
Improving Security in Software-as-a-Service
Solutions

Christoffer Toft and Viktor Edéus
{dic11cto, dic11ved}@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Martin Hell

Examiner: Thomas Johansson

June 7, 2017

c© 2017
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

The essence of cloud computing is about moving workloads from your local IT
infrastructure to a data center that scales and provides resources at a moments
notice. Using a pay-as-you-go model to rent virtual infrastructure is also known
as a "infrastructure-as-a-service" (IaaS) offering. This helps consumers provision
hardware on-demand without the need for physical infrastructure and the chal-
lenges and costs that come with it. When moving to the cloud, however, issues
regarding the confidentiality, integrity, and availability of the data and infras-
tructure arise, and new security challenges compared to traditional on-premises
computing appear. It is important for the consumer to know exactly what is their
responsibility when it comes to securing software running on IaaS platforms. Axis
has one such software solution, henceforth referred to as the ’Axis-hosted cloud
service’. There is a need for Axis to improve the client-cloud communication, and
in this report, we detail a prototype solution for a new secure communication be-
tween client and cloud. Additionally, an evaluation of the prototype is presented.
The evaluation is based on a model constructed by studying literature from state-
of-the-art cloud service providers and organizations dedicated to defining best
practices and critical areas of focus for cloud computing. This was collected and
compiled in order to present a summary of the most important aspects to keep
in mind when deploying software on an IaaS. It showed that the cloud service
fulfills many industry best-practices, such as encrypting data in transit between
client and cloud, using virtual private clouds to separate infrastructure credentials
from unauthorized access, and following the guidelines from their infrastructure
provider. It also showed areas where there was a need for improvement in order
to reach a state-of-the-art level. The model proved to be a useful tool to ensure
that security best practices are being met by an organization moving to the cloud,
and specifically for Axis, the prototype communication solution can be used as a
base for further development.

i

ii

Popular Science Summary

Imagine being the victim of an accident that was recorded by a surveil-
lance camera. You would probably hope that the camera detected the
accident and sent an alarm to someone who could help you? Imagine
then that the communication had been tampered with, blocking the
alarm to the operator and leaving you to your own devices! The result of
this thesis in part stops this situation from happening. At the intersection
of networking and surveillance, Axis Communications delivers network-connected
products that help provide physical safety for every type of business. For this
to work, the products must be safe from attacks by malicious entities. Blocking
alarm signals may result in trespassing, theft and even physical damage to people
and property, and as such is critical to solve. The solution presented in this paper
solves this problem by sending these alarms via secure communications channels,
increasing the security of the product. This has implications for everyone using
Axis’ products. The authors also evaluated one of Axis’ cloud based solutions for
controlling network cameras based on a self-developed model for determining if it
adheres to best practices in the field. It showed that the cloud service has some
best practices in place, but also some flaws that might be of concern. Fixing these
is crucial for the company in order to secure the data of its customers. The model
is a tool for companies who deploy or wish to deploy their software to the cloud
and wish to heighten their overall security in order to protect their own and their
customers data. It is based on a literature study with the purpose of illuminating
the responsibilities and issues when leasing computational power in the cloud.

iii

iv

Table of Contents

1 Introduction 1
1.1 Goals . 2
1.2 Limitations . 3
1.3 Previous Work . 3
1.4 Outline . 4

2 Background 5
2.1 Confidentiality, Integrity, Availability 5
2.2 Cloud Computing . 5
2.3 Trusted Third Party . 7
2.4 Encryption . 7
2.5 Public Key Infrastructure . 9
2.6 Authentication . 9

3 Method 11

4 Cloud Security - Best Practices 15
4.1 Service Agreements and Service Level Agreements 15
4.2 Shared Responsibility . 16
4.3 Identity and Access Management 21
4.4 Handling of Data . 23
4.5 Application Security . 25
4.6 Network Security . 28
4.7 Portability . 31
4.8 Recommendations and Model . 31

5 A Case Study of an Axis-hosted cloud service 39
5.1 Procedure . 41
5.2 Results . 47

6 Discussion 53
6.1 Best Practice Model . 53
6.2 Capabilities . 53
6.3 Deficits in the Current Solution . 55

v

6.4 Evaluation of Secure Channel . 56
6.5 Discussion of Model Application and Further Enhancing Security . . 56

7 Conclusion 59

References 61

vi

List of Figures

2.1 CSA Reference Model (Image credit: Cloud Security Alliance (Security
Guidance for Critical Areas of Focus in Cloud Computing v.2.1). . . . 8

4.1 NIST IaaS Component Stack and Scope of Control. 20
4.2 A model of critical areas of security. 37

5.1 User entering credentials into web GUI 40
5.2 Dispatching the device using certificates. 40
5.3 Axis-hosted cloud service to device communication. 41
5.4 Desired structure. 42
5.5 A top-down view of the Axis-hosted cloud service and related modules. 42
5.6 The internally developed solution - "Secure Channel". 43
5.7 Our implementation of WebSocket Hub (WSH) and SCa on camera. 44
5.8 The new dispatching. 45
5.9 After dispatching using the new dispatcher. 46
5.10 Message handling in Secure Channel add-on. 46
5.11 The model applied to the Axis-hosted cloud service case. 51
5.12 The use of Server Name Indication to direct traffic. 52

vii

viii

List of Tables

4.1 SLA recompense for different cloud providers. 16
4.2 Table showing areas of responsibility in AWS Infrastructure 18
4.3 Microsoft Azure areas of shared responsibility. 18
4.4 Depiction of areas that IBM are responsible for in IBM cloud services. 19

ix

x

List of Acronyms

CGI - Common Gateway Interface
CSA - Cloud Security Alliance
CSP - Cloud Service Provider
DMZ - De-Militarized Zone
HIPS - Host Intrusion Prevention System
IaaS - Infrastructure-as-a-Service
PaaS - Platform-as-a-Service
SaaS - Software-as-a-Service
Idm - Identity Management
MFA - Multi Factor Authentication
NIPS - Network Intrusion Prevention System
NIST - National Institute of Standards and Technology
NSG - Network Security Group
SCa - Secure Channel add-on
SLA - Service Level Agreement
SSDLC - Secure Software Development Life Cycle
SSO - Single Sign-On
TTP - Trusted Third Party

xi

xii

Chapter 1
Introduction

What is the cloud? According to The National Institute of Standards and Tech-
nology’s (NIST) Definition of Cloud Computing, cloud computing is a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction [1]. There is a fair chance that you
are using a Software-as-a-Service (SaaS) offering today. A SaaS is an application
running on a cloud infrastructure, accessible from various client devices through
either a thin client interface, such as a web browser (e.g., web-based email), or a
program interface. The consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems, storage, or even indi-
vidual application capabilities, with the possible exception of limited user-specific
application configuration settings [1].

Because of the complexity of these cloud solutions, many attack vectors may
exist, and there is a constant need to improve upon the architecture. And this
phenomenon is growing. According to Cisco, in the coming 5 years, growth of
data centers will increase by almost 100%, global cloud IP traffic will reach 15.1
ZB annually by the end of 2020, up from 3.9 ZB in 2015, and the SaaS delivery
model will stand for 74% of the total cloud workloads [2]. Thus, more and more
of the communication end up in data centers and at cloud providers. This means
that the governance of one’s private data is out of the one’s hands, creating a need
for secure end-to-end communication.

As of today, cloud services are widely used in several different sectors of society.
When storing sensitive data in the cloud however, issues arise concerning topics
such as privacy, data integrity, availability, who owns the data, and more [3, 4].
The attack surface of clouds is larger than that of regular IT systems and as such,
security requires more effort from tenants building on the infrastructure, the devel-
opers of cloud services, and the security professionals that assess and standardize
cloud security. The most predominant cloud attacks are the Distributed Denial of
Service (DDoS) or DoS attacks, and Man-in-the-Cloud attacks [5, 6]. The Man-
in-the-Cloud attacks are detailed in [7]. Some of the attacks on popular SaaS
offerings are mentioned in [6]. The paper also argues that there are additional
attack surfaces in the cloud compared to regular server-to-client interfaces. Other
papers such as [8] show that 90% of the identity management (IdM) solutions of
some 22 popular SaaS cloud providers can be bypassed allowing attackers to gain

1

2 Introduction

access to private information. In [9], the authors show that information can be
extracted across tenant boundaries using side-channel attacks. These papers high-
light the fact that cloud security is a considerable concern and moving to the cloud
should be an informed decision. The questions how do you enable secure commu-
nication between cloud and device and how secure is it? are the foundation of this
thesis. In order to answer them, we assess the general level of cloud security by
looking at some of the top tier cloud providers’ best-practices regarding security.
We summarize our findings in a model that companies and software providers can
use when deploying to the cloud to heighten their awareness of attack surfaces
and subsequently act and improve their cloud security posture. We also apply
the model onto the Axis -host cloud service, a platform- and software-as-a-service,
where we were tasked with analyzing the security of their current cloud-device
communication and providing a proof-of-concept solution for a new, more secure
communication.

1.1 Goals

This thesis project was carried out at the Research- and Development-department
of Axis Communications AB. Axis is a manufacturer of network cameras for the
physical security and video surveillance industries [10]. Axis’ products contain an
embedded computer and a custom version of Linux. As such, some restrictions
apply when designing a communication solution. Furthermore, some of the findings
in this report are specific to this company’s products and solutions, while some
are generally applicable for all types of SaaS and platform-as-a-service (PaaS)
providers. The goals of this project are the following:

1. Analyze current client/server-communication, determine its capabilities, deficits
and future needs.

2. Based on the findings, evaluate the Secure Channel add-on, an internally
developed embedded client facilitating secure communications;

• Is the Secure Channel add-on capable of fulfilling the needs of the
Axis-hosted cloud service, such as accommodating different types of
traffic to and from the internal services of the cloud service?

• Can the Secure Channel add-on solution be altered or extended in or-
der to accommodate the current and future needs of the cloud service?

3. Implement a prototype or proof-of-concept where the Secure Channel add-
on is used in the cloud service environment.

4. Answer how well the new solution with the included Secure Channel add-on
compares to the state-of-the-art-solution. Suggest steps to be taken in order
to further enhance the security.

5. An evaluation of how future needs of Axis’ cloud service can be included in
the Secure Channel solution, and a design proposition of how those can be
included.

Introduction 3

The results of each of these bullet points are discussed in Chapter 5.2. Further-
more, two questions arose: how do we enable secure communication between cloud
and device; and how secure is it? These two questions are at the heart of the
study and will be discussed throughout the report.

1.2 Limitations

Cloud security is a complex area consisting of security on several different levels
ranging from physical security and politics to cryptography and user management.
This thesis will focus on SaaS solutions that utilize the IaaS from a cloud provider,
i.e. aspects such as physical hardware security and facilities will not be addressed.

1.3 Previous Work

“Cloud Security - a Comprehensive Guide to Secure Cloud Computing“ by Ronald
L. Krutz and Russel Dean Vines published in 2010 [11] aims to provide insight into
the capabilities, vulnerabilities, advantages and trade-offs of the cloud while also
describing methods of gaining the benefits of the cloud computing with minimal
risk. The book clarifies issues and concerns about privacy and security that may
arise when being introduced to cloud computing, such as geographical dispersion,
size and structure. Guidelines on how to maneuver the field of cloud computing
are provided in an extensive way.

“Cloud Security and Privacy - An enterprise perspective on Risk and Compli-
ance“ by Tim Mather, Subra Kumaraswamy and Shahed Latif [12] tries through
a systematic investigation of what constitutes cloud computing, what it offers in
terms of security and answer what is wrong with security in cloud computing. Im-
plications of cloud computing security on privacy, auditing and compliance on both
the cloud service provider and the customer are also explored in the book. Differ-
ent perspectives on security for larger organizations versus small to medium-size
business are included in the book as well.

White papers from mature cloud service providers such as Amazon Web Ser-
vices, Microsoft Azure and IBM, organizations as Cloud Security Alliance (CSA)
as well as several scientific research papers [3, 4, 5, 6, 7, 8, 9, 13] and the two books
mentioned above form the foundation for the theoretic part of this thesis.

Security in the cloud is a major part of this thesis work, and understanding
its ins-and-outs is crucial to making sound suggestions for its improvement. In
[13], the authors list different security threats depending on the service model
delivered. Axis today serves corporate customers with their hosted cloud service
which can be described as a SaaS. For this type of service, the authors claim that
security threats such as interception, modification of data at rest and in transit
and session hijacking are most likely. These are specific vectors that we have taken
into consideration when making the proposal and model in Section 4. Furthermore,
they suggest implementing a trusted third party (TTP) that can facilitate secure
interactions between two parties. The Axis TTP service takes the role of TTP in
the Axis-hosted cloud serivce, whose role is to serve certificates and point devices

4 Introduction

to the correct cloud. Thus, parallels can be drawn between the authors’ suggested
optimal solution and Axis’ current solution.

1.4 Outline

The remainder of this report is structured as follows:

• Background presents useful theory to understand the areas of knowledge
this thesis will cover. In this section, cloud computing and the different
service models of cloud computing, encryption, authentication and private
key infrastructure are explained.

• Method presents the scientific method used and the reasoning behind our
decisions.

• Cloud Security - Best Practices Features a run-down on how to best im-
plement a secure SaaS solution in the cloud with regards to industry best
practices and standards. The chapter concludes with a model to easily iden-
tify what areas need overview. This is aimed for organizations and people
who wish to move software to the cloud.

• A Case Study of an Axis-hosted cloud service details the specific work done
at Axis with implementing a secure communication solution for the Axis-
hosted cloud service;

• Discussion covers our thoughts on the general outcome of the thesis, the
work done at Axis, and the general direction to go from here.

• Conclusion concludes the report with our final thoughts on our work and in
general, the security of the cloud.

Chapter 2
Background

This chapter clarifies vital aspects considered and techniques used throughout
the thesis. It aims to provide the reader with an overview in order to ease the
understanding of said concepts.

2.1 Confidentiality, Integrity, Availability

A Comprehensive Guide to Secure Cloud Computing (2010) [11] refers to the CIA
triad of information system security as a vital part of cloud software assurance [11,
p. 63]. Confidentiality, integrity and availability are also mentioned as key concerns
for a secure cloud in [12, p. 67-71]. These are not cloud-specific concerns, they
apply to on-premise IT operations as well. However, in order for the SaaS to
be seen as secure and trustworthy by a potential customer, it is fundamental to
provide confidentiality, integrity as well as high availability of the data.

According to the ISO27000 standard, confidentiality is the property, that in-
formation is not made available or disclosed to unauthorized individuals, entities,
or processes [14]. Confidentiality can be achieved either by the use of encryption
or by enforcing access control list restrictions and file permissions on sensitive
information. The two are of course not mutually exclusive.

Integrity is the property of accuracy and completeness [14], which in terms
of data could be considered to be the process of maintaining and assuring the
accuracy and completeness of data during its life-cycle. To ensure the integrity
of the data put in the cloud, one should perform data integrity checks utilizing
e.g. MACs or digital signatures. To minimize the risk of someone accidentally or
deliberately modifying or deleting data the scope of users who has write access to
the data should be limited.

Availability is defined by [14] as the property of being accessible and usable
upon demand by an authorized entity. Having securely stored data is pointless if
no one can access it. High availability is therefore a desirable trait.

2.2 Cloud Computing

Cloud computing is “the delivery of computing services, such as servers, storage,
databases, networking, and more - over the Internet“ [15]. According to NIST [1],
cloud computing has five essential characteristics;

5

6 Background

• On-demand self-service
Meaning a subscriber can provision further computational power without
the need for human intervention.

• Broad network access
Specifies that the resources be available over the network and accessed
through standard mechanisms, such as mobile phones, tablets, laptops, etc.

• Resource pooling
Means that the provider’s resources are pooled to serve multiple consumers
with different physical and virtual resources dynamically assigned and reas-
signed according to demand.

• Rapid elasticity
States that capabilities can be elastically provisioned and released, in some
cases automatically, to scale rapidly outward and inward relative to de-
mand. To the consumer, resources often appear to be unlimited and readily
available for use.

• Measured service
Resource usage (such as bandwidth, storage, processing or user accounts) in
the cloud is metered, monitored and controlled. This provides transparency
for both the provider and consumer of the service in question.

2.2.1 Different Service Models in Cloud Computing

Cloud computing can be realized on different levels based on the product being
served [1].

• Software-as-a-Service (SaaS)
The capability provided to the consumer is to use the provider’s applications
running on a cloud infrastructure. The applications are accessible from
various client devices through either a thin client interface, such as a web
browser or a program interface. The consumer does not manage or control
the underlying cloud infrastructure including network, servers, operating
systems, storage or even individual application capabilities, with the possible
exception of a limited user-specific application configuration settings.

• Platform-as-a-Service (PaaS)
The capability provided to the consumer is to deploy onto the cloud infras-
tructure consumer-created or acquired applications created using program-
ming languages, libraries, services, and tools supported by the provider. The
consumer does not manage or control the underlying infrastructure but has
control over the deployed applications and possibly configuration settings
for the application-hosting environment.

• Infrastructure-as-a-Service (IaaS)
The capability provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources where the consumer

Background 7

is able to deploy and run arbitrary software, which can include operat-
ing systems and applications. The consumer does not manage or control
the underlying cloud infrastructure but has control over operating systems,
storage, and deployed applications and possibly limited control of select
networking components (e.g. host firewalls).

Cloud Security Alliance (CSA) is the world’s leading organization that seeks to
help ensure a secure cloud computing environment by defining and raising aware-
ness of best practices [16]. Their reference model for different cloud service models
is shown in Figure 2.1. The figure depicts what is included in each of the service
models, SaaS delivering a complete software running on a specific virtual machine.
IaaS, in contrast, only delivers the bottom 60%. The thesis will mainly consider
the SaaS and IaaS model since the Axis-hosted cloud service is a SaaS built on
top of an IaaS.

2.3 Trusted Third Party

A TTP within the field of cryptography is considered to be able to form trust
between two parties by facilitating secure interactions between them, under the
premise that they both trust the trusted third party. This entity provides end-to-
end security services based on standards and is e.g. useful across different domains.
The establishment of a trust relationship between two parties can be thought of as
the result of a series of specific acceptances, techniques and mechanisms reviewed
by the trusted third party [13]. The loss of the traditional security boundary
that results when moving to the cloud can be addressed by the use of a Trusted
Third Party [13]. The trusted third party is crucial for establishing the connection
between the device and the cloud in our proof-of-concept solution.

2.4 Encryption

Encryption is a fundamental part of providing confidentiality of data. By means
of an encryption algorithm or cipher, plain text or clear text can be enciphered
using a cryptographic key. A decryption key deciphers the message back to plain
text.

2.4.1 Symmetric Encryption

In symmetric encryption, the same key is used to encrypt and decrypt messages. In
order to prevent ineligible parties from recovering the key, it has to be distributed in
a secure way to the involved parties. Symmetric encryption is commonly used when
bulk data needs to be encrypted over an already established connection [17]. This
is due to the fact that symmetric encryption is faster than asymmetric encryption.

2.4.2 Asymmetric Encryption

Asymmetric encryption uses a key pair, where one key is secret and one is non-
secret, often referred as private and public key, where the private key is used to

8 Background

Figure 2.1: CSA Reference Model (Image credit: Cloud Security
Alliance (Security Guidance for Critical Areas of Focus in Cloud
Computing v.2.1).

encrypt and the public key is used to decrypt. Compared to symmetric encryp-
tion the asymmetric encryption is slower, however an advantage of asymmetric
encryption is that two parties do not need to share a common key for encryption.
Since the encryption key is public, the problem with distributing keys securely
is not present in asymmetric encryption, instead there is the problem of securely
distributing e.g. certificates. TLS uses asymmetric cryptography to exchange
symmetric keys needed for the duration of the communication session [17].

Background 9

2.5 Public Key Infrastructure

As mentioned in Section 2.4.2 a key pair can be generated by anyone in order
to encrypt and decrypt messages and prove their ownership of the private key,
however, this is not sufficient to prove someones identity. The client and the cloud
needs to consult a trusted third party in order to be able to prove their ownership
of their key pair. The trusted third party is more commonly known as a Certificate
Authority (CA). A certificate that is signed by a CA can be used to prove ones
ownership of a key pair.

Since it is not practical to have one CA signing all certificates for a large
system, a tree structure of intermediate CAs, originating from one CA-root can
be created. Intermediate CAs are able to sign certificates on behalf of the CA-
root and in that way a chain of trust is realized with the CA-root at the top,
intermediate CAs in between and the issued certificate at the bottom. This chain
makes it possible to trust a certificate at the bottom of the chain as long as you
trust the CA-root [18]. This tree structure is known as a part of a public key
infrastructure (PKI).

2.6 Authentication

In order for the device and the cloud to be sure of who they are communicating
with, they can authenticate themselves and verify each others identities. Usually
when a device connects to a server, it is only the device who verifies the identity
of the server. TLS does have support for authenticating the client, however it is
rarely used due to the fact that it requires provisioning of certificates to clients.
In our case, mutual authentication is critical.

10 Background

Chapter 3
Method

This chapter describes the work process and the reasoning and motivation behind
specific actions taken. Initially, we needed to stipulate and clarify what exactly
was desired from Axis point of view. From the initial master thesis proposal, a
vague description of the expected work was outlined; "the current server solution
communicates with Axis devices via a secure command channel. The device can
also communicate with the cloud but via another connection. Axis wishes to
determine whether the communication from both device and cloud can fit in a
two-way, secure connection, escaping the need for the device to initiate a new and
possibly insecure connection every time it wants to communicate".

The initial proposal stated the following goals:

1. Analyze current client(device)/server-communication, determine if this so-
lution can be adapted to send API-calls to the server software in the cloud.

2. Alternatively, find another solution to securely communicate from camera
to cloud service.

3. Implement a prototype or proof-of-concept for the solution if possible.

Startup meetings were had with the developers and our supervisors to clar-
ify and hash out the finer details regarding the goals. We started to develop an
understanding of the current client/server communication by reading source code,
having meetings with the architects of the client/server solution, and reading the
reference manuals. Our understanding of the current communication is shown
in Figure 5.3. At a meeting, it was discovered that a separate team who had
previously shown interest in researching how secure two-way cloud-device commu-
nication could be realized had already developed a prototype. This was named
the "Secure Channel add-on (SCa)". The communication principles of the SCa is
shown in Figure 5.6.

At this point it was decided, rather than reinventing the wheel, to aim for a
new set of goals and tasks to perform. In meeting with our supervisors, it was
decided to analyze this newly developed solution in order to find eventual synergies
and to study the possibility of using it in the Axis-hosted cloud service. We came
up with the improved list of goals shown in Section 1.1.

The first point on the list was a three-part question:

• Analyze current client/server-communication, determine its capabilities, deficits
and future needs.

11

12 Method

The rationale behind this question was that the answers would gain insight into
what would be expected and demanded in a new solution. The answers we came
up with were the product of practical hands-on testing of the client-cloud commu-
nication using e.g. CURL and other command line tools to get a feel for how the
communication worked, as well as consulting the developers and reference manuals
present. A list of items that were considered to be defining factors are presented
in Section 5.1.

When implementing an improvement, the first step must always be to measure
the existing solution and obtain data or measurements. This will be the baseline
upon which changes can be made and evaluated. The current capabilities of a
system would need to be present in a new solution, and the deficits would need
to be solved for it to be a worthy successor. Axis already had an idea what the
shortcomings of the current communication solution were, this list is shown in
Section 5.1. The future needs would at least have to have been reflected upon and
planned for, to ease their eventual implementation. When analyzing the current
system, the complexity was quickly noticed, creating a need for a top-down image
showing the different parts in the system and how they would need to be modified.
This helped visualize where modifications had to be made and what parts needed
to communicate with each other in order for the proposed communication solution
to work. This is shown in Figure 5.5.

The second item relates to the Secure Channel add-on:

• Based on our findings, evaluate the Secure Channel add-on;

– Is the add-on capable of doing what the existing solution does, such as
accommodate different types of traffic to and from the internal services
of the cloud solution?

– Can the Secure Channel add-on be altered or extended in order to
accommodate the current and future needs of the cloud solution?

It was of great interest to Axis to evaluate the Secure Channel add-on, because
of the potential benefits it offered. The results of our evaluation and whether the
add-on is capable of accommodating the current cloud service traffic as well as its
future needs is described in Chapter 5.

We communicated with the authors of the Secure Channel add-on and then
started developing the proof-of-concept solution that was based on the Secure
Channel. We chose to implement the server in JavaScript (Node.js) because of the
strong prototyping properties of the language, allowing us to produce a minimum
working example quickly and subsequently improving it with short development
iterations. Node.js is also a language that excels when there is a need for clients to
push data and keep long duration connections (see e.g. [19, 20]), something that
is desired for Axis cloud service. The add-on (the client) was written in C++11
by its original authors, so the choice had already been made in that regard.

There is a strong emphasis on client-server security in this thesis and as such,
we dove into the core part of the communication first - to get a persistent channel
working using the WebSocket protocol. (Secure) WebSockets is a communication
protocol that enables full-duplex, real-time data transfer between client and server.
It requires certificates to enable the mutual authentication and as such, SSL/TLS

Method 13

certificates needed to be in place (see Section 2.5 for details). The fact that the
Secure Channel add-on that we used still was under development proved to be
a challenge, because integrating changes from two development branches became
somewhat complex. This step of the work corresponds to the item

• Produce a proof-of-concept where the Secure Channel solution is used in the
cloud service environment.

The work was split up so that one of us was working on the back-end and
the other was working on the add-on. The reason for the split was that we could
each focus on one area since the roles were quite varying, and the programming
languages used differed. The time would be best spent if we were specialized on one
thing, minimizing the need for context switching. A great deal of effort was spent
in learning how to build add-ons for Axis devices, setting up a build environment,
configuring the camera and setting up a cloud service instance. The details of this
process are specific for Axis, and as such will not be reported on. Only what we
consider general takeaways and important points are presented in this thesis.

The two questions mentioned in Chapter 1: how do you enable secure com-
munication between cloud and device and how secure is it? can be answered pre-
liminarily by looking at state-of-the-art cloud providers. However, there is no
static, cover-all security solution that works for all software. The security must
be tailored depending on the type of software, its clients, the usage patterns, the
criticality of data and more. This can be a daunting task. SaaS providers are
difficult to measure against a baseline since there is no industry standard for how
to determine software security [12, p. 55]. We chose to look at three of the four
top IaaS providers based on their respective market shares [21].

The ones chosen were Amazon AWS, Microsoft Azure and IBM. We chose not
to analyze Google Cloud Platform due to time restraints. We chose to look at
primarily IaaS solutions because it is the cloud model Axis uses to deploy software
to the cloud. An additional reason is the interesting balance of responsibilities
between IaaS provider and customer that arise. We also chose to collect and sum-
marize data from non-profit organizations such as CSA, which aims to define and
raise awareness of best practices to help ensure a secure cloud computing envi-
ronment [16], and NIST who defined cloud computing in its well-cited work [1].
In 2012 they released a 81-page document on recommendations for cloud comput-
ing in [22]. These sources are used because of their high trustworthiness and to
balance out the views of for-profit organizations.

An analysis of the best-practices of the above companies is provided in Chap-
ter 4. It concludes with a model of critical areas of security for organizations that
wish to move their workloads into the cloud. We derived the areas in Chapter 4
from a combination of the best practices of the providers and the suggested best
practices of [11, 12]. At first sight, many of the areas overlap, e.g. user permis-
sions are included in several areas other than 4.3. In addition, we felt the need to
include an area that most providers are not too keen to promote; Portability. How
easy it is to get your application up and running at another provider is of interest
for the SaaS vendor (such as Axis in this case), but from a providers point of view,
portability is not a priority. Portability is highlighted by CSA as an important
part of security assurance [23]. CSA, being a non-profit organization, might be

14 Method

more inclined to promote portability since, in contrast to cloud providers, they do
not seek to "lock in" customers by making them dependent on their services. In
fact, they do not have any customers at all.

The results of this thesis are thus split in two; first, the general model for
critical areas of security is presented in the forthcoming chapter. This is applied
to the case at Axis (in Chapter 4), where we through talks with the architects and
the developers responsible for managing Cloud Ops, as well as studying source
code and other information sources got an understanding of what the system
lacked. We believe the results from applying the model on the Axis-hosted cloud
service are very accurate, though we reserve that Axis may want to keep any severe
security holes or flaws from us. The second result is the work done at Axis trying
to improve the current communication, which is presented as a list of concerns
that were remedied, as well as a list of concerns we did not succeed in remedying,
either because of time constraints or of the fact that they did not add to the
proof-of-concept. This is presented in Chapter 5.

Chapter 4
Cloud Security - Best Practices

This chapter highlights primarily security best practices in top-end cloud providers.
The best-practices are collected and summarized from the three vendors mentioned
in Chapter 3, as well as CSA [16], and the books [11] and [12]. We also refer to
NIST [22]. The chapter will be concluded with a summary and a model that will
help SaaS vendors establish a State-of-the-Art security posture.

Generally, moving to the cloud is a good investment if no prior hardware is
owned that can compete with the features of cloud computing. According to [11,
p. 141], smaller companies often see a larger security return by using public cloud
infrastructure than larger, better-funded organizations with larger infrastructure.
The reason for this is that large companies often have prior investments into IT
infrastructure and its accompanying security architecture, whereas the smaller
companies can more readily employ the security benefits offered by a public cloud
service provider (CSP). Below, we cover some of the technical details and impor-
tant areas to assess and secure in order to improve the security posture.

4.1 Service Agreements and Service Level Agreements

Every organization that enters into a deal with a cloud service provider signs
a service agreement, a legally binding agreement between two parties. It usu-
ally consist of (1) a collection of promises made to consumers, (2) a collection
of promises explicitly not made to consumers (limitations), and (3) a set of obli-
gations that consumers must accept [22]. Generally, they cover things such as
availability, remedies for failure to perform, data preservation and other topics.
The recommendations from NIST [22, p. 61-62] are to:

• Pay attention to terminology - Common terms may be redefined by a cloud
provider in ways that are specific to that provider’s offerings.

• Remedies - Unless a specific service agreement has been negotiated with a
provider, remedies are likely to be extremely limited; consumers may wish
to negotiate remedies that are commensurate with the damage that might
be sustained.

• Compliance - Consumers should carefully assess whether the service agree-
ment specifies compliance with appropriate laws and regulations governing
consumer data.

15

16 Cloud Security - Best Practices

• Security, Criticality and Backup - Consumers should carefully examine the
service agreement for any disclaimers relating to security or critical pro-
cessing, and should also search for any comment on whether the provider
recommends independent backup of data stored in their cloud.

• Negotiated Service Agreement - If the default service agreement does not
address all the consumer needs, they should be discussed with the provider
prior to use.

• Service Agreement Changes - NIST recommends developing a plan to mi-
grate workloads to alternate cloud providers or back on-premise in the event
of a change of service terms that is unacceptable to the customer.

Service Level Agreements (SLAs) are shorter documents stating the technical per-
formance promises made by a provider including remedies for performance failures.
The Service Level is the level of availability (uptime) a CSP offers, and any events
that cause downtime are subject for recompense on the customers part. These are
paid out by the cloud service provider using service credits. The credits are used
to pay for their services, which means the compensation is effectively a rebate.
We compared the three providers’ service level agreements with a focus on recom-
pense when the service is down. They offer slightly varying recompense as shown
in Table 4.1(Sources [24, 25, 26]).

Table 4.1: SLA recompense for different cloud providers.

Uptime Service Credits
Microsoft <99.95% 10%

<99% 25%
<95% 100%

IBM <99.95% 10%
<99.90% 25%

Amazon <99.95% 10%
<99.0% 30%

In [22], the authors recommend that the organization understands the terms of
the service agreements that define the legal relationships between cloud customers
and cloud providers, and what responsibilities are the customer’s and those of the
service provider. CSA does not mention any specific recommendations tied to SAs
and SLAs in their report [23].

4.2 Shared Responsibility

Security controls in the cloud are in essence no different from security controls
in a regular on-premise IT system, albeit with the added complexity of secure

Cloud Security - Best Practices 17

multi-tenancy. However, depending on the service model, the security responsibil-
ities differ greatly, for both the provider and the consumer. Using Google Docs
(which is a free, public cloud SaaS) places a very low security responsibility on
the consumer since all of the security is handled by the provider (the provider
being a SaaS vendor). Amazon’s AWS EC2 IaaS offering includes vendor respon-
sibility for security up to the hypervisor, meaning they address security controls
such as physical security, environmental security, and virtualization security. The
consumer (a SaaS vendor), in turn, is responsible for security controls that relate
to the IT system including the operating system, applications, and data [27].

This means that building a SaaS system on top of an IaaS, such as Amazon
EC2, comes with a lot of benefits but also responsibilities in the form of shared
security concerns. Specifically, in the case of IaaS, Amazon [28] state that they
manage security for:

• Facilities.

• Physical security of hardware.

• Network infrastructure.

• Virtualization infrastructure.

The customer (in this case the SaaS vendor) is responsible for the security of the
following assets:

• Machine images. The configuration of the underlying machine image, that
is used to create the virtual machine within EC2. There are many images
to chose from, so making sure the correctly hardened and secure image is
chosen is important to making sure no critical security holes are present.

• Operating Systems. It is the customer’s responsibility to make sure the oper-
ating system is secure. Keeping it up to date, disabling insecure applications,
minimizing exposure, protecting credentials and data are recommendations
from Amazon.

• Applications. Protecting applications is done in the same way as the oper-
ating systems. Keeping critical applications updated, and not using appli-
cations with security holes. Only run trusted software. Use antivirus.

• Data in transit. Encrypt data in transit using e.g. IPSec ESP and/or
SSL/TLS. Authenticate data integrity using IPSec ESP and/or SSL/TLS.
Use X.509 certificates to authenticate the remote end. Use HTTPS when
sending internet traffic. Use server certificate authentication.

• Data at rest. Data at rest is generally stored on other Amazon services such
as S3 or EBS. Keeping data encrypted ensures severity of data theft is lim-
ited. Backing up data ensures there is a possibility to restore. Designating
who can use/access/delete what helps mitigate accidental data loss.

• Data stores. This is simply data at rest. Keeping databases and other data
stores secure through means of encryption to prevent unauthorized leakage
of information.

18 Cloud Security - Best Practices

• Credentials. Create users in AWS IAM (identity and access management)
and centrally manage user, security credentials, access keys and permissions
policies that control which AWS services and resources users can access. Do
not use AWS credentials on a day-to-day basis. Users should have least-
privileges for their roles. Limit access to AWS account(s).

Table 4.2 illustrates the shared responsibility model for security in AWS’ case.

Managed by AWS Customers Managed by AWS
Customer IAM AWS IAM
Customer Data Foundation Services
Platform Management AWS Global Infrastructure
Application Management
Client-Side Data Encryption
Data Integrity Authentication
Server-Side Encryption
Network Traffic Protection

Table 4.2: Table showing areas of responsibility in AWS Infrastruc-
ture

Responsibility On-Prem IaaS PaaS SaaS
Data Classification &
Accountability Customer Customer Customer Customer

Client & End-Point
Protection Customer Customer Customer Shared

Identity & Access
Management Customer Customer Shared Shared

Application Level
Controls Customer Customer Shared Cloud P

Network Controls Customer Shared Cloud P Cloud P
Host Infrastructure Customer Shared Cloud P Cloud P
Physical Security Customer Cloud P Cloud P Cloud P

Table 4.3: Microsoft Azure areas of shared responsibility.

A similar picture to the one in Table 4.2 is shown in Table 4.3. The Microsoft
Azure shared responsibilities show that network and host infrastructure are shared
responsibilities and that the following items are the responsibility of the consumer:

• Data Classification & Accountability. It is important to distinguish sensitive
user data from publicly accessible information. Using classification and cat-
egorization, a company can take action by securing classified data relative
to its eventual business impact and the risk associated with it [29].

Cloud Security - Best Practices 19

• Client & End-Point Protection. The general security concerns regarding
e.g. data in transit and at rest, protecting the clients’ data, and hardening
end-points to resist attacks.

• Identity and Access Management. Handling identity and access manage-
ment using different techniques for different areas. Multi-factor authentica-
tion for access to sensitive and/or disruptive information, role-based access
and letting users access only what they need to lower the risk of uninten-
tional misuse of privileges, such as deleting data or accessing classified in-
formation. It also lowers the extent of the damage if a user account becomes
compromised. User handling is very important in traditional computing as
well. Additional considerations include logging and auditing user actions in
order to trace and improve if a user error or attack has been detected.

• Application Level Controls. In an IaaS, the customer is responsible for
protecting and securing the OS and the application layers of the VMs. This
is similar to an on-premise system that needs regular updates, hardening
and configuration to withstand attacks and keep data secure.

• Network Controls. According to Azure, the consumer shares responsibility
with the CSP to deploy, manage, secure and configure the networking so-
lutions. Practically, this entails the security of network elements such as
virtual networking, load balancing, DNS and gateways. These controls are
necessary for services to communicate and interoperate safely.

• Host infrastructure. A shared responsibility to ensure the service is opti-
mally configured and secured. This includes configuration of permissions
and network access control to enable network communication correctly.

Area SaaS PaaS IaaS
Application &
Data X

Runtime,
Middleware, OS X X

Compute, Storage,
Network X X X

Table 4.4: Depiction of areas that IBM are responsible for in IBM
cloud services.

For IBM infrastructure, we could not find extensive information, however the
different levels are shown in Table 4.4 [30]. The table shows that for IaaS, the
customer responsibility is that of the Application and Data, but also the Runtime,
Middleware and OS (X marks an IBM managed area). We assume that "shared
responsibility" for the areas that are not marked with an X also extend to respon-
sibility for their security. Securing the application data is touched upon later in
this chapter, and data security, again, relates to securing data in transit and at
rest. Just like the other models, the responsibility is on the customer to secure

20 Cloud Security - Best Practices

OS, Middleware and Runtime, i.e the VM+OS layers. This has similarities with
information found in Tables 4.3 and 4.2. At this point, it is easy to argue that
these companies claim similar responsibilities for the IaaS model. NIST has the
same idea and this is depicted in Figure 4.1. The CSA reference model is shown
in Figure 2.1.

Figure 4.1: NIST IaaS Component Stack and Scope of Control.

Summary of Customer Responsibilities

Summarizing the major points from these three top tier cloud service providers,
NIST and CSA yield the following list of critical areas of security concern:

• Identity and Access Management. Users should be granted access based on
least privilege. Separate admin and user accounts, use rigid authentication,
limit and constrain access. Relates to the authentication part of the CIA
triad. Often relates to authenticating users to the compute instance being
paid for, but in large also corresponds to the users of the system being served
on top of the IaaS.

• Data at rest and in transit. This encompasses encryption of communication
between end-point and client, secure storage of data using e.g encryption of
disks, secure deletion of data. Relates to confidentiality in the CIA triad.

These are the two items that generally are very deeply connected to the end-user
of the SaaS being built (remember the Google Docs user should not be concerned
with encrypted traffic to and from the server where the user’s private data is
being stored). Thus, there is the added responsibility, as a customer of the IaaS
provider, to protect the clients’ privacy and data through the means listed above.
Additionally, the following two items are the customer’s responsibility:

• Application security. The security of the provided application. If it is ac-
cessed via web browsers, additional (traditional) web security measures ap-
ply, such as JavaScript weaknesses, database injections, cross-site scripting
and similar attacks.

• Network security. Firewalls, Intrusion detection/prevention Systems (IDS/IPS),
Network Access Control Lists (NACLs), DNS, use of De-Militarized Zones
(DMZs) and other techniques. Keeping specific ports closed and more.

Cloud Security - Best Practices 21

The points that have not been covered are: Machine Images and OS (AWS), Host
Infrastructure and Network Controls (Azure) and Middleware, OS and Runtime
(IBM). These are the customer’s responsibilities. We call these ’OS and VM
Level Application Security’. The best practices regarding this is presented in
Section 4.5.1.

The responsibilities listed above provide the basis for the rest of the analysis
in this chapter. The situation is that of deploying a SaaS on an IaaS, meaning
the customer is a SaaS vendor. Below we list, for each of the customer responsi-
bilities, a short summary of the best-practices regarding the responsibility area.
Additionally ’Portability’ will be discussed. Finally, a summary section will list
the general best practices for each of these areas.

4.3 Identity and Access Management

It is important to distinguish sensitive user data from publicly accessible infor-
mation. Using classification and categorization, a company can take action by
securing classified data relative to its possible business impact and the risk asso-
ciated with it [29]. In order to be able to hold an individual accountable for e.g.
carrying out an unauthorized action, the system needs to be able to determine ac-
tions and behaviors of individuals in the system. This capability is often referred
to as accountability [11].

Ensuring that users have the correct permissions to perform their tasks and
access the resources they need, but not anything else (called least privilege), is an
important part of the security management system. You can also set permissions
for groups of users, then add users to that group. This is easier than giving each
user of the system individual permissions. The best practices of the three providers
when it comes to identity & access management are listed below.

The best practices of AWS are [31]:

• Lock away root access keys

• Create individual accounts

• Remove unnecessary credentials

• Rotate credentials regularly

• Delegate by using roles instead of by sharing credentials

• Configure a strong password policy for your users

• Enable multi-factor authentication (MFA) for privileged users

• Grant least privilege

• Use groups to assign permissions to users

The Azure best practices [32]:

• Centralize your identity management

22 Cloud Security - Best Practices

• Enable Single Sign-On

• Deploy password management

• Enforce multi-factor authentication (MFA) for users

• Use role-based access control

• Control locations where resources are created using resource manager

• Guide developers to leverage identity capabilities for SaaS apps

• Actively monitor for suspicious activities

IBM recommends the following best-practices regarding users and credentials [33,
34]:

• Do not share master-login credentials

• Use role-based or user-specific accounts

• Manage your passwords responsibly

• Single sign-on

• Multi-factor authentication

• Reporting

• De-provisioning access

To summarize, the common items are; (1) use single sign-on, (2) multi-factor
authentication, (3) use groups to assign permissions to users, alternatively use role-
based accounts, (4) de-provision access (remove unnecessary credentials, deploy
password management), (5) reporting or monitoring for suspicious activities (not
AWS). Additionally, locking away root access keys, rotating credentials regularly,
not sharing master-login credentials are items of highest importance. We refer to
these as ’create a secure credential management routine’. Only AWS states to use
individual accounts, which is a strong method to detect breaches if coupled with
logging.

Single Sign-On refers to a single point of authorization (such as an OAuth
or SAML service) which generates a token for the user. The token describes the
access level of the user. The main benefit of this is a centralized user authorization
service, removing the need for the user to remember several accounts and pass-
words. AWS did not list single sign-on as a best-practice. According to [27], one
of the security challenges for SaaS vendors is supporting identity management and
sign-on services. There are a few models to implement this, such as;

• using an Independent IdM stack, where the SaaS provider handles all user
accounts, passwords, etc;

• Credential Synchronization, where the SaaS vendor replicates user account
information and credentials between enterprise and SaaS application;

• Federated IdM, where the user account information including credentials is
managed and stored independently by each tenant. (An example of this is
using a Google Account or Microsoft Account to authenticate oneself).

Cloud Security - Best Practices 23

For each of these models, different advantages, disadvantages and challenges ap-
pear.

Multi-Factor Authentication usually combines something you know with
something you have, making it harder for an attacker to gain access if they retrieve
one of the two factors. This is recommended by all the top service providers, and
as such is considered extremely important. This is commonly used by banks to
provide access to accounts and elevating access from user to privileged user. Thus,
it can be combined with pure password authentication to keep adhering to least-
privilege rules.

Group or Role-Based Access help in limiting users’ access levels and re-
moves the need for sharing credentials. This also makes sure the right people have
access to only the things they need, which compartmentalizes any damage that
can be done. Group or role-based access also facilitates granting and revoking user
access.

De-Provisioning Access or Removing Unnecessary Credentials is a
best-practice that helps tighten the security of the system. If unused credentials
are removed, one less possible security hole exists.

Reporting and Monitoring User Access can help with tracking both mali-
cious and erroneous behavior, such as mistakingly removing or changing resources.
It is closely tied to accountability, which is the property of proving responsibility
for an action. Reviewing logs can be a great tool during audits and analysis of
security breaches or cases of misuse of the system.

Creating a Secure Credential Management Routine refers to handling
credentials sanely. Keeping them locked away using specific security mechanisms
to ensure their safety. This item also encompasses a password policy for the users,
such as requiring a specific length of the password, and a change of password after
a specific duration of time.

If administrator accounts are compromised with unlimited access to the infras-
tructure, massive amounts of damage can be inflicted. This also ties back to using
least-privilege accounts for all actions taken. NIST recommends when renting com-
puting resources from an IaaS cloud provider in the form of virtual machines or
physical servers that a limited set of trained/trusted users (from the consumer or-
ganization) alone are provided administrative access to those resources [22]. Apart
from that, not many insights regarding identity and access management can be
found in NISTs report.

4.4 Handling of Data

In a traditional on-premise application deployment model, the sensitive data of
each enterprise continues to reside within the enterprise boundary and is subject
to its physical, logical and personnel security and access control policies. However,
in the SaaS model, the enterprise data is stored outside the enterprise boundary,
at the SaaS vendor end. Consequently, the SaaS vendor must adopt additional
security checks to ensure data security and prevent breaches due to security vulner-
abilities in the application or through malicious employees. This involves the use
of strong encryption techniques for data security and fine-grained authorization to

24 Cloud Security - Best Practices

control access to data [27].
With IaaS, you can use similar storage and data transport systems that you

use in the traditional enterprise model, but in a virtual form. As the customer
has control of everything on the virtual machine they can, and indeed should,
implement data storage encryption and data transport encryption [35].

4.4.1 Multi-Tenancy in the Underlying Architecture

Different technologies are used to ensure multi-tenancy, and different types of
hypervisor techniques exist. According to [35] it is part of the customers due
diligence to "investigate what systems the cloud vendor has in place to isolate
different customers’ data and systems. An important aspect of this assessment
is an evaluation of how the network traffic of each tenants systems are isolated
from the other tenants in the system." NIST [22] recommends to ensure that the
provider has mechanisms in place to protect VMs from attacks

• From other VMs on the same physical host.

• From the physical host.

• From network originated attacks.

Typical attack detection and prevention mechanisms include Virtual Firewalls,
Virtual IDS/IPS, and Virtual Private Networks.

You should note that there is almost nothing you can do to improve the hy-
pervisor and host system security in the IaaS offering as it is out of your control.
However, choosing the infrastructure offering with the best multi-tenant archi-
tecture and separation of host and guest traffic is paramount to improving the
security posture. When the decision is made, the focus of the organization should
be to prevent network originated attacks as this is within their control.

4.4.2 Data in Transit and Data at Rest

The line between what is the customers and what is the cloud service providers
responsibility is often blurred when it comes to data protection. According to the
top cloud service providers, it is highly important to protect data in transit.

AWS recommends encrypting data in transit by using IPSec and/or SSL/TLS
in order to avoid accidental information disclosure as well as preventing data in-
tegrity compromise. To prevent MITM attacks, ID spoofing and peer identity
compromise they recommend using server certificate authentication based on the
server common name [28, p. 35]. Azure encourages you to always use SSL/TLS
when exchanging data across different locations and if needed, isolate the entire
communication channel by using a virtual private network [36]. Azure claims that
failure to do so results in being more vulnerable to MITM attacks, eavesdropping
and session hijacking [36]. The best practices of IBM worryingly does not mention
SSL/TLS at all, however, their cloud developer site which is slightly more techni-
cally oriented urges the importance of HTTPS, SSL and TLS when moving data
from one place to another [37].

According to AWS, permissions and volume or application-level encryption
are viable strategies to mitigate accidental information disclosure of data at rest.

Cloud Security - Best Practices 25

Permissions also help prevent accidental deletion and data integrity compromise
according to AWS. To further mitigate data integrity compromise they recom-
mend data integrity checks such as MAC/HMAC and regular backups of data.
Backing up your data also reduces the impact of an accidental deletion as well as
giving you the ability to restore lost data in case of a system failure or a natu-
ral disaster [28]. IBM highly recommends establishing role-based permissions to
reduce the risk of accidental deletion of data. Performing backups of your data
is also encouraged [33]. In their developer guide, they stress the importance of
protecting your data from outside tampering by using encryption and hashing for
data integrity [37]. Azure states that encrypting the database and using specific
roles for reading and changing data in the database should be established [36].
Furthermore, using data encryption at rest is a mandatory step towards data
sovereignty i.e. owning the data, compliance and data privacy. This can massively
help organizations and users to gain trust in that their data is "theirs".

Secure deletion of data is also a hot topic when the physical storage space is
out of one’s reach. A possible risk is that data left behind by previous tenants
can be recovered by new tenants. NIST states that a consumer should "require
that a cloud provider offers a mechanism for reliably deleting data on a consumer’s
request" [22]. CSA [23, p. 159] states that zeroing or encrypting disks/memory
are solutions to this problem, and AWS [28, p. 34] also supports this stating "[to]
securely decommission data, you can implement data encryption at rest using
customer-managed keys, which are not stored in the cloud. Then in addition
to following the previous process, you would delete the key used to protect the
decommissioned data, making it irrecoverable."

4.5 Application Security

The Open Web Application Security Project Top 10 (OWASP Top 10) Project
summarizes, based on input from security experts from various information sys-
tems, a list of the top ten web application security vulnerabilities. The most recent
list is from 2013, a new one was initially expected in 2016 but will likely be released
in 2017 [38]. The list from 2013 comprises of the following vulnerabilities [39]:

• Injection. Injection flaws, such as SQL, OS and LDAP injection when un-
trusted data is sent to an interpreter as part of a command or query.

• Broken Authentication and Session Management. Incorrectly implemented
application functions related to authentication and session management.

• Cross-Site Scripting(XSS). Untrusted data is sent from the application to a
web browser without proper validation or escaping.

• Insecure Direct Object References. References to internal implementation
objects such as directories, files or database keys are exposed by a developer.

• Security Misconfiguration. Outdated software, not having defined and de-
ployed secure configurations for the application, framework, application
server, web server, database server and platform.

26 Cloud Security - Best Practices

• Sensitive Data Exposure. Web applications do not properly protect sensi-
tive data such as credit cards and authentication credentials e.g. by using
encryption.

• Missing Function Level Access Control. Web applications only verify func-
tion level access rights prior to enabling functionality in the UI. The same
access control should be done on the server when functions are accessed.

• Cross-Site Request Forgery. An attack that causes a user’s browser to per-
form an unwanted action on a trusted site for which the user is authenticated
to. This is often achieved through an email, malicious website or a program.

• Using Components with Known Vulnerabilities. Most libraries, frameworks
and software modules usually run with full privileges. If a vulnerable com-
ponent is exploited an attack can facilitate serious data loss or server take
over. Applications using components with known vulnerabilities undermine
application defenses and enable a range of possible attacks and impacts.

Azure recommends using the OWASP Top 10 as a starting point for guidance on
how to secure your application. They also suggest including security aspects early
on in the development and penetration testing are good practices [40].

IBM are restrictive when it comes to best practices for application security.
They do however strongly promote their own service "IBM Security AppScan",
claiming that it is "a leading application testing suite". According to their official
developer program, "AppScan provides full coverage of the OWASP Top 10 for
2013". They also claim that OWASP Top 10 is regarded as industry best practice
in preventing web application vulnerabilities [41]. In addition to the OWASP
Top 10, they suggest that using web application scanning tools, like their own, is
fundamental for maintaining a secure web application [41].

AWS recommends being aware of the OWASP Top 10 and to build applications
accordingly [42]. Their own tool, Amazon Inspector is said to identify security vul-
nerabilities and deviations from security best practices in applications. It does not
explicitly say it covers OWASP Top 10, but it would be a reasonable assumption
that it does.

The OWASP Top 10 is referred to as a minimum standard for web application
security by [11]. The OWASP Top 10 is also referred to in [12] and they put
emphasis on knowledge of well-known vulnerabilities as a key to develop a secure
application as well as embedding security into the software development life cy-
cle [12]. CSA also strongly recommends using a secure software development life
cycle (SSDLC) when developing or migrating applications to the cloud [23, p. 103].

Generally, all service providers offer extra security controls that are marketed
as premium services. This is a decision for the customer to make, demanding an
analysis of possible security risks and how much they are willing to pay to have
them fixed. Keep in mind that any abuse of the IaaS instance may lead to the ac-
count being terminated. This means that not only can a potential security breach
cause damage to the tenant and the customers but may result in a termination of
contract.

Cloud Security - Best Practices 27

4.5.1 OS and VM Level Application Security

Additional security concerns appear when moving to the cloud, and in the case of
IaaS offerings, keeping the underlying virtual infrastructure secure (i.e. machine
images, OS, host infrastructure), configured correctly and updated is crucial to
the security of the whole platform. The Azure [43] best-practices are:

• Harden the VM.

• Install and manage Anti-Malware.

• Install the latest security updates.

• Deploy and test a backup solution.

Hardening the VM is done by limiting access and only exposing endpoints that
are necessary for the function of the service, as well as keeping it configured and
updated. Additionally, there are pre-hardened images for most popular CSPs
provided by e.g. CIS [44]. Backing up data seems to be a best-practice regardless
of the topic, and security can be furthered by using a backup solution separate
from the cloud you are hosted on.

AWS [28, p. 50-64] has the following list of best-practices:

• Use security zoning and network segmentation.

• Strengthen network security.

• Test security.

• Protect against DDoS.

By means of security zoning, you impose sets of security controls onto segments
of the infrastructure. This can help separate high-risk assets, access, logging and
other functionality between zones. Strengthening network security is handled in
Section 4.6. Testing security is done using white- or black-box testing, issuing
penetration testing by in-house or 3rd party testers, and vulnerability assessments.
Protecting against DDoS attacks is partly done by AWS, they claim. However,
end-customer traffic and data are the responsibility of the tenant, and this data is
not DDoS protected by AWS.

Unfortunately, no specific information about OS and VM level security was
found for IBMs offerings. CSA states [23, p. 157-160] a quite extensive list of
recommendations for the virtualization topic, a select few are:

• Separate production environments from test/development and highly sensi-
tive data.

• Secure each virtualized OS by using hardening software in each guest in-
stance.

• Ensure that secure by default configurations follow or exceed industry base-
lines.

• Make sure that the security vulnerability assessment tools or services cover
the virtualization technologies used.

28 Cloud Security - Best Practices

• Consider performance when testing and installing virtual machine security
tools, as performance varies widely.

• Patching virtual machine images at rest or protect them until they can be
patched.

Additionally, one of the requirements are:

• Virtualized operating systems must include a firewall (inbound/outbound),
Host Intrusion Prevention System (HIPS), Network Intrusion Prevention
System (NIPS), web application protection, antivirus, file integrity moni-
toring, and log monitoring, etc. Security countermeasures can be delivered
via software in each guest virtual instance or by using an inline virtual
machine combined with hypervisor-based API’s.

Comparing these recommendations, we can see that security zoning or sepa-
rating production environments are common for both AWS and CSA. Azure states
that hardening the system is a best-practice, which almost correlates with secu-
rity zoning in that it limits access to disparate functions (i.e production vs test
code/setups, internal and external traffic). Installing and managing anti-malware
software (Azure) is a practical example of strengthening the network security that
AWS recommends, likewise, CSA states that a requirement is that the virtualized
OS has antivirus software. Overall, Azure’s recommendations are practical ex-
amples, with "harden the VM" being the exemption to the statement. However,
using the other sources we get a feel for what is demanded when hardening; Fire-
walls, HIPS and NIPS, web application protection, logging, as well as installing
the latest security updates, i.e. keeping all systems patched.

Some examples of strengthening the network security (AWS) include using
NACLs that allow management of IP traffic, security groups to manage access,
firewalls and applying access control at other layers. This is what CSA touches on
with their requirement above. It would seem then, that AWS is compliant with
CSA recommendations. They also state to "harden software". We assume that for
software that is not being developed by you, there is no way to harden it except
to update it regularly. If the software is being developed by you, however, security
should be a point of consideration throughout the development life cycle.

As a general recommendation we advise the customer (SaaS vendor) to discover
what exactly is being promised by the IaaS vendor when moving to the cloud, as
well as the technology the IaaS is built on. Different vendors promote different OS
and VM level security best practices which lead us to believe there are differences
in infrastructure and subsequently the security they provide (we reserve, however,
that using premium services may or may not remedy these concerns). Things such
as the possibility of side-channel attacks in multi-tenancy systems are highly tied
to the type of tenant isolation [9].

4.6 Network Security

According to CSA, Network security consists of security services that restrict or al-
locate access and that distribute, monitor, log, and protect the underlying resource
services [23, p. 168].

Cloud Security - Best Practices 29

Azure states that the following network security best practices should adhere
to [45];

• Logically segment subnets.

Segmenting the subnets using a Network Security Group (NSG). Allowing
you to put resources that belong to the same security zone or role in their
own subnets. We generalize this as ’keep separate connection rules for each
interface and limit them to only accept connections from required interfaces’.

• Deploy DMZs for security zoning.

Azure recommends deploying a DMZ to further enhance the level of network
security. This enables you to place your network access control management,
monitoring, etc at the edge of your virtual network where you can enable
e.g. intrusion detection/intrusion prevention systems or firewall rules.

• Optimize uptime and performance.

They suggest employing load balancing whenever possible in order to in-
crease availability by redirecting traffic. Performance is also improved since
the processor, network and memory overhead for serving requests are dis-
tributed across the load balanced servers.

• Disable RDP/SSH access to Azure virtual machines.

This is recommended by Azure because of the potential security problems
these protocols pose. Attackers can gain access to virtual machines by using
various brute force techniques and once they have access they can use the
machine to compromise other machines on the virtual network.

IBM Best Practices states [33];

• Use the private network.

IBM advice network spanning to enable system communication over a pri-
vate network. Therefore, when possible, use a VPN connection to interact
with your devices to ensure that the interaction is done in the most secure
environment possible.

• Make sure to configure your firewall.

Leaving your firewall in Bypass Mode can be seen as having a security
system that is never turned on. It is highly recommended to create rules
and activate your firewall in order to block unwanted activity.

• Do not leave known ports open on the public network.

Recommended ports to disable or restricting access to on the public net-
work is RDP and SSH. Failure to disable these ports can leave the system
vulnerable. Consider moving RDP or SSH to a custom port if these services
must be available.

The following concludes the best practices for network security in AWS [28];

30 Cloud Security - Best Practices

• Always use security groups.

They work as firewalls at hypervisor level for your instance/instances. Man-
aging access to instances that have similar functions and security require-
ments by using security groups is highly recommended.

• Augment security groups with NACLs.

By combining security groups with NACLs another level of control is pro-
vided since NACLs are not instance specific. NACLs can allow or deny
traffic before reaching a security group when working in conjunction with
security groups.

• Protect data in transit.

Ensure confidentiality and integrity of data as well as the identities of the
communicating parties by encrypting the data with IPSec which extends the
IP protocol stack and allows applications on upper layers to communicate
without modification.

• Network security layers.

Apply network security at different levels of your network, e.g. external,
internal and DMZ layers. This will further enhance the network security
by enabling intrusion detection/prevention systems to be put at the edge of
the virtual network.

AWS and Azure agree on that network security layers such as a DMZ or VPN
as well as the use of NACL/NSG to be crucial parts of ensuring the network
security of the SaaS. The NACL and NSG are roughly the same, Azure’s NSG
originates from an NACL but differs when it comes to the number of security
groups and number of rules per security groups that is supported. The AWS
NACL is limited to 20 security rules per subnet while the NSG can have up to 100
security groups and up to 200 security rules per security group. Consulting the
IBM developer page there is no mention of NACLs or NSGs. There are however
recommendations to implement DMZs. The best practice common for Azure and
IBM is the disabling of known ports and even though this is not mentioned by AWS
in their best practice, it is unlikely that they would suggest otherwise. Protecting
data in transit is only listed by AWS, however it would be reasonable to assume
that Azure and IBM considers this to be rather important as well. In the same way,
although only mentioned by Azure, load balancing should be seen as best practice.
AWS claims security groups acts as a firewall for your instance/instances and IBM
list firewalls in their best practice. It would be surprising if Azure argued against
the use of firewalls as a best practice. Furthermore, IBM suggests using VPN to
increase the security of interactions with your devices. This might not be crucial
but is definitely a feature.

One should note that at the network level, many of the security challenges are
not cloud specific. Security challenges associated with clouds are exacerbated, but
not specifically caused by the fact of it being in the cloud [12, p. 60].

Cloud Security - Best Practices 31

4.7 Portability

Portability can be seen as how effortlessly applications as well as their associated
data can be moved to another cloud provider [11]. Most cloud providers offer
increased security and performance services at an additional cost. These services
are often well tested and implemented and probably worth their cost in terms of
money. However, by relying on too many services provided by a certain cloud
provider to ensure the security of the SaaS renders it susceptible to changes made
by the provider. The cloud provider might decide to discontinue a service or
dramatically raise the price of it. If open-source or in-house alternatives are used
instead the SaaS is less dependent on the cloud provider and thus has a higher
portability. A higher level of portability can therefore increase availability.

CSA argues that portability is a key aspect to consider when selecting cloud
providers since it can aid in preventing vendor lock in and deliver business value
by allowing the deployment of an identical solution on different clouds [23]. NIST
recommends that a cloud platform consumer should "formulate a strategy for
future migration of Virtual Machines and their associated storage among alternate
cloud providers" [22].

4.8 Recommendations and Model

In this section, we present our findings as a model for SaaS with the goal of
highlighting the different aspects of security and performance needed to create
a secure cloud application. Under each section, a selection of must-haves and
nice-to-haves are listed, based on a synthesis of the information above.

Service Agreements

Service agreements touch lightly on the aspect of shared responsibility. They
specifically touch on service availability, which you as a customer is highly de-
pendent on. If the CSP’s IaaS service goes down, your business is the one being
affected. It is recommended that the SA and SLA are read and understood, specif-
ically with regards to what areas of security you as a customer are responsible for.
A misunderstanding of the responsibilities may result in financial loss for the cus-
tomer, loss of data and/or other assets. NIST also recommends negotiating the
service agreement and the remedies if the terms are not acceptable to you as a
customer. This might work out fine for cloud providers who are in dire need of
customers, but for the giants, you are likely to get what they offer and nothing
more. Offering individual service agreements is not scalable for a world-class CSP.
It is likely however that the large CSPs have other pay-as-you-go services that
remedy these concerns.

Notably, Microsoft offers 100% recompense in the form of service credits (for
use in their service) if the server is up less than 95% of the time (see Table 4.1). This
comes out to about 1.5 days per month. If the uptime was that low, the question
is; how many customers would like to stay with that specific cloud provider?
This can seem like a generous offer, but in reality, anything less than nominal
uptime is a bad sign. Another notable item is that Microsoft for its Single-Instance

32 Cloud Security - Best Practices

Virtual Machines offers 99.90% connectivity, increasing to 99.95% when using
an availability set (two or more instances). IBM has the most solid offer; 25%
recompense for anything less than 99.90% availability.

One of the key limitations in the Service Agreements is security; providers gen-
erally assert that they are not responsible for the impacts of security breaches or for
security in general, i.e. unauthorized modification or disclosure of consumer data,
or service interruptions caused by malicious activity. Generally, service agreements
are explicit about placing security risks on consumers. In some cases, providers
promise to use best efforts to protect consumer data [22]. We also recommend
comparing recompense levels and the possibility of tailored service agreements to
best support the SaaS being built.
Must Haves:

• Compare providers for the best service agreement and service level agree-
ment to make sure recompense is commensurate with risk and cost of down-
time.

• Make sure you know the extent of uptime the CSP offers.

• Make sure you provision enough hardware to keep availability high.

• Make sure you are prepared for downtime.

Nice to Have:

• Build redundancy from the beginning in order to keep up with off-site down-
time.

• Provision additional modifications to fit the organizational needs via support
offerings.

Identity and Access Management

The providers are more or less unanimous when it comes to their best practices
of identity and access management. Enforcing multi-factor authentication, having
role or group based permissions for users, enabling single sign-on, securely man-
aging credentials and administrator/root accounts and establishing a strong pass-
word management routine are the key factors shared between them. Multi-factor
authentication and strong password requirements reduce the risk of a successful
brute force attack, such as dictionary attacks. Single sign-on can encourage users
to comply with strong password requirements since they do not need to remember
several different passwords. However, if an identity using SSO is compromised,
a higher risk of data loss occurs because the perpetrator gains access to more
systems than if they required separate passwords. However, revoking access to
a single sign-on entity is easier than revoking many separate ones. Multi-factor
authentication is very secure but can result in increased effort depending on the
amount of factors and their relative time-cost. We recommend that MFA is used
to elevate privileges from user to administrative roles. De-provisioning should be
done in order to minimize the number of accounts vulnerable to compromise.
Must Haves:

• Use single sign-on.

Cloud Security - Best Practices 33

• Enforce multi-factor authentication for more privileged accounts.

• Role or group based permissions for users.

• De-provision accounts that are not used.

• Report and monitor user activities.

• Create a secure credential management routine.

Nice to Have:

• Use key management solutions, such as hardware security modules (HSMs)
to store keys.

• Leverage IaaS solutions such as Key Vault, Key Protect, etc.

Handling of Data

Confidentiality and integrity of data at rest are of high importance. AWS pro-
vides several options for the customer to implement this, e.g. AWS can encrypt
your stored data. They also offer the ability for customers to manage their own
encryption keys, which can be considered to further enhance the confidentiality
of sensitive information than if AWS would manage your encryption keys [46].
Microsoft Azure provides a similar service with their Azure Key Vault and IBM
has the IBM Key Protect service. In the case of having the provider managing
the encryption keys, questions arise such as who has access to the keys and where
are the keys stored. Another way of dealing with these questions is to encrypt the
data prior to uploading it to the cloud, but this might not always be a feasible
approach.

Data in transit should always be encrypted, especially between cloud and
client. Depending on the type of traffic, we see several methods of keeping these
connections secured. On the application level, using HTTPS is mandatory, addi-
tionally, IPSec and VPNs are recommended by AWS and Azure.

For data at rest, encryption should be used in order to make sure that leaks
do not expose plain text data. Keeping decryption keys separately stored is of
great importance and again stresses the importance of having a secure credential
management routine. Regarding who owns the decryption keys, the answer is one
of how much you trust the organization that owns them. Owning the decryption
keys enables data sovereignty. Encryption of data at rest additionally includes
databases, VMs as well as SQL data input and output using e.g. middlewares
designed for this. Hashing should be used to be able to provide integrity of data.
Must Haves:

• Use SSL/TLS or IPSec when transferring data, even internally.

• Use cryptographically secure algorithms for encryption of data at rest and
in transit.

• Back-up your data regularly. Encrypt backups.

• Make sure that data decommissioning is irreversible.

• Restrict access to data using roles and permissions.

34 Cloud Security - Best Practices

Nice to Have:

• Encrypt database I/O by means of middlewares.

• Establish a virtual private network to isolate the client-server communica-
tion.

Application Security

Even though it is highly recommended to be aware of the OWASP Top 10 when
developing a SaaS application, it should be noted that it is considered to be a
starting point for developing a secure application. It is not an exhaustive checklist
that will ensure the security of your application if followed, it is rather a minimum
requirement. Other attack vectors than the ones mentioned by OWASP Top 10
exist and these have to be considered as well. Incorporating security aspects in
the software development life cycle and performing third-party penetration tests is
advised to ensure that the security of the application is established and maintained.
Premium services could be considered as an extension to prior security measures,
they do however come at a price, both financially and as a loss of portability. As
a part of the development life cycle, testing the software for security flaws can
be done in-house or by using 3rd parties, but as with all software development
and testing, should be done by people that are separated from the source code.
The actions we recommend taking when testing security is to assess vulnerabilities
by means of external parties, pen-test both internally and externally, white and
black-box testing software and platforms. Keep the CSP informed of any of these
actions, as they may be seen as illicit and may warrant a termination of contract
unless notified.

Regarding VM and OS level security, a general hardening recommendation
is in place. Do not assume that machine images and VM OSes that are used by
default are secure. Implement a routine to secure them and improve them. CIS [44]
have prehardened images for use that have gone through testing phases in order
to withstand cyber attacks. However, these should be inspected and understood
and not only adopted as a catch-all. Depending on the IaaS vendor, make sure
you know the underlying technology and the risks that come with it. Treat VM
OSes and other virtualized software as regular software, i.e. keep it updated and
use firewalls, intrusion detection systems and access control to keep attackers at
bay. Do not assume that security automatically is better when you use virtualized
software.
Must Haves:

• Make sure you consider OWASP Top 10 to secure your system.

• Adopt a secure software development life cycle.

• Issue security assessments.

• Know the infrastructure you are paying for.

• Test security.

• Use network segmentation (VM).

Cloud Security - Best Practices 35

• Treat virtualized software and infrastructure as on-premises solutions (VM).

• Continually patch and update both own and 3rd party software.

Nice to Have:

• Use Hardened Images from e.g. CIS or other organizations.

• Paying for cloud-specific scanning services such as ”Amazon Inspector” or
”IBM Security AppScan”. Keep in mind the possible performance hit.

• Use certified third-parties to conduct security audits and assessments.

Network Security

The importance of assessments that test and validate the network security of a
SaaS vendor are highlighted in [27]. Vulnerabilities detected during network pen-
etration and packet analysis tests, session management weaknesses and insecure
SSL trust configuration can be exploited to gain access to user credentials and
sensitive data as well as hijack active sessions.

Microsoft Azure suggests in their best practice white paper that availability
can be thought of as being uptime and performance [45]. The reasoning behind
this is that the data can be considered inaccessible if the performance is too poor
for the data to be usable. Therefore uptime and performance are key factors
from a security perspective, Microsoft Azure recommends utilizing load balanc-
ing as a popular and effective method to increase availability [45]. The use of
load balancing also helps to mitigate one of the largest threats to availability,
DoS/DDoS attacks. Both Microsoft and AWS suggest using load balancing to
enhance resilience against DoS/DDoS attacks, AWS also recommends using ad-
ditional services such as CloudFront which enables geoblocking, which might be
useful for isolating attacks originating from a particular geographic location, and
web application firewalls that target specific DDoS request to minimize the effect
of a DDoS attack [47]. AWS, Microsoft and IBM [48, 49, 50] can provide band-
width and processing to combat almost any network traffic spike, be it regular
traffic or an actual attack. A downside is that it can incur high costs and opens
up the door for "economic DDoS" attacks. However, if the cost to endure is less
than the cost to mount a DDoS, provisioning can be used as a mitigation tool
for these attacks. Disabling of known ports, firewalls and layering security, were
all best-practices the providers recommended, as such, they will be considered as
must have entities.
Must Haves:

• Implement security layers.

• Disable access through known ports and disable services not used.

• Utilize load balancing.

• Configure and activate your firewall.

• Use SSL/TLS or IPSec to protect data in transit.

• Perform network security assessments.

36 Cloud Security - Best Practices

Nice to Have:

• Geo-blocking.

• Web application firewalls that target specific DDoS requests.

• Use VPN.

Portability

Many vendors that claim to be "open" and "standard based" provide services and
extensions that can impede portability [23]. If portability is not appropriately
addressed it can result in costly problems since provider lock-in may restrict the
ability to move to another cloud provider that might be offering a more beneficial
deal. Disruption of service due to the processing of incompatibility and conflicts
between platform, provider or application differences is also undesirable [23]. CSA
suggests the following considerations which will act as must haves when it comes
to portability.
Must Have:

• Use open standards for identity such as SAML and develop an internal IAM
system.

• Escrow encryption keys locally.

Nice to Have:

• Maintain encryption keys locally.

• Use open source components to avoid being locked-in by the provider

In Figure 4.2 the above stated best practices are illustrated as a table. In the
following chapter, the model will be applied to the Axis-hosted cloud service, in
order to determine the level of security it exhibits.

Cloud Security - Best Practices 37

Figure 4.2: A model of critical areas of security.

38 Cloud Security - Best Practices

Chapter 5
A Case Study of an Axis-hosted cloud

service

The Axis-hosted cloud service is a product of Axis Communications AB, a software
that offers remote monitoring, increases alarm operation efficiency with remote
verification and alarm reset, provides easy management of customers’ security
concerns, and more. The cloud service is aimed at surveillance companies, or ’video
service providers’. A hosting provider develops the service and portal according to
the video service providers requirements. In some instances, the hosting provider
is the same as the video service provider, and in some instances, the hosting
provider is Axis. When Axis is the hosting provider, the service is delivered as a
SaaS, with the underlying infrastructure being Amazon EC2 instances. The cloud
service user interface or ’portal’ is accessed via a web browser, and provides the
user with access to video streams for connected devices, as well as possibilities for
configuring them, recording and upgrading the firmware of cameras. The portal
receives alarms from cameras that are configured to send them based on specific
triggers that the user specifies. The main module making the communication
between camera and the cloud service possible is the ’cloud service proxy’. On
the camera, the Camera Client has a persistent connection (’command channel’)
to the cloud service proxy.

5.0.1 Communication Between Cloud and Device

Immediately after a product is unboxed, the operator/user enters its credentials
on the Axis-hosted cloud service web portal. These credentials along with other
configuration parameters are sent to the Axis Trusted Third Party(TTP) (see
Figure 5.1) for verification and to notify the system that the specific product is
’active’.

At this point, the TTP is ready for the "one-click-connection" step. If a user
presses a dedicated hardware button on the device, it will try to connect to a
known TTP address and a certificate exchange will be made, establishing trust
not between the TTP and the device, but between the cloud service (cloud service
proxy part) and the Camera Client. The TTP knows who owns the camera because
of the registration step, and tells the camera which back-end proxy to connect to,
see Figure 5.2. After this is done, the command channel is established between
the proxy and the device.

39

40 A Case Study of an Axis-hosted cloud service

Figure 5.1: User entering credentials into web GUI

Figure 5.2: Dispatching the device using certificates.

When the dispatching is complete, the camera is susceptible to connection
requests from the cloud. When a connection needs to be established for some
reason, e.g. to stream images or to retrieve information from the device, a GET
request is made over the command channel. The device then answers with a
CONNECT to upgrade the connection to a TLS tunnel over TCP/IP. See [51].
After this, the requestor sends or retrieves information from the device as expected.
When communication is complete, the tunnel is torn down and closed. A new
connection is established every time a user requests data from the device, and the
command channel is the only permanent connection between device and cloud.

In this setup the communication is one-way, meaning the device cannot spon-
taneously send requests or data to a remote address. A situation in which this
becomes a problem is when the camera needs to notify users about user configured
events that trigger in the camera, such as motion detection, alarms and other ac-

A Case Study of an Axis-hosted cloud service 41

Figure 5.3: Axis-hosted cloud service to device communication.

tions. When this happens, ActionEngine, the module responsible for taking action
based on events occurring in the camera, will establish an HTTP(S) connection
to the cloud service outside of the command channel (see Figure 5.3). This is the
mechanism that allows notifications from cameras in the cloud service. Depending
on the type of notification, different modules inside the cloud will be informed.
The cloud service has no way of knowing when these messages are scheduled to
arrive, and thus can not decide if a transmission has been blocked.

5.1 Procedure

This section describes the process of developing the proof-of-concept solution. The
goal was to include all communication in a single, two-way connection that could
handle all data to and from the device. The principle is shown in Figure 5.4.
With our current understanding of the systems involved in Axis cloud service, we
developed an overview picture, shown in Figure 5.5. This image shows the pain
points and the areas that needed change in order for our prototype to work. With
this image as a starting point, we set about establishing the new communications
channel first.

The starting point was the Secure Channel add-on (SCa) that was under de-
velopment by a separate team, shown in Figure 5.6, and a simple back-end imple-
mented in Node.js called the WebSocket Hub (WSH).

The communication initially consisted of nothing more than sending GET
requests over a WebSocket connection and waiting for a response. This is shown
next to points ’1’ and ’2’ in Figure 5.5. It should be noted that in both Figure 5.4
and Figure 5.5, the proxy is illustrated as relaying requests to the WSH, but this
is not how the final design was made. This was simply a misunderstanding when

42 A Case Study of an Axis-hosted cloud service

Figure 5.4: Desired structure.

Figure 5.5: A top-down view of the Axis-hosted cloud service and
related modules.

A Case Study of an Axis-hosted cloud service 43

Figure 5.6: The internally developed solution - "Secure Channel".

starting the work. Instead, the WSH should handle all of the communication that
the original cloud service proxy handles.

Some of the questions we needed to answer were how to establish trust be-
tween SC and WSH, and if we should use certificates that already existed or to
create some kind of mechanism to distribute this, as an appropriate method for
distributing certificates and dispatching devices had not yet been designed. The
Secure WebSocket connection needs certificates on both ends for mutual authenti-
cation and without them, a connection is never established. Self-signed certificates
were used in the meantime to allow for the TLS tunnel. Later, we developed our
own dispatcher service to tackle this issue (See Figures 5.8 and 5.9). With cer-
tificates in place, we could start using the channel. Simple requests were made,
yielding responses around 50KB of plain text. We quickly realized that our needs
differed from the ones the SCa development team had. Mainly because they fo-
cused on sending large chunks of data to the device while we were more interested
in the opposite, i.e sending chunks of data from the device to the cloud. Further
development and modification to the add-on had to be made in order to fit our
needs.

For the Node.js back-end to be able to replace the cloud service proxy com-
ponent, the back-end would have to mimic the behavior of it. The component is
a proxy that has an open connection established to each device that is connected
to the cloud (the command channel). The cloud service proxy also features MAC
addressing in addition to using IP addresses.

Figure 5.7 shows the role of the WSH. In this figure, requestors are typically
modules inside the cloud (either triggered by client requests or by specific code),
that need to communicate with a device. The WSH then does a lookup in a
registry class that stores a mapping of IP and MAC. This is needed since MACs

44 A Case Study of an Axis-hosted cloud service

are a requirement for addressing but the clients identify themselves using IPs when
connecting (since WebSockets use TCP/IP). When a client connects, it sends a
"hello" message along with its MAC address so the WSH can make this mapping.
After that, the WSH handles the communication between the client and the device.
When a request aimed for a device is received on the "internal" side (i.e., the cloud-
facing side) a unique id is generated for the requestor. This is then sent to the
device, and responses to this requestor have the same id appended to it.

The WSH does not simply pipe everything it receives but parses the JSON-
formatted data coming in and reads the requestor id in order to send the response
back on the connection requesting the information. This is also shown in Figure
5.7.

Figure 5.7: Our implementation of WebSocket Hub (WSH) and SCa
on camera.

In order to facilitate the desired functionality where notifications from the
ActionEngine are sent through the command channel rather than a side channel,
it was necessary for us to develop a firmware plug-in for the device. This plug-in

A Case Study of an Axis-hosted cloud service 45

would take on the same responsibilities as the previous notification plug-in, but
instead, redirect the notifications to the SCa on the device. This issue is also
present in the overview image, shown in Figure 5.5, point 3.

Since the WebSocket connection requires certificates on both ends to set up
the connection, we had to distribute a certificate to the add-on in a secure way. We
decided to utilize the already established command channel to dispatch the add-on
and the backend. To enable this, the add-on had to expose a CGI that could be
reached from the localhost on the device. A dispatcher server was developed, also
in Node.js, that has the role of authenticating client and server. The dispatcher
service asks the add-on through the established command channel for a CSR. The
add-on generates a key pair and responds with a CSR. Upon receiving the CSR,
the dispatcher sends its signed certificate and the trust chain. The dispatcher
also informs the add-on of the address of the WSH to connect to. Once the add-
on receives this information it tries to establish a WebSocket connection to the
back-end. This way communication is established from inside the device’s net,
allowing for the same NAT/Firewall "hole-punching" properties that the cloud
service proxy and CC connection use. This is illustrated in Figures 5.8 and 5.9.

Figure 5.8: The new dispatching.

When the WebSocket connection is up, it is possible to leave the previously es-
tablished cloud service proxy - CC command channel idle. All requests go through
the newly established connection, as well as notifications that originate from the
device. More demanding requests such as streaming video required more sophis-
ticated modifications to the add-on. One of the major issues was the internal
structure of the SCa, shown in Figure 5.10.

As the figure shows, the responses of the requests pass through a message
queue prior to being sent to the WebSocket handler. The WebSocket handler, in

46 A Case Study of an Axis-hosted cloud service

Figure 5.9: After dispatching using the new dispatcher.

Figure 5.10: Message handling in Secure Channel add-on.

turn, sends a message from the message queue in a FIFO manner each time the

A Case Study of an Axis-hosted cloud service 47

WebSocket connection is writable. Since the main usage of the Secure Channel
from the original authors’ point of view is to send large files, e.g. firmware upgrades
and subsequently receive a message back with the result, the use of a single message
queue does not affect performance. However, when requesting large amounts of
data, e.g. a video stream, the message queue is prone to be filled up quickly if the
WebSocket connection cannot keep up with sending the messages. This is a highly
undesirable behavior for the cloud service.

As WebSockets have no notion of HTTP (A WebSocket connection exists on
OSI layer 4), a message format for data has to be established. A common format
is the Javascript Object Notation (JSON) format, (see [52]) which is a text format
that uses key/value pairs and lists to represent data. Since JSON is realized using
strings, binary data is not supported by the format. This means that escaping
the binary data is a requirement for this protocol. The most common way of
escaping binary is to Base64-encode it (see [53]). This puts some overhead on the
data being sent, compared to e.g. sending using plain HTTP(S), which is how the
cloud service proxy and CC communicate. However, Secure Channel was designed
to handle strings primarily, and as such it has problems handling binary data.
This means that adapting to the service center JSON protocol also called for a
couple of modifications of the add-on, e.g. Base64 encoding of the binary data to
be sent.

When testing the implementation, requests for smaller amounts of data (around
50 kB) did not differ much from the existing solution in terms of performance.
However, when requesting a video stream the Secure Channel implementation had
a severe drop in performance compared to that of the existing solution.

5.2 Results

This section presents the results to the questions mentioned in Section 1.1

1. Analyze current client/server communication, determine its capabilities, deficits
and future needs.
The capabilities were determined to be:

(a) Be able to send binary data.
Binary data is used when transmitting streams over HTTP, such as
images and video. Because of the nature of the cloud service as a
software for video surveillance, this is crucial. Uploading data to the
cloud consists of recorded video that is represented in binary (over
HTTP(S)).

(b) Be able to handle streaming data, such as continuous video.
Like stated above, streaming data in real-time to users who interact
with the devices through the user-portal requires the solution to be
able to handle chunked-encoding,

(c) Be able to work through e.g company firewalls and NAT routers.
By initiating a command channel from inside corporate firewalls (and
subsequent connections), it enables the cloud service to communicate

48 A Case Study of an Axis-hosted cloud service

with connected devices without having to configure the firewall and
router. (With the exception of needing a port open for establishing
the command channel).

(d) Be able to address clients using MAC addresses.
The reason for this is that the cloud service stores a database of the
registered/connected devices. Since IP addresses are ephemeral, ad-
dressing via MAC is a way to communicate with devices without hav-
ing to care about cameras having a specific network address. The cloud
service proxy component enables MAC addressing by mapping MACs
to IPs.

(e) Have support for the RTSP protocol.
In order for the cloud service to serve a video stream to users, RTSP
or RTMP enables control of the streaming module of the Axis device.

The deficits were determined to be:

i. The use of cryptographically broken algorithms for some communica-
tions from older camera models.

ii. No two-way communication.

iii. No way to tell if alarm signals have been blocked.

iv. New TCP connections established every time data has to be sent.

v. No support for Server Name Indication (SNI).

Results:

The following results show how well our developed proof-of-concept solution
met the demands and remedied the deficits of the Axis-hosted cloud service.

a. Our solution can send binary data, however via Base64 encoded JSON
structures.

b. It handles streaming video at about 20% of the efficiency the current
solution does. It scales inversely with the number of requestors.

c. It works through company firewalls because it uses the existing proxy-
CC connection to establish trust, and establishes WebSocket connec-
tion from inside the camera’s net.

d. It has support for MAC addressing.

e. It does not have support for the RTSP protocol. This was not imple-
mented due to time constraints.

The deficits:

i. The use of cryptographically broken algorithms on older models was
not solved within the allotted time frame. We will further discuss this
in Chapter 6.

ii. Two-way communication enabled by means of a persistent WebSocket.

A Case Study of an Axis-hosted cloud service 49

iii. Alarms signals now go through the WebSocket channel, as such, block-
ing attacks are infeasible or at least would notify the cloud service that
the WebSocket is down.

iv. Since the WebSocket communication is two-way, no new TCP connec-
tions put unnecessary load on the devices.

v. SNI was not implemented. We will further discuss this in Chapter 6.

2. Based on the findings, evaluate the Secure Channel add-on;

(a) Is the Secure Channel capable of fulfilling the needs of the Axis-hosted
cloud service, such as accommodating different types of traffic to and
from the internal services of the cloud service?

The deficits listed above would need to be corrected in an improved
secure communication channel, as well as the following items;

i. Be able to send requests to the device’s different common gateway
interfaces (CGI’s), and receive the same HTTP responses as if
they had been made through the proxy-CC connection.
If a replacement is to be made, there should be a consistency
between the old and the new.

ii. Support strong encryption using e.g. OpenSSL ciphers.
There is an inherent need to secure the data in transit, especially
considering its criticality. Actions being recorded on video may
consist of theft, destruction, threats and other illegal actions. If
this data could be modified, altered or blocked in transit, it could
result in a loss of physical safety for people and property involved.
Furthermore, blocking alarm signals and other notifications could
render surveillance-as-a-service worthless, as alarm operators have
nothing to act on. Being future-proof includes supporting inter-
changeable ciphers in case security flaws surface.

iii. Prevent MITM attacks using e.g. PKI.
For similar reasons as the above, ensuring that the device you are
talking to really is the one it claims to be is crucial when sending
possibly incriminating data.

Results:

i. The new solution is in many ways slightly more complex than
the proxycloud service proxy-CC connection and does not simply
proxy requests. As such, we cannot answer with 100% certainty
that our solution handles all CGI calls and requests exactly like
the current, however, for the ones we tried (receiving video, read-
ing/updating camera parameters, receiving still images), the be-
havior was 1:1, meaning the solutions were indistinguishable from
one another.

ii. It does have support for strong ciphers via OpenSSL. Libwebsock-
ets in C++ and the Node.js WebSocket has support for OpenSSL.

50 A Case Study of an Axis-hosted cloud service

iii. We use secure WebSockets which enables client and server to mu-
tually authenticate. Although we used self-signed certificates for
our proof-of-concept, real certificate chains can and should be
used. Thus, MITM attacks can be said to be mitigated.

(b) Can the Secure Channel solution be altered or extended in order to
accommodate the current and future needs of the Axis-hosted cloud
service?

Results: We are certain that the current prototype can be altered
to support the cloud service future needs. Support for SNI can be
introduced at an earlier stage such as at a load balancer that keeps
track of the different WS hubs in the cloud. However, scaling for
several concurrent requests needs to be implemented and this calls for
a re-work of the Secure Channel design philosophy. It should be rebuilt
from the ground with support for binary data and not have a singleton
design to be able to scale for several requestors. Alternatively, Secure
Channel could be designed to create an additional data channel that
is permanently open.

3. How does our solution with the included Secure Channel compare to a state-
of-the-art-solution. Suggest steps to be taken in order to further enhance the
security.
Applying our model for a state-of-the-art solution on the Axis-hosted cloud
service with our proof-of-concept solution yields the results shown in Fig-
ure 5.11. The lines that are checked/marked with green are practices that
the organization fulfills, the red/marked with a cross are unfulfilled, and the
yellow/checked with a footnote are those that are partially fulfilled.

A Case Study of an Axis-hosted cloud service 51

Figure 5.11: The model applied to the Axis-hosted cloud service
case.

The numbers below correspond to the numbers of the footnotes in Figure 5.11

1. It is unclear whether redundancy was existent from the beginning, however,
the design is redundant today.

2. SSO is used for CSP services, but not for the customer facing application.

3. Logging is insufficient, it is hard to prove WHO did WHAT.

4. Internal traffic is not encrypted. Reason: Layered security.

5. No encryption is done for data at rest. Encryption is done for public facing
interfaces.

6. The cloud service uses VPC to separate application instances.

7. All of the OWASP Top 10 vulnerabilities are not covered. They have how-
ever been considered and it is an active choice from Axis not to cover some
of the vulnerabilities.

8. The adoption of a SSDLC is in progress, but not yet fully established.

52 A Case Study of an Axis-hosted cloud service

9. In the application layer, security is layered by means of security groups for
specific services. Least-privilege and user accounts to make sure there are
few points of entry. Cameras can still circumvent this "top-down" privilege
structure by connecting to the 2nd layer.

10. Load balancing is not used for camera connections.

11. See 6.

12. An IAM system is developed, however, there is a lack of traceability in the
system.

Generally, the suggestions marked with red in the model should be considered
as steps to further increase the security of the SaaS, especially the ones declared as
must haves. The areas marked with orange would also need to be asserted. Steps
to be taken to further enhance security will be discussed in detail in Chapter 6.

4. A design proposition of how the future needs can be included in the Secure
Channel solution.

SNI needs to be introduced at a load balancer, making more than one public-facing
IP redundant. This is shown in Figure 5.12. This would result in a singular point
of entry for the system that would be easier to secure. Additionally, using the Axis
TTP solution would be preferable over the one we developed.

Figure 5.12: The use of Server Name Indication to direct traffic.

Chapter 6
Discussion

This chapter features a reflection on the results reported in Chapter 5 and the best
practice model from Chapter 4. The discussion is divided into sections touching
each of the topics in Section 5.2 and the best practice model in Section 4.8.

6.1 Best Practice Model

The decision to include the best practices of AWS, Azure, and IBM was mainly
due to the fact that they are the most established providers on the market (mar-
ket shares). One could argue that we should have included Google Cloud Plat-
form (GCP) as well seeing as they have are often grouped up with Azure and IBM
when comparing market shares. However, due to time restraints as well as the
notion that the combined best practices of the three chosen providers would likely
have covered the best practices of GCP, we chose not to include it.

Our motivation for not only including the top three providers best practices
to create our model was to add different perspectives. By including non-profit
organizations’ perspectives on cloud security, as well as books by authors not
related to any cloud providers, the model would be more versatile. It would also
make it more ideal for our case where the SaaS provider is both a customer of an
IaaS and a vendor of a SaaS.

Even though several perspectives are included in the model, it is not to be
seen as an exhaustive checklist that guarantees success if followed. It is however
derived from the best practices of top cloud providers and complemented with the
knowledge of experts from different areas within the information security field, and
as such it should be considered a viable tool when deploying a SaaS application in
the cloud.

6.2 Capabilities

6.2.1 Binary data

Our new solution uses Base64 encoding over JSON structures to send all types
of data. Using Base64 puts a 33% overhead on the actual traffic, with 3 input
bytes encoded to 4 output bytes. Additionally, JSON takes up an additional
couple of bytes per message. For most of the devices, this is OK, being able to

53

54 Discussion

encode and decode Base64 fast enough to enable streaming. However, for older
devices, this may result in too high CPU usage to be acceptable. Unfortunately,
no tests with older cameras were made. Partly due to the fact that add-ons only
are supported for newer models. The traffic overhead is acceptable for Service
Center whose use cases are less dependent on low latency. In the Axis-hosted
cloud service situation, however, where users may be on a mobile connection when
requesting video, latency may become unacceptable. Keeping in mind the type
of traffic the cloud service uses, which ranges from simple HTTP requests for
small text messages to bandwidth-demanding video streaming using RTSP and
other techniques, and the need for several clients to request this type of data from
the same device, the overhead becomes too much. This motivates the use of a
separate channel for all the ’heavy lifting’, one which does not require Base64
or JSON. This would re-introduce some TLS-handshakes, but in the WebSocket
specification, they are not as computationally expensive as SSL/TLS over HTTP.

6.2.2 Streaming Data

Our solution handles streaming data, which is mainly an issue of sending and
receiving the right headers. We experienced approximately 1/5th of the speed the
current solution performs at. However, we are certain that the structure of the
Secure Channel Message Queue is the culprit, as it fills up very fast and can not
deal with the raw traffic coming from the underlying modules that serve video.
See Figure 5.10. Additionally, the WebSocketHandler class is configured to send
strings and not binary data, which puts restrictions on the add-on as a whole.

6.2.3 Hole-Punching Corporate Firewalls

Our solution initiates communication through already established connections,
which is not the preferred solution. Instead, the actual Axis TTP solution service
should be reconfigured to handle the requests sent by WSH and Secure Channel
modules respectively, alternatively, the Secure Channel should send the exact same
requests as the original Camera Client, mimicking it. Apart from that, the hole-
punching qualities of the solution remain intact, since connections are issued from
the device’s net.

6.2.4 MAC

MAC addressing works like the cloud service proxy-CC solution. The cloud service
does not address clients using IPs, since they may have several cameras connected
to a cloud service proxy on several local networks identifying themselves with the
same IP. Instead, they know the (unique) MACs, and use them to send on a specific
socket. We opted to store IPs and MACs, meaning you can address clients using
both. This introduces problems when more than one device has the same IP. In
the cloud service proxy, no IP addressing is possible. This should be remedied in
our solution as it is not meant to be supported.

Discussion 55

6.2.5 RTSP

RTSP requires a TCP connection to send commands such as play, pause, etc., And
uses UDP to transmit the actual data. This data can be sent in a WebSocket, which
as stated before works on the transport layer, and as such has no knowledge of
application layer protocols. Two methods for enabling RTSP is implementing it
in the add-on and in the WSH or using pre-programmed libraries for this. This,
however, requires more time than what was available for this project and did not
add specific value to our proof-of-concept.

6.3 Deficits in the Current Solution

6.3.1 The Use of Cryptographically Broken Algorithms on Older Models

The issue with cryptographically broken algorithms used for older firmware ver-
sions is hard to solve. Creating a backward compatible solution involves not chang-
ing the cloud service proxy-CC connection, and add-ons such as Secure Channel
are only supported in newer firmware. The easiest way to ensure no cameras use
cryptographically insecure algorithms such as RC4, is to keep them upgraded. This
is also one of the main points in Chapter 4 - application or network security is not
stronger than its weakest link, and keeping old software connected to the internet
is an inherent security risk. Particularly because of the need for supporting older
cryptos across the systems.

6.3.2 SNI

This is a feature that is best supported at an SSL termination layer or some other
load balancing server in front of the actual WSH. The issue is partly one of econ-
omy, since buying additional IPv4 addresses is costly, especially when considering
that the solution should be able to scale. Using virtual addresses behind a load
balancer and using TLS with SNI, the devices are able to connect to a predefined
load balancer that keeps track of what underlying WSH it should connect with.
The principle is illustrated in Figure 5.12.

6.3.3 Alarm Signals Being Blockable

We present a solution to the problem of alarm signals being blockable. By sending
them to the internal Apache web server instead of via a separate connection to a
pre-defined load balancer IP, we can receive the requests on our CGI and send it
via the WebSocket to a recipient in the cloud.

6.3.4 Two-Way Communication

Two-way communication was also a request from Axis to have implemented. The
solution shows that this indeed works. This means that the camera can initiate
connections to push data into the cloud. This has security concerns which mer-
its investigation, since before, only solicited communication was possible. Now,
devices may spontaneously send all types of data. Security measures should be

56 Discussion

enacted to make sure connected devices only send legitimate data. Additionally,
in the old solution, new TCP connections would be established and torn down for
every request made through the could service proxy, but in our situation, this is
not the case.

6.4 Evaluation of Secure Channel

SCa, which we used as a starting point, has been scrapped in favor of a new client
written in another programming language. The new application does everything
SCa did, but with support for older cameras as well. Thus, it was decided to only
continue development on the new add-on. As such, the development of our module
is likely to cease in favor of the new one. However, the new solution looks very
promising, and although ours is likely to be scrapped, maybe it can be seen as an
example of how not to proceed. The main positive outcome is that of eliminating
ActionEngine not communicating via the established cloud-client communication.
We showed that this is easily remedied by rerouting the traffic to a local CGI that
can send it via the link to the cloud service. The data traffic throughput was
lacking, however it provides very good security using encrypted communication
and mutual authentication.

6.4.1 Consistency

Our Secure Channel implementation had the goal of replacing the existing com-
munication solution. Thus, the WebSocket Hub had to parse the JSON data,
decode the Base64 strings and apply HTTP headers to the package, as well as
determining who the original requestor was. As the WSH sits between the two,
it had to handle stripping HTTP headers as the receiver and add HTTP headers
as the sender. This put unnecessary work on the WSH, and our opinion is that
the best approach would be to pipe the raw data coming in from the device to
the requestor without having to interpret it. Several factors hindered this, such as
sending data unsolicited being a novel situation, the design of SCa, and more.

6.5 Discussion of Model Application and Further Enhancing
Security

As seen in Figure 5.11, the cloud service is lacking security in a couple of areas.
While the service agreements, networks security and identity & access management
criterion are more or less met at must have level, the handling of data, application
security and portability areas are lacking. Data at rest is not encrypted, insecure
cryptographic algorithms are still used in order to support older cameras, data
in transit inside the system is unencrypted as well as backups. However, if Axis
considers that there is no need for them to encrypt their data at rest, and their
customers are aware of this, the model might be slightly misleading. The same
goes for the escrowing and maintaining of encryption keys for data at rest, if there
is no need to encrypt it, why escrow and maintain keys at all? Making sure that

Discussion 57

the decommissioning of data is irreversible seems unnecessary when the data is
not encrypted in the first place.

By having a layered security model the need for internal encryption is not
as crucial, especially since the data does not need to be encrypted. The lack
of encryption on backups is however worrying and should be remedied. As for
identity and access management, SSO is partially implemented in the system, i.e.
only for the CSP services, and the traceability of which user has done what is
insufficient. The IAM system used internally would need to be modified and/or
extended in order to ensure proper traceability in the system. The adoption of a
Secure SDLC (SSDLC) is in progress, it is however not fully incorporated, and as
such should be considered an area for improvement.

To further enhance the security of the cloud service, the most essential areas
to focus on would be to fully adopt an SSDLC and implementing load balancing
for the camera connections. Phasing out older cameras is also important in order
to strengthen the security of the system even more, especially since without the
need to support older cameras, cryptographically insecure algorithms would not
be used.

58 Discussion

Chapter 7
Conclusion

Our proof-of-concept solution did not manage to provide a way to solve all the
identified deficits of the current system. It did, however, give insight into how a
more sophisticated solution could be designed. It highlights critical areas that need
to be considered and will hopefully aid developers in designing and implementing
the new solution.

When we applied our model onto the Axis-hosted cloud service, it gave us
the valuable insight that despite being an established SaaS vendor, some of the
considerations in the model might not always apply. E.g. the need for encrypting
your data at rest can be considered optional if it is not required by the SaaS
vendor’s customers. Furthermore, we believe that our best practice model derived
in Chapter 4 is a viable tool for not only evaluating the security of a solution but
also serve as guidance for applications moving to/being built in the cloud. We
would also like to point out that the model is not intended to guarantee all best-
practices apply for every type of SaaS. Depending on the needs and requirements of
customers of the SaaS, some of the considerations in the model could be optional.

59

60 Conclusion

References

[1] P. Mell, T. Grance, The NIST Definition of Cloud Comput-
ing (2011), http://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf, accessed on 2017-01-10.

[2] Cisco, Cisco Global Cloud Index: Forecast and Methodology, 2015–2020
(2016), http://www.cisco.com/c/dam/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paper-c11-738085.
pdf, accessed on 2016-12-08.

[3] G. Kulkarni, N. Chavan, R. Chandorkar, R. Waghmare R. Palwe,
Cloud Security Challenges (2012), https://www.researchgate.net/
profile/Gurudatt_Kulkarni/publication/239732061_Cloud_Security_
Challenges/links/0046351c283daf1730000000.pdf, accessed on 2016-11-
25.

[4] P. Samarati, S.d.C di Vimercati, Cloud Security: Issues and
Concerns (2016), https://pdfs.semanticscholar.org/b8e7/
966baaa39c12e2fc5e6463321921dbfc31fe.pdf, accessed on 2016-12-10

[5] R. M. Jabir, S.I.R Khanji, L. A. Ahmad, O. Alfandi, H. Said., Analysis of
Cloud Computing Attacks and Countermeasures (2016), 18th International
Conference on Advanced Communication Technology (ICACT), accessed on
2017-03-22.

[6] N. Gruschka, M. Jensen, Attack Surfaces: A Taxonomy for Attacks on Cloud
Services (2010), IEEE 3rd International Conference on Cloud Computing,
pp. 276-279. Retrieved from IEEE Xplore on 2017-03-22.

[7] Hacker Intelligence Initiative, Man in the Cloud (MITC) Attacks, https://
www.imperva.com/docs/HII_Man_In_The_Cloud_Attacks.pdf, accessed on
2017-03-21.

[8] C. Mainka, V. Mladenov, F. Feldmann, J. Krautwald, J. Schwenk. Your Soft-
ware At My Service (2014), CCSW ’14 Proceedings of the 6th edition of the
ACM Workshop on Cloud Computing Security, pp 93-104.

[9] Y.Zhang, A. Juels, M.K. Reiter, T. Ristenpart, Side Channel attack on PaaS
clouds (2014), Clo, accessed on 2017-03-22.

61

62 References

[10] axis.com About Axis, https://www.axis.com/global/en/about-axis, ac-
cessed on 2017-02-28.

[11] R. L. Krutz, R. D. Vines, Cloud security: A Comprehensive Guide to Secure
Cloud Computing (2010)

[12] T.Mather, S.Kumaraswamy, S.Latif, Cloud Security and Privacy, http://
www.di.fc.ul.pt/~nuno/PAPERS/security3.pdf, accessed on 2017-03-09.

[13] D. Zissis, D. Lekkas Addressing cloud computing security is-
sues (2010), http://www.cs.joensuu.fi/~parkkine/LuK2015/
CloudCompSecurity-FutureGenerCompSyst2012.pdf, accessed on 2016-12-
13.

[14] ISO 27000, ISO 27000, 4th Ed., http://www.27000.org/

[15] Microsoft Azure, What is cloud computing, https://azure.microsoft.com/
en-us/overview/what-is-cloud-computing/, accessed on 2017-03-01.

[16] Cloud Security Alliance, About Cloud Security Alliance, https://
cloudsecurityalliance.org/about/, accessed on 2017-03-17.

[17] IETF, IETF TLS https://www.ietf.org/rfc/rfc5246.txt, accessed on
2016-11-23.

[18] IETF, RFC4158 https://tools.ietf.org/html/rfc4158#section-1.5.1,
accessed on 2017-03-06.

[19] T. Capan, Why use Node.js?https://www.toptal.com/nodejs/
why-the-hell-would-i-use-node-js, accessed on 2017-03-23.

[20] Stack Overflow, How to decide when to use Node.js, http://stackoverflow.
com/questions/5062614/how-to-decide-when-to-use-node-js, accessed
on 2017-03-23.

[21] Synergy Research Group, Cloud Market Leadership
Q4 2016, https://www.srgresearch.com/articles/
amazon-dominates-public-iaas-paas-ibm-leads-managed-private-cloud,
accessed on 2017-03-23.

[22] Badger, L., Grance, T., Patt-Corner, R., Voas, J. Cloud Computing Syn-
opsis and Recommendations (NIST), (2012) http://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800-146.pdf, accessed on
2017-03-14.

[23] Cloud Security Alliance, Security Guidelines for Critical Areas of Focus in
Cloud Computing (2011) , https://downloads.cloudsecurityalliance.
org/assets/research/security-guidance/csaguide.v3.0.pdf, accessed
on 2017-03-08

[24] Amazon AWS, Service Level Agreement, https://aws.amazon.com/ec2/
sla/, accessed on 2017-03-23.

[25] Microsoft Azure, SLA for Virtual Machines, https://azure.microsoft.
com/en-us/support/legal/sla/virtual-machines/v1_5/, accessed on
2017-03-23.

References 63

[26] IBM Bluemix, Service Description, http://www-03.ibm.com/software/
sla/sladb.nsf/pdf/6605-06/$file/i126-6605-06_12-2015_en_US.pdf,
accessed on 2017-03-23.

[27] R. Pradnesh, Securing SaaS applications (2010), http://www.
infosectoday.com/Articles/Securing_SaaS_Applications.htm, ac-
cessed on 2017-03-09.

[28] Amazon Web Services, AWS Security Best Practices (2016) https:
//d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_
Practices.pdf

[29] Microsoft Azure, Data Classification for Cloud Readi-
ness, http://download.microsoft.com/download/
0/A/3/0A3BE969-85C5-4DD2-83B6-366AA71D1FE3/
Data-Classification-for-Cloud-Readiness.pdf, accessed on 2017-
03-17.

[30] IBM developerWorks, Gain confidence about data security in the cloud,
https://www.ibm.com/developerworks/data/library/techarticle/
dm-1408datasecuritycloud/index.html, accessed on 2017-03-17.

[31] AWS, Identity and Access Management, http://docs.aws.amazon.com/
IAM/latest/UserGuide/best-practices.html, accessed on 2017-03-17.

[32] Microsoft Azure, Azure Identity Management and access control security
best practices, https://docs.microsoft.com/en-us/azure/security/
azure-security-identity-management-best-practices, accessed on
2017-03-23.

[33] IBM Bluemix, Best Practices, https://knowledgelayer.softlayer.com/
articles/best-practices, accessed on 2017-03-13.

[34] IBM developerWorks, Securing workloads on IBM Cloud: Iden-
tity and access management, https://developer.ibm.com/
cloudarchitecture/docs/security/securing-workloads-ibm-cloud/
identity-access-management/, accessed on 2017-03-23.

[35] Shinder, W. T., Lussier, C., Security Considerations For In-
frastructure as a Service (IaaS) (2014), https://social.
technet.microsoft.com/wiki/contents/articles/3808.
security-considerations-for-infrastructure-as-a-service-iaas.
aspx, accessed on 2017-03-14.

[36] Microsoft Azure, Azure Data Security and Encryption Best Prac-
tices, https://docs.microsoft.com/en-us/azure/security/
azure-security-data-encryption-best-practices, accessed on 2017-03-
16.

[37] IBM developerWorks, Securing workloads on IBM Cloud: Data secu-
rity, https://developer.ibm.com/cloudarchitecture/docs/security/
securing-workloads-ibm-cloud/data/, accessed on 2017-03-17.

64 References

[38] Open Web Application Security Project, Open Web Application Se-
curity Project, https://www.owasp.org/index.php/Category:OWASP_Top_
Ten_Project, accessed on 2017-03-15.

[39] Open Web Application Security Project, OWASP Project Top 10, https:
//www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf, accessed on
2017-03-10.

[40] Microsoft Azure, Secure an App in Azure App Service, https://docs.
microsoft.com/en-us/azure/app-service-web/web-sites-security,
accessed on 2017-03-16.

[41] IBM developerWorks, IBM AppScan, https://www.ibm.com/
developerworks/library/se-owasp-top10/, accessed on 2017-03-17.

[42] AWS, Security Guidance for AMI Developers, https://aws.amazon.com/
marketplace/help/200897460, accessed on 2017-03-17.

[43] Microsoft Azure, Security Best Practices for IaaS workloads in Azure, https:
//docs.microsoft.com/en-us/azure/security/azure-security-iaas,
accessed on 2017-03-27.

[44] Center for Internet Security, Hardened Virtual Images, https://
benchmarks.cisecurity.org/hardened-virtual-images/, accessed on
2017-03-27.

[45] Microsoft Azure, Azure Network Security Best Prac-
tices, https://docs.microsoft.com/en-us/azure/security/
azure-security-network-security-best-practices, accessed on 2017-
03-14.

[46] Amazon Web Services, AWS KMS cryptography, https://d0.awsstatic.
com/whitepapers/KMS-Cryptographic-Details.pdf, accessed on 2017-03-
13.

[47] Amazon Web Services, Denial of Service Attack Mitiga-
tion on AWS, https://aws.amazon.com/answers/networking/
aws-ddos-attack-mitigation/, accessed on 2017-03-14.

[48] Amazon Web Services, Auto Scaling https://aws.amazon.com/
autoscaling, accessed on 2017-03-13.

[49] IBM Bluemix, Bare Metal Server https://console.ng.bluemix.net/
catalog/infrastructure/monthly_bare_metal/, accessed on 2017-03-13.

[50] Microsoft Azure, Autoscale, https://docs.microsoft.com/en-gb/azure/
monitoring-and-diagnostics/monitoring-overview-autoscale, ac-
cessed on 2017-03-13.

[51] IETF, Upgrading to TLS Within HTTP/1.1, (2000), https://tools.ietf.
org/html/rfc2817, accessed on 2016-11-23.

[52] JSON, JSON,http://www.json.org/, accessed on 2017-03-28

[53] Base64, Base64, https://tools.ietf.org/html/rfc4648, accessed on
2017-03-28

