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Abstract

Statistical arbitrage is widely used in the quantitative based trading strategies. In this paper,
we mainly use Ornstein-Uhlenbeck (O-U) process model and the GARCH model to estimate
the parameters and verify trading signals for the statistical arbitrage. In addition, a new model
is created through the combination of O-U model and GARCH model. To estimate the models,
HuangXia Bank and Industrial Bank are selected due to the highest correlation among the
banks.

Key words: statistical arbitrage, Ornstein-Uhlenbeck model, GARCH model



Table of Contents

101100 1104 0o OSSR 1
2 LIEIATUIE TEVIBW ...ttt sttt bttt e bbb bbbt e bbb bt e e 3
3 Data and MethOUOIOQY ......ccuveuieieiiie et sttt sreesreene s 6
3.1 Data ChOICE AN TEST ....eeveeeieiieeieeie sttt e st e e e neesre e e anaeeneenres 6
3.2 CO-INtEQrationN tEST  ..oveeie et et re e e re e 7
3.3 Error COrreCtion MOTE | .........oiiiieiieiieie ettt ns 8

i = L0 ] o N0 I - Uo HTa o ] o | o OSSO R 10
4.1 The rule of the arbitrage trading .......ccoovviiiieiie s 10
4.2 Estimate the trading SIGNal .........coooiiiiiiii e 11
4.2.1 Using the Ornstein-Uhlenbeck ProCeSS ........cviveiiviiieiieie e 11
4.2.2 Using the ARCH/GARCH MOdEL........coviiiiiiiieecee s 13

4.2.3 Combination of the Ornstein-Uhlenbeck

process and the ARCH/GARCH mOdel ..o 14
BRESUIS ..ot bttt bbbt 15
5.1 The choice and test 0F the data .........cccoveiiiiiiei e 15
5.1.1 The ChOICE OT LA ....ecvveieieieiee e 15
5.1.2 The ADF teSt OF data.......ccueiviiiiiiiiiiiiieie s 17
5.1.3 The co-integration teSt OF data ........cceevverieriiiiiiieeee s 17
5.1.4 Error COrreCt MOUEH ......oiveeieee et 18
5.2 The result estimated by Ornstein-Uhlenbeck process ..., 19
5.2.1 The estimation of trading SIgNal ..........cccooiiiiiiiii s 19
5.2.2 The return 0T the SAMPIE ....eeve e s 20
5.2.3 The forecast and return of the data out of sample ..........ccccooviiiiiiiiic i, 23
5.3 The result estimated by ARCH/GARCH mMOodel .......ccoooiiiiiiiiieeeee e 24
5.3.1 Trading signal estimated by ARCH/GARCH model..........c.cccccevveveiieiiecieecee 24
5.3.2 The return 0T the SAMPIE .....eoviiie s 25
5.3.3 The forecast and return of the data out of sample ... 27

5.4 The result estimated by the combination of Ornstein-

Uhlenbeck process and ARCH/GARCH model .........cccooevvvvieiiiiicccece e 29

5.4.1 The return 0F the SAMPIE .....eoviiiiieee s 29
5.4.2 The forecast and return of the data out of sample ... 31

6 Contribution and CONCIUSION ......oviiiiiiiiieieee e 34
RETEIENCES ...ttt ettt e sttt e et e be e st e sse e s be e teenteereenbeeneeereenteeneens 35



Appendix



1 Introduction

Arbitrage is a very common concept in finance. It means investors can buy the lower-price
product and sell it at a higher price at the situation that the financial products have the
different prices in the different financial market. In the viewpoint of Velissaris (2010), the
ideal arbitrage is a costless strategy which provides investors with the opportunity to get
abnormal revenue but with no risk to lose. Nowadays, many different kinds of arbitrage

strategies are used by investors and fund managers to obtain high return and reduce the risk.

Statistical arbitrage is one specific form of the arbitrage trading strategies. In the financial
market, statistical arbitrage trading is an investing process based on mathematical models.
More specifically, statistical arbitrage is using a mathematical model relying on historical data
to guide the investors and fund managers to forecast the future value of portfolios to build an
arbitrage trading strategy. The mechanism of this kind of arbitrage trading is to research the
financial markets that are out of equilibrium level. In other words, the price of a stock is
supposed to a certain equilibrium level, and it fluctuates around this kind of level. If the price
series moves away from this equilibrium level, it is expected to move back ina certain period.

Thus, the opportunity of arbitrage will happen in this kind of process.

In this paper, the specific trading strategy of statistical arbitrage will be researched and
discussed. We use the specific trading rule proposed by Bock and Mestel (2009), and from an
arbitrage trading strategy, when the price of the stock moves away from an equilibrium level.
Moreover, we use the trading signal indicator suggested by Bertram (2009), based on the
Ornstein-Uhlenbeck (O-U) process, to define the particular trading strategy. Since the model
is built on the time series and the equilibrium level, some related data tests are necessary for
the research. Especially, the stationary test should be considered before the model building.
Thus, the Dickey-Fuller (D-F) test, Augmented Dickey-Fuller (ADF) test, and Phillips-Perron
test, are used to test the stationary of the sequence. Our model and trading strategies are based
on the real stock data. More specifically, the stock prices for stocks in the bank industry of
China are used to estimate the statistical arbitrage. The total period consists of three years,

where two years of data is used to estimate the parameters and verifies the trading signals, and;



the rest of data is used to calculate the return according to the estimated parameters and

trading signals.

Through simulating the arbitrage trading process, the highest return is gained by Ornstein-
Uhlenbeck process model and from the data out of sample. The combination of O-U model
and GARCH model has better performance than pure GARCH model. Perhaps, the stock
prices of Chinese banks are comparably stable. This situation causes the arbitrage interval is
narrow, and volatility effect causes the return is low in some periods. We contribute to the
literature by using a combination of Ornstein-Uhlenbeck model and GARCH model. Through
the previous research of these two models, the parameters (A) of trading signal and the effect
of volatility clustering in spread series are simultaneously considered in the new model.
Although the stocks of Chinese banks have better results of arbitrage trading using Ornstein-
Uhlenbeck process model, the stocks which are sharply fluctuated may have better arbitrage
performance by the new model, but this conjecture may be verified using other data in future

research.

In this paper, the next section will give the information about the background of the data that
we choose. The related literature will be introduced and evaluated in the third part. After that,
the statistical arbitrage trading strategy in section 4. In for the section 5, three different Kinds
of approaches of the trading signal will be introduced. Next, three different models will be
applied to estimate and forecast for the real data and stocks respectively. In section 7, we will
compare the three models with each other and state the contribution and the drawback of the

research. Finally, this report will be evaluated and summarized in section 8.



2  Literature Review

Bondarenko (2003) introduced the concept of statistic arbitrage, which is different from other
arbitrage strategies that cannot have negative payoffs. Statistic arbitrage allows the payoffs be
negative as long as the average payoff in a trading period is nonnegative. He also indicated
that this arbitrage strategy is a trading with zero-cost, thus in the process, the expected payoff
of statistic arbitrage is positive, and meanwhile, the conditionally expected payoff in each
trading period is nonnegative. Hogan et al. (2003) specified the concept of statistic arbitrage

of Bondarenko (2003). They showed that the statistical arbitrage follows four conditions:
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Which means that (i) This strategy is a zero initial cost (v(0) = 0) self-financing trading
strategy (ii) it has the limitation of positive expected discounted profits, (iii) a probability of a
loss approach to zero, and (iv) if the probability of the loss does not become zero in finite
time, the time-averaged variance will converge to zero. In addition, they tested for the
statistical arbitrage rule and researched the two strategies of momentum and value trading.
Then, Jarrow et al. (2005) enlarge the set of statistic arbitrage at the foundation of the research
of Hogan et al. (2003), and have the supplement of the consistence and the statistical power in
the Bonferroni approach through the statistical methods. Meanwhile, they contributed several

statistical arbitrage frameworks.

In 1999, Burgess researched the relationship of the components of FTSE 100 using the
statistical arbitrage. He found that the co-integration model can be used in the statistical
arbitrage strategy. Several years later, Alexander and Dimitriu (2004) applied the method of
co-integration on the research of the tracking portfolio and index. They found that co-
integration optimal portfolio, which has low- volatility, low- correlation with the market, is
superior to the tracking error variance (TEV). Thomaisdis and Kondakis (2006) combined

neural networking approach with statistical arbitrage. In this paper, an autoregressive



GARCH model, based on the neural networking, was to seek for the investment portfolio in
the stock market. The results verified the possibility of using statistical arbitrage. Meanwhile,
the hybrid computational intelligent system was introduced by Thomaidis and Dounias (2006).
In this system, nonlinear neural network autoregressive models and GARCH
parameterizations of volatility can be used to test the dynamics of the correction of statistical
arbitrage opportunities with the pairs of assets. What’s more, the authors applied the NN -
GARCH model on the forecast of the dynamics of the statistical mispricing. Despite this
model was qualified to forecast the short-term changes in volatile levels, it is still
questionable giving the variable trading costs and market “frictions” After that, Meucci (2010)
showed the multivariate Ornstein-Uhlenbeck process and summarized the discrete-time and
continuous-time multivariate process. Furthermore, he interpreted the concept of co-
integration and the relationship between it and statistical arbitrage by the illustration of the
geometry of the Ornstein-Uhlenbeck dynamics. In addition, Cummins and Bucca (2011) paid
their attention to the research of the quantitative trading in refined products markets. They
operated the arbitrage process using the optimal statistical arbitrage trading model. In addition,
both of them proposed the multiple hypotheses that detected the data snooping bias, and they
showed the step-down procedure and the balanced step-down procedure. In their study, unlike
the step-down procedure, the balanced procedure successfully identifies any profitable
strategies and unbiased of trading applications. After that, Vidyamurthy (2014) argued that
statistical arbitrage is based on the thought of relative pricing. He found that two stocks in the
similar characteristics have approximately the same stock prices, and simultaneously the price
spread could be regarded as the degree of mispricing, which analyzed that a large distance of
the price spread has a higher degree of mispricing and then results in achieving a high
probability of potential returns. The author also mentioned three parametric methods used in
the trading signals in this article, namely, mixtures of Gaussians, ARMA model and Hidden
Markov Model.

Huck (2009) described a selection method in the trading portfolio and as well as discussed the
pros and cons of its application. He chose S&P 100 index stocks as a stock pool. And at the
same time, Elman, a neural networking approach, was selected to predict different returns
respectively, then the author adapted to Electre 111 method to rank for different profits. The
result, Huck analyzed that this approach could obtain a perfect trading portfolio under the

condition of highly correlated non-linearity.



In 2007, Chng analyzed how trading could obtain profits from four crucial internal
components, namely, “negative serial covariance in idiosyncratic returns”; “positive cross-
serial covariance in idiosyncratic returns of collaborative firms™; “discrepancy in the
unconditional expected return of component stocks” and “lead- lag effects in component stock
price reaction to unexpected common factor realizations”. The author also talked about two
applications of the model in practical ways. One is for comparing the economic importance
with other profitable components. Another is to set a connection between the profitable
components and the restriction appeared during the formation. To apply pairs trading in a
practical way, in 2009, Perlin set an example of Brazilian financial market to discuss whether
pairs trading strategy could apply to the efficient market or not. He also discovered the
influence of the arbitrage that data on the condition of different fluency may have. The
consequence shows that it is available to use pairs trading strategy in the Brazilian market and
its ability of the profitability on the market has a high relation with the data fluency. When

selecting daily statistics as sample data, the strategy could help earn a high profit.



3 Data and Methodology

3.1 Date choice and test

According to the concept of statistical arbitrage, we know that the basic idea of this strategy is
using the statistical analysis tools to research stocks which have the stable price relationship.
In other words, if the stocks have a certain stable relationship, the portfolio of the stocks has a
certain equilibrium level. When the price of the portfolio moves away from this level, the
equilibrium relationship will drive the price to go back to the equilibrium level. Therefore, the
stationary is an important concept in the statistical arbitrage and the stable relationship of
stocks is a necessary condition for the research. The choice of the stocks which have the

stationary is the first task in the research.

However, there are numerous stocks in the real market. It is difficult to compare and analyze
all of the stocks. Therefore, we decide to choose the stocks which are from the same industry.
The stocks in the same industry have similarity, have a low difference of the risk factors, and
have high probability of similar price trend. In addition, the correlation can be used to choose
the appropriate data. For instance, HuangXia Bank and Industrial Bank, both of them come
from China bank area, and their correlation is close to 1. Therefore, the stock prices of them

can be used to estimate our model. The correlation formula is:

— |covPabp)

P= Jvar (Pg)var(Py) (1)
Where P, and P, are the price of stock A and stock B. The pair of data has a high correlation
when the value ofp close to 1. Thus, this pair of stocks can be appropriate to take arbitrage
trading.

The test of stationary is necessary for a time series. If the stationary test is ignored, the
spurious regression will appear. Then, the total research will become unmeaning. Therefore,

the data should be tested before modeling the statistical arbitrage trading. In the section of



Econometrics, there are three kinds of methods to test the stationary: DF (Dickey-Fuller) test,
ADF (Augmented Dickey-Fuller) test, and Phillips-Perron test.

ADF test is derived from the DF (Dickey-Fuller) test, which is applied in the AR(1)model
e = @y,_; +u,). Itis acommon approach to test the property of stationary for a time series.
The test model can be shown:

Yi=pYea+Xl_, BiY q +u, )

Where Y:is time series, t is Time trend.

The null hypothesis is the time series is not a stationary one (Ho: p =0), to the contrary, the
alternative hypothesis of p <O means that it is stationary. The Phillips-Perron test is similar to
the ADF test, has the same null hypothesis, and usually gives the same conclusion. In the
research, we decide to use ADF (Augmented Dickey-Fuller) test to test the stationary of the

stocks.

3.2 Co-integration test

The non-stationary series Y,can become stationary after being differenced d'™" order. This kind
of series is integration of d" order , we write as Y,~I(d). In most case, if we linearly combine

two variables that are I(d), then the combination will also be I(d), and they are co-integrated.

In the research, the Engle-Granger two-step approach can be used to test the co-integration.
This method is to take the ADF test for the residuals of the regression. The variables have a
stable relationship and co-integration, and then the residuals of the regression equation

combined with the variables should be stable. The step of the co-integration test is:

(1). When the variables are integrated of order 1( I(1)), estimating the co-integration
regression using OLS

Yi=Bo+B, Xi+é, 3)

Where €; is expressed the residual sequence.



(2). Test the stationary of residuals (é;) by the ADF test; the residual equation can be shown:
Aé=pe,~,+X7_ BiAG, + &, (4)

The null hypothesis is the time series is non-stationary (Ho: p =0). To the contrary, the
alternative hypothesis of p <0 means that it is stationary, and the variables have a co-

integration relationship.

3.3 Error correction model

For the non-stationary variables, they can become stable after being differenced d™ order, and
then the regression model can be built (Ay, = §,Ax, + v,). However, in the real world, the
dependent variables and independent variables are not static equilibrium. More specifically,
the lagged independent variables (x,_,) also affect the dependent variables (y,). Obviously, a
simply approach of difference cannot solve the problem of the non-stationary time series.

Thus, the Error correction model should be used to solve this kind of problem.
The variables have a long-term relationship:
Y =y trn Xit+é; ()
However, the real relationship of the variables is:
Y=y, 1 X4y, X1 tys Yia+é, (6)
So, we can write the ECM as:
Ay, =y, 8x; = Ay, —ag —ayx,,) + & (7)
Then, the second step of the Engle-Granger two-step approach can be used in the ECM model:
Ay, = B1Axy + A(0,_,) + & (8)

Where 6,_, =y,_, — ¥, — V1%, and this model takes into account both long-term and

short-term effect. Meanwhile,A =1 -y, , @y =v,/(1—=¥3). a1 = (1, +¥,)/(1 —v3).



In the research, a,is the proportion of hedge trading. For instance, the stock A and B are
chosen to take arbitrage, the portfolio of the stock A and B is Price® — a, Price®. Specifically,
at time t, we buy one unit this kind of portfolio means we buy one unit stock A and sell a,

stock B.



4 Building trading signal

4.1 The rule of the arbitrage trading

The fundamental concept of the statistical arbitrage is mean-reversion. When the price of
stock departs the average level, investors can get the opportunity to take arbitrage, until the

price goes back to the equilibrium level. In the research of Bock and Mestel (2009), the

trading signal is defined as AStd where the Stdg,,.,qiS the standard deviation of the

spread ’

spread of the stocks. More specifically, the short sell trading signal is meang, ..q +
AStdgpreaq, Which means the investors should short sell the portfolio when the price of the
portfolio rises to meang, e,q + AStdg,eaq leVel. Meanwhile, the long buy trading signal is

mean — AStd

spread spread *

However, the price may move far away from the average level for a certain period. Although
the price will return to the average, we have to consider the time cost and the commission cost.
Thus, the investors gain loss actually. In order to avoid this situation, the stop loss point
should be used in the model. Inthe research, we set that the difference between stop loss point

and the mean of the spread is 2Std Therefore, the high stop loss point for the statistical

spread !

arbitrage IS meang, . .q + 25td and the low stop loss point is meang,.,q —

sprea spread

25td

spread-*

The trading rule can be shown in the tablel:

10



Table 1 trading rule

Begin of trading sign operation End of trading sign operation

Short sell trading Short sell the Average level Long buy the
signal portfolio portfolio

Short sell trading Short sell the Stop loss point Long buy the
signal portfolio portfolio

Long buy trading Long buy the Average level Short sell the
signal portfolio portfolio

Long buy trading Long buy the Stop loss poing Short sell the
signal portfolio portfolio

Specifically, for the first type of trading (the second row in Table 1), investors can short sell
the portfolio when the price moves away the mean level and rises to the short sell trading
signal. Then, the investors should buy back the portfolio and gain positive return when the
price of the portfolio goes back to the average level. However, the price will still rise to the
stop loss point rather than decrease to the mean (the third row in the table above), and the
investors have to buy back the portfolio. Then, the investors will gain a negative return (gain a
loss).

4.2 Estimate the trading signal

4.2.1 Using the Ornstein-Uhlenbeck process

The trading signal is AStd and the Stdg, ..,q is standard deviation of the spread of the

spread’

stocks, which can be get easily through the spread series. However, the fraction of the signal
is difficult to estimate. In this section, we pay attention to the estimation of the fraction of the

trading signal (A) based on the Ornstein-Uhlenbeck process.
The price of the portfolio combined with stock A and B is:

Spread, = logB, — n logA, 9)
Meanwhile, the residual equation can be gained:

e, = spread; —meang, c,q (10)

11



In the optimal statistical arbitrage trading model of Bertram (2009), the residual follows the
Ornstein-Uhlenbeck process:

de, = —ae dt + ndW, (11)
Where a, n>0, and W, is the Wiener process
The auto-regression of the series e, can be shown:
eg=bxe_; +§& (12)

After a series of formula transformations and derivations, the parameter of a and n can be

shown:

a = —In(b) /At (13)

n= /% (14)

According to the research of Bertram (2009), we know that investors can enter a trade
when e, = a, and end the trade when e, = m. Therefore, the return of this trade is (do not

consider the trading cost):

m —a = mealgyreaq — (meanspread - AStdspread) = AStdspread (15)
The parameter A can be gained:
A=( m-—a)/ Stdspread (16)

Meanwhile, Bertram (2009) stated the expected return and the variance for the trading
strategy:

w(a,m,c) = amea) (17)

‘rr[Erfi(mT\/a) —Erfi(T)]

gy 2T 1) (T ) o T ) 2, o )

3 [Erfi(mT‘/a)_ Erfi(%a)P (18)

0%(a,m,c) = a(m —a —

Where cis the trading cost, Erfi(x)is imaginary error function, andErfi(x) = iErfi(ix).

In addition, he also showed us the sharp ratio of the trading:

12



ava
—(2a+c+r¢) [anErfi(—)
S (19)

J@aroywy (225w, (2%,

n

S(a,c,rp) =

avaa
n
Where r; is the risk-free rate of return.

In our research, we are using the expected return to estimate the trading signal. In order to get

the maximum expected return, the parameter a should satisifies:

C c’a

a=——-—
4

1
4(c3a3 + 24can? — 4,/3c*asn? + 36c2a4n4)3

1
(c3oc3 + 24ca’n? — 4,/3c*an? + 36c20c4r]4)3

— 1o (20)

4.2.2 Using the ARCH/GARCH model

The trading signal is mentioned as meang, .,q + AStd and Stdg,...q IS the standard

sprea spread ! sprea

deviation which is constant. However, in the real stock market, the standard deviation of
spread sequence is fluctuant. The situation of volatility clustering may appear in the time
series. To analyses the effect of volatility, the ARCH model and GARCH model can be
applied in the trading strategy. The ARCH (q) model and GARCH model are defined as:

of = ay +auuf; + Ui, + o+ agup (21)

q
of=w+aui, +Boi, (22)

However, when the lag q might be very large, and non-negativity constraints might be
violated, GARCH model is superior to ARCH model. Therefore, the ARCH effect should be
tested before using the ARCH/GRACH model. Square the residuals and regress them on q
own lags to test for ARCH order q,

N2 q A2
0 = oo + 22, o U (23)
Where i, is residual.

13



Then, the test statistic is defined as TR* and follows the x? distribution. If the null hypothesis
is rejected, then the square errors in the regression model follow an AR model and are not
constant over time. Meanwhile, the lag q can be gained, and then, we can know which model
should be chosen. Next, the new trading signal can be decided as meang,..,q * Acy. In order
to compare the two kinds of trading signal easily, the A is defined as 1 in ARCH/GRACH

model. The stop loss point is meang,..,q + 20;.

4.2.3 Combination of the Ornstein-Uhlenbeck process and the
ARCH/GARCH model

The fraction of the A estimated by the Ornstein-Uhlenbeck process and the o, estimated by

ARCH/GRACH model were mentioned in previous setion. In this section, these two kinds of
factors will be considered simultaneously. In other words, the fraction of the A and the o, can

be combined to a new trading model and strategy. The short sell trading signal is defined
as meang,.,q + A oy, and the long buy trading signal is: meang, ,q — A o,. Meanwhile, the

stop loss points are defined as: meang,q,q £ 2 0;

14



5 Result

5.1 The choice and test of the data

5.1.1 The choice of data

We use Shanghai A shares as our database, and select five banks as our research ob jectives,
namely, HuaXia Bank, China Minsheng Bank, China Merchants Bank, Industrial Bank, and
China Construction Bank respectively. After that, we collect these data from 19/05/2014 to
17/05/2017 and make them into a line chart (line chart 1 in appendix). From the chart, it is
obviously that the trends of all of the stock prices are similar. In addition, a calculation of
correlation is set as we compare one bank with another respectively. The result of each

correlation for the stock price is shown in Table 2.

Table 2. Price correlations
The table shows the correlation between time-series of stock prices.

Price correlation Minsheng Merchants Industrial Construction
Bank Bank Bank Bank
HuangXia Bank 0.901 0.889 0.959 0.914
Minsheng Bank 0.809 0.928 0.824
Merchants Bank 0.901 0.736
Industrial Bank 0.844

It is manifest to see that the correlation of the stocks between HuangXia Bank and Industrial
Bank is most close to 1, which is 0.959. Therefore, these two price series can be the most
appropriate data for the research. Because we need to compare the model through the final
return, the logarithm price can be introduced in this paper. Using logarithm price is easier and
more convenient to gain price return than using stock price directly. In addition, logarithm

price is normality assumption, and the range of the logarithm price is (—oo, +00). Thus, in the

15



next step, we attempt to use logarithm for each bank within three years. The theory of using
logarithm is based on the following formula:

Pt~ Pe-1
Pt-1

logp; —logp;_4 (24)

re =

Followed by the steps above, a new line chart (line chart 2) of these five Logarithm price
series is achieved and shown in the appendix. We then calculate the correlation via logarithm,

seeing it in Table 3.

Table3. Logarithm price of correlation
The table shows the correlation between time-series of logarithm stock prices.

Logarithm price
correlation Minsheng Merchants Industrial Construction
Bank Bank Bank Bank
HuangXia Bank 0.926 0.924 0.971 0.919
Minsheng Bank 0.860 0.945 0.840
Merchants Bank 0.935 0.780
Industrial Bank 0.858

Undoubtedly, after logarithm, the combination of HuangXia Bank and Industrial Bank still

appears to be the largest than the rest data.

According to the statistical research of the two tables above, we discover that the 0.959 is the
maximum for the correction of these stock prices while we can get 0.971 as the biggest
number of the correction of Logarithm price. In such case, we found that when correlating
between HuangXia Bank and Industrial Bank whose correlation and logarithm correlation is
largest and close to 1. We take these two banks out and make a third graph instead, shown in

the appendix (line chart 3).

In this paper, we have a total number of 733 data for each stock, where we decide to select

493 as the sample data. The rest is used for testing the models to verify their performance.

16



5.1.2 The ADF test of data

Industrial Bank and HuangXia Bank which we choose have similar price trend and high
correlation. In order to record and operate by EXCEL and Eviews, HuangXia Bank is
represented by X, and Industrial Bank is named Y. Then, the stationary of the data can be
tested in this section. The results can be shown in the table below. Both of the logarithm
prices of Industrial Bank and HuangXia Bank have unit roots because the p-values are 0.429
and 0.447, and the null hypothesis should be accepted (the results from Eviews are shown in
result 1 in appendix). Therefore, the price series of Industrial Bank and HuangXia Bank are

non-stationary. Table 4 displays all the information

Table 4. ADF test
The table shows the information of its statistics, p-value and result of the ADF test.

ADF test ADF test statistic p-value result
X -1.668 0.447 Non-stationary
Y -1.704 0.429 Non-stationary
dX -22.507 0.000 Stationary
dy -22.318 0.000 Stationary

In addition, we take the first order difference on the price series of HuangXia Bank and
Industrial Bank respectively (represented by dX and dY). The results are shown in Table 4.
The p-values are zero, and the null hypothesis should be rejected. Thus, the two first order
difference series are stationary. The series of Industrial Bank and HuangXia Bank are 1(1),

and they may potentially be co-integrated.

5.1.3 The co-integration test of data

Due to the I (1) of the two variables, the regression can be estimated through Eviews (Result 2

in appendix)
Y, = 0.199 + 0.966*X, + ¢, (25)

Where, ¢, is the residual sequence, and is named resid0l1 in Eviews

17



Then, the ADF test is used to the residual é;(Result 3 in appendix). é; is the residual of the
regression combined between Y, and X,, and the sum of the residual series is zero, so the
intercept and trend are not included in the test equation. The table below indicates that the p-
value is 0.003 and the null hypothesis should be rejected. Therefore, the residual series is

stationary, and the sequence of Y, and X, are co-integration, which shows in table 5

Table 5. ADF test

ADF test ‘ ADF test statistic  p-value Result

& ‘ -2.965 0.003  Stationary

5.1.4 Error correction model
Through the Eviews, the lag (1, 1) equation can be gained (Result 4 is in the appendix):

Y=y +y1 Xi+y, Xea+ys Yia+é; (26)
where y, = 0.008,y, = 0.820.y, = —0.792, and y, = 0.969
The lag (1, 1) equation can be transformed to:

Ay, =y, Ax; — A(Ye_y — @y — a1 x,_4) + & (27)
Where, A=1—-y; =1-0.969 = 0.031,

Yo 0.008409

@, =L = — = 0.268, (28)

1-y, 1-0.968634

_ y1+Y, __ 0.820357-0.792095
1L 1y, 1-0.968634

= 0.900. (29)
Therefore, the portfolio combined with Y, and X, can be presented as:

Spread, =Y, —0.9 X, (30)

Therefore, buy one unit of the portfolio means to buy one unit Y and sell 0.9 fractions of X.
Meanwhile, sell one unit of this kind of portfolio is to sell one unit Y and buy 0.9 fractions
of X.
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The description of the Spread, can be presented on the chart in figure 1:

Figure 1 the description of the Spread,
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The mean of the spread sequence is: meany,, .., = 0.284 and the standard derivation of the

series is: Std =0.021

spread

5.2 The result estimated by Ornstein-Uhlenbeck process

5.2.1 The estimation of trading signal

The residual of spread series and the auto-regression of the residual can be gained

respectively (Result 5 in appendix):
e, = spread, —meang,, .qq (31)
e,=bxe_; +& (32)
Where the coefficient b of the residual equals to 0.979.

And we can gain the residual series &,, which is named resid02 in E-views. The variance of

& = 0.005605% Assume there are 250 trading days in one year, the certain trading interval
is At, which equals to $= 0.004. Meanwhile, the trading cost c¢ can be assumed as 0.002.

According to optimal statistical arbitrage trading model of Bertram (2009), the parameters of

the trading signal are:
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_ In(b) _ _ In (0.979)

= = 5300 (33)
At 0.004
n= \/vaf;f“ - \[valr_(g?;j;” = 0.090 (34)

Then, the parameter o and n can be replaced into the equation of parameter a.

c c’a

a ==—'Z'—

1
4(c3a3 + 24ca’n? — 4\/3c4a5n2 + 36c2a4n4)3

1
(c3a3 + 24ca’n? — 4,/3c*asn? + 36c2a4n4)3

- =—0.012 35
i (35)

Therefore, the expected return can be maximal when the parameter a equals to —0.012. Then,

A can be calculated:

A=(m — a)/ Stdgyyeqq = 0.024/0.021 = 1.140 (36)

According to the research of Bock and Mestel (2009), we can gain the specific trading signal.

The short sell trading signal is : mean q +AStd =0.284 + 1.140 x 0.021 =

sprea spread

— AStd ¢ = 0.284 — 1.140 =

spread sprea

0.308, and the long buy trading signal is : mean
0.021 = 0.260. In addition, the Stop loss point can be expressed as: mean

25td

spread ~

= 0.284 + 2 % 0.021 = (0.326,0.242)

spread

5.2.2 The return during the sample period

According to the parameters and trading signals calculated in the previous section, we can
simulate the trading strategy from a line chart, which includes the mean level, spread of the
portfolio, short sell trading signal, long buy trading signal, high stop loss point and low stop

loss point. The graph can be shown in figure 2:
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Figure 2 the formation of trading arbitrage with sample data via O-U model
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From the line chart, we have 13 operations to complete the statistical arbitrage trading above.
When the spread increase (decrease) to the line ’long buy”, we decide to buy the stock; when
the spread goes down (up) to the line “short sell”, then we sell the stock instead; when the
spread rises or falls to the high(low) stop loss point or goes back to mean level, we do the
opposite operations. For example, on 8th, July, 2014, we purchased these two stocks with the
spread price of 0.26. Tendays later, on 18th, the price decrease to the low stop loss point. We
sold the portfolio with the price of 0.245 to avoid a further loss. In this trading process,
0.0146 was treated as a loss. In another case, when it came to day on 10th, March, 2015, we
bought the stocks with the price of 0.26. On the day of 12th, the stocks were sold with the
spread price 0f0.284 because the spread price increases to the mean level. For the sake of the
protection for the current profit, we decided to sell them in order to avoid the potential risk.
The return during this trading was positive, means we earned a profit of 0.024. The rest
trading results are similar to the operations above. A Two-year investment in these stocks

experienced 13 operations, which then was made into a table 5 to display all the details.
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Table 5 return of arbitrage trading

Num of operation date Spread price | Price return | Return ratio
arbitrage

Long buy | 2014-07-08 0.260 -0.260

1 Short sell | 2014-07-18 0.245 0.245 -0.015
Long buy | 2014-07-26 0.260 -0.260

2 Short sell | 2014-08-07 0.249 0.249 —-0.011
Long buy | 2014-11-10 0.260 —0.260

3 Short sell | 2014-12-01 0.250 0.250 —-0.010
Long buy | 2014-12-18 0.260 -0.260

4 Short sell | 2015-01-05 0.284 0.284 0.024
Long buy | 2015-02-09 0.260 -0.260

5 Short sell | 2015-02-16 0.250 0.250 -0.010
Long buy | 2015-03-10 0.260 -0.260

6 Short sell | 2015-03-12 0.284 0.284 0.024
Short sell | 2015-03-16 0.308 0.308

7 Long buy | 2015-03-30 0.326 -0.326 -0.018
Short sell | 2015-04-13 0.308 0.308

8 Long buy | 2015-04-14 0.284 -0.284 0.024
Long buy | 2015-04-16 0.260 -0.260

9 Short sell | 2015-04-20 0.284 0.284 0.024
Long buy | 2015-06-02 0.260 -0.260

10 Short sell | 2015-06-19 0.242 0.242 -0.018
Long buy | 2015-06-24 0.258 -0.258

11 Short sell | 2015-06-30 0.242 0.242 -0.016
Long buy | 2015-08-20 0.260 -0.260

12 Short sell | 2015-09-02 0.242 0.242 -0.018
Long buy | 2016-01-04 0.260 -0.260

13 Short sell | 2016-01-11 0.284 0.284 0.024

Total return 0.004

ratio
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It is clear to discover that there are five profitable arbitrages during a two-year trading, and
the total return ratio is 0.4 percent. Despite this little profit, it still convinced that with this
statistical arbitrage model, investors could achieve return after a 2-year investment.
Meanwhile, we find that the negative return exists in the statistical arbitrage; therefore, the
arbitrage is not a risk-free strategy. Investors only reduce the investment risk using the

statistical arbitrage.

5.2.3 The forecastand estimation of the data out of sample

Then, the parameters and trading signals calculated by the sample data are used to forecast

and estimate the spread price out of the same. The simulation is shown in figure 3:

Figure 3 the forecast and estimation of the data out of sample
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The procedure for the statistical arbitrage is the same as that shown in the model before. In
the past year, only three time periods were suitable for arbitrage, which then were made into a

table, showing in Table 6.
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Table 6 return of arbitrage trading

Num. of operation time Spread Price return | Return ratio
arbitrage price
1 Short sell | 2016-05-23 0.308 0.308 0.024
Long buy | 2016-06-06 0.284 -0.284
2 Short sell | 2016-09-29 0.303 0.303 0.019
Long buy | 2016-11-08 0.284 -0.284
3 Long buy | 2016-11-29 0.260 -0.260 0.024
Short sell | 2016-12-26 0.284 0.284
Total return 0.067
ratio

The table clearly reflects that all the three operations within last year had a positive return.
Simultaneously, it describes that the return ratios in the first and third arbitrages have the
same value. The total return ratio, 0.067, illustrates that the model application is profitable
despite the return of two stocks don’t achieve too much return. In such situation, the O-U
model is suitable for the investors; particularly, the positive return ratio decreases the

expectation of investors who are afraid of the future stock market.

5.3 The result given by the ARCH/GARCH model

5.3.1 Trading signal estimated by ARCH/GARCH model

Through the correlogram of spread, series (Result 6 in appendix), we can know that

spread, is AR (1) model. Therefore, the auto-regression can be estimated (Result 7):
spread, = 0.009 + 0.966 x spread,_, + u, (37)

Then, the residual u, can be gained and is named resid03 in Eviews. The line graph of u, is
shown in appendix (Result 8). The ARCH LM test is used to the residual u, with lag 10 (in
Figure 4). From the table, the probability of chi-square distribution is 0.056, and the null

hypothesis cannot be rejected. Therefore, the residual u, does not have the ARCH effect with
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high order of lags, and the GRACH (1, 1) model can be considered to estimate parameters and
trading signals.

Figure 4 the result of ARCH LM testwith lag 10

F-statistic 1817770  Prob. F(10,479) 0.0551
Obs*R-squared 17.85183  Prob. Chi-Square(10) 0.0558

In addition, the GRACH (1, 1) (Result 9 in appendix) model can be shown as:
o2 = 0.00000166 + 0.270u?_, + 0.70702, (38)

Therefore, the short sell trading signal is meang,, .., + 0, and the long buy trading signal is :

mean — 0,. The Stop loss points are: mean + 2S5td

spread spread spread

5.3.2 The return of the sample

Then, we simulate the trading result using the parameters and trading signals calculated by
GRACH (1, 1) model, seeing in figure 5

Figure 5 the formation of trading arbitrage with sample data via GARCH model
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Because of the volatility, the lines of trading signals and stop loss points are not straight lines,

and they are fluctuant around the mean level according to the spread series. It is clearly to
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notice that two-year period experienced a sharp fluctuation, where the value of spread began
with 0.233 and ended with above 0.300. It once climbed to over 0.350 and plunged to less
than 0.200. Nearly 12 operations need to be considered and calculated within two years. All

the details and information could be checked below via Table 7

Table 7 return of arbitrage trading

Num of operation time Spread price | Price return Return ratio
arbitrage

Long buy 2015-01-05 0.278 -0.278

1 Short sell 2015-01-06 0.284 0.284 0.006
Short sell 2015-01-07 0.289 0.289

2 Long buy 2015-01-08 0.284 -0.284 0.005
Long buy 2015-01-14 0.279 -0.279

3 Short sell 2015-01-15 0.275 0.275 -0.004
Long buy 2015-03-10 0.277 -0.277

4 Short sell 2015-03-11 0.284 0.284 0.007
Short sell 2015-03-16 0.295 0.295

5 Long buy 2015-03-18 0.306 -0.306 -0.011
Short sell 2015-04-14 0.292 0.292

6 Long buy 2015-04-15 0.284 -0.284 0.008
Long buy 2015-04-16 0.243 -0.243

7 Short sell 2015-04-22 0.284 0.284 0.041
Long buy 2015-04-27 0.270 -0.270

8 Short sell 2015-04-29 0.262 0.262 -0.008
Long buy 2016-01-07 0.276 -0.276

9 Short sell 2016-01-11 0.284 0.284 0.008
Short sell 2016-01-15 0.289 0.289

10 Long buy 2016-01-18 0.294 -0.294 -0.005
Short sell 2016-01-29 0.290 0.290

11 Long buy 2016-01-21 0.284 -0.284 0.006
Short sell 2016-04-16 0.286 0.286

12 Long buy 2016-04-18 0.289 -0.289 -0.003

Total return 0.050

ratio
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According to the details from the table above, it manifests that more than half of the total
operations obtained a positive return. Among the operations, time from 16th April to 22nd
April (arbitrage operation 7) experienced the highest return ratio, accounting for
approximately 80 percent of the total return ratio. The rest positive value is around 1 percent.
The total return ratio is 5 percent, which means that GARCH model is worthwhile to be
considered by investors. In addition, the stop loss point is also fluctuant according to the

spread series, and it can reduce the investment risk.

5.3.3 Out of sample forecast

Next, the data out of the sample is used to estimate the GARCH (1, 1), and the trading
parameters and trading signals are gained from the sample data. The result of the trading is,
seeing in figure 6:

Figure 6 the forecast and estimation of the data out of sample
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As it can be seen above, over ten operations were suggested to conduct the statistical arbitrage
within last year. The fluctuation seems to be sharper and more drastic than that of other tests.

The initial point, also regarded as the peak point, fell down since the model started to be
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tested. The procedure is still the same as those operations introduced before. After a careful

and clear calculation, all of the returns of arbitrage trading can be shown in Table 8.

Table 8 return of arbitrage trading

Num of operation time Spread price | Price return Return ratio

arbitrage

1 Short sell 2016-06-06 | 0.298 0.298 0.013
Long buy 2016-06-07 | 0.285 -0.285

2 Short sell 2016-06-20 | 0.292 0.292 0.008
Long buy 2016-07-07 | 0.284 -0.284

3 Short sell 2016-07-08 | 0.292 0.292 -0.005
Long buy 2016-07-11 | 0.297 -0.297

4 Short sell 2016-08-09 | 0.292 0.292 0.009
Long buy 2016-08-15 | 0.283 -0.283

5 Short sell 2016-09-13 | 0.291 0.291 -0.006
Long buy 2016-09-19 | 0.297 -0.297

6 Short sell 2016-11-04 | 0.294 0.294 0.012
Long buy 2016-11-10 | 0.282 -0.282

7 Long buy 2016-11-17 | 0.276 -0.276 -0.01
Short sell 2016-11-21 | 0.266 0.266

8 Long buy 2016-12-05 | 0.276 -0.276 -0.007
Short sell 2016-12-07 | 0.269 0.269

9 Long buy 2016-12-14 | 0.276 -0.276 0.007
Short sell 2016-12-26 | 0.283 0.283

10 Long buy 2017-01-03 | 0.275 -0.275 -0.007
Short sell 2017-01-04 | 0.268 0.268

11 Long buy 2017-01-23 | 0.276 -0.276 -0.009
Short sell 2017-02-10 | 0.267 0.267

Total return 0.005

ratio
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The table illustrates that there are total 11 operations for the test and verification, and despite
that there are fewer positive return ratios than the negative ones(5 and 6 respectively );
however, the total return ratio, 0.5 percent, represents that when using GARCH model for

these stocks, this portfolio is profitable for investors to consider.

5.4 The result from the combination of Ornstein-
Uhlenbeck process and ARCH/GARCH model

In the third part, which is an evolutionary step for us, we device a new model that both
combined with O-U model and GARCH model. Obviously, the first two years information as
sample data are selected to make the model successfully and the last year data is used to test
and verify its correctness and effectiveness as the investors’ multiple choices. From the
section 5.2.1 and 5.3.1, the short sell trading signal can be expressed as meang,, .., + Ao,
and the long buy trading signal is mean

spread Ao-t .

5.4.1 The return of the sample

Graph 7 shows the results of the trading strategy during a period of two years.

Figure7 the formation of trading arbitrage with sample data via combined model
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As the graph depicts, there are total 12 operations that could be treated as the statistical

arbitrages within a two-year observation. Because the parameter A= 1,14, which is greater

than 1, is added to the trading signal, the arbitrage interval (the range between mean level and

short sell/long buy signal) is greater than that of GARCH (1, 1) model. Meanwhile, the range

between trading signal and loss stop point is smaller. The operation method is preferred to do

in the same way before. A further table is made to note all the operations with their return

ratios, which could be seen in Table 9.

Table 9 return of arbitrage trading

Num of operation time Spread price | Price return | Return ratio
arbitrage

1 Long buy 2015-01-05 0.278 -0.278 0.006
Short sell 2015-01-06 0.284 0.284

2 Short sell 2015-01-07 0.29 0.29 0.006
Long buy 2015-01-09 0.284 -0.284

3 Short sell 2015-03-12 0.298 0.298 -0.008
Long buy 2015-03-18 0.306 -0.306

4 Short sell 2015-04-15 0.294 0.294 0.01
Long buy 2015-04-16 0.284 -0.284

5 Long buy 2015-04-28 0.270 -0.270 -0.007
Short sell 2015-04-29 0.263 0.263

6 Long buy 2016-01-05 0.276 -0.276 0.009
Short sell 2016-01-11 0.285 0.285

7 Short sell 2016-01-15 0.291 0.291 -0.004
Long buy 2016-01-18 0.295 -0.295

8 Short sell 2016-01-19 0.290 0.290 0.006
Long buy 2016-01-22 0.284 -0.284

9 Long buy 2016-01-25 0.279 -0.279 0.005
Short sell 2016-01-28 0.284 0.284

10 Long buy 2016-03-11 0.280 -0.280 0.004
Short sell 2016-03-13 0.284 0.284

11 Short sell 2016-03-14 0.287 0.287 0.009
Long buy 2016-03-15 0.278 -0.278

12 Long buy 2016-04-12 0.284 -0.284 0.003
Short sell 2016-04-13 0.287 0.287

Total return 0.040

ratio

As the table shows above, the 2-year operations in two stocks had nine records of positive

return ratio, where the positive are triple than the negative records. After two-year investment

in stocks, investors could achieve a total return ratio as high as 4 percent. The combined

model performed to be one choice for investors to consider in the further.
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5.4.2 The forecastand return of the data out of sample

According to the two-year historical data, we use the last year and make it into a Figure 8.

Figure 8 the forecast and estimation of the data out of sample
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It described the trend of the spread and analyzed that there were 12 opportunities that
investors could have the statistical arbitrages. In this combined model, the initial point
gradually decreased to the lowest as time went on in spite of some periods when the spread
slightly increased. After it plunged to the bottom, the trend then slowly went up until the end.
The procedure omits as we have already mentioned the methods before. The table 10
illustrated all the information, as well as each return ratio of each operation.
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Table 10 retumn of arbitrage trading

Num of operation time Spread price | Price return | Return ratio
arbitrage
1 Short sell 2016-06-06 0.299 0.299 0.014
Long buy 2016-06-07 0.285 -0.285
2 Short sell 2016-06-17 0.293 0.293 0.009
Long buy 2016-07-04 0.284 -0.284
3 Short sell 2016-07-05 0.293 0.293 -0.004
Long buy 2016-07-12 0.297 -0.297
4 Short sell 2016-08-09 0.293 0.293 0.01
Long buy 2016-08-15 0.283 -0.283
5 Short sell 2016-09-12 0.293 0.293 -0.005
Long buy 2016-09-20 0.298 -0.298
6 Short sell 2016-10-26 0.294 0.294 -0.005
Long buy 2016-11-03 0.299 -0.299
7 Short sell 2016-11-04 0.295 0.295 0.011
Long buy 2016-11-07 -0.284 -0.284
8 Long buy 2016-11-18 0.274 -0.274 -0.008
Short sell 2016-11-21 0.266 0.266
9 Long buy 2016-12-05 0.275 -0.275 -0.006
Short sell 2016-12-07 0.269 0.269
10 Long buy 2016-12-13 0.275 -0.275 0.008
Short sell 2016-12-26 0.283 0.283
11 Long buy 2017-01-03 0.274 -0.274 -0.006
Short sell 2017-01-04 0.268 0.268
12 Long buy | 2017-02-03 0.275 -0.275 -0.008
Short sell 2017-02-14 0.267 0.267
Total return 0.010

ratio

Form the table, it is clear to notice that in the last year, 12 operations could be used for the

statistical arbitrages. The table reminded the investors that half of the operations in the recent
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one year brought them the positive return ratio. The total return ratio, 1%, expresses this
combined model is worthwhile for the investors to consider, despite of the low profitable
return. All in all, there are 6 positive returns from two data series and three different kinds of
models. The highest return is 6.7% gained from the model of Ornstein- Uhlenbeck process and
data series out of sample. Therefore, these three kinds of models can reduce the risk of
investment; however, the returns of these models are low. The reason of this situation may be
that the stock price is comparatively stable to reduce the opportunities of arbitrage. In addition,
the low value of volatility causes that the interval between mean leveland trading signal level

(mean Aay,) is small.

spread i
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6 Contribution and Conclusion

Statistical arbitrage is a common trading strategy. In this paper, we introduce two trading
models, i.e. Ornstein-Uhlenbeck process model and GARCH model. We perform a number of
related tests to verify the property of the data-used in this analysis. The stock pries HuangXia
Bank and Industrial Bank from Chinese stock market are used to test these two models. The
paper contributes by using a combination of Ornstein-Uhlenbeck model and GARCH model.
The highest return, which is 6.7%, is gained by Ornstein-Uhlenbeck process model using the
data out of sample. Therefore, the O-U model is the best model, among these three alternative
models, for investors taking statistical arbitrage trading. Because of the stable stock prices of
Chinese bank industry and the low standard deviation, the arbitrage interval of O-U model is
wider than that of the GARCH model and the combined model. This situation causes that the
O-U model can gain higher return than the other two models. Through forecasting the data out
of sample, the new combined model has better preference than GARCH model. Because the
parameter that is greater than one is added in the trading signal to expend the arbitrage
interval, the arbitrage return of combined model becomes higher than that of GARCH model.
For the data which is not as stable as the stock prices of Chinese bank industry, because of the
effect of volatility clustering, the arbitrage interval is wider when using combined model than
0O-U model, thus, the return of data using new combined model is higher. However, this

should be tested and verified by new data in the future research.
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Line chart 3: the logarithm price for HuangXia Bank and Industrial Bank

Mull Hypothesis: X has a unit root
Exogenous: Canstant
Lag Length: 0 (Automatic - based on 3IC, maxlag=17)

f-Statistic Frob.*

Augmented Dickey-Fuller test statistic -1.6680895 0.4469
Test critical values: 1% level -3.4434472

5% level -2 867207

10% level -2 569850

*Mackinnaon (1996) one-sided p-values.

mMull Hypothesis: ¥ has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on 3I1C, maxlag=17)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -1 703876 04287
Test critical values: 1% level -3.443443

5% level -2.867207

10% level -2.569850

*Mackinnon (1996) one-sided p-values.




Mull Hypothesis: DCX) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=17)

f-Statistic FProb*

Augmented Dickey-Fuller test statistic -22.50676 0.0000
Test critical values: 1% level -3.443469

5% level -2.867219

10% level -2.569857

*Mackinnon (1996) one-sided p-values.

Mull Hypothesis: DY) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic - based on SIC, maxlag=17)

t-Statistic Prob.?

Augmented Dickey-Fuller test statistic -22 31833 0.0000
Test critical values: 1% level -3.443469

5% level -2 8672149

10% level -2 BEARAT

*Mackinnon (1996} ane-sided p-values.

Result 1 ADF test for HuangXia Bank and Industrial Bank

Dependent Variable: Y
Method: Least Squares

Date: 051817 Time: 19:52
Sample: 5192014 51 9/2016
Included abservations: 492

Yariable Coefficient Std. Error t-Statistic Prokb.

C 0199162 0.009424 2113272 0.0000

X 0.965504 0.009524 101.3738 0.0000
R-squared 0.954439 Mean dependentvar 1.150123
Adjusted R-squared 0.954396 3.0 dependentvar 0.094067
3.E. of regression 0.020088 Akaike info criterion -4.973320
Sum squared resid 0197731 Schwarz criterion -4.956253
Laog likelihood 1225437 Hannan-Cluinn criter. -4.9666149
F-statistic 10276.65 Durbin-Watson stat 0.0832295
Probi{F-statistic) 0.000000

Result 2: the regression of Y and X
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Mull Hypothesis: RESID01 has a unit root

Exogenous: Maone

Lag Length: 0 (Automatic - based on SIC, maxlag=17)

t-Statistic Frob.*
Augmented Dickey-Fuller test statistic -2 96R132 0.0030
Test critical values: 1% level -2.569630
5% level -1.941469
10% level -1.616266
*Mackinnon (1996) one-sided p-values.
Result 3: the ADF test of residual resid01
Cependent Variable: Y
Method: Least Squares
Date: 05M8M7 Time: 19:56
Sample (adjusted): 52002014 5M19/2016
Included observations: 431 after adjustments
Wariable Coefficient Std. Error 1-Statistic Frob.
C 0.008408 0.0036083 2.330530 0.0202
X 0.820357 0.0235649 34.80638 0.0000
Ki-1) -0.792095 0.025472  -31.09719 0.0000
¥i{-1) 0.968634 0.012592 T6.92600 0.0000
R-squared 0.996528 Mean dependentvar 1.150437
Adjusted R-squared 0.996507 3S.0D. dependentwvar 0.083905
3.E. of regression 0.005550 Akaike info criterion -7.8541912
Sum squared resid 0.015001  Schwarz criterion T 507726
Log likelihood 1855.540 Hannan-Cluinn criter. -7.528487
F-statistic 46596.41 Durbin-Watson stat 1.8919549

FProb(F-statistic)

0.000000

Result 4: the auto-regression of Y



Dependent Variable: E

Method: Least Squares

Crate: 05M8MT Time: 20:02

Sample (adjusted): 5/20/2014 5M19/2016
Included observations: 491 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.

E(-1) 0.879048 0.008665 112.9896 0.0000
R-squared 0.928540 WMean dependentvar -0.020260
Adjusted R-squared 0.928540 3S.0. dependentwvar 0.020983
S.E. of regression 0.005612 Akaike info criterion -7.5253865
Sum squared resid 0.015431 Schwarz criterion -T.A17318
Log likelinood 1848.600 Hannan-Cuinn criter. -7.522509
Durbin-Watson stat 1.8905476

Result 5: the auto-regression of residual of spread series

Autocorrelation Partial Caorrelation AC PAC ©-5Stat  Prob

0.9558 0958 45396 0.000
0.913 -0.052 B867.22 0.000
0.873 0043 1248.3 0.000
0.833 -0.0271 15921 0.000
0.791 -0.051 19041 0.000
0756 0073 21896 0.000
0726 0.040 24541 0.000
0701 0034 27008 0.000
I 0671 -0.062 2927.5 0.000
I 10 0,638 -0.0632 31326 0.000
I 11 0.605 -0.003 3317.8 0.000
I 12 0575 0009 34854 0.000
I 13 0538 -0.096 36321 0.000
I 14 0499 -0.02¥ 37587 0.000
i 15 0462 -0.032 3867v.3 0.000
I

I

I

I

I

I

I

[ I—
it

=1
000 =] O N B d ) =

16 0429 0020 39611 0.000
17 0.393 -0.052 40400 0.000
18 0.359 0010 41082 0.000
19 0329 -0.006 4161.8 0.000
20 0303 0021 420971 0.000
21 0279 0015 424941 0.000
22 0252 -0.045 42819 0.000
il 23 0230 0051 432092 0.000
il 24 0215 0053 43332 0.000

uuuuUULUUUUHHHUHHHHHHHHH

Result 6: the correlogram of spread series



Dependent Variable: SPREAD

Method: Least Squares

Date: 051817 Time: 20:10
Sample (adjusted): 52002014 51972016
Included observations: 491 after adjustments

42

Variable Coefficient Std. Error t-Statistic Prob.
0.009101 0.003196 2847439 0.0046
SPREAD(-1) 0.966037 0.012087 79.92052 0.0000
R-squared 0928886 Mean dependentvar 0.263740
Adjusted R-squared 0928741 S.D. dependentvar 0.020993
S.E. of regression 0.005604 Akaike info criterion -7.526640
Sum squared resid 0.015356 Schwarz criterion -7.509546
Log likelihood 1849790 Hannan-Cluinn criter. -7.519827
F-statistic 6387.289 Durbin-Watson stat 1.890018
Prob(F-statistic) 0.000000

.04

Result 7: the auto-regression of spread series
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Result 8: graph of resid03



Dependent Variable: SPREAD

Method: ML - ARCH (Marquardt) - Mormal distribution
Date: 05M8M7 Time: 20:14

Sample (adjusted): 5/20/2014 519/2016

Included observations: 491 after adjustments
Convergence achieved after 18 iterations

Fresample variance: backcast (parameter = 0.7)
GARCH = Ci(2) + C(3FRESID(-1)"2 + C{4)*GARCH(-1)

Variable Coefficient Std. Error Z-Statistic Prob.
SPREAD(-1) 1.001222 0.000724 1382.207 0.0000
YWariance Equation
C 1.66E-06 3.88E-07 4 276793 0.0000
RESID{-1)"2 0.269695 0.042621 6.327732 0.0000
GARCH(-1) 0.706942 0.038721 18.25711 0.0000
R-squared 0927585 WMean dependentvar 0.263740
Adjusted R-squared 0927585 3.0. dependentvar 0.020993
S.E. of regression 0.005649 Akaike info criterion -7.880832
Sum squared resid 0.015637 Schwarz criterion -7.846645
Log likelihood 1938.744 Hannan-Cluinn criter. -7.867407
Durbin-Watson stat 1.922493

Result 9: GARCH(1, 1)
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