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Abstract 
 
This paper investigates whether the forecasting performance of Bayesian factor-augmented 

VAR (BFAVAR) models can be improved by incorporating an informative prior on the 

steady-state of the time series in the system. The BFAVAR model is compared to the 

extended steady-state BFAVAR in an application to forecasting Swedish inflation, making 

use of data from 1996 to 2016. Results show that the out-of-sample forecasting performance 

of incorporating an informative prior into the BFAVAR models increase compared to an 

autoregressive model. When comparing BFAVAR models with and without an informative 

prior on the steady-state, the BFAVAR model with an informative prior marginally 

outperform the BFAVAR model without the informative prior. The results of this paper 

indicate that most of the gains in forecasting performance by incorporating an informative 

prior on the steady-state are associated with longer forecasting horizons. 
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1. Introduction 
 

Forecasting future economic development is a major factor for policy-makers, consumers and 

investors. Many long-term private sector commitments are based on forecasts of the 

development of the general price level, for example, labor contracts and debts, such as 

mortgages. Central banks often publicly stress that, since monetary policy affects the 

economy with a lag due to the transmission mechanism, central banks has to be forward-

looking in order to conduct good monetary policy. Being forward-looking relies on forecasts 

and projections about the future development of key variables, such as GDP growth and 

inflation. Svensson (2005) argue that the quality of the forecasts will affect the effectiveness 

of the central bank’s monetary policy because the New Keynesian model makes explicit that 

optimal monetary policy depends on optimal forecasts. 

 

Since the seminal work of Sims (1980), vector autoregressive (VAR) models have been the 

workhorse in forecasting and modeling macroeconomics. However, with VAR models the 

number of parameters increases rapidly with the inclusion of variables, which can lead to 

degree-of-freedom problems. On the other hand, including too few variables may not capture 

enough information, leading to omitted variation. This paper is particularly interested in two 

common ways of overcoming the issue of over-parametrization and omitted variation: 

Bayesian methods and dimensional reduction techniques.  

 

As pointed out by Clements & Hendry (1998), a common source of poor forecasting accuracy 

on long horizons is a poorly estimated mean of the process. Since long horizon forecasts from 

stationary VAR models converge to the steady-state (unconditional mean) of the process, an 

informative prior on the steady-state might increase forecasting accuracy. In inflation 

forecasting, an informative prior on the steady-state is particularly interesting and readily 

available since inflation-targeting central banks actively work to reach an explicitly stated 

inflation target. Bayesian methods are commonly used in this setting due to its ability to 

incorporate prior information on the behavior of the time series in the model to shrink 

unnecessary parameters towards zero, thus making it able to handle more information and 

increase precision.  
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In a standard VAR setting, it is usually difficult to incorporate prior information on the 

steady-state. Therefore Villani (2005, 2009) suggest a slightly unconventional specification of 

the VAR model, resulting in a steady-state Bayesian VAR (BVAR) model, which allow for 

incorporating prior beliefs on the system in a more convenient way. Villani (2009) argues that 

a possible explanation for why the steady-state is handled rather casually is that it is expected 

to be fairly precise even without an informative prior on the steady-state. By comparing the 

forecasts of various macroeconomic variables from BVAR models with different priors and 

standard VARs estimated by maximum likelihood, Villani (2009) show that this is not always 

the case. 

  

Österholm (2008) make use of Villani’s BVAR model to investigate if forecasts of Swedish 

inflation and interest rates from Bayesian AR and VAR models can be improved by 

incorporating prior information on the steady state of the process. Österholm (2008) finds that 

there seem to be payoffs associated with using the steady-state prior with regards to 

forecasting accuracy when applied to interest rates; however, when applied to inflation the 

gains are modest. Villani’s BVAR model has also been used by Adolfsson et al. (2007) and 

Mossfeldt & Stockhammar (2016), who find the BVAR to perform as good as, and in some 

cases, better than the models of the Riksbank and NIER1 when forecasting different measures 

of inflation.  

 

In the literature on forecasting in data-rich environments, Stock & Watson (1999, 2002) 

introduce the use of dimensional reduction techniques in order to extract more information 

from large data sets using primarily principal component analysis. Stock & Watson (2002) 

find that using a small number of factors from a large data set produce more accurate 

forecasts than a variety of benchmarks without factors. The results of Stock & Watson (2002) 

is confirmed and extended by Bernanke & Boivin (2003) who use the same methodology on 

different data. Bernanke & Boivin (2003) also find that the inclusion of factors eliminates 

omitted variation in VAR models, e.g. Sims’ (1992) “price puzzle.” 

 

Bernanke et al. (2005) use principal components to extract information from a data set 

consisting of 120 macroeconomic time series and use these artificial variables in a VAR 

model in order to incorporate more information in a more parsimonious way. They argue that 

                                                
1 National Institute of Economic Research 
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their factor-augmented VAR (FAVAR) could reduce the over-parametrization problem with 

VAR models at the same time as overcoming the issue with omitted variation common in 

small VAR models. Laganá & Mountford (2005) use a similar approach in an application on 

determinants of the UK interest rate. As Bernanke et al. (2005), they find that the inclusion of 

factors eliminates omitted variation associated with small VAR models, but also that the use 

of their FAVAR model in forecasting is superior to a number of benchmark models without 

factors.  

 

This paper extends the framework of Bernanke et al. (2005) by incorporating an informative 

prior on the steady-state of the system in a Bayesian setting. By making use of information 

from a large data set of disaggregated information related to Swedish inflation, this paper 

investigates if an informative prior on the steady-state of the process can improve the 

forecasting performance of the Bayesian factor-augmented VAR (BFAVAR). In a forecasting 

exercise similar to Mossfeldt & Stockhammar (2016), out of sample forecasts of Swedish 

inflation from steady-state BFAVAR models, BFAVAR models and the AR(1) are compared.  

 

The forecasting exercise shows that an informative prior on the steady-state increase 

forecasting accuracy in an inflation forecasting setting. When adding an informative prior, the 

steady-state BFAVAR see an increase in forecasting precision compared to an AR(1) model 

and a standard BFAVAR model. The largest gain in forecasting performance by using the 

BFAVAR model with an informative prior on the steady-state compared to the AR(1) is 9 per 

cent at the longest horizon. The largest gain in forecasting precision by using the BFAVAR 

model with an informative prior on the steady-state compared to the BFAVAR model without 

is about 5 per cent on the eight quarter horizon. With respect to the magnitude of these results, 

the 9 per cent improvement has previously been considered as a non-negligible effect, while 

the 5 per cent improvement has previously been considered as a negligible-to-modest effect; 

see for example Stockhammar & Österholm (2016) and Österholm (2010).  

 

The literature has in recent years been interested in Bayesian methods related to VAR models 

to a greater extent than FAVAR models. The contribution of this paper is thus twofold: Firstly, 

the framework of Bernanke et al. (2005) is extended by considering if incorporating an 

informative prior on the steady-state of the process can improve forecasting accuracy from 

BFAVAR models. Secondly, the broader contribution to the literature is in the estimation and 

forecasting evaluation of BFAVAR models applied to inflation in Sweden.  
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2. The Steady-State Bayesian FAVAR model 
 

A BFAVAR can intuitively be thought of as an extension of the BVAR which makes use of a 

large amount of information in a more parsimonious way. This paper follows the two-step 

principal component approach used by Bernanke et al. (2005) and Stock & Watson (1998, 

2002). The two-step approach begins by using static principal components to estimate the 

factors that summarize the most relevant information in the large data set.2 By using principal 

components, a number of factors are obtained that are considerably smaller than the original 

114 variables. As a result, the amount of information that can be handled by the model 

increases and hence, the chance of under-specifying the model decreases. 

 

Following Bernanke et al (2005), let 𝑿𝒕  be a (𝑛×1)  vector of informational time series 

relating to the state of the Swedish economy; 𝒀𝒕 a (𝑚×1) vector of endogenous observed 

economic variables that is related to inflation and is a subset of	𝑿𝒕; 𝑭𝒕  a (𝑘×1) vector of 

unobservable factors that summarize most of the information in 𝑿𝒕, where 𝑘 is considerably 

smaller than 𝑛 . The unobservable factors , 𝑭𝒕,	are thought of as diffuse concepts such as 

“economic activity” or “credit conditions.” Since the standard Bayesian FAVAR model has 

no informative prior on the steady-state of the process, the estimated factors are incorporated 

into the framework of Villani (2009). This approach implies that the Bayesian FAVAR 

without an informative prior on the steady-state is a nested model of the Bayesian FAVAR 

with an informative prior on the steady-state.3 The data-generating process can then be seen as 

the system of equations in (1). 𝑿𝒕 is related to the unobservable factors 𝑭𝒕 by the equation in 

(2).  

 
𝑭𝒕
𝒀𝒕

= 𝚩 𝐿 𝑭𝒕1𝟏 − 𝝁𝟏
𝒀𝒕1𝟏 − 𝝁𝟐

+ 𝒗𝒕 (1) 

 

𝑿𝒕 = 𝚲𝒇𝑭𝒕 + 𝚲𝒚𝒀𝒕 + 𝒆𝒕. (2) 

 

                                                
2 For a brief introduction to principal component analysis, see Appendix A.3. For a more detailed text, see 
Johnson & Wichern (2009). 
3 Note, the steady-state BVAR of Villani (2009) is also a nested model of the framework in (1) since, without the 
factors, the system reduces to the framework of Villani (2009). This model is however not of interest in this 
particular thesis. 
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𝚩 𝐿  are polynomials of the lag operator; 𝒗𝒕 is a vector of error terms; 𝚲𝒇 is a (𝑛×𝑘) matrix 

of pattern loadings; 𝚲𝒚 is a (𝑛×𝑚) matrix of loadings belonging to the endogenous variables 

and 𝒗𝒕  is a vector of iid error terms assuming E(𝒗𝒕) = 𝟎 and E(𝒗𝒕𝒗𝒕′) = 𝜮. 𝒆𝒕  is a (𝑛×1) 

vector of error terms, allowing for weakly correlated errors.  

 

Equation (2) represents the common forces that drive the dynamics of	𝑿𝒕, which enables us to 

estimate the latent factors using principal component analysis, such that 𝑭𝒕  are weighted 

combinations of all variables in	𝑿𝒕. More precisely, by estimating the factors, we estimate the 

space spanned by the factors. The factors used in this model are the scores estimated from the 

principal components.  

 

The main property of equation (1), 𝝁A	and		𝝁B, are both	(𝑛×1) vectors describing the steady-

state values of the variables in the system. That is, for each variable in the system, a prior 

interval is specified around the mean of each variable. The argument is that since long horizon 

forecasts from stationary VAR models converge to the steady-state of the process, an 

informative prior on the steady-state might increase forecasting accuracy. As the Riksbank 

has an explicitly stated inflation-target, it is particularly interesting to incorporate this 

information into the model. The specification in (1) implies that we can model the 

unconditional mean of the process explicitly even though the specification is nonlinear in its 

parameters. The restriction is thus in	𝝁A and	𝝁B, meaning that when the BFAVAR is modeled 

without an informative prior on the steady-state,	𝝁A = 	𝝁B = 0, the model reduces to the one 

used by Bernanke et al. (2005), which would in that case model the mean without any 

informative priors. The approach of modeling the unconditional mean without an informative 

prior on the steady-state is expected to be relatively precise; however, Villani (2009) show 

that this is not always the case and that an informative prior can in some cases increase 

precision. 

 

As in Villani (2009), Österholm (2008) and Mossfeldt & Stockhammar (2016), the prior on 

the covariance matrix 𝜮 follow the literature and is given by the non-informative standard 

Diffuse prior4 

 

                                                
4 The standard Diffuse prior is non-informative. As opposed to using the Minnesota prior on the covariance 
matrix, which replaces the covariance by an approximation (not necessarily a good one), the Diffuse prior is 
handled like a random variable. 
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 𝑝 𝜮 ∝ |𝜮]1(HIA)/B. 

Let 𝑩 = (𝑩𝟏,… , 𝑩𝒑)′. The prior on 𝑣𝑒𝑐 𝚩 	is a general multivariate normal distribution5 

given by  

𝑣𝑒𝑐(𝑩)~𝑁SHT(𝜽𝑩, 𝛀𝑩).
  

 

The prior on 𝝁A and	𝝁B is given by 𝝁𝟏~𝑁 𝜽𝝁𝟏, 𝛀𝝁𝟏  and 𝝁𝟐~𝑁 𝜽𝝁𝟐, 𝛀𝝁𝟐 , which means that 

these priors refer to a 95% confidence interval around the mean of the series. These priors are 

specified in detail in Table 1.  

 

Table 1: Steady State Prior Intervals for the Mean of the Variables in the Steady-State 
BFAVAR models 

Variables Prior Interval 

CPI6 (0.19; 0.4)  
GDP  (0.5; 0.75) 
UNEMP (5.0; 9.0) 
FACTOR 1 (-0.21; 0.21) 
FACTOR 2 (-0.21; 0.21) 
FACTOR 3 (-0.21; 0.21) 
FACTOR 4 (-0.21; 0.21) 
FACTOR 5 (-0.21; 0.21) 
 
Note: CPI inflation and GDP are measured in quarter-on-quarter percentage change. The unemployment rate is measured in 
per cent. The estimated factors are principal components. Prior intervals refer to a 95%-confidence interval around the mean 
of the series.  
 

The prior intervals on the mean of inflation (CPI), gross domestic product (GDP) and 

unemployment (UNEMP) follow the literature; see for example Österholm (2010) and 

Stockhammar (2012). However, the prior interval on the mean of inflation is converted from a 

prior on the yearly change in inflation to a quarterly change. We do not have any information 

on the prior interval for the mean of the estimated factors a priori; however, they are 

estimated in the first step and we know that they are normalized and stationary. A prior 

interval on the mean of the factors is therefore constructed from the normal distribution and 

thus set to (-0.21; 0.21). 

                                                
5 The vec operator converts a (𝑚×𝑛) matrix A to a (𝑚𝑛×1) column vector by stacking the columns of the 
matrix A on top of one another. 
6 The usual prior interval for the yearly inflation rate is (1; 3). Since the quarter-on-quarter percentage change is 

modeled and forecasted, this is transformed to be a quarterly prior. For the upper interval limit, 3, : 1 + 3
X
Y −

1, and for the lower interval limit, 1, : 1 + 2
X
Y − 1. 
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The priors on the dynamics , 𝐁,  are a slightly modified Minnesota prior and follow the 

literature. As opposed to using the traditional specification of a prior on the first lag equal to 1 

and zero on all other lags, the prior mean on the first lag is set to 0.9 and zero on all other lags 

for the inflation and unemployment rate. This reflects the belief of some persistence in the 

inflation and the unemployment rate. Both the quarter-on-quarter percentage change in 

inflation and the unemployment rate (measured in per cent) were considered as stationary by 

the augmented Dickey-Fuller test over the period 1996Q3 – 2016Q4. The GDP is transformed 

to induce weak stationarity; therefore the prior mean on the first lag is set to 0.7 Setting the 

prior mean on the first lag to 1 and zero on the subsequent lags takes its starting point in a 

univariate random walk and is thus not consistent with the steady-state model since it would 

not have a well-defined unconditional mean (non-stationary). Finally the hyperparameters, 

which describe how tight the priors on the dynamic coefficients in 𝐁 are, follow the literature; 

the overall tightness is set to 0.2, the cross-variable tightness to 0.5 and the lag decay 

parameter to 1, see for example Österholm (2008), Villani (2009) and Stockhammar & 

Österholm (2016)   

 

Since this paper uses the reduced form BFAVAR, there is no reason to subset 𝑿𝒕 into fast-

and-slow moving factors as Bernanke et al (2005) do, which is typically done when the 

objective is to estimate a structural model. Since the purpose of this paper is to forecast, we 

want to keep as much information in the factors as possible. Note that if the system in (2) is 

taken as true, estimating a VAR in 𝒀𝒕  would be miss-specified since the factors, 𝑭𝒕,  are 

omitted variables. This can lead to biased parameters and worse forecasting accuracy.  

 

To create a base model similar to Bernanke et al. (2005) and Laganá & Mountford (2005), we 

let three variables: CPI, GDP, UNEMP, and the first factor enter the model from the start. The 

starting point is thus to estimate the first nested model in order to find the number of factors 

and lag lengths that give the smallest RMSFE. This is done through a step-wise selection 

process where the factors are then added and different lag lengths tested to find the model 

with the smallest RMSFE. In order to determine if the informative prior on the steady-state 

can improve forecasting accuracy, the lag length and number of factors have to be fixed for 

the models that are compared.  

                                                
7 This follows the recommendation by Carriero et al. (2013) 
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3. Data 
 

The data set used to estimate the factors cover the time range from 1996Q3 to 2016Q4 and 

consist of 82 observations of 114 different time series. The time series that are originally on 

monthly frequency is transformed to quarterly frequency by averaging over the months 

making a quarter, covering the full time series. The 114 time series are on 11 different 

categories chosen to resemble those in Stock & Watson (2002), Bernanke et al. (2005) and 

Laganá & Mountford (2005). The variables in the data set are measures on variables related to 

Swedish inflation, covering the following 11 categories: real output and income, employment 

and hours, consumption, expectations, housing quantity and prices, stock and commodity 

prices, exchange rates, interest rates, money and credits, price indices and foreign variables. 

The category of foreign variables is included, similar to Gustafsson (2015), since Sweden is a 

comparatively small economy and reasonably affected by the state of larger economies. Some 

examples of such variables are US inflation, US unemployment, EU inflation, and measures 

of economic policy uncertainty in the EU and the US. 

 

All time series are adjusted for holidays and seasonality, either directly from the database or 

by using the ARIMA-X13-Seats of the Census Bureau if any seasonality is detected.  

 

After any seasonality is removed, the series are tested for any unit roots using the augmented 

Dickey-Fuller test (ADF). Since the framework outlined in section 2 assumes the time series 

in 𝑿𝒕 to be stationary, series that were found to have any unit roots are suitably transformed to 

induce weak stationarity. This, together with normalizing the series to be mean zero with unit 

variance, is necessary in order extract principal components from the data. All 

transformations and a brief description of each time series are given in Appendix B, Table 2. 

 

4. Empirical results 
 

4.1 Model selection 
 

The Diebold-Mariano (1995) test is often used to test whether differences in forecasting 

performance between two models is statistically significant. However, as pointed out by Clark 

& McCracken (2005), no formal tests currently exist for settings with recursively generated 
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forecasts from nested Bayesian models and with a forecast horizon greater than one. Also, 

Armstrong (2007) argues that forecast significance tests are of little value in addition to the 

RMSFE criterion and focus should, therefore, be on practical relevance i.e. effect size, which 

in this case would be how much forecasting accuracy is improved by using the competing 

models. Therefore, the focus is on the RMSFE statistic as the criterion for choosing models, 

which is in line with the philosophy put forward by Armstrong (2007). The argument is that 

when choosing between competing models considered equally good a priori in a pure 

forecasting setting, the forecaster will choose the model with the smallest RMSFE, regardless 

if the difference is statistically significant.  

 

The first step in the model selection is derived from Bernanke et al. (2005) and Laganá & 

Mountford (2005). In choosing the 	𝑌]-vector, the variables that enter the model from the start, 

one would like an, economically speaking, sensible model. The 	𝑌]-vector is therefore chosen 

to be three variables: inflation (CPI), gross domestic product (GDP), unemployment (UNEMP) 

and the first factor. Since output (measured as GDP) and unemployment are common in 

macroeconomic models, this should form a reasonable base to evaluate the inclusion of the 

steady-state prior from. In order to specify the number of factors and number of lags, this 

paper conducts a step-wise out-of-sample forecasting exercise, similar to Mossfeldt & 

Stockhammar (2016). The methodology is thus similar to other studies using forecast 

precision to assess Granger causality of various variables for inflation (see for example 

Bachmeier et al. 2007, Gavin and Kliesen 2008, Berger and Österholm 2009, 2011 and 

Scheufele 2011). The forecasting exercise is of a recursive nature in the sense that the model 

is estimated for a training period of 1996Q3 – 2006Q3 and a 12 quarter forecast is made. The 

sample is then extended by one period, and the model re-estimated on the estimation window 

1996Q3 – 2006Q4 and a new 12 quarter forecast is made. This process continues until the end 

of the sample, where the model is re-estimated for the period 1996Q3 – 2016Q3 with the last 

forecast made for the last quarter, 2016Q4. The step-wise exercise is conducted as follows: 

 

1. The starting model with CPI, GDP, UNEMP and the first factor are estimated for 

the training period 1996Q3 – 2006Q3 and a recursive forecast is made according 

to the process above to evaluate the lag length that gives the smallest RMSFE. The 

forecasts are evaluated at the 1, 2 and 3-year horizon.  The model with the lowest 

RMSFE advances to step 2. 
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2. The second of the estimated factors is added to the best performing model from the 

previous step. This process continues until there are no further gains in forecasting 

accuracy by adding another factor. 

 
3. Finally, information on the steady-state is incorporated. 

 

The model from step 2 and step 3 then advances to the forecasting comparison, i.e. the best 

BFAVAR model without an informative prior on the steady-state and the same BFAVAR 

model with an informative prior on the steady-state included. It is also tested if forecasting 

accuracy could be improved upon by adding an informative prior on the steady-state in step 2 

before the estimated factors are added in the same step-wise manner. 

 

Firstly, this process starts out by estimating and forecasting from the nested model, the 

BFAVAR without an informative prior on the steady-state. Secondly, the unrestricted model 

is estimated and forecasted i.e., the BFAVAR with an informative prior on the steady-state. 

The BFAVAR models with the same variables, the same number of factors and the same 

number of lags is then compared with the only difference being that one has an informative 

prior on the steady-state. 

 

Since the first estimated factor accounts for about 96 % of the variation in	𝑿𝒕, and the first 

five accounts for about 99 % of the variation in	𝑿𝒕, including more factors than five might be 

unnecessary. In general, the forecasting exercise shows that including more than one factor 

actually decrease forecasting accuracy. Since the issue of number of factors to include is 

rather data-driven, there are numerous models in the literature using different number of 

factors. However, in an application to Sweden, Gustafsson (2015) also find that using one lag 

is the best.8  Also, including more than six lags in general decrease the overall forecasting 

precision. The best performing models only include one lag. In general, adding more than one 

lag but less than six, only marginally increases the forecasting accuracy on the longest 

horizons at the cost of sharper decreasing accuracy on shorter horizons.  

 

The notation of the models is as follows: 𝐵𝐹𝐴𝑉𝐴𝑅 𝑛, 𝑓, 𝑝, 𝛾 , where 𝑛 indicates the number 

of variables that enter the model from the start (which is always 3, following the base model);  

𝑓  indicates the number of factors; 𝑝  indicates the number of lags and 𝛾  indicates if an 
                                                
8 Note, Gustafsson (2015) forecasts monthly inflation. 
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informative prior on steady-state is included. Note, in this notation 𝛾 only takes the value 1 to 

indicate if an informative prior on the steady-state is included in the BFAVAR model i.e., if 

𝜇A	and 𝜇B are included in equation (1). If	𝛾 = 1, 𝜇A	and 𝜇B are included in equation (1) and  

the prior intervals refer to a 95% confidence interval around the mean of the series and are 

specified in Section 2, Table 1. 

 

4.2 Forecast comparisons 
 

By making use of the BFAVAR model with an informative prior on the steady-state and the 

BFAVAR model without an informative prior on the steady-state, the out-of-sample 

forecasting precision of the models applied to inflation is analyzed over the time span 1996Q3 

– 2016Q4.  The forecasting procedure is a recursive forecasting exercise in the sense that the 

estimation window is expanded for each forecast. More specifically, the model is estimated 

for a training period 1996Q3-2006Q3 and a forecast of twelve quarters is made for the period 

2006Q4 – 2009Q4. In the next sequence, the estimation window is expanded by one period by 

including one more observation, the model is estimated for the period 1996Q3-2006Q4 and a 

new twelve-quarter forecast is made for the period 2007Q1 – 2010Q1. This process continues 

until the end of the sample, 2016Q3, with the last forecast being for 2016Q4. In the last step, 

the model is thus estimated for the period 1996Q3 – 2016Q3.  

 

The numerical evaluations of the posterior distribution of the Bayesian models are conducted 

by a Gibbs sampler.9 The Gibbs sampler makes use of a burn-in sample of 1000 draws which 

are discarded and the analysis is performed on the subsequent 20 000 draws. Discarding the 

first 1000 draws ensures that the draws being analyzed are stationary. Each of these 

simulations is used to forecast possible paths of the inflation, which are used to calculate the 

predictive density. All of these dynamic simulations are then used to approximate the point 

forecast by using the median of these simulations. For each model, the RMSFE is recorded 

and evaluated for quarter 1-12. I report the RMSFE statistics for each model as well as the 

relative RMSFE, defined as the RMSFE of the alternative model over the RMSFE of the 

benchmark, over the horizon 1-12 quarters. The AR(1) model is used as a benchmark and is 

the usual autoregressive model, however, including an intercept. The reduction in RMSFE is 

expressed as the reduction in percentage points compared to two different benchmarks; in the 

first comparison, the AR(1) is used as a benchmark and in the second comparison, the 
                                                
9 See Gelman et al. (2009) for further explanation. 
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BFAVAR without information on the steady-state. These results are reported in the following 

figures.  

 

Figure 1 presents the RMSFEs for the steady-state BFAVAR model, BFAVAR(3,1,1,1), and 

the BFAVAR model, BFAVAR(3,1,1), together with the AR(1) model. We can see that the 

BFAVAR(3,1,1) model perform slightly better than the AR(1) on the first two-quarters and 

worse on quarters 3-9. The BFAVAR(3,1,1) seem to perform better on the longest forecasting 

horizons compared to the AR(1). If we consider the BFAVAR(3,1,1,1), with a steady-state 

prior included, we see that it performs slightly better than the AR(1) on the first five quarters 

and similar on horizons 5-7. For the horizon 7-12, the BFAVAR(3,1,1,1) outperforms the 

AR(1) model, with its largest precision gain being for the longest horizon, 12 quarters. As 

expected, information on the steady-state seems to increase precision on longer horizons, 

where the BFAVAR model with a steady-state prior outperform both the AR(1) model and 

the BFAVAR(3,1,1) model. By adding an informative prior to the BFAVAR(3,1,1) there 

seem to be precision gains over most horizons, but most prominent on the longest horizons, 

even though the effect does not seem to be especially large. 

 

Figure 1: RSMFE for the best BFAVAR models and the AR(1) model, 2006Q3 – 2016Q3 

 
Note: The RMSFEs are given in percentage points on the vertical axis over the horizon 1-12 quarters on the 
horizontal axis. See section 4.1 for a description of the notation. 

0,25

0,3

0,35

0,4

0,45

0,5

1 2 3 4 5 6 7 8 9 10 11 12

AR(1) BFAVAR(3,1,1) BFAVAR(3,1,1,1)



13 
 

Figure 2 presents the RMSFEs for the second best models: the steady-state BFAVAR model, 

BFAVAR(3,1,2,1), and the BFAVAR model, BFAVAR(3,1,2), together with the AR(1) 

model. In Figure 2, a similar pattern emerges even though the models are slightly different. 

As in the previous figure, the BFAVAR(3,1,2) perform slightly better compared to the AR(1) 

model on the first quarter and seem to have a hard time outperforming the AR(1) for quarters 

3-9. The BFAVAR(3,1,2) seem to gain most forecasting precision in the longer horizons, 

quarter 10-12. By including an informative prior on the steady-state, the performance 

compared to the AR(1) seems to change. When the informative prior on the steady-state is 

included, the BFAVAR(3,1,2,1) model outperform the AR(1) model on the three first quarters 

as opposed to only the first. On the fourth to the seventh quarter, the AR(1) and the 

BFAVAR(3,1,2,1) are similar in performance. The largest gains by using the 

BFAVAR(3,1,2,1) model take place on the eighth quarter and forward, with the maximum 

gain in forecasting precision for the model with an informative prior on the steady-state 

occurring on the two last quarters, quarter 11 to 12.  

 
Figure 2: RMSFE for the second best BFAVAR models and the AR(1) model, 2006Q3 - 

2016Q3 

 
Note: The RMSFEs are given in percentage points on the vertical axis over the horizon 1-12 quarters on the 
horizontal axis. See section 4.1 for a description of the notation. 
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In Figure 3 we see the reduction in RMSFE for the two best BFAVAR models considered 

above with an informative prior on the steady state incorporated, compared to the AR(1) 

model. The reduction is the difference between the RMSFE of the AR(1) and the RMSFE of 

each competing model. This means that a positive number indicates that the BFAVAR models 

perform better than the AR(1) model. As we see in Figure 3, the BFAVAR(3,1,1,1) 

outperform the AR(1) model on all horizons except quarter six and seven, whereas the 

BFAVAR(3,1,2,1) perform worse than the AR(1) model on the horizon 4-6 quarters. We see 

that, as the forecasting horizon increase, the both BFAVAR models seem to continuously 

improve their performance relative to the AR(1) model, each reaching their maximum 

reduction in RMSFE compared to the AR(1) model at the last forecasting horizon, quarter 12. 

The maximum reduction in RMSFE of using the BFAVAR(3,1,1,1) model compared to the 

AR(1) is at most  0.028 percentage points, which translates into a reduction in RMSFE of 

about 9 per cent at the last quarter.10 

 

Figure 3: Reduction in RMSFE for the BFAVAR models with an informative prior on 
the steady-state compared to the AR(1), 2006Q3 – 2016Q3 

 
Note: Reduction in RMSFE is given in percentage points on the vertical axis. Forecasting quarters is on the 
horizontal axis. A positive number indicates that the models have a higher forecasting accuracy than the AR(1) 
model. 

 
                                                
10 At quarter 12: the reduction in RMSFE for the BFAVAR(3,1,1,1) model compared to the AR(1) model is 
0.028 percentage points and the RMSFE of the AR(1) model is 0.325, which gives (0.028/0.325)*100 = 9 per 
cent. The reduction in RMSFE is expressed as per cent of the RMSFE of the univariate models. 
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From Figure 1-3 we see that the BFAVAR model without an informative prior on the steady-

state struggle to outperform the AR(1) model on the medium-term horizons. However, when 

an informative prior on the steady state is included, the BFAVAR model increase its 

performance relative to the AR(1) model over most horizons.  

 

Figure 4 presents the reduction in RMSFE by making use of an informative prior on the 

steady-state compared to having no information on the steady-state. Here, a comparison of the 

BFAVAR(3,1,1,1), BFAVAR(3,1,2,1) and the BFAVAR(3,1,4,1) is made. The last model is 

the third best performing model and is included for comparison. As in Figure 3, the reduction 

in RMSFE of the models is expressed as the difference between the BFAVAR model without 

an informative prior on the steady state and the corresponding BFAVAR model with an 

informative prior, i.e. the restricted and the unrestricted models. We see that all BFAVAR 

models with an informative prior reach their maximum gain in performance compared to the 

BFAVAR models without an informative steady-state prior in the eighth quarter.  

 

Figure 4: Reduction in RMSFE by using the steady-state BFAVAR compared to the 
BFAVAR, 2006Q3 - 2016Q3 

 
Note: Reduction in RMSFE is given in percentage points on the vertical axis. Forecasting quarters is on the 
horizontal axis. A positive number indicates that the models have a higher forecasting accuracy than the 
BFAVAR model without information on the steady-state. 
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At most, the gain of making use of the informative prior on the steady-state is 0.02 percentage 

points for the BFAVAR(3,1,1,1) model, which translates to a reduction in RMSFE of about 5 

per cent compared to the model without steady-state.11 The performance gain of the BFAVAR 

models using an informative prior on the steady-state compared to the BFAVAR models 

without the informative prior is expressed as per cent of RMSFE of the corresponding 

BFAVAR model without an informative prior.  

 

The reduction in RMSFE of the steady-state BFAVAR as expressed in per cent of the 

RMSFE of the AR(1) is, at best, 9 per cent. This reduction is considerably less than the 

reductions of 25 per cent reduction found in the comprehensive study of a wide range of 

forecasting models by Faust and Wright (2013). However, these results are not completely 

comparable since Faust & Wright (2013) use a slightly different benchmark model. The 9 per 

cent reduction in RMSFE compared to the benchmark is more in line with the results found 

by Stockhammar & Österholm (2016) and Beechey & Österholm (2010), which is about 6-9 

per cent reductions in RMSFE. Both above-mentioned papers argue that a reduction of 9 per 

cent in RMSFE is non-negligible with respect to economic significance.  

 

The resulting reduction in RMSFE by incorporating an informative prior on the steady-state 

from this forecasting exercise of 5 per cent is a rather modest gain and on the borderline of 

being of economic significance. For example, Österholm (2010) finds a BVAR gaining about 

7 per cent to a benchmark as a modest gain. As a comparison, while investigating if 

forecasting performance of Bayesian AR and VAR models can improve by incorporating an 

informative prior on the steady-state, Österholm (2008) also find that gains in precision are 

modest when forecasting inflation. Österholm (2008) find more prominent gains by 

incorporating prior information when forecasting interest rates. Note that Österholm (2008) 

use a different benchmark model, the Naïve model, which he argue are a reasonable 

benchmark given the high persistence in inflation. In this study, the commonly used AR(1) is 

used as the main benchmark and the Naïve model is simply included for reference. As we can 

see in Appendix C, Table 3, all three BFAVAR models with an informative prior on the 

steady-state and the ones without an informative prior clearly outperform the Naïve model on 

all horizons. 

 

                                                
11 At quarter 8 the reduction in RMSFE for the BFAVAR(3,1,1,1) model is 0.002 and the RMSFE of the 
BFAVAR (3,1,1) model is 0.421. Thus (0.02/0.421)*100 gives about 5 per cent. 
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In research related to incorporating informative priors on the steady-state related to VAR 

models, reductions in RMSFEs compared to various benchmarks is commonly found. For 

example, Mossfeldt & Stockhammar (2016) find reductions in RMSFE when forecasting 

goods and services inflation of about 37 per cent while making use of an informative prior on 

the steady-state in their BVAR model. The important difference in this setting is that the 

BFAVAR models in this study have included factors, which might on its own contribute to 

more precise forecasts in general and a more precise estimation of the steady-state in 

particular.  

 

The base model in this application is basically taken at face value in order to be sensible 

economically speaking and to focus on the effect of including an informative prior on the 

steady-state. The only thing that varies with model choice is the inclusion of more than one 

estimated factor and the lag length. In this particular case, since the first factor accounts for 

about 96% of the variation in the large data set and the first five factors accounts for about 99% 

of the variation it is rather reasonable that forecasting performance is not increased 

significantly when additional factors are added to the model. In general, including more than 

one factor does not seem to increase forecasting performance for any model in this setting.  

 

Similar results are also found in Gustafsson (2015). When forecasting monthly changes in 

inflation using a BFAVAR model without an informative prior on the steady-state, 

Gustafsson (2015) find that including more factors than one typically do not increase the 

overall forecasting performance for the best models.  On the other hand, Laganá & Mountford 

(2005) find that adding as much as five factors to a benchmark VAR consisting of three 

variables reduces the RMSFE compared to a benchmark VAR with one included factor. 

Laganá & Mountford (2005) find that the five first factors, on average, explain a third of the 

variation in their data set. It is therefore not surprising that they find that adding more factors 

seem to contribute to the forecasting performance.  They find that they would need 12 factors 

to explain about half of the variation in their data, which they argue is not practical to include 

given the short length of their data. 
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5. Conclusion 
 

This paper has investigated whether out-of-sample forecasting precision can be increased by 

incorporating an informative prior on the steady-state in BFAVAR models. This issue was 

investigated by an out-of-sample forecasting exercise of inflation. The forecasting exercise 

shows that an informative prior on the steady-state incorporated in BFAVAR models 

marginally increase forecasting accuracy compared to BFAVAR models without the 

informative prior. The largest gain by using the BFAVAR model with an informative prior on 

the steady-state compared to the non-informative BFAVAR model is about 5 per cent, which 

can reasonably be considered a negligible-to-modest effect.  

 

When comparing the forecasting accuracy of the steady-state BFAVAR with the AR(1), the 

RMSFE is reduced by approximately 9 per cent. This result can, in comparison to similar 

studies, be considered as more of a non-negligible effect.  

 

This study has provided limited evidence for including a steady-state prior in BFAVAR 

models. There do, however, seem to exist some results in favor of this methodology compared 

to the AR(1) model, at least on longer forecasting horizons. However, there is one caveat 

related to the BFAVAR models. The factors estimated by principal components are estimated 

over the whole sample, meaning that there might be some overfitting bias.  

 

Further research into distinguishing between low-inflation and high-inflation regimes might 

be able to specify different priors on inflation depending on which regime are current, leading 

to better forecasting accuracy in these different regimes. In a setting when the inflation target 

is incorporated at face value, the model using an informative prior on the steady-state tends to 

overestimate the future path of inflation and the time to reach the prior interval when inflation 

is far below the inflation target.  
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Appendix A – Bayesian Statistics and Principal Components 
 

A.1 Bayesian inference in VAR models 

 

Introducing shrinkage using Bayesian methods commonly starts with the researcher having 

prior beliefs or a priori knowledge about the parameters. The aim is to shrink unnecessary 

parameters towards zero to conserve degrees-of freedom. The clearest distinction between the 

Bayesian and the frequentist approach is that in the Bayesian approach, we condition on the 

observed data (see Gelman 2009 for a good introduction on Bayesian statistics).  

 

The first step in Bayesian data analysis is to set up a full probability model. We therefore need 

a model providing the joint probability distribution for 𝜃 and 𝑦, in order to make probability 

statements on 𝜃  given 𝑦 . Following the notation of Gelman (2009), the joint probability 

density function can be written as a product of two densities: the prior distribution 𝑝(𝜃), 

specified by the researcher, and the sampling distribution, 𝑝(𝑦|𝜃), coming from the data: 

 

𝑝 𝜃, 𝑦 = 	𝑝 𝜃 𝑝 𝑦 𝜃 . (3) 

 

The second step is to condition on the known value of the data, 𝑦. Using Bayes’ rule12, we get 

the posterior distribution we want to estimate: 

 

𝑝 𝜃 𝑦 =
𝑝(𝜃, 𝑦)
𝑝(𝑦) =

𝑝 𝜃 𝑝(𝑦|𝜃)
𝑝 𝑦  (4) 

 

where 𝑦  is the actual observations and 𝜃  are the model parameters. 𝑝(𝜃|𝑦), the posterior 

distribution, is the conditional probability distribution of the unobserved values of interest. 

𝑝(𝑦) is for scaling and does not depend on 𝜃. With fixed 𝑦, 𝑝(𝑦) can be considered a constant 

and thus omitted. Therefore, equation (4) can also be written as the unnormalized posterior 

distribution: 

𝑝 𝜃 𝑦 ∝ 𝑝 𝜃 𝑝(𝑦|𝜃), (5) 

 

     

                                                
12 𝑃 𝐴 𝐵 = 	 i 𝐵 𝐴 i(j)

i(k)
, where A and B are events and 𝑃(𝐵) ≠ 0 
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where ∝ means “proportional to”. The resulting parameter is now a combination of the prior 

distribution and the data distribution and there are some intuitive results that follow from the 

relationship in (5): 

 

(i) If the prior is uninformative, the posterior distribution is mainly determined by the 

data. 

(ii) If the prior is informative, the posterior distribution is a combination of the prior 

and the data. 

(iii) The more informative the prior is, the more data is needed in order to change our 

beliefs since the posterior will then be mainly driven by the prior information. 

(iv) If there is a lot of data, the data will dominate the posterior distribution in the 

sense that the prior gets less weight when combining the prior and the data, which 

will make the information from the data more important. 

 

In many empirical applications, the integration of 𝑝 𝜃 𝑦  can be impossible. Therefore, 

numerical integration based on Monte Carlo simulation methods are used. A commonly used 

method is the Gibbs sampler; see e.g. Gelman et al. (2009) for further explanation.  

 

The choice of priors can be purely subjective or based on empirics. There is a variety of priors 

to choose among and the literature has become quite extensive on the issue. The prior on the 

dynamics considered here is the most commonly used Minnesota prior. The prior on the 

covariance matrix is the standard Diffuse prior. 

 

A.2 The Minnesota Prior 

 

The priors used by Doan, Litterman and Sims (1984) and Litterman (1986) became known as 

the Minnesota prior due to their connection to the University of Minnesota and the Federal 

Reserve Bank of Minneapolis. This prior is based on replacing Σ with an estimate Σ, which 

simplifies the prior compared to other priors (e.g. Diffuse-and Normal Wishart, which treats 

the covariance matrix as a random variable). The original Minnesota prior assumed Σ to be 

diagonal, which simplifies it even further. When we assume no correlation between the errors 

in each equation, then each equation of the VAR can be estimated one at the time and the 
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elements on the diagonal becomes the estimated variance of each separate equation	𝜎oo = 𝑠oB. 

Even though this approach simplifies computation, replacing the Σ with the estimate Σ might 

be disadvantageous since we are replacing an unknown matrix by an estimate (and not 

necessarily a good one). 

 

By replacing Σ with the estimate	Σ, it is now fixed and we only have to specify a prior mean 

and variance for the coefficient matrix	𝛼. Following the notation of Koop & Korobilis (2010) 

the Minnesota prior assumes: 

𝛼	~	𝑁 𝛼rH, 𝑉rH . (6) 

  

An advantage of the Minnesota prior is that it leads to a simple posterior distribution in the 

sense that it only involves the Normal distribution: 

 

𝛼|𝑦	~	𝑁 𝛼rH, 𝑉rH , (7) 

where 

𝑉rH = 𝑉rH
1A

+ Σ1A ⊗ 𝑋u𝑋 ′
1A
, 

𝛼rH = 𝑉rH 𝑉rH1A𝛼rH + Σ1A ⊗ 𝑋 ′𝑦 . 13 

 

As Koop & Korobilis (2010) points out, the disadvantage with replacing Σ with the estimate Σ 

leads to a non-Bayesian way of treating Σ by ignoring the uncertainty in this parameter. Also, 

the Minnesota prior typically use a prior mean that reflects a distinct random walk behavior 

(𝛼rH are set to 1 for the first own lag and 0 for the rest). In our case it is more relevant to set 

the prior mean for the coefficient on the own first lag to 0.9, reflecting a prior belief that our 

variables show a fair degree of persistence, but not unit root behavior. Otherwise, the 

Minnesota prior would be inconsistent with the BFAVAR since a random walk does not have 

a well-defined unconditional mean. 

 

                                                
13 ⨂ denotes the Kronecker product, which results in a block matrix. For example: 
 

 𝑎 𝑏
𝑐 𝑑 ⨂ 1 2

3 4 =
𝑎 1 2
3 4 𝑏 1 2

3 4
𝑐 1 2
3 4 𝑑 1 2

3 4
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Recall that the Minnesota prior assumes the prior covariance matrix, 𝑉rH, to be diagonal. We 

can then let 𝑉o be the block of 𝑉rH with the 𝐾 coefficients in equation 𝑖 and 𝑉o} be its diagonal 

elements. A common implementation of the Minnesota prior is then to set the 

hyperparameters to: 

 

𝑉o} 	= 	

~X
�T
, for	coefficients	on	own	lag	r	for	r = 1,… , p	

~T���
�T���

, for	coefficients	on	lag	r	of	variable	j ≠ i	for	r = 1,… , p

𝑎�𝜎oo,	for	coefficients	on	exogenous	variables

, (8) 

 

This simplifies the prior by letting us choose three scalars 𝑎A, 𝑎B	𝑎𝑛𝑑	𝑎�	 rather than 

specifying all elements of	𝑉rH . Also, this specification captures the property that, as lag 

length increases, the coefficients are increasingly shrunk towards zero and that by setting 

𝑎A 	> 	𝑎B, own lags are more likely to be important predictors than lags of other variables. 

The exact choice of values for these hyperparameters depends on the empirical applications 

but what should be noted is that these hyperparameters determines how tightly to shrink the 

prior variance towards the random walk. If the prior variance is set to infinity, it will resemble 

estimating a standard reduced form VAR, while if the prior variance is set to 0 it is equivalent 

of modelling a random walk for each equation. 

 

With regards to optimal choices of hyperparameters, Carriero et al. (2013) find very small 

losses, and even gains, by adopting specification choices that make BVAR modelling fast and 

simple. Carriero et al. (2013) find that cross-variable tightness of 0.5 is better with respect to 

accuracy than a value of 0.2. They find that fixing the lag length and hyperparameters 

according to their idea of simple Bayesian estimation is hard to beat, meaning a lag length of 

a year and hyperparameters as before. In general, they find that fixing lag length on a bit 

longer than optimum (if optimum is not known) is a good idea. 

 
A.3 Principal Component Analysis 

 

Principal component analysis is primarily a tool for explaining the variance-covariance 

structure of a large set of variables through a number of linear combinations of these variables. 

It is possible to create as many principal components as there are variables in the data set, 

however, often much of the variability can be explained using the principal components such 
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that 𝑝 principal components contain as much, or almost as much, information as the original 𝑘 

variables, Johnson & Wichern (2009). For example, we are interested in 𝑝 new variables 

which are linear combinations of the variables in the larger data set: 

 

𝛿A = 𝑤AA𝑥A + 𝑤AB𝑥B + ⋯+ 𝑤A�𝑥�
𝛿B = 𝑤BA𝑥A + 𝑤BB𝑥B + ⋯+ 𝑤B�𝑥�

⋮
𝛿� = 𝑤�A𝑥A + 𝑤�B𝑥B + ⋯+ 𝑤��𝑥�

 , (9) 

 

where 𝛿A, 𝛿B, … , 𝛿� are principal components, 𝑤o} are weights and 𝑥o are the original variables. 

Before estimating the principal components, the variables have to be weakly stationary and 

the data has to be normalized in order to get the variables in comparable units, otherwise 

variables of high scale would account for relatively too much of the total variation. 

 

The principal components in (11) are calculated given three conditions: 14 

 

(i) The first variable accounts for as much of the total variation as possible in the data, the 

second accounts for as much as possible of the variation left and so on. 

(ii) The squared weights sum to one. This condition ensures a proper scale of the variables, 

for example the variance of a new variable could otherwise be altered by scaling up or 

down the weights. 

(iii)  𝑤oA𝑤}A + 𝑤oB𝑤}B + ⋯+ 𝑤o�𝑤}� = 0				∀	𝑖, 𝑗 = 1,2, … , 𝑝, 𝑖 ≠ 𝑗	  i.e., the principal 

components are orthogonal. 

 

When choosing the numbers of principal components to create from the original data set, 

there is some rule of thumb. One suggestion is to keep adding components until there is a 

distinct “bend” in the scree plot and then include all components before the “bend” including 

the “bend” itself. Another popular suggestion is to keep adding components as long as the 

eigenvalue is greater than one, Johnson & Wichern (2009). However, different ways of 

deciding the optimal number of factors are not necessarily optimal when deciding the number 

to be included in the FAVAR model, Bernanke et al (2005). The principal components can 

then be used to calculate the scores, which are then used in the model. 

  

                                                
14 For the complete maximization problem, see Johnson & Wichern (2009). 
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Appendix B – Data Description and Transformation 
 
Below follows a short description of the variables used for each model. The first column is 

the name of the variables, the second is how it is measured, the third is a code for how 

seasonality is treated, the fourth is how the series is transformed and the fifth is a short 

description of the variable. If the seasonal code is 0, no seasonal adjustment is made, if the 

code is 1 the ARIMA-X13 SEATS of the Census Bureau is used and if the seasonal code is 2 

the series is adjusted from the data base. For the transformation code column: 0 means no 

transformation, 1 means the natural log, 2 means first difference, 3 means first difference of 

the natural log, 4 means two first differences and 5 means two first difference of the natural 

log. * Indicates that the monthly series is transformed to quarterly by averaging over the 

months making a quarter. 

 
 

Table 2: Data Description and Transformations for BFAVAR model 
Time Series Measure Season 

code 
Transformatio
n code 

Description 

Real Output and 
Income         

IPI_AGG index 2010=100 2 2 Industrial production in manufacturing, mines and 
minerals (quarterly) 

IPI_MAN index 2010=100 2 3 Industrial production in manufacturing (quarterly) 

IPI_FOOD index 2010=100 2 3 Industrial production in food, tobacco and alcohol 
(quarterly) 

IPI_LUMBER index 2010=100 2 3 Industrial production in lumber and planning mill 
(quarterly) 

IPI_PAPER index 2010=100 2 3 Industrial production in paper industry (quarterly) 

IPI_STEEL & METAL index 2010=100 2 3 Industrial production in steele and metal mill 
(quarterly) 

IPI_MOTOR index 2010=100 2 3 Industrial production in Motor industry(quarterly) 

HH_DISP Million SEK 1 3 Household disposable income (quarterly) 

GDP Million SEK 2 3 Gross domestic product (quarterly) 

GROSS_CAP Million SEK 2 3 Gross capital formation (quarterly) 

CHANGE_INVENT Million SEK 2 3 Change in capital spent on inventories (quarterly) 

IMPORTS Million SEK 2 3 Total imports (quarterly) 

EXPORTS Million SEK 2 3 Total exports (quarterly) 

Employment & Hours         

EMP_GOV Number employed 16-64 0 3 Number employed in governmental sector 
(thousands) * 

EMP_MUN Number employed 16-64 0 3 Number employed in municipalities (thousands) * 

EMP_PRIV Number employed 16-64 2 3 Number employed in private sector (thousands) * 

EMP_TOT Number employed 16-64 0 3 Number employed in total (thousands) * 

UNEMP_RATE Percent of age 16-64 0 2 Unemployment rate as percentage of working age 
population 

EMP_RATE Percent of age 16-64 0 2 Employment rate as percentage of working age 
population * 
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UNEMP_LABOUR Percent of age 16-64 0 2 Unemployment rate as percentage of labour force 
* 

NOT_LABOUR Number of inactive 16-64 0 2 Share of not participating in the labour force as 
percentage of working age population * 

HRS_TOT Hours in millions 2 3 Total numbers worked within and outside of 
Sweden (quarterly) 

HRS_AGRICULTURE Hours in millions 2 3 Total numbers worked in agriculture (quarterly) 

HRS_MIN_MAN_QU
AR Hours in millions 2 3 Total numbers worked in mining, manufacturing 

and quarrying(quarterly) 

HRS_MAN Hours in millions 2 3 Total numbers worked in manufacturing industry 
(quarterly) 

HRS_ENG_ENV Hours in millions 2 3 Total numbers worked in energy and 
environmental industry (quarterly) 

HRS_CONS Hours in millions 2 3 Total numbers worked in construction industry 
(quarterly) 

HRS_PROD_SERVIC
ES Hours in millions 2 3 Total numbers worked in producer of services 

sector (quarterly) 
HRS_RETAIL Hours in millions 2 3 Total numbers worked in retail industry (quarterly) 

HRS_TRANSPORT Hours in millions 2 3 Total numbers worked in transportation sector 
(quarterly) 

HRS_HOT_REST Hours in millions 2 3 Total numbers worked in hotel and restaurant 
sector (quarterly) 

HRS_INFO Hours in millions 2 3 Total numbers worked in information and 
communications sector (quarterly) 

HRS_FIN Hours in millions 2 3 Total numbers worked in financial and insurance 
industry (quarterly) 

HRS_RESEARCH Hours in millions 2 3 Total numbers worked in research and 
development sector (quarterly) 

HRS_EDUC_HEALT_
SOCIAL Hours in millions 2 3 Total numbers worked in education, health and 

social sector (quarterly) 

HRS_CULT Hours in millions 2 3 Total numbers worked in culture (quarterly) 

HRS_PUB_ADM Hours in millions 2 3 Total numbers worked in public and administrative 
sector (quarterly) 

VACANCIES Amount 2 3 Vacant job positions * 

Consumption         

IND_CONS Million SEK 0 3 Household individual consumption (reported 
quarterly) 

GOV_BUDGET_EPX Million SEK 1 3 Government budget expenditure * 

HH_CONS_EXP Million SEK 2 3 Household consumption expenditure excluding 
non-profitable organizations (reported quarterly) 

Expectations         

OWN_NOW Scale 1:6 0 2 Question: How is your economy right now? 
(individuals) * 

OWN_12 Scale 1:6 0 2 Question: How is your economy in 12 months? 
(individuals) * 

SWE_NOW Scale 1:6 0 2 Question: How is the Swedish economy now? 
(individuals) * 

SWE_12 Scale 1:6 0 2 Question: How is the Swedish economy in 12 
months? (individuals) * 

SAVE_NOW Scale 1:6 0 2 Question: Is it favorable to save now? (individuals) 
* 

EXPP_RS Index 0 2 Expected selling prices for firms in retail sales 
sector (quarterly) 

EXPP_NDG Index 0 2 Expected selling prices for firms in non-durable 
goods sector (quarterly) 

EXPP_M Index 0 2 Expected selling prices for firms in motor sector 
(quarterly) 

EXP_CPI_12 Index 0 2 Expected inflation in 12 months for private sector 
(quarterly) 

Housing         
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REAL_EST_PRICE_I
ND Index 0 3 Index over real estate prices in Sweden (reported 

quarterly) 

SMH_Q Number/1000 1 3 Number of small houses sold (reported in 
thousands) 

HOL_Q Number/1000 1 3 Number of holiday houses sold (reported in 
thousands) 

RENT_Q Number/1000 1 3 Number of rental real estates sold (reported in 
thousands 

INDU_Q Number/1000 1 3 Number of industrial real estates sold (reported in 
thousands) 

FARM_Q Number/1000 1 3 
Number of farming real estates sold (reported in 
thousands). Note observation for 1996-1998 is 
made quarterly by averaging. 

SMH_P Number/1000 0 3 Purchasing price small houses sold (mean) 

HOL_P Number/1000 0 3 Purchasing price holiday houses sold (mean) 

RENT_P Number/1000 0 3 Purchasing price rental real estates sold (mean) 

INDU_P Number/1000 0 3 Purchasing price industrial real estates sold (mean) 

FARM_P Number/1000 0 3 
Purchasing price farming real estates houses sold 
(mean). Note observation for 1996-1998 is made 
quarterly by averaging. 

SMH_BAS/TAX Number/1000 0 3 Ratable value of small houses sold (mean) 

HOL_BAS/TAX Number/1000 0 3 Ratable value of holiday houses sold (mean) 

RENT_BAS/TAX Number/1000 0 3 Ratable value of rental real estates sold (mean) 

INDU_BAS/TAX Number/1000 0 3 Ratable value of industrial real estates sold (mean) 

FARM_BAS/TAX Number/1000 0 3 
Ratable value of farming real estates sold (mean). 
Note observation for 1996-1998 is made quarterly 
by averaging. 

SMH_P/TAX Number/1000 0 3 Purchasing price over ratable value of small 
houses sold (mean) 

HOL_P/TAX Number/1000 0 3 Purchasing price over ratable value of holiday 
houses sold (mean) 

RENT_P/TAX Number/1000 0 3 Purchasing price over ratable value of rental real 
estates sold (mean) 

INDU_P/TAX Number/1000 0 3 Purchasing price over ratable value of industrial 
real estates sold (mean) 

FARM_P/TAX Number/1000 0 3 
Purchasing price over ratable value of farming real 
estates sold (mean). Note observation for 1996-
1998 is made quarterly by averaging. 

Stock & Commodity 
prices         

OMXS30 Index 2010=100 0 3 Swedish stock index of the 30 largest companies * 

BRENT Dollar/Barrel 0 3 Price of Brent oil in US dollar (quarterly) 

COPPER Dollar/Metric ton 0 3 Price of copper in US dollar (quarterly) 

IRON Dollar/Metric ton 0 3 Price of iron ore in US dollar (quarterly) 

ALUM Dollar/Metric ton 0 3 Price of aluminum in US dollar (quarterly) 

NICKEL Dollar/Metric ton 0 3 Price of nickel in US dollar (quarterly) 

Exchange rates         

YEN YENSEK 0 2 YENSEK exchange rate * 

EUR EURSEK 0 2 EURSEK exchange rate * 

GBP GBPSEK 0 2 GBPSEK exchange rate * 

USD USDSEK 0 2 USDSEK exchange rate * 

KIX Index 0 2 Weighted exchange rate index by NIER * 

TWC Index 1992=100 0 2 Weighted exchange rate index by the Riksbank * 

Interest rates         

STIBOR1M Percentage 0 2 Stockholm Interbank Official Rate 1 months * 
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STIBOR3M Percentage 0 2 Stockholm Interbank Official Rate 3 months * 

STIBOR6M Percentage 0 2 Stockholm Interbank Official Rate 6 months * 

SSVX1M Percentage 0 2 Treasury bill 1 month * 

SSVX3M Percentage 0 2 Treasury bill 3 months * 

SSVX6M Percentage 0 2 Treasury bill 6 months * 

GVB2Y Percentage 0 2 Government bond 2 year * 

GVB5Y Percentage 0 2 Government bond 5 year * 

GVB10Y Percentage 0 2 Government bond 10 year * 

BOOBL2Y Percentage 0 2 2 yeas housing bond * 

BOOBL5Y Percentage 0 2 5 year housing bond * 

Money and Credits         

M0 Million SEK 0 3 Currency and digital money on the market (narrow 
money) * 

M3 Million SEK 0 3 M1 + debt and deposits up to two years maturity * 

GOV_DEBT Million SEK 0 3 Government external debt * 

Prices         

CPI Percentage change 1 0 Change in Swedish consumer price index 
(quarterly) 

CPIF Percentage change 0 0 Change in Swedish consumer price index deducing 
effects from housing interest rates 

EXPI Percentage change 0 0 Change in export price index 

HMPI Percentage change 0 0 Change in home market prices 

IMPI Percentage change 0 0 Change in import price index 

ITPI Percentage change 0 0 Change in domestic resource price index 

PPI Percentage change 0 0 Change in producer price index 

TRIM85 Yearly percentage change 0 2 

The Riksbank's measure of underlying inflation 
(see 
http://www.riksbank.se/sv/Statistik/Makroindikato
rer/Underliggande-inflation/) * 

UND24 Yearly percentage change 0 2 

The Riksbank's measure of underlying inflation 
(see 
http://www.riksbank.se/sv/Statistik/Makroindikato
rer/Underliggande-inflation/) * 

Foreign variables         

US3M Percentage 0 2 US 3 month interest rate * 

US6M Percentage 0 2 US 6 month interest rate * 

FED_INTEREST Percent 0 2 Federal reserve interest rate * 

EU_INFLATION Percentage change 0 0 Change in EU inflation * 

US_EPUI Index 0 2 US economic policy uncertainty index. High value 
of index indicates high uncertainty etc. * 

US_UNEMP Percent 0 2 US unemployment rate * 

US_INFLATION Percentage change index: 
2010=100 2 0 Change in US inflation rate (quarterly) 

EU_EPUI Index 0 2 EU economic policy uncertainty index. High value 
of index indicates high uncertainty etc. * 

US_FSI Index 0 2 St Louis FED Financial Stress Index. High value 
of index indicates high uncertainty etc. quarterly 
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Appendix C – RMSFEs 
 

 
 

Table 3: RMSFEs for BFAVAR models 

Horizon  1 2 3 4 5 6 7 8 9 10 11 12 

              
BFAVAR 

without steady-
state 

             

              
BFAVAR(3,1,1)  0.372 0.44 0.461 0.48 0.479 0.445 0.445 0.421 0.399 0.374 0.313 0.306 
BFAVAR(3,1,2)  0.376 0.445 0.462 0.479 0.479 0.449 0.45 0.425 0.4 0.374 0.307 0.309 
BFAVAR(3,1,4)  0.379 0.451 0.47 0.486 0.487 0.454 0.454 0.428 0.405 0.382 0.323 0.32 

              
BFAVAR with 

steady-state              

              
BFAVAR(3,1,1,1)  0.37 0.435 0.45 0.463 0.466 0.431 0.431 0.401 0.384 0.363 0.302 0.297 
BFAVAR(3,1,2,1)  0.375 0.439 0.453 0.466 0.469 0.432 0.43 0.404 0.385 0.364 0.306 0.301 
BFAVAR(3,1,4,1)  0.377 0.448 0.461 0.474 0.476 0.442 0.44 0.412 0.39 0.369 0.308 0.308 

              
Benchmark              

AR(1)  0.382 0.445 0.456 0.465 0.469 0.431 0.431 0.407 0.393 0.378 0.326 0.325 

Naive  0.409 0.542 0.588 0.665 0.665 0.643 0.699 0.708 0.633 0.597 0.554 0.503 

 

Note: the univariate model refers to the univariate BVAR model. The Naïve model is a random walk benchmark 
such that: 𝒙𝒕I𝒉|𝒕 = 𝒙𝒕,								(𝒉 = 𝟏,…𝑯).  
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Table 4: Relative RMSFE of BFAVAR models compared to AR(1), 2006Q3 - 2016Q3 

Horizon  1 2 3 4 5 6 7 8 9 10 11 12 

              
BFAVAR 

without steady-
state              

              
BFAVAR(3,1,1)  0.97 0.99 1.01 1.03 1.02 1.03 1.03 1.03 1.02 0.99 0.96 0.94 
BFAVAR(3,1,2)  0.98 1.00 1.01 1.03 1.02 1.04 1.04 1.04 1.02 0.99 0.94 0.95 
BFAVAR(3,1,4)  0.99 1.01 1.03 1.05 1.04 1.05 1.05 1.05 1.03 1.01 0.99 0.98 

              
BFAVAR with 

steady-state              

              
BFAVAR(3,1,1,1)  0.97 0.98 0.99 1.00 0.99 1.00 1.00 0.99 0.98 0.96 0.93 0.91 
BFAVAR(3,1,2,1)  0.98 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.94 0.93 
BFAVAR(3,1,4,1)  0.99 1.01 1.01 1.02 1.01 1.03 1.02 1.01 0.99 0.98 0.94 0.95 

 

Note: the relative RMSFE is calculated as a ratio between the univariate model and the competing model. A 
number smaller than 1 indicates lower RMSFE for the competing model. 

 
 
 

Table 5: Reduction in RMSFE for the best models compared to the AR(1) model, 
2006Q3 - 2016Q3 

Horizon  1 2 3 4 5 6 7 8 9 10 11 12 
              

BFAVAR 
without steady-

state 
             

              
BFAVAR(3,1,1)  0.01 0.01 -0.01 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.02 
BFAVAR(3,1,2)  0.01 0.00 -0.01 -0.01 -0.01 -0.02 -0.02 -0.02 -0.01 0.00 0.02 0.02 
BFAVAR(3,1,4)  0.00 -0.01 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 0.00 0.00 0.01 

              
BFAVAR with 

steady-state              

              
BFAVAR(3,1,1,1)  0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 
BFAVAR(3,1,2,1)  0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 
BFAVAR(3,1,4,1)  0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.01 0.02 0.02 

 

Note: the reduction in RMSFE is calculated as the difference between the univariate model and the competing 
models. A negative number indicates that the RMSFE is smaller for the univariate model than the competing 
model. 
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Table 6: Reduction in RMSFE for BFAVAR with steady-state compared to BFAVAR 
without steady-state 

Horizon  1 2 3 4 5 6 7 8 9 10 11 12 
              

BFAVAR with 
steady-state              

              
BFAVAR(3,1,1,1)  0.002 0.005 0.011 0.017 0.013 0.014 0.014 0.020 0.015 0.011 0.011 0.009 
BFAVAR(3,1,2,1)  0.001 0.006 0.009 0.013 0.010 0.017 0.020 0.021 0.015 0.010 0.001 0.008 
BFAVAR(3,1,4,1)  0.002 0.003 0.009 0.012 0.011 0.012 0.014 0.016 0.015 0.013 0.015 0.012 

 

Note: the reduction in RMSFE is calculated as the difference between the BFAVAR model with steady-state and 
the competing model, BFAVAR without steady-state. A negative number indicates that the RMSFE is smaller 
for the BFAVAR model without steady-state than the competing model. 

 
 
 
 


