison metrics need to be
used. In order to interpret the models from not only a perspective of min-
imising errors, the TPR is used as metric. There are several metrics which
can be applied on the confusion matrices where TPR is only one of them.
TPR is good since it optimises the number of TP, which is important for im-
plementation. ROC curves and AUC values are good for understanding how
the TPR changes in relation to the FPR. Furthermore, using both graphical
and numerical metrics provide easier interpretation of the result.

7.3 Evaluation of models

Deciding which model performs the most satisfying result is difficult both
because several comparison methods and different data sets are used. The
three time periods have different number of outages which affect the result
and the metrics are not adjusted for this. The one-hour data set provides the
best result for both the objective and adjusted objective function. However,
both the six- and 24-hour data sets generate models with only ~ 100,000
higher cost than the three best models, which equals a few FP or one FN.
This is still a relatively small cost for E.ON. A missed outage could affect
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the result between a better and worse performing model. The objective
function is of course aimed at punishing FN since the cost associated with
a missed outage can be quite large.

By instead looking at TPR for the models, the 24-hour data set provides
the best results. The best models for objective and adjusted objective func-
tion has quite low TPR or even a zero rate. This is because the functions
do not reward TP counts but instead only penalise errors. As the opposite,
TPR only rewards instead of punishes. As a consequence, Model 11 which
has the highest TPR of 80%, can still have 51 FP and a high objective func-
tion. Therefore, it is important to consider both metrics to find models that
combine penalty and reward.

To achieve models that both reduce errors and predict more accurately,
ensemble methods could be used where different parts of models are com-
bined to achieve optimal results. In addition, the models with wind gust
limit seem to predict more accurately than those with no wind gust limit.
Therefore, a model with wind gust limit above 15 m/s seems reasonable.

Regarding the two statistical methods, they achieve very similar result,
which is easily seen in the ROC curves in Chapter The differentiator
is the response variable, where LOG is better for binary and NB is better
for count. The advantage of NB is that the response variable describes the
magnitude of the outage and could be used for prioritising different regions.
This was not tested since aggregation of the response variable was necessary
for comparison reasons.

7.4 Comparison to the VHI model

One remark when analysing the different models with the reference point, i.e.
the manual predicition by VHI, is that the models are more accurate than
the VHI in terms of region. The models predict for each substation while the
VHI predicts on a higher aggregated level. Thus, the errors of the models
are a combination of time and station while the VHI can only falsely predict
the time since all substations are within the same subcontractor area. For
this reason, the VHI cost of 400,000 SEK from Chapter should not be
considered as an absolute value but as a reference. Some of the models might
perform better in reality but have a higher objective function. Nevertheless,
the models that have a lower objective function should in theory perform
better than the VHI.

Another remark is that that the VHI has zero FP counts. The interpre-
tation is that the VHI might be cautious of ordering extra workforce, which
was a surprising result after discussions with employees at E.ON whose be-
liefs were the opposite. The zero point could be interpreted as that high
values are not of consideration and by using the total AUC, the result could
be misleading. A threshold for AUC could be used and in this thesis is
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selected to be 0.1, meaning that one out of ten FP counts is considered
reasonable. In discussions with E.ON, this threshold aligns with their ex-
pectations but other thresholds might provide better results.

Increasing the threshold, the FPR, will generate models with either the
same or a higher TPR than previously, while decreasing the threshold will
permit fewer errors but probably at a cost of lower TPR. This is because
the ROC curve can only be an increasing monotone linear or concave func-
tion. In a cost perspective, higher values of FPR and TPR mean more false
positive errors and less false negative errors which is less expensive than the
opposite. Therefore, the threshold should rather be too big than too small.
There could exist models, which have the same AUC value but have com-
pletely different ROC curves. A carefully chosen threshold would distinguish
these types of models. In addition, using both AUC values and ROC curves
is an advantage since the graphs can display these differences and help in
providing a reasonable threshold value.

Deciding the threshold value is relative to E.ON’s objectives and will
probably change over time and be adapted to the company’s sensitivity of
risk. For this reason, the models should be compared with both the AUC,
AUC 0.1 and the cost function to find satisfying results. By doing this,
there seems to be two models that outperform the rest. Model 16 and 13
are the second and third best model for the objective functions and have
the highest AUC and AUC 0.1 values. On the other hand, they have a zero
TPR, but since the AUC considers this exact point it should not be any
critical concern.

7.5 Business implementation

To implement and integrate the models in a business context, the models
need to some extent decide the magnitude of each outage. This is since
the magnitude is the basis for predicting future needs of resource allocation.
The current data and models don’t distinguish one outage from another.

It is important to remember that an outage in the models and an outage
for the VHI might not have the same scale of impact. The models predict
all weather related outages and not only those which had an impact longer
than 12 hours. A modelled outage may in reality be an outage that the
subcontractors can handle without the need of extra workforce. In addition,
the extra workforce is only ordered during non-normal work hours, which the
models do not take into account. In conclusion, the models cannot capture
the real world perfectly.

Another important remark is that there can be simultaneous outages for
the same substation during a certain time period. As the response variable
for the negative binomial regression is countable, the number of parallel
outages can be estimated. LOG and DT can also estimate the number of
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outages, but only if the substations are aggregated to a larger region such as
a subcontractor region. This is especially useful for estimating future needs
of resource allocation, since a subcontractor is only contracted to handle a
specific number of parallel outages. To implement the models, the countable
response variable needs to be used for the negative binomial regression or the
result needs to be aggregated to a larger region. In this thesis, the countable
response variable is converted to a binary variable to allow comparison with
other models. Future research could focus on predicting number of outages
and evaluate the performance of the countable variable of NB.

In addition, the one- and six-hour data sets might not be relevant for
E.ON, since the VHI needs to make a decision about reinforcements 48 hours
in advance. An automatic prediction decision tool should be based on the
same forecast periods as the VHI to make the tool as effective and easy to
use as possible. Out of the three different time periods, the 24-hour data
set is the most suitable for an implementation perspective.

In this thesis, both the models and the tests are developed to facilitate
business implementation. No explanatory variables for substations are used
as predictors and therefore, testing on other substation areas could be done
as well as implementing the models for the total power grid. The findings
only apply to the ten selected substation areas. The proven relation between
strong wind gusts and outages might not apply to other substation areas as
well as the small difference in relative importance for the parameters. It
would be very interesting to analyse the conditions for northern Sweden
since that area has other characteristics than the selected substations. This
needs to be analysed and taken into account, since a VHI covers all of E.ON’s
substation areas and the same applies for a future decision support tool.
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Conclusion

This thesis shows that it is possible to predict weather related disturbances
on the power grid with statistical and machine learning methods and to
achieve better prediction than with the current manual prediction method.
The statistical and machine learning methods are able to maintain the same
false positive rate as the manual prediction, and at the same time increase
the true positive rate from 20% to 33%. Statistical methods are generally
better than decision tree. This could be explained by the machine learning
methods requiring a larger data set to be able to see the underlying patterns.

We also conclude that wind gust is the parameter that has the highest
impact on weather related outages and that the models are better to predict
outages during stronger winds. Other parameters, such as type of power line,
might affect the prediction and make it more accurate, but tests show no
significant difference. Further data analysis is needed to confirm the impact
of these variables.

The results in this thesis are a great basis for a decision support tool for
E.ON, but the models need to be further adjusted to be implemented for
the total power grid. Therefore, further data analysis is warranted before an
automatic prediction of outages and resource allocation can be implemented
in a real world context.
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Chapter 9

Future work

This thesis is a novel approach to automating prediction of outages and
resource allocation for power distributors. However, before implementation
in a real world context, more research needs to be conducted.

First, the relative importance of the variables and the time dependency
can be analysed by including more historical weather data and more param-
eters, such as precipitation, temperature and wind direction. Interpolating
the weather data can also be of interest. Furthermore, the research can
cover more substation areas. The findings and conclusions drawn are based
on a subset of ten substations in Sweden, and might not apply for other
areas. Outages are predicted on a substation level, and aggregating to a
larger region might increase accuracy as seen in previous research.

Second, other aspects of the methods can be tested such as the countable
response variable for NB. E.ON could then with this variable predict the
areas that are most vulnerable and more efficiently allocate resources. In
addition, the metrics can incorporate the differences in numbers of outages
between the data sets. More complex models can be of interest, such as zero-
inflated negative binomial regression and neural networks. Using a black box
method, such as neural networks, might decrease transparency, but with
access to more data, it might increase the accuracy of the prediction.

Third, the models can be extended to incorporate the outage magnitude
and the number of parallel disturbances. In addition, the presented models
can be visualised by a map with coloured substation areas, where the colour
indicates the future risk of outage in that particular area. This type of
decision support tool would only have a accuracy of 33%, but might help to
reduce the variance in the manual prediction between different VHIs.

Finally, using ensemble methods can increase the performance. This is
because our models perform better at different time periods and wind gust
limits and an ensemble model may combine the best of each of them. To
summarise, a smorgasbord of work for a interested reader to dive into exists.
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Appendix A

Tables

In the following pages, the complete tables for the tests are presented. The
structure of the tables are described in the associated chapters, [6.4H6.6|

Table presents the result for the model comparison metrics in Chap-
ter [6.4) and the numerical values in Chapter for the final models. Only
the three best models, the worst and the VHI model are presented in Chap-

ter [6.4] and and then discussed in Chapter [7.2] and

Table A.1: Result for final models.

Model Method Time Wind Objective Adjusted TPR AUC AUCO0.1 TN FP FN TP
number function objective
function

1 DT 1h 0 2,050,000 85,417 0.050 0.525 0.010 65424 15 19 1
2 DT 6h 0 2,060,000 515,000 0.100 0.595 0.023 10880 26 18 2
3 DT 24h 0 2,280,000 2,280,000 0.200 0.588  0.020 2651 68 16 4
4 NB 1h 0 2,160,000 90,000 0.000 0.734 0.024 65423 16 20 0
5 NB 6h 0 2,320,000 580,000 0.050 0.726  0.028 10864 42 19 1
6 NB 24h 0 2,160,000 2,160,000 0.100 0.647 0.022 2683 36 18 2
7 LOG 1h 0 2,470,000 102,917 0.000 0.736  0.025 65392 47 20 0
8 LOG 6h 0 2,310,000 577,500 0.050 0.726  0.028 10865 41 19 1
9 LOG 24h 0 2,090,000 2,090,000 0.100 0.647 0.022 2690 29 18 2
10 DT 1h 15 350,000 14,583 0.333  0.658 0.034 723 15 2 1
11 DT 6h 15 630,000 157,500 0.500 0.833 0.036 200 43 2 2
12 DT 24h 15 610,000 610,000 0.800 0.706  0.011 91 51 1 4
13 NB 1h 15 420,000 17,500 0.000 0.873 0.047 726 123 0
14 NB 6h 15 480,000 120,000 0.250 0.809  0.036 225 18 3 1
15 NB 24h 15 490,000 490,000 0.400 0.658  0.026 123 19 3 2
16 LOG 1h 15 410,000 17,083 0.000 0.874 0.045 727 1 3 0
17 LOG 6h 15 550,000 137,500 0.000 0.819 0.031 228 15 4 0
18 LOG 24h 15 560,000 560,000 0.200 0.705  0.030 126 16 4 1
VHI VHI 24h 15 400,000 400,000 0.200 0.600 0.024 142 0 4 1
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Table presents the result for the test when the models are developed
based on two different data sets of with wind gusts up to and above 15 m/s,
respectively. In Chapter the mean of each set, [0,15] and (15,00), is
presented and then discussed in Chapter [7.1]

Table A.2: All models used for the wind test.

Method Time Wind Objective Adjusted TPR AUC AUCO0.1 TN FP FN TP
function objective
function

DT 1h [0,15] 6,930,000 288,750 0.014 0.596  0.020 149513 3 69 1
DT 6h [0,15] 5,560,000 1,390,000 0.036  0.589  0.020 24389 16 54 2
DT 24h [0,15] 3,820,000 3,820,000 0.051 0.717 0.024 5777 12 37 2
NB 1h [0,15] 7,600,000 316,667 0.000 0.757 0.023 149456 60 70 O
NB 6h [0,15] 6,150,000 1,537,500 0.000 0.732 0.024 24350 55 56 0
NB 24h [0,15] 4,290,000 4,290,000 0.000 0.667 0.019 5750 39 39 0
LOG 1h [0,15] 7,730,000 322,083 0.000 0.757  0.023 149443 73 70 0
LOG 6h [0,15] 6,190,000 1,547,500 0.000 0.732 0.024 24346 59 56 0
LOG 24h [0,15] 4,250,000 4,250,000 0.000 0.667 0.019 5754 3 39 0
DT 1h (15,00) 4,590,000 191,250 0.453  0.766  0.045 3231 109 35 29
DT 6h (15,00) 3,930,000 982,500 0.556  0.839  0.039 877 113 28 35
DT 24h (15,00) 2,220,000 2,220,000 0.906 0.877  0.039 335 162 6 58
NB 1h (15,00) 6,240,000 260,000 0.109 0.809 0.038 3286 54 57 7
NB 6h (15,00) 5,450,000 1,362,500 0.222 0.796 0.034 935 55 49 14
NB 24h (15,00) 5,130,000 5,130,000 0.281 0.795 0.033 444 53 46 18
LOG 1h (15,00) 5,920,000 246,667 0.156  0.809  0.039 3288 52 54 10
LOG 6h (15,00) 5,510,000 1,377,500 0.206 0.792  0.033 939 51 50 13
LOG 24h (15,00) 5,090,000 5,090,000 0.281 0.795 0.033 448 49 46 18
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Table presents the result for the test when the models are developed
based on two different data sets of substations with the highest and the
lowest numbers of outages, respectively. In Chapter the mean of each set,
OUTAGE and NOT_OUTAGE, is presented and then discussed in Chapter
1

Table A.3: All models used for the substation test.

Method Time Wind Set Objective Adjusted TPR AUC AUCO0.1 TN FP FN TP
function objective
function

DT 1h 0 OUTAGE 7,910,000 329,583 0.211 0.712  0.045 76344 41 75 20
DT 6h 0 OUTAGE 6,470,000 1,617,500 0.494 0.761 0.051 12451 227 42 41
DT 24h 0 OUTAGE 3,320,000 3,320,000 0.657 0.869 0.061 3032 92 24 46
NB 1h 0 OUTAGE 10,030,000 417,917 0.042 0.871 0.054 76293 93 91 4
NB 6h 0 OUTAGE 8,090,000 2,022,500 0.120 0.868 0.056 12599 79 73 10
NB 24h 0 OUTAGE 5,850,000 5,850,000 0.243 0.868 0.058 3069 55 53 17
LOG 1h 0 OUTAGE 9,710,000 404,583 0.074 0.871 0.054 76293 91 88 7
LOG 6h 0 OUTAGE 8,030,000 2,007,500 0.120 0.869 0.056 12602 73 73 10
LOG 24h 0 OUTAGE 6,090,000 6,090,000 0.214 0.868 0.058 3067 59 55 15
DT 1h 15 OUTAGE 3,060,000 127,500 0.426  0.784  0.041 1268 36 27 20
DT 6h 15 OUTAGE 2,320,000 580,000 0.957  0.790  0.033 149 212 2 44
DT 24h 15 OUTAGE 790,000 790,000 1.000 0.870  0.040 91 79 0 45
NB 1h 15 OUTAGE 4,370,000 182,083 0.149 0.756  0.035 1265 37 40 7
NB 6h 15 OUTAGE 3,700,000 925,000 0.283 0.678 0.026 323 40 33 13
NB 24h 15 OUTAGE 3,400,000 3,400,000 0.311  0.768 0.031 145 30 31 14
LOG 1h 15 OUTAGE 4,530,000 188,750 0.146  0.756  0.035 1258 43 41 7
LOG 6h 15 OUTAGE 3,950,000 987,500 0.234 0.678 0.026 329 35 36 11
LOG 24h 15 OUTAGE 3,170,000 3,170,000 0.383 0.768 0.031 144 27 29 18
DT 1h 0 NOT_OUTAGE 3,280,000 136,667 0.256  0.628  0.029 76386 38 29 10
DT 6h 0 NOT_OUTAGE 2,720,000 680,000 0.333  0.733  0.048 12685 32 24 12
DT 24h 0 NOT_OUTAGE 2,590,000 2,590,000 0.242  0.766  0.047 3153 9 25 8
NB 1h 0 NOT_OUTAGE 4,040,000 168,333 0.000 0.803  0.050 76409 14 39 0
NB 6h 0 NOT_OUTAGE 3,650,000 912,500 0.083 0.819 0.047 12684 35 33 3
NB 24h 0 NOT_OUTAGE 3,200,000 3,200,000 0.121  0.798  0.045 3130 30 29 4
LOG 1h 0 NOT_.OUTAGE 4,170,000 173,750 0.026  0.820 0.050 76386 37 38 1
LOG 6h 0 NOT_OUTAGE 3,460,000 865,000 0.139 0.819  0.047 12678 36 31 5
LOG 24h 0 NOT_-OUTAGE 2,990,000 2,990,000 0.182 0.800 0.044 3134 29 27 6
DT 1h 15 NOT_OUTAGE 830,000 34,583 0.813 0.949 0.076 1864 53 3 13
DT 6h 15 NOT_OUTAGE 790,000 197,500 0.647 0.933  0.061 579 19 6 11
DT 24h 15 NOT_OUTAGE 1,070,000 1,070,000 0.474 0.876  0.047 305 7 10 9
NB 1h 15 NOT_OUTAGE 1,510,000 62,917 0.125 0.868 0.055 1906 11 14 2
NB 6h 15 NOT_OUTAGE 1,440,000 360,000 0.235 0.854  0.047 584 14 13 4
NB 24h 15 NOT_-OUTAGE 1,570,000 1,570,000 0.263 0.798 0.034 294 17 14 5
LOG 1h 15 NOT_OUTAGE 1,530,000 63,750 0.125 0.869 0.055 1898 13 14 2
LOG 6h 15 NOT_OUTAGE 1,310,000 327,500 0.294 0.854  0.047 588 1 12 5
LOG 24h 15 NOT_-OUTAGE 1,760,000 1,760,000 0.158 0.799 0.034 295 16 16 3
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Table [A-4] presents the result for the test when the forest and not forest
parameter was included in each model. The mean of each set, FOREST and
NOT_FOREST, is presented and discussed in Chapter [6.6] and

Table A.4: All models used for the forest test.

Method Time Wind Set Objective Adjusted TPR AUC AUCO0.1 TN FP FN TP
function objective
function

DT 1h 0 FOREST 11,660,000 485,833 0.194 0.713  0.044 152723 86 108 26
DT 6h 0 FOREST 9,820,000 2,455,000 0.210 0.735 0.048 25353 42 94 25
DT 24h 0 FOREST 6,250,000 6,250,000 0.612 0.825 0.054 6061 225 40 63
NB 1h 0 FOREST 14,460,000 602,500 0.022  0.858 0.053 152673 136 131 3
NB 6h 0 FOREST 11,750,000 2,937,500 0.101 0.852 0.053 25290 105 107 12
NB 24h 0 FOREST 9,750,000 9,750,000 0.136  0.837  0.052 6201 8 89 14
LOG 1h 0 FOREST 14,140,000 589,167 0.052 0.858 0.053 152665 144 127 7
LOG Gh 0 FOREST 11,990,000 2,997,500 0.084 0.852 0.053 25286 109 109 10
LOG 24h 0 FOREST 9,480,000 9,480,000 0.165 0.837 0.052 6198 88 86 17
DT 1h 15 FOREST 4,570,000 190,417 0.397 0.689  0.037 3144 77T 38 25
DT 6h 15 FOREST 4,220,000 1,055,000 0.397 0.806 0.036 917 42 38 25
DT 24h 15 FOREST 2,230,000 2,230,000 0.984 0.841 0.033 269 213 1 63
NB 1h 15 FOREST 6,330,000 263,750 0.079  0.797  0.038 3168 53 58 5
NB 6h 15 FOREST 5,710,000 1,427,500 0.175 0.764 0.031 908 51 52 11
NB 24h 15 FOREST 5,720,000 5,720,000 0.188 0.782 0.028 430 52 52 12
LOG 1h 15 FOREST 6,520,000 271,667 0.078 0.797  0.038 3155 62 59 5
LOG Gh 15 FOREST 5,700,000 1,425,000 0.148 0.764  0.031 909 50 52 9
LOG 24h 15 FOREST 5,450,000 5,450,000 0.219 0.782  0.028 436 45 50 14
DT 1h 0 NOT_FOREST 11,760,000 490,000 0.187 0.593  0.023 152723 86 109 25
DT 6h 0 NOT_FOREST 9,570,000 2,392,500 0.269 0.735 0.047 25308 87 87 32
DT 24h 0 NOT_FOREST 6,570,000 6,570,000 0.602 0.785 0.052 6039 247 41 62
NB 1h 0 NOT_FOREST 13,700,000 570,833 0.000 0.859 0.054 152779 30 134 0
NB 6h 0 NOT_FOREST 12,240,000 3,060,000 0.067 0.856  0.053 25281 114 111 8
NB 24h 0 NOT_FOREST 9,680,000 9,680,000 0.146  0.842  0.052 6198 88 88 15
LOG 1h 0 NOT_FOREST 14,010,000 583,750 0.045 0.859  0.054 152688 121 128 6
LOG 6h 0 NOT_FOREST 11,880,000 2,970,000 0.092 0.856 0.053 25287 108 108 11
LOG 24h 0 NOT_FOREST 9,860,000 9,860,000 0.126  0.842  0.052 6200 8 90 13
DT 1h 15 NOT_FOREST 4,520,000 188,333 0.460 0.771  0.045 3109 112 34 29
DT 6h 15 NOT_FOREST 3,860,000 965,000 0.556  0.810  0.037 853 106 28 35
DT 24h 15 NOT_FOREST 2,620,000 2,620,000 1.000 0.842 0.037 220 262 0 64
NB 1h 15 NOT_FOREST 6,030,000 251,250 0.127  0.803 0.038 3168 53 55 8
NB 6h 15 NOT_FOREST 5,720,000 1,430,000 0.190 0.773  0.031 897 62 51 12
NB 24h 15 NOT_FOREST 5,210,000 5,210,000 0.266 0.777  0.029 431 51 47 17
LOG 1h 15 NOT_FOREST 6,410,000 267,083 0.094 0.804 0.039 3156 61 58 6
LOG 6h 15 NOT_FOREST 5,590,000 1,397,500 0.190 0.773  0.031 912 49 51 12

LOG 24h 15 NOT_FOREST 5,200,000 5,200,000 0.266 0.777  0.029 432 50 47 17
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Table presents the result for the test when the isolated and not isolated
parameter was included in each model. The mean of each set, ISOLATED
and NOT_ISOLATED, is presented and discussed in Chapter [6.6] and

Table A.5: All models used for the type of line test.

Method Time Wind Set Objective Adjusted TPR AUC AUCO0.1 TN FP FN TP
function objective
function

DT 1h 0 ISOLATED 7,800,000 325,000 0.237 0.593  0.023 152750 40 74 23
DT 6h 0 ISOLATED 6,430,000 1,607,500 0.326  0.736  0.048 25331 43 60 29
DT 24h 0 ISOLATED 4,160,000 4,160,000 0.697 0.786  0.051 6067 146 27 62
NB 1h 0 ISOLATED 9,150,000 381,250 0.000 0.861  0.054 152772 25 89 0
NB Gh 0 ISOLATED 7,770,000 1,942,500 0.134 0.855  0.053 25285 67 71 11
NB 24h 0 ISOLATED 6,540,000 6,540,000 0.211  0.840  0.052 6199 54 60 16
LOG 1h 0 ISOLATED 9,250,000 385,417 0.087 0.860  0.054 152684 85 84 8
LOG Gh 0 ISOLATED 7,740,000 1,935,000 0.157 0.855  0.053 25284 74 70 13
LOG 24h 0 ISOLATED 6,210,000 6,210,000 0.243 0.840  0.052 6194 61 56 18
DT 1h 15 ISOLATED 3,000,000 125,000 0.549 0.756  0.044 3116 70 23 28
DT 6h 15 ISOLATED 2,730,000 682,500 0.558 0.810  0.038 895 43 23 29
DT 24h 15 ISOLATED 1,530,000 1,530,000 1.000 0.834  0.032 253 153 0 64
NB 1h 15 ISOLATED 4,340,000 180,833 0.114  0.800  0.038 3156 4 39 5
NB 6h 15 ISOLATED 3,740,000 935,000 0.277  0.767  0.032 906 34 34 13
NB 24h 15 ISOLATED 3,340,000 3,340,000 0.362 0.776  0.028 430 34 30 17
LOG 1h 15 ISOLATED 6,180,000 257,500 0.109 0.8011 0.0381 3172 48 57 T
LOG Gh 15 ISOLATED 4,220,000 1,055,000 0.178  0.7764 0.0320 906 52 37 8
LOG 24h 15 ISOLATED 5,170,000 5,170,000 0.238  0.7756  0.0288 440 37 48 15
DT 1h 0 NOTISOLATED 7,880,000 328,333 0.255 0.593  0.023 152723 58 73 25
DT 6h 0 NOTISOLATED 6,560,000 1,640,000 0.284 0.735  0.047 25356 26 63 25
DT 24h 0 NOTISOLATED 4,410,000 4,410,000 0.593 0.784  0.053 6150 91 35 51
NB 1h 0 NOTISOLATED 9,170,000 382,083 0.000 0.860  0.054 152773 27 89 0
NB 6h 0 NOTISOLATED 8,050,000 2,012,500 0.110 0.856  0.054 25282 75 73 9
NB 24h 0 NOTISOLATED 6,520,000 6,520,000 0.181  0.843  0.052 6201 62 59 13
LOG 1h 0 NOTISOLATED 9,710,000 404,583 0.043  0.859  0.054 152679 91 88 4
LOG 6h 0 NOTISOLATED 7,980,000 1,995,000 0.133 0.856  0.054 25277 78 72 11
LOG 24h 0 NOTISOLATED 6,820,000 6,820,000 0.162 0.843  0.052 6199 62 62 12
DT 1h 15 NOTISOLATED 3,050,000 127,083 0.558 0.771  0.045 3109 723 29
DT Gh 15 NOTISOLATED 2,710,000 677,500 0.549 0.820  0.037 898 41 23 28
DT 24h 15 NOTISOLATED 1,610,000 1,610,000 0.919 0.835 0.026 316 11 5 57
NB 1h 15 NOTISOLATED 3,950,000 164,583 0.182 0.807  0.039 3166 3 36 8
NB 6h 15 NOTISOLATED 3,930,000 982,500 0.217  0.780  0.031 910 33 36 10
NB 24h 15 NOTISOLATED 3,280,000 3,280,000 0.388 0.785  0.030 437 28 30 19
LOG 1h 15 NOTISOLATED 6,300,000 262,500 0.095 0.8078 0.0391 3163 60 57 6
LOG 6h 15 NOTISOLATED 5,780,000 1,445,000 0.169  0.7800 0.0309 906 38 54 11
LOG 24h 15 NOT_ISOLATED 3,480,000 3,480,000 0.333 0.785  0.031 436 28 32 16
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