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Abstract

The microstructure in cortical bone greatly affect the toughness
of the bone and the crack propagation during fracture. The two
main structural features, Haversian canals and osteons, have been
previously studied in order to increase the knowledge of the biome-
chanics of bone. In studies where X-ray microtomography has been
the imaging method of choice, the microstructure has been anal-
ysed based on manual segmentation, a method which is difficult
and tedious on larger sample volumes.

X-ray microtomograms, or µCT images, are gray scale 2D im-
ages, which can be rendered into a 3D volume, where the pixel
intensity corresponds to the absorption coefficient of the material
in the object. Material that absorbs a lot of X-ray radiation will
show up as high intensity pixel whilst material that absorbs little
will show up as low intensity pixel, just as in a normal radiogram.
µCT is best used on samples containing structures with varying ab-
sorbtion properties as this will enable good contrast between the
structures.

In this project, a semi-automatic method for segmenting the mi-
crostructures Haversian canals and osteons in µCT images of cor-
tical bovine bone was implemented. Based on this segmentation,
a simplified model was built for future Finite Element Modelling.
K-means clustering with nine clusters was chosen as segmentation
method. By identifying which clusters correspond to what pixel
intensities, and hence to what tissue type, it was possible to seg-
ment out Haversian canals, and osteons in the µCT images. The
simplified model was based on principal component analysis of the
segmented canals in 3D, and circle fitting on Haversian canals, and
osteons in 2D.

The generated segmentations provided enhanced visibility of the
microstructure. Based on porosity, and volume analysis, the seg-
mentation pipeline gave good results for the Haversian canals, but
was less accurate in differentiating between osteonal tissue and tis-
sue with similar absorption properties embedded in the interstitial
bone. Porosity measurements on the segmentations corresponded
with previous studies. The radii of the osteons and the Haversian
canals, generated by the simplified model, agreed well with previous
studies, and the method overcame the issue with unclear osteonal
boundaries by using the segmentation of the Haversian canals as a
base.
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3 Introduction

Bone is a complex tissue with important properties for the biomechanics
of an organism. The correlation between structure, at different hierar-
chical levels, and mechanical properties is not yet completely known and
continues to be a field for active research.

Cortical bone has a very complex hierarchical structure that greatly af-
fects the stiffness, and toughness of the bone. Crack propagation is af-
fected by all structures at different length scales; in this project the mi-
crostructure of cortical bone, i.e. more than one osteon, is the length
scale of interest. Earlier studies have looked at radial 2D models of corti-
cal bone, either by randomly generating the geometry based on statistical
analysis of actual samples [Li et al., 2013], or by fitting ellipses to hand
segmented structures in microscopy images [Mischinski and Ural, 2011].
[Demirtas et al., 2016] used a 3D model based on extruded transverse mi-
croscopy images in which the microstructures had been approximated by
ellipses after hand segmentation, as in [Mischinski and Ural, 2011]. Stud-
ies using 2D models in the longitudinal plane were not found, neither
were any studies where the microstructure was directly modelled based
on segmentations of microstructures in a sample.

Visualization of microstructure using manual segmentation, where struc-
tures are outlined by hand, is tedious and impractical on larger samples.
In this project a semi-automatic method for segmentation of cortical mi-
crostructure is implemented. Based on the segmentation a simplified
model is created for future implementation of Finite Element models
aimed to validating experimental data collected during mechanical testing
of cortical bovine bone.

Within a larger multiscale mechanics project, aimed to researching the
fracture mechanics of cortical bone at different hierarchical levels, a num-
ber of samples of cortical bovine bone were tested in tension and anal-
ysed using Digital Image Correlation (DIC), Small Angle X-ray Scatter-
ing (SAXS), and Wide Angle X-ray Scattering (WAXS). The experimental
setup is shown in Fig. 1. Using DIC surface strains were analysed based
on recording a randomized speckle pattern on the surface of the sample
at different time points during the experiment, and correlating the scat-
ter pattern at these time points. By analysing SAXS and WAXS data,
information about the orientation and deformation of collagen and min-

5



eral in the sample was gathered. In order to correlate the results from
the tensile test to the microstructure in the samples, the samples were
imaged using X-ray Microtomography, resulting in the gray scale images
that are segmented and analysed in this Master’s Thesis project.

Figure 1: Experimental setup for the tensile testing of the bone samples [Mathavan]. The
experiments were carried out by PhD student Neashan Mathavan at the I911-4 beamline at
MAXLAB. [Courtesy of Mathavan].
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4 Aims and Objective

The aim of this Master’s Thesis project was to develop a semi-automatic
method for segmentation of X-ray microtomography (µCT) images of cor-
tical bone in order to separate the microstructures Haversian canals, and
osteons which play an important role in the mechanics of crack propaga-
tion. The resulting segmentation needs to represent the real structures
in terms of geometry, volume, and porosity. Based on the segmentation,
a simplified model that could be used to model crack propagation in a
Finite Element (FE) software was to be developed. The model should
be representative of the structures in terms of radii, placement, and tilt,
but be simple enough for easy implementation and simulation in the FE
software.
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5 Background and Theory

5.1 Bone

At macro level bone is made up of trabecular (spongy), and cortical (com-
pact) bone [Martini, 2012]. Fig. 2 depicts a human femur where, as with
all long bones and most other bone types, the distal and proximal epiphy-
ses contain trabecular bone. The shaft and outer layers of the epiphyses
are made up of cortical bone. Trabecular bone is found in regions of
the bone where the stresses during loading are multidirectional, whilst
cortical bone is found in regions where stresses are mainly unidirectional.

Figure 2: Anatomy of a long bone. (a) Overview. (b) Cortical (compact) bone. [Adapted
after OpenStax College, 2013].
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5.1.1 The Microstructure of Cortical Bone

Cortical bone has a complex hierarchical structure (see Fig. 3). At sub-
nano scale the structure is made up of collagen molecules interwoven by
mineral crystals [Robling and Stout, 2008]. These structures form colla-
gen fibrils, which in turn form collagen fibres at nano-scale. At sub-micro
scale the collagen fibres form lamellae surrounding so called Haversian
canals. The lamellar structure is known as osteons and have a lower
mineral content than the surrounding bone matrix, or interstitial bone.
However, the mineral density varies highly between osteons depending
on their age [Budyn et al., 2010, 2012]. The Haversian canals are hollow
canals that permeate the bone, enclosing blood vessels and nerve fibres.
They are interconnected by branching canals called Volkmann’s canals
which also enclose blood vessels and nerve fibres but lack the surround-
ing osteonal structure [Maggiano et al., 2016].

Figure 3: Hierarchical structure of cortical bone seen at different size scales. [Redrawn from
Ritchie, 2010]

Bone is a dynamic tissue, i.e. the structure and components change over
time due to growth, modelling and remodelling [Robling and Stout, 2008;
Budyn et al., 2010, 2012; Maggiano et al., 2016; Ritchie, 2010]. Growth
is regulated by the genetic setup of the individual organism, and sees
to increase in length and thickness (diameter) of the bone. Modelling
modifies the genetic base structure by optimizing the structure for me-
chanical loading experienced by the individual; the architecture and mass
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of the bone is altered as bone is added (formation) or removed (resorp-
tion) from surfaces that experience more or less mechanical loading. The
result of growth and modelling in normal bone is an organized struc-
ture made up of parallel sheets of primary lamellar bone, called primary
osteons, permeated by canals, as well as by primary vascular channels,
or non-Haversian canals. Non-Haversian canals are channels containing
vasculature as, during modelling, some periosteal blood vessels become
incorporated into the cortical lamellar matrix. Some, but not all, such pri-
mary vascular channels have a few concentric lamellae deposited around
them creating a primary osteon around the non-Haversian canal. The
number of non-Haversian canals decrease with age and can hence be used
to determine the age of the tissue.

Growth and normal modelling stops when the skeleton reaches maturity.
Remodelling differs from modelling in that both resorption and forma-
tion occurs at the same location of the bone. The remodelling sequence,
activation→resorption→formation, removes and replaces bone structural
units (BMUs, see Fig. 4), which are complex arrangements of cells that
cut through interstitial cortical bone in mainly longitudinal direction.
The resulting structures - canals and surrounding hypomineralized bone
- are denoted secondary osteons of which there are many subtypes. The
leading region of the BMU is called the cutting cone and is lined with os-
teoclasts which are cells specialized in resorbing bone. Directly after the
cutting cone and its osteoclasts is a small region called the resorptive bay
lined with mononuclear cells whose exact function is unclear.Following
the resorptive bay is the closing cone which is lined with osteoblasts, a
cell type specialized in the formation of bone. Osteoblasts deposit lay-
ers of osteoid (unmineralized bone matrix) which leads to a centripetally
layered structure of osteonal lamellae once it is mineralized. Once the
deposition of osteoid ceases, the Haversian canal is left in the center of
the osteon. Some osteoblasts get trapped in the osteoid and differentiate
into osteocytes which are the most abundant type of bone cell [Langer
and Peyrin, 2016]. Osteocytes communicate with each other through
dendritic precesses which, upon the apoptosis of the osteocyte, leave a
network of small canals called canaliculi. The canaliculi connect the hol-
low spaces left by the osteocytes, called lacunae, making up what is called
the lacuno-canalicular network (LCN).
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Figure 4: (top) Longitudinal view of a BMU moving through bone from right to left.
(bottom) Schematic illustrations of an evolving osteon and Haversian canal, corresponding
to selected transverse sections of the BMU system. [Redrawn after Robling and Stout, 2008]

Secondary osteons in human cortical bone are generally 200-300µm in di-
ameter, with the enclosed Haversian canal at 50-90µm in diameter [Mag-
giano et al., 2016; Ritchie, 2010; Ritchie et al., 2005]. In cortical bovine
bone the dimensions are smaller; osteons have an average diameter of
around 150-200µm, and Haversian canals have an average diameter of
around 30-50µm (see Tab. 1), depending on the age of the animal.

Table 1: Diameters of microstructure in cortical bovine bone, according to different studies.

Study Haversian canal (µm) Osteon (µm)

Budyn et al., 2010,2012 37 179

Zhang et al., 2014 30 192.7

Carnelli et al., 2013 50 200

5.1.2 Crack Propagation and Microstructure

The formation and propagation of micro cracks is heavily affected by the
size and density of the osteons, the porosity of the cortical tissue, as well as
by the orientation of the osteons [Mischinski and Ural, 2011; Budyn et al.,
2010, 2012; Ritchie et al., 2005; Koester et al., 2008]. It is much easier to
split bone in the longitudinal direction, parallel with the main osteonal
orientation, than it is in the transverse direction, perpendicular to the
osteons. As is described in section 5.1.1 The Microstructure of Cortical
Bone the osteon is created at a later time point than the interstitial bone
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and is hence less mineralized, resulting in a lower mechanical stiffness and
toughness [Budyn et al., 2010]. The longitudinal orientation of the osteons
is what constituted the anisotropic properties of the bone, resulting in
different mechanical properties depending on the orientation.

5.2 X-ray Microtomography

X-rays are commonly used for medical imaging of internal structures in
the body. The basic principle is to radiate the object of interest, with
some dose Xi, and measure the amount of radiation that has permeated
the object, Xe. This gives a measurement of how much the incident X-ray
photons have interacted with the material in the object, Xa = Xe − Xi.
X-ray photons interact with the electrons in the material, which means
that depending on the size of the atoms in the material, and hence the
binding energies of the atomic electrons, different atoms will interact with
different photon energies.

Figure 5: The energy dependence of the Mass
Attenuation Coefficient of cortical bone [Cour-
tesy of Commons, 2001].

Medical X-ray imaging uses pho-
ton energies of 15-150 keV [Bush-
berg et al., 2012]. Depending on
the energy of the photons, and
the mass of the atoms with which
the photons interacts, four dif-
ferent types of interactions (scat-
tering or absorption) with atoms
will dominate the attenuation of
the X-rays: Rayleigh scattering,
Compton scattering, photoelectric
absorption, and pair production.
Only Rayleigh scattering, Comp-
ton scattering, and the photoelec-
tric effect play a role for diagnostic radiology, as pair production requires
energies higher than those used. The energy dependence of the Mass At-
tenuation Coefficient (a type of absorption cross section per unit mass)
of cortical bone is seen in Fig. 5. From the graph it is evident that the
most prominent attenuation process is the photoelectric effect.

The conventional X-ray set up creates two dimensional images which are
a superimposition of interactions with all structures inside the object
[Hsieh, 2009] (illustrated in Fig. 6). This means that it is not possible
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to know where, depth wise, a structure is located inside the object being
X-rayed.

Figure 6: Illustrative sketch of different plane X-ray acquisition configurations. (a) In a fan
beam the projections are acquired in slices. (b) A cone beam, and (c) a parallel beam, enable
acquiring a full 2D projection in a single step. (d) Illustration of the affect of a non-point
source, where the intensity registered by the detector at a specific point consists of many
different rays from a larger volume of the object. [Redrawn after Landis and Keane, 2010].

Computerized Axial Tomography (CT or CAT) scans solves the depth
resolution issue by acquiring a series of 2D radiographs whilst the im-
aged object is rotated around a single axis, or whilst the source and
detector are rotated around the object [Landis and Keane, 2010]. These
2D images are then used to construct a 3D image of the object. Each
horizontal pixel strip in a 2D image is Fourier-transformed, filtered, and
then inverse-Fourier-transformed before the tomogram is obtained using
back-projection calculations [Mizutani and Suzuki, 2012] (see Fig. 7).
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Figure 7: Principle of tomographic reconstruction, courtesy of [Redrawn after Mizutani and
Suzuki, 2012]. (A) 2D images are acquired by rotation the object. (B) Each horizontal pixel
strip in the 2D image is subjected to Fourier transformation, filtering, and inverse Fourier
transformation. (C) Back-propagation is used to obtain the tomogram.

A number of factors contribute to the quality of a tomogram and the
reduction of artefacts [Boas and Fleischmann, 2012]. The resolution of
the detector needs to be high enough to be able to resolve the structures
of interest, and as little scattering and motion as possible needs to occur.
Completely monochromatic X-rays, with high brilliance, is also desirable
in order to get a high photon count, and low pixel intensity dependence
on photon energy.

If the detector is defected or miscalibrated the tomogram will present
with ring artefacts, i.e. bright or dark rings centred around the center
of rotation; the fix is to re-calibrate or change the detector [Boas and
Fleischmann, 2012].

X-ray tomogram noise is in the form of Poisson noise, which occurs due to
the statistical error when the photon count is low, and shows as random
thin bright or dark streaks mainly in the direction of greatest attenuation
[Boas and Fleischmann, 2012]. By increasing the brilliance the noise is
reduced, but at the same time the resolution is decreased since the differ-
ences in attenuation between regions in the object being scanned are less
influential. Iterative reconstruction algorithms have been implemented to
reduce the issue with noise in high resolution tomograms. Model-based
iterative reconstruction (MBIR) is one such method that decouples the
noise and image quality, and hence allows for high resolution tomograms
with low noise, at lower X-ray brilliance.

For polychromatic X-ray sources, beam hardening causes artefacts in form
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of dark streaks between regions with high attenuation, or along the long
axis of a region with high attenuation [Boas and Fleischmann, 2012]. The
low energy photons in the polychromatic X-rays are more easily attenu-
ated than the higher energy photons leading to a beam transmission that
diverges from that of a monochromatic beam where all of the photons
that hit the detector have interacted with the atoms in the object in the
same way due to their coherent energy. Low energy X-rays are attenuated
primarily due to the photoelectric effect, which means the attenuation is
proportional to Z3/E3 (Z is the atomic number, and E is the energy of
the photons), whilst high energy photons are attenuated primarily due
to Compton scattering, which means the attenuation is proportional to
1/E. For high atomic number materials, such as bone, this means that the
attenuation differs for different energy photons and hence the resulting
absorption profile will not only convey the attenuation in the object but
will also be a function of the photon energies. A common fix for beam
hardening is to correct for it by assuming an average amount of beam
hardening based on the measured attenuation. Higher atomic number
materials will need an iterative process, based on forward projecting in-
formation about the distribution of high attenuation regions, in order to
correct for the beam hardening as it is higher than average.

Compton scattering causes photons to end up in different detector pixels
due to them changing directions instead of transferring all of their energy
to the atoms in the object being imaged [Boas and Fleischmann, 2012].
Reducing scatter is done by employing anti-scatter grids in front of the
detector, or by subtracting an estimate of the scatter from the measured
attenuation.

Both scattering and beam hardening causes dark streaks along the lines
of greatest attenuation for highly attenuated X-ray beams, since more
photons than expected are being detected at these sites [Boas and Fleis-
chmann, 2012]. Scanning at higher energies reduces the beam hardening
but also the contrast between regions with different attenuation proper-
ties.

X-ray Microtomography, or micro CT (µCT), is a method of visualizing
structures at micro scale using X-rays. Both the characteristics of the
detector and the geometry of the X-ray beam affect the spatial resolution
in the acquired image. The pixel size of the detector must be less than
or equal to the size of the objects one wants to visualize; one megapixel
detectors (e.g. 1024 by 1024) are commonly used. The spot size of a point
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source (fan or cone beam) affects the resolution in the same way, as is
illustrated in Fig. 6b. The smaller the spot size the better as the photons
hitting a particular pixel on the detector can be traced back through the
object with more precision, resulting in a better reconstruction of the
positions of structures in the object, and less noise in the final image. In
reality, optics are necessary in order to get a small enough point source.
Since X-rays refract very weakly in most practical materials, diffractive
optics (Fresnel zone plates) can be used to focus the beam [Langer and
Peyrin, 2016]. For the optics to work properly the X-ray source must be
monochromatic which puts restrictions on the source used1. The source
must also have parallel characteristics and have a high brilliance in order
to obtain high spatial resolution [Mizutani and Suzuki, 2012]. For N -
dimensional images (N > 2) the spatial sampling should be less than
1/2
√
N times the spatial resolution, i.e. the width of a pixel should be

less than 1/2
√
N times the spatial resolution, since the Nyquist criterion2

is not enough for visualizing 3D structures using X-ray microtomography.

5.3 Segmentation

Image segmentation aims at partitioning an image into regions with sim-
ilar properties, and is a problem being actively researched [Bishop, 2009;
Szeliski, 2011]. Depending on the type of image one wants to segment
different methods have been developed, three of which will be briefly
mentioned here.

Thresholding is applicable to gray scale images, and uses pixel intensity
intervals as partitions. Pixels bellow a certain value are set to zero (black)
and pixels above the value are set to one (white), resulting in a binary
image.

Colour-based methods can be applied to both gray scale and colour images,
and uses the different colours present in the image as partition. A pixel
in a colour image has a colour based on a combination of base colours,

1Synchrotron radiation sources usually monochromizes their X-rays in order to a
specific X-ray energy but most laboratory micrographs are equipped with micro-focus
X-ray generators which do not use a monochromator [Mizutani and Suzuki, 2012].
Hence, X-rays from laboratory generators can not always be used together with the
optics necessary for microtomography.

2The sampling frequency must be at least twice as high as the highest frequency of
interest in order to be able to avoid aliasing [Hägglund, 2012].
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and hence pixels with primarily base colour X can be distinguished from
pixels with base colours Y, and Z.

Active contours are methods that detect boundaries between objects in
images, and iteratively moves to find the best solution [Szeliski, 2011].
The methods can be used on any image type where the contrast between
different objects in the image is high enough.

5.3.1 Segmentation Using K-means Clustering

K-means clustering is a method used for partitioning multidimensional
data points, {x1, ...,xN}, into K clusters [Bishop, 2009]. Applied to im-
age segmentation it is a type of colour-based method since the resulting
segmentation can have more clusters than two, compared to thresholding
where the segmentation results in a binary image. The gray scale images
acquired by X-ray tomography are well suited for this type of segmenta-
tion method as the information given by the images (pixel intensity) is
directly related to the properties of the structures in the object that was
imaged. In the case of cortical bone, the pixel intensities are directly re-
lated to the type of microstructure being imaged: haversian canals being
represented by low intensity pixels, and osteons by middle intensity pix-
els. Clustering pixels based on intensity hence results in a segmentation
of the microstructures.

The clustering is done based on the distances between the points xn and
the center of the clusters. Assuming the data points being D-dimensional,
a set of D-dimensional vectors µk, where k = 1, ...,K, are introduced
and can be considered to represent the centres of the K clusters into
which the data points are to be partitioned. The partitioning becomes an
optimization problem in which the goal is to find a set of vectors, {µk},
and an assignment of data points to clusters that minimize the sum of
the squares of the distances of each data point xk to its closest vector µk.
The objective function is

J =
N∑
n=1

K∑
k=1

rnk‖xn − µk‖2 (1)

where rnk ∈ {0, 1} is a set of binary indicator variables that correspond
to each data point xn. rnk describe which cluster k the data point xn is
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assigned to so that rni = 1 if xn is assigned to cluster i and rnj = 0 if
j 6= i. This is known as the 1-of-K coding scheme. To find which values
of rnk and µk that minimize J an iterative process is used in which,
at each iteration, two successive steps are performed, corresponding to
successive optimization of the sought after values. In the first step some
initial values are chosen for µk, and J is minimized with respect to rnk
whilst keeping µk fixed. In the second step J is minimized with respect to
µk whilst keeping rnk fixed. This two-step optimization is then repeated
until convergence, i.e. no data points are re-assigned to new clusters, or
until some maximum number of iterations is reached. The initial values
chosen for µk can be chosen randomly or as a subset of the data points
xn; if they are chosen randomly a larger number of iterations will usually
be needed in order to reach convergence. Determining rnk in the first
iteration is done by assigning the nth data point to its closest cluster
center, as per

rnk =

{
1 if k = arg minj‖xn − µj‖2

0 otherwise.
(2)

This is possible since J is a linear function of rnk and the terms involving
different n are independent which means that the optimization for each
n can be done separately by choosing rnk to be 1 for which ever cluster
k that minimizes ‖xn − µk‖2. Since J is a quadratic function of µk the
second step in the optimization process is done by setting the derivative
of J with respect to µk to zero and solving for µk, as per

δJ

δµk
= −2

N∑
n=1

rnk(xn − µk) = 0 (3)

→ µk =

∑
n rnkxn∑
n rnk

(4)

The name K-means clustering comes from Eq. 4 which, in words, say that
”µk is equal to the mean of all data points xn assigned to cluster k”. Since
each iteration of the algorithm reduces the value of the objective function
the method is sure to converge, however there is a risk of convergence to
a local minimum instead of a global minimum which leads to an incorrect
partitioning of the data points. This can be dealt with by repeating the
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clustering M times, choosing different initial guesses of µk, and selecting
the best optimization, i.e. the lowest value of the minimized objective
function. Another issue with the algorithm is its slowness as in each
iteration the Euclidean distance in Eq. 1 must be computed.

A variant is the K-means++ algorithm, where a center, c1, is chosen
heuristically by selecting some data point uniformly at random. It then
computes the distances between the center and each other data point, xi;
the distance between center j and data point i is denoted d(xi, cj). The
next center, c2 is selected at random from the data points with probability

d2(xi, c1)∑N
i=1 d

2(xi, c1)
, N = 1, ..., n (5)

Choosing center j is hence done by computing the distances from each
data point to each center, and assigning each data point to its closest
center. Each subsequent center is then chosen with a probability propor-
tional to the distance from itself to the closest already chosen center until
K centres have been chosen. It has been shown by [Lloyd, 1982] that this
algorithm, compared to the standard K-means, converges faster.
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6 Method

6.1 Samples

Figure 8: Description of the difference be-
tween samples labelled L (longitudinal), and
T (transverse). Longitudinal samples were cut
out parallel to the longitudinal orientation of
the collagen fibres, and osteons in the diaph-
ysis of the femur. Transverse samples were cut
out tangential to the bone surface. Adopted
from [Martini, 2012].

Samples of cortical bovine bone,
taken from different locations on
the femoral shaft (see Fig. 2), have
been used in this project. Sample
IDs, and corresponding location in
the femur are found in Tab. 2,
where L denotes samples cut lon-
gitudinally to the long axis of the
bone, and T denotes samples cut
transversal to the bone surface (see
Fig. 8). The different cuts were
employed in order to obtain sam-
ples with microstructure in differ-
ent orientations relative to the cut,
which in turn would enable me-
chanical testing in two different orientations relative to the microstruc-
tural orientation. Tab. 2 shows the IDs given to the samples. Samples
denoted S were to be imaged using SAXS during tensile testing and image
stacks denoted W were to be imaged using WAXS during tensile testing.
Samples with the same IDs in respect to cut and numbering were taken
as a series from the same location in the femur, in order for similar mi-
crostructure to be analysed through both DIC/SAXS, and DIC/WAXS3.

3The experimental setup did not make simultaneous SAXS and WAXS measure-
ments possible.
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Table 2: Sample ID, and location in femur. Samples with common IDs were taken from the
same site, as consecutive slices. Physical size and thickness for all samples is found in Appendix
A.1.)

ID Location Tensile test SAXS WAXS

P1 - Yes - -

P2 - Yes - -

1L Distal diaphysis No - -
1LW Distal diaphysis No No Yes
1LW Extra Distal diaphysis No No Yes

2LW Proximal diaphysis No No Yes
2LS Proximal diaphysis No Yes No
2LS Extra Proximal diaphysis No Yes No

3L Proximal diaphysis Yes No Yes
3LW Proximal diaphysis No No Yes
3LW Extra Proximal diaphysis No No Yes
3LS Proximal diaphysis No Yes No

4L Proximal diaphysis No - -
4LW Proximal diaphysis No No Yes
4LS Proximal diaphysis Yes Yes No

5L Mid-diaphysis No - -
5LS Mid-diaphysis No Yes No

1TW Mid-diaphysis No No Yes
1TS Mid-diaphysis Yes Yes No

2TS Mid-diaphysis Yes Yes No

4TW Mid-diaphysis No No Yes
4TW Extra Mid-diaphysis No No Yes
4TS Mid-diaphysis Yes Yes No

5TS Mid-diaphysis Yes Yes No

6T Mid-diaphysis No - -
6TW Mid-diaphysis No No Yes
6TS Mid-diaphysis No Yes No

All samples were imaged using a 3D X-ray microscope (Zeiss Xradia XRM
520) located at the 4D Imaging Lab at LTH [Solid Mechanics]. In addi-
tion, two samples from a pilot experiment, where tensile test were con-
ducted, were imaged and used; these samples were given IDs P1 and P2
(P denotes their involvement in the pilot experiment). The samples were
wrapped in wet gauze, in order to retain moisture, and stacked in groups
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of five. Each group was put into a plastic tube to be mounted, with
coronal surfaces facing the X-ray source, at a distance of 62 mm from
the source, which was at a voltage of 80 kV, and 38 mm from the detec-
tor. The exposure time was set to 5 seconds and 2501 projections were
obtained, yielding a homogeneous voxel4 size of 9.25 µm with a binning
of one pixel. The slice thickness of 9.25µm rendered 1,647-2,012 images
per sample, depending on the physical thickness of the sample. As the
samples were imaged in groups of five each sample had to be manually
isolated before further analysis could be done. The slices corresponding
to one and the same sample were stacked together to create one image
file per sample (see Fig. 9).

Figure 9: Principle sketch of the stacking of images corresponding to a sample volume. The
isotropic voxel size enables easy re-slicing in any orientation.

Ten of the samples (Tab. 2) were imaged before the start of this Master’s
Thesis project (see Fig. 10). Six of the samples (3L, 4LS, P1, P2, 1TS,
and 4TS) had been used in tensile testing which caused them to present
with cracks. The remaining samples (see Fig. 11) were imaged during the
duration of this project, with slightly differing settings, resulting in images
with somewhat different voxel sizes (9.250-9.252µm) and with different
pixel intensities. Three samples (4LW, 6T, and 6TW) were imaged at
both occasions.

The bone samples varied somewhat in size as the resulting image stacks
from the micro CT imaging varied in number of images. In order to
analyse porosity and microstructure thickness a manageable sample size,
with a representative microstructure that was clearly visible, was chosen

4Volume element, or 3D pixel.

23



in the form of two sub-stacks from different locations in the notches in
the sample stack. All sub-stacks were of approximately the same volume
(2.927± 0.001 mm3)5 so that they would be comparable, and be equally
representable for their sample. For all sub-stacks 148 slices were cho-
sen, making the sub-sample depth 1.369µm. As the samples had slightly
different thickness no uniform height and width could be chosen for all
sub-stacks.

Fig. 11 show coronal views of the samples from the second imaging round.
Fig. 10i, and Fig. 11r, as well as Fig. 10j, and Fig. 11t show the same
sample but from different acquisition events.

5The volume chosen was inspired by the sample volumes used by [Demirtas et al.,
2016] (1.0413mm3) and [Koester et al., 2008] (12.3mm3).
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(a) P1 (b) P2 (c) 1LW (d) 3L

(e) 4LW (f) 4LS (g) 1TS (h) 4TS

(i) 6TW (j) 6T

Figure 10: Coronal views of raw images from mid-slices of the ten samples imaged during
the first acquisition, each denoted by its ID. The differences in position is due to how the
samples were stacked together in groups of five during the acquisition of the images. Samples
4LS, 1TS, 4TS, 6TW, and 6T display beam hardening (the darker areas at the corners of the
images).
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(a) 1L (b) 1LW Extra (c) 2LW (d) 2LS

(e) 2LS Extra (f) 3LW (g) 3LW Extra (h) 3LS

(i) 4LW (j) 4L (k) 5LS (l) 5L

(m) 1TW (n) 2TS (o) 4TW (p) 4TW Extra

(q) 5TS (r) 6TW (s) 6TS (t) 6T

Figure 11: Coronal views of raw images from mid-slices of the 20 samples imaged during
the second acquisition, each denoted by its ID. The differences in position is due to how the
samples were stacked together in groups of five during the acquisition of the images.
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In addition to the samples shown above, a small (about 1-1.5mm) slice
from the middle of the 1TS sample (row 12 in Tab. 2) was extracted and
imaged three times, each time at increasingly higher resolution (see Fig.
12) than the original sample (2.241µm, 1.240µm, and 0.600µm, compared
to 9.25µm voxel size). This particular sample was chosen as its osteonal
structure was very distinct. The 2.241µm resolution tomogram was used
for validation. The idea being that supplying the segmentation pipeline
with an easy-to-validate sample would be yet another way of validating
the segmentation pipeline, both by visual comparison of the segmenta-
tions and the raw µCT images, and by volume comparison between the
segmentations and structures segmented by manual outlining.

(a) µCT image at 2.241µm
resolution.

(b) µCT image at 1,240µm
resolution.

(c) µCT image at 0.600µm
resolution.

(d) Min projection image
at 2.241µm pixel size.

(e) Min projection image
at 1.240µm pixel size.

(f) Min projection image
at 0.600µm pixel size.

Figure 12: High resolution µCT images from the 1TS sample. The position of the zoom-ins
were chosen as the middle point of the previous field of view.

To achieve these higher resolutions the settings of the tomograph were
altered in terms of sample placement, exposure time, energy, and power.
The new settings, as well as the original ones, are seen in Tab. 3.
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Table 3: Settings used to acquire the different pixel size tomograms.

Pixel size (µm) Energy (kV) Power (W) Placement [S/D](mm) Exposure time (s) Binning

9.25 80 70 62/38 5 1

2.241 60 5 11/22 1.5 2

1.240 80 7 11/49 2 2

0.600 80 7 11/- 2 2

6.2 Extracting Geometrical Features

The pixel size (9.25µm) of the µCT images used in this projects enables
visualisation of Haversian canals, osteons, interstitial bone, as well as
non-Haversian canals, as is indicated in Fig. 13. As canals are hollow, no
absorption of the X-rays will take place and hence regions corresponding
to canals will show up as black in the images. Interstitial bone is highly
mineralized and will hence absorb much of the incident X-rays, giving rise
to bright areas in the images. Osteons have a lower mineral content than
the surrounding interstitial bone, due to them being younger. Hence,
intermediate gray areas surrounding the Haversian canals correspond to
osteons. As is seen in Fig. 13 osteons are hard to distinguish in the µCT
images used in this project. Also, regions inside the interstitial bone show
the same gray scale as osteonal structures due to the inhomogeneity in
mineralization of the tissue. In this project the segmentation was based
on pixel intensity; a low intensity (black) was said to correspond to a
canal, and a medium intensity (dark gray) was said to correspond to an
osteon, while a high intensity (light gray to white) was said to correspond
to interstitial bone.

Figure 13: Cross section of part of one of the µCT images used in this project, illustrating
the cortical histomorphology. Blue arrows denotes osteonal structures (darker gray). Red ar-
rows denotes Haversian canals. Green arrows denotes primary vascular canals (non-Haversian
canals). Light gray areas are interstitial bone.
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6.2.1 Hardware and Software

The computer used for all processing and analysis has 64.0 GB of RAM,
and an Intel(R) Xeon(R) CPU (E5-1620 v3) at 3.50 GHz. Pre-processing
was done in ImageJ 1.51h [Schindelin et al., 2012; Schneider et al., 2012].
All code pertaining to the algorithms for segmentation and simplification
were implemented in Matlab R2015b. Golden Standards for the segmen-
tation were obtained by using Seg3D 2.4.0 [CIBC, 2016].

6.2.2 Image Analysis Pipeline

Figure 14: Flowchart overview of the different parts of this project.
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In order to create a semi-automatic and user-friendly pipeline for extract-
ing and analysing the microstructures in the bone samples (Fig. 14),
Matlab code was written, aiming at implementing a small program. The
initialization of the main program is shown in Fig. 15 where the user is
given the choices to either segment a gray scale image or image stack, or
to simplify a previously segmented image stack, or to validate a segmen-
tation or simplification by overlaying the segmentation or simplification
on top of the image stack used to create it. These options are explained
further.

Figure 15: Initiation of the image analysis pipeline with user choices.

6.2.3 Pipeline for Segmentation

Fig. 16 shows two flowcharts of the pipelines implemented for segmenta-
tion.

User input:

� An image file for segmentation, whose directory and name is stored
for future use, is chosen by the user.

� The user is asked if the images have been filtered using a Gaussian;
if not the images will be filtered before further analysis is done.

� To determine whether or not background removal is necessary, the
user is asked if the images are sub-samples, i.e. taken from within
the sample volume, or if they contain background, i.e. if pixels exist
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that are not part of the sample but of surrounding material used
for packing the samples while in the tomograph.

� If, when looking at the finished segmentation, the user decides that
the division of clusters into structures does not match well with
the original image it is possible to specify the number of clusters
to be assigned as canals and as osteons by changing the predefined
numbers in the second user input prompt. This means that the
entire segmentation process must be redone but it makes the result
more adaptable to images with different gray scales.

� A final user choice of whether or not to create validation stacks is
given; the method for creating these stacks is explained in section
6.2.5 Pipeline for Validation.

The resulting segmentations are saved as binary image stacks, of the same
size as the input gray scale images, in a new folder, named K-means, at
the directory of the original image file.
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(a) Sub-sample. (b) Full sample.

Figure 16: Flowcharts showing overviews of the pipelines implemented to analyse the sub-
samples and the full samples. The number of clusters to use for the two segmentations (three
each) was based on visual comparison of the segments and the µCT image.

6.2.4 Pipeline for Simplified Model

Based on the segmentations of the Haversian canals and the osteons, sim-
plified models containing a number of structures were created by fitting
cylinders to the placements (centres), orientations (tilts), and radii of the
canals and osteons. The models were to be implemented in 2D as a trans-
verse or longitudinal slice (see Fig. 17) of a sample, in order to enable
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future implementation of finite element models to be used for validation
of the results from the tensile tests.

Figure 17: Idea for 2D model of osteons and Haversian canals. A Radial slice. B Longitudinal
slice.

User input:

� The sample to be modelled is selected by the user, in the form of
the two binary image stacks containing the segmentations of the
microstructures. The directory and name of the image files is saved
for future use.

� The desired number of structures in the resulting model is chosen
by the user as 5, 10, or 15; the idea being that a manageable number
of structures were to be modelled, irrespective of the gross size of
the input. If too many or not enough structures are found, the user
will be asked whether or not to remove or add structures in the final
model.

� The final user input to the pipeline is whether or not to overlay
binary images, representing the fitted cylinders, on top of the cor-
responding segmentations. If this is desired, additional image stacks
are created and saved in a new (or present since the previous seg-
mentation) folder named Validation; the method for creating these
stacks is explained in section 6.2.5 Pipeline for Validation.

The resulting models are saved in form of text files, containing the center
points and radii of all fitted cylinders, and as binary image stacks of the
cylinders, of the same size as the input gray scale images, in a new folder,
named K-means, at the directory of the original image file.
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6.2.5 Pipeline for Validation

A simple method of validating the segmentation or the simplified model
was implemented in order to get a quick and easy overview of the results
of the pipeline.

User input:

� The user chooses one binary image file, containing cylinder struc-
tures or segmentations, and one gray scale image file, containing
the corresponding µCT image. The file name of the µCT image as
well as its directory are saved for future use.

� The user is warned against having any active Windows File Explorer
windows as Matlab will not be able to save the segmentations cor-
rectly in that case.

The binary images are used as masks that are overlaid, in magenta, on top
of their corresponding gray scale image. The validation image is placed
underneath the µCT image (see Fig. 18) in order to simplify the visual
validation.

Figure 18: Overlay for validation. A segmentation of canals and osteons have been overlain
on top of the corresponding µCT image.

If the program encounters any problem the program will terminate and
a prompt window will let the user know that something went wrong. If
there are no issues in the pipeline the Matlab command window will give
status and time updates when segments of the pipeline is passed.

The resulting validations are saved in a new folder, named Validation, at
the directory of the original image file.
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6.2.6 Pre-processing of the Micro CT Images

In order to enhance the microstructural elements in the µCT images a
Gaussian filter followed by a mean filter was applied to all images in all
sub-stacks. Fig. 19 depicts the difference between a raw µCT image and
filtered µCT images. The filtering was done in ImageJ [Schindelin et al.,
2012; Schneider et al., 2012] using the plugin Smooth (3D) [Ferreira and
Rasband, 2012] with a σ of 0.8 for the Gaussian filter and the built in
mean filter with a radius of 1 pixel6. Using one filter only was tried for
both filters, separately, but it was deemed best to apply both in order
to get a sharp yet smooth segmentation without too much noise. In the
Matlab program that was developed a filter possibility was added in order
to facilitate for un-filtered images; this filter, imgaussfilt.m which uses a
square kernel in 2D when σ is given as a scalar, was a Gaussian, with
the same σ as previously, and gave identical results as the double filter
applied using ImageJ.

Figure 19: Raw µCT image (left), and filtered (right). The filtering enhances the microstruc-
ture.

Segmenting an entire image stack in order to analyse the overall distri-
bution and architecture of the microstructures required removal of back-
ground consisting of µCT signal from wet gauze that was wrapped around
each sample in order to keep them moisturised. This background removal
step was not necessary if the sample to be segmented was virtually cut
out from within the bone volume.

Removing the background was done based on an initial K-means cluster-
ing of the pixel intensities into six partitions. This clustering was only
done once even though the resulting segmentation was at risk of being
based on a local minimum and not a global one (see section 5.3.1 Seg-
mentation using K-means clustering), the reasoning being that the eventual
crudeness would not be a problem.

6The kernel size was chosen based on [Maggiano et al., 2016], and the radius of the
mean filter was chosen based on visual examination of the resulting images.
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The background, defined as the four clusters corresponding to the lowest
pixel intensities (through trial and error), and a binary mask was created
based on these four clusters. However, some canal structures were clus-
tered together with the background since their pixel intensities were the
same as the those of the background.

Figure 20: A set, S, (gray) is convex if the line
segment pq between any pair of points p, q ∈ S
is completely contained in S.

By morphological operations (see
Fig. 21) the mask was altered
to cover only the actual back-
ground. The mask was enlarged
slightly in order to remove the
edges of the bone sample as the
edge pixels were ”shadowed” by
the background, i.e. their inten-
sities were lower than what was
actually representable for the tis-
sue and would hence cause arte-
facts in the subsequent segmenta-
tion which reduced visibility of the
microstructures below the edges.

To get rid of unevenness of the mask edges the mask was smoothed by
using the Matlab function convhull.m [MathWorks, 2017], which returns
the 2D convex hull of the data points given to the function. The convex
hull, CH(S), of a set, S, is the intersection of all convex sets containing
S [de Berg et al., 2008]. A set is said to be convex if the line segment
pq between any pair of points p, q ∈ S is completely contained in S, as is
illustrated in Fig. 20.

If a pixel in the original image was determined to be part of the back-
ground, i.e. if the binary mask covered the pixel in question, its intensity
was altered from its original low value to the infinite intensity7. This
caused the background to be clustered together with pixels correspond-
ing to interstitial bone, during the subsequent re-clustering. As inter-
stitial bone was of no interest to the segmentation these clusters were

7It was also tested to use the maximum intensity in the original µCT image, or the
maximum intensity of all pixels in all images. However, in most images this resulted in
the background pixel intensity diverging too much from the intensities of the interstitial
bone for the following clustering and division into structures to work properly. Instead
pixels corresponding to interstitial bone was clustered together with osteonal pixels
resulting in a faulty segmentation.
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disregarded after the actual segmentation and hence the background was
removed.

The operation to smooth the mask edges (taking the convex hull of the
mask) caused the height of the mask to differ between images, resulting
in segmentations with jagged surfaces (see Fig. 22). As this impeded the
visual analysis of the segmentations a workaround was implemented in
that the resulting gray scale image stack, with background removed, was
trimmed so that the upper and lower edges of all images were the same.
This removed the vast amount of the background, reducing the impact of
its infinitely bright pixels on the subsequent clustering.

Figure 21: Binary mask (white) used for background removal. The crude mask is composed
of the four clusters corresponding to the lowest pixel intensities after K-means clustering of
the original gray scale image using six clusters.
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Figure 22: Jagged surface (ridges indicated with red arrows) in final segmentation, due
to differences in the masking of each individual image. The blue ISO surface represents the
segmentation of osteonal structures. The red ISO surface represents the segmentation of canals.

6.2.7 Method for Segmentation

The method chosen for segmenting the µCT images was K-means clus-
tering (see details in section 5.3.1 Segmentation using K-means clustering).
This method was chosen since the information given in the µCT images is
pixel intensity, which is based on the absorption of the microstructures in
the bone samples. Since different microstructures have different intensi-
ties in the images, clustering pixels based on their intensities will separate
the different microstructures from each other, enabling a segmentation of
the structures of interest. The clustering is repeated three times in order
to try to avoid the solution being a local minimum rather than a global
one.

If no background is present in the image/images all pixels are used simul-
taneously in K-means clustering, using the function kmeans [MathWorks,
2016a], to segment out the microstructures, as shown in Fig. 16b. The in-
put given is a 1D array, comprised of all pixel values in the image set to be
segmented, the number of clusters, into which the pixel values were to be
partitioned, and the number of times to replicate the clustering (three).
By default the kmeans function determines the partitioning based on the
squared Euclidean distance between the centres and the data points (here
the pixel intensities), and uses the K-means++ algorithm to initialize the
center positions of the clusters. Fig. 23 shows the clustering of a gray
scale image, and the subsequent division of clusters into segments.
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(a) Filtered µCT image. (b) K-means clustering of Fig.
23a.

(c) Lowest pixel intensities. (d) Fourth lowest pixel intensity.

(e) Second lowest pixel intensi-
ties.

(f) Fifth lowest pixel intensity.

(g) Third lowest pixel intensi-
ties.

(h) Sixth lowest pixel intensity.

(i) Final canal segmentation. (j) Final osteon segmentation.

Figure 23: Explanatory illustration of how K-means clustering of the different pixel intensi-
ties, is used to segment microstructure in µCT images. First, second, and third lowest pixel
intensities correspond to canals. Fourth, fifth, and sixth lowest pixel intensities correspond to
osteons.
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If background is present the pipeline is different, as shown in Fig. 16a.
The background removal process is described in the previous section 6.2.6
Pre-processing of the µCT Images. After the background removal the
pipeline merges with that of the sub-samples as the image/images is/are
clustered again, now using nine clusters, and the same division of clusters
into structures are made.

Structures below a certain volume threshold (100 voxels for canals, and
2000 voxels for osteons) are removed in order to reduce noisiness in the
final segmentations.

The resulting segmentations is then saved as binary image stacks of the
same size as the input gray scale images in a new folder, named K-means,
at the directory of the original image file.

6.2.8 Method for Simplified Model

The data needed in order to create a simplified model of the microstruc-
ture were centers, radii, and tilts.

6.2.8.1 Finding the Tilts and Center Points

Finding the average orientation for each canal structure was done by
constructing a binary 3D matrix out of the images and then looking at
each canal, now represented as 3D points, individually and performing
principal component analysis (PCA) to determine the direction of largest
spread (Fig. 24a, [Bishop, 2009]).

Principal component analysis was performed using the Matlab function
pca.m, [MathWorks, 2016b], which returns the coefficients and scores of
the principal components of the 3D coordinates corresponding to a seg-
mented canal structure. Using the coefficients and scores corresponding
to the largest principal component, the endpoints of the vector repre-
senting the main orientation of the canal structure (see Fig. 24b) were
obtained. The endpoints were used to obtain an orientation vector for
each canal in the sample. A mean orientation for the entire sample was
then calculated and used to determine whether or not the 3D matrix,
containing only the structures large enough to be of interest8, needed to

8Structures smaller than 50 pixels were omitted.
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be re-sliced9 in order to facilitate for a later step in the simplification
pipeline, where circles are fitted to the structures in each image in order
to obtain radii for the Haversian canals and the osteons. If re-slicing was
deemed necessary both the new 3D matrix containing canal structures
and the original 3D matrix containing osteonal structures were re-sliced
in the same manner.

(a) Given a set of data points (red dots)
PCA aims at finding a space (magenta
line) of lower dimensionality than that of
the data such that the projection (green
dots) of the data onto this space maximizes
the variance of the projections. Alterna-
tively, PCA can be defined as minimizing
the sum-of-squares of the projection errors
(blue lines). u1 signifies the direction of
largest spread for the data points. u2 sig-
nifies the direction of least spread for the
data points.

(b) The vector (red) corresponding to the
largest principal component of the data
points in the canal structure (blue). Since
the coordinates of the data points repre-
senting a canal in a binary 3D matrix have
a spread that is largest in the direction of
the canal, PCA can be used to estimate
the direction of the canal.

Figure 24: Description of PCA in 2D, shown in (a), and use of PCA in 3D in this project,
shown in (b).

The Haversian canals are interconnected via the lacuno-canalicular net-
work (LCN). In order to fit cylinders to each individual canal the LCN-
branches in between them needed to be removed in order to separate the
canals for individual analysis.

9Samples labelled L had microstructures running in the depth direction of the stack
of images, i.e. the images were taken in the plane transverse to the orientation of the
microstructures, whilst the samples labelled T had microstructures running across the
images in the stack, i.e. the images were taken in the plane parallel to the orientation
of the microstructures. Samples with the latter orientation had to be re-sliced in order
to have the same orientation as the former.
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This was done by, again, looking at each separate connected component
above a certain threshold (50 voxels) and evaluating its principal compo-
nents. A canal structure was unbranched if its orientation was cohesive10

with the mean orientation of the sample.

If a canal structure was deemed cohesively oriented its data points were
saved in a cell in a structure created for storing data points corresponding
to individual canals for later use, and the endpoints of the structures
principal component were stored in a M × 3 array, where M was the
number of canals large enough to be of interest in the sample, to be used
as coordinates for the centres of the top and bottom of the cylinders to
be fitted to the canals and osteons.

If the spread of the canal structure indicated branching it was processed
in order to remove branches. This was done by looking at 2D slices of
the structure, in each of its three dimensions (see Fig. 25). The structure
was sliced so that the 2D images were of the xy, yz-, and xz-planes (Fig.
25c-e). Each 2D structure in each sequential slice was analysed based on
roundness as a measure on if the structure was a canal or a branch11.
The circularity of a structure was measured using Eq. 6, where a value
of c close to one means the object is round. The threshold (i.e. the value
of c necessary for an object to be considered round) used in the pipeline
was 0.4 in the xy-plane, and 0.2 in the yz-, and xz-planes.

c = 4π
area

perimeter2
(6)

If a 2D structure was deemed to be a branch the data points were changed
from one to minus infinity. All data points in the 3D matrix with value
less than zero were then set to zero, resulting in the removal of branches.

10By looking at the ratio between the second largest and the largest principal compo-
nent, as well as the ratio between the third largest and the largest principal component,
the spread of the canal structure could be evaluated. If this ratio was less than 0.4 the
structure was deemed as not branched, and vice versa.

11In the xy-plane a canal would be more circular and a branch would be more oval.
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Figure 25: Branch detection in different planes, based on roundness. (a) ISO surface showing
segmentation of branched canal cluster. (b) Principle sketch of canal with branches, overlaid
with slicing planes. (c) Slicing in the xy-plane results in circular structures for the canal and
non-circular structures for branches. (d) Slicing in the yz-plane results in circular structures
for branches protruding in the x-direction, and non-circular structures for the canal. (e) Slicing
in the xz-plane results in circular structures for branches protruding in the y-direction, and
non-circular structures for the canal.

However, this process resulted in the removal of junctions between the
branches and the canal and hence the remaining canals were discontinu-
ous. In order to find the actual number of canal structures in the sample,
and not look at each disjointed piece individually, all canal pieces from
the 3D matrix were plotted in a common figure, each piece having an
individual colour (see Fig. 26b). User input was then gathered in terms
of which canal pieces fit to the same canal. The user indicated pieces
seeming to form a common canal by clicking on them until all pieces
corresponding to a certain canal had been marked. The 3D coordinates
of the indicated data points were saved into a common cell in the cell
structure created to store data points corresponding to individual canals.
The structures were removed from the figure, and PCA was run on all
data points giving the endpoints of the principal component which were
stored as the centres for the top and bottom of the cylinder to be fit to the
canal. The user continued to indicate common canal structures until the
remaining structures could not be considered corresponding to canals or
there were no structures left. Then the next structure was analysed, and
if this structure was deemed to be branched the procedure was repeated.
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(a) Cluster of branched canals. (b) Cluster after branch removal.

Figure 26: Due to the LCN some canals were clustered together, making analysis of individual
canals impossible. Removing branches improved the analysis.

When all structures in the main sample had been analysed and all true
canal structures had been extracted and saved, data extracted from branched
structures were converted from 3D coordinates into binary matrices rep-
resenting the canal structure.

6.2.8.2 Finding the Radii

To obtain radii for the Haversian canals and osteons circles were fitted
to the structures in the binary images. This was done by analysing each
canal structure in the cell structure constructed in the previous stage in
2D (in the xy-plane) and fitting circles to the structures. The circles
were fitted using the Matlab function fitcircle.m [Brown, 2007] which fits
a circle to a set of 2D points and returns the center coordinates and the
radius.

When circles had been fitted to all structures in one slice of the canal
matrix the same slice in the osteon matrix was analysed. As osteons
surround Haversian canals the structures corresponding to osteons were
hollow; using the Matlab function imfill.m [MathWorks, 2006] holes were
filled. Osteonal structures at the edges of the slice needed to be treated
separately as any holes inside such structures could not be filled using
the imfill.m function due to the edge straddling. Each such edge structure
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was found and depending on what or which of the edges of the slice the
structure straddled, a border of pixels was added onto the structure after
which filling the holes was possible. The border was then removed again.

The canal slice was then used as a mask to find which canals had osteonal
structures surrounding them and which were in fact pores, and hence of
no interest. If a canal was deemed to be a pore its data points in the slice
were set to zero and its data regarding radius was not used.

If a canal was deemed an actual Haversian canal its radius was saved; in
this way radius r fitted to canal a was saved at index s, which indicated
in which slice the radius was fitted and hence the distribution of the canal
through the sample could be tracked.

To fit a radius to an osteon surrounding a specific canal the radius of
that canal was used to fit a circle which was superimposed ontop of the
osteon. The radius was increased in steps of one pixel until a set number
of the pixels on the circle were superimposed onto pixels outside of the
osteonal structure. This radius was then saved in the same way as the
radii of the Haversian canals.

6.2.8.3 Fitting Cylinders

Based on the center points for the beginning and end of each canal
and corresponding osteon, determined using PCA, and the corresponding
radii, determined by the fitting of circles, a 3D model was created where
cylinders were fitted to the microstructures.

In order to use this model for finite element simulations it was converted
into 2D by looking at one transverse (in the xy-plane) and one longitudinal
(in the xz-plane) slice.

The transverse slice was taken as the base of the 3D model and was
implemented by using the center point x- and y-coordinates and radii of
the structures present in this slice.

If the number of structures found, X, in this slice was less than the
user requested number (5, 10, or 15) the user was asked if the lesser
number was still okay or if structures (requested number minus X) should
be added. If Y structures were to be added a random set of Y center
coordinates, inside the interval defined by the minimum and maximum
x-coordinates of the existing centres, was added to the set of centres. In
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the same manner Y radii for the osteons and for the Haversian canals
were added to the existing radii. If instead the number of structures
found, X, was larger than the requested number the user was asked if
modelling all structures was desired or if Y structures were to be removed.
If structures were to be removed, Y random center coordinates with their
corresponding osteonal and canal radii were removed.

The longitudinal slice was created based on the structures present in
the transverse slice. Using the top and bottom center point x- and z-
coordinates for the cylinders fitted to these structures as well as the cor-
responding radii, a longitudinal model could then be implemented.

6.2.9 Method for Validation

Three methods of validation were used, as described below, and imple-
mented on the six samples that contained true osteonal structures.

6.2.9.1 Visual and volume comparison between structures seg-
mented using the implemented pipeline and structures
segmented manually

Manual segmentation was performed in Seg3D on a subsample from the
Extra 2SL sample as well as on the 2.241µm voxel tomogram of the
1TS sample. The segmentation was done by identifying and outlining
microstructures, based on their shape and gray scale. The difference
compared to threshold based segmentation is the shape consideration; in
thresholding any pixel within the intensity interval will be clustered to
a certain segment, independent of its placement in the image and hence
the shape of the object it belongs to. Fig. 27 shows the resulting segmen-
tation. Again, the segmentations were used for visual comparison with
the K-means segmentation in Seg3D, and for analytical comparison, by
comparing the number of pixels in the manual threshold segmentation
to the number of pixels in the corresponding K-means segmentation (i.e.
the volume fraction) to get a measurement of differences in volume.
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(a) Filtered µCT image. (b) Outlines of osteons
(blue).

(c) Outlines of Haversian
canals (red).

Figure 27: Example of hand segmented microstructures in the 1TS sample imaged with
2.241µm voxel size.

6.2.9.2 Visual comparison between structures segmented using
the implemented pipeline and structures in the corre-
sponding µCT images

To have a quick and easy method for validating the K-means segmenta-
tion, each segmentation of each image stack was overlaid onto the cor-
responding µCT image and inspected in Seg3D and in ImageJ. This was
done in order to determine how well the segmentations overlapped their
respective structures in the original image.

6.3 Structure Sizes and Porosity

The sizes of the structures in each of the six osteonal samples was esti-
mated using the ImageJ function Thickness in the plugin BoneJ [Doubeand
et al., 2010]. The function takes a binary image stack, with the particles
to be analysed being the foreground (255). The thickness at a point p is
defined in the function as the diameter of the largest sphere that can fit
within the structure and that contains the point p.

The porosity of all samples was estimated using the ImageJ function Vol-
ume Fraction in the plugin BoneJ. The function takes a binary image
stack, with the particles to be analysed being the foreground (255), and
can be used in two ways; the one used here is voxel-based and calculates
porosity as the number of voxels representing holes or pores divided by
the total number of voxels in the image.
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7 Results

7.1 Segmentation

It was discovered that six of the 13 samples imaged the first time and
eight of the 20 samples imaged the second time contained no or very lit-
tle osteonal structures. It is believed that these samples were collected
from the anterior region of the femur as Haversian systems are mainly
confined to posterior regions of bovine femurs [Mayya et al., 2016]. Only
eight samples showed to be osteonal cortical bone, i.e. containing os-
teonal structures; these are listed in Tab. 4. The samples 6TW and
6TS were omitted from analysis of osteonal structures as their pore size
was extremely large and not representative of normal cortical bone. Due
to canals large enough to permeate the entire thickness of the samples
the segmentation failed (see discussion in section 8.1 Segmentation). The
samples were, however, still used for porosity analysis.

Table 4: Sample ID, and presence of osteonal structures.

ID 2LW 2LS 4LS 1TW 1TS 6T 6TW 6TS

Osteonal bone Yes Yes Yes Yes Yes Yes Yes (large) Yes (large)

Fig. 28 shows images of segmentations of the microstructures in one sub-
sample from two representative samples of the six osteonal bone samples
(see Appendix 2 for overlays of all osteonal samples). The number of
clusters used for each segment is three.
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(a) Canals, 2LW. (b) Osteons, 2LW.

(c) Canals, 2LS. (d) Osteons, 2SL.

Figure 28: Segmentations of sub-samples from the six osteonal bone samples. The segmen-
tation has been overlaid (magenta) on top of the original µCT image.

Fig. 29 shows the segmentation of one sub-sample from a non-osteonal
bone sample. The number of clusters used for each segment is three.

(a) Canals. (b) Osteons.

Figure 29: Segmentations of sub-samples from one of the bone samples which did not contain
osteonal structures. The segmentation has been overlaid (magenta) on top of the original µCT
image.

Fig. 30 shows the ISO surfaces of the segmented microstructures from one
sample. In this case background has been removed in order to visualize
the internal structure of the sample.
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(a) Segmentations of
canals and osteons.

(b) Osteons. (c) Canals.

Figure 30: Segmentations of one transverse sample.

7.1.1 Validation

7.1.1.1 Visual and volume comparison between structures seg-
mented using the implemented pipeline, and structures
segmented manually:

Fig. 31a shows comparisons between the volumes of the segmentations
done using the implemented segmentation pipeline, and segmentations
done manually. For the lower resolution (9.25µm) images the manual
segmentation of both Haversian canals, and osteons covers larger areas
and hence gives a higher segmentation volume, see Fig. 32a. This issue
could be alleviated by increasing the number of clusters used as the two
segments, i.e. using four clusters each for the osteons and the canals,
instead of the default three. The result of K-means clustering using four
clusters as canals and the following four clusters as osteons is shown in
Fig. 32c. For the higher resolution (2.241µm) images the behaviour is
the opposite, with the manual segmentation covering less area and hence
less segmentation volume, see Fig. 32e. In this case this is due to the
enhancement of microstructure in the sample; small pores are picked up
as canals by the K-means pipeline, and microstructure in the interstitial
bone is picked up as osteonal tissue. For the segmentation of canals,
the issue could be resolved either by removal of particles below a certain
threshold, resulting in removal of small pores, or by reducing the number
of clusters used as canals by one, i.e. from three to two. The result of
K-mean segmentation using two clusters as canals and the following three
clusters as osteons is seen in Fig. 32f .
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(a) Three clusters each used as canals, and
osteons.

(b) Four clusters each used as canals, and
osteons in Extra 2SL. Two clusters used as
canals, and three as osteons in T1S.

Figure 31: Volume comparison between segmentations done using the K-means pipeline, and
manual segmentation. The error percentage is reduced by the change of number of clusters
used.

(a) Manual segmentation
of microstructure at
9.25µm pixel size.

(b) K-means segmenta-
tion, with three clusters
each as canals, and os-
teons, of microstructure at
9.25µm pixel size.

(c) K-means segmentation,
with four clusters each used
as canals, and osteons, of
microstructure at 9.25µm
pixel size.

(d) Manual segmentation
of microstructure at
2.241µm pixel size.

(e) K-means segmentation,
with three clusters each
as canals, and osteons of
microstructure at 2.241µm
pixel size.

(f) K-means segmentation,
with two clusters used as
canals, and three as os-
teons, of microstructure at
2.241µm pixel size.

Figure 32: Segmentations overlaid on top of their corresponding µCT image.
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7.1.1.2 Visual comparison between structures segmented us-
ing the implemented pipeline, and structures in the
corresponding µCT images:

Fig. 33 shows the K-means segmentations of canals and osteons, for two
representative samples (4LS, and 1TW), overlaid on top of their original
µCT image. The exact same segmentation setting were used on both
samples.

(a) Canals in the first substack from 4LS. (b) Osteons in the first substack from 4LS.

(c) Canals in the first substack from 1TW.
(d) Osteons in the first substack from
1TW.

Figure 33: Segmentations overlaid on top of their corresponding µCT image. The difference in
gray scale in the µCT images between the samples is due to the different acquisition occasions.

7.1.2 Structure Sizes and Porosity

The mean thickness, with corresponding standard deviation, of the os-
teons and the Haversian canals are shown in Fig. 34a. Fig. 34b shows
the maximum thickness for the microstructures in the samples.
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(a) Mean thickness. (b) Max thickness.

Figure 34: Calculated mean, and max diameter (circles) with standard deviation (bars)
compared to values mentioned in literature; osteons: 150-200µm (179µm, [Budyn et al., 2010,
2012]; 192.7µm, [Zhang et al., 2014]; 200µm, [Carnelli et al., 2013]); Haversian canals: 30-50µm
(30µm, [Zhang et al., 2014]; 37µm, [Budyn et al., 2010, 2012]; 50µm, [Carnelli et al., 2013]).
The values are the mean of the calculated diameters for both subsamples corresponding to the
same sample.

The porosities for the osteonal samples are shown in Tab. 5. Porosities
for all samples are shown in Fig. 35.

Table 5: Porosity in percent of total bone volume for each of the two subsamples of the ten
bone samples.
∗Acquisition 1. ∗∗Acquisition 2.

2LS 2LW 6T∗ 6T∗∗ 4LS 1TS 1TW

Subsample 1 4.5 5.3 2.8 2.5 3.5 2.2 3.8
Subsample 2 6.7 7.4 3.4 2.5 3.5 2.8 3.5

Mean 5.6 6.4 3.1 2.5 3.5 2.5 3.7
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Figure 35: Calculated porosity (circles) compared to values mentioned in literature, 3-10%
(3.79% [Budyn et al., 2010, 2012]; 5-8% [Manilay et al., 2013]; 5-10% [Lee et al., 2012]). The
values are the mean of the calculated porosity for both subsamples corresponding to the same
sample.

7.2 Simplified Model

Fig. 36 shows ISO surfaces representing the segmented canals in one
sub-sample. In 37 the corresponding 3D model, i.e. cylinders (magenta/-
cyan) fitted to the canals and the osteons, are overlain on top of the ISO
surfaces. Fig. 38 show 2D models based on the 3D model.

The average estimated diameters for Haversian canals and osteons was
78µm, and 226µm, respectively. This correlates with literature (30-50µm,
and 150-200µm), and with the average diameter of the segmented struc-
tures (85µm for canals, and 129µm for osteons).

(a) View 1. (b) View 2.

Figure 36: ISO surfaces of segmented canals in a sub-sample of the 1TS sample, from different
views.
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(a) View 1. (b) View 2.

Figure 37: ISO surfaces of segmented canals with cylinders fitted to Haversian canals and
osteons, from different views.

(a) Transverse, xy-plane. (b) Longitudinal, xz-plane.

Figure 38: 2D models, in different planes, based on the 3D model in Fig. 37.
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8 Discussion

8.1 Segmentation

The segmentation method chosen (K-means clustering) sorts the pixels
in the images into a number of different groups depending on intensity
value. This makes the method sensitive to the intensity distribution in
the images. If, e.g., the sample is not cortical but laminar, or if it contains
no osteonal structures, the method will still label pixels with ”osteonal
intensities” as osteons leading to a faulty segmentation. This was most
evident in the newly acquired sample images as the acquisition settings
were slightly altered, leading to different intensity distributions compared
to the images of the original ten samples. This also means that all types
of structures with a specific pixel intensity will be grouped together, e.g.
pores, non-Haversian canals, and Haversian canals. Hence, it is not possi-
ble to separate Haversian canals from the other types of structures which
are of no interest for this project.

As is seen in Fig. 28 the segmentation of canals misses some structures,
which are instead segmented as osteons. This is due to the variance in
gray scale in the canals and osteons, where some canals are light enough
to be clustered together with the osteons. This issue is not present in
all samples, however, and can be mediated by changing the number of
clusters used as canals to include one more, corresponding to the lighter
gray pixels that are now wrongly segmented.

Fig 28 also shows how the osteonal segmentations were not optimal in
terms of smoothness and separability. This issue arises due to two things:

1. The resolution of the µCT images makes it difficult to differentiate
between different structures since, as stated before, more structures
than the ones of interest have pixel intensities in the same interval
as the ones used for segmentation.

2. The fact that the K-means algorithm does not take into considera-
tion the spacial placement of data in relation to the cluster center,
i.e. any pixel with intensity X will be grouped into cluster A, re-
gardless of whether or not the pixel is close to a larger set of pixels
with the same properties or if it is alone in a region with otherwise
differing pixel intensities.
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A better way of segmenting osteonal structures could be to use the K-
means segmentation of the canals as seeds for growing regions until some
threshold on how many pixels included in the region have intensities di-
verging from the intensity interval of osteonal structures. This could
perhaps result in smoother osteonal segmentations with less noise, espe-
cially at higher image resolution. Another approach might be to look
at the derivative, i.e. the change in pixel intensity over the border be-
tween osteon and interstitial bone. The derivative should be larger at
this boarder than inside the osteon or in the interstitial bone, and hence
it should be possible to find the osteonal edges.

Through trial and error it was determined that the optimal number of
clusters was nine. This gave a good segmentation, based on the valida-
tion methods described in section 7.1.1 Validation, and kept the time and
memory consumption manageable (see section 8.1.1 Runtimes). Having
fewer clusters reduced the quality of the segmentations since the divi-
sion of pixel intensities became more crude. The resulting segmentations
hence had less detail. Having more clustered did enhance the detail in
the segmentation but made segmenting larger image stacks extremely
time consuming (>10 hours). Fig. 39 shows a comparison of different
number of clusters applied to a sub-sample of the 1TS sample. For each
different number of clusters, the canals, and osteons were created by us-
ing one third of the clusters, i.e. for three clusters canals, and osteons
each got one cluster, for six clusters they each got two clusters, and for
nine clusters they each got three clusters. The reduced quality of the
segmentations is easiest seen when looking at the canal segmentations,
where fewer structures are picked up the less clusters that are used.
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(a) Canals, three clusters. (b) Osteons, three clusters.

(c) Canals, six clusters. (d) Osteons, six clusters.

(e) Canals, nine clusters. (f) Osteons, nine clusters.

Figure 39: Segmentations, using different numbers of clusters, overlaid on top of their corre-
sponding µCT image.

The K-means clustering was realized by putting all pixels, from all images
in the image stack, into a 1D array. With larger image stacks this method
was quite time consuming (see section 8.1.1 Runtimes) but resulted in a
division of pixel intensities into clusters that was cohesive for all images.
To enhance the speed of the K-means clustering, clustering each image
on its own was tried. This reduced the runtime by 50-60% but caused the
cluster labels to represent different pixel intensities in different images,
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e.g. in image A cluster label X might correspond to the lowest intensity
pixels, but in image B label X might correspond to some intermediate
intensity. This was corrected for by indexing the labels with their corre-
sponding image. However, not all replicates12 of the clustering converged
for all images which resulted in ”missing” clusters in some images, i.e. in
some images the pixels given label X and or Y were very few (less than
10) which meant that this label could not be used. Hence not all images
contained a full set (nine) of labels resulting in a faulty division of labels
into structures. An attempt to correct for this was made by skipping
the missed labels but it was found that, due to the non-convergence of
the clustering, the labels that were still present in the image had been
given to pixels with intensities in different intervals than those in corre-
sponding images. The resulting segmentation hence picked up the correct
structures in some images but in other images the structures segmented
corresponded to pixels originating in other structures, e.g. labels corre-
sponding to canals in one image corresponded to osteons, or interstitial
bone, in another image.

Using only six clusters for the background removal, instead of nine as in
the final segmentation, was done in order to reduce time consumption.
The resulting clustering proved to be efficient enough for identifying and
removing background pixels. For two samples (see Fig. 11 and Fig. 40)
the removal of background resulted in removal of parts of the sample as
some of the canals and/or pores were extremely large and penetrated the
sample, giving it the same characteristics as if a crack had been present,
i.e. in images containing such large canals/pores the sample was divided
into two or more segments depending on the geometry of the canal/pore.
Fig. 41 shows the removal of background on such an image. This issue
could be resolved by closing the edges of the sample before beginning the
morphological operations; this would ensure that all internal structures
are left after the removal of the background. However, this would cause
the segmentation of samples containing cracks to be faulty as the edge
closing would enclose the crack which would then be segmented together
with canals and pores due to its similar pixel intensities. Since the issue
with extremely large pores were only present in two out of the 27 samples
segmented in this project, and since these samples were not representative
of general cortical bone, it was decided not to implement the edge closing

12The clustering was repeated three times in order to reduce the risk of finding a
local minimum instead of a global one (see section 5.3.1 Segmentation using K-means
Clustering).
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fix but to make due with the less accurate segmentations of the two
samples.

Figure 40: Sample 6TW overlaid with the segmented structures osteons (blue) and canals
(red). The orange arrow points at a region in the sample where a canal is large enough to cause
a faulty background removal, resulting in the loss of structures of interest in the segmentation.

61



(a) Original image.

(b) Labels used as back-
ground mask.

(c) Background mask af-
ter morphological opera-
tions for closing holes.

(d) Background mask after
erosion and smoothing.

(e) Final image with background removed.

Figure 41: Evolution of background removal for a sample image with extremely large canal-
s/pores. The final image has missing areas containing structures of interest and appears to
contain a crack.

8.1.1 Runtimes

The runtime for the segmentation pipeline was measured for over 100 seg-
mentations of image stacks corresponding to different samples and differ-
ent subsamples. For each sample the time consumption was normalized
against the file size in mega byte to enable comparison between the runs.
The average runtime was 17 seconds per MB. The K-means clustering
was the absolutely largest contributor to the time consumption.

The subsamples used for porosity analysis were about 7.25MB in size
whilst the full sample files ranged between 700MB and 900MB, and the
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high resolution samples between 700MB and 1550MB. Segmentation of
a subsample hence took about 2 minutes, segmentation of a full samples
between 3 hours 23 minutes and 4 hours 20 minutes, and segmentation
of a high resolution sample took between 3 hours 23 minutes and 7 hours
28 minutes.

8.1.2 Validation

The K-means segmentations of canals fit well with the actual canals in
the µCT images. However, some small structures are not picked up or are
removed during the attempt at reducing noise by removing all structures
with size below a certain threshold. This proves to be problematic as,
on one hand, the segmentations become cleaner and easier to use, but
on the other hand structures are removed and information lost. The
segmentation of osteons is very un-smooth but covers areas that appear
to be osteonal tissue. This issue is partially due to the fact that the
K-means algorithm does not take into account the spatial distance of
the pixels clustered together, which means that non-osteonal structures
in the interstitial bone, with the same absorption properties as osteonal
tissue and hence the same gray values in the µCT image, are segmented
as osteons. The other reason for the un-smoothness is the incohesive gray
levels inside the osteons, as is evident in Fig. 33d where osteonals regions
are visible but contain gray levels that corresponds to interstitial bone
based on the segmentation. Attempts to smooth the segmentation were
made, but none gave good results.

One of the issues with manual segmentation is that it is very difficult
to determine exact edges as well as keeping that decision constant in
multiple samples. The implemented segmentation pipeline functions the
same each time and hence comparison between samples is made easier
and more accurate.

8.1.3 Sensitivity

Three main sources of sensitivity were found regarding the segmentation
pipeline: The size of the file to be segmented, the pre-processing in terms
of filtering, and the resolution of the images.
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8.1.3.1 File size

Files over 600MB in size caused out of memory exception during the
K-means clustering and could hence not be used as direct input to the
pipeline. The fix was to divide such files into smaller parts and segmenting
each part by its own before reassembling them by concatenation.

8.1.3.2 Filtering

Two different methods for filtering the µCT images were used: a Gaussian
with a kernel of 0.8 followed by a mean filter with 1 pixel radius in ImageJ,
or a Gaussian with a kernel of 0.8 in Matlab. Comparing each filtering
method was tried separately, in both software; the differences between
the filtering methods can be seen in Fig. 43. Comparing the mean pixel
intensity in the Gauss filtered image (top right in Fig. 43) with the mean
pixel intensity in the Gauss filtered image (top right in Fig. 42) and with
the mean pixel intensity in the Gauss-mean filtered image (bottom right in
Fig. 42) gives a difference of 0.0537 for both comparisons. However, when
using K-means clustering for segmentation the resulting segmentation is
very poor with the purely Gauss filtered images from ImageJ and the time
consumption is much higher. Documentation for the plugin Smooth (3D)
that was used for Gaussian filtering in ImageJ is non-existing and hence
it is not possible to state what differs between this Gaussian filtering and
the one used in Matlab.

Figure 42: Comparison between raw micro CT image (top left) and, in ImageJ, filtered micro
CT image using only Gauss filter (top right), only mean filter (bottom left) and Gauss followed
by mean filter (bottom right). The enhanced structure visibility between the raw image and
the filtered images are obvious. This image is the first image from the sub-sample of the T1S
sample (Fig. 10g).
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Figure 43: Comparison between raw micro CT image (top left) and, in Matlab, filtered micro
CT image using only Gauss filter (top right), only mean filter (bottom left) and Gauss followed
by mean filter (bottom right). The enhanced structure visibility between the raw image and
the filtered images are obvious. This image is the first image from the sub-sample of the T1S
sample (Fig. 10g).

Fig. 44 shows a comparison between the resulting segmentations of a,
in Matlab, filtered image stack and the same image stack with no fil-
tering applied. It is clear that the un-filtered image results in a noisier
segmentation, especially for the osteons, than the filtered image.

(a) Raw image. (b) Filtered image.

Figure 44: Comparison of segmentations of a µCT image in its raw state and after having
been subjected to Gaussian filtering.

In Matlab larger kernel sizes (1.0, 1.3, 1.5, 1.8) were tried in order to see
if a smoother segmentation could be achieved. The resulting segmenta-
tions were slightly smoother but due to the increased smoothing of the
images some structures were missed in the segmentation and it was hence
determined to stay with the kernel size of 0.8.

8.1.3.3 Image resolution

The most high resolution tomogram (voxels of 600nm) could not be used
as it presented with artefacts, thought to be due to out of center rotation.
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The other two higher resolution tomograms showed greatly enhanced vis-
ibility of the microstructure. The segmentation, however, was not en-
hanced as a result, as is seen in Fig. 32. Segmentation of canals was
as good as before, but now small pores and canaliculi were also picked
up. This was not completely problematic as a more correct porosity
could be calculated based on these segmentations. However, since other
microstructures than Haversian and non-Haversian canals were picked
up the resulting segmentation was not immediately usable but had to
have small structures, corresponding to the now distinguishable pores,
removed. The segmentation of osteons was, however, worsened but the
enhanced resolution as structures embedded in the interstitial bone, with
similar mineralization as the osteons, were still picked up but were now
more prominent. This led to the osteon segmentations being very noisy.

8.1.4 Structure Sizes and Porosity

As can be seen in Fig. 34a the calculated diameters of the Haversian
canals does not correspond well with literature data, neither do the os-
teonal diameters which diverge a lot from the 150-200µm mentioned in
literature. For one sample the mean diameter of the Haversian canals is
even larger than the mean diameter of the osteons. This discrepancy is
caused by the fact that the structures labels as osteons by the segmenta-
tion algorithm is not only actual osteons but also structures in the intersti-
tial bone giving rise to pixels with the same intensity interval as osteons.
The mean thickness of the osteons hence becomes less than expected as
small non-osteonal structures affects the result. This issue might be alle-
viated by removing structures below some threshold size; this was tried
but not optimized, as is obvious by the resulting segmentations. In Fig.
34b the expected difference between osteons and canals is seen. The large
maximum diameters explains the large standard deviations seen for the
mean thickness, as the microstructures in the sample have vastly dif-
ferent thickness, from very thin not-actual-structures-of-interest to very
thick not-separated-structures. Again, the issue is separating structures
of interest from pixels with similar intensities, and from each other. To
properly analyse the diameters of both Haversian canals and osteons it is
necessary to be able to look at the correct structure, not ”noisy pixels”,
and to look at one structure at the time, not canals or osteons that are
too close to be separable.
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The porosity values for cortical bovine bone mentioned in the literature
are 5-10% [Budyn et al., 2010, 2012; Manilay et al., 2013; Lee et al., 2012],
which corresponds quite well to the values obtained here (see Tab. 5).
Two have a higher porosity than what is shown but due to the excessive
removal of background, as discussed in section 8.1 Segmentation, large
regions corresponding to canals are missed by the segmentation pipeline,
resulting in a lower-than-expected porosity. The majority of the plexiform
samples (5L through 4TW Extra) have, as expected, lower porosities than
the osteonal samples. The reason some osteonal samples display a lower
porosity than expected from the literature is thought to be that too small
canal structures are not being picked up by the segmentation algorithm.

8.2 Simplified Model

As can be seen in Fig. 26 the removal of branches resulted in the loss of
some canal structures. This was due to the conditions used to determine
what structures, in each of the three planes (xz, xy, yz), were to be re-
moved. Due to these criteria some canals were incorrectly characterized
as branches and hence removed. Changing the criteria slightly improved
the result for some samples while worsening it for others, based on the
shapes and sizes of the canals in the sample. A middle ground, where
some information was lost but the resulting canal structures were still
representative of the original sample, was in the end chosen for imple-
mentation.

As non-Haversian canals were removed from the model, the measured
radii are more accurate and representative of the actual microstructure
than the diameter values calculated for the segmentations (section 7.2
Simplified Model).

It was tried to identify branches based on intersection points, but this
method requires that the ”stem” can be identified and differentiated from
the branches, based on a thickness difference between the ”stem” and the
branch, where the branch is thinner than the ”stem”, as well as that the
branches are only connected to one ”stem”. Since the canal structures
are extremely complex these conditions could not be met and the method
was not usable.

Another method that was tried was converting the binary matrix of the
canal structures into point clouds. This enables identification of orienta-
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tion for each point in the cloud. The idea was that it might be possible
to identify points corresponding to branches by looking at the orientation
of the points. This turned out not to work because of the non-smooth
nature of the structures, which caused points in branches, and in ”stems”,
to not have a homogeneous orientation, and hence it was not possible to
separate branch-points from ”stem”-points.

A different approach to the implementation of the simplified model might
be to determine the porosity of the sample, as well as a set of average radii
for both Haversian canals and osteons. The model could then be created
by choosing radii randomly from the set, and putting as many structures
into a volume as needed to fit the porosity measurement. However, the
issue regarding what structures are used to measure porosity remain. If
it is possible to only look at Haversian canals, the porosity value will be
true, but this has proven difficult. Also, this approach would not capture
the tilts of the structures.

The biggest issue, however, is that it is not possible to validate the model
by other means than comparing calculated radii to thickness calculations
for the corresponding segmentations, and by visually comparing the cylin-
ders, in terms of origin and end, tilt and radii, to the ISO surfaces of the
canals in the generated plot. As the microstructure is so complex, it is
not easy to generalize and simplify it.
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9 Conclusion and Future Work

A semi-automatic method for segmentation and modelling of Haversian
canals and osteons has been developed in accordance with the aims of the
project.

K-means clusterings can be used to successfully segment Haversian canals,
and osteons from µCT images at different levels of resolution. The seg-
mented canals give porosity values that correspond well with literature.
However, the method is not optimal for the segmentation of osteonal
structures, especially at resolutions below ∼ 9µm, as structures with sim-
ilar densities in the interstitial bone result in the same pixel intensities
as the osteonal structures and hence are segmented out together with the
osteonal structures. While this is a problem already at 9µm voxel size,
giving rise to noisy and un-smooth osteonal segmentations, the issue wors-
ens at higher resolution. Hence, the geometry of the segmented osteons
corresponds badly with the geometry of the actual osteonal structures in
the samples. The method needs to be improved, in terms of smoothness
of the segmentations, for it to give good results in terms of geometry and
volume.

In the implementation of the simplified model, non-Haversian canals are
identified and removed by looking at whether or not they are surrounded
by osteonal structure. Identifying Haversian canals this way also in the
segmentation pipeline could improve the accuracy of the segmentation.

After minor further improvements, in terms of size thresholds and output
segmentations, it will be possible to use the pipeline to segment canali-
culi structures, separate from canals, in higher resolution images. Also,
changing the cluster division and number of segments, would enable the
segmentation pipeline to be used for segmenting canals and pores in non-
osteonal cortical bone. This would be useful in terms of porosity analysis
of samples.

Modelling the cortical microstructure by fitting cylinders results in a good
representation of the structures in terms of radii, placement, and tilt.
However, the fitting of cylinders to the segmented microstructures is not
optimal. Some structures are missed by the pipeline due to difficulty in
removing branched canals, and hence a great opportunity for improve-
ment would be to optimize the branch removal. It might be possible to
combine the method of finding intersection points with manual input, in
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that the user tells the software what is ”stem” by e.g. clicking on points in
a plot. The algorithm then needs to be altered so that it is not size depen-
dent and so that it can handle branches connected to multiple ”stems”.
Another possibility could be to let the user mark out top and bottom of a
canal and only look at points inside some length interval when evaluating
that canal. That way branches would not interfere with the tilt, and radii
analysis. However, this might be difficult to implement as many samples
are very cluttered in terms of clusters of branched canals.
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A Sample ID’s and Dimensions

Table 6: Sample ID, dimensions, and thickness, for the samples used in the main project.

ID Dimensions Thickness

P1 - -

P2 - -

1L 40× 20 mm ∼ 1 mm
1LW 40× 20 mm 1 mm
1LW Extra 40× 20 mm 1 mm

2LW 30× 20 mm ∼ 1 mm
2LS 30× 20 mm 1 mm
2LS Extra 40× 20 mm 1 mm

3L 40× 20 mm 1.1 mm
3LW 40× 20 mm 1 mm
3LW Extra 40× 20 mm 1.0 mm
3LS 40× 20 mm 1.0 mm

4L 40× 20 mm 0.85 mm
4LW 40× 20 mm 1 mm
4LS 40× 20 mm ∼1 mm

5L 40× 20 mm 1.15 mm
5LS 40× 20 mm 0.7 mm

1TW 30× 20 mm 1.2 mm
1TS 30× 20 mm 1.2 mm

2TS 30× 20 mm 1 mm

4TW 30× 20 mm 1.3 mm
4TW Extra 40× 20 mm 1 mm
4TS 30× 20 mm 1.3 mm

5TS 30× 20 mm 1 mm

6T 30× 20 mm 1.2 mm
6TW 30× 20 mm 1.3 mm
6TS 30× 20 mm 1.3 mm
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B Segmentation of Cortical Bone - Overlays

(a) Canals, 2LW. (b) Osteons, 2LW.

(c) Canals, 2LS. (d) Osteons, 2SL.

(e) Canals, 1TW. (f) Osteons, 1TW.
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(g) Canals, 1TS. (h) Osteons, 1TS.

(i) Canals, 6T Extra (acq. 1). (j) Osteons, 6T Extra (acq. 1).

(k) Canals, 6T Extra (acq. 2). (l) Osteons, 6T Extra (acq. 2).

Figure 45: Segmentations of sub-samples from the six osteonal bone samples. The segmen-
tation has been overlaid (magenta) on top of the original µCT image. Fig. 45g, 45h, 45k,
and 45l differ in gray scale from the other samples due to them being imaged during the first
tomograph session.
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