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Size and power of two recent unit root tests that allow for structural breaks 

Abstract 

This paper examines the properties of the two recent structural break unit root tests 

developed in Harvey, Leybourne and Taylor (2013) and Narayan and Popp (2010). The 

properties are investigated by Monte Carlo simulations in an environment where two trend 

breaks of small to large magnitudes are present. We find that the Harvey, Leybourne and 

Taylor (2013) test has superior size and power properties compared to the Narayan and 

Popp (2010) test. In addition, we investigate the accuracy of the break detection of the two 

procedures. The results show that the former test is more accurate than the later test except 

for when the breaks are very large and the null is true. 

Keywords: Unit root test, Structural breaks, Multiple trend breaks, Endogenous breaks, 

Monte Carlo simulations  
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1. Introduction  

Ever since Dickey and Fuller (1979) presented the Dickey-Fuller unit root test a significant 

part of the time series econometrics literature has been concerned with unit roots. Over the 

years there has been a growing body of literature on the subject where the Dickey-Fuller test 

has been a cornerstone. The augmented Dickey-Fuller test proposed by Said and Dickey 

(1984) is still often is used as a benchmark. Although, the test is widely used it is, in small 

samples, known to have low power, see for example Choi (2015), DeJong et al. (1992), and 

Harris (1992), and size distortions, see for example Schwert (1989). Numerous alternative 

tests with improved properties have been proposed, for example, two popular procedures 

are developed by Elliott, Rothenberg and Stock (1996) and Phillips and Perron (1988). 

However, the unit root tests that tend to outperform the augmented Dickey-Fuller test do 

not do so by much in small to moderate samples Choi (2015), Vougas (2007). Therefore, the 

small sample problems still persist.   

The practitioner may try to overcome the small sample problems by extending the time 

series. Although, with longer time spans new problems may arise as structural breaks are 

more likely to have occurred. Perron (1989) showed that the Dickey-Fuller test almost 

always fails to reject the null for trend stationary series with breaks in level and/or trend. A 

further complication, see for example Franses and Haldrup (1994), Leybourne, Mills and 

Newbold (1998) and Psaradakis (2001), is that unit root tests in some cases even spuriously 

reject the null when breaks are present. Consequently, when breaks are not accurately 

accounted for unit root tests suffer from both size and power problems. 

As a result, much of the unit root literature has been concerned with various methods to 

account for breaks. Perron (1989) provides a solution by including break variables in the test 

regression assuming one known break point. He introduces two different methods that 

allow for the change to occur in different ways. One models the break assuming it occurs 

instantaneously, this is the additive outlier model, and the other models the break assuming 

it occurs gradually, this is the innovational outlier model. These two modelling approaches 

have served as the groundwork of the structural break unit root testing. However, in most 

applied cases, the researcher does not know whether any breaks are present in the process 



5 
 

or not. Moreover, even if one would be certain that breaks are present their exact timing 

may be difficult to determine. Therefore, it is essential to be able to endogenously 

determine breaks within the testing procedure without any priori information about the 

putative breaks.  

Many different approaches to determine possible break points have been developed over 

the years. One popular approach is to use minimum unit root statistics. In these types of 

tests the breaks are located such that the test yields the least favourable support of the null 

hypothesis. Some widely used tests that employ this procedure are, for example, Zivot and 

Andrews (1992), Lumsdaine and Papell (1997) and Lee and Strazicich (2003). Another 

common approach is to estimate the break points such that the significance of the level or 

trend break variables are maximized. In contrast to the minimum statistics tests in this 

approach the estimated breaks are allocated where they are, in terms of parameter 

significance, the most likely to have occurred. Some examples of such tests are Christiano 

(1992), Perron and Vogelsang (1992), Perron (1997) and Vogelsang and Perron (1998). 

Vogelsang and Perron (1998) investigate the power and size properties of endogenous unit 

root tests under various model specifications. They derive asymptotic distributions for both 

the innovational outlier and the additive outlier models and show that they are invariant to 

breaks in level but not to breaks in trend. The authors argue, though, that the asymptotic 

problems may not translate to small sample cases. This is because in most applications the 

breaks should be small enough to keep the size within reasonable bounds. However, in their 

simulations they find that size and power vary significantly with the break magnitudes.  

Harvey, Leybourne and Newbold (2001) further investigate power and size in the context of 

Vogelsang and Perron (1998) and the level break case. Their analysis shows that the 

procedures suffer from size distortions when breaks are present in samples of realistic sizes. 

They pay special attention to the innovational outlier model and find that the estimated 

break dates are correct very rarely. Instead, the most frequently estimated break point lies 

one time point before the true. Deriving upon the results in Kim, Leybourne and Newbold 

(2000), that exogenous breaks erroneously positioned just before the true break can cause 

spurious rejections, they suggest that the problematic break detection is a source of the size 
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distortions. Likewise, Lee and Strazicich (2001) argue that much of the problems in unit root 

tests without structural breaks may persist in those which allow for breaks when they are 

estimated with inadequately precision. Using simulated data they find that both the Zivot 

and Andrews (1992) and the Perron (1997) tests perform poorly in estimating the break 

dates in general. Furthermore, neither test is invariant to the break magnitudes. Finally, they 

suggest that erroneous break estimation may be a source of both size and power distortions. 

Also in this study they consider exogenously determined flawed break points to abstract the 

consequences of inaccurate break estimation. Note that, although such illustration is 

interesting in its own right, it is not the same thing as considering endogenously estimated 

break points. The reason for this is that the endogenous procedure selects the break points 

systematically based the characteristics of the data. For a given sample and estimated break 

point the test statistic is the same whether the break point is estimated exogenously or 

endogenously. However, because of the systematic nature of the break detection this is not 

the case for averages such as empirical size and power. That is, with the exception from the 

trivial cases where the endogenous breaks are estimated with 100% accuracy or allocated 

randomly. However, because complete accuracy is not feasible in practice it is also 

interesting to investigate size and power for endogenously estimated break points, whether 

they are accurate or not.  

To solve the problem of break estimation inaccuracy in the innovational outlier test Popp 

(2008) introduces a new test with one endogenous break. Although the method only differs 

slightly from the previous tests, it enhances the accuracy of the break detection. In the 

Perron-type tests typically the regression model accounts for the break by including an 

impulse, level and trend break variable at the time of the presumed break. Instead, Popp 

(2008) only places an impulse dummy at the time of the break, whereas the level and trend 

break variables are lagged one time point. In this way, both the level and trend break 

variables are nested in the parameter corresponding to the impulse dummy. Furthermore, 

instead of choosing the breaks to maximize the significance of the level or trend break 

variables he maximizes the significance of the impulse dummy. By simulation he shows that 

the procedure finds the correct break date as the break magnitude increases. Narayan and 

Popp (2010), henceforth NP, extend the test to allow for two structural breaks in level and 
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trend. In a Monte Carlo study Narayan and Popp (2013) show that the NP test has superior 

small sample size and power properties and estimates the break dates more accurately 

compared to the Lee and Strazicich (2003) and Lumsdaine and Papell (1997) test. In recent 

years the NP test has gained popularity in the applied research literature. It is, perhaps, most 

frequently used in the field of energy economics, see for example Apergis and Payne (2010), 

Salisu and Mobolaji (2013), Mishra and Smyth (2014) and Tiwari, Shahbaz and Adnan Hye 

(2013), but is also used in many other fields of applied econometric time series, see for 

example Chang and Su (2014), Chen and Shen (2015) and García-Cintado, Romero-Ávila and 

Usabiaga (2015). 

Perron and Rodríguez (2003) extend the GLS-detrended unit root test developed by Elliott, 

Rothenberg and Stock (1996) to allow for one structural break in trend. To estimate the 

break dates they apply both a minimum Dickey-Fuller t statistic approach and maximize the 

absolute value of the t statistic of the changing slope. They conclude that, in finite samples, 

the minimum Dickey-Fuller approach yields higher power. Harvey, Leybourne and Taylor 

(2013), henceforth HLT, draw extensively on Perron and Rodríguez (2003) and develop a GLS 

minimum Dickey-Fuller type test that allows for a flexible number of breaks. Being a fairly 

new contribution to the literature the HLT test has not been applied as frequently as the NP 

test. However, some prominent applications of the test are Camarero, Carrion-i-Silvestre and 

Tamarit (2015), Liddle and Messinis (2015) and De Vita and Trachanas (2016) where, in the 

two later studies, the test is applied together with the NP test. Up to now there are no 

simulation studies that examine the properties of the two tests under the same data 

generating process. Since the tests are applied in similar cases it is important to examine 

them in the same environment to be able to compare their properties. This gap in the 

literature calls for further research.  

Harvey, Leybourne and Taylor (2012) and HLT address the problem of break estimation in 

unit root tests when break magnitudes are small to moderate in finite samples. They 

consider local break magnitudes, that is, normalized versions of the magnitudes that account 

for the time span and the long-run variance. This is a natural way of thinking about the break 

magnitudes since their size relative to the errors and time span determines to what degree 



8 
 

they contaminate the stochastic process. With this approach they show that many previous 

unit root tests have significant power valleys for small to moderate sized breaks. Break 

magnitudes that fall in this region are, for example, magnitudes smaller than one standard 

deviation of the long run errors in realistic time spans. Moreover, HLT show that their test is 

robust to breaks of such magnitudes. To demonstrate the relevance of power valleys in 

applied research they apply their test to commodity prices. Annual data on copper, hides, 

lead and silver prices for the period 1900-2003 is considered. All the resulting estimated 

break magnitudes lie within the region of the power valleys emphasizing the importance of 

tests robust to small to moderate break magnitudes. 

NP run simulations to investigate size and power properties of their test. The trend break 

magnitudes in the case where no level breaks are present are 0, 5 and 10 standard 

deviations of the long-run errors. Narayan and Popp (2013) only consider the case where 

trend breaks appear along with level breaks. Since, at least, the break detection should not 

be invariant to level breaks we cannot assume that these results translate to the case 

without level break. Furthermore, the trend break magnitudes are studied in steps of one 

standard deviation of the long-run errors. In both studies, for realistic time horizons and 

errors, in terms of the local break magnitudes most of these trend breaks are huge. All of 

which, apart from those of a magnitude of 1 or perhaps 2 standard deviations, would 

arguably be very rare in most applications. More reasonable break magnitudes between 0 

and 1, on the other hand, are left out. Therefore, the tests performance when trend breaks 

alone are present has not yet been properly investigated. Because one would never fully be 

aware of the characteristics of the breaks such investigation is relevant to any empirical 

application, whether one suspects level breaks to be present or not. This calls for an 

investigation of the NP test under trend breaks alone.  

The aim of this paper is to fill the gaps in the literature in that the NP and HLT test have 

never been examined alongside with each other before and, furthermore, the NP test has 

not yet been properly examined when small to moderate sized trend breaks are present. 

This is done by Monte Carlo simulations imposing two breaks in trend. The break 

magnitudes range from zero to large and have a good coverage of the small and moderate 
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sized magnitudes in between. Additionally, following Popp (2008), NP and Narayan and Popp 

(2013) we investigate the tests abilities to estimate the break dates. However, in contrast to 

these articles, we do not only present the probabilities of estimating the true breaks but the 

corresponding probabilities for the entire set of possible break dates. In order to make sense 

of the precision of the break estimation size and power when endogenously estimated 

breaks are allocated at various time points, correct as well as incorrect, are studied. This 

approach differs from similar studies such as Lee and Strazicich (2001), Kim, Leybourne and 

Newbold (2000) and Harvey, Leybourne and Newbold (2001) where exogenously determined 

breaks are considered. The results are a relevant contribution to both applied and 

theoretical research. In the applied field it provides guidance for which test to apply under 

certain conditions. For theoretical research the contribution lies in the implications of the 

break detection in the two tests.  

The paper is organized as follows. Section 2 provides a detailed description of the two 

testing procedures. In section 3 the Monte Carlo study is setup and the underlying data 

generating processes are defined. In section 4 the results are presented and discussed. 

Finally, section 5 consists of concluding remarks and suggestions for further research.  

2. Overview of the tests 

2.1  The HLT test 

As briefly discussed above HLT construct a GLS-based minimum Dickey-Fuller unit root tests 

with a flexible number of breaks in trend. Ultimately the test is performed on detrended 

data with possible lags allowed in the stochastic part but not the deterministic part of the 

process. This assumes that the presumed breaks occur instantaneously, which is in 

accordance with the additive outlier model. HLT consider a data generating process 

consisting of one deterministic and one stochastic part as follows: 
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where                                 ’ is a vector of trend breaks with elements 

defined as                          , and the operator     takes the integer part of its 

argument.                   is a vector of unknown supposed break fractions such that 

             for         where    and    represent the lower and upper bounds of the 

break fractions. Furthermore, we assume that                 for all    .   

           is a vector of break magnitudes. Finally, we have the error            with 

          
  

    and       where    is assumed to be independent identically distributed 

(IID) with zero mean and finite second and fourth moment. Hence, the short-run and long-

run variance of    are   
      

   and   
                 

 
      respectively. 

HLT use a minimum GLS-detrended Dickey Fuller approach to unit root testing and allow for 

up to   breaks under both the null and the alternative. The procedure performs an 

augmented Dickey-Fuller test on GLS-detrended data for all possible combinations of break 

dates and chooses the break dates that yield the minimum resulting test statistics.  

In more detail, the procedure starts by running a GLS regression of            

                   on                                ,  where                   

and           for some user supplied     , to obtain   ,   , and   . Using the GLS 

parameter estimates the GLS residuals are generated as                        . 

Having obtained the detrended data the usual augmented Dickey-Fuller regression is set up 

as follows:    

                             
 
               

from which the test statistics is generated from. This procedure is done for every 

combination of break dates within the allowed bounds. Finally, the statistic of the test is the 

minimum of the Dickey-Fuller statistics calculated above, that is: 
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where                   and           for all    . The authors suggest using the 

modified Akaike information criterion proposed by Ng and Perron (2001). Furthermore, for 

    they suggest using         and provide corresponding asymptotic critical values. 

2.2  The NP test 

NP developed a unit root test with two putative structural breaks in either level or in level 

and trend under the null and the alternative. Because, in this study, we are interested in the 

case where trend breaks occur we only consider the model with a break in level and trend, 

this corresponds to model M2 in their article. As pointed out in the introduction the test 

corresponds to the innovational outlier model. This can be seen in the way it, as opposed to 

the additive outlier model, allows for lags in the break structure. In this way the change in 

the deterministic part of the process can be considered to occur gradually. With all variables 

defined as above, unless stated otherwise, the data generating process is similarly divided 

into one deterministic and one stochastic part: 

                      

                                            

                        

where                                is a vector of level breaks with elements defined 

as                 , and            being its associated break magnitudes,   and 

        are defined as above with    . 

NP perform an augmented Dickey-Fuller test controlling for the breaks in level and trend. 

The break dates are detected using a sequential search method choosing the break dates 

with the statistically most significant associated parameters. More specifically, the 

procedure boils down to estimating an OLS regression as:   
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where       is an impulse dummy such that                  . Note, that the break 

variables for the level and trend break are lagged one time period but not the impulse 

dummy. The test is carried out using the usual t-statistic of the estimated parameter   . Note 

that a possible gradual change in the breaks is captured by the lagged differenced 

dependent variables in the OLS regression. 

To identify the break dates the regression is run to test all possible positions for one break. 

The resulting most significant break date is chosen as one of the two break dates. As a 

second step the regression is run controlling for the previously identified break date and 

repeats the procedure to identify a second break. Consequently, we have that 

            
  

     
       

             
  

      
            

where    is the set of all possible break locations,      and       are estimated break dates 

and     
 and      

 are the resulting t values of the impulse dummies from the first and second 

run of the regression respectively. The first and second break date is the smaller and the 

larger of the two identified breaks respectively. The authors suggest using the lag selection 

procedure proposed by Hall (1994). Small sample critical values that are simulated assuming 

no break and standard normal IID errors are provided. Furthermore, when generating the 

critical values they set the lag length equal to the true, that is, equal to zero. 

3. Monte Carlo setup 

In this section the Monte Carlo study in which the properties of the two tests are 

investigated in is setup. Since the innovational and additive outlier models imply different 

characteristics of the breaks the two tests are not equivalent in general. However, in the 

special case where the true lag length is equal to zero the gradual change in the innovational 

outlier model becomes sudden. Hence, it coincides with the additive outlier model. 

Furthermore, although the NP test allows for changes in level applying it to the case of sole 

trend breaks does not violate the assumptions of the test. Consequently, in order to operate 
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in an environment where both tests apply we assume that the true lag length is equal to 

zero and only trend breaks are allowed to occur. The data generating process is setup in a 

similar manner as above imposing, without loss of generality,      , and in order to 

make the tests comparable    ,         , and       . Thus we have: 

                      

                                      

                        

with    being standard normal IID where we impose varying magnitudes of      , and the 

autoregression coefficient  . Furthermore, we only consider the case where the break 

fractions are equal to                      . In both tests the trimming factor is set to    , 

which implies that the region of possible breaks is            . Additionally, the minimum 

distance between the estimated break dates is set equal to  . In the simulations the true lag 

length is equal to zero, however, since we never know the true lag length in practice we 

perform the tests both with and without lag selection. When the lag selection is applied the 

maximum lag length is set to                      apart from when the sample size 

equals to 50, in which case we set       . Size and power are calculated using critical 

values at 5 % level of significance. All simulations are performed using the standard Monte 

Carlo method. 

To begin with, simulations of sample sizes     ,      , and       with   

            for various break magnitudes   are performed. Since we pay special attention to 

breaks magnitudes and break detection the specifications of the elements in the vector   

are central to the analysis. Following the arguments above, that it is important to investigate 

tests properties when the break magnitudes are relatively small, for      and       

we set                      . For computational reasons we only consider       

                 for      . To put the magnitudes into a context we use the local break 

magnitudes approach as a vehicle to understand their implications. Following HLT, the 

vector of local break magnitude,              , is defined as       
   . Hence, with 

standard normal IID errors the long-run variance is equal to one, and thus we have 
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       . Essentially what this does is that it translates what a fixed magnitude for a given 

time span under a certain data generating process would imply in another time span or data 

generating process. In our cases the implied local break magnitudes are       

             for      ,                             for     , and       

                       for      . According to HLT, both the power valleys and the 

realistic break magnitudes lie within the span such that        . Therefore, given the 

magnitudes we study, at least for      and      , we have good coverage for the 

relevant span. For the cases where       and      we perform 5000 repetitions. As a 

result of the computational burden we only perform 1000 repetitions for the case where 

     . The generated size and power are presented in Figure 1 to 3. Additionally, 

normalized histograms of the estimated break dates are illustrated in Figure 4 to 7. 

On the basis of being a realistic time span in applied research whilst being large enough to 

make reasonably powerful tests plausible       is treated as a benchmark case. To shade 

some light on how erroneous endogenously estimated breaks relate to power and size the 

benchmark case is studied further. For this purpose size and power for specific 

endogenously estimated break dates are generated. This is done by generating a sample in 

the same manner as above, where we did consider the average size and power over all 

estimated break points. The only difference now is that we divide the sample into 

subsamples by sorting it according to the estimated break dates. In order to get reasonable 

estimates for each possible break point, however, this requires a much larger sample 

compared to when the average size and power are examined. Consequently, for this case, 

we generate a sample of 60000 observations. For example, this implies that for break dates 

that are estimated with a frequency of 1% we have a sample of 600 observations. The 

simulations are made under the null and the alternative with       and breaks of 

magnitudes                . The results are found in Table 1 and 2. 

In each sample 50 initial observations are generated for the period before the considered 

time periods start. This is to overcome initial value problems and the initial observations are 

discarded before running the tests. The simulations are performed in MATLAB based on 

codes written by the author of this paper. However, the codes for the HLT and NP test are 
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largely based on GAUSS codes originally provided by their respective authors.1 In a 

preliminary analysis we studied both positive and negative breaks of different magnitudes. 

We also studied the case where one break was fixed and the other varied from positive to 

negative. The results are qualitatively similar to those reported in this paper and are 

available upon request.      

4. Results 

4.1 Size and power curves 

In this section size and power of the tests with respect to the break magnitudes for various 

sample sizes are considered. The results are presented in Figure 1 to 3. Note that the vertical 

axes of the graphs take different values. The scaling was done to enable one to visually 

distinguish the curves form one another in all cases.   

The first graph in Figure 1 illustrates the size of the tests in the benchmark case where 

     .The only test that has the appropriate size when no breaks occur is the NP test 

when the lag length is set equal to zero. Note, however, that the critical values for this test 

are generated under the very same data generating process, and thus the size in this case is 

correct by construction. However, when the break magnitudes increase the size of the zero 

lag NP test declines and reaches its lowest level of just over 1.5% for break magnitudes of 

about 1. Thereafter it slowly increases to surpass 5% for magnitudes of 2.5 and reaches 10% 

for magnitudes equal to 4. When including lags in the test it is substantially oversized at 11% 

when no breaks occur. Thereafter the size follows a similar pattern as it did in the zero lag 

case. To conclude, we see that neither version of the NP test has stable size as the break 

magnitudes change. That is, neither test has the appropriate size in general.   

With lag length set to zero the HLT test is also oversized at a level of 10% when no breaks 

occur. However, the pattern when the break magnitudes increase is quite different from 

that of the NP test. At first, the rejection rate is quite stable for small to moderate breaks of 

                                                           
1
 The original GAUSS codes for the HLT and NP test respectively are available at: 

https://www.nottingham.ac.uk/research/groups/grangercentre/research/gauss-code.aspx and 
https://www.researchgate.net/publication/290147745_Narayan_and_Popp_2010_Journal_of_Applied_Statisti
cs_two_endogenous_structural_break_test_GAUSS_CODE   
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magnitude 0.5. Thereafter the size decreases and lies stable between 6 and 6.5% for break 

magnitudes larger than 1. When lag selection is introduced, in contrast to the NP test, the 

HLT tests size curve is shifted slightly downwards. In the no break case its size is about 8% 

and it is converging to a level between 5.5 and 6% when the break magnitudes grow larger. 

Consequently, it is a bit less oversized when lag selection is applied but in general it follows a 

similar pattern. Most striking about the two HLT tests is that, although they are somewhat 

oversized, they are reasonably invariant to the break magnitudes. Furthermore, since 

asymptotic critical values are used in this relatively small sample, it is reasonable to expect 

the tests to be a bit oversized. 

Turning our attention to the second plot in Figure 1 we see that neither test looks promising 

in detecting near unit roots. We can see that the NP test collapses for moderate sized 

breaks. The power of the NP test with zero lags falls as low as to a level of 2% for break 

magnitudes around 1 only to slowly regain some power as the break magnitudes increase. 

Similarly, the NP test with lag selection falls and hits its bottom at 5% for break magnitudes 

between 1 and 1.5. Following a similar pattern as its zero lag version it slowly regain some 

power as the break magnitudes increase. However, it never reaches a power higher than 8% 

for large breaks. The power curves of the two HLT tests in this case are shifted upwards 

between 5 to 7 percentage points compared to the size. 

The third plot in Figure 1 shows the power curves with respect to break magnitudes when 

     . Now, the NP test shows a quite large improvement in power for the for the no 

break case, in particular when the lag length is set to zero. However, again the test collapses 

when the break magnitudes are increased. For both versions of the test the power reaches a 

bottom at 10% for break of magnitudes between 1 and 2. Similar to the previous cases, after 

reaching its bottom the power increases slowly as the break magnitudes increase. The HLT 

test shows a substantial improvement in power, both with and without lag selection. 

However, introducing lags now punishes the test a bit harder than it did in the previous 

cases. The curve still has its characteristic appearance being larger for small breaks but 

already for moderate break magnitudes of about 0.5 the power has settled at a stable level. 
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Figure 1: Size and power with respect to the break magnitudes,        

 
Figure 1 shows size and power plots of the HLT and NP test. The data is based on Monte Carlo simulations with 
5000 repetitions under the null and the alternative with              , changing break magnitudes and 
sample size      . The horizontal axes indicate the break magnitudes and the vertical axes correspond to 
the rejection frequency. The vertical axes are scaled for visual clarity. HLT lags:  , HLT zero lags:   ,  
NP lags:  , NP zero lags:    . 

For small sample power and size we turn to Figure 2 where the results for      are 

pictured. As before, we see that the only test that has the appropriate size is the NP test 

when the lag length is set to zero and no breaks are present. Again, when lags are 

introduced into the procedure it is oversized, now somewhat more than it was in the 

      case. As the break magnitudes increase the power curves show a similar behavior 

as in the benchmark case, however, a bit less pronounced. Relying on asymptotic critical 

values both of the HLT tests are now quite significantly oversized. For these tests the size 

curves are more or less shifted 9 percentage points upwards compared to the benchmark 

case. 

The second plot of Figure 2 shows that both procedures only marginally increase the 

rejection frequencies when we move from the null to the alternative with      . For the 

case where       in the third plot the HLT test is quite substantially improved. At the same 

time, the NP test does not change by more than a few percentage points when no breaks 

occur. When breaks are present the change is almost absent. Although, the HLT test does 

show some improvement in the       case none of the tests can be considered 

performing well when the sample size is as small as     .     
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  Figure 2: Size and power with respect to the break magnitudes,       

 
Figure 1 shows size and power plots of the HLT and NP test. The data is based on Monte Carlo simulations with 
5000 repetitions under the null and the alternative with              , changing break magnitudes and 
sample size     . The horizontal axes indicate the break magnitudes and the vertical axes correspond to the 
rejection frequency. The vertical axes are scaled for visual clarity. HLT lags:  , HLT zero lags:   , NP lags:  ,  
NP zero lags:    . 

The large sample case where       is displayed in Figure 3 and the first plot pictures the 

size. The HLT test is now less oversized when no break occurs compared to the smaller 

sample cases. As expected, since we are using asymptotic critical values the test is closer to 

its nominal level for larger sample sizes. However, because the decline in size when the 

break magnitudes increase persists the test is now somewhat undersized for large break 

magnitudes. As before, including lags to the procedure results in a downward shift of the 

size curve.  The NP test, on the other hand, is subject to some major fluctuations. The shape 

of the curve is still similar to the smaller sample cases. However, the extent to which it is 

oversized is now worsened for large break magnitudes. The test when assuming zero lags is 

significantly oversized as it reaches its peak at 30%. The version of the test with lags also 

suffers from size problems, although, while the size reaches its peak at about 10% the 

problems are not as severe. Worth noting, however, is that the test is less oversized when 

no break occurs.  

The second picture shows the power when      . Regarding the HLT test the shape of the 

curve is more or less the same as in the smaller sample cases. Striking, though, is that the 

test now has reasonably high power. The NP tests also achieve a substantial improvement in 

power in the no break case. However, the large fall in power as a consequence of the breaks 

still persists and it reaches a bottom at around 7%. This is the case whether lags are included 

or not. The power is increased after reaching its bottom and lies at about 10 percentage 
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points above the size. The third picture illustrates the case when      . In this instance the 

curves are shifted upward about 40 percentage points in the no break case for the NP test 

and in general for the HLT test. For the HLT test without lags this implies 100% power. When 

breaks are present the power of the NP test falls as it did in the previous cases.  

Figure 3: Size and power with respect to the break magnitudes,        

 
Figure 1 shows size and power plots of the HLT and NP test. The data is based on Monte Carlo simulations with 
5000 repetitions under the null and the alternative with              , changing break magnitudes and 
sample size      . The horizontal axes indicate the break magnitudes and the vertical axes correspond to 
the rejection frequency. Note that the vertical axes are scaled for visual clarity. HLT lags:  , HLT zero lags:   , 
NP lags:  , NP zero lags:    . 

The difference between the three figures can best be understood in the light of the local 

break magnitudes framework. For example, under the null when       the size of the NP 

test without lags reached its bottom when the break magnitudes were roughly equal to 1. 

This implies local break magnitudes equal to        
                  . Thus, 

keeping the local magnitudes fixed when       we have                    . As 

illustrated in Figure 3 this is, likewise, the point where we find the minimum size in this case. 

In this way, Figure 3 indicates what we may had seen if we had considered larger 

magnitudes in the       case in Figure 1. Considering the power the intuition is the same, 

however, in this case also the autoregression coefficient has to be rescaled.   

The overall finding from Figure 1 to 3 is that the HLT test is roughly invariant to the break 

magnitudes, whereas the NP test exhibits large variations. Relying on asymptotic critical 

values the HLT test is oversized in small samples. Nevertheless, the only case where the NP 

test is unambiguously closer to the nominal size is in the smallest sample. However, the size 

of the NP test with lags in this case still varies more than that of the HLT test, in addition, the 
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power is extremely low. Therefore, it cannot be considered to possess better size properties. 

Furthermore, the HLT test has equal or higher power compared to the NP test in all case, 

and hence it is superior to the NP test in general.    

4.2 Break detection 

In the following section the break date detection in the benchmark case where       is 

treated. Note that, in this case the true break dates are positioned at the time points 40 and 

60. Due to symmetry in the detection procedures, for both tests, the distributions of the 

estimated first and second break are merely mirrored versions of each other. Furthermore, 

the results are roughly the same whether lag selection is applied or not. Therefore, for 

simplicity we only present the results for break detection of the first break when lag 

selection is applied. 

Figure 4 shows normalized histograms of the estimated break dates under the null for 

different break magnitudes. In the no break case, as expected, the distribution of the 

estimated breaks in both tests look quite close to uniform. That is, apart from the peak in 

the HLT test at the lower bound of the set of possible break points. As the break magnitude 

increases the break detection in the HLT test attains a bell shape around the true break date. 

Although it looks symmetric, and hence unbiased in terms of its mean value, the true break 

date is not the most frequently observed. Instead, the two neighbouring break points are 

more frequent creating a small dump where the true break date is located.  

The distribution of the NP test, on the other hand, is skewed with a sharp increase at the 

true break date followed by a gradual decline to the right. For breaks of magnitude 1 the two 

tests are quite equal in their ability to detect the true break date exactly. Although, if 

instead, one considers the mass of an area around the true break date the HLT test 

outperforms the NP test. As the break magnitude increases the break detection of the NP 

test is improved more rapidly than that of the HLT test. For the largest magnitude the NP 

test is the more accurate of the two tests. Note, however, that even if the test manages to 

estimate the true break point accurately in some cases, the break estimation is on average 

biased.  
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Figure 4: Distribution of the estimated first break date under the null 

 
The figure consists of normalized histograms of the estimated first break resulting from the HLT and NP test 
with lag selection. The data is based on Monte Carlo simulations with 5000 repetitions under the null with 
break magnitudes                . The horizontal axes indicate the estimated break dates and the vertical 
axes resemble their corresponding frequencies.  

Figure 5 pictures estimated break dates under the alternative where      . The most 

striking difference when compared to Figure 4 is the improved break detection in the HLT 

test. The distribution now has a larger portion of its mass situated close to the true break 

date. Furthermore, the true break date is now the most frequently estimated when the 

breaks are large. The NP test, on the other hand, is only affected marginally by the change of 

the parameter  . The pictures indicates that, as   is getting smaller there is a slight tendency 

towards the mass being concentrated closer to its biased estimated mean.  
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Figure 5: Distribution of the estimated first break date under the alternative,       

 
Figure 5 consists of normalized histograms of the estimated first break resulting from the HLT and NP test with 
lag selection. The data is based on Monte Carlo simulations with 5000 repetitions under the alternative with 
      and break magnitudes                . The horizontal axes indicate the estimated break dates 
and the vertical axes resemble their corresponding frequencies. 

Figures 6 and 7 show the distribution of the estimated break dates for realistic, and possibly 

problematic, break magnitudes. Again, we can see that there is a clear improvement in break 

detection of the HLT test as   is getting smaller.  

Figure 6 shows the case where the break magnitude is equal to 0.5. Under this magnitude 

the break dates are difficult to estimate while they are presumably large enough to cause 

problems to the tests if not accounted for. Under the null the break detection is very 

inaccurate for both tests, which have distributions close the no break case. As noted above, 

when   changes the break detection is improved in the HLT test. For       there is some 

tendency towards enhanced break detection and for       the improvement is 

substantial. The NP test, on the other hand, is barely affected at all by  . 
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Figure 6: Distribution of the estimated first break date with fixed break magnitudes,      

 
Figure 6 consists of normalized histograms of the estimated first break resulting from the HLT and NP test with 
lag selection. The data is based on Monte Carlo simulations with 5000 repetitions under the null and 
alternative with               and break magnitudes          . The horizontal axes indicate the 
estimated break dates and the vertical axes resemble their corresponding frequencies. 

Figure 7: Distribution of the estimated first break date with fixed break magnitudes,     

 
Figure 7 consists of normalized histograms of the estimated first break resulting from the HLT and NP test with 
lag selection. The data is based on Monte Carlo simulations with 5000 repetitions under the null and 
alternative with               and break magnitude        . The horizontal axes indicate the estimated 
break dates and the vertical axes resemble their corresponding frequencies. 

For breaks of magnitude 1 in Figure 7 the results are qualitatively similar to the previous 

cases. In this setting the HLT test is superior to the NP test both under the null and the 

alternative. The HLT test achieves quite high precision when       with roughly 90% of the 
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sample being within three time points from the true break date. The NP test shows, as 

previously, a tendency towards being cumulated around its biased mean. 

In this section we have considered the accuracy of the break detection of the two tests. The 

main finding is that neither test is very accurate when breaks of magnitudes commonly 

observed in practice are present. However, the accuracy is improved in the HLT test when 

we go from a true null to a true alternative. In general, the break detection of the HLT test is 

more accurate than the NP test except for when the breaks are very large and the null is 

true. 

4.3 Size and power with respect to the estimated break points 

To see what the precision in the break estimation implies for the two tests we investigate 

how they perform depending on the location of the estimated breaks. As we saw in the 

histograms above, when the break magnitudes increase the precision of the break point 

estimation increases relatively slow. Consequently, for realistic break magnitudes neither 

test manages to estimate the break dates very accurately. Therefore, one may suspect that 

the size and power problems in the procedures may be related to inaccurate break 

estimation. In this case, we should presumably observe divergence in the size and power for 

incorrect break dates. Then the severity of inaccurate break estimation depends on both the 

divergence in size and power for each particular break point and the frequencies for which 

they are estimated. To investigate the matter size and power for specific estimated break 

points are tabled along with their corresponding estimation frequency.  Again, we only 

consider the estimated first break point. 

Table 1 presents size and power as well as the frequency of the estimated break points of 

the HLT test. The results are based on simulations with break magnitudes       

          under the null and the alternative with      . When the estimated break point 

is equal to the true the test with lags is largely invariant to break magnitudes. For the test 

without lags we can see a slight decrease in the size when the magnitude is increased from 

0.5 to 1, although, the divergence is not very large.   
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Considering incorrect break estimates when breaks are present we can see that as we move 

further away from the true break point there is a gradual decrease in size. Moreover, the 

extent to which this decline takes place depends on the break magnitude. For breaks of 

magnitude 0.5 the test is still very resilient to incorrect estimates. The size of the test with 

lags only falls slightly below 5% for the uncommon breaks estimated at time point 60 and 

later. The test without lags never falls below 5% for any of the considered break points. 

When the break magnitude is equal to 1 the decline is more distinct. In this case the size 

reaches problematic levels for estimated break points far away from the true. That is, in 

particular, the case for estimates that lies at time point 50 and later, in which case the size is 

equal to 2% or less. However, because of the precision in the break detection the 

troublesome cases do not amount to a very large portion of the sample. In the present case 

they only make up 5.3% and 3.9% of the sample for the test with and without lags 

respectively. Hence, this does not cause any major problems to the testing procedure. The 

rejection frequency of the break points equal to 60 and later is close to zero, however, these 

events are rare enough to be negligible. 

Considering the power we can see that it falls when breaks are introduced irrespective of 

whether they are estimated accurately or not. Thereafter, when the break magnitudes 

increase, the power is more or less invariant when the breaks are correctly estimated. Note 

that this reflects the initial decline in the power curves illustrated in Figure 1 to 3. This is 

interesting because it indicates that the reduction in power when the break magnitudes go 

from small to moderate may not be caused by inaccurate break estimation. When the 

estimated break points are far from the true the power is below acceptable levels. However, 

since these events are increasingly rare as the magnitudes increase, this does not cause any 

problems to the test. In this way, it appears as the effects of increased precision and 

declining power due to inaccurate break point estimates cancel out as the break magnitudes 

increase. This serves as a possible explanation for, as we saw in Figure 1 to 3, why the power 

and size are approximately invariant to the break magnitudes when they grow from 

moderate to large.  
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Table 1 

HLT with lag selection 

    
  ~30 35 37 40 43 45 50~ 60~ 

    
Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

1 0 37.1 8.3 1.8 9.7 1.8 10.2 1.8 9.5 1.7 9.4 1.6 7.8 29.4 6.7 15.9 5.5 

 0.5 31.8 7.5 2.7 8.6 3.3 10.4 3.3 9.4 3.4 7.6 2.5 7.5 15.7 5.2 3.7 4.4 

 1 12.6 2.9 3.4 7.4 5.8 6.8 6.1 9.2 6.6 6.6 3.4 3.3 5.3 1.3 0.5 0 

0.7 0 30.7 67.6 1.5 73.6 1.4 73.2 1.5 74 1.4 70.8 1.4 67.3 41.1 67.2 27.1 66.9 

 0.5 8.1 58.2 3.5 62.6 6.3 65.1 9.6 67.1 7.1 61.6 3.6 61.8 1.4 39.2 0.1 0 

 1 0.3 20.3 1.4 49.8 6.1 59 17.6 68.6 5.3 57 0.8 39.4 0 - 0 - 

HLT with zero lags 

    
  ~30 35 37 40 43 45 50~ 60~ 

    
Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

1 0 38.2 10.1 1.8 12.2 1.8 13.5 1.8 11.9 1.7 11.7 1.6 11 28.4 8.3 15.1 7 

 0.5 31.9 9.2 2.7 10.8 3.3 11.6 3.4 11.3 3.5 8.5 2.4 8.9 15 6.6 3.2 6.5 

 1 10.7 3.9 3.2 8.6 6 7.6 6.6 9.6 7 6.8 3.3 3.9 3.9 2 0.1 0 

0.7 0 31.9 79.3 1.4 83.3 1.5 83.4 1.5 84.6 1.4 79.1 1.4 80.2 40.4 78.3 26.7 78.1 

 0.5 7.9 72.1 3.3 75.4 6.3 75 10 76.2 7 73 3.3 75.4 0.9 62.1 0 - 

 1 0.2 45.5 1 72.5 5.3 72.1 18.8 75.6 4.4 71.6 0.4 72.6 0 - 0 - 

Table containing simulated rejection frequencies for estimated trend break one and their corresponding frequencies in the sample denoted in percent. The simulation is 
based on 60,000 repetitions. Break points with a corresponding part of the sample of less than 0.1 percent are excluded on the basis of being too small to draw 
meaningful conclusions on. Note that ~30 corresponds to break dates estimated at time point 30 and earlier and that 50~ and 60~ correspond to break dates estimated 
at time point 50 and later and 60 and later respectively. 

  



27 
 

Table 2 

NP with lag selection 

    
  ~30 35 37 40 43 45 50~ 60~ 

    
Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

1 0 26.3 7.2 2.6 12.8 2.5 13.4 2.5 15.4 2.3 14.7 2.3 14.6 28.4 9.9 11.7 7.8 

 0.5 22.7 3.6 2.3 9.1 2.3 9.6 3.4 9.9 3.1 11 2.9 9.9 28 5 12.4 2.6 

 1 19.3 2 2 7.7 2 9.8 6.8 6.3 5.1 7.7 4.1 6.3 19.9 1.9 8.3 0.3 

0.7 0 28.8 34.6 2.8 40.1 2.4 40.1 2.5 39.7 2.3 41.3 2.2 42.3 26.1 38 10.9 34.6 

 0.5 20.9 6 2 22.3 1.8 23.3 2.8 24.1 4 26.6 4.2 25.2 25.1 7.1 8.1 0.6 

 1 17.7 1.7 1.5 15.1 1.4 18.5 5.5 18.2 7.4 18.2 6.4 11.4 13.6 0.5 5.9 0 

NP with zero lags 

    
  ~30 35 37 40 43 45 50~ 60~ 

    
Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

Part of 
sample 

Reject 
freq 

1 0 30.6 5 2.7 5 2.6 4.3 2.5 5.4 2.2 5.8 2.1 4.9 25.1 3.5 10.9 2.8 

 0.5 24.8 2.7 2.3 5.2 2.3 3.6 3.4 4.5 3.1 3.4 3 2.9 26.2 1.2 12.4 0.7 

 1 19.1 1.6 1.9 4.4 1.8 3.1 6.8 1.8 5.8 2.8 4.5 2 17.1 0.3 7.7 0 

0.7 0 33.1 56.4 2.6 55.7 2.3 54.2 2.4 56.5 2 58 2 54.6 24.5 52.3 10.7 49.6 

 0.5 18.2 17.7 1.7 34.4 1.6 35.2 2.7 36.1 4.1 37.6 4.6 35.4 26.7 7.6 8.3 0.3 

 1 13.7 3.4 1.3 20.8 1.3 21.9 5.5 20.9 8.5 21.6 7.9 12.6 10.9 0.1 4.4 0 

Table containing simulated rejection frequencies for estimated trend break one and their corresponding frequencies in the sample denoted in percent. The simulation is 
based on 60,000 repetitions. Note that ~30 corresponds to break dates estimated at time point 30 and earlier and that 50~ and 60~ correspond to break dates estimated 
at time point 50 and later and 60 and later respectively. 
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In Table 2 size and power with respect to the estimated break points in the NP test are 

presented. A first observation is that for correctly estimated break points the size is 

negatively related to the break magnitude. This is the case whether lags are included in the 

model or not. The test without lags is more or less invariant to the estimated break locations 

when no break occurs. That is apart from break points at the very right end on of the table, 

which are still not very far from the nominal size of 5%. The test with lags shows a more 

problematic behaviour. It varies substantially with respect to the estimates location and is 

more oversized than it is on average when the estimated break lies at time point 40. As the 

break points move towards the ends of the set of time points the size gradually declines. 

When breaks are present, as we saw in the Figure 1, the size falls substantially when the 

break magnitudes increase from zero to one. Table 2 gives some idea of what might have 

gone wrong. For the test with lags we see a substantial overall decline in the size as the 

break magnitude increases. Although in a region around the true break point the size is still 

at a reasonable level, whereas it is well below 5% at the ends. When the break magnitude is 

equal to 1 the estimated break points that are smaller than 30 or larger than 50 exhibit a size 

of 2% or less. As recently discussed, the degree to which this causes a problem depends on 

the frequency of these estimates. In the current case the problematic estimates amount to 

about 40% of the sample. Consequently, they have a substantial impact on the average size. 

The results for the test without lags are largely qualitatively similar to the test with lags.   

When no breaks are present, just as in the case of the size, the power of the test without 

lags is almost invariant to the estimated break points and lies between 50% and 55%. The 

test with lags exhibits a similar declining tendency at the ends of the time set as it did for the 

size, however, to a lesser extent. Both tests experience a substantial decline in power when 

breaks are present. This is even the case when the breaks are accurately estimated. An 

interesting observation is that both tests seem to be more or less invariant to the estimated 

breaks locations when they lie within the interval 35 to 45. However, the rejection 

frequencies when the break points lie outside of the interval are very low. In some cases, the 

power is low as zero. Since these instances are also quite frequent they account for a 

substantial part of the overall power of the tests. The cases with very low power amount to 
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between 25% and 45% of the sample. The cases with power close to zero amount to about 

14% and 11% when the break magnitude is equal to 1 for the test with lags and without lags 

respectively. 

To further put the instances of low power into some perspective we compare it to the size. 

When the break magnitude is equal to 1, in the test with lags, the size is virtually equal to or 

larger than the power for breaks estimated at 10 or more time points away from the true. 

Under the null these instances amount to 40% of the sample and under the alternative they 

amount for 30%. This implies that, when the breaks are equal to one the procedure does not 

effectively test for anything at all in 30% to 40% of the cases. The test performs somewhat 

better when no lags are included, however, the problem is still present to non-negligible 

degree. 

The results in this section have somewhat different implications for the two procedures. 

From Table 1 we could see that the HLT test is largely invariant to whether the break points 

are correct or not. Furthermore, since the few instances where the size and power reach 

problematic levels are relatively rare the precision in the break estimation is arguably 

sufficient. Instead, the sensitivity of size and power with respect to the break magnitudes 

seem to be present irrespective of the estimated break points locations. Therefore, the 

source of the variation appears to be inherent to the model, that is, apart from the precision. 

For the NP test, on the other hand, the implications are different. Because in this test the 

break point estimates associated with problematic size and power are in fact very frequent 

the mere precision in the procedure seems to be a problem. Finally, because even when the 

estimated break date is correct neither size nor power is invariant to the break magnitudes it 

appears to be other problems inherent to this method as well. 

5. Conclusions 

In this paper the properties of the two structural break unit root tests developed in HLT and 

NP have been compared by Monte Carlo simulations. The simulations show that the HLT test 

dominates the NP test in general. Furthermore, whereas the HLT test is relatively invariant 
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to break magnitudes, the NP test exhibits considerable variations in size and power when 

breaks are introduced.  

In the benchmark case with sample size       nether test holds the correct size over the 

entire set of break magnitudes. The HLT test experiences a small fall in size when breaks are 

introduced and is largely stable as the break magnitudes grow larger. The size of the NP test, 

on the other hand, undergoes large fluctuations over the set of break magnitudes. The 

power is quite low in both tests when a near unit root is considered. Conversely, when the 

autoregressive coefficient is closer to zero the power of the HLT test is substantially 

improved relative to the NP test. This is the case for all break magnitudes, although, because 

the power of the NP test falls significantly when breaks are introduced the difference is 

markedly larger when breaks are present. For large sample sizes both tests have good 

sample and power properties when no breaks occur. However, when breaks are present the 

results are qualitatively similar to the benchmark case, and hence only the HLT test remains 

reliable. Neither of the tests exhibits good size and power properties for the smallest sample 

size where     . 

For sample sizes and break magnitudes that are normally observed in practice both 

procedures estimate the break dates inaccurately. However, the HLT test outperforms the 

NP test in break date detection in all cases except for when the break magnitudes are very 

large and the null is true. Furthermore, the robustness of the HLT test as well as the 

sensitivity to break magnitudes of the NP test persist whether the breaks are accurately 

estimated or not. However, the problems in the NP test are worsened when the estimated 

break points are far from the true. 

Finally, because we did only consider one specific location of the trend breaks we cannot 

abstract what the results would have been if the breaks were positioned differently. 

Moreover, the simulations were undertaken to cover the special case where both tests apply 

without violating any assumptions. For a practitioner it would indeed have been interesting 

to investigate the tests under other data generating processes as well. Consequently, areas 

of further research are to examine the tests under other error processes, inclusion of level 

breaks and different locations of the break points.   
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