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Abstract

Imputation of data is the process of filling in missing values in an incomplete data set. Missing data
is a common problem in many fields, not least in clinical research. This report aims to evaluate dif-
ferent methods for imputing missing data in health records of dialysis patients. The imputed data
will, in a related project, be used to predict hospitalizations of dialysis patients. The hope is that an
imputed data set will give a higher hit rate when predicting the hospitalizations of those patients.
Seven di↵erent imputation methods, with varying complexity, were considered and compared to the
presently used imputation method, which was to simply use the latest observed value as imputed
value. The methods were evaluated according to their performance compared to a validation data
set, as well as if improvement in prediction of hospitalizations were seen. We found that methods
built on within-variable dependencies performed better than methods built on between-variable
dependencies. Specifically, time series models using a Kalman filter gave the best results. Also, an
improvement in the prediction algorithm could be seen when using more sophisticated imputation
methods compared to using the presently used imputation method. When increasing the amount
of missing data we still managed to obtain good results in contrast to the present method. All data
analyzed in this project was from dialysis patients su↵ering from end stage renal disease.

Keywords: Imputation, Dialysis, Missing data
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Populärvetenskaplig
sammanfattning -
Imputationsmetoder för dialysdata

Vid de flesta processer som innefattar insamlande av data kan det ibland uppst̊a problem som gör
att all data inte samlas in korrekt. När detta händer uppst̊ar det tomma platser i datan där värden
saknas. Det finns m̊anga sätt att hantera dessa tomma platser och i m̊anga fall kan man bortse
fr̊an dem. Om ett komplett dataset behövs för analys kan s̊a kallade imputationsmetoder användas
för att fylla i de tomma platserna med rimliga värden. I den här rapporten har olika s̊adana impu-
tationsmetoder implementerats, testats och utvärderats p̊a data fr̊an dialyspatienter.

Med ökande välfärd och tillg̊ang till medicin i världens mest avlägsna hörn har infektionssjuk-
domar f̊att se sig besegrade. Nu för tiden är det istället kroniska sjukdomar som är den största
dödsorsaken världen över. D̊a kroniska sjukdomar inte g̊ar att bota med medicin läggs istället my-
cket forskning och resurser p̊a att försöka förhindra att människor drabbas av dessa sjukdomar. Vi
vet alla att man ska äta rätt, träna rätt och sova rätt för att leva s̊a bra som möjligt. Det är dock
lättare sagt än gjort och s̊a småningom drabbas de flesta änd̊a av en kronisk sjukdom inför dödens
bädd. Till exempel kan njurarna lägga av och du kan tvingas leva uppkopplad till en dialysmaskin
resten av dina kvarvarande år. För att spä p̊a eländet ännu mer händer det ofta att dialyspatienter
insjuknar i akuta sjukdomar och tvingas bli inlagda p̊a sjukhus. S̊a vore det inte skönt att i denna
misär med tidsödande behandlingar flera g̊anger i veckan, strikta matscheman för att inte f̊a i sig
för mycket socker eller vätska och oförmågan att ens kunna kissa längre, i alla fall slippa att bli
inlagd p̊a sjukhus? Det är precis det som Lytics Health AB vill kunna undvika. De har utvecklat
en algoritm som med hjälp av dialyspatientens data kan förutsäga om hen kommer bli inlagd p̊a
sjukhus inom de närmsta 30 dagarna och p̊a s̊a vis kunna sätta in åtgärder i tid för att förhindra det.
Det finns dock ett problem och det är att algoritmen inte fungerar om datakvaliteten är för d̊alig.
Till exempel om datan inneh̊aller massa tomma platser där värden saknas. Det är där v̊art exa-
mensarbete kommer in i leken. Målet med detta arbete är allts̊a att utveckla imputationsmetoder
för att fylla i dessa saknade värden.

Det finns många sätt att angripa detta problem med saknad data. Det lättaste, vilket ocks̊a
används som imputationsmetod i dagsläget, kan vara att helt enkelt använda ett tidigare värde och
fylla i där det fattas. Denna metod är dock ganska d̊alig och missvisande för variabler som ändrar
sig mycket fr̊an behandling till behandling, som till exempel patientens puls. Vad vi har undersökt
är om mer avancerade algoritmer, som använder sig av information fr̊an större del av datan, kan ge
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ett bättre resultat. Tidsserie-modeller, maskininlärnings-modeller och linjära modeller har testats
med varierande resultat. Utvärderingen skedde dels genom att jämföra hur nära algoritmerna
kunde imputera saknade värden i ett givet dataset och dels genom att se om prediktionerna p̊a
dialyspatienter blev bättre.

Slutsatsen av arbetet är att man ganska lätt kan öka kvaliteten av datan genom att använda
sig av imputationsmetoder. Vi ser en liten förbättring i resultatet för prediktionen när vi använder
oss av imputationsmetoder. Med större mängd saknad data och fler imputerade variabler hade
troligtvis skillnaden blivit större. I framtiden tror vi absolut att användandet av mer sofistikerade
imputationsmetoder kommer att växa d̊a värdet av högkvalitativ data ständigt ökar. Det bästa
vore dock att angripa roten till problemet och minska mängden saknad data vid datainsamling.
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Chapter 1

Introduction

Chronic diseases are the leading causes of death worldwide, with cancer and cardiovascular diseases
(CVD) as the main reasons [1]. While chronic kidney disease (CKD) is not in itself one of the main
causes of death, it is very common in people with CVD and it has been shown that CKD multiplies
the risk for adverse outcomes in these conditions [1]. Chronic kidney disease is a family of diseases
that are di�cult and expensive to treat, and often no cure exists other than to regularly undergo
dialysis or to get a kidney transplant. According to the National Kidney Foundation [2], 10% of
the world’s adult population is a↵ected by chronic kidney disease and over 2 million people receive
continuous treatments with dialysis. This is, however, only about a tenth of the number of people
who are in need of dialysis to survive [2]. This lack of treatment for people is mainly due to the cost
of dialysis and that it requires both a lot of sta↵ and also a lot of space to be carried out properly.
Another problem is that dialysis patients often tend to catch other diseases and sometimes become
acutely ill. When this happens the patients have to be hospitalized for an unknown period of time
which is both exhausting and possibly fatal for the patient as well as expensive and obstructive
for the hospital. Consequently, to be able to predict whether or not a dialysis patient will be hos-
pitalized in the near future would save lives, money, and give more people the opportunity to be
treated. Hence this is an important step in modernizing today’s treatments.

Missing data is a common problem in clinical research. For example, in clinical studies where
patients are followed over time, patients may drop out of the study or not attend every scheduled
clinic visit, giving rise to missing data on relevant measurements [3]. If a complete data set is needed
for analysis, so called imputation methods can be used on the data containing missing values. Im-
putation of data is the process of filling in missing values in a data structure containing such. The
aim of this project was to investigate and implement an imputation method which could fill in the
gaps where data was missing in records of dialysis patients, preferably outperforming the method
used today. Ultimately, this reconstructed data was supposed to be used, in another project, to
predict the likelihood of a dialysis patient to be hospitalized in the near future. Thus the focus in
this report will be concentrated on the construction and evaluation of imputation methods, not on
constructing prediction models. However, we will evaluate our results both by how well the missing
values are imputed and by how much the predictions improved with imputed data compared to
non-imputed data.
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The field of missing data is vast but nevertheless imputation is often neglected in scientific studies.
There are a few standard methods to handle missing data which we name here. First, prevention
of missing data is the most direct attack on reducing the amount of missing data. A lot of advice,
examples, and preventive measures can be found in books on research methodology and data qual-
ity. Some examples are Shadish et al. [4], De Leeuw et al. [5], Dillman et al. [6], and Groves et
al. [7]. Second, likelihood based approaches are widely used. A model for the data at hand has to be
specified, then, the parameters of the model are estimated by maximum likelihood, the expectation
maximization algorithm, the sweep operator or similar estimation techniques. Two good books are
Little and Rubin [8] and Schafer [9]. Third, multiple imputation is an extension of the likelihood
based approach were multiple data sets are imputed. It adds an extra step where the imputed data
values are drawn and is considered the standard to which new methods are evaluated against. A
good book explaining the concepts of multiple imputation is written by Van Buuren [10], a more
in-depth book is written by Rubin [11].

There are many approaches of how to best impute values and the problem has been approached
in numerous cases of medical data studies. To name a few, Shara et al. [12] made a study concerning
imputation methods for missing renal function data and both Montez-Rath et al. [13] and Moniek
et al. [14] used multiple imputation methods for imputing values in studies regarding kidney dis-
eases and dialysis patients, respectively. The results are often quite good, hence the objective to
be dealt with should be possible to overcome. However, the problem can be addressed in a variety
of di↵erent ways and there exists no rule of thumb of which method to choose. What separates our
work with previous ones is that we, apart from investigating classical imputation methods such as
likelihood-based imputation and multiple imputation, also look more into both time series models
and machine learning algorithms and compare their results.
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Chapter 2

Background

We begin this chapter by introducing and defining Chronic kidney disease and End-stage renal
disease. All patients from which data is collected, su↵er from End-stage renal disease. Thereafter
we discuss di↵erent types of missing data and how the di↵erent missing data mechanisms a↵ect
the imputation procedure. We continue by describing the data at hand in terms of distributions
and missingness pattern as well as some important metrics to understand how the variables are
connected. We end the chapter by describing the three data sets original data, validation data, and
synthetic data.

2.1 Nephropaty

The kidney is a structurally complex organ with many important functions. It is responsible for
the excretion of waste products from the metabolism, maintenance of appropriate acid balance,
regulation of body water and salt, and secretion of a variety of hormones. Nephropaty is an
umbrella term used to denote disease or damage to the kidney.

2.1.1 Chronic kidney disease and End-stage renal disease

Chronic kidney disease (CKD) is a gradual impairment in kidney function. It can be divided into
five stages with increasing severity, described in Table 2.1 [15]. The two main causes of the disease
are declining kidney function with age and lowered kidney function due to other diseases [16]. Thus,
elderly patients with e.g. diabetes mellitus are particularly vulnerable.

To classify the functionality of the kidney, the glomerular filtration rate (GFR) is calculated.
GFR is a measure of how much fluid the kidney can filter per minute, or more specifically, how
much volume of fluid filtered from the renal glomerular capillaries into the Bowman’s capsule per
unit time [17], see Figure 2.1.

End-stage renal disease (ESRD) is defined as an irreversible decline in a person’s kidney function
[18]. It is the fifth and most severe stage of chronic kidney disease and patients that su↵er from
ESRD are in desperate need of dialysis or a kidney transplantation to survive. All data analyzed
in this project was from patients su↵ering from ESRD.
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Stage Qualitative Description Renal Function (ml/min/1.73m2)
1 Normal GFR � 90
2 Mild decay in GFR 60-89
3 Moderate decay in GFR 30-59
4 Severe decay in GFR 15-29
5 End-stage renal disease 15

Table 2.1: The five stages of Chronic Kidney Disease.

Figure 2.1: The basic renal process in a nephron. (1) Fluid and solutes are filtered through the
Glomerular capillaries to Bowman’s capsule. (2) Some of the filtered substances are reabsorbed by
moving out of the renal tubule and into the peritubular capillaries. (3) Unfiltered substances from
the peritubular capillaries are moved to the renal tubule where it is then excreted. Image from
Essentials of Human Physiology for Pharmacy [17, Chapter 19].

2.1.2 Dialysis

When the renal function is below a certain filtration rate, the kidneys cannot remove waste products
and excess water from the blood fast enough to keep a person healthy. To be able to survive this
condition one can either get a kidney transplant or go on regular dialysis treatments. None of the
alternatives are optimal and both, inevitably, bring complications which forces a change of lifestyle.

A dialysis treatment is typically carried out every second or third day for around four hours a
time. This is due to the excess fluid, salt, and waste products a person with low kidney function
accumulate each day. The dialysis process is time consuming due to the fact that the excess fluid
stored in the cells di↵use from the cell to the blood vessels. This process is governed by the internal
di↵usion constant between di↵erent tissues and cannot be a↵ected [19].

Since dialysis is carried out frequently and on a regular basis it is easy to keep track of the
progress of the patient’s situation. Many parameters are recorded and monitored during each

10



treatment and hence a vast amount of data can be collected for analysis. There is, however, often
some inconsistency in the quality of the data and sometimes all measurements are not carried out,
leaving the data with gaps of missing data, which will be discussed further on.

2.2 Missing data

There are several reasons to why data can be missing in a data set containing medical data. For
example age is a variable that influences the rate of missing observations. The elderly may expe-
rience di�culty getting to the treatment site or may move to retirement homes or hospices, thus
missing examinations [12]. The most likely reason for data from dialysis patients to be missing is
arguably that the nurses sometimes forget to record all variables and/or that the machine fails to
collect all data [14]. Also, various complications may arise making it impossible to carry out all
measurements.

When a data analyst is presented with a data set containing missing values there are multiple
ways to handle the abnormality. Many factors have to be considered before taking action and one
has to ponder over the quality of the data; e.g. how much data is missing and connections between
variables, to name a couple. To handle the missingness of the data, an easy, and sometimes quite
good, action is to just ignore all measurements taken during the same time as the missing value
occurs, called complete case analysis. This however, often comes at the price of loosing valuable
information about the patient. Especially, if the amount of missing data is large, complete case
analysis is a bad idea.

A much better method would be to try to estimate the values of the missing variables by using
the information of the existing variables. This would yield a reconstructed data set with more
plausible values, which in turn could be used for further analysis. In this thesis, di↵erent such
imputation methods are discussed and evaluated on data from dialysis patients.

The underlying mechanism of the missing data points is of interest when performing imputation
of missing data. We illustrate this by giving an example: assume that the blood pressure is measured
less frequently when a patient has low blood pressure. We are interested in using the data to predict
whether or not the patient will fall ill - with hypotonia as an indicator - and if the rows containing
missing values simply are removed, we would loose important information which otherwise could
have been used to tell if the patient will fall ill or not. This example strongly encourage the use of
imputation methods to complete data sets on which further analysis will be of interest. The example
also suggests that data may be missing in di↵erent ways, a↵ecting which imputation method is best
to use. We continue by discussing di↵erent types of missing data mechanisms.

2.2.1 Types of missing data

In this section we provide a more solid ground for the mechanisms that leads to missing data, as
well as defining the three types of missingness: missing completely at random (MCAR), missing at
random (MAR), and not missing at random (NMAR) [11]. The best imputation method to use is
strongly a↵ected by what class the missing data belongs to.

We begin by defining the entire data set Y = (y
ij

) and the indicator matrix R = (r
ij

) with
binary entries (0, 1), where r

ij

= 0 if y
ij

is missing and r

ij

= 1 if y
ij

is observed. If r
ij

= 1 then
y

ij

2 Y

obs

and if r
ij

= 0 then y

ij

2 Y

mis

. The distribution of R may depend on Y = (Y
obs

, Y

mis

),
called the missing data mechanism (MDM) which is described by the missing data model. Let
 contain the generally unknown parameters of the missing data model, we can then form the
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posterior distribution of R as P (R | Y
obs

, Y

mis

, ). If the missingness does not depend on the values
of Y , that is if

P (R = 0 | Y
obs

, Y

mis

, ) = P (R = 0 |  )

holds, then the data is said to be MCAR. To assume data to be MCAR is a restrictive assumption,
and usually unrealistic. A less restrictive assumption is that the missingness only depends on the
observed part of the data Y

obs

, that is if

P (R = 0 | Y
obs

, Y

mis

, ) = P (R = 0 | Y
obs

, )

holds, then the data is said to be MAR. If the probability to be missing also depends on Y

mis

, that
is if

P (R = 0 | Y
obs

, Y

mis

, )

does not simplify, the data is said to be NMAR.

2.2.2 Ignoring the missing data mechanism

An important question to answer when imputations are made is if the missing data and observed
data come from the same distribution. If that is the case we can simplify our model of the missing
data and build the model solely on observed data. The observed data consists of Y

obs

and R with
the joint density function f(Y

obs

, R | ✓, ) depending on parameters ✓ for the entire data Y , which
we are interested in estimating; and parameters  for the indicator R, which is seldom of interest.
Since we are not interested in  we would like to know when we can estimate ✓ without knowing  .
To answer the question we start by defining the probability density function of the joint distribution
of Y

obs

and Y

mis

as f(Y | ✓) ⌘ f(Y
obs

, Y

mis

| ✓). We can compute the marginal probability density
of Y

obs

by integrating out the missing data as

f(Y
obs

| ✓) =
Z

f(Y
obs

, Y

mis

| ✓)dY
mis

and the likelihood of ✓ based on Y

obs

ignoring the missing data mechanism as

L

ign

(✓ | Y
obs

) / f(Y
obs

| ✓). (2.1)

From which we can obtain maximum likelihood (ML) estimates of ✓ by maximizing over ✓ provided
that the missing data mechanism can be ignored. To build a more general model we include R into
the model and specify the joint density distribution of Y and R as

f(Y,R | ✓, ) = f(Y | ✓)f(R | Y, ),

with ✓ and  defined as before. Once again we can find the distribution of the observed data by
integrating Y

mis

out of the joint density as,
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f(Y
obs

, R | ✓, ) =
Z

f(Y
obs

, Y

mis

| ✓)f(R | Y
obs

, Y

mis

, )dY
mis

(2.2)

and the likelihood of ✓ and  based on Y

obs

and R including the missing data mechanism as

L

full

(✓, | Y
obs

, R) / f(Y
obs

, R | ✓, ). (2.3)

If we can determine when to base inference for ✓ on Equation 2.1 instead of on Equation 2.3 we
have also answered the question when the missing data mechanism is ignorable. We observe that
if the distribution of the missing data mechanism does not depend on the missing values Y

mis

, we
can write

f(R | Y
obs

, Y

mis

, ) = f(R | Y
obs

, ), 8 Y

mis

, (2.4)

then we can rewrite Equation 2.2 as

f(Y
obs

, R | ✓, ) = f(R | Y
obs

, )

Z
f(Y

obs

, Y

mis

| ✓)dY
mis

= f(R | Y
obs

, )f(Y
obs

| ✓). (2.5)

As discussed in Section 2.2.1 the missing data are called MAR when Equation 2.4 holds (Rubin, [11]).
From Little and Rubin [8] we get the following definition:

The missing data mechanism is ignorable for likelihood inference if:

1. MAR: the missing data are missing at random; and

2. Distinctness: the parameters ✓ and  are distinct, in the sense that the joint parameter space
of (✓, ) is the product of the parameter space of ✓ and the parameter space of  .

The MAR requirement is generally considered to be the more important condition and for all
practical purposes the missing data mechanism is said to be ignorable if MAR holds. We have not
discussed the second condition, distinctness, but settle the matter by re↵ering to Schafer [9], who
says ”In many situations this is intuitively reasonable, as knowing ✓ will provide little information
about  and vice-versa.”

2.2.3 Applications of ignorability

It is important to understand that the observed data consists of both observed values, Y
obs

, and the
indicator matrix, R. If we can assume ignorability and exclude R from the posterior distribution
P (Y

mis

| Y
obs

, R) we can use much simpler models from which Y

mis

is imputed. An important
implication of the concept of ignorability is if

P (Y
mis

| Y
obs

, R) = P (Y
mis

| Y
obs

)

holds; it implies that
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P (Y | Y
obs

, R = 1) = P (Y | Y
obs

, R = 0),

meaning that the distribution of the data Y is identical for the observed data and missing data.
Hence, we can build our model for the posterior distribution P (Y | Y

obs

, R = 1) given the observed
data, i.e. an imputation model can be built using only the observed values since all the descriptive
information exists in the observed data.

2.3 Data provided

In collaboration with the Centers for Dialysis Care (CDC), Lytics Health AB has access to a vast
amount of dialysis data. The data provided for this study was in the form of a multivariate time
series, which consisted of over 2 million measurements of 92 di↵erent variables, giving a total of over
185 million data points. Out of these 92 di↵erent variables, eleven were in most need of imputation,
giving a total amount of about 22 million data points to work with. Below, the eleven variables of
interest are listed. Note the abbreviations which are used later in tables and figures.

• Average blood flow rate [ml/min] (ABFR)

• Start sitting pulse [bpm] (SSP)

• Liters processed [l] (LP)

• Time dialyzed [min] (TD)

• Fluid removed [l] (FR)

• Patient temperature at start [�C ] (PTS)

• Patient temperature at end [�C ] (PTE)

• Start sitting systolic blood pressure [mmHg] (SSSBP)

• Start sitting diastolic blood pressure [mmHg] (SSDBP)

• End sitting systolic blood pressure [mmHg] (ESSBP)

• End sitting diastolic blood pressure [mmHg] (ESDBP)

2.3.1 Data acquisition

The process of acquiring dialysis data and an example of how the data collection for one patient
might look like is shown in Figure 2.2. The image consists of three parts:

1. Many of the patients included in the data have undergone dialysis before collection of data
at CDC began, meaning that all of the patients history is not present in our data. This is
depicted in the image by the lists in the beginning of the time axis.

2. Typically the patients undergo three treatments per week which leaves the time series with
unevenly sampled gaps. That is the data analyzed in this project. This is shown in the middle
section of the image.
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3. Sometimes patients have to be hospitalized for a longer period of time due to an acute illness.
During these periods no data is collected, which leaves our data with gaps. The reason for this
is that CDC does not have access to the patients, or their data, when they are hospitalized.
This is shown by the red zone to the right in the image.

Figure 2.2: Process of acquiring data.

2.3.2 Distribution of data

It is also of interest to see how many di↵erent patients the data consists of, and how many treatments
each patient has participated in. Table 2.2 shows some basic statistics about the data and Figure
2.3 shows the distribution of sequence lengths.

Number of unique patients 5786
Mean sequence length 297
Median sequence length 186

Table 2.2: Basic data statistics.

As can be seen, the data consisted of a lot of short sequences. This was unfortunate since it is
often hard to say anything about a patient who has only just started his or her treatment. Di↵erent
imputation methods are also more or less dependent on sequence lengths to perform well.

The variables would preferably be normally distributed which many statistical models rely on.
This, however, is seldom the case when handling real data and sure enough that was not the case for
some of our variables either. Below are two histogram plots of the variables AverageBloodFlowRate
and StartSittingPulse, showing the distributions with a comparison to a normal distribution curve
fitted to the data, see Figure 2.4. As can be seen, AverageBloodFlowRate is not normally distributed,
but rather follows a multimodal Gaussian distribution. Whereas StartSittingPulse is more similar
to a Gaussian distribution. The rest of the distributions of the variables can be found in Appendix
A.
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Figure 2.3: Histogram of sequence lengths (number of treatments).

(a) (b)

Figure 2.4: Distribution of two variables, with a normal curve (green) for reference.

Here, one can clearly see that the average blood flow rate is a variable which is preset on the
dialysis machine in gaps of 50 ml/min, giving the characteristic spikes of the histogram in Figure
2.4a.

To better understand how the values are distributed in the di↵erent variables, a box plot was
created, see Figure 2.5. The bottom and top of the boxes are the first and third quartiles and the
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Figure 2.5: Box plot of variables in validation data. Normalized by dividing each variable with its
maximum value. See text for explanation.

line inside the box is the second quartile (i.e. the median). The ends of the vertical lines (whiskers)
extending from the boxes are calculated by taking 1.5 times the interquartile range (i.e. the height
of the box). The points above and below the whiskers represents outliers.

2.3.3 Missing data patterns

Missing data patterns can be classified into di↵erent types. A missing data pattern is said to be
univariate if there is only one variable containing missing data, and multivariate if there are several
variables containing missing data. The data analyzed in this project had a multivariate missing
data pattern.

In the raw data provided, about 18% of the rows had at least one value missing. We discovered
that in many of these rows all variables were missing which, to us, seemed peculiar. This specific
missingness pattern was investigated further and we found that all the occasions where the entire
row was missing was due to missed treatments. There could be many di↵erent reasons for missing a
treatment but the most frequent ones were due to hospitalizations, vacations, and personal reasons.
Unfortunately, we have no access to the measurements at the hospitals and therefore there is no
interest in imputing them. We decided to remove all the rows with missed treatments since there
was no way to validate imputations on occasions that did not occur. This yielded a data set where
about 15% of the rows had at least one missing value. However, some wanted characteristics of the

17



data were distorted, i.e. by removing 3% of the rows, the time series characteristics of the variables
are altered. On the other hand we have no access to the measurements and imputing the missing
values due to hospitalization would not be preferable. The missingness pattern of the data set with
hospitalizations removed is shown in Figure 2.6.

Figure 2.6: Left: frequency of missingness in each variable. Right: Observed missingness patterns
in the data set. At the top of the plot the least frequent occurring patterns are located, with
gradually increasing frequency towards the bottom. The last row contains only observed values
and constitutes 86% of the data. Blue: observed, Red: missing.

The most frequent missing variable is LitersProcessed and the most frequent occurring pattern
is when LitersProcessed and FluidRemoved is missing together. Also, we see that the pairs of blood
pressure variables are always missing at the same time.

2.3.4 Analyzing connections between variables

From Figure 2.6 one can tell that there are many di↵erent types of patterns in which data can be
missing. However, just knowing the missingness pattern is not enough. It is of great interest to
know when variables are missing or occurring at the same time or how the variables are correlated.
The di↵erent metrics below have all been used in some way to acquire more information about the
data and about the connections between the variables.
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Proportion of usable cases

Before deciding an appropriate approach for handling a missing value problem, it is good to get
some feeling for how each variable connects to the others. One way of doing this is to calculate
the proportion of usable cases [10]. The proportion of usable cases is a measurement of how often
variables are present (or missing) at the same time in a multivariate data set. It can be used to get
an initial implication of what kind of imputation method (if any) is suitable for the specific data.
If a variable A always is present when another variable B is missing, it seems reasonable to think
that a model using characteristics from A could be used to impute missing values in B. On the
other hand if A and B are missing simultaneously, they would probably not be good at imputing
one another. Van Buuren [10], defined the measurement as

I

jk

=

P
n

i

(1� r

ij

)r
ikP

n

i

(1� r

ij

)
, (2.6)

where r

ij

is indicating if the value at row i and column j is present or missing and r

ik

indicates
if the value at row i and column k is present or missing. Equation 2.6 can be interpreted as the
number of variable pairs (Y

j

, Y

k

) with Y

j

missing and Y

k

observed, divided by the total number of
missing cases in Y

j

; i.e. if Y
k

is always present when Y

j

is missing, then I

jk

= 1.

19



Figure 2.7: Proportion of usable cases between variables. The numbers represent how often a
variable is present while another variable is missing. A large number (blue) means that when the
variable on the Y-axis is missing, often the variable on the X-axis is present. Conversely, a small
number (red) means that when the variable on the Y-axis is missing, so is often the variable on the
X-axis. Variables in between are colored violet. The abbreviations of the variables are explained in
the beginning of this section.

From Figure 2.7 one can, for example, deduct that when the variable TimeDialyzed is missing,
so are also always the variables AverageBloodFlowRate and LitersProcessed. Therefore a model
using these two variables might be unsuitable to impute missing values for TimeDialyzed.

Correlation between variables

Correlation is a measure of the statistical relationship between two variables. It can give a hint
on what methods to use for imputation, i.e. if variables have high correlation between each other
it might be suitable to use models that exploit information between variables. Here the Pearson
product-moment correlation coe�cient has been used as a measure. It is derived by dividing the
covariance of two variables by the product of their standard deviation,

⇢

Y1,Y2 =
C[Y1, Y2]

�

Y1�Y2

, (2.7)
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where C is the covariance between the variables and � is the standard deviation of each variable. The
correlation coe�cient approaches 1 or -1 in the case of a perfect linear relationship. Values closer
to zero indicate that the relationship between the two variables is low, i.e. no linear relationship.
Figure 2.8 shows the correlation between all eleven variables. As can be seen there is mostly low
correlation, but for the blood pressure variables.

Figure 2.8: Correlation between variables. The numbers represent correlation between two variables.
A large number (blue, ⇢ � 0.75) means that the correlation is high. Conversely a small number
(red, ⇢  0.25) means that the correlation is low. Variables in between are colored violet.

Autocorrelation

For a time series it is also relevant to look for correlation within each variable, namely autocorrela-
tion. If values in a variable have strong connections to previous values, it might be more suitable to
build models which extract that information rather than use information in other variables. Figure
2.9 shows the autocorrelation for one variable, and as can be seen the correlation looks higher than
for most variables in Figure 2.8. The autocorrelation plots for all other variables can be found in
Appendix B.
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Figure 2.9: Autocorrelation of the variable AverageBloodFlowRate with 40 lags.

2.3.5 Di↵erent data sets

Before beginning to analyze and implement di↵erent imputation methods it was important to have a
few di↵erent data sets which could be used in the analysis. It was decided that three data sets would
be needed. One preprocessed version of the raw data (see Section 4.1), from now on called original
data, one data set for validation, only containing complete rows, from now on called validation
data, and one artificially destroyed data set which, after being imputed, could be compared to the
validation data, called synthetic data.

Original data

The original data was constructed by preprocessing the raw data in several di↵erent ways, see
Section 4.1. The outcome was a data set where approximately 15% of the rows of the raw data had
been removed, i.e. the data set now contained around 1.72 million rows. A full explanation of all
preprocessing steps is given in Section 4.1.

Validation data

The validation data was created by removing all rows containing missing values in the original data.
Doing so, again reduced the number of rows in the data with approximately 15%. This final data
set now contained around 1.45 million rows. This complete data set is referred to as validation data,
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even though only some of its values (i.e. the values destroyed when creating the synthetic data) will
be used for evaluation.

Synthetic data

The method of creating synthetic data to evaluate a model is widely used in di↵erent areas and
studies. The synthetic data was created by destroying the validation data according to certain
patterns of missingness. In this case it was important to obtain the same characteristics (missingness
pattern) as that of the original data since the imputation methods were to be used on that specific
data set. If an imputation method performs well on the synthetic data set which closely resembles
the original data, it is reasonable to believe that it will also perform well on the original data. The
synthetic data can be thought of as training data, since all of its non-missing values could be used
to train an imputation model. For the sake of the performance of the imputation method, however,
it could also be of interest to evaluate it on di↵erent rates of missing data. One method might be
better if 30% of the data points are missing whilst another outperforms the rest if 10% is missing.
Thus, evaluating on di↵erent data sets can be used as a robustness measure of the imputation
methods. For a more thorough explanation of the process of how synthetic data was created, see
Section 4.1.3.
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Chapter 3

Imputation Methods

In the context of statistical literature, imputation means ”filling in the data”. The filling in or
imputation can be done in a variety of di↵erent ways, with some of the methods discussed and
described here. However, the common way to handle missing values in a data set has been to delete
the rows where missing values have occurred, also know as complete case analysis. By doing so we
distort the underlying distribution of the data, and information crucial to further analysis might
be lost. To mitigate the problem, we rely on statistical analysis to infer reliable imputations.

We continue this section by establishing some mathematical notation, which will be consistent in
the rest of the report. Much of the notation has been borrowed from Schafer [9] and Van Buuren [10].
Let the entire data set (including missing values), on which imputation will be conducted, be
represented by the n⇥ p matrix Y; where n denotes the number of measurements (rows) and p the
number of variables (columns). We can partition Y as Y = (Y

j

,Y�j

) where Y
j

, the response, is
a n⇥ 1 vector of the j:th column in Y, and Y�j

is a n⇥ p� 1 matrix consisting of the remaining
columns in Y. Furthermore let Y

i,j

, i = 1, 2, . . . , n denote an individual element of Y
j

. We will
partition Y

j

into Y
j

= (Yobs

j

,Ymis

j

) where all the n

obs

observed values in Y
j

is in Yobs

j

and all
the n

mis

missing values in Y
j

is in Ymis

j

. With Y
j

defined we can partition Y�j

in the same

way, as Y�j

= (Yobs

�j

,Ymis

�j

), where the 1 ⇥ p � 1 vector Y
i,�j

is in Yobs

�j

if Y
i,j

is observed and
in Ymis

�j

if Y
i,j

is missing. Note that the values in Y
i,�j

could be observed or missing regardless

of if Y
i,�j

2 Yobs

�j

or Y
i,�j

2 Ymis

�j

, which subgroup Y
i,�j

belongs to depends only on Y

i,j

. We
have thus expressed Y

i

, the i:th row of Y as a row vector and Y
j

, the j:th column of Y as a
column vector, where each column is assumed to be an independent realization of a random vector
(Y1,Y2, . . . ,Yp

). Y is assumed to belong to a multivariate normal distribution with mean vector
µ and covariance matrix ⌃, as

Y
i

| ✓ ⇠ N (µ,⌃), i = 1, 2, . . . , n,

where ✓ = (µ,⌃) is an unknown parameter.

3.1 Näıve imputation methods

The näıve imputation methods are all easy and quick to implement and in many programming
modules, e.g. pandas in Python, these methods already exists as ways to fill in or delete missing
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values. They can be used conveniently, and if the amount of missing data is not to large, the result
can be surprisingly good.

3.1.1 Complete case analysis

In complete case analysis, also know as list-wise deletion, all measurements with missing data are
removed. This way of handling missing data is easy to understand and to execute. However, a
simple example will highlight the main problem of dealing with missing data in this way. Assume
that 10% of the data is missing, the data set consists of p = 10 variables and n = 1000 rows, and
the missing data mechanism is assumed to be MCAR. Then, in worst case, one value at each row
will be missing and we will have to delete all rows; thus leaving no data to analyze. From this
example we conclude that the method only works if a small amount of data is missing.

Another problem arising from list-wise deletion is if the data is captured in sequences and
treated as a time series. By deleting an entire row the sequential structure is ruptured making it
much harder to use time series analysis tools, e.g. identifying seasonal patterns or fit auto regressive
models. Also, complete case analysis requires the missing data to be MCAR, otherwise all statistical
inference will be biased [10].

3.1.2 Forward fill

One of the easiest ways to handle missing data is to simply use the latest recorded value of a variable
as replacement. The perks with this method is that it is very easy to implement and that each
imputed value is an actually recorded measurement. This makes the method robust and it will never
impute unrealistic values. The obvious downside with this method is that should a variable vary a
lot between measurements, the pattern would get distorted, i.e. data are kept constant over time
when it should be varying, resulting in biased results. If the previous value is an outlier the method
would also increase the distortion of the data instead of creating a more realistic data set. Forward
fill is used as a baseline method in this report and thus the mission is to beat its performance.

3.1.3 Mean substitution

Another simple and straight forward way to impute the missing values of Y
j

is to just replace them
with the mean of the observed values as

Ŷ mis

j

= E[Yobs

j

] =
1

n

obs

n

obsX

i=1

Y

obs

i,j

,

which is a convenient and easy fix. However, by conducting mean imputation we distort the
distribution in several ways. Mean imputation will underestimate the standard deviation, disturb
the relations between variables (correlations), introduce biased estimates of almost any estimate
other than the mean and bias if the data is not MCAR [10].
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3.2 Linear models

3.2.1 Regression imputation

In regression imputation we try to estimate the missing values, Ymis

j

, given all the other variables
Ymis

�j

by fitting a linear model to the observed data. If we, in a multivariate time series, have
univariate missing data, i.e. only one variable contains missing data, it implicates that all values
in Ymis

�j

is observed and we can form the well-known model

Ŷ

mis

i,j

= Ymis

i,�j

�̂ = �̂0 + �̂1Y
mis

i,1 + · · ·+ �̂

j�1Y
mis

i,j�1 + �̂

j+1Y
mis

i,j+1 + · · ·+ �̂

p

Y

mis

i,p

and in matrix notation

Ŷmis

j

= Ymis

�j

�̂.

The column vectors in Y mis

�j

are called the regressors and the elements in �̂ are called the pa-
rameters, which are least squares estimates computed from the observed data. A column of ones
of length n has been added to Y�j

to account for the mean, yielding p parameters. To find the
parameters we minimize the squared error given by the di↵erence between the observed data and
the p-dimensional line fitted to the data as

�̂ = argmin
�

kYobs

j

�Yobs

�j

�k2,

with the solution

�̂ = (Yobs

�j

>Yobs

�j

)�1Yobs

�j

>Yobs

j

.

For real data, it is unlikely that all the missing values will be on a regression line. To account
for the variability in the data more sophisticated methods are required. More theory about linear
regression and least squares in the context of imputation can be found in e.g. Little and Rubin [8],
Schafer [9], and Van Buuren [10].

3.3 Multivariate methods

In general, missing data is not restricted to only one variable and it is more natural to assume that
missing values can appear in any of the variables. Here we will introduce a few methods on how to
handle multivariate missing data.

3.3.1 k-Nearest Neighbors

The k-Nearest Neighbors (kNN) algorithm is used in many fields for classification or regression
problems, but it can also be of use in the world of missing data. It can be used both as a univariate
method by looking at the nearest neighbors in one variable, or as a multivariate method by checking
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for nearest neighbors in other variables. The latter was chosen for this task since already mean
substitution and similar univariate techniques had been tested. The methodology, as proposed by
Troyanskaya et al. [20], is as follows:

• First choose how many (k) neighbors to consider.

• Normalize all variables so that they have zero mean and a variance of 1.

• Choose one variable and one missing value to impute.

• The Euclidian distances between the rest of the values in the variable to be imputed and all
other variables are computed.

• The k variables with smallest Euclidian distances to the variable to be imputed are chosen as
neighbors.

• A weighted mean of the values from those k variables, corresponding to the same row as the
missing value, are used as imputation value.

For instance, if a study contains four variables A, B, C and D, and variable A has a missing value
at row 1. Then, first all observed values in A are compared to the corresponding observed values
in B, C and D, and the variables with smallest distances to A are regarded as nearest neighbors.
A weighted average of the values corresponding to the same row as that of the missing value in A

in the nearest neighbors, say B and C if k = 2, is then used for imputation.
The distances for one variable, in this case Y1 are calculated by using the mean squared error:

d1 =
1

n

nX

i=1

(Y
i,1 � Y

i,j

)2, j = 2 . . . p,

where d1 is a vector containing distances for variable Y1 to all other variables. Finally the k

variables with shortest distances are chosen as neighbors, called d⇤
1. The weights are then calculated

using

w1 =
1

d⇤
1

,

giving a vector with k weights. This method, however, would work poorly if introduced to missing
data patterns where many variables are missing at the same time or if it was introduced to mixed-
type data. Another downside is that if the Euclidian distances between the variables are too big,
the imputations will become bad.

3.3.2 Joint modeling and expectation maximization

In this section we explain the background to Algorithm 1 in Section 4.2.2. Joint modeling (JM)
starts from the assumption that the data can be described by a multivariate distribution. As-
suming ignorability (Section 2.2.2), imputations are created as draws from the distribution fit-
ted to the observed data. The idea is as follows. For a general missing data pattern, missing
data can occur anywhere in the data. This means, in practice, that the conditional distribution
from which imputations are drawn varies from row to row. As an example, say that the missing
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pattern of row i is r

i

= (0, 0, 1, 1), then we need to draw the imputations from the distribu-
tion P

i

(Y mis

1 Y

mis

2 |Y3, Y4,�1,2), where �1,2 represents the unknown parameters of the imputation
model. Assuming data to be multivariate normal Y ⇠ N (µ,⌃), the �-parameters are functions of
✓ = (µ,⌃) [9]. The sweep operator (described below) transforms ✓ into � and allow rapid computa-
tions for the �-parameters. The ✓-parameters are usually unknown and need to be estimated from
the observed data. The solution is to iterate imputation and parameter estimation using a general
algorithm known as data augmentation [21]. This algorithm is closely related to the expectation
maximization (EM) algorithm, developed by Dempster, Laird, and Rubin in 1977 [22]. At step t,
the algorithm draws Y

mis

and ✓ by altering the following steps:

Ŷ (t)
mis

⇠ P (Y
mis

| Y
obs

, ✓̂

(t�1)),

✓̂

(t) ⇠ P (✓ | Y
obs

, Ŷ (t)
mis

).

The first step, the imputation step, is analogous to the E-step in the EM algorithm and the second
step, the posterior step, is analogous to the M-step in the EM algorithm.

In practice, the missing values are imputed using linear regression of observed values, as discussed
in section 3.2.1. The regression parameters are obtained by using the sweep operator (sweeping)
on the augmented covariance matrix,

⌃⇤(t) =

✓
�1 µ>(t)

µ(t) ⌃(t)

◆
, (3.1)

on the rows and columns corresponding to the variables where there are observed values.
The update of ✓(t) can be carried out in two steps [9]:

(⌃(t) | Y (t)) ⇠ W�1(S(t)
, n� 1),

(µ(t) | ⌃(t)
, Y

(t)) ⇠ N (Ȳ (t)
,

⌃(t)

n

),

where (Ȳ (t)
,S(t)) is the sample mean and sample covariance matrix, respectively, of Y from the

filled in data Y (t); and W�1 is the inverted Wishart distribution [23].

The sweep operator

The sweep operator (swp) is a computationally e�cient way to find the regression coe�cients in
linear regression. It is defined for symmetric matrices as described by Rubin and Little [8]. A p⇥ p

symmetric matrix G is said to be swept on row and column k if it is replaced by another symmetric
matrix H with elements defined as

H = swp[k]G,
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where

h
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g
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g
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, j 6= k, l 6= k.

There is also an operator inverse to sweep that turns predictor variables into outcome variables,
called reverse sweep (rsw) and is defined by

H = rsw[k]G,

where

h

kk

=
�1

g

kk

,

h

jk

= h

kj

= � g

jk

g

kk

, j 6= k,

h

jl

=
g
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g
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g

kk

, j 6= k, l 6= k.

Both operators are commutative and the inverse sweep is the inverse operator to sweep; that is

rsw[k]swp[k]G = swp[k]rsw[k]G = G.

As an example, suppose we have a sample of n observations on 2 variables y1 and y2. Let G
denote the (2 + 1)⇥ (2 + 1) matrix

G =

2

4
1 ȳ1 ȳ2

ȳ1 n

�1
P

y

2
1 n

�1
P

y2y1

ȳ2 n

�1
P

y1y2 n

�1
P

y

2
2

3

5
,

where ȳ1 and ȳ2 are the sample means. We index the rows and columns 0 to 2 to let variable y1

correspond to row 1 and variable y2 correspond to row 2. Sweeping G on row and column 0 yields

⌃⇤ = swp[0]G =

2

4
�1 ȳ1 ȳ2

ȳ1 s11 s21

ȳ2 s12 s22

3

5
,

where s

jk

is the sample covariance. Note that this matrix is identical to the augmented covariance
matrix in Equation 3.1. Sweeping ⌃⇤ on row and column 1 yields the symmetric matrix

swp[0, 1]G = swp[1]⌃⇤ =

2

4
�(1 + ȳ

2
1/s11) ȳ1/s11 ȳ2 � s12ȳ1/s11

ȳ1/s11 �1/s11 s12/s11

ȳ2 � s12ȳ1/s11 s12/s11 s22 � s

2
12/s11

3

5
.
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From column 2 of the matrix we are provided with the intercept (ȳ2�s12ȳ1/s11) and the slope (�) of
the regression of Y2 on Y1 (s12/s11). Hence, by sweeping ⌃⇤ on the row and column corresponding
to y1 we have obtained the slope parameter connecting Y2 to Y1 [8]. These parameters are then
used in the imputation step of the joint modeling algorithm.

3.3.3 Fully conditional specification

In Section 3.3.2 we discussed how imputations can be made by a multivariate, often normal, model.
The central problem was to find the multivariate distribution of ✓. Fully conditional specification
(FCS) is closely related to this procedure with the main di↵erence that each variable is modeled
with a specific distribution. With FCS we want to obtain a posterior distribution of ✓ by sampling
iteratively from conditional distributions of the form

P (Y1 |Y�1, ✓1),

...

P (Y
p

|Y�p

, ✓

p

).

The parameters ✓1, . . . , ✓p are treated as specific to the respective conditional distribution and does
not have to be the product of a factorization of the true joint distribution P (Y | ✓). The t:th
iteration of the method consists of the following successive draws

✓̂

(t)
1 ⇠P (✓1 | Y obs

1 , Ŷ

(t�1)
2 , . . . , Ŷ

(t�1)
p

),

Ŷ(t)
1 ⇠P (Y1 | Y obs

1 , Ŷ

(t�1)
2 , . . . , Ŷ

(t�1)
p

, ✓̂

(t)
1 ),

...

✓̂

(t)
p

⇠P (✓
p

| Y obs

p

, Ŷ

(t)
1 , . . . , Ŷ

(t)
p�1),

Ŷ(t)
p

⇠P (Y
p

| Y obs

p

, Ŷ

(t)
1 , . . . , Ŷ

(t)
p�1, ✓̂

(t)
p

).

FCS has several important practical advantages over joint modeling. The most important being
that FCS allows for flexible multivariate models because it splits a p-dimensional problem into p one
dimensional problems. However, there are some drawbacks. (1) One has to specify a conditional
density for each variable, separately. Thus, if the number of variables is large, substantial e↵ort
might be needed to find the appropriate model for each variable. (2) FSC is often computationally
exhaustive compared to joint modeling, e.g. one cannot apply the sweep operator to increase the
speed of computation. (3) Little is known about the quality of the imputations because the joint
distribution may not exist theoretically [24]. However, simulation studies have confirmed that, in
practice, FCS generates plausible imputations; even under complex missing data patterns [24]. The
implementation of FCS will be described in Section 4.2.5 where it is used in the MICE imputation,
see Algorithm 2.
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3.4 Machine learning algorithms

Machine learning algorithms are applicable in most areas within statistics and data analysis. They
have been shown to achieve great results in many areas including pattern recognition, classification
problems and computer vision. It is therefore reasonable to suspect that they might perform well
on imputation tasks as well.

The main idea with machine learning is to construct algorithms that can learn from a subset of
the data and thereafter make predictions on the rest of the data. Once a model has been trained
it can be introduced to similar data and classify it [25]. Applying this to imputation problems, it
should be possible to train a model on observed data and then use that model to predict the values
of the missing data.

3.4.1 Decision trees

The goal of a regression tree model is to predict a target value, based on multiple input variables.
This is easiest illustrated using only two input variables as seen in Figure 3.1. The data is partitioned
into di↵erent branches depending on if conditions at the nodes are satisfied or not. Observations
satisfying the condition at each junction are assigned to the right branch, and the others to the left
branch [26]. Each junction is called a node and the terminal nodes are called the leaves of the tree,
which corresponds to the di↵erent outcome possibilities (regions). It is straight forward to follow
the threshold at each node, finally reaching a leaf that hopefully corresponds to a constant response
value close to that of the validation data.

Two important features when using decision trees for imputations are that they can handle both
continuous and categorical variables and that they are non-parametric, which make them easy to
implement without having to account for probability distributions of the variables (which can be
a daunting task if the variables does not belong to a well-known distribution). For multivariate
imputation, a univariate approach can be used fitting one model to each variable. The methodology
is as follows:

• First extract the rows of the observed and missing values of the variable to be imputed.

• Train a regressor using all values corresponding to the observed rows in all variables except
the variable to be imputed, using the observed values in the variable to be imputed as target
values.

• Predict the missing values in the variable to be imputed by using the trained model with
all values in the rest of the variables corresponding to the missing rows in the variable to be
imputed.

Since the interpretation of the trees are not vital when used for imputation, there is no need to
prune them. Also a bigger tree generally creates lower bias, which is of interest in imputations.
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Figure 3.1: Example of regression tree with two variables Y1 and Y2. The thresholds ti decide where
to split the nodes and the leaves R

i

corresponds to final outcome.

3.4.2 Random forest

Often, it is found that the performance of an algorithm can be improved by combining multiple
models instead of sticking to one single model. Applying this reasoning to decision trees brings us
to the next topic. When increasing the number of decision trees to create an ensemble of trees, a so
called Random forest is created [27]. The idea behind random forests is to train multiple decision
trees on di↵erent parts of the training set and to let them vote for the best fitting value. The
goal is to construct a large collection of de-correlated trees and then compute the average of them,
thus preventing overfitting and reducing variance [26]. Applying random forests to imputation
tasks is done in the same way as for the decision trees, and since now multiple trees are used it
is a form of multiple imputation, discussed in Section 3.6. An algorithm using random forests for
imputation, called missForest, was proposed by Stekhoven and Bühlmann [28], see Algorithm 3.
The implementation of that algorithm can be seen in Section 4.2.6.

3.5 Time series modeling

Due to the nature of the data, a patient is followed over time, an attractive approach is to model
the data as a time series. A reasonable assumption is that a value in one variable is dependent
on previous values in that same variable. The idea of time series modeling is to exploit this
dependency. Conceptually, this is done by treating the signals, y

t

1, as the output of some linear
system h

t

, driven by random noise, e

t

. The hard part is to find a good model of h

t

. To find
a good model an identification procedure is involved where the parameters describing the system
is estimated, forming the estimated system ĥ

t

. The measured signal is then filtered through the
inverse system, ĥ�1

t

, in order to find the estimated input signal ê
t

. The reason for doing so is to
examine if the input signal is completely random or if there is any structure left that could be

1
Standard notation in time series literature is to use t as the index for time. To be consistent with such notation

we use t = (1, . . . , n) for the time series models instead of i.
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exploited to further improve the model. In the sense of imputation this approach can be used to
first build a model for the data at hand and then use the estimated model to impute the missing
values. More information about time series modeling can be found in e.g. ”An Introduction to Time
Series Modeling” by Jakobsson [29].

3.5.1 ARIMA-models

There are two basic linear processes, namely the moving average (MA) process and autoregressive
(AR) process which, if combined, form the autoregressive moving average (ARMA) process defined
as

y

t

+ a1yt�1 + a2yt�2 + · · ·+ a

p

y

t�p

= e

t

+ c1et�1 + c2et�2 + · · ·+ c

q

e

t�q

,

or equivalent

A(z)y
t

= C(z)e
t

,

where A(z) and C(z) are monic polynomials of order p and q, respectively,

A(z) = 1 + a1z
�1 + a2z

�2 + · · ·+ a

p

z

�p

,

C(z) = 1 + c1z
�1 + c2z

�2 + · · ·+ c

q

z

�q

.

To handle trends in the data the ARMA model can be extended to an autoregressive integrated
moving average (ARIMA) of order (p, d, q). The model then looks like

A(z)(1� z

�1)dy
t

= C(z)e
t

,

with A(z) and C(z) defined as before.
To find the appropriate model order we filter our signal through ĥ

�1
t

to obtain the residuals ê
t

.
If our model describes the observations accurately, the residuals should be white. A natural way
to test if the residuals are white is to compute the autocorrelation function (ACF) of the residuals.
If the estimated residuals are white, then, asymptotically, the ACF of the residuals, ⇢

ê

(k) will be
normally distributed, as ⇢

ê

(k) ⇠ N (0, 1
n

), for k 6= 0, where n denotes the sample size and ⇢
ê

(k) is
defined as

⇢

ê

(k) =
r

ê

(k)

r

ê

(0)
,

r

ê

(k) = C[ê
t

, ê

t�k

].

3.5.2 The Kalman filter

To handle non-stationary processes we turn to the Kalman filter which expresses the optimal linear
reconstruction, interpolation and prediction of the state vector given observations of the input
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and output of the system [29]. We continue by defining the state space representation of a linear
time-invariant system as

x
t+1 = Ax

t

+ e
t

,

y
t

= Cx
t

+w
t

,

where y
t

is the measurement vector, being the observed signal at time t, and x
t

is the state vector.
The matrices A and C are known matrices of appropriate dimension. Here, we assume univariate
measurements yielding a scalar y

t

. Any external input is also omitted since it will not be included
in our case. The noise parameters e

t

and w
t

are called the process noise and measurement noise,
respectively. The former captures the model uncertainty and the latter describes the measurement
noise (previously denoted e

t

). With the state space model defined we omit the derivation of the
Kalman filter and continue by establishing the update equations. The optimal linear reconstruction,
x̂
t|t and the one-step prediction, x̂

t+1|t can be computed recursively using

x̂
t|t = x̂

t|t�1 +K
t

(y
t

�Cx̂
t|t�1), (3.2)

x̂
t+1|t = Ax̂

t|t, (3.3)

with K
t

denoting the Kalman gain, formed as

K
t

= Rx,x

t|t�1C
>[Ry,y

t|t�1]
�1

,

where the variances Rx,x

t|t�1 and Ry,y

t|t�1 are defined as

Rx,x

t|t�1 = V[x
t

� x̂
t|t�1],

Ry,y

t|t�1 = V[y
t

� ŷ

t|t�1].

Then, the updated state vector can be used to form predictions of ŷ
t

as

ŷ

t|t = Cx̂
t|t. (3.4)

In the sense of imputation the update equations can be used in the following way. Assume
that a missing value occurs at y

t

. The best estimate of the state x̂
t|t is simply to keep the former

state x̂
t|t�1, i.e. neglecting the second term in Equation 3.2. We can then compute the next state

x̂
t+1|t using the transition equation, Equation 3.3. The missing value is imputed using Equation 3.4

yielding an estimate, ŷ
t

, of the missing value which in turn is inserted into Equation 3.2 to update
the states x̂

t+1|t+1 [30].

3.6 Multiple imputation

Multiple imputation (MI) can be applied to a variety of imputation methods. The idea behind the
method is to draw multiple possible imputations for each missing value and thereafter impute the
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statistically most likely value. This introduces more variation than to only consider one possible
imputation value and reflects the uncertainty of the missing data.

Multiple imputation is now accepted as the best general method to deal with incomplete data
in many fields [10]. It was developed by Donald B. Rubin in the 1970’s as a solution to a practical
problem with missing data. Rubin observed that imputing one value (single imputation) for the
missing value could not be correct in general. He needed a model to relate the missing data to the
observed data and his solution was to create multiple imputations that reflect the uncertainty of the
missing data. The method has its roots in Bayesian framework. In Rubin [11] the methodological
and statistical groundwork are provided as well as the formulas required to combine the multiple
completed data estimates (know as Rubin’s rules) and outlines the conditions under which statistical
inference under multiple imputation will be valid. Figure 3.2 shows the intended methodology when
using multiple imputation. First several imputations are done on the same data set, then the results
from each imputed data set is analyzed and ultimately the data is pooled together to give a final
imputed data set. As long as an imputation method has some kind of variability, i.e. does not
always impute the same values on one specific data set, multiple imputation can (and should) be
used.

Figure 3.2: Main steps in multiple imputation. Image from Flexible Imputation of Missing Data [10].

Rubin’s rules

MI refers to the procedure of replacing each missing value with M � 2 imputed values, forming M

complete data sets in total. Ideally, the M imputations of Y
mis

should be M independent draws
of the parameters and the missing values. Let ✓ be a scientific estimand, which is a quantity of
scientific interest that we can compute if we observe the entire population Y, for example the mean
age of a population. Unfortunately, ✓ is almost never known and we have to estimate ✓ from the
observed data. The goal of MI is to find an estimate ✓̂ that is unbiased and confidence valid [10].
Unbiased means that the average of ✓̂ is equal to ✓ as
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E[✓̂ | Y ] = ✓.

For the estimand to be confidence valid it is required that the average of the estimated covariance
matrix of ✓̂ is equal or larger than the variance of ✓̂ as

E[W | Y ] � V[✓̂ | Y ],

with W as the estimated covariance matrix of ✓̂. In summary this means that the estimate ✓̂ should
on average be equal to the true value ✓, and the associated covariances should not be smaller than
the variance caused by the sampling process.

How certain we are of our estimate ✓̂ depends on what we know about Y
mis

. Therefore we have
to summarize the distribution of ✓ under varying Y

mis

. The possible values of ✓ given the observed
data Y

obs

can be found in the posterior distribution P (✓ | Y
obs

), which is often intractable but can
be decomposed into two parts which is easier to compute as

P (✓ | Y
obs

) =

Z
P (✓ | Y

obs

, Y

mis

)P (Y
mis

| Y
obs

)dY
mis

. (3.5)

The interpretation of Equation 3.5 is best understood from right to left. If we use P (Y
mis

| Y
obs

)
to draw imputations for Y

mis

, denoted Ŷ
mis

, we can then use P (✓ | Y
obs

, Ŷ

mis

) to calculate ✓ from
the hypothetically complete data set (Y

obs

, Ŷ
mis

). It can be shown that the posterior mean of
P (✓ | Y

obs

) is

E[✓ | Y
obs

] = E
⇥
E[✓ | Y

obs

, Y

mis

] | Y
obs

⇤
.

Which implies that that the combined estimate ✓̄
M

can be computed as: Let ✓̂
m

, m = 1, . . . ,M
be the M complete-data estimates calculated from M repeated imputations under one model. The
combined estimate is then equal to

✓̄

M

=
1

M

MX

m=1

✓̂

m

. (3.6)

For simplicity, ✓ is assumed to be a scalar. The extension to vector ✓ is straight forward.
The posterior variance of P (✓ | Y

obs

) is the sum of two components,

V[✓ | Y
obs

] = E
⇥
V[✓ | Y

obs

, Y

mis

] | Y
obs

⇤
+V

⇥
E[✓ | Y

obs

, Y

mis

] | Y
obs

⇤
.

This is known as the law of total variance. The first component is known as the average within-
imputation variance, denoted W̄

M

. The second component is known as the between-imputation
variance, denoted B

M

. If we let the number of imputations M ! 1, then the total posterior
variance of ✓ is T

M

= B

M

+ W̄

M

. To estimate T

M

for finite M , we compute the average within-
imputation variance as
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W̄

M

=
1

M

MX

m=1

W̄

m

, (3.7)

where W̄

m

is the covariance matrix associated with the m:th imputation of ✓̂
m

; and the between-
imputation component as

B

M

=
1

M � 1

MX

m=1

(✓̂
m

� ✓̄

M

)2. (3.8)

Combining the two Equations 3.7 and 3.8 is tempting but incorrect. We have to take into account
that a finite number of M imputations have been computed and thus only approximates ✓. Rubin
suggested that the adjustment for finite M should be B

M

/M and we arrive at the total variability
for ✓̄

M

as

T

M

= W̄

M

+B

M

+
B

M

M

= W̄

M

+ (1 +
1

M

)B
M

. (3.9)

To highlight the three di↵erent sources of the total variance T

M

we summarise them as:

1. W̄

M

, the variance caused by the fact that we are taking a sample instead of observing the
entire population.

2. B

M

, the variance introduced by the missing values in the sample.

3. B

M

/M , the variance caused by the fact that ✓̄
M

is estimated for finite M .

Equations 3.6 and 3.9 are know as Rubin’s rules, where the addition of the extra term B

M

/M is
crucial to make multiple imputation work at low values of M [10]. Excluding it would result in
failed standard statistical methods such as too low p-values and too narrow confidence intervals.
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Chapter 4

Methodology

In the preceding chapter we discussed the theoretical framework of how to infer proper imputations.
The key findings were

• The missingness of the data strongly a↵ects which imputation method to use.

• If the missing data is missing at random (MAR) or missing completely at random (MCAR),
we can build a model of the observed data which in turn is used to impute the missing data.

• To account for variability in the missing data one should use multiple imputation.

• To be able to use standard statistical tools as p-values and confidence intervals for multiple
imputed values, one should use Rubin’s rules.

• Compute outflux, influx, proportion of usable cases, and correlation to investigate the con-
nection between variables.

The imputation methods described in Section 3 were all, to some extent, implemented in this study.
We continue this chapter by explaining how the methods were implemented, which assumptions were
made about the data when implementing each method and, which simplifications or ”engineering
assumptions” were inflicted on the models.

4.1 Preprocessing of data

Even data that is not missing can sometimes be in need of some preprocessing to acquire the
preferred form. Since there often is no foolproof way to perform and collect the measurements,
some outliers are expected due to human and data capturing errors.

To verify if and what kind of preprocessing was needed, first, visual inspection of the data from
a few di↵erent patients was performed. Realizing that a lot of variables contained outliers (see for
example Figure 4.1a) which would significantly alter the outcomes of an imputation model, it was
concluded that the data indeed was in need of preprocessing. Since a lot of the data appeared
to have been documented in the wrong scale, e.g. milliliters instead of liters, a simple threshold
technique was su�cient to take care of most outliers. However, the rows of the variables that clearly
was wrong, see Appendix C.1, had to be discarded. Finally the preprocessed data seen in Figure
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C.1, in Appendix C.3, could be used for further analysis. After preprocessing, approximately 15%
of the raw data was removed. All preprocessing steps and explanations to why a specific threshold
was set are given in Appendix C.

(a) Variables AverageBloodFlowRate and FluidRemoved from one patient before preprocessing.

(b) Variables AverageBloodFlowRate and FluidRemoved from one patient after preprocessing.

Figure 4.1
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4.1.1 Preparing data for analysis

A framework of how to prepare the data for analysis was constructed using the following steps:
First the raw data was considered.

1. The raw data was sorted by patient ID and date-time.

2. All elements with a value of zero was replaced with NaNs, since no variable could have a value
of zero.

3. All duplicates were removed.

4. The variables containing temperature in Fahrenheit were converted to Celsius.

This gave a crude improvement of the raw data set which variables then could be visually inspected
(see Figure 4.1a) to decide further preprocessing steps. When that was done the following steps
were made to create the data set referred to as original data.

1. Outliers that were recorded in the wrong scale were converted to the right scale, see Appendix
C.2.

2. Non-convertible outliers that clearly were unrealistic were set to NaN, see Appendix C.1.

3. All rows where all variables contained NaNs were removed. Those were treatment occasions
which the patient had not attended, thus they should not be imputed.

These steps provided a data set with a more realistic missingness pattern which was used as a base-
line for all proceeding analysis. The outcomes of the preprocessing steps can be seen in Appendix
C.3, an example is given in Figure 4.1.

The next step was to construct validation data which could be used to evaluate the performance
of the imputation methods. This was simply done by removing all rows in original data which
contained any missing values. The final step was to construct the synthetic data set on which the
performance of the imputation methods could be tested. This was done by developing an algorithm
which extracted the missing data pattern from the original data and then destroyed the validation
data in that manner. This algorithm could also be used to destroy the validation data in any
wanted amount of missingness, making it possible to evaluate the imputation methods on a greater
variety of data sets.

4.1.2 Transformation and normalization of data

When constructing models that analyzes multivariate data it is sometimes important that all vari-
ables are scaled to a similar size, so that the relation between the variables become accurate. Many
imputation methods also require the data to belong to a normal distribution to work properly.
Therefore both normalization/standardization and transformation of the data might be appropri-
ate before analyzing it.

To decide upon appropriate transformations of the variables, a Box-Cox power transformation
was used [35]. The Box-Cox power transformation searches for an appropriate exponent (�) to
transform the data to a normal shape. Each �, except � = 0, indicates the power to which the
data should be raised, and usually values from � = �5 to � = 5 are considered. The Box-Cox
transformation is given below:
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Ytrans

j

=

(
Y�

j

�1

�

, if � 6= 0,

log(Y
j

), if � = 0,
(4.1)

where Ytrans

j

is the transformed variable and � is the power parameter.
Using the Box-Cox transformation on the validation data gave varying outcomes depending on

which variable was considered. In Figure 4.2 the recommended power parameter (red line) and a
probability plot before and after transformation of the variable AverageBloodFlowRate is shown.
The rest of the variables are found in Appendix D.1.

Normalization or standardization of the data was done depending on which imputation method
was used. Univariate methods naturally was not in need of any normalization since they only use
values from the same variable. Multivariate methods on the other hand uses values from all other
variables to impute the missing values, and thus to give similar weight to all variables, it is a good
idea to normalize or standardize the data. Standardization transforms the data to have zero mean
and unit variance using the following equation

Ystand

j

=
Y

j

� µ

j

�

j

,

where Ystand

j

is the standardized variable, µ
j

is the mean of each variable and �
j

is the standard
deviation of each variable. Normalization scales the numeric variables in a range from 0 to 1 and
is given by the equation

Ynorm

j

=
Y

j

� µ

j

Y
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j

� Y

min

j

,

where Ynorm

j

is the normalized variable, µ
j

is the mean of each variable, Y max

j

is the maximum
value of each variable and Y

min

j

is the minimum value of each variable.

41



(a) Box-Cox plot with recommended power coe�cient highlighted by the vertical red line.

(b) Probability plot before and after transformation using Equation 4.1 with � set as recommended in

Figure 4.2a. The blue line shows the probability plot of the variable AverageBloodFlowRate against the

quantiles of a normal distribution. The red line shows the normal distribution for reference.

Figure 4.2

As can be seen in Figure 4.2b, the result after transforming the data does not di↵er that much
from the original probability plot, and the distribution of the data still does not resemble that of

42



a normal distribution. The same was true for all other variables (see Appendix D.1) and since the
di↵erence before and after transformation was so small it was concluded that transformation of the
data was redundant.

4.1.3 Creating synthetic data

To be able to create data sets with the same characteristics as original data, a function which had
original data and validation data as input was created. It extracted the missingness pattern of
original data and used that pattern to remove elements in validation data. The function could also
create data sets with a higher ratio of missing data, making it possible to evaluate the imputation
methods further. It was important to keep the original missingness pattern of the data even though
the amount of missing data increased, thus the function was constructed so that the relation of
missingness between variables was kept constant, see Figure 2.6. Using this function, data sets
with up to 100% of the rows containing missing values, could be constructed (compared to 15%
of the rows for original data). An important thing to remember is that when constructing a data
set with 100% of the rows containing missing values, only about 17% of the total amount of data
points are missing, which makes it possible to still use imputation methods.

4.2 Implementation of algorithms

In this section explanations of how the di↵erent imputation methods were implemented will be
provided. For the more complex methods there will also be descriptive algorithms showing each
step of the process.

The easiest imputation methods, i.e. forward filling and mean substitution, were directly imple-
mented using the fillna method in the pandas module in Python 3.5, and the Imputer class in the
sklearn module in Python 3.5, respectively. Before running these algorithms however, the data set
was grouped patient-by-patient. This was done since it seemed reasonable that the mean of each
patient would yield better imputations than just imputing the mean of the whole population.

An alternative mean imputation, which used the mean of k nearest neighbors in one variable as
imputation value, was also considered, but since the result was similar to that of the other mean
substitution, it was discarded.

4.2.1 k-Nearest Neighbors imputation

The implementation of the kNN imputation algorithm was inspired by that used by Troyanskaya
et al. in the article Missing value estimation methods for DNA microarrays [20]. First, all variables
were grouped patient-by-patient and standardized to get zero mean and a variance of one. Then
for each missing value in each variable the algorithm tried to find k = 10 other variables which had
observed values present at that time. It then choose the k variables which contained values with the
smallest (Euclidian) distance to the observed values in the variable to be imputed. Then a weighted
average of the values from the k closest variables was used as an imputation. The weights of the
variables were decided by examining the similarity of each variable to the variable to be imputed.
The kNN algorithm was implemented using the fancyimpute package in Python version 3.5.
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4.2.2 Joint modelling imputation

As discussed in Section 3.3.2 the assumption of the joint model for multivariate data is that the
data comes from a multivariate normal distribution. This assumption is not entirely correct for
the data at hand but by normalizing the data we strive to make it follow a multivariate normal
distribution.

The implementation is as described in Algorithm 1, with three modifications. First and foremost
we add two additional variables to the original eleven. The additional variables are the variable to
be imputed shifted one step forward in time and one step backward in time, respectively. The reason
for doing so is to capture the time dependency in the data. As one can see in the description of
the algorithm, one missing value is imputed at a time using linear regression with noise; hence, it is
easy to add extra variables. The second modification is at step 1 and rises as an e↵ect of the shifted
variables. We want to keep the order of the measurements to make use of the time dependencies
in the data. Therefore we choose not to sort the data according to the missing patterns, ending
up with a slower execution time of the algorithm. In addition, the number of missing patterns, S,
is large (see Figure 2.6), making it impossible to keep the order of time in the data. The third
modification is at step 11. Instead of drawing the mean vector and covariance matrix we choose to
estimate the mean vector and covariance matrix from the imputed data set.

The algorithm is updated in an iteratively fashion, which means that we have to make sure that
the algorithm has converged. To evaluate when the algorithm has converged we plot the mean of
each variable and consider when the di↵erence in the mean between two iterations is smaller than
some stopping criterion ✏.

The starting value for the mean vector is initialized as the estimated mean from the observed
data. As for the covariance matrix, the user has two alternatives: (1) initializing with ones on the
diagonal and zero elsewhere or (2) initialize with the estimated covariance of the observed data.
This algorithm was implemented in Python 3.5 from scratch.
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Algorithm 1: Imputation of missing data by a joint model for multivariate data according
to Van Buuren [10].

1. Sort rows of Y into S missing data patterns Y
s

, s = 1, . . . , S.
2. Initialize ✓(0) = (µ(0)

,⌃(0)) by a reasonable starting value.
3. for t in T do

4. for s in S do
5. Calculate parameters �

s

= swp(✓(t�1)
, s) by sweeping the predictors of pattern s

out of ✓(t�1).
6. Calculate p

s

as the number of missing data points in pattern s. Calculate
o

s

= p� p

s

as the number of observed data points in pattern s.
7. Calculate the Choleski decomposition C

s

of the p

s

⇥ p

s

submatrix of �
s

corresponding to the missing data in pattern s.
8. Draw a random vector z ⇠ N (0, 1) of length p

s

.
9. Take �

s

as the o

s

⇥ p

s

submatrix of �
s

of regression weights.

10. Calculate imputations (t)
s

= Yobs

s

�
s

+C>
s

z, where Yobs

s

is the observed data in
pattern s.

end

11. Draw ✓

(t) = (µ(t)
,⌃(t)) from the normal inverted-Wishart distribution according to

Schafer [9].
end

4.2.3 Imputation using time series models and expectation maximization

A similar methodology as that of the joint model imputation method, was used with the distinct
di↵erence that instead of a linear regression model at the imputation step an ARIMA(p,d,q) model
was used. Again, the data was assumed to belong to a multivariate normal distribution and appro-
priate transformations were applied to the data. An ARIMA(2,1,1) model was selected as the most
appropriate model order to use for each variable. The model order was decided by using various
time series techniques for model evaluation, e.g. the autocorrelation function of the residuals, which
is presented in Appendix B.

The algorithm comprises of the following steps: (1) replace the missing values by initial guesses,
e.g. forward fill; (2) estimate the parameters µ and ⌃; (3) estimate the coe�cients for the ARIMA
model, for each of the univariate time series; (4) re-estimate the missing values using updated
estimates of the parameters and the coe�cients of the time series; (5) iterate until the convergence
criterion is reached, set to 10�6 [36]. The method was implemented using the mtsdi package version
0.3.3 in R version 3.2.4.

4.2.4 Imputation via the Kalman filter

Each variable was imputed as a univariate time series using a Kalman filter on each variable. In
other words, correlation between the variables was not included. The model order was selected as
an ARIMA(2,1,1) model which was obtained in the same way as for the time series method. The
selected model was in turn fed to the Kalman filter where the imputations were made. The method
was implemented using the imputeTS package version 2.1 in R version 3.2.4. The package is built
on the theory given by Durbin and Koopman [30] and briefly described in Section 3.5.2.

45



4.2.5 Multivariate imputation by chained equations

When researching imputation methods one is bound to come across the multivariate imputation by
chained equations (MICE) algorithm. It seems to be ubiquitous in the world of missing data and
builds on fully conditional specification (FCS) (see Section 3.3.3). The MICE algorithm models
each variable conditional upon the other variables in the data, using a series of regression models
to impute the missing values [37]. This makes it possible to model each variable according to its
distribution instead of trying to fit a general model for all of the variables. One of the biggest perks
with the chained equations approach is that it can handle both continuous and categorical values
(though in this report only continuous values are considered). The use of multiple imputations,
which was described in Section 3.6, makes the algorithm take into account the uncertainty in the
imputations and creates statistically accurate standard errors.

The regression model defined for each variable was a Bayesian ridge regression model, where
the output is assumed to be Gaussian distributed around Y�j

� as

P (Y
j

| Y�j

,�,�) ⇠ N (Y
j

| Y�j

�,�).

The prior for the the parameter � is given by a spherical Gaussian

P (� | �) ⇠ N (� | 0,��1I
p

),

and the priors over � and � are chosen to be gamma distributions, the conjugate prior for the
precision of the Gaussian. In our case, � = 0.001 and � is estimated from the residual sum of
squares. The MICE algorithm was implemnted using the fancyimpute package in Python version
3.5. The di↵erent steps of the MICE algorithm can be found in Algorithm 2. To account for
variability in the algorithm the average of ten runs was used as final imputation.

Algorithm 2: Imputation of missing values using MICE as proposed by Van Buuren [10].

Data: Y
j

is the variable to be imputed, Y�j

are the other variables, R is the missingness
matrix, and T is the number of iterations.

1. Specify an imputation model P (Y mis

j

|Y obs

j

, Y�j

,R) for variable Y
j

with j = 1, . . . , p.

2. for j in Y do

3. Fill in starting imputations Ŷ
(0)

j

by random draws from Yobs

j

.
end
4. for t in T do

5. for j in Y do

6. Define Ŷ
(t)

�j

= (Ŷ
(t)

1 , . . . , Ŷ
(t)

j�1, Ŷ
(t�1)

j+1 , . . . , Ŷ
(t�1)

p

) as the currently complete data
except Y

j

.

7. Draw �̂

(t)
j

⇠ P (�(t)
j

|Y obs

j

, Ŷ

(t)
�j

,R).

8. Draw imputations Ŷ
(t)

j

⇠ P (Y mis

j

|Y obs

j

, Ŷ

(t)
�j

,R, �̂

(t)
j

).

end
end
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4.2.6 Random forest imputation

When implementing the random forest imputation algorithm the steps of Algorithm 3 were followed.
For each variable a model was trained and fitted using all other variables, plus shifted versions (lag
±1) of the variable to be imputed. The sklearn package RandomForestRegressor version 0.18 in
Python version 3.5 was used as random forest regressor, and the number of trees was set to 10.
Since the regressor only works with real values, initial guesses for the missing values had to be
estimated during training. To keep things simple forward filled values were used as initial guesses.
When all of the missing values for each variable had been imputed, that imputed data set was
used as an initial guess in the next iteration. The algorithm was then iterated until the stopping
criterion was met, which was as soon as the di↵erence �, defined as

� =
X

8j

✓P
j2p

(Yimp

new

�Yimp

old

)2
P

j2p

(Yimp

new

)2

◆
, (4.2)

between the newly imputed data set and the previous one increased. In other words until the
algorithm had converged and the results did not improve any longer. The average of ten regressors,
summing up to 100 trees, was then used for the final imputations.

Algorithm 3: Imputation of missing values using Random forest as proposed by Stekhoven
and Bühlmann [28].

Data: Y is an n⇥ p matrix, � as defined in Equation 4.2.
1. Make initial guess for missing values (e.g. forward fill).
2. Sort indices of columns in Y w.r.t. increasing amount of missing values, store in vector k.
3. while �

new

 �
old

do
4. Store previously imputed matrix, Yimp

old

.
5. for s in k do

6. Fit a random forest: Yobs

s

| Yobs

�s

.
7. Predict Ymis

s

using Ymis

�s

.
8. Update imputed matrix, using predicted Ymis

s

.
end
9. Update �.

end
10. Return imputed matrix Yimp.

4.3 Evaluation of imputation methods

In the end we want to be able to say whether our imputation method has improved the complete
data set or not. Especially, we want to compare if any improvement has occurred compared to the
Forward fill method used in the present situation.

To be able to analyze the implemented imputation methods, the validation data (called Y ) was
artificially destroyed to create a new data set (Y ⇤), see Section 2.3.5. The di↵erent imputation
methods could then be used to reconstruct the destroyed data set (Ŷ ) and then the result could be
compared to the original data set, see Figure 4.3. The error (e) between each imputed point was
then calculated (using normalized root mean square error, see Section 4.3.1) and the results for the
di↵erent methods were compared, see Table 5.1 in Section 5.
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Figure 4.3: The imputation process; the original dataset Y is partially destroyed giving a dataset
with missing values, Y

⇤. An imputation method is then used to reconstruct Y from Y

⇤. The
reconstructed dataset Ŷ is then compared to the original dataset Y giving the imputation error e.

4.3.1 Minimizing the error

The obvious way to compare two methods, when imputed data and validation data is available, is to
measure how well the two methods are at recreating the lost data. A standard criterion for accuracy
is to measure how far the imputed value is from the true value. Here, we use the normalized root
mean squared error (NRMSE) as a distance measure [31],

NRMSE =

vuutE[(Y mis

j

� Ŷ mis

j

)2]

V[Y mis

j

]
, (4.3)

where the mean and variance are computed over the missing entries in the matrix. We know the
true value of Y mis

i,j

since the data is artificially destroyed. When the imputations are accurate we
have a NRMSE close to zero and when they are bad we will have a value around one. Note that,
if the mean of the observed data is used to impute the missing values, assuming that ignorability
holds, then, the NRMSE will be 1, since the nominator then is the definition of the variance.

Comparison to validation data

As a baseline for comparison, forward fill was used. Since Lytics use forward fill as their current
imputation method it serves as a good baseline method to compare with other methods. The
normalized root mean squared error (Equation 4.3) was then used to evaluate the performance of
each imputation method.

Bias and similarity measures

In addition to the NRMSE we were interested in evaluating the accuracy and agreement of the
imputed values. The accuracy was computed as the mean di↵erence between the observed and
imputed values, denoted
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bias
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j
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� Ŷ
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).

The most common indicator of agreement when evaluating imputation methods is Pearson’s
correlation coe�cient, ⇢, defined in Equation 2.7. The correlation is computed between the true
values and the imputed values. However, the values of ⇢ might not be related to the magnitude of
the errors. To avoid the issue, we use a di↵erent measure of agreement proposed by Willmott [32];
known as ”index of agreement”, and defined as
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where Ȳmis

j

denotes the mean of variable j. The value of d ranges between 0 and 1 with 0 being
lack of agreement and 1 being perfect agreement.

4.3.2 Statistical confirmation

It is also of interest to investigate if the imputed values are not statistically di↵erent to the validation
data. To do this the Welch’s t-test [33] and Kullback-Leibler divergence [34] were used as metrics.
The imputed values were compared to the validation values using these two di↵erent approaches.
For the methods containing stochasticity (RF and MICE) the mean of ten imputed data sets were
used as final values.

Welch’s t-test

Welch’s t-test is used to reject that two populations have the same mean and is defined as

t

j

=
Ȳimp

j

� Ȳval

jr
(simp

j

)2

n

imp

j

+
(sval

j

)2

n

val

j

, (4.4)

where Ȳimp

j

is the mean of imputed variable j, Ȳval

j

is the mean of validation variable j; s2
j

is the
sample variance and n

j

is the sample size (equal in this case). The p-values from the t-test can
then be used to reject the null hypothesis of equal averages.

Welch’s t-test was calculated for each method and variable. In our case the null hypothesis
was that the imputed population had the same average as the validation population and thus we
did not want to reject it. The Welch’s t-test was calculated using the function ttest ind in the
scipy.stats module in Python 3.5.

Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence can be used as a measure of how much one probability
distribution diverges from another. We use it to see how similar behavior we can expect from the
imputed variables compared to the validation variables. It is defined as
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where S

j

is the KL divergence and Y

i,j

is a normalized variable. A small value of S (approaching
zero) indicates that a similar behaviour can be expected of the two distributions, whilst a large
number (approaching one) indicates the opposite.

The KL divergence was also calculated for each method and variable. In our case a small number
is preferred since the imputed variables should behave similar as the validation variables. The KL
divergence was calculated using the entropy function in the scipy.stats module in Python 3.5.

4.3.3 Prediction improvement

In the end, it is of interest to see if the prediction algorithm for hospitalizations of patients can
be improved by using a more advanced imputation method. A logical, second evaluation criterion
would then be to compare how much better the predictions become when using the imputed data
set compared to when the forward filled data set is used. To do this, we used four data sets with
di↵erent amount of missing values, but with the same missingness pattern as original data. As a
metric we used the area under the receiver operating curve (AUROC) or in short, the area under
curve (AUC). An AUC score of 1 means that we have a perfect classifier and a score of 0.5 is
equivalent to guessing. Information about the receiver operating curve can be found in e.g. The
Elements of Statistical Learning [26].

4.3.4 Sequence length

The more sophisticated methods require some data in order to perform well. Therefore, in addition
to the three evaluation methods, the number of measurements for each patient were also investi-
gated. Some of the imputation methods, e.g. the Kalman filter and the expectation maximization
built on ARIMA(p,d,q) models, require a number of measurements to compute good estimates of the
a and c coe�cients. Our approach was to split the data set according to patients and then pick pa-
tients with more than Lmeasurements, L = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000).
If a patient had more than L measurements the number of measurements were reduced to only in-
clude the first L values. The reduced data set was imputed patient-by-patient using all methods
and the NRMSE was computed for each value of L. The results are shown in Section 5.4.
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Chapter 5

Results

Three di↵erent criteria were used to evaluate the performance of the imputation algorithms. Those
were

1. Comparison to validation data.

2. Statistical performance.

3. Result from prediciton algorithm.

In the sections below, the results from the three criteria can be found.

5.1 Comparison to validation data

Below are the errors between the imputed data and validation data, computed for each variable and
imputation method. The metric used for comparison is the normalized root mean squared error,
see Equation 4.3, where a lower number means an imputation closer to the validation data. The
Kalman filter method outperforms the other methods in all variables except for one, LitersProcessed,
and reduces the average NRMSE from 0.90 to 0.67, a reduction of ⇠ 25%.
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Variable FFill RF Kalman TS-EM MS MICE kNN JM
ABFR 0.70 0.59 0.53 0.58 0.73 0.89 0.65 0.65
SSP 0.88 0.72 0.66 0.70 0.76 0.96 0.78 0.77
LP 0.77 0.46 0.58 0.50 0.69 0.65 0.50 0.58
TD 0.95 0.76 0.69 0.72 0.74 0.97 0.77 0.86
FR 0.80 0.66 0.60 0.66 0.72 0.92 0.69 0.77
PTS 1.07 0.83 0.78 0.79 0.84 0.91 0.85 0.88
PTE 1.10 0.85 0.80 0.81 0.85 0.93 0.87 0.91
SSSBP 0.83 0.75 0.65 0.69 0.78 0.83 0.78 0.77
SSDBP 0.89 0.76 0.69 0.74 0.79 0.84 0.81 0.80
ESSBP 0.89 0.79 0.68 0.71 0.81 0.84 0.78 0.82
ESDBP 0.94 0.80 0.70 0.73 0.79 0.84 0.78 0.84

Mean error 0.89 0.72 0.67 0.69 0.77 0.87 0.75 0.79

Table 5.1: NRMSE for each imputation method and variable. The lowest errors are in bold font.
The mean of 10 imputed data sets for algorithms RF and MICE (containing stochasticity) was used
when calculating the error.

5.1.1 Bias and similarity measures

The bias and similarity measures (Pearson’s correlation (⇢) and agreement index (d)) are summa-
rized in table 5.2. The values presented are the mean value over all variables for each method. For
more detailed information see Appendix E.

FFill RF Kalman TS-EM MS MICE kNN JM
bias -0.152 -0.180 -0.061 0.410 �0.055 -0.132 -0.211 -0.263
⇢ 0.593 0.684 0.735 0.722 0.630 0.466 0.590 0.632
d 0.767 0.807 0.831 0.836 0.747 0.557 0.741 0.780

Table 5.2: Aggregated values of the bias, correlation, and agreement index for di↵erent methods.
The best value for each metric is in bold font.

5.2 Statistical measures of imputations

The p-values from Welch’s t-test for each variable and imputation method are presented below.
For imputed variables with a large p-value (p > 0.05) the null hypothesis of equal means cannot be
rejected.
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Variable FFill RF Kalman TS-EM MS MICE kNN JM
ABFR 0.677 0.033 0.781 0.077 0.941 0.922 0.000 0.124
SSP 0.863 0.500 0.904 0.312 0.597 0.670 0.374 0.935
LP 0.872 0.151 0.866 0.000 0.694 0.793 0.000 0.000
TD 0.677 0.028 0.871 0.000 0.971 0.447 0.775 0.120
FR 0.617 0.275 0.656 0.000 0.543 0.165 0.001 0.000
PTS 0.943 0.423 0.592 0.801 0.387 0.976 0.302 0.873
PTE 0.451 0.901 0.884 0.928 0.907 0.498 0.668 0.303
SSSBP 0.605 0.488 0.773 0.769 0.815 0.658 0.932 0.582
SSDBP 0.845 0.563 0.798 0.270 0.945 0.753 0.774 0.568
ESSBP 0.381 0.342 0.429 0.724 0.328 0.220 0.556 0.672
ESDBP 0.658 0.185 0.493 0.445 0.469 0.093 0.674 0.102
Mean 0.690 0.354 0.732 0.393 0.691 0.563 0.460 0.389

Table 5.3: p-values from Welch’s t-test for each method and imputed variable compared to the
validation data. All values with a p-value below the significance level of 0.05 are highlighted with
bold font. Those imputed variables do not have the same average as the validation data with
statistical significance.

Below the Kullback-Leibler divergences between the imputed data and validation data can be
seen. All imputed variables show more similarity than dissimilarity compared to the validation
variables.

Variable FFill RF Kalman TS-EM MS MICE kNN JM
ABFR 0.006 0.004 0.003 0.004 0.007 0.009 0.005 0.005
SSP 0.010 0.007 0.006 0.007 0.008 0.013 0.008 0.008
LP 0.020 0.008 0.012 0.008 0.017 0.015 0.010 0.012
TD 0.017 0.011 0.009 0.010 0.011 0.018 0.011 0.14
FR 0.080 0.057 0.048 0.053 0.069 0.106 0.062 0.069
PTS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PTE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SSSBP 0.012 0.010 0.007 0.008 0.011 0.012 0.010 0.010
SSDBP 0.018 0.013 0.011 0.012 0.014 0.016 0.015 0.015
ESSBP 0.014 0.011 0.008 0.009 0.012 0.013 0.011 0.012
ESDBP 0.021 0.015 0.012 0.013 0.015 0.017 0.015 0.016
Mean 0.018 0.013 0.011 0.011 0.015 0.020 0.013 0.015

Table 5.4: KL-divergence for each method and imputed variable compared to the validation data.
The values closest to 0 for each variable are highlighted with bold font. Those variables have a
behaviour most similar to that of the validation data.

5.3 Prediction results

In Table 5.5 the results from the predictions are presented. A random forest classifier was used to
classify the patients on (1) no imputed data, (2) imputed data using FFill and (3) imputed data
using Kalman. A larger AUC-score indicates better performance. A thorough explanation of the
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classifier is given in the Master’s Thesis by our colleague Niklas Hansson [38]. The percentages
refers to the number of rows in the data set with at least one missing value, and the percentages
within parenthesis refers to the total amount of missing data. The first column containing 15% of
the rows with at least one missing value shows the results from the original data. Due to lack of
time we choose to only evaluate Kalman. It was selected because it performed best on the previous
evaluation methods.

Missing 15% (2.5%) 25% (4.3%) 50% (8.6%) 75% (12.8%) 100% (17.1%)
w/o imputation 0.615 0.613 0.608 0.604 0.604

FFill 0.632 0.631 0.629 0.628 0.627
Kalman 0.635 0.635 0.633 0.635 0.636

Table 5.5: Average AUC score on 10 runs with a random forest classifier for di↵erent amount of
missing data. The best score for each rate of missingness is highlighted with bold font.

We note that, regardless of the amount of missing data, the Kalman imputed data sets produces
similar results whereas for FFill and the not imputed data sets the AUC score decreases with
increasing missing data.

5.4 Sequence length

In this section the errors for di↵erent methods and sequence lengths are presented. The number of
patients within each group is shown in Figure 5.1. In Figure 5.2 the NRMSE of all methods are
presented.

Figure 5.1: The number of patients with sequences at least L long. Note the change of scale on the
x-axis, both after L = 100 and L = 500.
L = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000)
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Figure 5.2: Average NRMSE of all variables, computed for all imputation methods using di↵erent
sequence lengths L. Imputations are done in a patient-by-patient manner. Note the change of scale
on the x-axis, both after L = 100 and L = 500.

The NRMSE is decreasing with increasing L, at least for the more sophisticated methods, except
for TS-EM where we see an increase in NRMSE after L = 100 which we have no explanation for.
However, it appears to be a peak at L = 300 for both TS-EM and JM that could be explained by
some instability in the estimation of the mean vector and covariance matrix of the multivariate
Gaussian distribution. For the more näıve approaches, the error is stable regardless of sequence
length.

The JM algorithm performs bad in the beginning but have a rapid decrease in error when the
sequence length is increased. The MICE algorithm also performs bad at the beginning and we see no
large reduction in error after L = 60. Both Kalman and RF are well-behaved even for small values
of L and continue to decrease with increasing L.

5.5 Merging of methods

To impute the best possible data set, considering NRMSE, we decided to use the imputed values
of RF for variable LitersProcessed and use Kalman for all other variables. The resulting average
NRMSE was 0.66, an improvement of 0.01. When predictions were computed on this data set we
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achieved an AUC score of 0.634, which is worse than the AUC score of Kalman. The reduction of
the AUC score was 0.001 compared to Kalman.

Furthermore, to reduce the NRMSE and have a generic solution for each patient, we decided to
merge the methods MS, RF, and Kalman in the following way. For patients with less than 40 rows
we used MS; for all other patients we used Kalman, except for variable LitersProcessed where we
imputed using RF. This resulted in an average NRMSE of 0.66 and an AUC score of 0.631. The
NRMSE was reduced by 0.01 compared to Kalman, but the prediction algorithm performed worse
and the AUC score was reduced by 0.004 compared to Kalman and 0.001 compared to FFill.
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Chapter 6

Discussion

With an increasingly older population, where many will su↵er from chronic diseases, we need to
redefine how to treat patients. Arguably, every country in the western world is battling increasing
healthcare costs and by putting more e↵ort into preventive measures there could be much to gain.
As an example, Centers for Dialysis Care (CDC), the collaborating partner of Lytics Health AB in
this project, says that a hospitalized dialysis patient costs about $2,700 per night. If an improved
imputation method can increase the performance of the prediction algorithm and help to reduce
the number of hospitalized patients that would benefit the hospitals, patients, and the society.

6.1 In general

There is a lot of work to be done in the field of missing data. Just to make it knowledgeable to
people that e�cient and relatively precise imputation algorithms exists, and that there is much to
gain by using sophisticated imputation methods, would increase the usage of them. As the use of
big data is steadily increasing, so should the value and interest in imputations, which would result
in more imputation methods emerging.

A problem with imputing values is how to handle the data set after it has been imputed. Should
imputed values be regarded as actual recordings or should they be used only with great care? In
most research fields, and especially in medical research, the latter choice is the way to go since it
would be misguiding and potentially fatal to treat imputed values as actual measurements. It could
give a doctor the wrong impression about a patient or make an algorithm give false results. Instead
one could mark all imputed values in some way which gives them lesser weight when used in e.g. a
prediction algorithm.

6.2 Assumptions of the data

Throughout the report we assume the missing data mechanism to be MAR. The assumption might
not be entirely valid but is essential for building models of the observed data to be used when
imputing missing data. We have reason to believe that the missing data mechanism might be
NMAR, for example, some measurements of the blood pressure may not be taken when a patient
has low blood pressure, meaning that the value of the variable that is missing is related to the
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reason it is missing. However, we have no way of finding out the true missing data mechanism since
that would require a thorough investigation of how the data capturing procedure is carried out.
The only true way to distinguish between NMAR and MAR is to measure the missing data in some
way, e.g. interviewing the healthcare personnel and find out when and why measurements are not
taken.

Many of the implemented methods assume Gaussian distributed data. This assumption is clearly
violated for some of the variables, which can be seen in Appendix A. Nevertheless, the NRMSE
is reduced compared to FFill, but we might be able to further reduce the error by putting more
e↵ort into finding more suitable distributions for each variable. This would probably improve the
result of the MICE imputation where we can define a model for each variable. On the other hand RF,
the only non-parametric method, does not perform any better than the other methods indicating
that it is not crucial that the assumptions of the distributions are correct.

For the methods RF and JM we introduce shifted variables where we shift the variable to be
imputed ±1 step in time and add as additional variables. To allow for this shift we assume that
the imputations are done o✏ine, meaning that all data is available. However, if online imputation
is required we have a problem. Assume that we want to compute predictions when new values are
measured and added to the data, meaning that a daily update of imputations and predictions of
the data is required. This, in turn will introduce a problem of causality, namely that we have no
access to the next value making the forward shift impossible. Depending on situation one has to
decide if it is more important to have an online procedure or to be able to use future values.

6.3 Sequence lengths

We had reason to believe that imputations in a patient-by-patient manner would be preferable
compared to imputations of the entire data set with one model. This was mainly due to the fact
that no human is identical to another. In addition, the prediction method developed at Lytics is
generic and computes predictions from the first day a patient is entering the system. Hence, missing
values can occur as early as the first day, which requires a generic imputation method. Therefore we
had to investigate how well the methods perform on patients with few treatments. As can be seen
in Table 2.2, half of the patients have had 186 treatments or less which implies that it is important
that the methods are well-behaved with few data points. In Figure 5.2 we see decreasing error for
the more advanced methods. For Kalman, RF, kNN, TS-EM, MICE, and JM the error is reducing but
they do not become better than the average error for the full data set. We believe that these results
are strong indications that an ensemble method, combining the strengths of a sophisticated method
when imputing patients with long sequences and a more näıve method when imputing patients with
short sequences, where there is not enough data for the sophisticated method to function properly,
should be used to further reduce the NRMSE and build a more generic method.

Moreover, when looking at the sequence length plot (see Figure 5.2) it is evident that some
methods perform very poorly when introduced to short sequences of data. One has to decide
whether it is more important to have a robust method for all sequence lengths, or to have a mixture
of models that might outperform the more robust method. In medical applications the more robust
methods is preferable since there is little to no room for error.
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6.4 Error and prediction

Turning to Table 5.1, containing the NRMSE for all variables, it is evident that Kalman outperforms
the other methods in all variables except for one. The second best method, considering the average
NRMSE, is TS-EM. Kalman is a univariate method, considering only one variable at a time, whereas
TS-EM is a multivariate method using information both from the other variables and from previous
values within the variable to be imputed. These two methods rely heavily on previous values of the
time series in contrast to RF, MICE, and JM which impute using regression over the other variables.
Two interesting issues arise from these results: (1) there is much to gain by considering time series
approaches when imputing this type of health care data and (2) it appears to be of less importance
to consider dependencies between variables when imputing this particular data set.

The connection between the variables is of great importance. As one can see in Figures 2.6
and 2.7 the variables StartSittingSystolicBloodPressure and StartSittingDiastolicBloodPressure are
always missing at the same time as well as EndSittingSystolicBloodPressure and EndSittingDias-
tolicBloodPressure. The two pairs are the variables with highest correlation meaning that they
should be of use when imputing, but with the variables missing at the same time they are useless
for imputing one another. Furthermore, the correlation between variables are low or almost zero for
many of the combinations. However, this is not the case for the autocorrelation of a variable; the
strong dependency of previous values can be seen in the autocorrelation plots in Appendix B. This
is the main reason for adding the additional features, where the variable to be imputed is shifted
in time.

When investigating the bias it is clear that Kalman is unbiased for all variables whereas TS-EM
is unbiased for half of the variables. Nevertheless, TS-EM is outperforming all other methods at
agreement index (d) and has the second highest value of correlation (⇢); where Kalman has the
highest value. Again, verifying that these two methods are best suited for imputation.

If one examines the distributions of the errors for FFill and Kalman, see the figures in Appendix
F, one can see that the variance of the residuals are reduced with Kalman; a good indication of
improvement. On the other hand, for some of the variables FFill has a more pronounced peak at
zero, indicating that this method is better at finding the exact value. The e↵ect is most evident for
the variables TimeDialyzed and AverageBloodFlowRate, which are patient specific, fixed settings and
seldom changed. Choosing the previous value would thus be a reasonable thing to do. However,
Kalman is reducing the variance of the errors for both variables and we cannot tell if it is more
important to hit zero error often or to reduce the overall error when using the imputed data
for predictions. Further investigation of the variable AverageBloodFlowRate shows that it has five
pronounced peaks, see Figure 2.4. In Figure F.1 in Appendix F, two of these peaks are still visible at
±50 for FFill but not for Kalman, indicating that Kalman is successful at capturing the multimodal
behaviour in the variable.

The Welch’s t-test and Kullback-Leibler (KL) divergence were used as statistical measurements
to evaluate if the imputed data was statistically close enough to the validation data, see Tables
5.3 and 5.4. The p-values of the Welch’s t-test showed that most methods and variables imputed
values such that the null hypothesis of equal means could not be rejected, i.e. a p-value above 0.05
indicates that the null hypothesis at the 5% level cannot be rejected. For example, the p-value of
the variable AverageBloodFlowRate for imputation method FFill is 0.677, which indicates that the
null hypothesis of equal means most certainly could not be rejected. Looking at the next column,
the p-value of the same variable for the imputation method RF is shown. This value is only 0.033
which indicates that we can reject the null hypothesis of equal means with a 0.05 significance and
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thus we have shown that the means of the imputed values and validation values are significantly
di↵erent. Continuing to the KL divergence it is fair to say that all imputed data sets show more
similarity to the validation data than dissimilarity, since all values in Table 5.4 are closer to 0
than 1. This is reassuring results and can be interpreted as only a small loss of information when
using imputed data to represent the validation data. However, the di↵erence between the di↵erent
methods might be more interesting to look at. Once again the Kalman imputation achieves the
best result on average, but this time tied with TS-EM. In general it looks like the di↵erence in
results between the more sophisticated imputation methods and the easier ones are greatest for the
variables with most amount of missing data (LitersProcessed and FluidRemoved). This could be
an indicator that with increasing amount of missingness an increasingly complex model should be
used to achieve the best results.

The results of the prediction algorithm was evaluated. Looking at the first row of Table 5.5
in Section 5.3 there seems to be a rather small dependence between AUC score and amount of
missing data. The di↵erence between 15% and 100% of the rows containing missing values is just
0.009 units when not imputing any values. This could be because the random forest classifier is
very robust and that it e�ciently can use the observed values for classification. What is interesting
is to look at the result for the Kalman imputation. The AUC score is consistently about 0.020
units higher, independent of the amount of missingness, compared to leaving the missing values
blank. This might be an indicator that imputing values at least improves the prediction algorithm
slightly. Another interesting point is that the AUC score for Kalman imputation is rather constant.
Both 15% missing and 100% missing gives an AUC score of 0.635. This could be a confirmation
that the Kalman imputation is very robust to the amount of missing data, further strengthening
its position as best imputation method. The imputation method used today, FFill, is slightly
worse than Kalman for the original data but interestingly we see that the AUC score is decreasing
with increasing missing data, again verifying that a more sophisticated method is preferable when
the amount of missing data is increasing. Also, we see a big di↵erence in the AUC score if we
impute using either FFill or Kalman, suggesting that imputations are important to achieve better
prediction results.

When we merge di↵erent methods we see a small reduction in NRMSE but not an increase in
AUC score compared to Kalman. Considering the merged method between Kalman and RF, it is
definitely questionable if it is better than using Kalman since the AUC score for the merged method
was reduced. Also, considering the merged method of Kalman, RF, and MS, it seems like there is
not much to gain by imputing the missing values in a patient-by-patient fashion, even when näıve
imputation methods are used to mitigate the problem of short sequence lengths.

6.5 Performance of algorithms

Below is a small summary of the performance of all algorithms. The main strengths and weaknesses
for each method are listed.

• FFill

– Strengths: Easy to implement, readily available in many libraries; fast.

– Weaknesses: Bad imputations.

• RF

60



– Strengths: Can handle mixed-type data.

– Weaknesses: No within-variable dependencies (this can be added as extra variables);
slow.

• Kalman

– Strengths: Within-variable dependencies.

– Weaknesses: No between-variable dependencies (this can be added as input to the sys-
tem); requires enough data to fit an ARIMA model; assumes Gaussian distributed data.

• TS-EM

– Strengths: Both within- and between-variable dependencies.

– Weaknesses: Unstable at some sequence lengths; requires enough data to fit an ARIMA
model; assumes Gaussian distributed data.

• MS

– Strengths: Easy to implement; performs better than FFill

– Weaknesses: Imputing the same value, always.

• MICE

– Strengths: Can handle continuous and categorical variables.

– Weaknesses: Requires a lot of data to work.

• kNN

– Strengths: Both within- and between-variable dependencies.

– Weaknesses: No good if distance to neighbors are too far.

• JM

– Strengths: Performs well with a lot of data.

– Weaknesses: No within variable dependencies (this can be added as extra variables);
requires a lot of data; assumes Gaussian distributed data.

6.5.1 Optimization of models

During this project the main objective has been to implement a variety of models rather than
optimizing them to perform as well as possible on this specific data set. Therefore a lot of work can
be done to fine-tune the algorithms. Most of the models have parameters to tweak, and to achieve
the best possible imputations each variable and each patient would probably need its own specific
settings. For example, using the Kalman imputation method, one could build a specific ARIMA
filter, optimizing the parameters for each patient and variable. Increasing the number of trees in
the RF model could also result in slightly better imputations. Another way to possibly enhance the
performance of the algorithm is to have one generic main model for the entire data set as prior and
then use a patient-specific model for each patient in the data set.
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To further investigate the distribution of each variable and to find more suitable transformations
could also help to improve the performance of the methods or make it easier to fit appropriate models
to the data. As we have seen, some of the variables are far from Gaussian distributed. It should also
be considered to cluster the data into di↵erent subgroups, e.g. according to sex, age, or ethnicity,
to possibly build better suited models.

6.6 Ethical considerations

As always when handling medical data the well-being and privacy of the patient is central. There
are strict rules and regulations to be followed and it is of great importance to keep the data secure
and encrypted. It could be devastating for an individual if his or her records were compromised
and most work involving big data analysis is dependent on not violating that.

Imputing values for medical data is mathematically not any di↵erent from imputing any other
kind of data. However, a poorly imputed value could change the outcome of the prediction algorithm
in the consecutive step, which might classify a patient as stable when he or she actually is in
risk of hospitalization. Or, it could, the other way around, classify a stable patient as in risk of
hospitalization, making the physicians consider preventive actions which possibly could worsen the
condition of the patient. Therefore the algorithms developed quite literally can be the di↵erence
between life and death. This brings up the question of how much one can and should trust the
algorithm as well as who is to blame if something goes wrong. If the algorithm says that there is
a great risk for a patient to be hospitalized and preventive measures should be considered, but a
physician decides to ignore it, is the physician to blame if the patient dies? And the other way
around, if the physician follows the advice presented by the algorithm and the patient dies, are the
developers of the algorithm responsible? There are no easy answers to these kind of questions and
ultimately it is the responsibility of the state to come up with laws deciding what is ”right”.

Also, the lack of human contact has to be considered when using algorithms that are supposed to
say something about a patient. All recorded variables have been handled by humans, and most likely
the nurses taking care of each patient have great knowledge about the health of each individual. But
all of the information one can gather by meeting a person face-to-face is, unfortunately, impossible
to record. Hence the algorithm developers has to rely solely on a few recorded variables to make
an opinion. This lack of human contact is the main reason to not only use algorithms to diagnose a
patient. There is simply too much and too subtle information in the meeting between two persons
to be able to record and use it all in an algorithm.

6.7 Future work

The next step in this project would be to impute values of more variables. Since the prediction
algorithm uses around 200 variables for its predictions it is likely that more of them are in need
of imputation. One would also have to further investigate if the imputed values really make a
di↵erence for the prediction algorithm, and if so specify a threshold to know at which amount of
missingness, imputation methods are worth to use. It would also be interesting to investigate other
patterns of missing data and validate the performance of the di↵erent algorithms.

To better evaluate the performance and properness of the imputations, a simulation technique
developed by Brand et al. [39] could be used. The main idea with this technique is to construct a
large amount of copies of the incomplete data set and then use a stochastic imputation method to
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impute all missing values. The average of each imputed point is then used as final imputation. A
set of equations are then used to confirm if the imputations are proper or not, and the large amount
of imputed data makes it possible to calculate more accurate statistics. This would increase the
credibility of the imputations and make them even more trustworthy.
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Chapter 7

Conclusions

In conclusion, all of the implemented algorithms performed better than the FFill method when
measuring the average normalized root mean square error. This means that on average the newly
imputed values had smaller errors than that of the imputed values using FFill. Of the methods
investigated in this report the Kalman imputation method performed best on 10 out of the 11
variables. From this result it can be concluded that time series models might be preferable when
handling this kind of data. However, since the RF imputation performed best on one variable, a
merging of the two methods yielded an even better result considering NRMSE. Therefore, to lower
the NRMSE even more, a mixture of models is to be preferred.

When investigating the performance of the algorithms on di↵erent sequence lengths, it was
evident that the more sophisticated algorithms had trouble getting good results for too short se-
quences. Therefore, an additional mixture of models with MS imputing sequences with less than
40 measurements combined with a mix of Kalman and RF for all other sequences was investigated.
The resulting NRMSE for this model was however not better than that of the merged Kalman-RF
model.

Moreover, when investigating the performance of the prediction algorithm, comparing Kalman to
FFill, we saw a slight improvement in the area under the curve score. For Kalman we managed to
keep the AUC score at a constant level while increasing the amount of missing data, but for FFill
the score decreased with higher rate of missingness. Using the merged Kalman-RF model, the AUC
score was reduced compared to Kalman but increased compared to FFill. The other merged method,
imputed in a patient-by-patient manner with MS for imputation of short sequences, gave a worse
AUC score compared to Kalman, Kalman-RF, and FFill. It is thus not recommended to impute in a
patient-by-patient manner, but rather use the entire data set at once. Also, we recommend to use
sophisticated imputation methods to impute the missing data since that improves the predictions
of hospitalizations.
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Appendix A

Distribution of original data

In this appendix we present the distribution plots of original data. Many of our methods assume the
data to be normally distributed, which does not seem to be the case. However, some variables behave
worse than others. For example AverageBloodFlowRate looks like some sort of multimodal Gaussian
and TimeDialyzed has two pronounced peaks at 240 minutes and 210 minutes corresponding to
4 hours and 3.5 hours, respectively. These variables are machine settings and can therefore be
expected to have distinct values. The other nine variables are of a more natural origin and are
closer to a normal distribution. Nevertheless, they are not truly normally distributed, for example
a Gamma distribution might be more valid for e.g. FluidRemoved and EndSittingSystolicBP.

Figure A.1: Distribution plots of variables with normal curve for reference.
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Figure A.2: Distribution plots of variables with normal curve for reference.
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Figure A.3: Distribution plots of variables with normal curve for reference.
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Appendix B

Model order selection for time
series models

It was unfeasible to use the full data set when estimating the ARIMA(p,d,q) model. The decision of
not useing the full data set was taken based on two reasons; (1) the iterative estimation techniques
of the EM algorithm were time consuming and (2) by using the full data set the time order is
distorted when we change between patients. Therefore a subset of patients where chosen and they
were required to have more than 1000 measurements to be selected. The best model order were
estimated to each patient and then the model order which coincide with most patients were selected.
To select model order for the time series models we used the autocorrelation function (ACF) and
partial autocorrelation function (PACF). We decided that the correct model order was found when
the ACF and PACF av the residuals were statistically white.

In Figures B.2 and B.3 we present the ACF and PACF of all variables of one patient with the
number of recorded measurements, L > 1000.
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Figure B.2: Top: ACF of the original signal.
Bottom: PACF of the original signal.
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Figure B.3: Top: ACF of the original signal.
Bottom: PACF of the original signal.

It is evident that the variables behave similar. For simplicity, we decided that we wanted one
model which could describe all variables reasonable well. One could argue that we should select
di↵erent models for each variable but we chose to keep it as simple as possible. Using this model
gave residuals that we considered to be almost white and thus a suitable model. The ACF and
PACF of the residuals are shown in Figures B.4 and B.5.
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Figure B.4: Top: ACF of the residuals between the true signal and estimated signal.
Bottom: PACF of the residuals between the true signal and estimated signal.
The dark blue field represents the 95% confidence interval of the residuals being zero; the value at
lag 0 is removed.
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Figure B.5: Top: ACF of the residuals between the true signal and estimated signal.
Bottom: PACF of the residuals between the true signal and estimated signal.
The dark blue field represents the 95% confidence interval of the residuals being zero; the value at
lag 0 is removed.
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Appendix C

Preprocessing steps

Below the proceedings of preprocessing are listed, for each variable deemed to be in need of such.
First the Outlier Removal algorithm is explained and thereafter the Unit Conversion algorithm.

C.1 Outlier removal

Elements containing any of the following outliers were set to NaN:

• Negative values, since all variables measured were done so in positive units.

• Average blood flow above 1000 ml/min and below 200 ml/min.

The average blood flow through healthy kidneys is approximately 25% of the cardiac
output, which amounts to 1100 ml/min in a 70-kg adult male [40]. The blood flow
through diseased kidneys and through the dialysis machine, however, is much lower. In
our data the average blood flow rate is around 300-500 ml/min and a high maximum
boundary was therefore set to 1000 ml/min. Unfortunately not much data exists on
what an optimal blood flow rate would be, but a blood flow rate above 700 ml/min in
the blood pump is unlikely. The minimum blood flow rate was set to 200 ml/min after
close examination of the data and relying on Sam et al. [41], who writes that the blood
flow rate usually is between 500-800ml/min in conventional, thrice-weekly hemodialysis
sessions.

• Pulse above 150 and below 40 bpm.

A normal resting heart rate for healthy adults ranges from 60 to 100 beats per minute [42].
Dialysis patients often have a significantly higher pulse due to their illness and therefore
the upper limit of the span was set to 150 bpm. A resting pulse of above 150 bpm
would indicate serious distress and most likely a normal dialysis treatment would not be
possible to carry out.

• Body temperatures above 40 and below 35.5 Celsius.

Normal body temperature ranges between 36.5-37.5 �C [43]. It was argued that values
outside of the range 35.5-40 �C would be unrealistic since patients with such extreme
temperatures would already be hospitalized.
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• Liters processed below 5 liters.

If a patient processed less than 5 liters of blood it would imply that the treatment only
went on for less than 20 minutes. This is clearly a to short time for dialysis and therefore
the boundary was set to 5 liters.

• Systolic blood pressure above 290 or below 60 mmHg.

• Diastolic blood pressure above 150 or below 30 mmHg.

Normal blood pressure in an adult is approximately 120/80 mmHg [44]. For patients with
renal diseases however, the blood pressure can vary a lot and typically dialysis patients
have higher blood pressure than normal. Getting guidance from the American Heart
Association [44] and accounting for the varying blood pressures in dialysis patients, the
systolic blood pressure boundaries were set to 60-290 mmHg and diastolic blood pressure
boundaries were set to 30-140 mmHg. The blood pressure will typically decrease a lot
after a dialysis treatment since a lot of excess fluid is removed. Therefore the threshold
to count as an outlier was set very low for those particular variables.

C.2 Unit Conversion

The units of the following outliers were converted to the right scale. The process was highly
empirical and done in the order presented below:

• Fluid removed

– >1000 l were divided by 1000.

– >100 l were divided by 100.

– >8 l were divided by 10.

– <0.005 l were multiplied by 1000.

– <0.05 l were multiplied by 100.

– <0.3 l were multiplied by 10.
The fluid removed in our data typically ranged between 2-4 liters during a 3-4 hour
dialysis session. There exists no rule of thumb of how much fluid a patient should
remove per session and typically each patient after a while finds out how much to remove
to achieve best results. To remove more than 1 liter per hour though, is rare and rates
above that has been proven to increase cardiovascular mortality [45].

• Liters processed

– >1000 l were divided by 100.

– >200 l were divided by 10.

– <12 l were multiplied by 10.

– <2 l were multiplied by 100.
The average amount of blood processed in our data was around 100 liters. Since the
amount of blood processed is calculated by multiplying the blood flow rate with the
total time dialyzed the conversions stated above makes sense.

75



C.3 Outcomes of preprocessing

Below are some examples of variables before and after preprocessing. The data in each plot is from
the same patient.

Figure C.1: Some variables before and after preprocessing
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Appendix D

Transformation of data

D.1 Box-Cox plots and transformations

Box-Cox plots for all variables and probability plots for all variables, before and after transformation
with � as recommended by matching Box-Cox plot.
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Appendix E

Similarity measures

In this appendix we have collected the similarity measures for all methods and present them variable
by variable. The confidence interval (CI) is built for the bias.

bias CI ⇢ d
ABFR -0.242 (-0.572,0.088) 0.751 0.863
SSP 0.016 (-0.436,0.468) 0.613 0.784
LP -0.003 (-0.076,0.069) 0.699 0.073
TD -0.143 (-0.709,0.422) 0.553 0.734
FR 0.003 (-0.003,0.009) 0.678 0.823
PTS -0.000 (-0.004,0.004) 0.427 0.659
PTE -0.002 (-0.007,0.003) 0.400 0.639
SSSBP -0.497 (-1.507,0.513) 0.634 0.796
SSDBP -0.156 (-0.802,0.490) 0.596 0.773
ESSBP -0.508 (-1.193,0.177) 0.611 0.783
ESDBP -0.143 (-0.579,0.292) 0.561 0.752

Table E.1: Forward fill; CI: 95% confidence interval for the bias. ⇢: Pearson’s correlation between
true values and imputed values. d: Agreement index between true values and imputed values.
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bias CI ⇢ d
ABFR 0.695 (0.418,0.973) 0.815 0.899
SSP -0.217 (-0.585,0.152) 0.692 0.808
LP 0.093 (0.050,0.136) 0.888 0.940
TD -0.849 (-1.301,-0.397) 0.662 0.797
FR 0.005 (0.000,0.010) 0.749 0.849
PTS 0.002 (-0.001,0.005) 0.566 0.704
PTE 0.000 (-0.003,0.004) 0.533 0.679
SSSBP -0.546 (-1.439,0.346) 0.680 0.813
SSDBP -0.274 (-0.824,0.276) 0.665 0.803
ESSBP -0.488 (-1.097,0.122) 0.643 0.794
ESDBP -0.402 (-0.769,-0.036) 0.633 0.785

Table E.2: Random forest; CI: 95% confidence interval for the bias. ⇢: Pearson’s correlation
between true values and imputed values. d: Agreement index between true values and imputed
values.

bias CI ⇢ d
ABFR -0.087 (-0.335,0.161) 0.848 0.912
SSP 0.039 (-0.298,0.377) 0.749 0.848
LP 0.010 (-0.043,0.064) 0.818 0.893
TD -0.061 (-0.349,0.470) 0.723 0.821
FR 0.002 (-0.002,0.007) 0.800 0.882
PTS 0.001 (-0.002,0.004) 0.620 0.737
PTE 0.000 (-0.004,0.003) 0.597 0.715
SSSBP -0.221 (-0.997,0.556) 0.761 0.852
SSDBP 0.117 (-0.385,0.618) 0.720 0.822
ESSBP -0.391 (-0.913,0.130) 0.738 0.840
ESDBP -0.199 (-0.522,0.124) 0.714 0.818

Table E.3: Kalman; CI: 95% confidence interval for the bias. ⇢: Pearson’s correlation between
true values and imputed values. d: Agreement index between true values and imputed values.
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bias CI ⇢ d
ABFR -0.087 (-0.335,0.161) 0.848 0.912
SSP 0.039 (-0.298,0.377) 0.749 0.848
LP 0.010 (-0.043,0.064) 0.818 0.893
TD -0.061 (-0.349,0.470) 0.723 0.821
FR 0.002 (-0.002,0.007) 0.800 0.882
PTS 0.001 (-0.002,0.004) 0.620 0.737
PTE 0.000 (-0.004,0.003) 0.597 0.715
SSSBP -0.221 (-0.997,0.556) 0.761 0.852
SSDBP 0.117 (-0.385,0.618) 0.720 0.822
ESSBP -0.391 (-0.913,0.130) 0.738 0.840
ESDBP -0.199 (-0.522,0.124) 0.714 0.818

Table E.4: TS-EM; CI: 95% confidence interval for the bias. ⇢: Pearson’s correlation between true
values and imputed values. d: Agreement index between true values and imputed values.

bias CI ⇢ d
ABFR -0.021 (-0.362,0.320) 0.686 0.792
SSP 0.165 (-0.224,0.553) 0.648 0.765
LP 0.023 (-0.042,0.088) 0.721 0.823
TD -0.013 (-0.430,0.454) 0.671 0.779
FR 0.003 (-0.003,0.008) 0.694 0.803
PTS 0.002 (-0.001,0.005) 0.549 0.672
PTE 0.000 (-0.004,0.003) 0.531 0.652
SSSBP -0.169 (-1.104,0.766) 0.624 0.744
SSDBP 0.030 (-0.542,0.602) 0.613 0.739
ESSBP -0.449 (-1.074,0.176) 0.587 0.712
ESDBP -0.201 (-0.566,0.165) 0.610 0.733

Table E.5: Mean substitution; CI: 95% confidence interval for the bias. ⇢: Pearson’s correlation
between true values and imputed values. d: Agreement index between true values and imputed
values.
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bias CI ⇢ d
ABFR 0.001 (-0.406,0.426) 0.459 0.552
SSP 0.141 (-0.348,0.631) 0.280 0.371
LP -0.003 (-0.064,0.057) 0.759 0.852
TD -0.201 (-0.777,0.376) 0.239 0.285
FR 0.001 (-0.006,0.007) 0.400 0.501
PTS -0.000 (-0.004,0.003) 0.433 0.475
PTE -0.002 (-0.006,0.003) 0.379 0.424
SSSBP -0.297 (-1.291,0.696) 0.557 0.670
SSDBP -0.113 (-0.722,0.496) 0.541 0.627
ESSBP -0.542 (-1.191,0.107) 0.541 0.662
ESDBP -0.451 (-0.840,-0.061) 0.536 0.662

Table E.6: MICE; CI: 95% confidence interval for the bias. ⇢: Pearson’s correlation between true
values and imputed values. d: Agreement index between true values and imputed values.

bias CI ⇢ d
ABFR -1.48 (-1.801,-1.166) 0.740 0.848
SSP 0.325 (-0.095,0.745) 0.602 0.763
LP -0.711 (-0.760-0.662) 0.854 0.920
TD -0.046 (-0.527,0.434) 0.612 0.763
FR -0.014 (-0.019,-0.008) 0.708 0.831
PTS 0.005 (0.000,0.011) 0.285 0.485
PTE 0.001 (-0.005,0.007) 0.270 0.468
SSSBP -0.010 (-0.979,0.958) 0.615 0.774
SSDBP 0.084 (-0.527,0.694) 0.581 0.752
ESSBP -0.335 (-0.961,0.292) 0.614 0.774
ESDBP -0.132 (-0.510,0.245) 0.606 0.767

Table E.7: kNN; CI: 95% confidence interval for the bias. ⇢: Pearson’s correlation between true
values and imputed values. d: Agreement index between true values and imputed values.
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bias CI ⇢ d
ABFR -0.494 (-0.797,-0.191) 0.772 0.873
SSP -0.027 (-0.420,0.367) 0.647 0.789
LP -0.283 (-0.337,-0.229) 0.823 0.905
TD -0.600 (-1.112,-0.088) 0.556 0.729
FR -0.052 (-0.057,-0.046) 0.676 0.816
PTS 0.000 (-0.003,0.004) 0.503 0.678
PTE -0.003 (-0.007,0.001) 0.464 0.651
SSSBP -0.439 (-1.364,0.485) 0.660 0.805
SSDBP -0.274 (-0.856,0.307) 0.629 0.784
ESSBP -0.220 (-0.849,0.410) 0.625 0.785
ESDBP -0.504 (-0.889,-0.118) 0.602 0.769

Table E.8: Joint model; CI: 95% confidence interval for the bias. ⇢: Pearson’s correlation between
true values and imputed values. d: Agreement index between true values and imputed values.
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Appendix F

Distribution of errors

In this appendix the distribution of errors for the imputation methods FFill and Kalman are
compared. Note that FFill often has a wider distribution, but also a more prominent peak at zero.

Figure F.1: Distribution plots of errors.

87



Figure F.2: Distribution plots of errors.

Figure F.3: Distribution plots of errors.
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Figure F.4: Distribution plots of errors.

Figure F.5: Distribution plots of errors.
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