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Abstract  

Statistical arbitrage is widely used in the quantitative based trading strategies. In this paper, 

we mainly use Ornstein-Uhlenbeck (O-U) process model and the GARCH model to estimate 

the parameters and verify trading signals for the statistical arbitrage. In addition, a new model 

is created through the combination of O-U model and GARCH model. To estimate the models, 

HuangXia Bank and Industrial Bank are selected due to the highest correlation among the 

banks.  
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1 Introduction  

Arbitrage is a very common concept in finance. It means investors can buy the lower-price 

product and sell it at a higher price at the situation that the financial products have the 

different prices in the different financial market. In the viewpoint of Ve lissaris (2010), the 

ideal arbitrage is a costless strategy which provides investors with the opportunity to get 

abnormal revenue but with no risk to lose. Nowadays, many different kinds of arbitrage 

strategies are used by investors and fund managers to obtain high return and reduce the risk. 

Statistical arbitrage is one specific form of the arbitrage trading strategies. In the financial 

market, statistical arbitrage trading is an investing process based on mathematical models. 

More specifically, statistical arbitrage is using a mathematical model relying on historical data 

to guide the investors and fund managers to forecast the future value of portfolios to build an 

arbitrage trading strategy. The mechanism of this kind of arbitrage trading is to research the 

financial markets that are out of equilibrium level. In other words, the price of a stock is 

supposed to a certain equilibrium level, and it fluctuates around this kind of level. If the price 

series moves away from this equilibrium level, it is expected to move back in a certain period. 

Thus, the opportunity of arbitrage will happen in this kind of process.  

In this paper, the specific trading strategy of statistical arbitrage will be researched and 

discussed. We use the specific trading rule proposed by Bock and Mestel (2009), and from an 

arbitrage trading strategy, when the price of the stock moves away from an equilibrium level. 

Moreover, we use the trading signal indicator suggested by Bertram (2009), based on the 

Ornstein-Uhlenbeck (O-U) process, to define the particular trading strategy. Since the model 

is built on the time series and the equilibrium level, some related data tests are necessary for 

the research. Especially, the stationary test should be considered before the model building. 

Thus, the Dickey-Fuller (D-F) test, Augmented Dickey-Fuller (ADF) test, and Phillips-Perron 

test, are used to test the stationary of the sequence. Our model and trading strategies are based 

on the real stock data. More specifically, the stock prices for stocks in the bank industry of 

China are used to estimate the statistical arbitrage.  The total period consists of three years, 

where two years of data is used to estimate the parameters and verifies the trading signals, and; 
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the rest of data is used to calculate the return according to the estimated parameters and 

trading signals. 

Through simulating the arbitrage trading process, the highest return is gained by Ornstein-

Uhlenbeck process model and from the data out of sample. The combination of O-U model 

and GARCH model has better performance than pure GARCH model.  Perhaps, the stock 

prices of Chinese banks are comparably stable. This situation causes the arbitrage interval is 

narrow, and volatility effect causes the return is low in some periods. We contribute to the 

literature by using a combination of Ornstein-Uhlenbeck model and GARCH model. Through 

the previous research of these two models, the parameters (∆) of trading signal and the effect 

of volatility clustering in spread series are simultaneously considered in the new model. 

Although the stocks of Chinese banks have better results of arbitrage trading using Ornstein-

Uhlenbeck process model, the stocks which are sharply fluctuated may have better arbitrage 

performance by the new model, but this conjecture may be verified using other data in future 

research. 

In this paper, the next section will give the information about the background of the data that 

we choose. The related literature will be introduced and evaluated in the third part. After that, 

the statistical arbitrage trading strategy in section 4. In for the section 5, three different kinds 

of approaches of the trading signal will be introduced. Next, three different models will be 

applied to estimate and forecast for the real data and stocks respectively. In section 7, we will 

compare the three models with each other and state the contribution and the drawback of the 

research. Finally, this report will be evaluated and summarized in section 8. 
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2 Literature Review 

Bondarenko (2003) introduced the concept of statistic arbitrage, which is different from other 

arbitrage strategies that cannot have negative payoffs. Statistic arbitrage allows the payoffs be 

negative as long as the average payoff in a trading period is nonnegative. He also indicated 

that this arbitrage strategy is a trading with zero-cost, thus in the process, the expected payoff 

of statistic arbitrage is positive, and meanwhile, the conditionally expected payoff in each 

trading period is nonnegative. Hogan et al. (2003) specified the concept of statistic arbitrage 

of Bondarenko (2003). They showed that the statistical arbitrage follows four conditions: 

1. 𝑣 (0) = 0 

2. lim𝑡→∞ 𝐸𝑃[𝑣(𝑡)] > 0. 

3. lim𝑡→∞ 𝑃(𝑣(𝑡) = 0), and 

4. lim𝑡→∞
𝑉𝑎𝑟𝑃 [𝑣(𝑡)]

𝑡
= 0 If P (𝑣(t) <0)>0 ∀t < ∞. 

Which means that (i) This strategy is a zero initial cost (v(0) = 0) self- financing trading 

strategy (ii) it has the limitation of positive expected discounted profits, (iii) a probability of a 

loss approach to zero, and (iv) if the probability of the loss does not become zero in finite 

time, the time-averaged variance will converge to zero. In addition, they tested for the 

statistical arbitrage rule and researched the two strategies of momentum and value trading. 

Then, Jarrow et al. (2005) enlarge the set of statistic arbitrage at the foundation of the research 

of Hogan et al. (2003), and have the supplement of the consistence and the statistical power in 

the Bonferroni approach through the statistical methods. Meanwhile, they contributed several 

statistical arbitrage frameworks. 

In 1999, Burgess researched the relationship of the components of FTSE 100 using the 

statistical arbitrage. He found that the co- integration model can be used in the statistical 

arbitrage strategy. Several years later, Alexander and Dimitriu (2004) applied the method of 

co-integration on the research of the tracking portfolio and index. They found that co-

integration optimal portfolio, which has low- volatility, low- correlation with the market, is 

superior to the tracking error variance (TEV). Thomaisdis and Kondakis (2006) combined 

neural networking approach with statistical arbitrage. In this paper, an autoregressive 
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GARCH model, based on the neural networking, was to seek for the investment portfolio in 

the stock market. The results verified the possibility of using statistical arbitrage. Meanwhile, 

the hybrid computational intelligent system was introduced by Thomaidis and Dounias (2006). 

In this system, nonlinear neural network autoregressive models and GARCH 

parameterizations of volatility can be used to test the dynamics of the correction of statistical 

arbitrage opportunities with the pairs of assets. What’s more, the authors applied the NN-

GARCH model on the forecast of the dynamics of the statistical mispricing. Despite this 

model was qualified to forecast the short-term changes in volatile levels, it is still 

questionable giving the variable trading costs and market “frictions”.After that, Meucci (2010) 

showed the multivariate Ornstein-Uhlenbeck process and summarized the discrete-time and 

continuous-time multivariate process. Furthermore, he interpreted the concept of co-

integration and the relationship between it and statistical arbitrage by the illustration of the 

geometry of the Ornstein-Uhlenbeck dynamics. In addition, Cummins and Bucca (2011) paid 

their attention to the research of the quantitative trading in refined products markets. They 

operated the arbitrage process using the optimal statistical arbitrage trading model. In addition, 

both of them proposed the multiple hypotheses that detected the data snooping bias, and they 

showed the step-down procedure and the balanced step-down procedure. In their study, unlike 

the step-down procedure, the balanced procedure successfully identifies any profitable 

strategies and unbiased of trading applications. After that, Vidyamurthy (2014) argued that 

statistical arbitrage is based on the thought of relative pricing. He found that two stocks in the 

similar characteristics have approximately the same stock prices, and simultaneously the price 

spread could be regarded as the degree of mispricing, which analyzed that a large distance of 

the price spread has a higher degree of mispricing and then results in achieving a high 

probability of potential returns. The author also mentioned three parametric methods used in 

the trading signals in this article, namely, mixtures of Gaussians, ARMA model and Hidden 

Markov Model. 

Huck (2009) described a selection method in the trading portfolio and as well as discussed the 

pros and cons of its application. He chose S&P 100 index stocks as a stock pool. And at the 

same time, Elman, a neural networking approach, was selected to predict different returns 

respectively, then the author adapted to Electre III method to rank for different profits. The 

result, Huck analyzed that this approach could obtain a perfect trading portfolio under the 

condition of highly correlated non-linearity.  
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In 2007, Chng analyzed how trading could obtain profits from four crucial internal 

components, namely, “negative serial covariance in idiosyncratic returns”; “positive cross-

serial covariance in idiosyncratic returns of collaborative firms”; “discrepancy in the 

unconditional expected return of component stocks” and “lead- lag effects in component stock 

price reaction to unexpected common factor realizations”. The author also talked about two 

applications of the model in practical ways. One is for comparing the economic importance 

with other profitable components. Another is to set a connection between the profitable 

components and the restriction appeared during the formation. To apply pairs trading in a 

practical way, in 2009, Perlin set an example of Brazilian financial market to discuss whether 

pairs trading strategy could apply to the efficient market or not. He also discovered the 

influence of the arbitrage that data on the condition of different fluency may have. The 

consequence shows that it is available to use pairs trading strategy in the Brazilian market and 

its ability of the profitability on the market has a high relation with the data fluency. When 

selecting daily statistics as sample data, the strategy could help earn a high profit.  
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3 Data and Methodology 

3.1 Date choice and test 

According to the concept of statistical arbitrage, we know that the basic idea of this strategy is 

using the statistical analysis tools to research stocks which have the stable price relationship. 

In other words, if the stocks have a certain stable relationship, the portfolio of the stocks has a 

certain equilibrium level. When the price of the portfolio moves away from this level, the 

equilibrium relationship will drive the price to go back to the equilibrium level. Therefore, the 

stationary is an important concept in the statistical arbitrage and the stable relationship of 

stocks is a necessary condition for the research. The choice of the stocks which have the 

stationary is the first task in the research. 

However, there are numerous stocks in the real market. It is difficult to compare and analyze 

all of the stocks. Therefore, we decide to choose the stocks which are from the same industry. 

The stocks in the same industry have similarity, have a low difference of the risk factors, and 

have high probability of similar price trend. In addition, the correlation can be used to choose 

the appropriate data. For instance, HuangXia Bank and Industrial Bank, both of them come 

from China bank area, and their correlation is close to 1. Therefore, the stock prices of them 

can be used to estimate our model. The correlation formula is: 

                                                        ρ = |
𝑐𝑜𝑣(𝑃𝑎 ,𝑃𝑏 )

√𝑣𝑎𝑟 (𝑃𝑎)𝑣𝑎𝑟(𝑃𝑏 )
|                                                         (1)              

Where 𝑃𝑎 and 𝑃𝑏 are the price of stock A and stock B. The pair of data has a high correlation 

when the value ofρ close to 1. Thus, this pair of stocks can be appropriate to take arbitrage 

trading. 

The test of stationary is necessary for a time series. If the stationary test is ignored, the 

spurious regression will appear. Then, the total research will become unmeaning. Therefore, 

the data should be tested before modeling the statistical arbitrage trading. In the section of 
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Econometrics, there are three kinds of methods to test the stationary: DF (Dickey-Fuller) test, 

ADF (Augmented Dickey-Fuller) test, and Phillips-Perron test. 

ADF test is derived from the DF (Dickey-Fuller) test, which is applied in the AR(1)model 

(𝑦𝑡 = 𝜑𝑦𝑡−1 + 𝑢𝑡). It is a common approach to test the property of stationary for a time series. 

The test model can be shown: 

                                                    𝑌t=𝜌𝑌t-1+∑ 𝛽𝑖𝑌𝑡−1 + 𝑢𝑡
𝑝
𝑖=1                                                  (2)       

Where 𝑌t is time series, 𝑡 is Time trend. 

The null hypothesis is the time series is not a stationary one (H0: 𝜌 =0), to the contrary, the 

alternative hypothesis of 𝜌 <0 means that it is stationary. The Phillips-Perron test is similar to 

the ADF test, has the same null hypothesis, and usually gives the same conclusion. In the 

research, we decide to use ADF (Augmented Dickey-Fuller) test to test the stationary of the 

stocks. 

 

3.2 Co-integration test 

The non-stationary series 𝑌𝑡can become stationary after being differenced dth order. This kind 

of series is integration of dth order , we write as 𝑌𝑡~I(d). In most case, if we linearly combine 

two variables that are I(d), then the combination will also be I(d), and they are co-integrated.  

In the research, the Engle-Granger two-step approach can be used to test the co-integration. 

This method is to take the ADF test for the residuals of the regression. The variables have a 

stable relationship and co- integration, and then the residuals of the regression equation 

combined with the variables should be stable. The step of the co-integration test is: 

(1). When the variables are integrated of order 1( I(1)), estimating the co-integration 

regression using OLS 

                                      𝑌t=𝛽0+𝛽1𝑋t+𝑒𝑡̂                                                           (3) 

Where 𝑒𝑡̂ is expressed the residual sequence. 
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(2). Test the stationary of residuals (𝑒𝑡̂) by the ADF test; the residual equation can be shown:.  .  .   

                                       ∆𝑒𝑡̂=𝜌𝑒𝑡−1̂+∑ 𝛽𝑖∆𝑒𝑡̂ +𝑝
𝑖=1  𝜀𝑡                                                  (4) 

The null hypothesis is the time series is non-stationary (H0: 𝜌 =0). To the contrary, the 

alternative hypothesis of 𝜌 <0 means that it is stationary, and the variables have a co-

integration relationship. 

 

3.3 Error correction model 

For the non-stationary variables, they can become stable after being differenced dth order, and 

then the regression model can be built (∆𝑦𝑡 = 𝛽1∆𝑥1 + 𝑣𝑡 ). However, in the real world, the 

dependent variables and independent variables are not static equilibrium. More specifically, 

the lagged independent variables (𝑥𝑡−1) also affect the dependent variables (𝑦𝑡). Obviously, a 

simply approach of difference cannot solve the problem of the non-stationary time series. 

Thus, the Error correction model should be used to solve this kind of problem. 

The variables have a long-term relationship: 

                                               𝑌 t=𝛾0 +𝛾1 𝑋t+𝑒𝑡̂                                                                     (5) 

However, the real relationship of the variables is: 

                                               𝑌t=𝛾0 +𝛾1 𝑋t+𝛾2 𝑋t-1+𝛾3 𝑌t-1+𝑒𝑡̂                                                 (6) 

So, we can write the ECM as: 

                                   ∆𝑦𝑡 = 𝛾1 ∆𝑥1 − 𝜆(𝑦𝑡−1 − 𝛼0 − 𝛼1𝑥𝑡−1) + 𝑒𝑡̂                                         (7) 

Then, the second step of the Engle-Granger two-step approach can be used in the ECM model: 

                                            ∆𝑦𝑡 = 𝛽1∆𝑥1 + 𝜆(𝑢̂𝑡−1) + 𝑒𝑡̂                                                    (8) 

Where 𝑢̂𝑡−1 =𝑦𝑡−1 − 𝛾0 − 𝛾1 𝑥𝑡−1, and this model takes into account both long-term and 

short-term effect. Meanwhile,𝜆 = 1 − 𝛾3  , 𝛼0 = 𝛾0 /(1 − 𝛾3 ), 𝛼1 = (𝛾1 + 𝛾2 )/(1 − 𝛾3 ). 
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In the research, 𝛼1is the proportion of hedge trading. For instance, the stock A and B are 

chosen to take arbitrage, the portfolio of the stock A and B is  Price𝐴 − 𝛼1Price𝐵. Specifically, 

at time t, we buy one unit this kind of portfolio means we buy one unit stock A and sell 𝛼1 

stock B. 
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4 Building trading signal 

 

4.1 The rule of the arbitrage trading 

The fundamental concept of the statistical arbitrage is mean-reversion. When the price of 

stock departs the average level, investors can get the opportunity to take arbitrage, until the 

price goes back to the equilibrium level. In the research of Bock and Mestel (2009), the 

trading signal is defined as ∆Stdspread , where the Stdspreadis the standard deviation of the 

spread of the stocks. More specifically, the short sell trading signal is  meanspread +

∆Stdspread , which means the investors should short sell the portfolio when the price of the 

portfolio rises to  meanspread + ∆Stdspread  level. Meanwhile, the long buy trading signal is 

 meanspread − ∆Stdspread .  

However, the price may move far away from the average level for a certain period. Although 

the price will return to the average, we have to consider the time cost and the commission cost. 

Thus, the investors gain loss actually. In order to avoid this situation, the stop loss point 

should be used in the model. In the research, we set that the difference between stop loss point 

and the mean of the spread is 2Stdspread ,. Therefore, the high stop loss point for the statistical 

arbitrage is  meanspread + 2Stdspread , and the low stop loss point is  meanspread −

2Stdspread. 

The trading rule can be shown in the table1: 

 

 

 

 



 

 11 

Table 1 trading rule 

Begin of trading sign operation End of trading sign operation 

Short sell trading 

signal 

Short sell the 

portfolio 

Average level Long buy the 

portfolio 

Short sell trading 
signal 

Short sell the 
portfolio 

Stop loss point Long buy the 
portfolio 

Long buy trading 

signal 

Long buy the 

portfolio 

Average level Short sell the 

portfolio 

Long buy trading 
signal 

Long buy the 
portfolio 

Stop loss poing Short sell the 
portfolio 

 

Specifically, for the first type of trading (the second row in Table 1), investors can short sell 

the portfolio when the price moves away the mean level and rises to the short sell trading 

signal. Then, the investors should buy back the portfolio and gain positive return when the 

price of the portfolio goes back to the average level. However, the price will still rise to the 

stop loss point rather than decrease to the mean (the third row in the table above), and the 

investors have to buy back the portfolio. Then, the investors will gain a negative return (gain a 

loss). 

4.2 Estimate the trading signal 

4.2.1 Using the Ornstein-Uhlenbeck process 

The trading signal is ∆Stdspread , and the Stdspread  is standard deviation of the spread of the 

stocks, which can be get easily through the spread series. However, the fraction of the signal 

is difficult to estimate. In this section, we pay attention to the estimation of the fraction of the 

trading signal (∆) based on the Ornstein-Uhlenbeck process.  

The price of the portfolio combined with stock A and B is: 

                                         Spreadt = log Bt  − n log At                                                      (9) 

Meanwhile, the residual equation can be gained: 

                                    et  = spreadt − meanspread                                                           (10) 
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In the optimal statistical arbitrage trading model of Bertram (2009), the residual follows the 

Ornstein-Uhlenbeck process: 

                                                  det = −αetdt + ηdWt                                                           (11) 

Where α, η>0, and Wt is the Wiener process 

The auto-regression of the series et can be shown: 

                                                          et = b ∗ et−1 + ξt                                                              (12) 

After a series of formula transformations and derivations, the parameter of α and η can be 

shown: 

                                                    α = −ln (b)/∆t                                                               (13)             

                                                     η = √var(ξ)∗2α

1−b2                                                                 (14) 

According to the research of Bertram (2009), we know that investors can enter a trade 

when et = a, and end the trade when  et = m. Therefore, the return of this trade is (do not 

consider the trading cost): 

            m − a = meanspread − (meanspread − ∆Stdspread ) = ∆Stdspread                        (15) 

The parameter ∆ can be gained: 

                                          ∆=( m − a)/ Stdspread                                                                (16) 

Meanwhile, Bertram (2009) stated the expected return and the variance for the trading 

strategy: 

                                         μ(a,m, c) =
α (m−a−c)

π[Erfi(
m√α

η
)−Erfi(

a√α

η
)]

                                                  (17) 

   σ2(a,m, c) = α(m − a − c)2 w1(m√2α /η)−w1(a√2α/η)−w2(m√2α/η)+w2(a√2α/η)

π3 [Erfi(
m√α

η
)−Erfi(

a√α

η
)]3

               (18) 

Where c is the trading cost, Erfi(x)is imaginary error function, andErfi(x) = iErfi(ix).  

In addition, he also showed us the sharp ratio of the trading: 
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                                     S(a,c, rf) =
−(2a+c+rf )√απErfi (

a√α

η
)

√(2a+c)2[w1(
a√2α

η
)+w2(

a√2α

η
)]

                                              (19) 

Where rf is the risk-free rate of return. 

In our research, we are using the expected return to estimate the trading signal. In order to get 

the maximum expected return, the parameter a should satisifies: 

a = −
c

4
−

c2α

4(c3α3 + 24cα2η2 − 4√3c4α5η2 + 36c2α4η4)

1
3

−
(c3α3 + 24cα2η2 − 4√3c4α5η2 + 36c2α4η4)

1
3

4α
                                   (20) 

 

 

4.2.2 Using the ARCH/GARCH model 

The trading signal is mentioned as  meanspread + ∆Stdspread , and Stdspread  is the standard 

deviation which is constant. However, in the real stock market, the standard deviation of 

spread sequence is fluctuant. The situation of volatility clustering may appear in the time 

series. To analyses the effect of volatility, the ARCH model and GARCH model can be 

applied in the trading strategy. The ARCH (q) model and GARCH model are defined as: 

                                           σt
2 = α0 + α1ut−1

2 + α2ut−2
2 + ⋯ + αqut−q

2                                (21) 

                                             σt
2 = w + αut−1

2 + βσt−1
2                                                          (22) 

However, when the lag q  might be very large, and non-negativity constraints might be 

violated, GARCH model is superior to ARCH model. Therefore, the ARCH effect should be 

tested before using the ARCH/GRACH model. Square the residuals and regress them on q 

own lags to test for ARCH order q, 

                                        ût
2 = α0 + ∑ αi

q
i=1 û̂t−i

2                                                               (23) 

Where ût is residual. 
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Then, the test statistic is defined as TR2  and follows the χ2 distribution. If the null hypothesis 

is rejected, then the square errors in the regression model follow an AR model and are not 

constant over time. Meanwhile, the lag q can be gained, and then, we can know which model 

should be chosen. Next, the new trading signal can be decided as  meanspread ± ∆σt. In order 

to compare the two kinds of trading signal easily, the ∆ is defined as 1 in ARCH/GRACH 

model. The stop loss point is  meanspread ± 2σt. 

4.2.3 Combination of the Ornstein-Uhlenbeck process and the   

ARCH/GARCH model 

The fraction of the ∆ estimated by the Ornstein-Uhlenbeck process and the σt  estimated by 

ARCH/GRACH model were mentioned in previous setion. In this section, these two kinds of 

factors will be considered simultaneously. In other words, the fraction of the ∆ and the σt can 

be combined to a new trading model and strategy. The short sell trading signal is defined 

as meanspread + ∆ σt, and the long buy trading signal is:  meanspread − ∆ σt. Meanwhile, the 

stop loss points are defined as:  meanspread ± 2 σt 
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5 Result 

5.1 The choice and test of the data 

5.1.1 The choice of data 

We use Shanghai A shares as our database, and select five banks as our research ob jectives, 

namely, HuaXia Bank, China Minsheng Bank, China Merchants Bank, Industrial Bank, and 

China Construction Bank respectively. After that, we collect these data from 19/05/2014 to 

17/05/2017 and make them into a line chart (line chart 1 in appendix). From the chart, it is 

obviously that the trends of all of the stock prices are similar. In addition, a calculation of 

correlation is set as we compare one bank with another respectively. The result of each 

correlation for the stock price is shown in Table 2.  

 
Table 2. Price correlations 

The table shows the correlation between time-series of stock prices. 

Price correlation Minsheng 

Bank 

Merchants 

Bank 

Industrial 

Bank 

Construction 

Bank 

HuangXia Bank 0.901 0.889 0.959 0.914 

Minsheng Bank  0.809 0.928 0.824 

Merchants Bank   0.901 0.736 

Industrial Bank    0.844 

 

It is manifest to see that the correlation of the stocks between HuangXia Bank and Industrial 

Bank is most close to 1, which is 0.959. Therefore, these two price series can be the most 

appropriate data for the research. Because we need to compare the model through the final 

return, the logarithm price can be introduced in this paper. Using logarithm price is easier and 

more convenient to gain price return than using stock price directly. In addition, logarithm 

price is normality assumption, and the range of the logarithm price is (−∞, +∞). Thus, in the 
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next step, we attempt to use logarithm for each bank within three years. The theory of using 

logarithm is based on the following formula: 

                           rt =  
pt −pt−1

pt−1
≈ log pt − log pt−1                                                               (24) 

Followed by the steps above, a new line chart (line chart 2) of these five Logarithm price 

series is achieved and shown in the appendix.  We then calculate the correlation via logarithm, 

seeing it in Table 3. 

Table3. Logarithm price of correlation 

The table shows the correlation between time-series of logarithm stock prices. 

Logarithm price 

correlation 
Minsheng 

Bank 

Merchants 

Bank 

Industrial 

Bank 

Construction 

Bank 

HuangXia Bank 0.926 0.924 0.971 0.919 

Minsheng Bank  0.860 0.945 0.840 

Merchants Bank   0.935 0.780 

Industrial Bank    0.858 

 

Undoubtedly, after logarithm, the combination of HuangXia Bank and Industrial Bank still 

appears to be the largest than the rest data. 

According to the statistical research of the two tables above, we discover that the 0.959 is the 

maximum for the correction of these stock prices while we can get 0.971 as the biggest 

number of the correction of Logarithm price. In such case, we found that when correlating 

between HuangXia Bank and Industrial Bank whose correlation and logarithm correlation is 

largest and close to 1. We take these two banks out and make a third graph instead, shown in 

the appendix (line chart 3).  

In this paper, we have a total number of 733 data for each stock, where we decide to select 

493 as the sample data. The rest is used for testing the models to verify their performance. 
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5.1.2 The ADF test of data 

Industrial Bank and HuangXia Bank which we choose have similar price trend and high 

correlation. In order to record and operate by EXCEL and Eviews, HuangXia Bank is 

represented by X, and Industrial Bank is named Y. Then, the stationary of the data can be 

tested in this section. The results can be shown in the table below. Both of the logarithm 

prices of Industrial Bank and HuangXia Bank have unit roots because the p-values are 0.429 

and 0.447, and the null hypothesis should be accepted (the results from Eviews are shown in 

result 1 in appendix). Therefore, the price series of Industrial Bank and HuangXia Bank are 

non-stationary.  Table 4 displays all the information 

Table 4. ADF test 

The table shows the information of its statistics, p-value and result of the ADF test. 

In addition, we take the first order difference on the price series of HuangXia Bank and 

Industrial Bank respectively (represented by dX and dY). The results are shown in Table 4. 

The p-values are zero, and the null hypothesis should be rejected. Thus, the two first order 

difference series are stationary. The series of Industrial Bank and HuangXia Bank are I(1), 

and they may potentially be co-integrated. 

5.1.3 The co-integration test of data 

Due to the I (1) of the two variables, the regression can be estimated through Eviews (Result 2 

in appendix) 

                                               𝑌𝑡 = 0.199 + 0.966*𝑋𝑡 + 𝑒𝑡̂                                               (25) 

Where, 𝑒𝑡̂ is the residual sequence, and is named resid01 in Eviews  

ADF test ADF test statistic p-value result 

X -1.668 0.447 Non-stationary 

Y -1.704 0.429 Non-stationary 

dX -22.507 0.000 Stationary 

dY -22.318 0.000 Stationary 
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Then, the ADF test is used to the residual 𝑒𝑡̂(Result 3 in appendix).  𝑒𝑡̂ is the residual of the 

regression combined between 𝑌𝑡  and 𝑋𝑡 , and the sum of the residual series is zero, so the 

intercept and trend are not included in the test equation.  The table below indicates that the p-

value is 0.003 and the null hypothesis should be rejected. Therefore, the residual series is 

stationary, and the sequence of 𝑌𝑡  and 𝑋𝑡 are co-integration, which shows in table 5 

Table 5. ADF test 

 

ADF test ADF test statistic p-value Result 

et̂ -2.965 0.003 Stationary 

 

5.1.4 Error correction model 

Through the Eviews, the lag (1, 1) equation can be gained (Result 4 is in the appendix): 

                                   𝑌t=𝛾0 +𝛾1 𝑋t+𝛾2 𝑋t-1+𝛾3 𝑌t-1+𝑒𝑡̂                                                           (26) 

where 𝛾0 = 0.008, 𝛾1 = 0.820. 𝛾2 = −0.792, and 𝛾3 = 0.969 

The lag (1, 1) equation can be transformed to: 

                                         ∆𝑦𝑡 = 𝛾1 ∆𝑥1 − 𝜆(𝑦𝑡−1 − 𝛼0 − 𝛼1𝑥𝑡−1) + 𝑒𝑡̂                                   (27) 

Where, 𝜆 = 1 − 𝛾3 = 1 − 0.969 = 0.031, 

                                             𝛼0 =
𝛾0

1−𝛾3
= −

0.008409

1−0.968634
= 0.268,                                            (28) 

                                         𝛼1 =
𝛾1+𝛾2

1−𝛾3
=

0.820357−0.792095

1−0.968634
= 0.900.                                          (29) 

Therefore, the portfolio combined with 𝑌𝑡  and 𝑋𝑡 can be presented as: 

                                                𝑆𝑝𝑟𝑒𝑎𝑑𝑡 = 𝑌𝑡  − 0.9 𝑋𝑡                                                       (30) 

Therefore, buy one unit of the portfolio means to buy one unit 𝑌 and sell 0.9 fractions of X. 

Meanwhile, sell one unit of this kind of portfolio is to sell one unit 𝑌 and buy 0.9 fractions 

of X. 
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The description of the 𝑆𝑝𝑟𝑒𝑎𝑑𝑡 can be presented on the chart in figure 1: 

Figure 1 the description of the 𝑺𝒑𝒓𝒆𝒂𝒅𝒕 

 

The mean of the spread sequence is: 𝑚𝑒𝑎𝑛𝑠𝑝𝑟𝑒𝑎𝑑 = 0.284 and the standard derivation of the 

series is: 𝑆𝑡𝑑𝑠𝑝𝑟𝑒𝑎𝑑 = 0.021 

 

5.2 The result estimated by Ornstein-Uhlenbeck process 

5.2.1 The estimation of trading signal 

The residual of spread series and the auto-regression of the residual can be gained 

respectively (Result 5 in appendix): 

                                                        𝑒𝑡  = 𝑠𝑝𝑟𝑒𝑎𝑑𝑡 − 𝑚𝑒𝑎𝑛𝑠𝑝𝑟𝑒𝑎𝑑                                              (31) 

                                                                     et = 𝑏 ∗ et−1 + 𝜉t                                                      (32) 

Where the coefficient 𝑏 of the residual equals to 0.979. 

And we can gain the residual series  𝜉t, which is named resid02 in E-views. The variance of 

𝜉t = 0.0056052 Assume there are 250 trading days in one year, the certain trading interval 

is ∆t, which equals to  
1

250
= 0.004. Meanwhile, the trading cost 𝑐 can be assumed as 0.002. 

According to optimal statistical arbitrage trading model of Bertram (2009), the parameters of 

the trading signal are: 
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                                     α = −
ln(b)

∆t
= −

ln(0.979)

0 .004
= 5.300                                                  (33)     

                                          η = √
𝑣𝑎𝑟(𝜉)∗2𝛼

1−𝑏2 = √
𝑣𝑎𝑟 (𝜉)∗2∗5,3

1−0.9792 = 0.090                                          (34) 

Then, the parameter  α and η can be replaced into the equation of parameter 𝑎. 

𝑎 = −
𝑐

4
−

𝑐2𝛼

4(𝑐3𝛼3 + 24𝑐𝛼2 𝜂2 − 4√3𝑐4𝛼5 𝜂2 + 36𝑐2𝛼4𝜂4 )

1
3

−
(𝑐3𝛼3 + 24𝑐𝛼2 𝜂2 − 4√3𝑐4𝛼5 𝜂2 + 36𝑐2𝛼4𝜂4 )

1
3

4𝛼
= −0.012                    (35) 

Therefore, the expected return can be maximal when the parameter 𝑎 equals to −0.012. Then, 

∆ can be calculated: 

                      ∆=( m − a)/ 𝑆𝑡𝑑𝑠𝑝𝑟𝑒𝑎𝑑 = 0.024/0.021 = 1.140                                     (36) 

According to the research of Bock and Mestel (2009), we can gain the specific trading signal. 

The short sell trading signal is :  𝑚𝑒𝑎𝑛𝑠𝑝𝑟𝑒𝑎𝑑 + ∆𝑆𝑡𝑑𝑠𝑝𝑟𝑒𝑎𝑑 = 0.284 + 1.140 ∗ 0.021 =

0.308, and the long buy trading signal is :  𝑚𝑒𝑎𝑛𝑠𝑝𝑟𝑒𝑎𝑑 − ∆𝑆𝑡𝑑𝑠𝑝𝑟𝑒𝑎𝑑 = 0.284 − 1.140 ∗

0.021 = 0.260 . In addition, the Stop loss point can be expressed as:   𝑚𝑒𝑎𝑛𝑠𝑝𝑟𝑒𝑎𝑑 −

2𝑆𝑡𝑑𝑠𝑝𝑟𝑒𝑎𝑑 = 0.284 ± 2 ∗ 0.021 = (0.326,0.242) 

 

5.2.2 The return during the sample period 

According to the parameters and trading signals calculated in the previous section, we can 

simulate the trading strategy from a line chart, which includes the mean level, spread of the 

portfolio, short sell trading signal, long buy trading signal, high stop loss point and low stop 

loss point. The graph can be shown in figure 2: 
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  Figure 2 the formation of trading arbitrage with sample data via O-U model 

 

From the line chart, we have 13 operations to complete the statistical arbitrage trading above. 

When the spread  increase (decrease) to the line ”long buy”, we decide to buy the stock; when 

the spread goes down (up) to the line “short sell”, then we sell the stock instead; when the 

spread rises or falls to the high(low) stop loss point or goes back to mean level, we do the 

opposite operations. For example, on 8th, July, 2014, we purchased these two stocks with the 

spread price of 0.26. Ten days later, on 18th, the price decrease to the low stop loss point. We 

sold the portfolio with the price of 0.245 to avoid a further loss. In this trading process, 

0.0146 was treated as a loss. In another case, when it came to day on 10th, March, 2015, we 

bought the stocks with the price of 0.26. On the day of 12th, the stocks were sold with the 

spread price of 0.284 because the spread price increases to the mean level. For the sake of the 

protection for the current profit, we decided to sell them in order to avoid the potential risk. 

The return during this trading was positive, means we earned a profit of 0.024. The rest 

trading results are similar to the operations above. A Two-year investment in these stocks 

experienced 13 operations, which then was made into a table 5 to display all the details. 
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Table 5 return of arbitrage trading 

Num of 

arbitrage 

operation date Spread price Price return Return ratio 

 

1 

Long buy 2014-07-08 0.260 -0.260  

– 0.015 Short sell 2014-07-18 0.245 0.245 

 

2 

Long buy 2014-07-26 0.260 -0.260  

– 0.011 Short sell 2014-08-07 0.249 0.249 

 Long buy 2014-11-10 0.260 – 0.260  

– 0.010 3 Short sell 2014-12-01 0.250 0.250 

 

4 

Long buy 2014-12-18 0.260 -0.260  

0.024 Short sell 2015-01-05 0.284 0.284 

 

5 

Long buy 2015-02-09 0.260 -0.260  

-0.010 Short sell 2015-02-16 0.250 0.250 

 

6 

Long buy 2015-03-10 0.260 -0.260  

0.024 Short sell 2015-03-12 0.284 0.284 

 

7 

Short sell 2015-03-16 0.308 0.308  

-0.018 Long buy 2015-03-30 0.326 -0.326 

 

8 

Short sell 2015-04-13 0.308 0.308  

0.024 Long buy 2015-04-14 0.284 -0.284 

 

9 

Long buy 2015-04-16 0.260 -0.260  

0.024 Short sell 2015-04-20 0.284 0.284 

 

10 

Long buy 2015-06-02 0.260 -0.260  

-0.018 Short sell 2015-06-19 0.242 0.242 

 

11 

Long buy 2015-06-24 0.258 -0.258  

-0.016 Short sell 2015-06-30 0.242 0.242 

 

12 

Long buy 2015-08-20 0.260 -0.260  

-0.018 Short sell 2015-09-02 0.242 0.242 

 

13 

Long buy 2016-01-04 0.260 -0.260  

0.024 Short sell 2016-01-11 0.284 0.284 

Total return 

ratio 

    0.004 
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It is clear to discover that there are five profitable arbitrages during a two-year trading, and 

the total return ratio is 0.4 percent. Despite this little profit, it still convinced that with this 

statistical arbitrage model, investors could achieve return after a 2-year investment. 

Meanwhile, we find that the negative return exists in the statistical arbitrage; therefore, the 

arbitrage is not a risk-free strategy. Investors only reduce the investment risk using the 

statistical arbitrage. 

5.2.3 The forecast and estimation of the data out of sample 

Then, the parameters and trading signals calculated by the sample data are used to forecast 

and estimate the spread price out of the same. The simulation is shown in figure 3: 

Figure 3 the forecast and estimation of the data out of sample 

 

The procedure for the statistical arbitrage is the same as that shown in the model before.  In 

the past year, only three time periods were suitable for arbitrage, which then were made into a 

table, showing in Table 6. 
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Table 6 return of arbitrage trading 

Num. of 

arbitrage 

operation time Spread 

price 

Price return Return ratio 

1 Short sell 2016-05-23 0.308 0.308 0.024 

Long buy 2016-06-06 0.284 -0.284 

2 Short sell 2016-09-29 0.303 0.303 0.019 

Long buy 2016-11-08 0.284 -0.284 

3 Long buy 2016-11-29 0.260 -0.260 0.024 

Short sell 2016-12-26 0.284 0.284 

Total return 

ratio 

    0.067 

 

The table clearly reflects that all the three operations within last year had a positive return. 

Simultaneously, it describes that the return ratios in the first and third arbitrages have the 

same value. The total return ratio, 0.067, illustrates that the model application is profitable 

despite the return of two stocks don’t achieve too much return. In such situation, the O-U 

model is suitable for the investors; particularly, the positive return ratio decreases the 

expectation of investors who are afraid of the future stock market. 

5.3 The result given by the ARCH/GARCH model 

5.3.1 Trading signal estimated by ARCH/GARCH model 

Through the correlogram of 𝑠𝑝𝑟𝑒𝑎𝑑𝑡 series (Result 6 in appendix), we can know that 

𝑠𝑝𝑟𝑒𝑎𝑑𝑡 is AR (1) model. Therefore, the auto-regression can be estimated (Result 7):  

                            𝑠𝑝𝑟𝑒𝑎𝑑𝑡 = 0.009 + 0.966 ∗ 𝑠𝑝𝑟𝑒𝑎𝑑𝑡−1 + 𝑢𝑡                                          (37) 

Then, the residual 𝑢𝑡  can be gained and is named resid03 in Eviews. The line graph of 𝑢𝑡 is 

shown in appendix (Result 8). The ARCH LM test is used to the residual 𝑢𝑡 with lag 10 (in 

Figure 4). From the table, the probability of chi-square distribution is 0.056, and the null 

hypothesis cannot be rejected. Therefore, the residual 𝑢𝑡 does not have the ARCH effect with 
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high order of lags, and the GRACH (1, 1) model can be considered to estimate parameters and 

trading signals. 

Figure 4 the result of ARCH LM test with lag 10 

 

In addition, the GRACH (1, 1) (Result 9 in appendix) model can be shown as: 

                              𝜎𝑡
2 = 0.00000166 + 0.270𝑢𝑡−1

2 + 0.707𝜎𝑡−1
2                               (38) 

Therefore, the short sell trading signal is 𝑚𝑒𝑎𝑛𝑠𝑝𝑟𝑒𝑎𝑑 + 𝜎𝑡, and the long buy trading signal is : 

 𝑚𝑒𝑎𝑛𝑠𝑝𝑟𝑒𝑎𝑑 − 𝜎𝑡. The Stop loss points are:  𝑚𝑒𝑎𝑛𝑠𝑝𝑟𝑒𝑎𝑑 ± 2𝑆𝑡𝑑𝑠𝑝𝑟𝑒𝑎𝑑  

5.3.2 The return of the sample 

Then, we simulate the trading result using the parameters and trading signals calculated by 

GRACH (1, 1) model, seeing in figure 5 

Figure 5 the formation of trading arbitrage with sample data via GARCH model 

 

Because of the volatility, the lines of trading signals and stop loss points are not straight lines, 

and they are fluctuant around the mean level according to the spread series. It is clearly to 
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notice that two-year period experienced a sharp fluctuation, where the value of spread began 

with 0.233 and ended with above 0.300. It once climbed to over 0.350 and plunged to less 

than 0.200.  Nearly 12 operations need to be considered and calculated within two years. All 

the details and information could be checked below via Table 7 

Table 7 return of arbitrage trading 

Num of 

arbitrage 

operation time Spread price Price return Return ratio 

 

1 

Long buy 2015-01-05 0.278 -0.278  

0.006 Short sell 2015-01-06 0.284 0.284 

 

2 

Short sell 2015-01-07 0.289 0.289  

0.005 Long buy 2015-01-08 0.284 -0.284 

 

3 

Long buy 2015-01-14 0.279 -0.279  

-0.004 Short sell 2015-01-15 0.275 0.275 

 

4 

Long buy 2015-03-10 0.277 -0.277  

0.007 Short sell 2015-03-11 0.284 0.284 

 

5 

Short sell 2015-03-16 0.295 0.295  

-0.011 Long buy 2015-03-18 0.306 -0.306 

 

6 

Short sell 2015-04-14 0.292 0.292  

0.008 Long buy 2015-04-15 0.284 -0.284 

 

7 

Long buy 2015-04-16 0.243 -0.243  

0.041 Short sell 2015-04-22 0.284 0.284 

 

8 

Long buy 2015-04-27 0.270 -0.270  

-0.008 Short sell 2015-04-29 0.262 0.262 

 

9 

Long buy 2016-01-07 0.276 -0.276  

0.008 Short sell 2016-01-11 0.284 0.284 

 

10 

Short sell 2016-01-15 0.289 0.289  

-0.005 Long buy 2016-01-18 0.294 -0.294 

 

11 

Short sell 2016-01-29 0.290 0.290  

0.006 Long buy 2016-01-21 0.284 -0.284 

 

12 

Short sell 2016-04-16 0.286 0.286  

-0.003 Long buy 2016-04-18 0.289 -0.289 

Total return 

ratio 

    0.050 
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According to the details from the table above, it manifests that more than half of the total 

operations obtained a positive return. Among the operations, time from 16th April to 22 nd 

April (arbitrage operation 7) experienced the highest return ratio, accounting for 

approximately 80 percent of the total return ratio. The rest positive value is around 1 percent. 

The total return ratio is 5 percent, which means that GARCH model is worthwhile to be 

considered by investors. In addition, the stop loss point is also fluctuant according to the 

spread series, and it can reduce the investment risk.  

5.3.3 Out of sample forecast 

Next, the data out of the sample is used to estimate the GARCH (1, 1), and the trading 

parameters and trading signals are gained from the sample data. The result of the trad ing is, 

seeing in figure 6: 

Figure 6 the forecast and estimation of the data out of sample 

 

As it can be seen above, over ten operations were suggested to conduct the statistical arbitrage 

within last year. The fluctuation seems to be sharper and more drastic than that of other tests. 

The initial point, also regarded as the peak point, fell down since the model started to be 
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tested. The procedure is still the same as those operations introduced before. After a careful 

and clear calculation, all of the returns of arbitrage trading can be shown in Table 8. 

Table 8 return of arbitrage trading 

Num of 

arbitrage 

operation time Spread price Price return Return ratio 

1 Short sell 2016-06-06 0.298 0.298 0.013 

Long buy 2016-06-07 0.285 -0.285 

2 Short sell 2016-06-20 0.292 0.292 0.008 

Long buy 2016-07-07 0.284 -0.284 

3 Short sell 2016-07-08 0.292 0.292 -0.005 

Long buy 2016-07-11 0.297 -0.297 

4 Short sell 2016-08-09 0.292 0.292 0.009 

Long buy 2016-08-15 0.283 -0.283 

5 Short sell 2016-09-13 0.291 0.291 -0.006 

Long buy 2016-09-19 0.297 -0.297 

6 Short sell 2016-11-04 0.294 0.294 0.012 

Long buy 2016-11-10 0.282 -0.282 

7 Long buy 2016-11-17 0.276 -0.276 -0.01 

Short sell 2016-11-21 0.266 0.266 

8 Long buy 2016-12-05 0.276 -0.276 -0.007 

Short sell 2016-12-07 0.269 0.269 

9 Long buy 2016-12-14 0.276 -0.276 0.007 

Short sell 2016-12-26 0.283 0.283 

10 Long buy 2017-01-03 0.275 -0.275 -0.007 

Short sell 2017-01-04 0.268 0.268 

11 Long buy 2017-01-23 0.276 -0.276 -0.009 

Short sell 2017-02-10 0.267 0.267 

Total return 

ratio 

    0.005 
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The table illustrates that there are total 11 operations for the test and verification, and despite 

that there are fewer positive return ratios than the negative ones(5 and 6 respectively ); 

however, the total return ratio, 0.5 percent, represents that when using GARCH model for 

these stocks, this portfolio is profitable for investors to consider.  

 

5.4 The result from the combination of Ornstein-   

Uhlenbeck process and ARCH/GARCH model 

In the third part, which is an evolutionary step for us, we device a new model that both 

combined with O-U model and GARCH model. Obviously, the first two years information as 

sample data are selected to make the model successfully and the last year data is used to test 

and verify its correctness and effectiveness as the investors’ multiple choices. From the 

section 5.2.1 and 5.3.1, the short sell trading signal can be expressed as  𝑚𝑒𝑎𝑛𝑠𝑝𝑟𝑒𝑎𝑑 +  ∆𝜎𝑡 , 

and the long buy trading signal is  𝑚𝑒𝑎𝑛𝑠𝑝𝑟𝑒𝑎𝑑 − ∆𝜎𝑡. 

5.4.1 The return of the sample 

Graph 7 shows the results of the trading strategy during a period of two years. 

Figure7 the formation of trading arbitrage with sample data via combined model

 

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36 spread

mean

short sell

long buy

high stop loss
point
low stop loss
point



 

 30 

As the graph depicts, there are total 12 operations that could be treated as the statistical 

arbitrages within a two-year observation. Because the parameter  ∆= 1,14, which is greater 

than 1, is added to the trading signal, the arbitrage interval (the range between mean level and 

short sell/long buy signal) is greater than that of GARCH (1, 1) model. Meanwhile, the range 

between trading signal and loss stop point is smaller. The operation method is preferred to do 

in the same way before. A further table is made to note all the operations with their return 

ratios, which could be seen in Table 9. 

Table 9 return of arbitrage trading 

Num of 
arbitrage 

operation time Spread price Price return Return ratio 

1 Long buy 2015-01-05 0.278 -0.278 0.006 

Short sell 2015-01-06 0.284 0.284 

2 Short sell 2015-01-07 0.29 0.29 0.006 

Long buy 2015-01-09 0.284 -0.284 

3 Short sell 2015-03-12 0.298 0.298 -0.008 

Long buy 2015-03-18 0.306 -0.306 

4 Short sell 2015-04-15 0.294 0.294 0.01 

Long buy 2015-04-16 0.284 -0.284 

5 Long buy 2015-04-28 0.270 -0.270 -0.007 

Short sell 2015-04-29 0.263 0.263 

6 Long buy 2016-01-05 0.276 -0.276 0.009 

Short sell 2016-01-11 0.285 0.285 

7 Short sell 2016-01-15 0.291 0.291 -0.004 

Long buy 2016-01-18 0.295 -0.295 

8 Short sell 2016-01-19 0.290 0.290 0.006 

Long buy 2016-01-22 0.284 -0.284 

9 Long buy 2016-01-25 0.279 -0.279 0.005 

Short sell 2016-01-28 0.284 0.284 

10 Long buy 2016-03-11 0.280 -0.280 0.004 

Short sell 2016-03-13 0.284 0.284 

11 Short sell 2016-03-14 0.287 0.287 0.009 

Long buy 2016-03-15 0.278 -0.278 

12 Long buy 2016-04-12 0.284 -0.284 0.003 

Short sell 2016-04-13 0.287 0.287 

Total return 
ratio 

    0.040 

 

As the table shows above, the 2-year operations in two stocks had nine records of positive 

return ratio, where the positive are triple than the negative records. After two-year investment 

in stocks, investors could achieve a total return ratio as high as 4 percent. The combined 

model performed to be one choice for investors to consider in the further.  
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5.4.2 The forecast and return of the data out of sample 

According to the two-year historical data, we use the last year and make it into a Figure 8. 

Figure 8 the forecast and estimation of the data out of sample 

 

It described the trend of the spread and analyzed that there were 12 opportunities that 

investors could have the statistical arbitrages. In this combined model, the initial point 

gradually decreased to the lowest as time went on in spite of some periods when the spread 

slightly increased. After it plunged to the bottom, the trend then slowly went up until the end.  

The procedure omits as we have already mentioned the methods before. The table 10 

illustrated all the information, as well as each return ratio of each operation. 
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Table 10 return of arbitrage trading 

Num of 

arbitrage 

operation time Spread price Price return Return ratio 

1 Short sell 2016-06-06 0.299 0.299 0.014 

Long buy 2016-06-07 0.285 -0.285 

2 Short sell 2016-06-17 0.293 0.293 0.009 

Long buy 2016-07-04 0.284 -0.284 

3 Short sell 2016-07-05 0.293 0.293 -0.004 

Long buy 2016-07-12 0.297 -0.297 

4 Short sell 2016-08-09 0.293 0.293 0.01 

Long buy 2016-08-15 0.283 -0.283 

5 Short sell 2016-09-12 0.293 0.293 -0.005 

Long buy 2016-09-20 0.298 -0.298 

6 Short sell 2016-10-26 0.294 0.294 -0.005 

Long buy 2016-11-03 0.299 -0.299 

7 Short sell 2016-11-04 0.295 0.295 0.011 

Long buy 2016-11-07 -0.284 -0.284 

8 Long buy 2016-11-18 0.274 -0.274 -0.008 

Short sell 2016-11-21 0.266 0.266 

9 Long buy 2016-12-05 0.275 -0.275 -0.006 

Short sell 2016-12-07 0.269 0.269 

10 Long buy 2016-12-13 0.275 -0.275 0.008 

Short sell 2016-12-26 0.283 0.283 

11 Long buy 2017-01-03 0.274 -0.274 -0.006 

Short sell 2017-01-04 0.268 0.268 

12 Long buy 2017-02-03 0.275 -0.275 -0.008 

Short sell 2017-02-14 0.267 0.267 

Total return 

ratio 

    0.010 

 

Form the table, it is clear to notice that in the last year, 12 operations could be used for the 

statistical arbitrages. The table reminded the investors that half of the operations in the recent 
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one year brought them the positive return ratio. The total return ratio, 1%, expresses this 

combined model is worthwhile for the investors to consider, despite of the low profitable 

return. All in all, there are 6 positive returns from two data series and three different kinds of 

models. The highest return is 6.7% gained from the model of Ornstein-Uhlenbeck process and 

data series out of sample. Therefore, these three kinds of models can reduce the risk of 

investment; however, the returns of these models are low. The reason of this situation may be 

that the stock price is comparatively stable to reduce the opportunities of arbitrage. In addition, 

the low value of volatility causes that the interval between mean level and trading signal level 

(𝑚𝑒𝑎𝑛𝑠𝑝𝑟𝑒𝑎𝑑 ±  ∆𝜎𝑡) is small.  
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6 Contribution and Conclusion 

Statistical arbitrage is a common trading strategy. In this paper, we introduce two trading 

models, i.e. Ornstein-Uhlenbeck process model and GARCH model. We perform a number of 

related tests to verify the property of the data-used in this analysis. The stock pries HuangXia 

Bank and Industrial Bank from Chinese stock market are used to test these two models. The 

paper contributes by using a combination of Ornstein-Uhlenbeck model and GARCH model. 

The highest return, which is 6.7%, is gained by Ornstein-Uhlenbeck process model using the 

data out of sample. Therefore, the O-U model is the best model, among these three alternative 

models, for investors taking statistical arbitrage trading. Because of the stable stock prices of 

Chinese bank industry and the low standard deviation, the arbitrage interval of O-U model is 

wider than that of the GARCH model and the combined model. This situation causes that the 

O-U model can gain higher return than the other two models. Through forecasting the data out 

of sample, the new combined model has better preference than GARCH model. Because the 

parameter that is greater than one is added in the trading signal to expend the arbitrage 

interval, the arbitrage return of combined model becomes higher than that of GARCH model. 

For the data which is not as stable as the stock prices of Chinese bank industry, because of the 

effect of volatility clustering, the arbitrage interval is wider when using combined model than 

O-U model, thus, the return of data using new combined model is higher. However, this 

should be tested and verified by new data in the future research. 
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Appendix 

 

Line chart 1: the price of the five banks 

 

 

Line chart 2: the logarithm price for the five banks 
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Line chart 3: the logarithm price for HuangXia Bank and Industrial Bank 
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Result 1 ADF test for HuangXia Bank and Industrial Bank 

 

 

Result 2: the regression of Y and X 
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Result 3: the ADF test of residual resid01 

 

 

Result 4: the auto-regression of Y 
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Result 5: the auto-regression of residual of spread series 

 

 

Result 6: the correlogram of spread series  
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Result 7: the auto-regression of spread series 

 

 

Result 8: graph of resid03 
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Result 9: GARCH(1, 1)  

 


