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Abstract

This thesis examines multiple ARCH-family models’ volatility forecasting
performance on the London Bullion Market Gold price, the OMXS30, and
the USD/EUR exchange rate. Further, this thesis uses two different time
periods to exploit differences and similarities in the forecast accuracy among
the conditional variance models. The models we examine are the ARCH,
the GARCH, the IGARCH, the EGARCH, and the GJR-GARCH model.
Furthermore, we divide each period into an in-sample and an out-of-sample
period. The models are estimated in the in-sample period and then used
to forecast the volatility in the out-of-sample period. This thesis uses the
squared returns as an unbiased approximation of the latent volatility. The
forecasts are evaluated using two loss functions, the mean absolute error and
the mean squared error. The results indicate a very inconsistent ranking
among the models. None of the models seem superior to the other models,
based on both loss functions, when forecasting the conditional volatility in the
different assets and periods. However, the ARCH model seems to perform
well relative the other models, when forecasting the volatility of the gold
using only the mean absolute error as a tool to evaluate the forecasts.

Keywords: Volatility Forecasting, Conditional Variance, ARCH, GARCH, IGARCH,
EGARCH, GJR-GARCH
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1 Introduction

Modelling and forecasting the volatility is fundamental when pricing financial instru-
ments, calculating measures of risk and hedging against portfolio risk. Many financial
instruments require the future volatility. One example is when pricing an option where
the only unknown variable is the underlying assets’ volatility from now until the exer-
cise date (Hull, 2011). The importance of the volatility leads to an extensive amount
of financial and economic literature within the subject of modelling and forecasting the
volatility in the financial market. Numerous models are developed for the purpose of cap-
turing the behavior of the volatility. Financial data’s volatility often exhibits periods of
turmoil followed by relative tranquil periods (Enders, 2014). To capture these patterns,
Engle (1982) proposes the autoregressive conditional heteroscedasticity (ARCH) model
which has become a standard tool when modelling the conditional volatility. Through
the years, extended versions of the ARCH model are introduced to capture different
features of the volatility. However, the true generating process is not observable and
may differ between different assets (Nelson and Foster, 1995). Consequently, there may
not be a single best model for modelling the volatility.

There are several articles published with the purpose of finding suitable models that
can describe the behavior of the volatility. The majority of these articles focus on
stock indexes and exchange rates. Furthermore, some authors compare these assets and
examine the similarities and the differences of the best fitting volatility models (Poon
and Granger, 2003). To our knowledge, no previous research is comparing the models’
ability to explain the volatility during different periods of time. Hence, this thesis aims
to contribute to the literature by examining this area. We examine three different assets
during two periods. Furthermore, we forecast the daily volatility in these assets and
periods using five different volatility models. The forecasts are evaluated and hence we
exploit the similarities and differences between these models for the different assets and
periods. In this thesis, two main questions are considered. Firstly, if there is any model
that has superior forecast accuracy among the assets. Secondly, if the models with the
highest forecast accuracy differ between the two periods.

In this thesis, we examine the following assets: the London Bullion Market (LBMA) Gold
price, the OMXS30 and the USD/EUR exchange rate. The first period we investigate
covers the timespan January 1995 through December 1999, totaling 1305 observations.
The Second period starts in January 2012 and ends in December 2016, also totaling 1305
observations. Furthermore we forecast the volatility using the ARCH, the GARCH, the
IGARCH, the EGARCH, and the GJR-GARCH model. When estimating these models
we consider two different distributions, the normal distribution and the Student’s t-
distribution. To be able to evaluate our forecasts we divide the two periods into an
in-sample period and an out-of-sample period. The in-sample period is used to examine
the data and estimate the volatility models. Furthermore we use the estimates from the
in-sample periods to perform forecasts on the out-of-sample periods. We then compare
the different models’ forecast accuracy by using two loss functions, the mean absolute
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error (MAE) and the mean squared error (MSE).

Multiple major events affecting the economy such as the terror attacks on September 11
and the financial crisis 2008 have occurred in between our test periods. We believe that
these shocks could affect people’s way to react to future shocks. Hence, this may affect
the behavior of the volatility for the examined assets. Another factor that may have
affected the behavior of the volatility is the availability of information. Information has
become more accessible which may have caused people to react to shocks more rapidly.
Our hypothesis is therefore that the most accurate forecast model may differ between
the two test periods.

The results indicate a very inconsistent ranking among the models. There is no single
best volatility forecasting model in the different assets and periods based on the two loss
functions. However, the results indicate that the GJR-GARCH is always outperformed
by another model for all assets and periods. When only evaluating the forecasts using
the mean absolute error, the ARCH model seems to be one of the better models. The
ARCH model has the highest forecast accuracy for both periods when forecasting the
conditional volatility for the gold. Hence, the choice of a loss function becomes vital and
should depend upon the purpose of the forecasts.

The remainder of this thesis is organized as follows. Section 2 presents relevant previous
research. Section 3 describes the empirical methodology and the theory used throughout
this thesis. Section 4 presents the data and the tests we use to uncover patterns. This
section also includes our approach when transforming the data into a desirable structure
which can be used for estimating the volatility models. Section 5 presents our empir-
ical results together with a coherent analysis. Finally, in Section 6 we summarize and
conclude the results.

2 Previous Research

The importance of modelling the conditional variance in the financial sector has con-
tributed to an extensive empirical research within the topic. Many articles focus on
finding suitable models with the purpose of forecasting the conditional variance. How-
ever, different models may be superior to other models for different forecast purposes.
Consequently, the evaluation process of the forecasted conditional volatility becomes
crucial.

Numerous types of models, more or less sophisticated have been developed in the past
decades for the purpose of modelling the conditional variance. Among these models,
one can find Engle’s (1982) ARCH model and Bollerslev’s (1986) GARCH model. These
models are frequently used, mostly due to their simplicity and capacity to capture the
volatility clustering which often occurs in financial time series data (Enders, 2014).
Hansen and Lunde (2001) compare 330 different ARCH-family models and their ability to
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capture the conditional variance in the daily DM/USD exchange rate and the daily IBM
stock returns. The authors’ purpose is to evaluate the GARCH(1,1) model’s superior
ability to predict the future volatility of the exchange rate and the stock return. The
DM/USD data set consists of the daily spot exchange rate from October 1987 through
September 1993, where the data is divided into an in-sample period and an out-of-sample
period. The out-of-sample period is one year and it is used to compare the different
models’ forecast ability. Furthermore, the in-sample period for the IBM returns spans
the period January 1990 through May 1999. The out-of-sample period for the IBM
returns starts in June 1999 and ends in May 2000. Hansen and Lunde (2001) use intra-
day data to calculate their approximation for the latent volatility. Further, they use six
different loss functions and find no evidence for the GARCH(1,1) model being inferior
in terms of capturing the volatility of the exchange rate. However, in terms of capturing
the volatility for the IBM stock returns, they find the GARCH(1,1) model to be inferior
to the other models. Hansen and Lunde (2001) also conclude that the IGARCH model
performs poorly, using the MAE and MSE as evaluation criterion, when forecasting the
volatility of the IBM stock return. Apart from this, the authors’ findings also indicate
a more accurate forecast performance for the EGARCH model, in the IBM stock, when
the error terms are assumed to follow the Student’s t-distribution rather than the normal
distribution.

Mckenzie and Mitchell (2002) investigate 17 currency pairs using 14 different ARCH-
family models. They also find the GARCH(1,1) model to be suitable when modelling
the volatility in exchange rates. However, they further argue that models accounting
for leverage effects may perform better if there exist any asymmetry in the market’s
response to shocks. Other researchers restrict themselves to fewer models. Among them
we find Franses and Van Dijk (1996). They examine the GARCH model together with
two more exotic models, the Quadratic-GARCH and GJR-GARCH model. The authors’
explore the three models’ ability to forecast the weekly stock market volatility between
1990 and 1994. Their findings suggest that the GJR-GARCH model may not be an
appropriate model to use when forecasting the volatility in exchange rates.

There exist a larger amount of published articles focusing on modelling the volatility in
exchange rates and equity indexes compared to commodities. Trück and Lian (2012)
investigate the volatility dynamic of the gold market. Their article explores different
models that can be used to predict the future volatility of the gold return. To find an
appropriate model for this, they implement three models from the ARCH-family. The
forecasts are carried out over an out-of-sample period. Furthermore to evaluate the
forecasts they consider three different loss functions, the mean squared error, the mean
absolute error and the root mean squared error. The error statistics are calculated using
the squared returns as a proxy for the latent volatility. However, their out-of-sample
results are inconsistent. Hence they conclude that the model specification such as the
lag order is crucial when specifying the models.
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3 Method and Theory

3.1 In-sample and Out-of-sample

There is no general guideline on how a given data set should be divided into in-sample
and out-of-sample subsets. Aronson (2011) argues that a common technique is to split
your sample into two subsets. In this thesis we use this approach and divide our sample
into one training set and one validation set, also called an in-sample and an out-of-
sample period. The parameters for the conditional variance models are estimated in our
in-sample period. Further, the estimated parameters are used to forecast the volatility
in the out-of-sample period. The two periods we examine in this thesis consist of data
over five years each. The length of Hansen and Lunde’s (2001), and Andersen and
Bollerslev’s (1998) data is similar to our data length. They use a one-year forecast
horizon and hence this is used in our thesis too. This leaves us a four-year in-sample
period. Consequently, the in-sample period for our first period covers the timespan,
January 1995 to December 1998 and the out-of-sample period starts in January 1999
and ends in December 1999. Furthermore, the second period’s in-sample consists of
data from January 2012 to December 2015 and the out-of-sample consists of data from
January 2016 to December 2016.

3.2 Stationarity

A common assumption for a sequence of variables is that the sequence is independent.
This might however not always be the case, especially when working with time series
data. A stochastic process is said to be strictly stationary if its joint probability function
is invariant over time. However, this condition is difficult to prove empirically. Hence,
a weaker condition is often assumed. If a stochastic process’s autocovariance, mean
and variance do not depend on time it is said to be covariance stationary. Without
stationarity, it would be hard to make inference about sample statistics, and the accuracy
will vary at different time points. In this thesis, we use the Augmented Dickey-fuller
test (ADF) to test for stationarity. The ADF tests the null hypothesis of a unit root
in a time series sample. If the time series exhibits a unit root process it is said to be
non-stationary (Tsay, 2001).

3.3 Log returns

Prices such as exchange rates, stock indexes, and commodities can typically be described
by a unit root process, implying non-stationarity. This is also true for the prices exam-
ined in this thesis, see Appendix 8.1. A common approach is therefore to model the
returns rather than the actual price itself. Meucci (2005) describes that returns are
more invariant compared to prices. Additionally, Tsay (2001) argues that the statistical
properties of the continuously compounded returns, also called log returns, are more
tractable compared to the simple net returns. The log return is defined as

rt = ln pt − ln pt−1 (3.1)
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where pt denotes the price of the asset at time t. Brownlees, Engle, and Kelly (2011) and
Tse (1998) among others use the log returns when estimating the volatility for different
financial assets. Hence, the log return is also used in this thesis.

3.4 Autocorrelation function

Before estimating a conditional variance model to our data, we need to examine the
properties of the data. In contrast to conventional sampling data, time series data are
ordered. Hence, there might exist temporal patterns. Further, the residuals need to
be described by a white noise process when estimating the conditional variance models.
Any structure within the residuals therefore needs to be modelled separately. One way
to do this is to include a mean equation in the conditional variance models which re-
moves the structure in the residual, making it a white noise process (Tsay, 2001). The
autocorrelation function (ACF) is commonly used as a tool to investigate these patterns.
The ACF illustrates the correlation between data points by different time lags. The au-
tocorrelation for the returns’ residuals is calculated by Equation 3.2, where k denotes
the number of lags (Enders, 2014).

ρk =
cov(εt, εt−k)√
var(εt)var(εt−k)

(3.2)

3.5 Ljung-Box test

The autocorrelation function is used to get a visual overview of the structure in the
returns’ residuals. To further assure us if there exist any autocorrelation in the residuals
we perform a Ljung-Box test. The Ljung-Box test tests for autocorrelation for multiple
lags jointly. The null hypothesis is that autocorrelation up to lag k equal zero and
the Ljung-Box Q-statistics is calculated by Equation 3.3, where n denotes the sample
size, ρ denotes the autocorrelation at lag k, and h is the number of lags being tested
Enders(2014).

QLB = n(n+ 2)
h∑
k

ρ2k
n− k

(3.3)

3.6 Approximation for the volatility

As mentioned in the introduction, the volatility is central in many asset pricing models.
However, the volatility is not observed and hence it needs to be approximated. Conse-
quently, one has to rely on proxies when forecasting the volatility. This makes the choice
of a good proxy for the volatility crucial. In finance, the volatility is often approximated
using the sample standard deviation or the sample variance. The sample variance is
calculated by Equation 3.4 and the sample standard deviation is obtained by taking the
square root of Equation 3.4.

σ̂2t =
1

n− 1

n∑
t=1

(rt − r̄t)2 (3.4)

10



Using these two approximations is not entirely satisfactory when the sample is small.
Instead, an alternative approach is to use the daily squared returns, calculated from the
assets closing prices. The daily squared returns can be justified as a proxy since they are
an unbiased estimator of the volatility. However, despite this fact, daily squared returns
are an extremely noisy proxy. A noisy proxy for the latent volatility may lead to a small
difference between the estimated forecasts (Poon and Granger, 2003).

The increased availability of high-frequency data has made it possible for new measures
to evolve. Andersen and Bollerslev (1998) suggest an alternative proxy for the volatility
based on intra-day returns. This measure has become frequently used within finance
and has been shown to perform well on out–of-sample data (Poon and Granger, 2003).
However such data is very time consuming to process. Hence, the squared returns are
used as a proxy for volatility in this thesis.

3.7 Engle’s ARCH test

The residuals for the returns can be uncorrelated and still exhibit conditional het-
eroscedasticity, meaning that the squared residuals are autocorrelated. If the squared
residuals are autocorrelated, they are said to have an ARCH effect. Autocorrelated
squared residuals implies that the ARCH-family models may be appropriate to use when
modelling the conditional variance of the residuals. Furthermore, an Engle’s ARCH test
is used to examine if the residuals exhibit any ARCH effect with the null hypothesis of
no ARCH effects in the residuals (Engle, 1982).

3.8 Conditional volatility models

In conventional econometric models, the variance of the error term is often assumed to
be constant. However, this is not always an appropriate assumption. Financial time
series, including the ones we examine, often exhibit periods of unusually high volatility
followed by periods of relative tranquil volatility, also known as volatility clustering.
Suppose that the returns can be described by the following process

rt = µ+ εt. (3.5)

Further, the returns’ innovation process for the conditional variance models is shown in
Equation 3.6, where vt is a white-noise process such that vt ∼ iid (0, 1) and ht is the
conditional variance at time t (Enders, 2014).

εt = vt
√
ht (3.6)

In this thesis, five different models from the ARCH-family are used to estimate and
forecast the conditional variance, ht.
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3.8.1 ARCH Model

When modelling the volatility of a time series containing heteroscedasticity one may use
the autoregressive conditional heteroscedasticity (ARCH) –family models as a tool to
capture these effects. Robert F. Engle (1982) develops the ARCH model, which aims to
model the conditional variance, see Equation 3.6, and the ARCH(1) model is defined in
Equation 3.7.

ht = α0 + α1ε
2
t−1 (3.7)

To ensure a nonnegative conditional variance, restrictions such as α0 > 0 and α1 ≥ 0 are
used. The conditional variance of an ARCH(1) model depends on its previous squared
error. A problem with the ARCH(1) model is that to capture the effect of volatility
clustering, a large number of lags are often required. Furthermore, a high number of
lags may lead to the model not being parsimonious (Enders, 2014).

3.8.2 GARCH Model

Bollerslev (1986) extends the ARCH model by introducing a technique that allows the
conditional variance to depend upon its own lags, known as the Generalized ARCH
(GARCH) model. The number of ARCH lags is often reduced by enabling the conditional
variance to depend on its previous values. The fewer lags make the model easier to
identify as well as easier to estimate. The GARCH(1,1) model is defined in Equation
3.8.

ht = α0 + α1ε
2
t−1 + β1ht−1 (3.8)

One can easily observe that if β1 is zero, then Equation 3.8 is equal to the ARCH(1)
model in Equation 3.7. To guarantee a nonnegative conditional variance, Bollerslev
(1986) imposes restrictions on the coefficients such as, α0 > 0, α1 ≥ 0, β1 ≥ 0, and
α1 + β1 < 1 (Bollerslev, 1986).

3.8.3 IGARCH Model

It is often the the case that the sum of α1 and β1 is close to one when estimating
a GARCH(1,1) model on financial time series data. A GARCH(1,1) model with the
restrictions such that α1 + β1 = 1 and 0 < β1 < 1 is called an Integrated GARCH
model (IGARCH). These restrictions allow the volatility shocks to be permanent. In an
IGARCH model, the process is forced to act as a unit root process (Enders, 2014). Nelson
(1990) argues that the IGARCH model can yield a very parsimonious representation of
the returns distribution. The IGARCH(1,1) model is defined in Equation 3.9 (Enders,
2014).

ht = α0 + (1− β1) ε2t−1 + β1ht−1 (3.9)
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3.8.4 EGARCH model

A substantial disadvantage of the ARCH, the GARCH, and the IGARCH models is their
lack of capturing asymmetries in the volatility with respect to the sign of past shocks. An
interesting feature in financial volatility is that it usually behaves differently depending
on whether the shock is positive or negative. Negative shocks tend to have a greater
impact on the volatility compared to positive shocks. This is often called leverage effect
(Enders, 2014). Nelson (1991) develops the Exponential GARCH (EGARCH) model,
which allows for asymmetric effects and therefore solves one of the main drawbacks of
the ARCH, the GARCH, and the IGARCH models. The EGARCH(1,1) model is defined
as

ln (ht) = α0 + α1
εt−1√
ht−1

+ γ1

∣∣∣∣∣ εt−1√
ht−1

∣∣∣∣∣+ β1 ln (ht−1) (3.10)

where the conditional variance is measured in a log-linear form. Furthermore, there is
no need for positive restrictions on the coefficients since the implied value of ht is always
positive. As mentioned above, the main advantage of the EGARCH model compared
to the ARCH, the IGARCH, and the GARCH model is the allowance for asymmetric
effects. If εt−1√

ht−1
is positive, then the effect of the shock onto the log conditional variance

is α1+γ1. In contrast, if εt−1√
ht−1

is negative, the effect of the shock onto the log conditional

variance is γ1 − α1 (Nelson 1991).

3.8.5 GJR-GARCH Model

Glosten, Jagannathan, and Runkle (1993) discover an alternative way to model asym-
metric effects in asset returns, the GJR-GARCH model. The model allows positive and
negative returns to have different impact on the conditional variance, which makes it
similar to the EGARCH model. The GJR-GARCH is defined in Equation 3.11.

ht = α0 + (α1 + γ1It−1) ε
2
t−1 + β1ht−1 (3.11)

The parameters α0, α1, γ1, and, β1 need to be equal or greater than zero to guarantee a
non-negative variance. Further, It−1 is an indicator function and it is defined in Equation
3.12 (Glosten, Jagannathan and Runkle, 1993).

It−1 :=

{
0 if εt−1 ≥ 0
1 if εt−1 < 0

(3.12)

3.9 The distribution of vt

When estimating the conditional variance models using the maximum likelihood one
must also make an assumption regarding the distribution of vt, see Equation 3.6. The
most common approach is to assume that vt follows a normal distribution. However,
when using financial data, this assumption may be violated. It is often the case that the
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distribution of financial data exhibits fatter tails than the normal distribution (Bradley
and Taqqu, 2003). In such case, a distribution featuring higher kurtosis might be more
appropriate. Student’s t-distribution is symmetric and has a similar shape as the normal
distribution. However, the Student’s t-distribution is characterized by having heavier
tails compared to the normal distribution (Zivot, 2009). Hence, in this thesis, we esti-
mate the parameters in the conditional variance models using both distributions. The
probability density function for the normal distribution is defined as

f (x) =
1√

2σ2π
exp

(
−(x− µ)2

2σ2

)
(3.13)

whereas the probability density function for the Student’s t-distribution is defined as

f (x) =
Γ
(
df+1
2

)
√
dfπΓ

(
df
2

)(1 +
x2

df

)− df+1
2

(3.14)

where df denotes the number of degrees of freedom and Γ denotes the gamma function:

Γ (x) =
∞
∫
0
yx−1e−ydy (Miller and Miller, 2004).

3.10 Q-Q plot and test for normality

A common approach to compare different distributions in statistics is to plot the dis-
tributions’ quantiles in a quantile-quantile (q-q) plot. As mentioned in Section 3.9 we
estimate the conditional variance models using two different assumptions on vt, the nor-
mal distribution and the Student’s t-distribution. Consequently, we use the q-q plot to
examine if the returns’ residuals for the different assets in the in-sample periods fit these
distributions. The quantiles of the residuals are plotted on the y-axis, and the quantiles
of the compared distribution are plotted on the x-axis. If the two distributions being
compared are similar, the points in the q-q plot will be formed as a linear line. We also
perform a Jarque-Bera test which is a goodness of fit test. The Jarque-Bera test tests if
the residuals exhibit skewness and kurtosis matching a normal distribution. If the null
hypothesis is rejected then one can conclude that the residuals do not follow the normal
distribution (Keya and Rahmatullah, 2016).

3.11 Maximum Likelihood Estimation

A common method to estimate the parameters in the conditional variance models is
the maximum likelihood method. The first step in the maximum likelihood estima-
tion is to form the likelihood function. Let θ be a vector of k unknown parameters
to be estimated and f(xt|It−1) a conditional probability density function of xt where
It−1 denotes the information available at time t − 1. If f (xt|It−1) = f(xt), then
the joint density function, f(x1, x2 . . . xT |θ), can be defined as f (x1, x2 . . . xT |θ) =
f(xt|It−1) f(xt−1|It−2) . . . f (x1). The likelihood function, L(θ|x1, x2, . . . , xT ), is the
same function as the joint probability density but instead of seeing it as a function of
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the data given a set of parameters the likelihood function is viewed as a function of the
parameters given a set of data. Hence, the likelihood function is defined in Equation
3.15.

L (θ|x1, x2, . . . , xT ) =
T∏
t=1

f(xt|It−1) (3.15)

θ̂ML is the argument that maximizes the likelihood function. For simplicity, one often
uses the loglikelihood function rather than the likelihood function itself. Due to the fact
that the loglikelihood function just being a monotonic transformation of the likelihood
function, the argument that maximizes the likelihood function is also the one maximizing
the loglikelihood function. The exact form of the loglikelihood function depends on the
distribution of vt, assuming vt to follow the normal distribution generates the following
loglikelihood function when estimating the conditional variance models

lnL = −T
2

ln (2π)− 1

2

T∑
t=1

lnht −
1

2

T∑
t=1

ε2t
ht

(3.16)

where ht is being replaced depending on which conditional variance model being esti-
mated. When assuming vt to follow the Student’s t-distribution rather than the normal
distribution the loglikelihood function is defined in Equation 3.17, where df > 2.

lnL = T ln

 Γ
(
df+1
2

)
√
π (df − 2)Γ

(
df
2

)
− 1

2

T∑
t=1

lnht −
df + 1

2

T∑
t=1

ln

[
1 +

ε2t
ht (df − 2)

]
(3.17)

If the maximum likelihood function is misspecified in terms of distribution but can
be argued to be asymptotically consistent it is sometimes called the Quasi-maximum
likelihood estimator. It can then be shown that the estimates are asymptotically normal
distributed (Verbeek, 2004).

3.12 Forecast Procedure

As described in Section 3.1, the parameters for the conditional variance models are
estimated in the in-sample periods. Further, the estimated models are used to forecast
the daily conditional volatility in the out-of-sample period. Hence, the parameters are
only estimated once for each model and period. These estimates are then used for
all forecasts in the out-of-sample period. However, the GARCH, the IGARCH, the
EGARCH, and the GJR-GARCH model require an initial value for ht. Zivot (2009)
argues that a common approach is to use the unconditional variance for the in-sample
period. Hence, this method is used in this thesis as well.
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3.13 Forecast Evaluation

A common approach when evaluating forecasts is to use a loss function. The loss function
compares the estimated forecast with the true value where the objective is to minimize
the forecast error. There exist a broad range of loss functions, different loss functions
are good for different purposes. Hence, the choice of loss function when evaluating
forecasts should depend upon the purpose of the forecasts. Patton (2011) suggests the
mean squared error (MSE) as a great loss function when evaluating the forecasts of the
volatility. Patton (2011) describes the MSE to have a consistent rank among models
disregarding the choice of proxy for the volatility. Hence, the MSE is used as a tool to
evaluate the forecasts in this thesis. The formula for the MSE is shown in Equation 3.18
where ĥt denotes the forecasted volatility and ht denotes the approximated volatility.

MSE =
1

n

n∑
t=1

(
ĥt − ht

)2
(3.18)

Vilhelmsson (2006) characterizes the MSE as being sensitive to outliers. Furthermore,
Vilhelmsson (2006) argues that the mean absolute error (MAE) is more robust to outliers.
The in-sample data in our test periods includes some outliers which gives us incentives
to believe that the forecast period includes some as well. Thus, we also include the MAE
when evaluating our forecasts. Equation 3.19 illustrates the formula for the MAE.

MAE =
1

n

n∑
t=1

∣∣∣ĥt − ht∣∣∣ (3.19)

4 Data

4.1 Gold

The London Bullion Market (LBMA) Gold price is obtained through Thomson Reuters
Datastream. Further, the gold price is measured in USD per troy ounce. Figure 4.1
illustrates the price trend from January 1995 to December 2016, including the in-sample
and out-of-sample periods. The red color denotes Period 1 and the blue color denotes
Period 2. The black color represents the data in between our test periods and it is not
used in this thesis.
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Figure 4.1: The daily London Bullion Market Gold price in USD per troy ounce.

As mentioned in Section 3.3, we are interested in modelling the volatility of the returns
rather than the volatility of the actual closing price. Figure 4.2 illustrates the daily
returns for the in-sample period where the upper plot represents the in-sample period
for Period 1 and the lower plot represents the in-sample period for Period 2. By the looks
of the graphs, one may observe that the returns exhibit turbulent periods followed by
relative tranquil periods also known as a clustering effect. It appears as if the clustering
effect is more noticeable in Period 2. The two return processes also seem to be mean
reverting with a mean close to zero.

Figure 4.2: The two graphs illustrate the daily returns of the gold in percent. The upper graph represents
Period 1 and the lower graph represents Period 2.

The next step is to investigate the process of the residuals from the returns. As mentioned
in section 3.4 we use the ACF to exploit the structure of the residuals. Figure 4.3 shows
the autocorrelation function (ACF) for the residuals in the two in-sample periods. The
upper plot represents the ACF for Period 1 and the lower plot represents the ACF
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for Period 2. The ACF suggests that the residuals may be described by a white noise
process, for both periods. This is supported by a Ljung-Box test for the residuals in
which the null hypothesis of serial independence cannot be rejected, see Appendix 8.2.

Figure 4.3: The two plots show the sample autocorrelations for the in-sample residuals from the gold
returns. The upper plot corresponds to Period 1 whereas the lower plot corresponds to Period
2. The blue lines denote the confidence interval at 95 percent.

As mentioned in Section 3.6, the approximation for the volatility in this thesis is the
squared residuals. One can therefore use the ACF for the squared residuals as a tool
to examine whether the volatility in the in-sample period exhibits any clustering effect.
Figure 4.4 shows the sample ACF for squared residuals in the two in-sample periods.
The upper plot represents the ACF for the squared residuals in Period 1 and it clearly
shows that the squared residuals are autocorrelated, implying that the volatility exhibits
clustering effect. The lower plot illustrates the ACF for Period 2 which also demonstrates
the existence for autocorrelation, although only for the first lag. This is also confirmed
by Engle’s ARCH test which is presented in Appendix 8.3.
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Figure 4.4: The two plots show the sample autocorrelations for the in-sample squared residuals from the
gold returns. The upper plot corresponds to Period 1 whereas the lower plot corresponds to
Period 2. The blue lines denote the confidence interval at 95 percent.

As described in Section 3.9 the parameters are estimated using two different distribu-
tions, the normal distribution and the Student’s t-distribution. Figure 4.5 shows the
residuals in the in-sample periods plotted against the normal distribution in a q-q plot.
For both periods, the residuals seem to exhibit heavier tails than the normal distribu-
tion which goes along with the theory of the distribution for financial data described in
Section 3.9. Hence, the quantiles of the residuals do not seem to match the quantiles of
the normal distribution. This is also confirmed by a Jarque-Bera test where the null hy-
pothesis that the distribution of the residuals follows the normal distribution is rejected,
see Appendix 8.4.

Figure 4.5: The left plot illustrates a q-q plot of the residuals from the gold returns in Period 1 against
the normal distribution. The right plot shows the residuals from the gold returns in Period 2
against the normal distribution.
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Figure 4.6 shows the quantiles of the residuals in the in-sample periods plotted against
the quantiles of the Student’s t-distribution in a q-q plot. One may observe that the
quantiles from the residuals, for both periods, fit the quantiles from the Student’s t-
distribution in a more suitable way than the normal distribution since they lay closer to
the linear red line in the two plots.

Figure 4.6: The left plot shows a q-q plot of the residuals from the gold returns in Period 1 against the
Student’s t-distribution with three degrees of freedom. The right plot shows a q-q plot of the
residuals from the gold returns in Period 2 against the Student’s t-distribution with also three
degrees of freedom.

4.2 OMXS30

The data for the OMXS30 is obtained through Thomson Reuters Datastream. The
OMXS30 consists of the 30 most traded stocks on the Stockholm Stock Exchange. Fig-
ure 4.7 shows the daily closing price, in USD, for the OMXS30 from January 1995
through December 2016, including the in-sample and out-of-sample periods. The red
color denotes Period 1 and the blue color Period 2. The black color represents the data
in between our test periods and it is not used in this thesis.

Figure 4.7: The daily closing price for the OMSX30 in USD.
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The same procedure as in Section 4.1 is used to investigate the data for the OMXS30.
The daily returns for the two in-sample periods are plotted in Figure 4.8. This gives an
overview of the behavior of the two return processes. The upper plot represents Period
1 and the lower plot represents Period 2. One can observe mean reversion, where the
means seem to be close to zero. One can also notice clustering effects, where Period 1
seems to exhibit more turbulence at the end of the period.

Figure 4.8: The two graphs illustrates the daily returns of the OMXS30 in percent where the upper graph
represents Period 1 and the lower graph represents Period 2.

Furthermore, we plot the ACF for both periods to investigate whether the residuals from
the returns can be described by a white noise process. Figure 4.9 shows the ACF for the
residuals from the returns in the two in-sample periods. The upper plot represents Period
1 and the lower plot Period 2. The ACF for Period 1 suggests that the residuals may
exhibit autocorrelation for lags greater than four. This is however rejected by the Ljung-
Box test where we cannot reject the null hypothesis of serial independence, see Appendix
8.2. Consequently, we assume that the residuals for Period 1 is described by a white noise
process. The ACF for Period 2 suggests that the residuals may exhibit autocorrelation
for lag one, which possible could be described by an autoregressive process of order one.
The Ljung-Box test confirms that the residuals for Period 2 exhibit autocorrelation, see
Appendix 8.2.
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Figure 4.9: The two plots show the sample autocorrelation for the in-sample residuals from the return.
The upper plot corresponds to Period 1 whereas the lower plot corresponds to Period 2. The
blue lines denote the confidence interval at 95 percent.

The ACF and the Ljung-Box test indicate that the returns for Period 2 may not be de-
scribed by only an intercept and an error term as in Equation 3.5. Hence, the structure
in the residuals needs to be modelled separately before estimating the conditional vari-
ance models. We succeed in eliminating the structure in the residuals by describing the
returns with an autoregressive process of order one, see Equation 4.1. Thus the residuals
can now be described by a white noise process. See Appendix 8.2, 8.3 and 8.5 for the
results from a Ljung-Box test, ACF of the residuals and the estimated coefficients.

rt = α0 + α1rt−1 + εt (4.1)

The ACF for the squared residuals is plotted in Figure 4.10 to examine whether the
volatility exhibits any clustering effect. Both the upper plot, Period 1 and the lower
plot, Period 2, show that the squared returns, our approximate for the volatility, are
autocorrelated. Hence there exist clustering effects in the volatility for the two in-sample
periods. This is also confirmed by Engle’s ARCH test which is presented in Appendix
8.3.
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Figure 4.10: The two plots show the sample autocorrelation for the in-sample squared residuals from the
return. The upper plot corresponds to Period 1 whereas the lower plot corresponds to Period
2. The blue lines denote the confidence interval at 95 percent

To examine the distribution of the residuals we use the q-q plot. Figure 4.11 shows
the residuals from the OMSX30’s returns plotted against the normal distribution. The
distributions for each period have heavier tails compared to the normal distribution,
and it seems like the residuals for Period 1 may have heavier tails than the residuals
for Period 2. The null hypothesis in the Jarque-Bera test is rejected for both periods,
meaning that the residuals do not follow the normal distribution, see Appendix 8.4.

Figure 4.11: The left plot shows a q-q plot of the residuals from the OMXS30’s returns in Period 1 against
the Student’s t-distribution with three degrees of freedom. The right plot shows a q-q plot
of the residuals from the OMXS30’s returns in Period 2 against the Student’s t-distribution
with also three degrees of freedom.

Figure 4.12 illustrates the residuals in the in-sample periods plotted against the Student’s
t-distribution in a q-q plot. The residuals, for both periods, seem to have lighter tails
than the Student’s t-distribution. However, the distributions of the residuals seem to be
closer to the Student’s t-distribution compared to the normal distribution.
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Figure 4.12: The left plot shows a q-q plot of the residuals from the OMXS30’s returns in Period 1 against
the Student’s t-distribution with three degrees of freedom. The right plot shows a q-q plot
of the residuals from the OMXS30’s returns in Period 2 against the Student’s t-distribution
with also three degrees of freedom.

4.3 USD/EUR

The data is obtained through Thomson Reuters Datastream and consists of the daily
closing price of the exchange rate USD/EUR. Figure 4.13 shows the daily closing price
for the USD/EUR exchange rate from January 1995 through December 2016, including
both in-sample and out-of-sample periods. The red color represents Period 1 and the
blue color represents Period 2. The black color represents the data in between our test
periods and it is not used in this thesis.

Figure 4.13: The daily closing price for the USD/EUR exchange rate.

The daily returns for the USD/EUR exchange rate for the two period’s in-sample periods
are presented in Figure 4.14. One can observe periods of turbulence followed by relative
calm periods. The mean seems to be close to zero for both periods. The returns for the
two periods also seem to be mean reverting.
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Figure 4.14: The two graphs illustrates the daily returns of the USD/EUR exchange rate in percent where
the upper graph represents Period 1 and the lower graph Period 2.

We then follow the same procedure as for the two previously indexes and plot the ACF
for both periods to examine if there is any structure left in the residuals or if they can be
described by white noise processes. Figure 4.15 illustrates the ACF for the residuals in
the two in-sample periods. The two plots indicate that the residuals, for both periods,
may be described by white noise processes. This is also confirmed by a Ljung-Box test
for the residuals in which the null hypothesis of serial independence cannot be rejected,
see Appendix 8.2.

Figure 4.15: The two plots show the sample autocorrelation for the in-sample residuals from the return.
The upper plot corresponds to Period 1 whereas the lower plot corresponds to Period 2. The
blue lines denote the confidence interval at 95 percent.

Figure 4.16 shows the ACF for the squared residuals. The ACF suggests that the
volatility for both periods exhibit autocorrelation, hence there exist clustering in the
volatility. The clustering effect is also confirmed by Engle’s ARCH test which is presented
in Appendix 8.3.
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Figure 4.16: The two plots show the sample autocorrelation for the in-sample squared residuals from the
return. The upper plot corresponds to Period 1 whereas the lower plot corresponds to Period
2. The blue lines denote the confidence interval at 95 percent.

The distribution of the residuals is examined in the same way as for the other two
indexes. Starting with a q-q plot where the residuals are plotted against the normal
distribution which is illustrated in Figure 4.17. The distributions of the residuals, for
both periods, seem to have fatter tails than the normal distribution. Furthermore, the
null hypothesis that the distributions of the residuals follow the normal distribution is
rejected for both periods, see Appendix 8.4.

Figure 4.17: The left plot shows a q-q plot of the residuals from the USD/EUR’s returns in Period 1
against the Student’s t-distribution with three degrees of freedom. The right plot shows a
q-q plot of the residuals from the USD/EUR’s returns in Period 2 against the Student’s
t-distribution with also three degrees of freedom.

Figure 4.18 shows the residuals in the in-sample periods plotted against the Student’s
t-distribution in a q-q plot. The distributions of the residuals seem to be similar to the
distribution of the returns’ residuals for the OMXS30 and the gold. They seem to fit
the Student’s t-distribution better than the normal distribution even though it appears
as if they exhibit lighter tails compared to the Student’s t-distribution.
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Figure 4.18: The left plot shows a q-q plot of the residuals from the USD/EUR’s returns in Period 1
against the Student’s t-distribution with three degrees of freedom. The right plot shows a
q-q plot of the residuals from the USD/EUR’s returns in Period 2 against the Student’s
t-distribution with also three degrees of freedom.

5 Empirical Results and Analysis

5.1 Parameter Estimation

The models are evaluated based on their out-of-sample forecast accuracy rather than
their in-sample fit. Hence, insignificant parameters and violated restrictions for the
models are not as important as if we would examine the models’ in-sample fit. However,
such models may indicate a poor out-of-sample performance which may be seen when
evaluating the forecasts.

5.1.1 Gold

Table 5.1 and Table 5.2 summarize the estimated parameters in the two in-sample peri-
ods. In Period 1, the estimated α1 in the ARCH model is quite high using the Student’s
t-distribution compared to the same parameters in the ARCH model using the normal
distribution. A high α1 in the ARCH model implies that a shock in the current period
will have a large effect in the next period when forecasting the conditional volatility. One
can also observe that the GARCH model, in Period 1 using the Student’s t-distribution,
violates its restrictions since the sum of α1 and β1 is greater than one. Further, the sum
of α1 and β1 for the rest of the GARCH models are close to unity. This indicates that the
conditional volatility is very persistent and therefore the effect of a shock will show very
little tendency to dissipate. Furthermore, the leverage effects in the EGARCH models
are higher in Period 2 compared to Period 1. However, in both periods and distributions,
the estimated leverage effects for the GJR-GARCH and the EGARCH model indicate
similar effects; a negative shock will increase the volatility for the next period more than
a positive shock. The difference between the estimates when assuming the two different
distributions are in general quite small for the two periods. One may also observe that
the ARCH effect in the models is very small compared to the GARCH effect. This
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implies that the effect of a shock will have little impact on the next period’s volatility.

Gold (Period 1)

ARCH(1) normal dist. ht = 2.8300E-05 + 0.1092ε2t−1
ARCH(1) t-dist. ht = 3.7000E-05 + 0.6509ε2t−1

GARCH(1,1) normal dist. ht = 1.9600E-07 + 0.0495ε2t−1 + 0.9457ht−1
GARCH(1,1) t-dist. ht = 3.4600E-07 + 0.1179ε2t−1 + 0.8943ht−1

IGARCH(1,1) normal dist. ht = (1− 0.9618)ε2t−1 + 0.9618ht−1
IGARCH(1,1) t-dist. ht = (1− 1.0026)ε2t−1 + 1.0026ht−1

EGARCH(1,1) normal dist. ln(ht) = −0.2647− 0.0046
εt−1√
ht−1

+ 0.1272| εt−1√
ht−1
|+ 0.9834ln(ht−1)

EGARCH(1,1) t-dist. ln(ht) = −0.4070− 0.0102
εt−1√
ht−1

+ 0.2768| εt−1√
ht−1
|+ 0.9784ln(ht−1)

GJRGARCH(1,1) normal dist. ht = 2.0000E-07 + (0.0438 + 0.0114It−1)ε
2
t−1 + 0.9456ht−1

GJRGARCH(1,1) t-dist. ht = 3.6100E-07 + (0.0871 + 0.0282It−1)ε
2
t−1 + 0.8988ht−1

Table 5.1: Period 1’s estimated parameters in the conditional variance models for the gold. The corre-
sponding p-values are presented in Appendix 8.7.

Gold (Period 2)

ARCH(1) normal dist. ht = 9.2500E-05 + 0.0996ε2t−1
ARCH(1) t-dist. ht = 0.0001 + 0.0272ε2t−1

GARCH(1,1) normal dist. ht = 3.6400E-06 + 0.0507ε2t−1 + 0.9164ht−1
GARCH(1,1) t-dist. ht = 1.1100E-06 + 0.0175ε2t−1 + 0.9724ht−1

IGARCH(1,1) normal dist. ht = (1− 1.0007)ε2t−1 + 1.0007ht−1
IGARCH(1,1) t-dist. ht = (1− 0.9826)ε2t−1 + 0.9826ht−1

EGARCH(1,1) normal dist. ln(ht) = −0.7101− 0.0863
εt−1√
ht−1

+ 0.1209| εt−1√
ht−1
|+ 0.9324ln(ht−1)

EGARCH(1,1) t-dist. ln(ht) = −7.2096− 0.1702
εt−1√
ht−1

− 0.1194| εt−1√
ht−1
|+ 0.1987ln(ht−1)

GJRGARCH(1,1) normal dist. ht = 7.7282E-06 + (0.0020 + 0.0920It−1)ε
2
t−1 + 0.8763ht−1

GJRGARCH(1,1) t-dist. ht = 2.2800E-06 + (0.0272 + 0.0013It−1)ε
2
t−1 + 0.9570ht−1

Table 5.2: Period 2’s estimated parameters in the conditional variance models for the gold. The corre-
sponding p-values are presented in Appendix 8.7.
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5.1.2 OMXS30

The results for the estimated parameters in the conditional variance models are shown
in Table 5.3 and Table 5.4. In period 1, one can observe a reduced effect in α1 when
using a heavier tailed distribution. Thus, for the second period the opposite behavior
is observed. All the models, for both periods, satisfy their restrictions. However, at
least one of the estimated parameters in all GJR-GARCH models is insignificant, see
Appendix 8.7. Regarding the GARCH models, their parameters are all very close to
one. This is often the case when estimating GARCH (1, 1) models over a long span of
financial data, see Section 3.8.3. As for both periods the GARCH effect, β1, is a bit
higher for the normal distribution compared to the student’s t-distribution. Further,
the estimated parameters in the EGARCH and GJR-GARCH models indicate that a
negative shock will have a greater impact on the conditional variance than a positive
shock. Similarly to the estimated parameters in Section 5.1.1, the differences between
the estimated parameters between the two distributions are very small.

OMXS30 (Period 1)

ARCH(1) normal dist. ht = 0.0001 + 0.3358ε2t−1
ARCH(1) t-dist. ht = 0.0001 + 0.3232ε2t−1

GARCH(1,1) normal dist. ht = 4.3600E-06 + 0.1222ε2t−1 + 0.8533ht−1
GARCH(1,1) t-dist. ht = 4.7100E-06 + 0.1199ε2t−1 + 0.8522ht−1

IGARCH(1,1) normal dist. ht = (1− 0.9155)ε2t−1 + 0.9155ht−1
IGARCH(1,1) t-dist. ht = (1− 0.9172)ε2t−1 + 0.9172ht−1

EGARCH(1,1) normal dist. ln(ht) = −0.4296− 0.0850
εt−1√
ht−1

+ 0.1907| εt−1√
ht−1
|+ 0.9685ln(ht−1)

EGARCH(1,1) t-dist. ln(ht) = −0.4585− 0.0872
εt−1√
ht−1

+ 0.1929| εt−1√
ht−1
|+ 0.9655ln(ht−1)

GJRGARCH(1,1) normal dist. ht = 5.6700E-06 + (0.0403 + 0.1616It−1)ε
2
t−1 + 0.8457ht−1

GJRGARCH(1,1) t-dist. ht = 6.0700E-06 + (0.0386 + 0.1641It−1)ε
2
t−1 + 0.8427ht−1

Table 5.3: Period 1’s estimated parameters in the conditional variance models for OMXS30. The corre-
sponding p-values are presented in Appendix 8.7.
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OMXS30 (Period 2)

ARCH(1) normal dist. ht = 9.4200E-05 + 0.1080ε2t−1
ARCH(1) t-dist. ht = 9.8500E-05 + 0.1201ε2t−1

GARCH(1,1) normal dist. ht = 1.5300E-06 + 0.0505ε2t−1 + 0.9350ht−1
GARCH(1,1) t-dist. ht = 1.9100E-06 + 0.0667ε2t−1 + 0.9179ht−1

IGARCH(1,1) normal dist. ht = (1− 0.9608)ε2t−1 + 0.9608ht−1
IGARCH(1,1) t-dist. ht = (1− 0.9535)ε2t−1 + 0.9535ht−1

EGARCH(1,1) normal dist. ln(ht) = −0.5715− 0.1529
εt−1√
ht−1

+ 0.0979| εt−1√
ht−1
|+ 0.9468ln(ht−1)

EGARCH(1,1) t-dist. ln(ht) = −0.5707− 0.1689
εt−1√
ht−1

+ 0.1222| εt−1√
ht−1
|+ 0.9489ln(ht−1)

GJRGARCH(1,1) normal dist. ht = 4.5100E-06 + (0.000 + 0.1672It−1)ε
2
t−1 + 0.8709ht−1

GJRGARCH(1,1) t-dist. ht = 3.7300E-06 + (0.000 + 0.1848It−1)ε
2
t−1 + 0.8734ht−1

Table 5.4: Period 2’s estimated parameters in the conditional variance models for OMXS30. The corre-
sponding p-values are presented in Appendix 8.7.

5.1.3 USD/EUR

Table 5.5 and Table 5.6 summarize the two in-sample periods estimated parameters in
the conditional variance models for the USD/EUR. The tables show that the clustering
effects in the ARCH models for Period 1 are slightly higher than the clustering effects in
the ARCH models for Period 2. This implies that the effect of a shock in 1995 to 1998 is
higher compared to the effect of a shock in 2012 to 2015. One can also observe that the
sum of α1 and β1, in all GARCH models for the USD/EUR, are close to one. In general,
the estimates from the different distribution are similar. An interesting result is that
the estimated leverage effects vary between the periods and distributions. For example,
the EGARCH models in Period 1 suggest that positive shocks affect the volatility more
than negative shocks. In contrast, the GJR-GARCH models in Period 2 indicate the
opposite, negative shocks have a greater effect on the volatility compared to positive
shocks. Further, one can observe that the leverage effects in the GJR-GARCH models
for Period 1 and the EGARCH models for Period 2 show mixed results depending on
which distribution one assumes.
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USD/EUR (Period 1)

ARCH(1) normal dist. ht = 2.4300E-05 + 0.1155ε2t−1
ARCH(1) t-dist. ht = 2.4900E-05 + 0.1484ε2t−1

GARCH(1,1) normal dist. ht = 6.6900E-07 + 0.0535ε2t−1 + 0.9225ht−1
GARCH(1,1) t-dist. ht = 3.8100E-07 + 0.0634ε2t−1 + 0.9272ht−1

IGARCH(1,1) normal dist. ht = (1− 0.9630)ε2t−1 + 0.9630ht−1
IGARCH(1,1) t-dist. ht = (1− 0.9491)ε2t−1 + 0.9491ht−1

EGARCH(1,1) normal dist. ln(ht) = −0.3194 + 0.0092
εt−1√
ht−1

+ 0.1074| εt−1√
ht−1
|+ 0.9773ln(ht−1)

EGARCH(1,1) t-dist. ln(ht) = −0.2692 + 0.0072
εt−1√
ht−1

+ 0.1333| εt−1√
ht−1
|+ 0.9838ln(ht−1)

GJRGARCH(1,1) normal dist. ht = 4.0200E-07 + (0.0434 + 0.0025It−1)ε
2
t−1 + 0.9412ht−1

GJRGARCH(1,1) t-dist. ht = 2.9100E-07 + (0.0619− 0.0042It−1)ε
2
t−1 + 0.9334ht−1

Table 5.5: Period 1’s estimated parameters in the conditional variance models for USD/EUR. The cor-
responding p-values are presented in Appendix 8.7.

USD/EUR (Period 2)

ARCH(1) normal dist. ht = 2.8000E-05 + 0.0748ε2t−1
ARCH(1) t-dist. ht = 2.9500E-05 + 0.1145ε2t−1

GARCH(1,1) normal dist. ht = 7.9500E-08 + 0.0280ε2t−1 + 0.9698ht−1
GARCH(1,1) t-dist. ht = 5.1000E-08 + 0.0343ε2t−1 + 0.9655ht−1

IGARCH(1,1) normal dist. ht = (1− 0.9738)ε2t−1 + 0.9738ht−1
IGARCH(1,1) t-dist. ht = (1− 0.9684)ε2t−1 + 0.9684ht−1

EGARCH(1,1) normal dist. ln(ht) = 0.006− 0.0518
εt−1√
ht−1

− 0.0078| εt−1√
ht−1
|+ 1.0000ln(ht−1)

EGARCH(1,1) t-dist. ln(ht) = −15.5055 + 0.1455
εt−1√
ht−1

+ 0.1929| εt−1√
ht−1
| − 0.4857ln(ht−1)

GJRGARCH(1,1) normal dist. ht = 2.0000E-07 + (0.0183 + 0.0214It−1)ε
2
t−1 + 0.9643ht−1

GJRGARCH(1,1) t-dist. ht = 2.0000E-07 + (0.0264 + 0.0216It−1)ε
2
t−1 + 0.9575ht−1

Table 5.6: Period 2’s estimated parameters in the conditional variance models for USD/EUR. The cor-
responding p-values are presented in Appendix 8.7.
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5.2 Forecast evaluation

The error statistics from the forecasts in Period 1 are presented in Table 5.7. The
underlined values represents the most accurate model for each index and loss function.
When using the MAE as critera, the ARCH model when assuming the errors to follow the
normal distribution, is the most accurate model for both gold and USD/EUR. Further,
the MAE indicates that the EGARCH model is the most accurate model to predict
the volatility in the OMXS30. Hence, these results could imply that the OMXS30
exhibits more asymmetry in its market’s response to shocks compared to the gold and
the USD/EUR exchange rate. Furthermore, the MSE shows that the more advanced
models tend to have a more accurate forecast precision when forecasting the volatility
in the three assets.

Period 1
Mean Absolute Error Mean Squared Error

normal dist. t-dist. normal dist. t-dist.
Gold
ARCH(1) 9.515E-05 1.259E-04 1.563E-07 1.714E-07
GARCH(1,1) 1.142E-04 1.288E-04 1.562E-07 1.581E-07
IGARCH(1,1) 1.147E-04 9.868E-05 1.577E-07 1.681E-07
EGARCH(1,1) 1.023E-04 1.153E-04 1.567E-07 1.518E-07
GJRGARCH 1.131E-04 1.198E-04 1.565E-07 1.552E-07
OMXS30
ARCH(1) 1.612E-04 1.607E-04 8.131E-08 8.084E-08
GARCH(1,1) 1.601E-04 1.593E-04 7.839E-08 7.820E-08
IGARCH(1,1) 1.582E-04 1.580E-04 7.806E-08 7.801E-08
EGARCH(1,1) 1.544E-04 1.543E-04 7.839E-08 7.840E-08
GJRGARCH(1,1) 1.551E-04 1.547E-04 7.907E-08 7.905E-08
USD/EUR
ARCH(1) 3.204E-05 3.297E-05 3.398E-09 3.432E-09
GARCH(1,1) 3.247E-05 3.344E-05 3.334E-09 3.367E-09
IGARCH(1,1) 3.285E-05 3.301E-05 3.387E-09 3.416E-09
EGARCH(1,1) 3.287E-05 3.376E-05 3.379E-09 3.406E-09
GJRGARCH(1,1) 3.276E-05 3.369E-05 3.387E-09 3.432E-09

Table 5.7: Period 1’s error statistics for gold, OMXS30 and USD/EUR.
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Table 5.8 shows the MAE and MSE for the compared volatility models in Period 2. The
two loss functions shows different results for the three assets. The MAE indicates that
the ARCH model is the most accurate forecasting model for gold and OMXS30. The
EGARCH model is the most accurate for USD/EUR using the same criteria. Further,
the MSE selects the GARCH model for gold, the EGARCH model for OMXS30 and the
ARCH model for USD/EUR.

Period 2
Mean Absolute Error Mean Squared Error

normal dist. t-dist. normal dist. t-dist
Gold
ARCH(1) 9.697E-05 9.736E-05 5.870E-08 5.932E-08
GARCH(1,1) 1.139E-04 1.144E-04 4.986E-08 4.989E-08
IGARCH(1,1) 1.162E-04 1.142E-04 4.997E-08 5.009E-08
EGARCH(1,1) 1.153E-04 1.199E-04 5.159E-08 5.001E-08
GJRGARCH 1.130E-04 1.210E-04 5.130E-08 5.023E-08
OMXS30
ARCH(1) 1.736E-04 1.760E-04 3.015E-07 3.013E-07
GARCH(1,1) 1.869E-04 1.885E-04 2.918E-07 2.917E-07
IGARCH(1,1) 1.987E-04 1.979E-04 2.951E-07 2.949E-07
EGARCH(1,1) 1.630E-04 1.688E-04 2.886E-07 2.905E-07
GJRGARCH(1,1) 1.862E-04 1.925E-04 3.011E-07 3.060E-07
USD/EUR
ARCH(1) 3.415E-05 3.531E-05 3.954E-09 3.973E-09
GARCH(1,1) 3.510E-05 3.553E-05 3.996E-09 4.009E-09
IGARCH(1,1) 3.505E-05 3.501E-05 4.001E-09 4.006E-09
EGARCH(1,1) 2.960E-05 3.569E-05 4.078E-09 4.045E-09
GJRGARCH(1,1) 3.455E-05 3.514E-05 3.997E-09 4.008E-09

Table 5.8: Period 2’s error statistics for gold, OMXS30 and USD/EUR.

5.2.1 Analysing the forecast evaluation

The results indicate that none of the models seem superior the other models when
forecasting the conditional volatility for the different assets and periods. The ranking
between the models forecast accuracy differs depending on which loss function is used.
Hence, the results are inconclusive and difficult to interpret. Franses and Van Dijk
(1996) show that the GJR-GARCH model has a poor forecast ability and therefore not
recommended for forecasting the conditional volatility. They examine different stock
indexes, including a Swedish stock index. This is in line with our findings, the GJR-
GARCH model is always outperformed by another model, not only for the OMXS30
but for all indexes and periods. One reason for the GJR-GARCH model always being
outperformed could be its poor in-sample fit. At least one of the estimated parameters
in the GJR-GARCH models, for all assets and periods, is insignificant.
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Furthermore, Mckenzie and Mitchell (2002) examine the conditional volatility of 17
different exchange rates. They find the GARCH(1,1) model to be the most suitable
model when modelling the conditional volatility of exchange rate data. However, they
also mention that models accounting for leverage effects may perform better if there exist
any asymmetry in the market’s response to shocks. Our results, for Period 1, indicate
that the GARCH model perform well compared to other models for the exchange rate.
When evaluating the forecasts through MSE, the GARCH model is the most accurate
model. However, when evaluating the forecasts using MSE for the second period, the
results for the exchange rate indicate that the EGARCH model has the highest forecast
accuracy. By the looks of the estimated parameters in the two test periods, the exchange
rate in Period 1 seem to exhibit more asymmetry in its market’s response to shocks
compared to Period 2. This could explain our results and hence support Mckenzie and
Mitchell’s (2002) findings.

Hansens and Lunde’s (2001) results, when forecasting the volatility of the IBM stock
return, indicate that the EGARCH model performs better when assuming the residuals
to follow the Student’s t-distribution rather than the normal distribution. In comparison
to Hansen and Lunde’s (2001) findings, our results vary. For the OMXS30 in Period 1,
the MAE suggests that the EGARCH model performs better when assuming normal
distribution compared to the Student’s t-distribution. However, the opposite is shown
when evaluating the forecasts using the MSE. As for Period 2, the EGARCH model has
a higher forecast accuracy when assuming the residuals to follow the normal distribu-
tion compared the Student’s t-distribution. Furthermore, Hansen and Lunde’s (2001)
findings show that the IGARCH model has a poor forecast accuracy when forecasting
the volatility of the IBM stock return. This is in line with our results for the OMXS30
in Period 2; the IGARCH model is always outperformed by another model. However, in
Period 1, the IGARCH model is the best performing model for the OMXS30 using MSE
as criteria.

Trück and Liang (2012) examines the volatility of the gold. Their results are however
quite inconclusive. They find none of their models to be superior the others. Our forecast
results, when evaluated using the MAE, indicate that the ARCH model have the highest
forecast accuracy when forecasting the volatility of the gold returns. However, the
forecast errors are very similar for all models and should therefore be treated carefully.

Poon and Granger (2003) argues that the squared residuals are a noisy proxy for the
volatility. Further, they describe that this noisy proxy may result in small differences
between the forecast estimations. Hence, our choice of proxy for the latent volatility
may explain our inconsistent results. The fact that the number of outliers may differ
between the two test periods could be another reason for our inconsistent results. The
loss functions used in this thesis are different in the sense of their robustness to outliers.
As mentioned in Section 3.13, the MAE is more robust to outliers whereas the MSE
is more penalizing. This implies that models who succeed in capturing these outliers
will be ranked higher using the MSE compared to the MAE. Hence, the inconsistent
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result between the test periods may be explained by possible differences in the number
of outliers in the two test periods. Possible outliers could also be a reason for why
the ARCH(1) model performs well. The ARCH(1) model accounts for less persistence
compared to the more advanced models, and hence it is less affected by outliers.

6 Summary and Concluding Remarks

We compare five different conditional variance models using daily returns from OMXS30,
USD/EUR and gold for two different time periods assuming two different distributions.
The models are compared in terms of their out-of-sample volatility forecasting ability.
As a proxy for the volatility, we use squared returns based on inter-day returns. Further-
more, to uncover patterns and extract information from the different data sets we test
for autocorrelation and stationarity using an ADF-test and a Ljung-Box test. Further,
we test for ARCH-effects using an Engel’s ARCH test. The Ljung-Box test indicates
that the residuals for OMXS30 in period 2 are autocorrelated. This structure is removed
by including an AR(1) process in the conditional variance models. The forecast accuracy
of the five models is evaluated using two loss functions, the mean squared error and the
mean absolute error.

In terms of out-of-sample forecasting, the loss functions select different models for the
same period and between periods. This makes our results very inconclusive and it is
therefore difficult to conclude if any model is superior to the other models. Our incon-
sistent results could support our hypothesis that the most accurate forecast model may
differ between the periods. However, several factors could have affected our inconsistent
result. One explanation could be our choice of proxy for the volatility. This noisy proxy
may result in small differences between the forecasts, which make them indistinguish-
able. Another factor might be the difference in the numbers of possible outliers in the
two out-of-sample periods. Some model may capture these outliers better than other
models and therefore affect our result.

This thesis contributes to the literature by comparing the forecast accuracy between five
different conditional variance models during two different periods. This thesis is limited
to a proxy for the volatility based on inter-day data. Using intra-day data to approximate
the latent volatility could lead to a less inconsistent result. Hence, the models’ forecast
ability could be more distinguishable and easier to interpret. An interesting topic for
further research could be the comparison between the volatility of the OMXS30 and the
SIXVX. The SIXVX is a volatility index for the OMXS30 and it is derived from prices of
the OMXS30 index options. One could therefore forecast the volatility of the OMXS30
using conditional variance models and then compare the results with the SIXVX.
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8 Appendix

8.1 Augmented Dickey-Fuller Test

Gold

Period 1 Period 2
P-value 0.107 0.207
F-statistic -1.586 -1.217
Critical Value -1.942 -1.942

Table 8.1: P-values, F-statistics and Critical Values from the ADF-test for the gold price in Period 1 and
Period 2.

OMXS30

Period 1 Period 2
P-value 0.956 0.882
F-statistic 1.351 0.785
Critical Value -1.942 -1.942

Table 8.2: P-values, F-statistics and Critical Values from the ADF-test for the OMXS30 price in Period
1 and Period 2.

USD/EUR

Period 1 Period 2
P-value 0.503 0.284
F-statistic -0.406 1.005
Critical Value -1.942 -1.942

Table 8.3: P-values, F-statistics and Critical Values from the ADF-test for the USD/EUR Exchange rate
in Period 1 and Period 2.

8.2 Ljung-Box Test

Gold

Period 1 Period 2
P-value 0.233 0.887
Q-statistic 6.836 1.713
Critical Value 11.071 11.071

Table 8.4: P-values, Q-Statistics and Critical values from the Ljung-Box test on the residuals from the
gold returns in Period 1 and Period 2.
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OMXS30

Period 1 Period 2
P-value 0.193 0.010
Q-statistic 7.394 15.065
Critical Value 11.071 11.071

Table 8.5: P-values, Q-Statistic and Critical values from the Ljung-Box test on the residuals from the
OMXS30 returns in Period 1 and Period 2.

USD/EUR

Period 1 Period 2
P-value 0.842 0.784
Q-statistic 2.049 2.452
Critical Value 11.071 11.071

Table 8.6: P-values, Q-Statistic and Critical values from the Ljung-Box test on the residuals from the
USD/EUR returns in Period 1 and Period 2.

OMXS30

Period 2
P-value 0.123
Q-statistic 8.682
Critical Value 11.071

Table 8.7: P-values, Q-Statistic and Critical values from the Ljung-Box test on the residuals from the
OMXS30 returns in Period 2. Returns are described by an AR(1) process.

8.3 Engle’s ARCH Test

Guld

Period 1 Period 2
P-value 3.561E-04 1.483E-04
F-statistic 15.881 17.633
Critical Value 5.992 5.992

Table 8.8: P-values, F-Statistics and Critical values from the Engle’s ARCH test on the squared residuals
from the gold returns in Period 1 and Period 2.
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OMXS30

Period 1 Period 2
P-value 0.000 1.955E-08
F-statistic 132.484 35.501
Critical Value 5.992 5.992

Table 8.9: P-values, F-Statistics and Critical values from the Engle’s ARCH test on the squared residuals
from the OMXS30 returns in Period 1 and Period 2.

USD/EUR

Period 1 Period 2
P-value 2.160E-05 0.020
F-statistic 21.178 7.781
Critical Value 5.992 5.992

Table 8.10: P-values, F-Statistics and Critical values from the Engle’s ARCH test on the squared residuals
from the EUR/USD returns in Period 1 and Period 2.

8.4 Jarque-Bera Test

Gold

Period 1 Period 2
P-value 1.000E-03 1.000E-03
JB-statistic 276,7 5.650E+03
Critical Value 5.931 5.931

Table 8.11: P-values, F-Statistics and Critical values from the Jarque-Bera test on the residuals from the
gold returns in Period 1 and Period 2.

OMXS30

Period 1 Period 2
P-value 1.000E-03 1.000E-03
JB-statistic 1.813E+03 134.0
Critical Value 5.931 5.931

Table 8.12: P-values, F-Statistics and Critical values from the Jarque-Bera test on the residuals from the
OMXS30 returns in Period 1 and Period 2.
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USD/EUR

Period 1 Period 2
P-value 1.000E-03 1.000E-03
JB-statistic 212.4 146.4
Critical Value 5.931 5.931

Table 8.13: P-values, F-Statistics and Critical values from the Jarque-Bera test on the residuals from the
EUR/USD returns in Period 1 and Period 2.

8.5 Autocorrelation Function

Figure 8.1: The two plots show the sample autocorrelation for the in-sample residuals from the return
of lags 0-20. The upper plot corresponds to Period 1 whereas the lower plot corresponds to
Period 2. The blue line denotes the confidence interval at five percent.

8.6 Mean Equation

OMXS30 (Period 2)

Variable Coefficient Std. Error t-Statistic P-value
Constant 0.000384 0.000319 1.202733 0.2294
rt−1 -0.079017 0.030879 -2.558910 0.0106

Table 8.14: Estimated parameters for the AR(1) process for the OMXS30 returns.

41



8.7 P-values

P-values for ARCH(1) model

Period 1 Period 2
α0 α1 α0 α1

Gold (n-dist) 0.0000 0.0045 0.0000 0.0000
Gold (t-dist) 0.0059 0.0365 0.0000 0.3531
OMXS30 (n-dist) 0.0000 0.0000 0.0000 0.0001
OMXS30 (t-dist) 0.0000 0.0000 0.0000 0.0210
USD/EUR (n-dist) 0.0000 0.0000 0.0000 0.0075
USD/EUR (t-dist) 0.0000 0.0068 0.0000 0.0321

Table 8.15: P-values for the estimated parameters from an ARCH(1) model for gold, OMXS30 and US-
D/EUR in Period 1 and Period 2.

P-values for GARCH(1,1) model

Period 1 Period 2
α0 α1 β1 α0 α1 β1

Gold (n-dist) 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000
Gold (t-dist) 0.0635 0.0001 0.0000 0.1418 0.0257 0.0000
OMXS30 (n-dist) 0.0076 0.0000 0.0000 0.0141 0.0000 0.0000
OMXS30 (t-dist) 0.0159 0.0000 0.0000 0.0658 0.0002 0.0000
USD/EUR (n-dist) 0.0005 0.0000 0.0000 0.0103 0.0000 0.0000
USD/EUR (t-dist) 0.0743 0.0002 0.0000 0.4287 0.0011 0.0000

Table 8.16: P-values for the estimated parameters from a GARCH(1,1) model for gold, OMXS30 and
USD/EUR in Period 1 and Period 2.

P-values for IGARCH(1,1) model

Period 1 Period 2
α0 β1 α0 β1

Gold (n-dist) 0.0000 0.0000 0.0000 0.0000
Gold (t-dist) 0.0000 0.0000 0.0000 0.0000
OMXS30 (n-dist) 0.0000 0.0000 0.0000 0.0000
OMXS30 (t-dist) 0.0000 0.0000 0.0000 0.0000
USD/EUR (n-dist) 0.0000 0.0000 0.0000 0.0000
USD/EUR (t-dist) 0.0000 0.0000 0.0000 0.0000

Table 8.17: P-values for the estimated parameters from an IGARCH(1,1)model for gold, OMXS30 and
USD/EUR in Period 1 and Period 2.
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P-values for EGARCH(1,1) model

Period 1 Period 2
α0 α1 γ1 β1 α0 α1 γ1 β1

Gold (n-dist) 0.0000 0.5825 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gold (t-dist) 0.0003 0.7109 0.0000 0.0000 0.0181 0.0026 0.0980 0.5540
OMXS30 (n-dist) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
OMXS30 (t-dist) 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000
USD/EUR (n-dist) 0.0001 0.4088 0.0000 0.0000 0.1614 0.0000 0.1833 0.0000
USD/EUR (t-dist) 0.0096 0.7005 0.0000 0.0000 0.0000 0.0095 0.0115 0.0043

Table 8.18: P-values for the estimated parameters from an EGARCH(1,1) for gold, OMXS30 and US-
D/EUR in Period 1 and Period 2.

P-values for GJR-GARCH(1,1) model

Period 1 Period 2
α0 α1 γ1 β1 α0 α1 γ1 β1

Gold (n-dist) 0.0000 0.0002 0.3378 0.0000 0.1940 0.7538 0.0173 0.0000
Gold (t-dist) 0.1709 0.0042 0.3260 0.0000 0.0439 0.5741 0.1624 0.0000
OMXS30 (n-dist) 0.0011 0.0863 0.0000 0.0000 0.0022 0.6726 0.0000 0.0000
OMXS30 (t-dist) 0.0016 0.1392 0.0001 0.0000 0.0074 0.5519 0.0000 0.0000
USD/EUR (n-dist) 0.0514 0.0003 0.6749 0.0000 1.0000 0.6371 0.0000 0.0000
USD/EUR (t-dist) 0.1198 0.0000 0.8119 0.0000 1.0000 0.4529 0.0005 0.0000

Table 8.19: P-values for the estimated parameters from a GJR-GARCH(1,1) for gold, OMXS30 and
USD/EUR in Period 1 and Period 2.
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