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1 Introduction

Cancer, despite medical advancements made to curb its fatality, is still among the leading
causes of death [1]. Its incidence is projected to nearly double in the next twenty years
[1]. In order to diminish cancer-related mortality, it is imperative that cancer treatment
methods with higher efficacy are developed.

What makes cancer a challenge to treat, let alone cure, is the fact that, unlike com-
mon diseases, it has the ability to both evade and suppress the body’s native defense
system - the immune system [2]. Traditionally, cancer treatment has been administered
following one of three modalities: radiation, chemotherapy and surgery [2].These thera-
pies, and their combinations, do not always suffice especially when one considers cancers
such as glioblastoma (the deadliest and most prevalent of brain tumours in adults [3]).
Radiation is known to affect the patient’s immune system in either a stimulatory or detri-
mental manner, depending on the dose. There is growing innovation towards exploiting
the immunostimulatory effect of radiation by combining it with immunotherapy (the ad-
ministration of drugs that prevent the tumour from escaping the immune system) [4]. In
combining the two treatment strategies, it is crucial to consider not only the radiation
dose, but also the dose fractionation (scheduling). Determining the optimal dose regimen
is made a formidable task by the sheer number of variables that have to be taken into
account. Were the optimisation to be done through trial and error in in vivo experiments,
it would require an unrealistic number of samples to study the effects of varying the nu-
merous parameters. Convenient would be a mathematical model which could function as
a basis for computer simulations. This would enable the performance of a large number
of in silico experiments, the results of which could form a framework for actual experi-
ments. To this end, this project focused on a study of the coaction of cancer radiotherapy
and immunotherapy using two mathematical models adapted from the papers by Serre et
al. [6] and Wilkie and Hahnfeldt [7].

1.1 Radiotherapy

Radiotherapy is the application of ionising radiation to locally destroy, or hinder the
growth of, a cancer tumour. Ionising radiation induces the liberation of one or more
electrons from atoms of the medium it traverses [10]. The radiation may be either a high-
energy (1 MeV - 25 MeV [8]) beam of X- or γ-rays or particulate radiation (electrons,
protons, etc) [16]. X-rays are produced as brehmsstrahlung radiation upon the decelera-
tion of high-speed electrons by a metal target. The radiation is then filtered to produce
a beam suitable for clinical applications. Gamma rays originate from excited nuclei of
radioactive isotopes de-exciting to their ground states [16].
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1.1.1 Photon interactions

The particle-like nature of electomagnetic radiation manifests itself in the form of pho-
tons [9]. Photons are massless particles of zero charge that travel at the speed of light.
Upon incidence on matter, they can either penetrate without interacting, be completely
absorbed by the target material or scatter from the material losing part of their energy
in the process. As opposed to charged particles that deposit energy through Coulom-
bic interactions with electrons of the target material, photons lose energy following one
or more of three modes: the photoelectic effect, Compton scattering or pair production [9].

Photoelectic effect
In the photoelectic effect, the incoming photon transfers its energy to an electron in one
of the bound energy levels of the target atom and completely vanishes [9]. This electron
(a photoelectron) leaves the atom with a kinetic energy Ek given by

Ek = hf − Eb (1.1)

where h is Planck’s constant, f is the frequency of the incident photon (thus hf is its
energy) and Eb is the binding energy of the photoelectron. Which energy level the photo-
electron emerges from depends on the energy of the photon. For gamma rays of sufficient
energy, the photoelectron most likely comes from the K-shell, the most tightly bound
energy level. Regimes in which the photoelectic effect dominates are low photon energies
and high atomic numbers (Z). The probability of photoelectic absorption (τ) is given by

τ =
Zn

(hf)3
(1.2)

where Z, h and f are as defined earlier and n varies between 3 and 4. The strong de-
pendence of the probability of the photoelectic effect on Z implies that this energy loss
channel is not pronounced in soft tissue which is dominated by low Z material [9].

Compton scattering
In Compton scattering, the incident photon is deflected by an electron of the absorbing
material through an angle. In the process, the photon transfers a fraction of its energy
to the electron. The energy given to the electron can take any value from zero to a large
portion of the original photon energy. Compton scattering is the most dominant energy
loss channel in soft tissue for photon energies ranging from 100 keV to 10 MeV [9]. The
probability of Compton scattering is almost independent of atomic number, inversely pro-
portional to photon energy and directly proportional to the number of electrons per gram
(which varies by 20% from the heaviest to the lightest elements) [9].
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Pair production
For photons of energies above 1.022 MeV (twice the rest energy of an electron), pair pro-
duction is a possible energy loss mechanism [9] . This occurs when the photon, traversing
the vicinity of a target nucleus, experiences strong field effects that induce its annihilation
into an electron-positron pair. The pair emerges with kinetic energies given by

Ee+ + Ee− = hf − 1.022 (MeV) (1.3)

where Ee+ and Ee− are the kinetic energies of the positron and electron, respectively and
hf is the energy of the incident photon. The probability of pair production is proportional
to the photon energy and to the square of the atomic number [9].

1.1.2 Radiometry and dosimetry

This section provides definitions of some important radiometric and dosimetric quantities.
Radiometric quantities are used to mathematically characterise the radiation field [10].
They are related to either the number of particles in the radiation field (N) or the energy
they transfer (radiant energy, R). If N particles have energy E (which excludes the rest
energy), their radiant energy is given by R = NE. The distributions of N and R with
respect to energy are given respectively by NE = dN/dE and RE = dR/dE where dN is
the number of particles with energies in the range [E,E + dE] and dR is the correspond-
ing radiant energy. By analogy, the following holds: RE = ENE. Dosimetric quantities
concern the interaction of ionising radiation with organic tissue.

Particle fluence
Particle fluence, φ is the number of incident particles on a sphere of cross-sectional area
a and is given by

φ =
dN

da
(1.4)

where da is measured perpendicular to the direction of motion of each particle [10].

Cross section
Cross section, σ, is defined by

σ =
N

φ
(1.5)

where N is the average number of target interactions with particles that have a fluence
φ. In the case in which the incident particles interact with the target distinctly and inde-
pendently, the total cross section is the sum of the individual cross sections:
σ =

∑
σj = 1

φ

∑
Nj with Nj being the mean number of interactions with particles of

type j [10].
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Mass attenuation coefficient
The mass attenuation coefficient, µm, of a material upon interaction with uncharged par-
ticles of a certain type and energy is given by

µm =
µ

ρ
=

1

ρdl

dN

N
(1.6)

where ρ is the density of the material, µ is the linear attenuation coefficient, dN
N

is the
mean fraction of particles that undergoes interaction when traversing a length dl of ma-
terial. It is related to the total cross section, σ, through µm = σ × NA/M where NA

is Avogadros constant and M is the molar mass of the target material [10]. The mass
attenuation coefficient is preferred because it eliminates the dependence on density that is
exhibited by the linear attenuation coefficient [10]. It is important to note that the linear
attenuation coefficient gives the probability of an interaction per unit distance traveled
[9]. This coefficient also depends on the energy of the interacting photon [9].

Linear energy transfer
The linear energy transfer, L∆, of a material upon interaction with charged particles of a
certain type and energy is given by

L∆ =
dE∆

dl
(1.7)

where dE∆ is the mean energy deposited by the charged particles traversing a distance dl
in the material [10]. This excludes the mean sum of the kinetic energies larger than ∆ of
electrons released by the charged particles. ∆ is thus an energy cutoff.

Energy deposit
Energy deposit, εi, is the energy deposited per interaction and is given by

εi = εin − εout +Q (1.8)

where εin is the energy of the incident ionising particle and εout is the sum of the energies
of all ionising particles (disregarding charge) emerging from the interaction [10]. Both εin
and εout exclude the rest energies of the particles. Q is the change in rest energy of the
nucleus and of all elementary particles involved in the interaction [10].

Energy imparted
Energy imparted, ε, is the total of all energy deposits in a given volume of matter [10]. It
is defined as

ε =
∑
i

εi (1.9)
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The summation is performed over one or more energy-deposition events (particle trajec-
tories). The mean energy imparted ε̄ is given by

ε̄ = Rin −Rout +
∑

Q (1.10)

where Rin and Rout are the mean radiant energies of all ionising particles entering and
leaving a given volume of matter, respectively [10]. Q is the change in rest energy of all
nuclei and elementary particles present in the volume.

Specific energy
The specific energy is the energy imparted per unit mass by ionising radiation in a volume
of matter, and is given by

z =
ε

m
(1.11)

where z is the specific energy, ε is the imparted energy and m is the mass of the material
in the volume [10].

Absorbed dose
The absorbed dose, D, is the mean energy imparted by ionising radiation per unit mass.
It is given by

D =
dε̄

dm
(1.12)

where ε̄ is the mean energy imparted and m is the mass of the target volume of matter
[10]. The SI unit of D is Jkg−1 but it is given the name Gray (Gy). It is important to
note that the specific energy, z, is a stochastic quantity. Numerous measurements of z
would produce a probability distribution of z values and a mean z̄, which is the absorbed
dose D. Knowledge of the distribution of z for a known D is important since for small
masses (such as in cells), the effect of radiation is more accurately described by z than by
D [10].

1.1.3 Radiobiological action

The probability of survival of a cell exposed to radiation can be described by the hit
and target model [11]. The DNA molecule is the target of radiation. When it is hit by
ionising radiation, a DNA strand break occurs, causing a failure in the transfer of genetic
information and consequent loss of the cell’s ability to grow. DNA strand breaks result
from either direct action where the radiation directly interacts with the DNA molecule
producing a lesion, or from indirect action where the damage results from a secondary
process.
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Direct action
Every cell has a critical target (DNA) whose destruction leads to the death of the cell [11].
Whether an irradiation event is fatal or not depends on the number of radiation particles
hitting the critical target. The probability, Phit that exactly j such particles interact with
the target is given by the binomial distribution:

Phit(j) =

(
Dx

j

)
pj(1− p)Dx−j, j = 0, 1, 2, ..., Dx (1.13)

where D is the radiation dose, x is the number of particles per unit dose and p is the
(constant) probability that a radiation particle will hit the critical target. Assuming a
Poisson distribution of lesions, letting Dx → ∞ and setting Dxp = λD (where λ is a
parameter relating to the radiosensitivity of the target cell), equation 1.13 becomes

Phit =
(λD)j

j!
e−λD (1.14)

The probability that the cell dies is then given by

Pdeath =
∞∑

j=k+1

(λD)j

j!
e−λD, k = 0, 1, 2, ... (1.15)

where k is the critical number of radiation-induced primary lesions that the cell can
survive. The probability of survival of the cell is then given by

Psurv(D) =
∞∑
k=0

e−λDφ(k)
k∑
j=0

(λD)j

j!
(1.16)

where φ is a function satisfying φ(j) ≥ 0 ∀j and
∑

j φ(j) = 1 [11].

Indirect action
Radiation can also be absorbed by neighbouring water molecules, causing the genera-
tion of highly reactive free radicals (atoms bearing an unpaired valence electron) [11].
These radicals react with and modify DNA, causing biological damage. The process by
which free radicals are formed from water molecules begins with the ionisation of water
(radiolysis) according to the chemical equation

H2O −→ H2O+∗ + e−∗ (1.17)

where ”*” represents a state of excitation. The unstable water ion H2O+∗ de-excites via
the following reaction

H2O+∗ + H2O −→ H3O+ + ·OH (1.18)
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where ·OH is a free radical formed from the loss of one electron from the hydroxyl ion
(OH−). This electron collides with neighbouring water molecules, loses energy and even-
tually becomes a hydrated electron, according to

e−∗ −→ e−; e− + nH2O −→ e−aq (1.19)

where n is a positive integer and the subscript aq represents an aqueous state [11]. The
excited water molecule from equation 1.18 de-excites by the formation of more toxic
hydroxyl radicals according to

H2O∗ −→ H ·+ ·OH (1.20)

Survival probabilities
DNA damage can occur in the form of double strand or single strand breaks [11]. Several
models can be used to describe the survival probability of an irradiated cell, taking into
account DNA repair. The most widely used is the linear-quadratic (LQ) model. The LQ
model considers both single and double strand breaks, and also assumes that the former
is easier to repair than the latter. The biological effect of radiation is based on a linear
term and a quadratic term. Cell death results from single lethal hits and accumulated
damage from two independent sublethal hits [12]. The combined effect results in a cell
survival probability, S, given by the equation

S(D) = e−(αD+βD2) (1.21)

where α and β represent the formation of a double strand break by one and by two
radiation particles, respectively and D is the radiation dose. The sensitivity of tissue
to fractionated radiation can be characterised by the α/β ratio and for tumours, good
agreement has been observed when this ratio is larger or equal to 10 Gy [11]. α/β
corresponds to the dose at which damage from single hits equals damage from accumulated
sublethal lesions [12].

1.1.4 Clinical impact of the linear-quadratic model

Irradiation of tumours is conventionally done using small daily doses of 2 Gy per fraction
over a period of about 6 weeks [12]. The goal is to increase radiation dose to the tumour
while preventing harm to normal tissue. The LQ model is used by over 90% of radiation
oncologists to predict the effect of radiation on cells and clinical studies fit predictions
of the model relatively well [12]. The model has, however, shortcomings. Both α and β
vary with cell cyle (the stage of growth at which a cell is). The model is most reliable
for doses in the range (1− 6) Gy and loses accuracy outside of this range (at high doses,
D2 dominates the equation 1.21). Furthermore, the model assumes uniform effect per
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radiation fraction. The response to fractionation varies with tissue: some tissues are
acute-responding while others are late-responding. Heterogeneity within and between
tumours results in large uncertainties in the α/β values [12]. In addition, the LQ model
does not account for other cell populations or factors in the tumour microenvironment.
Therefore, more elaborate models are needed when combining radiotherapy and other
therapies.

1.1.5 Tumour growth models

Despite complex internal interactions, tumour growth kinetics follow fairly simple pat-
terns that can be described by mathematical models [13]. All the models described in
this section consider the variation of the total tumour volume, V , with time, t. V is
assumed to be proportional to the number of cells in the tumour. All the models assume
V (t = 0) = V0 [13].

Exponential-linear models
All cells are assumed to grow with a constant cell cycle duration TC , leading to expo-
nential growth [13]. The initial exponential growth stage is assumed to preceed a linear
growth phase. The following Cauchy problem describes the system

dV
dt

= a0V, t ≤ τ
dV
dt

= a1, t > τ

V (t = 0) = V0

(1.22)

where a0 = (ln 2/TC × fraction of proliferative cells), a1 is the slope in the linear growth
phase and τ is the time point at which the linear growth commences.

Logistic and Gompertz models
These models describe tumour growth characterised by a sigmoid curve (a monotonously
increasing curve with one inflection point beyond which the curve asymptotically ap-
proaches a maximum volume, which is the carrying capacity) [13]. The logistic growth
model is described by

dV

dt
= aV

(
1− V

K

)
; V (t = 0) = V0 (1.23)

where a is a constant related to growth kinetics and K is the tumour carrying capacity.
In other cases, the generalised logistic growth model is adapted instead. This is defined
by

dV

dt
= aV

(
1−

(
V

K

)v)
; V (t = 0) = V0 (1.24)
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where v is an adjustable parameter. Replacing a by β = a
v

and allowing v → 0, the
generalised logistic growth model converges to the Gompertz model described by

dV

dt
= ae−βtV ; V (t = 0) = V0 (1.25)

where a is the rate of initial proliferation (at V = V0) and β is the rate of exponential
decay of a.

Some models unite the ones described above [14] while others consider a dynamic
carrying capacity as opposed to the constant one used so far [15]. These models describe
unperturbed tumour growth and therefore do not take into account either the existence
of other cells (such as immune cells) in the tumour microenvironment or the effect of
external influences (such as radiation or other kinds of therapy). More comprehensive and
adapted models are needed for describing tumour growth in an environment influenced
by the mentioned factors. As noted in the beginning of this text, two such models were
considered in this work, and descriptions of both are provided in later sections.

1.2 Immunotherapy

Cancer immunotherapy is a treatment modality that summons the immune system to
eliminate tumour cells (primary immune response) and/or prevent their future occurrence
(secondary immune response) [6].

The immune system employs a system of checkpoints to distinguish normal cells
from aberrant or foreign ones. These checkpoints are controlled by inhibitors, which
are molecules (such as PD-1) on the surfaces of certain immune cells. If PD-1 binds with
the ligand PD-L1 found on normal cells (and some tumour cells), it directs the immune
system to leave the PD-L1-bearing cell alone [6]. Another system of checkpoint inhibitors
is the CTLA-4 pathway, which prevents the proliferation of premature immune cells that
may react to healthy cells in the early stages of activation [19]. Cancer cells exploit such
inhibitors to evade the immune system as part of a process called immunoediting [2]. In
the early stages of tumour development, there is an active anti-tumour immune response.
However, over time, the tumour expresses healthy-cell signals to lure away the immune
system and therefore modulate the immune response [2].

Consider Figure 1 which illustrates the features responsible for the low immunogenicity
(quality of being recognisable by the immune system [6]) of the cancer tumour. The
primary mechanism by which the tumour microenvironment evades immune surveillence
is the emission of cytokines, substances released by particular cells of the immune system
that affect other cells. Tregs emit the proteins TGF-β and IL-10 while MDSCs release NO,
ROS and ARG. Regulatory dendritic cells emit IL-10 and IDO, whereas TAMs emit ARG
and TGF-β to counteract the effect of NK cells. The overall effect of these cytokines is to
modulate the killing function of CTLs. Figure 1 also shows that the tumour can express
the ligands FasL and PD-L1. The combination of the FasL ligand with the Fas receptor
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on the surface of a CTL will directly induce T-cell apoptosis (death). FasL and TGF-β
may also be produced by host cells such as endothelial cells and fribroblast [18].

Figure 1: Characterisitcs of the tumour microenvironment that enable evasion and sup-
pression of the immune system (immunoediting). The tumour secretes the labeled cy-
tokines to modulate the effect of immune cells (CTLs and NK cells). Green arrows
represent a relationship of activation while red ones signify inhibition. [18]

Immunotherapy may take the form of immune checkpoint blockade, where the men-
tioned inhibitory pathways (CTLA-4 and PD-1-PD-L1) that would normally reduce the
activity of immune cells, are interrupted. Drugs that have been approved and are in clini-
cal use include Ipilimumab (CTLA-4) and Nivomulab and Pembrolizumab (PD-1-PD-L1)
[18].

Alternatively, drugs that inhibit the expression of IDO may be administered. IDO
induces the activation of Tregs (cells that interfere with the action of immune cells) and
their introduction into the tumour microenvironment. It is also an enyzyme catalysing
the oxidation of tryptophan, a substance whose dimunition inhibits immune cells. An
appropriate drug that counteracts IDO activity and has been approved for clinical trials
is 1-MT. It is especially applied to the treatment of glioblastoma [20]. Nevertheless, on
its own, immunotherapy fails to reverse the process of cancer immunoediting [2].
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1.3 Radiotherapy and Immunotherapy

As noted earlier, radiation is traditionally administered in small daily doses of 2 Gy
until a high total dose of 60 -70 Gy is attained. However, studies reveal that single-
fraction radiation can enhance the effect of the immune system by destroying immune-
repressive cells such as Tregs, macrophages and MDSCs [21]. Section 1.1 highlighted
that radiation primarily leads to tumour cell death. It can, however, also enhance an
anti-tumour immune response through inducing the release of tumour antigens (danger-
associated proteins that trigger an immune response). These effects are dependent on the
fractionation scheme used to supply the radiation. It has been shown that, as opposed to
the conventional multi-fraction irradiation regimen, supplying a single dose of radiation
will cause a notable increase in the population of tumour-associated antigens [2]. This
will in turn trigger the activation and recruitment of immune cells, provided they are not
terminated by subsequent doses [21]. Note should me made, nonetheless, that radiation
also damages healthy cells in the vicinity of the tumour, but these can usually repair
themselves, provided the absorbed dose is below their tolerance limit [16]. Radiation can
thus revitalise the immune system to exercise control over the tumour. This interplay is
the backbone of the combination therapy explored in this project. Key is to determine
the best radiation dosage scheme to employ so that the immunogenicity of the tumour is
increased simultaneously as the activated, recruited immune cells are kept un-irradiated.

2 Materials and Methods

As mentioned in the introduction, the investigation in this thesis work was based on
two mathematical models adapted from Wilkie and Hahnfeldt [7] and from Serre et al
[6], which may be coined the Wilkie and Serre models, respectively. The Wilkie model,
originally adapted to modelling cancer treatment with immunotherapy alone, offers a
description of the interaction of a cancer tumour with the host immune system. It in-
corporates the phenomenae of immune-predation and immune-recruitment to modify the
generalised logistic growth of an undisturbed tumour. The Serre model encompasses the
temporal dynamics of the tumour, tumour antigens, lymphocytes (immune cells) as well
as the primary and secondary immune responses. A description of both models and how
they were implemented in MATLAB is provided in this section.

As alluded to earlier, this area of study is relatively new. Prior to this project, only
one experiment and publication had been done on combination therapy involving single-
fraction radiation and 1-MT [20]. For that reason, it was instructive to carry out in-
vestigations using two models, since a result confirmed by two independent models is
necessarily more credible than one deduced from a single one. The primary purpose of
the Wilkie model was to verify that there does exist a synergy between radiotherapy
and immunotherapy, and that the success of this combination therapy depends largely
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on the radiation dose fractionation. For that reason, the Wilkie model was not fitted to
the experimental data that were availabe at the Medical Radiation Physics department
(glioblastoma data from Ahlstedt et al. [20] and Ceberg et al. [24]), but was instead
adapted with the parameters estimated by Wilkie and Hahnfeldt [7]. Given how numer-
ous the parameters in the model were, keeping the ones deduced during the derivation of
the model also ensured a narrower margin of error.

Having with the Wilkie model established the presence of a synergy between radio-
therapy and immunotherapy as well as the importance of fractionation, the Serre model
was then used to determine the actual dose and fractionation that would lead to highest
treatment efficacy. It was thus necessary to fit this model to actual experimental data.

2.1 Wilkie model

The Wilkie model describes the evolution of tumour cells in an immune-cell-infiltrated
environment. Interactions that are taken into account are the predation of the cancer cells
by immune cells and the recruitment of immune cells by cancer cells. Cancer-mediated
recruitment of immune cells occurs via the secretion of danger-associated molecules such
as antigens. Key to the foundation of the model is that the interaction of the tumour
and immune system culminates in a dormant tumour state characterised by the cessation
of mitosis (cell division, tumour growth). Depending on whether conditions favour tu-
mour proliferation or regression, this dormant state will progress into tumour escape or
elimination. An analogy can be recongnised between this description and the concept of
immunoediting descibed in Section 1.2. Both the tumour and the immune cell populations
grow up to an equilibrium phase where, if immunoediting is not hampered, the tumour
flourishes irreversibly. In this model, both the immune cell and cancer cell populations
are assumed to exhibit generalised logistic growths (see Section 1.1.5 ).

2.1.1 Cancer cell population

The time-variation of the cancer cell population is given by

dC

dt
=
µ

α

(
1 + Ψ(I, C)

)
C

(
1−

(
C

KC

)α)
; C(0) = C0 (2.26)

C(t) is a measure of the tumour cell population at time t. µ and α are constants related to
the growth rate of the tumour and its sensitivity to environmental growth regularoty sig-
nals. Ψ(I, C) is the immune predation factor, which models the cytotoxic effect of immune
cells against cancer cells. It is necessarily negative so as to hinder tumour advancement.
The factor KC is the tumour carrying capacity, which is the maximum tolerable tumour
cell population. In the absence of immune predation, the tumour will grow to this size
and the organism will perish. C0 is the initial number of tumour cells, that is, the number
of cancer cells introduced into the organism at the time of innoculation. The cancer cell
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population is, in accordance with the earlier discussion, modulated by immune predation.
It also depends on the present number of cancer cells, since this controls the quantity of
antigens released as well as the rate of growth of the tumour mass.

2.1.2 Immune cell population

The immune cell population is assumed to comprise CTLs and NK cells, which have a
direct inhibitory effect on the tumour. The rate of change of the immune population is
given by

dI

dt
= λ(1 + rC)

(
1− I

KI

)
; I(0) = I0 (2.27)

I(t) is the immune cell population at time t and λ is the immune growth parameter.
r is an immune recruitment factor and the product rC represents cancer-cell mediated
immune recruitment. KI is the immune carrying capacity and is analogous to KC . The
immune cell population does not grow indefinitely, it is modulated by the limit KI . It
should be noted that KI is a theoretical limit. I0 is the initial number of immune cells,
which may be zero. In adherence to the presented theory, the immune population depends
on the rate of immune recruitment, the number of present immune cells as well as the
current cancer cell population.

2.1.3 Immune predation

The immune predation term is given by

Ψ(I, C) = −θ
(

Iβ

φCβ + Iβ
+ ε log10(1 + I)

)
(2.28)

where Ψ(0, 0) = 0 by definition. The action of the immune system is divided into an innate
and an adaptive component. Equation 2.28 above captures both effects. For small I, the
ratio-dependent term dominates the equation and thus can be regarded as a composition
of both the innate and adaptive parts of the immune response. However, for large I, the
cytotoxic effect of the innate immune response has to be considered and this is described
by the logarithmic term. This extra term is important because the ratio-dependent term
alone leads to a saturation in the predation for large I, but saturation does not occur
in the innate immunity. The logarithmic term (coupled with the constant epsilon) then
allows for a gentle rise in the predation saturation limit for sharp increases in the immune
cell population. θ is the predation strength and φ and β are constants related to predation
saturation.
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2.1.4 Implementation

As already mentioned, the Wilkie model was especially adapted to cancer treatment
with immunotherapy. Radiation had to be introduced into the system using the linear-
quadratic model, discussed in section 1.1.3. According to the theory presented in that
section, the effect of radiation is to kill off a certain fraction of the tumour cells. This
effect was captured by the probability of survival S(d) of the tumour upon exposure to a
radiation dose d. S(d) was given by

S(d) = e−αrad·d−βrad·d2 (2.29)

where αrad and βrad are constants of the linear-quadratic model.
The differential equations 2.26 and 2.27 were solved numerically in MATLAB using

a fourth-order Runge-Kutta routine (see Appendix C). The time unit (one day) was
discretised in 100 time-steps and the integration was carried out over 120 days. Radiation
was given over four time-steps, with a dose rate of 2 Gy per time-step, corresponding to
a total dose of 8 Gy given over an hour per day. The radiation dose d was consequently
treated as a vector of length N, (N = 12000), with non-zero components in those time-
steps where radiation was administered. The effect of irradiation was incorporated into
the dynamics of the tumour population, C, in MATLAB as

C(q, n+ 1) = min

(
Cmax, S(d(n)) ·

(
C(q, n) +

1

6
· (c1 + 2c2 + 2c3 + c4)

))
(2.30)

where C(q, i), i ∈ N , is the tumour population in the qth animal in time-step i, ck, k =
1, 2, 3, 4 are parameters of the Runge-Kutta routine in MATLAB , Cmax is the maxi-
mum tumour population the organism is allowed to live with and S(d(n)) is the survival
probability of tumour cells upon exposure to the radiation dose d given in time-step n.

Radiation, as noted in section 1.3, affects healthy cells in the same way it does cancer
cells. Consequently, the effect of irradiation on the immune cells present in the tumour
microenvironment at the time of irradiation had to be considered. It was assumed that
radiation kills all of such cells with unit probability. Similar to the tumour-population
case, radiation-induced immune-cell death was incorporated into the system as

I(q, n+ 1) = δ(n) ·
(
I(q, n) +

1

6
(i1 + 2i2 + 2i3 + i4)

)
(2.31)

where δ is a parameter that assumes the value zero in every time-step where the dose
vector d has a non-zero component, and the value 1 otherwise. I(q, i), i ∈ N , is the
immune population in the qth animal in time-step i and ik, k = 1, 2, 3, 4 are parameters
of the Runge-Kutta routine in MATLAB.

In order to mimic a physical situation, in which cancer prognosis with or without
treatment is non-uniform across individuals of a test group of organisms, a certain vari-
ance, v, was induced in the growth parameter µ. For each organism, a value of µ was
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randomly selected from a log-normal distribution of µ values with mean µ̄ and variance
v, as shown in the extract of MATLAB code below

pd = makedist(’Lognormal’,’mu’,log(E1^2/sqrt(v+E1^2)),

’sigma’,sqrt(log(v/E1^2+1)));

mu = random(pd);

where pd is a log-normal distribution of µ values and E1 = µ̄. Handled this way, the
growth parameter was effectively a compartment in which the uncertainties in the rest of
the parameters were incorporated. Had a constant growth parameter been adopted, all
simulated organisms would produce identical results, suggesting zero uncertainty in all
parameters.

Table 3 in Appendix A shows a collection of the parameter values that were used
with the Wilkie model. The parameters αrad and βrad in equation 2.29 were assigned the
values 0.02 Gy−1 and 0.002 Gy−2, respectively, which were chosen as typical for cancer
cells [6]. The values of r and θ in the absence of any kind of therapy were 1 ·10−3 and 2.5,
respectively. According to Wilkie and Hahnfeldt [7], the presence of an immunotherapy
drug can be modelled by an increase in the immune recruitment factor r as well as
the predation strength θ to the values (r, θ) = (0.47, 4). This suggests a non-specific
immunotherapy mechanism, but is still useful for studying the synergy with radiotherapy.
It has been established earlier that radiation induces antigen release in cancer cells. For
that reason, the recruitment factor was adjusted to model radiation-induced immune-
recruitment. The ratio of radiation-induced to intrinsic antigen release in tumours was
taken to be 200 [6]. There was no consideration of a specific dose of immunotherapy; it was
its presence that was of the essence. Simulations were run in the four cases of no treatment,
treatment with immunotherapy alone, treatment with radiation alone and treatment with
the combination of radiotherapy and immunotherapy. In actual experiments (with rats or
mice), the organisms are terminated when the tumour reaches a size at which they show
pronounced symptoms of cancer. The tumour is thus not left to grow to the carrying
capacity. To mimic this effect, integration of equations 2.26 and 2.27 was ceased as soon
as the tumour grew to a size corresponding to a mass of 100 mg. The outcomes of the
treatments were evaluated by studying the lifetime of the simulated organism under each
treatment modality. Different radiation dose schemes were attempted with the purpose
of verifying a dependence of the efficacy of the combination therapy on fractionation.
Conversion from tumour cell number (X) to tumour diameter in millimetres (d) was done
by treating the tumour as a sphere and using that 1mm3 = 106cells [13]. Thus

d(X) = 2 ·
(
X

106

3

4π

)1/3

(2.32)

For conversions between tumour diameter and mass, it was further assumed that the
tumour is a water-containing sphere and thus the density of water was used.
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2.2 Serre model

The Serre model was intrinsically designed to model the combination of radiotherapy
and immunotherapy. It considers tumour-immune interaction via the release of tumour-
associated antigens that trigger an anti-tumour immune response. The immune response
is cleft into a primary and a secondary compartment.

2.2.1 Tumour evolution

The time evolution of the tumour mass is described by

Tn+1 = Sn(d) · Tn · eµ−Zprm,n−Zsec,n (2.33)

Ti, i ∈ N, is the tumour mass on day i, given in grams. Sn(d) is the survival probability of
the tumour upon exposure to a radiation dose d on day n (as defined by equation 2.29).
µ is a growth parameter such that, without any treatment, the tumour grows by eµ each
day. This is also assuming that there is no response from the immune system. Zprm,n and
Zsec,n are the responses of the immune system (primary and secondary, respectively). The
immune system can either slow down tumour growth (Zprm,n + Zsec,n < µ) or reverse it
altogether (Zprm,n + Zsec,n > µ). Equation 2.33 is necessarily recursive since the tumour
mass on a given day must depend on its value on the previous day.

2.2.2 Antigen population

Antigens are danger-associated molecules emitted by the tumour. The quantity of tumour
antigens on a given day i, Ai, is given by

An+1 = (1− λ) · An + ρ · Tn + ψ · (1− Sn(d)) · Tn (2.34)

The non-irradiated tumour secretes antigens intrinsically at a constant rate ρ. As men-
tioned in section 1.3, radiation can give rise to the release of antigens in tumour cells.
Assuming antigens are released only by dying tumour cells, their rate of release is nec-
essarily proportional to the probability of death of the cells (1− Sn(d)). ψ is a constant
that represents radiation-induced tumour cell immunogenicity. λ ∈ [0, 1] models the rate
at which the tumour antigens recede, and are replaced by immune effector cells.

2.2.3 Lymphocyte population

The number of immune effector cells present at the tumour site on day i, Li, is given by

Ln+1 = (1− φ) · δn · Ln + λ · An (2.35)

φ represents the constant rate at which the immune effector cells leave the system and δn
is the probability that immune cells in the tumour survive irradiation on day n. λ is as
defined earlier. The immune effector cell population depends on both the population of
antigens and immune effector cells on the previous day.
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2.2.4 Primary immune response

The primary immune response is described by

Zprm,n =
ω · Ln

1 + κ·Tn
2
3 ·Ln

1+p1

(2.36)

Zprm,n is the primary immune response on day n. 1/[1 + κ·Tn
2
3 ·Ln

1+p1
] is the fraction of

activated immune effector cells that are at work against the tumour. κ is a constant
describing the ability of the tumour to naturally suppress an immune response while ω
is a proportionality constant. p1 represents the concentration of an immunotherapy drug
that functions by inhibiting the expression of the PD-L1 ligand by the tumour. As was
pointed out in section 1.2, the primary immune response is elicited by the immune effector
cells and as such must depend on the population of these cells as equation 2.36 shows.

2.2.5 Secondary immune response

The secondary immune response is given by

Zsec,n =
n∑
k=0

γ · 1 + c4

r + c4

· Zprm,k (2.37)

Zsec,n is the secondary immune response on day n. γ represents the likelihood of the
primary immune response to trigger a secondary response, per time-step. c4 represents
the concentration of an anti-CTLA4 immunotherapy drug and r is a constant chosen to be
larger than 1 so that, without an anti-CTLA4 drug, the likelihood of a secondary response
is less than γ. The summation suggests that the secondary response is a cumulative effect
that will only come to life after a certain time delay. It was mentioned in section 1.2 that
the secondary immune response is a memory response and it occurs only after there has
been a primary immune response (primary contact with the invading species). It thus
depends directly on the primary response as equation 2.37 illustrates.

The essence of the Serre model is that radiation induces the secretion of tumour anti-
gens that activate immune effector cells. Worth reiterating is that the tumour intrinsically
emits antigens, but exposure to radiation increases their expression, quantity and variety
[23]. The effector cells then stage a primary immune response against the tumour which
gives rise to a secondary anti-tumour response. The anti-CTLA-4 medicine functions by
enhancing the secondary immune response while anti-PD1 immunotherapy inhibits the
immunomodulatory effect of the tumour.

2.2.6 Implementation

The Serre model was fitted to the experimental data of Ahlstedt et al. [20] and Ceberg
et al. [24], using MATLAB’s fminsearch fitting tool and the shooting method. The data
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consisted of median survival times of cancer-affected organisms (glioblastoma- innoculated
rats) under no treatment, treatment with only immunotherapy, only radiotherapy and
with a combination of immunotherapy and radiation. Median survival time is to be
interpreted in this context as the time at which exactly half of the treated organisms are
still alive. Beyond this time, more than half of the organisms undergoing treatment have
died.

It should be noted here that, although the Serre model describes the dynamics of
a general tumour type, the experimental data used to deduce its parameters was ob-
tained from breast tumours. The data of Ahlstedt et al. and Ceberg et al, however,
was measured on brain tumours (glioblastoma). Although unclear how, this discrepancy
potentially threatens the quality of the results since not all the parameters in the Serre
model could be fitted to the available experimental data. It was assumed that such pa-
rameters as reflect the characteristics of the immune system, for instance, the propensity
of the primary immune response to induce a secondary response, could be regarded as in-
dependent of either the position or type of the tumour. Furthermore, the Serre model was
designed for combination of radiotherapy with specifically anti-PD-L1 and anti-CTLA4
immunotherapy. On the contrary, the data from Ahlstedt et al. was measured for the
combination of radiotherapy with the anti-IDO drug, 1-MT. The model was modified to
replace the anti-PD-L1 and anti-CTLA4 drugs with 1-MT. This was done by setting the
values of the parameters p1 and c4 in equations 2.36 and 2.37 to zero. The action of 1-MT
was then captured in the parameter ω in equation 2.36. In this respect, the inhibition
of IDO was assumed to have a more robust effect than the inhition of the PD-L1 and
CTLA4 pathways. The growth parameter µ was handled exactly the same way as was
done with the Wilkie model, but with the mean µ̄ fitted to experimental data. During
the fitting process, median survival times of the organisms were estimated by the Kaplan-
Meier method [25]. In medical research, the Kaplan-Meier method is used to estimate the
survival function (fraction of organisms alive after a certain time post-treatment). It is
an estimator that, given the lifetimes of organisms in a group, computes the probability
that a given number of the organisms were alive after a certain time [28].

As with the Wilkie model, simulations were carried out in the cases of no treatment,
treatment with immunotherapy alone, radiotherapy alone and a combination of both. By
studying median survival times, the optimum dose fractionation was deduced. Table 4 in
Appendix B shows the values of parameters adapted from Serre et al. and those fitted
to the data of Ahlstedt et al [20] and Ceberg et al. [24]. As with the Wilkie model, no
consideration was made of a specific dose of 1-MT. The fitting process produced the value
of ω in the presence of 1-MT, and this value was used throughout the investigation.
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3 Results and Discussion

Findings obtained from simulations with both the Wilkie and Serre models are presented
in this section. The results cover, for each model, the cases of no treatment, treatment with
immunotherapy alone, radiation alone, immunotherapy with one 8 Gy radiation dose and
with two such doses. The dependence of treatment efficacy (measured by median survival
time) on dose fractionation (the spacing between the two 8 Gy doses) was also studied
for both models.

3.1 Wilkie model

Figures 2 and 3 show the results generated with the Wilkie model for the case of no
treatment. The purpose of these results was first to verify that the tumour progression
followed the generalised logistic growth (sigmoid curve) of unperturbed tumours and,
second, to compare with tumour evolution influenced by treatment. Figure 2 confirms
the expected tumour growth, with an abrupt termination at a diameter corresponding
to a tumour mass of 100 mg. This cutoff, as noted earlier, was imposed to resemble the
elimination of organisms at a certain tumour mass to prevent excessive suffering in an
in vivo experiment. The median survival time of the organisms was estimated using the
Kaplan-Meier method [25] and a plot of the survival function is shown in Figure 3. The
survival function is constantly unity until it drops abruptly to null, consistent with the
tumour evolution shown in Figure 2.

Figure 2: Tumour progression in nine organisms (rats) in the absence of treatment
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Figure 3: The survival function corresponding to the tumour development of Figure 2

3.1.1 Synergy

The Kaplan-Meier method [25] was used to obtain median lifetimes for the four treatment
modalities involving single-dose radiation alone, immunotherapy alone and immunother-
apy in combination with radiation given in both single- and double-dose fractionations.
The results are shown in Table 1 below.

Table 1: Cancer treatment results generated with the Wilkie model

Therapy Radiation dose [Gy] Day given Median lifetime [days]

radiotherapy 8 7 23.81
immunotherapy - 7 to 80 22.93

radiation+ immunotherapy 8 7 24.11
radiation+ immunotherapy 8; 8 7 ; 15 25.25

Table 1 reflects a marginal increase in the median lifetime when immunotherapy is
administered alone, compared to the 22.9-day median survival time observed in the ab-
sence of treatment. According to the theory discussed in section 1.2, that immunotherapy
applied independently fails to reverse the process of immunoediting, this result is sound.
Radiotherapy administered independently was observed to give rise to longer survival than
immunotherapy did, a reasonable outcome given that radiation is not subject to cancer
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immunoediting, but instead retards tumour growth by directly annihilating tumour cells.
As is apparent from the table, there was an evident rise in survival time when immunother-
apy was combined with a single radiation dose compared to the observed survival times
with either therapy alone. This result was expected, as it coheres with the theory provided
in section 1.3. Irradiation kills off a fraction of cancer cells and at the same time enhances
immune recruitment through stimulating emission of tumour-associated antigens, giving
rise to the observed synergy with immunotherapy. As is shown in Table 1, combining im-
munotherapy with two doses of radiation led to an even higher treatment efficacy, clearly
suggesting a preference for the double-dose fractionation scheme.

3.1.2 Fractionation

The one-week interval between the two radiation doses shown in Table 1 is not trivial.
Recalling the theory in section 1.3, the success of the combination of radiotherapy and
immunotherapy hinges on the radiation dose fractionation. It was thus of interest to
study how the treatment efficacy (median survival time) depends on fractionation (dose
spacing) and Figure 4 shows the result. The figure reflects notably that the median
survival time is indeed a function of dose fractionation. With the two radiation doses
given on the same day, the resulting survival was observed to match that resulting from a
single dose (median 24.11 days, Table 1). A constant, maximum median survival time of
25.25 days was observed for dose spacings ranging from 1 to 30 days. This is consistent
with the value quoted in Table 1, which corresponds to a dose spacing of 7 days. Figure
4 shows a drastic decline in efficacy beyond the 30 day interval, settling to a constant,
minimum median survival of 24.11 days. This result suggests that the importance of the
second dose diminishes if it is delivered much later (later than 4 weeks) than the first
dose. A possible explanation for this observation is that, even though the first dose kills
off some tumour cells and instills antigen emission, its effect may be adequate to disrupt
tumour immunoediting (and thus modulate tumour growth), but inadequate to reverse
this process. The second dose then serves to broaden the pool of tumour-associated
antigens, further disrupting and possibly halting immunoediting. As discussed in section
2.1, tumour advancement passes through a state of equilibrium that may, depending
on the balance between tumour-regulatory and immunosuppressive responses, lead to
either tumour elimination or escape. With this in mind, the second radiation dose (given
early enough) will either lead to tumour elimination or tumour escape with a prolonged
survival time for the organism. A second dose administered too late does not give rise
to a noticeable effect compared to the single-dose case because at that stage, the tumour
has passed the equilibrium phase and escaped.

Be that as it may, the resolution in Figure 4 is rather inferior. The observed step-
function behaviour of the median survival time curve bears no resemblance to a physical
situation. Furthermore, the difference between the maximum and minimum median sur-
vival times in the figure is merely 1 day, which would be insignificant were this model
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applied to human patients. The inferiority of the results owes itself to the fact that there
was no way of fitting the effect of irradiation to the experimental data of Tanooka et al.
[27] used to estimate parameters in the Wilkie model. Had radiotherapy been used in the
experiments by Tanooka et al. [27], it would have been possible to fit the constants of
the linear-quadratic model to that data, incorporating the effect of radiation in a more
comprehensive manner. Nonetheless, the results of simulations with this model still re-
flect clearly both a synergistic effect of combining radiotherapy with immunotherapy and
a dependence of the success of this treatment modality on the radiation dose fractiona-
tion. This confirmation provided the opportunity for further, more focused study with
the Serre model.

Figure 4: Variation of median survival time with radiation dose fractionation in combi-
nation therapy involving immunotherapy and radiotherapy

3.2 Serre model

Data for the untreated case, generated with the Serre model by fitting the growth pa-
rameter to the experimental data of Ahlstedt et al. [20] and Ceberg et al. [24], is shown
in Figure 5. The results are analogous to those described in section 3.1, except that the
Serre model was calibrated with experimental data prior to simulations. Figure 5 shows
the typical logistic growth similar to the one shown in Figure 2. The data series plotted
with red markers is experimental data for an untreated tumour obtained from Aas et
al. [26]. This data was plotted as a reference. A Kaplan-Meier estimate of the survival
function, similar to the one shown in Figure 3, was also generated for this case. The plot
can be found in Appendix D.
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Figure 5: Tumour progression in nine organisms (rats) in the absence of treatment. The
red markers show experimental data for an untreated tumour.

3.2.1 Synergy

In order to examine the coaction between radiotherapy and immunotherapy (1-MT), me-
dian survival times were computed for the exact same four treatment modalities considered
with the Wilkie model. Table 2 below shows the results.

Table 2: Cancer treatment results generated with the Serre model

Therapy Radiation dose [Gy] Day given Median lifetime [days]

radiotherapy 8 7 19.80
1-MT - 7 to 50 19.50

radiation + 1-MT 8 7 28.75
radiation + 1-MT 8; 8 7 ; 15 35.75

With the administration of radiotherapy or immunotherapy independently, only a
slight increase in median survival was observed, further confirming that these therapies
are ineffective on their own. The effects of the two therapies are comparable, with ra-
diation leading to marginally higher efficacy, cohering with what was observed with the
Wilkie model. The general trend in the results in Table 2 matches that in Table 1, a
compelling result considering that the two models were independent. However, contrary
to the Wilkie model, the Serre model predicts a drastic rise in efficacy upon treatment
with a combination of immunotherapy and single-dose radiation. This discrepancy could
yet again have been caused by the incomprehensive way in which radiation was incorpo-
rated into the Wilkie model. Table 2 shows as even higher treatment efficacy with two
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8 Gy radiation doses given alongside 1-MT, again verifying the higher potential in using
a double-dose fractionation. Important to note, nonetheless, is that in this last case,
the median survival time bears relatively less meaning because the treatment was in fact
curative. Cancer tumours in the majority of organisms were eliminated and this is a key
difference between the results of this model and those of the Wilkie model. In none of
the cases in simulations with the Wilkie model was the tumour eliminated.

Consider Figure 6 which shows the time-evolution of the tumour in the case of im-
munotherapy with two 8 Gy radiation doses. The majority of the tumours shown are
eliminated well before attaining the fatal mass of 100 mg.

Figure 6: Tumour evolution in 9 rats treated with 1-MT and two 8 Gy radiation doses
given on days 7 and 15 post-innoculation. The red markers show untreated tumour data.

3.2.2 Fractionation

The 7-day dose spacing chosen for the treatment in Figure 6 was selected primarily be-
cause simulations with the Wilkie model had shown it to lead to high treatment efficacy.
However, a study of the dependence of efficacy on fractionation with the Serre model re-
vealed that this dose-interval was in fact one of the optimum. As with the Wilkie model,
Kaplan-Meier estimates of median survival times were obtained and plotted against the
corresponding dose spacing. Figure 7 below presents the results. For those cases in which
the treatment was curative, in all organisms, the patient group was assigned a median
survival time of 50 days. The figure shows a relatively low treatment efficacy when the two
doses are given on the same day (that is, a single dose of 16 Gy given on day 7). This sup-
ports the choice of a fractionation scheme involving two separate doses instead. Between
days 1 and 8, a constant, maximum efficacy was observed, in which the treatment was
invariably curative. Beyond the 8 day interval, the treatment efficacy declines drastically,
thereafter gently approaching that observed with a single dose of 8 Gy in combination
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with 1-MT. The general trend of these results bears irrefutable resemblance to that of
the results in Figure 4. As for the actual values of the dose spacing, it is the results of
the Serre model that have the higher credibility, owing to the fact that this model was
rigorously adapted to the experimental data of Ahlstedt et al. [20] and Ceberg et al [24].

Figure 7: Variation of median survival time with fractionation in the combination of 1-MT
and two 8 Gy radiation doses. 50-day median survival times indicate curative treatment.

4 Outlook

In a word, this thesis work has been successful in realising its objective of verifying the
existence of a synergy between radiotherapy and immunotherapy and, more importantly,
determining the optimum radiation dose fractionation that ensures the highest treatment
efficacy. The results from simulations with the Wilkie model and, more importantly,
the Serre model, provide compelling support for the success of the treatment modality
combining immunotherapy (in particular, 1-MT) with two 8 Gy doses of radiation given
no more than a week apart. Promising is the fact that the two models employed in this
work exhibited a level of consensus on this result, despite that they were independently
derived. Nevertheless, in deducing both models used in this work, numerous assumptions
were made about the immune system and its interaction with a cancer tumour. These
assumptions may cause the results of simulations with these models to deviate significantly
from clinical or experimental results. Until confirmed by either experimental or clinical
trials, deductions from computer simulations can not be celebrated.The outcome of this
work is to be interpreted as forming a hypothesis - a foundation upon which either further
in silico research or in vivo experiments can be built.
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Appendix

A

This appendix contains the parameter values that were used in simulations with the Wilkie
model, shown in Table 3 below.

Table 3: Parameter values used with the Wilkie model

Parameter Value Unit Meaning

µ̄ 0.16 day−1 cancer growth
α 0.72 none cancer growth
λ 0.22 day−1 immune growth
r 1 · 10−3 none immune recruitment
θ 2.5 none predation strength
β 0.5 none predation saturation
φ 50 none predation saturation
ε 0.01 none innate immunity predation strength
KC 3.92 · 1010 cell number cancer carrying capacity
KI 3.92 · 1010 cell number immune carrying capacity
Cmax 1 · 108 cell number maximum permitted tumour population
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Appendix

B

This appendix contains the parameter values that were used in simulations with the Serre
model, presented in Table 4 below.

Table 4: Parameter values used with the Serre model

Parameter Value Unit Meaning

Fitted to experimental data
µ̄ 0.576 none daily cancer growth parameter
αrad 0.0475 Gy−1 linear radiosensitivity of tumour cells
βrad 0.00475 Gy−2 quadratic radiosensitivity
ωn 0.044 none primary immune response strength

Assumed invariant under change of tumour type
ω 0.007 none primary immune resposne sensitivity
p1 0 none anti-PD-L1 drug concentration
c4 0 none anti-CTLA4 drug concentration
ρ 0.1 none intrinsic tumour antigen release
ψ 20 none radiation-induced antigen release
γ 0.03 none secondary immune resposne probability
r 5 none dimensionless constant
λ 0.15 none tumour antigen disappearance
φ 0.1 none daily disappearance of immune effectors
κ 0.01 none primary immmune response sensitivity

Cmax 100 mg maximum permitted tumour mass
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Appendix

C

This appendix contains the MATLAB code that was used in the implementation of the
Wilkie model. The code uses a 4th order Runge-Kutta method to numerically solve the
two differential equations in the Wilkie model. It consists of the main script entitled ”IM-
PLEMENTATION OF THE WILKIE MODEL USING A 4TH ORDER RUNGE-KUTTA
ROUTINE” and five functions named ”radiation”, ”immune”, ”cancer, ”predation” and
”convertor”. The comments in the code describe explicitly what each part of the code
does.

%IMPLEMENTATION OF THE WILKIE MODEL USING A 4TH ORDER RUNGE-KUTTA ROUTINE

%http://mathworld.wolfram.com/Runge-KuttaMethod.html

%http://lpsa.swarthmore.edu/NumInt/NumIntFourth.html

%%

clear all;

close all;

%clf(1);

%These are the equations we will use:

% C’(t) = (mu/alpha)*(1 + psi)*C*(1 - ((C/Kc)^alpha)) = cancer(C(n), psi(n), mu);

%immune population (cell number)

% psi = -theta*(((I^beta)/(phi*(C^beta) + (I^beta))) + epsilon*log10(1 + I)) =

%predation(I(n), C(n), theta(n)); %immune predation

% I’(t) = lambda*(1 + rC)(1 - (I/Ki)) = immune(I(n), C(n), r(n));

%cancer population (cell number)

%%

%initialising arrays

Q = 9;

t_stop = 120; %120 days,the time for which the patients are followed

N = 12000; %number of iterations; 100 iterations per day

dt = t_stop/N; %time-step

t(1) = 0; %initialising the time-array

C(1:Q) = 5000; %initial number of tumour cells

I(1:Q) = 0; %no immune presence at time of detection

psi(1) = 0; %no immune predation at time of detection

Cmax = 1E8; %terminate patient when the tumour reaches this size (1E8 cells = 100mg)

%radiation

d(1:N) = 0;

for h = 651:654

34



d(h) = 18/4; %this is equivalent to d(7) = 8, just done in 100 steps.

end

for k = 2951:2954

d(k) = 18/4; %this is equivalent to d(15) = 8, just done in 100 steps.

end

%immune predation strength

theta(1:N) = 2.5; %adjust this to model an immune therapy medicine. 2.5 is the

%no-treatment value from Wilkie

%and 4 is the with-treatment value

for h1 = 601:80000

theta(h1) = 4; %begin immune therapy on day 7; going beyond day 80 is useless,

%the patients are most likely dead

end

%immune recruitment factor

r(1:N) = 1E-3; %adjust this to model an immune therapy medicine. 1E-3 is the

%no-treatment value from Wilkie and 0.47 is the with-treatment value

for k1 = 601:80000

r(k1) = 200; %begin immune therapy on day 7; no need to go beyond day 80

end

%Tumour growth parameter

E1=0.16; %Exponential tumour growth - mean %initial guess

% v=0.001; %Exponential tumour growth - variance

% pd=makedist(’Lognormal’,’mu’,log(E1^2/sqrt(v+E1^2)),’sigma’,sqrt(log(v/E1^2+1)));

%Exponential tumour growth - log-normal distriution assumed

%%

%The RK4 routine

for q = 1:Q

C(q,1) = 5000;

I(q,1) = 0;

for n = 1:N-1

t(n+1) = t(n) + dt; %progress in time

psi(n+1) = predation(I(n), C(n), theta(n)); %get immune predation

mu = random(pd); %random mu value from distribution

%RK4 factors for the tumour (the method uses slopes to estimate values of tumour

%cell population)
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c1 = dt*cancer(C(q,n), psi(n),mu);

c2 = dt*cancer(C(q,n)+ 0.5*c1, psi(n),mu);

c3 = dt*cancer(C(q,n) + 0.5*c2, psi(n),mu);

c4 = dt*cancer(C(q,n) + c3, psi(n),mu);

%RK4 factors for the immune system

i1 = dt*immune(I(q,n), C(q,n), r(n));

i2 = dt*immune(I(q,n) + 0.5*i1, C(q,n), r(n));

i3 = dt*immune(I(q,n) + 0.5*i2, C(q,n), r(n));

i4 = dt*immune(I(q,n) + i3, C(q,n), r(n));

%computing values of tumour cell population (the effect of radiation is included via

%the prefactor radiation(d(n)))

C(q,n+1) = min(Cmax, radiation(d(n))*(C(q,n) + (1/6)*(c1 + 2*c2 + 2*c3 + c4)));

%computing values of immune cell population

delta(n) = 1 - sign(d(n));

I(q,n+1) = delta(n)*(I(q,n) + (1/6)*(i1 + 2*i2 + 2*i3 + i4));

end

end

%%

%Longevity under treatment

for q = 1:Q

ttd=find(C(q,1:N)==Cmax,1,’first’); %calculate time to death (lifetime)

end

disp([’Patient died after ’,num2str(t(ttd)),’ days’]) %report the lifetime

%a set of raw data for an untreated tumour, will be used to check if our

%simulations follow the same trend for the untreated case

% meas=[

% 6 2.69645E-05

% 8 0.000126337

% 9 0.000338363

% 10 0.000852692

% 11 0.000520944

% 13 0.001065318

% 14 0.003995114

% 16 0.018575225

% 17 0.024574458

% 18 0.056424422

% 19 0.0550847

% 20 0.03682267

% 21 0.029071125
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% 22 0.044194261

% 23 0.035919072

% 24 0.077644006

% 25 0.11690166

% ];

%%

%Plotting

% figure (1)

% hold on

% for q = 1:Q

% C1(q,1:N) = convertor(C(q,1:N)); %convert the tumour size from cell number to

%diameter in mm

% plot(t(1:N),C1(q,1:N))

% xlabel(’Time after innoculation [days]’)

% ylabel(’Cancer tumour diameter [mm]’)

% end

MT = kmplot2(t(ttd))

% figure (2)

% kmplot(t(ttd))

%plot(meas(:,1),2*((((3000.*meas(:,2)./(4*pi)))).^(1/3)),’ro’); %plot the measured

%data as tumour diameter in mm against number of days

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Functions

function rad = radiation(d)

rad_alpha = 0.05; %the alpha constant for the linear-quadratic model

rad_beta = rad_alpha/10; %corresponding beta constant

%the above values have been chosen as typical values.

%this function returns the survival fraction of the tumour cells upon

%irradiation

rad = exp(-rad_alpha*d - rad_beta*d*d);

end

function i = immune(I, C, r)

%These are the values of parameters obtained from Wilkie and Hahnfeldt:

lambda = 0.22; %per day, immune growth

Ki = 3.92E10; %cell number, immune carrying capacity

%function returns the slope of the immune-population/time curve
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i = lambda*(1 + r*C)*(1 - (I/Ki));

end

function c = cancer(C, psi, mu)

%These are the values of parameters obtained from Wilkie and Hahnfeldt:

alpha = 0.72; %cancer growth

%mu = 0.16; % cancer growth parameter (1 times the Wilkie value) (chosen to fit the

%untreated tumour data. The

%real significance of this was to calibrate the time scale, so

%that a time unit in this implentation would correspond to an actual day in

%the measured data)

Kc = 3.92E10; %cell number, cancer carrying capacity

%function returns the slope of the tumour-size/time curve

c = (mu/alpha)*(1 + psi)*C*(1 - ((C/Kc)^alpha));

end

function p = predation(I, C, theta)

%These are the values of parameters obtained from Wilkie and Hahnfeldt:

beta = 0.5; %predation saturation

phi = 50; %predation saturation

epsilon = 0.01; %innate immunity predation strength

%function returns the immune predation

p = -theta*(((I^beta)/(phi*(C^beta) + (I^beta))) + epsilon*log10(1 + I));

end

function conv = convertor(X)

%this function converts the tumour size from "number of cells" to "diameter in mm"

conv = 2*(((3.*X)/(pi*4E6)).^(1/3)); %conversion formula from Wilkie and Hahnfeldt

end

38



Appendix

D

This appendix contains the Kaplan-Meier estimate of the survival function in the case of
an untreated tumour, simulated using the Serre model.

Figure 8: Kaplan-Meier estimate of the survival function corresponding to tumour pro-
gression in the absence of treatment. This figure was generated using the Serre model.

The survival function is constantly unity until it starts declining between days 15 and
20 where all the organisms perish with a median survival time of 19.1 days. This reflects
exactly the tumour development shown in Figure 5.
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