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Abstract

In this thesis, the correlation between aggregated buy-/sell-pressure and
price change is analyzed, something often referred to as price impact. The
purpose is not only to find a model that can explain how prices change
given a certain traded volume, but also to see how much of the variance
in price changes results from the actual buy- or sell-pressure. Analysis is
conducted on monthly trading data from stocks comprising OMXS30 in
2016. An odd and increasing function of net bought relative to average
daily turnover is suggested as an appropriate way to model price impact.
In line with previous research the function is also concave in order size. An
exponentially decaying part dependent on previous trades is then added
to the model in order to keep price changes uncorrelated. Further it is an-
alyzed how the dependency on average daily turnover affects price impact,
and how the rise of smaller market places might change the sensitivity to
price impact at larger ones. Ultimately, it is concluded that the hypothe-
sis stating that a fragmented market increases sensitivity to price impact
cannot be rejected.
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1 Introduction
Considerable research has been made to explain the correlation between an
incoming order and the price change that follows. This effect on stock prices is
commonly referred to as Market Impact, which considers only one trade at a
time. Empirically one can show that a buy order will result in a price increase
whereas a decrease will follow a sell order. To accurately model this phenomenon
and thus being able to forecast the cost of trading is of great importance for
modern trading algorithms. In this thesis however we will consider what has
been called Price Impact, where all trades during a certain time period on the
market are considered as a simultaneous aggregate of order volume. The purpose
is to understand how stock movements are affected by buy-/sell-pressure and
also if and why this phenomenon behaves differently for different stocks, at
different points in time and across various market places.

We will in this thesis first give a brief introduction to the properties of the
stock market, and then present two theories that has been developed on the
topic of market impact. The first one is used in the literature of Gerig [7] and is
based on the discovery that there is a correlation in order signs (i.e. whether we
see a buy- or a sell-order in the order book), which leads to certain constraints
on the price impact function. The second theory starts from a no-arbitrage
principle and is discussed in the paper of Gatheral [6]. The claim is that the
way we model price impact should not give rise to any arbitrage opportunities.
We then, based on the theories presented, move on to observing our data and
fitting a price impact model which, in accordance with the theories of Gerig,
turned out to consist of two parts; an instantaneous impact function and a
decaying part depending on previous trades. What then follows is a discussion
section which is divided into two parts. The first discusses the specifics of our
model, and how it contradicts some of the theories presented by Gatheral. This
part also discusses the implications of our model, and how it is used to quantify
how much of the variance in price movements is a consequence of buy-/sell-
pressure. The second part discusses the broader properties of price impact and
why it is observed that different stocks and different market places are more or
less sensitive to price impact.
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2 Theory: Stock Market
In the stock market of today a buy order is a request to purchase a stock at a
certain price decided by the buyer, and similarly, a sell order is a request to sell.
These orders are collectively called an order book, and the number of price levels
available in said order book constitutes the order book depth. A simple way of
viewing the market is that a transaction will occur if there is a sell order that
matches a buy order. We specify the nature of the order by its sign, a sell order
has negative sign and a buy order has a positive sign, i.e. negative/positive
volume of the trade. Furthermore, there are two basic categories of orders, limit
and market orders. Limit orders specify a requested quantity and a price limit
that the trader is not willing to surpass, either by selling their asset a price
they consider too low or by buying at a price that is too high. A market order
also specifies a requested quantity, but is not limited in its price. Instead it
is automatically matched with the best sell/buy offer available. A limit buy
order is further specified by its bid-price and bid-size, collectively called a bid.
Analogously a limit sell order is specified by ask-price and ask-size, the sell
order itself is called an ask. If there are no asks to match an incoming bid, i.e.
if the bid-price is too low or the bid-size supersedes the available ask-size at
said price, then the (remaining) bid will be saved in the order book and wait for
a matching ask. The highest bid-price currently available in the order book is
called the best bid and the lowest ask-price the best ask, these two prices are of
great importance for stock market modelling as will be noticed throughout this
thesis. The price in between the best ask and bid is often spoken of as the current
stock price, more technically correct it is the mid-point price. The difference
of the two prices is called the spread, which can also be used as a measure of
implicit volatility of the stock. Another way to refer to limit orders and their
prices is by the term quotes, which is used if the limit order exists at best price.
When these properties are considered one realizes that continuous pricing of
assets (i.e. of bid-/ask-prices) is not an option, since matches between ask and
bid would become improbable, therefore the market regulates the traders’ offers
into discrete pricing increments where the minimum increment is called tick size.
[7]

2.1 Modelling the Stock Market
Traditionally stock prices have been modelled as a stochastic process St that fol-
lows a geometric Brownian motion. This has been done since it was determined
that prices move in percentage increments that were assumed to be drawn inde-
pendently and identically from a Gaussian distribution [7]. This process satisfies
the following stochastic differential equation (SDE) used famously by Black and
Scholes, with the following dynamics [13],

dSt = µSt dt+ σSt dWt, S0 = s, (1)

where s, µ ("percentage drift") and σ ("percentage volatility") are constants,
and Wt is a Brownian motion or Wiener process.

The fact that there is a model for stock prices can seem contradictory since
the prices themselves are varying with expectations and trading. This is however
cared for since stock prices approximate a martingale, i.e. the best approxima-
tion of tomorrow’s price conditioned on historical prices is the price today [12].
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If it worked differently a prediction would be exploited until the predictability
was nonexistent, which is the meaning of acting on an arbitrage opportunity.
The martingale property of stock prices is very much related to the efficient
market hypothesis (EMH), or more precisely the weak form of it. EMH was
developed by Eugene Fama in three types of efficiency [5]:

1. The weak form of the EMH claims that all historic information publically
available is reflected on traded assets.

2. The semi-strong form of the EMH claims in addition to (1) that prices
instantly change to reflect new public information.

3. The strong form of the EMH claims in addition to (1) and (2) that prices
also reflect hidden insider information.

2.2 Competition Among Markets
By November 1st 2007 a European Union law known as the Markets in Finan-
cial Instruments Directive (MiFID) was implemented, increasing competition in
investment services [11]. Under MiFID there are two types of market places, reg-
ulated markets and Multilateral Trading Facilities (MTF). The regulations for
an MTF are less strict than those of a regulated market. Furthermore, MiFID
rendered the term börs (en: exchange, fr: bourse) obsolete, a term that prior
to MiFID marked a trading venue as a primary exchange rather than a list [9].
The new dynamics in the trading business gave rise to rivalry spanning across
the European Union. Shortly after MiFID was implemented, trading began at
London based Chi-X (the company BATS acquired Chi-X in 2013, eventually
earning the venue a Recognized Investment Exchange (RIE) status), and the
effects were immediate. Since Chi-X holds RIE status, trading through their
service does not affect the primary markets’ order books, and they are indeed a
stock exchange in their own right [14]. There are other alternative venues with
market share less than Chi-X as well, the biggest of which is Turquoise, another
London based MTF calling themselves a "pan-European trading platform" that
was founded in 2008 [2].

By February 2009, approximately 10% of total traded volume of OMXS30
(an index describing the 30 most traded shares on the Stockholm Stock Ex-
change) was traded on Chi-X; by February 2016 that share had risen to 26%
[16]. The trend is clearly an increasing one, but it seems to have stagnated
somewhat the last years, and it thus appears as if the cannibalization of Nas-
daq’s market share by Chi-X has been terminally saturated (see Appendix C.1
for graphics).
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3 Theory: Previous Research
When we are trying to explain the correlation between an incoming order and
the subsequent price change there are a lot of aspects that should be considered.
Firstly, there are questions regarding the actual input parameters to the price
impact function. Is the impact only dependent on the traded volume, or does it
also depend on characteristics that vary from stock to stock, such as volatility
and turnover? Is the impact dependent on who is buying/selling? There is also
a time aspect to the modelling. Does the impact at time t only depend on what
happens at that specific time point, or does previous events affect the price
impact? Finally, there is of course the more statistical/mathematical challenge
to answer what is the shape and form of the impact function. Is it linear or
nonlinear? If current trades impact future trades, for how long?

In this section we will seek answers to these questions. To do this we will try
and see what certain characteristics of the impact function, purely mathemat-
ically, implies for the process of stock returns. To determine if a price impact
function is reasonable we will present two different approaches which has been
used for this purpose in many articles before this. The first one is that our
way to model price impact cannot induce stock movements such that it leads to
correlated stock returns. This approach is discussed by Gerig [7], and with this
constraint alone one is able to exclude certain shapes of the impact function.
The second approach is the one first used by Huberman and Stanzl [8] and later
in numerous articles by Gatheral, which starts from a no-arbitrage principle.
This principle merely states that a certain impact function cannot give rise to
any arbitrage opportunities. That is, it should not be possible to have a strategy
where we buy and sell the same amount of stocks but still, as a consequence of
how we affect the price described by the price impact function, realize a profit.

3.1 Uncorrelated Stock Returns
As mentioned above we wish to find an impact function such that it does not
give rise to correlated stock returns. To begin the process of finding a suitable
shape for the price impact function we simply model the price change of a stock
as

∆p = εtf(vt) + ηt, (2)

where ∆p is the price change of the stock at time/index t. The index variable
t is commonly updated by one increment whenever a transaction occurs (i.e.
when two market participants agree on a price for a stock). The function f(·)
is the price impact function, which is a function of the transaction size vt, and
εt is the transaction sign (negative for sell and positive for buy). Finally, ηt
is an uncorrelated noise term which could model specific changes in the return
of a stock that are not a function of the traded volume. In the model above
we assume that the price change caused by the volume traded at time t is
independent of what has happened before this time. So one can model stock
price changes between time 1 and T as the sum

∆p = p0 +

T∑
t=1

εtf(vt) + ηt

9



As seen in the expression above price changes are only uncorrelated if neither
trade sign nor volume exhibits autocorrelation. However, we have seen from
empirical research that the sign of transactions, εt, are highly autocorrelated.
A buy transaction tends to follow a buy, while a sell tends to follow a sell. This
long-term memory in order sign seems to be universal and has been verified for
stocks traded on the London Stock Exchange, Paris Bourse and the New York
Stock Exchange [7]. This autocorrelation of order signs is seen in the example
illustrated by Figure 3.1 on Nasdaq Stockholm.

Figure 3.1: Autocorrelation of order signs, as observed on Securitas (Nasdaq Stock-
holm)

3.1.1 How Can Order Signs Be Correlated?

The problem of dealing with the autocorrelation of order flow signs has been the
topic of discussion in many papers. If a buy or sell order tend to push the price
up or down, and we can predict whether a buy or sell should appear next in
the order book, wouldn’t that mean we can predict the stock price? Why can’t
we? Gerig calls this the efficiency puzzle, as he refers to the uncorrelated and
unpredictable nature of assets, also known as market efficiency [7]. A possible
explanation to the autocorrelation of order flow could be that, even highly liquid
markets such as the ones we analyze, only offer small volumes at the best quotes.
This means that big trades will be fragmented and it could take up to several
hours or days before they are completed, creating a long-term memory in the
sign of the order flow. If this is true, and if we assume that stock prices follow a
random walk, then, as Bouchaud describes it, a surprise in the order flow must
impact prices more. That is, a buy following a buy should have less impact than
a buy following a sell, otherwise trends would appear [4].

3.1.2 Two Models

Gerig presents two different explanations to this efficiency puzzle. The first one
is the one introduced by Lilo and Farmer (LF) [10], who argues that prices stay
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uncorrelated with the help of a liquidity term, λt, which is dependent on the
order sign.

∆p =
εtf(vt)

λt
+ ηt,

They mean that if buying or selling is probable, λt increases or decreases keep-
ing the price movements unpredictable. One can thus say that this model is
dependent on the current state of the market.

The second model Gerig presents was introduced by Bouchaud, Gefen, Pot-
ters, and Wyart (BGPW) [3] who instead argues that the efficiency puzzle is
explained, not by a state dependent model, but by introducing a decay function
to act on the price impact. The total price change at time t is,

∆p = εtf(vt)−
∑
k>0

G(k + 1) +G(k)

G(1)
εt−kf(vt−k) + ηt

where the price change at each time is dependent on transactions in the past.
The function G(t) is called the decay function and is according to BGPW a
power-law with exponent < 1. It is tuned in a way such that the autocorrelation
of order signs is cancelled, leading to uncorrelated price changes.

Gerig shows in his report that the LF model is merely a generalized version
of the BGPW model. And that the two models are equivalent under certain
assumptions.

3.2 No Dynamic Arbitrage
So far we have argued that there should be some historic dependence to the
price impact model based on the uncorrelated nature of stock returns. In a lot
of papers the stock return is thus instead modelled as a modified version of (1)

St = S0 +

∫ t

0

f(ẋs)G(t− s)ds+

∫ t

0

σdZs (3)

This is used in Gatheral’s article [6] where ẋs is the rate of trading at time s < t
(positive for buying, negative for selling), f(ẋs) is the impact of trading at time
s, the impact function, and G(t− s) is a decay factor sometimes referred to as
the decay kernel. We can see from the equation above that St follows a random
walk with drift term that depends on the accumulated impact of previous trades.
The equation above can be seen as the limit of the discrete time process

St = S0 +
∑
i<t

f(δxi)G(t− i) + noise,

where δxi is the quantity traded at some small interval δt. This discrete time
process, and therefore time continuous process in (3), corresponds with the
BGPW-picture [6].

The reason why we choose to model the stock price process as in (3) is to
in a more stringent way understand which combinations of impact function and
decay kernel are realistic. To do this we will use a well-known approach when
it comes to financial modelling, namely the no-arbitrage principle. The no-
arbitrage principle merely states that the expected cost of any trading strategy
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which result in a zero net bought should be non-negative. This can be moti-
vated as it is fair to assume that if there would exist a trading strategy that
accumulated trades at a certain rate and then liquidated at a certain rate and
resulted in an arbitrage profit, this arbitrage opportunity would be exploited
away.

The no-arbitrage theory was first used for modelling price impact in the
literature of Huberman and Stanzl [8]. Starting from a no-arbitrage principle
they showed that price impact must be symmetric between buys and sells, which
we will assume throughout this thesis. When Huberman and Stanzl first applied
this principle to price impact they called it no dynamic-arbitrage, as it is in fact
the expected value of trading costs that is being looked at.

The principle of no dynamic arbitrage allows for, in a more analytical way,
computation of how the impact function and the decay kernel are related. How-
ever, before this can be done, a formal definition of the cost of trading is needed.

3.2.1 Cost of Trading

If we, in analogy with Gatheral [6], denote the number of shares traded at time
t as xt, then the expected cost C[Π] for a specific strategy Π = {xt}0≤t≤T is
given by

C[Π] = E

[∫ T

0

ẋt(St − S0)dt

]

=

∫ T

0

ẋt

∫ t

0

f(ẋs)G(t− s)dsdt

where ẋtdt is the shares traded at time t at the expected price given by (3).
If, under the constraint

∫ t
0
ẋtdt = 0, this cost was ever to become negative, it

means that a certain amount of stocks can be bought and then sold at a nega-
tive cost (i.e. a profit), which means that there exists an arbitrage opportunity.
As mentioned earlier, this is in fact not a "real" arbitrage opportunity as it is
not certain what other traders will do during this time. Hence it is called dy-
namic arbitrage. By now the theory of no-dynamic arbitrage can be stated as a
proposition. For future references a trading strategy that satisfies the condition∫ t
0
ẋtdt = 0 will be called a round trip trade, i.e. when the strategy involves

selling and buying the same number of shares.

Proposition 1 (No Dynamic-Arbitrage). For any strategy {xt}0≤t≤T such
that

∫ t
0
ẋtdt = 0 we must have that∫ T

0

ẋt

∫ t

0

f(ẋs)G(t− s)dsdt ≥ 0. (4)

The equation above restricts f(·) and G(·) and we will in what follows, based
on the methodology Gatheral [6] uses, learn more about these restrictions.

3.2.2 Linear Permanent Impact

As a first example let us assume that f(ẋ) = kẋ for some k > 0 and that the
impact is permanent, i.e. G(t − s) = 1. For any arbitrary trading strategy
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Π = {xt}0≤t≤T where we go from x0 shares at time t = 0 to xT shares at time
t = T we get

C(Π) =

∫ T

0

ẋt

∫ t

0

f(ẋs)dsdt = k

∫ T

0

ẋt

∫ t

0

ẋsdsdt = k

∫ T

0

ẋt [xs]
t
0 dt

= k

∫ T

0

dxt
dt

(xt − x0) dt = k

∫ xT

x0

(xt − x0) dxt =
k

2
(xT − x0)

2
.

In the calculations above we have used that ẋt = dxt

dt . Looking at Proposition 1
we can see that the condition for no dynamic-arbitrage is satisfied independently
of the trading strategy Π since the cost only depends on the initial quantity,
x0, and the final quantity, xT , which are equal for a round trip trade. Thus,
we can conclude that a linear permanent impact function does not violate the
condition of no-dynamic arbitrage.

3.2.3 A Round Trip Strategy

Consider a strategy where we buy trades at the constant rate r1 and then sell
to the constant rate r2 (ri > 0, i = 1, 2), i.e.

ẋt =

{
r1, if 0 < t ≤ θT,
−r2, if θT < t ≤ T.

(5)

We choose θ so that we buy and sell the same amount of stocks, that is
r1θT − r2(T − θT ) = 0, which means

θ =
r2

r1 + r2
.

If we assume that f(·) is odd (i.e. f(r) = −f(−r)) we get

C(Π) =

∫ T

0

ẋt

∫ t

0

f(ẋs)G(t− s)dsdt

=

∫ θT

0

r1

∫ t

0

f(r1)G(t− s)dsdt−
∫ T

θT

r2

∫ t

θT

f(−r2)G(t− s)dsdt

−
∫ T

θT

r2

∫ θT

0

f(r1)G(t− s)dsdt

= r1f(r1)

∫ θT

0

∫ t

0

G(t− s)dsdt︸ ︷︷ ︸
= C11

+ r2f(r2)

∫ T

θT

∫ t

θT

G(t− s)dsdt︸ ︷︷ ︸
= C22

− r2f(r1)

∫ T

θT

∫ θT

0

G(t− s)dsdt︸ ︷︷ ︸
= C21

. (6)

We see that the cost of a round trip strategy where trades are accumulated and
then liquidated at constant rates is C11 + C22 − C21. So the condition for no
dynamic-arbitrage states that

C11 + C22 − C21 ≥ 0.
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The first and second term, C11 and C22 can be regarded as the impact from
stock purchases (sales) and the impact of previous purchases (sales). The last
term, or the cross term as Gatheral calls it, is the impact of the stock sales
together with the impact from previous stock purchases.

3.2.4 Power-Law Decay

In the BGPW picture the impact is assumed to decay as a power-law, i.e.

G(t− s) =
1

(t− s)γ
, 0 < γ < 1.

Inserting this into the expression in (6) yields

C11 = r1f(r1)

∫ θT

0

∫ t

0

1

(t− s)γ
dsdt = r1f(r1)

∫ θT

0

[
−1

1− γ
(t− s)1−γ

]t
0

dt

= r1f(r1)

∫ θT

0

1

1− γ
t1−γdt = r1f(r1)

T 2−γ

(1− γ)(2− γ)
θ2−γ

C22 = r2f(r2)

∫ T

θT

∫ t

θT

1

(t− s)γ
dsdt = r2f(r2)

∫ T

θT

[
−1

1− γ
(t− s)1−γ

]t
θT

dt

= r2f(r2)

∫ θT

0

1

1− γ
(t− θT )1−γdt = r2f(r2)

T 2−γ

(1− γ)(2− γ)
(1− θ)2−γ

C21 = r2f(r1)

∫ T

θT

∫ θT

0

1

(t− s)γ
dsdt = r2f(r1)

∫ T

θT

[
−1

1− γ
(t− s)1−γ

]θT
0

dt

= r2f(r1)

∫ T

θT

1

1− γ
[
t1−γ − (t− θT )1−γ

]
dt

= r2f(r1)
1

(1− γ)(2− γ)

[
t2−γ − (t− θT )2−γ

]T
θT

= r2f(r1)
T 2−γ

(1− γ)(2− γ)

[
1− θ2−γ − (1− θ)2−γ

]
If we assume that our trading strategy is a round trip trade the impact function
f(·) must be of a shape such that Proposition 1 is satisfied. If we insert θ =
r2/(r1 + r2) into the expressions derived above we get after some simplifying
algebra

C11 + C22 − C21 ≥ 0 ⇔

f(r1)
[
r1r

1−γ
2 − (r1 + r2)2−γ + r2−γ2 + r2−γ1

]
+ f(r2)r2−γ1 ≥ 0 (7)

If we assume a permanent impact, i.e. we let γ = 0 in (7), we get

f(r1)
[
r1r2 − (r1 + r2)2 + r22 + r21

]
+ f(r2)v21 ≥ 0

⇒ r1(f(r2)v1 − f(r1)r2) ≥ 0

⇒ f(r2)r1 − f(r1)r2 ≥ 0.

Since the inequality above should hold for any positive r1, r2 we must have that
f ∝ r. This discovery was also made by Huberman and Stanzl [8], namely that
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if we have permanent impact then f must be linear otherwise there exists a
dynamic arbitrage opportunity. Moreover, one notes that different values on γ
gives different restrictions on f(·) and we can conclude that including a power-
law decay function generates a model compatible with more realistic impact
functions than if permanent impact is assumed. We can also see that if we let
r = r1 = r2 in (7), which means we are trading in and out ate the same rate we
get

2f(r)r2−γ ≥ 0⇔ f(r) ≥ 0

which is true since f is assumed to be positive for positive r. This means that
trading in and out at the same rate could never give rise to dynamic arbitrage.

3.2.5 Other Decay Functions

In the language of Gatheral [6] more decay functions are being considered. For
example, he shows that an exponential decay implies that the impact function
has to be linear in order to satisfy the no-dynamic arbitrage condition, and is
thus able to exclude this as a reasonable option since the impact function has
been shown empirically to be concave. Despite this, he does however name two
publications where exponential decay is assumed.

3.2.6 Applicability of the Theory

The theory above from which the inequalities and conditions are derived was
included in order to give us a sense of what a realistic shape of the impact and
decay function might be. It is however important to realize that if this theory
contradicts with empirical estimations, the error may lay on either side. On a
first note it should be underlined that the no-dynamic arbitrage condition (7)
refers to the expected cost of hidden orders. That is, it is assumed that other
traders in the market are unaware of how much and how fast we want to sell
and will thus not act as a response to this. As a result one can say that the
conditions above were mainly derived with the purpose of describing the cost
of trading, i.e. how much does single trades affect stock prices. In this thesis,
we are more interested in how aggregated buy-/sell-pressure affects the price.
Since aggregated trades over some time interval could not really be modelled as
a hidden order, the theory above might not explain the data we will be looking
at as good as if we were actually trying to model the impact from single trades.
For instance, if ten consecutive sell orders were registered at one minute and ten
sell orders the next this would most likely affect the correlation of order signs,
and thus the decay function. However, if we instead looked at the minutely
aggregated data over these two minutes the correlation is not caught. That
being said, we still find it important to present the theory in order to show
what research has been done within the field of market/price impact, and we
also expect our model to behave somewhat similar, especially the instantaneous
part.

We can also note that far from all combinations of impact and decay func-
tions have been considered above. And for the combinations we have looked
at we have only considered trading strategies that involves trading at constant
rates. Dropping this assumption might give rise to different constraints.
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3.3 Summary
In the first part of this section it was described how the uncorrelated nature of
stock prices together with the correlation of order signs implies that the impact
function must have some historic dependence. From the theory of no-dynamic
arbitrage Gatheral [6] rules out certain combinations of impact function and
decay kernel. For example, if price impact is assumed to be permanent, then
f must be linear in traded volume. This is however at odds with empirical
data which leads us to believe that this is not a realistic model. If we instead,
in analogy with BGPW [3], assume a power-law decay, the theory of Gatheral
shows that the impact function f can take much more realistic shapes.
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4 Method & Data
This section explicitly explains the modelling process used in this work. Initially
a general introduction of the data is provided, which is thereafter specified more
thoroughly. The exploration of the data clouds exposes some trends that will
eventually allow model fitting and parameter estimation in the instantaneous
case, i.e. where temporal effects are ignored. Following the description of the
instantaneous model is an introduction of the previously discussed temporal
effect, and ultimately, a decay function G(·).

4.1 Data
The Stockholm Stock Exchange, operating under the name Nasdaq Stockholm,
uses the stock market index OMX Stockholm 30 (OMXS30 ) as a yardstick to
how the market is doing. In simple terms, OMXS30 consists of the 30 most
traded stocks on the market, and it is information on these stocks that has
been analyzed in this thesis (see Appendix B.1 for named list). In addition
to the Stockholm Stock Exchange, the OMXS30 stocks can also be traded on
the pan-European equity exchanges BATS Chi-X Europe and Turquoise. Both
are London based low cost alternatives, and thus also rivals, to the primary
European exchanges such as the London and Stockholm Stock Exchanges (recall
Section 2.2 for more details).

4.1.1 Broad Explanation of Data

Trading data normally consists of some information per individual incoming or-
der, making the data sets extremely large. If the analyzed orders are limit orders,
these data sets typically specify variables like time and date of order placement,
number of stocks requested to buy or sell (bid-size or ask-size respectively), the
limit price at which the purchase or sale should be made (bid-price or ask-price
respectively), and naturally some stock identifier. The computational cost that
follows handling data of this magnitude becomes enormous, and considering
that the objective of this thesis is to measure price impact over all aggregated
trading data, a contraction of the data points into minute by minute intervals
is easily justified. A simplified example of how the data looks at this point for
one asset (Stock A) during one minute follows. Note that during this minute,
only four orders come in and the order book is blank at the beginning of the
example.

Example 4.1. A sell order comes in for 100 shares of Stock A at a price
of 10 SEK; it is placed in the order book since no matching bid exists. A
few seconds later a bid order of 90 shares comes in at bid-price 9 SEK,
since this bid-price is lower than the available ask-price no match is made
and it is saved in the order book. Later during that minute, another bid
comes in at 10 SEK for the volume 80 shares, match! The bidder takes
their 80 shares from the available 100 at the price 10 SEK, and thus a buy
has occurred. Remaining in the order book is one ask order of 20 shares
at ask-price 10 SEK and a buy order of 90 shares at bid-price 9 SEK. The
net bought volume up to this moment is calculated as, 80 · 10 = 800 SEK
(positive). Now another sell order comes in at ask-price 9 SEK for 50
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shares. This matches a bid-price in the order book and a sell occurs,
leaving the order book with one ask of 20 shares at 10 SEK and one
bid of 40 shares at 9 SEK. The total net bought volume for this minute
becomes,

80 · 10− 50 · 9 = 350 SEK.

It is clear from the example that a sell occurs when an incoming ask
matches an existing bid, which generates a negative volume, whereas a
buy occurs when an incoming bid matches an existing ask generating a
positive volume.

4.1.2 Data Specifics

The trading data provided by Nasdaq AB has been aggregated per the above
scheme into minute by minute observations. Each of the 30 stocks constituting
OMXS30 has one row of data per minute. In particular, the data set consists
of roughly half a million observations in 23 variables that all in all make up
for the month of November1 2016 for both Nasdaq Stockholm and Chi-X. Until
further notice however, only Nasdaq Stockholm data will be considered. As for
the 23 variables, some have been used more extensively than others, and those
are explained in Appendix A.

Of the 30 stocks in OMXS30, one has been excluded due to irregular be-
havior. Fingerprint Cards has had a troublesome year with news coverage that
has impacted the stock in a very unpredictable manner, and has thus become
a stock where traded volume is not the key driver in price changes. Therefore,
only 29 stocks will be considered henceforth.

The current aim is to get a first view of the data in two variables; price impact
as a function of aggregated volume. When it comes to observed price impact,
one out of two measurements is usually preferred. The mid-price change is the
change in mid-point price during the minute in question, recall that mid-point
price is the mid-point between the best bid-price and ask-price. The option
favored in this thesis is micro-price change, which is an order book weighted
mid-point price, to account for possible differences in ask-size and bid-size. As
previously mentioned, the input variable has been chosen as an aggregated vol-
ume, or net bought, which has been divided by the average turnover per minute
for each particular stock in order to clarify comparisons. This input variable
will be called v throughout the rest of this section (the font differs in the plots,
but v = v). Note that the division by average turnover constitutes a signif-
icant alteration of the data in a way that becomes fruitful for the analysis
in this section. This alteration will be analyzed more thoroughly in Section
6.2. For a more detailed explanation of variable calculations, see Appendix A
(MICROPRICE_CHANGE and NET_BOUGHT_Vpct).

In Figure 4.1, the data clouds of the first nine stocks are displayed. Note that
the values on the y-axis are multiplied by a factor of 104 in order to have price
impact in BPS2. For similar plots of all 29 stocks, see Figure C.2 in Appendix
C.2.

1In later sections, similar data sets for January-June will also be used.
2Basis Points = one hundredth of a percent
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Figure 4.1: A visualization of the first nine stocks (alphabetically) in OMXS30.
Axes: observed price impact = micro-price change
Axes: v = aggregated volume ÷ individual minutely average turnover

4.1.3 Distribution of Data

As described in the Theory section, stock returns are assumed to follow a Gaus-
sian distribution. Before we move on to estimating parameters, and ultimately
drawing conclusions based on these, it is essential to know if normality is a good
approximation for the data we will analyze. In Figure 4.2 a histogram of 30,000
randomly chosen points are drawn from the stock LUPE (Lundin Petroleum;
which was randomly chosen). In the histogram, the shaded area represents the
density function of a normal distribution. It is evident that more points are
gathered around zero compared to the normal distribution. From the QQ-plot
it is also evident that the actual distribution of the data is much more heavy
tailed than a normal distribution. The data is actually rather poorly approx-
imated by a normal distribution. This must be taken into consideration when
looking at confidence intervals and standard deviations of estimates, as the R-
functions from which these are calculated often assume normally distributed
data.

4.2 Method: Instantaneous Model
The data in Figure 4.1 appears to be very noisy, although some trend can be
spotted. Can the noise be reduced by adding a time dependent variable? In
other words, does price impact contain some form of time dependency? This
line of reasoning is recognized from previous sections and it results in adding
a decay function. But before we account for any possible time dependency, it
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Figure 4.2: Histogram and QQ-plot of data for the stock LUPE (Lundin Petroleum).
The shaded area over the histogram represents the density function of a normal dis-
tribution. It is evident that the data is not very well approximated by a normal
distribution. The same plots for different stocks showed the same patterns.

might prove fruitful to try some simplifications on the data.
The mentioned trend of the plots in Figure 4.1 is a slightly increasing one

that some data transformations hopefully will make clearer. If we place the
sorted v-values in N groups of more or less equal size; that is, equal in number
of elements and not the length of intervals, the mean value of v within each
quantile can be calculated. The new quantile mean of v will be denoted by
ṽ. Finally, the averages of the values on the y-axis are calculated within each
quantile, i.e. for each of the N relevant ṽ:s. The new, altered clouds of data for
the first nine stocks can be seen in Figure 4.3. For similar plots of all 29 stocks,
see Figure C.3 in Appendix C.3.

It is evident that the patterns in Figure 4.3 are following increasing and
symmetric, or more specifically odd, functions. Moreover the patterns seem to
be concave for positive x-values and convex for negative; we will refer to this as
signed concavity. These convenient shapes provide a foundation for this stage
of the model-fitting, which will be performed on the original data rather than
this simplified version. To approximate the returns Yt described above, it is
reasonable to assume a function f(·) with the structure,

f(vt) = α0 + α1 · sign(vt) · |vt|ψ, ψ ∈ (0, 1), α0 ∈ IR, α1 > 0, (8)
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Figure 4.3: A visualization of the quantile means for the first nine stocks in OMXS30.

where α0, α1 and ψ are to be estimated with a nonlinear least squared method,
i.e. through,

Yt = f(vt; α0, α1, ψ) + ηt, (9)

where ηt is the residual term. In terms of notation, the arguments after the semi-
colon in f(·) specifies what parameters are to be used and estimated, whereas
vt of course is the variable.
Before any statistical tests are performed however, it is in order to express a
hypothesis about the estimated functions’ behaviors. In order to satisfy the
observed signed concavity, ψ should be strictly larger than zero and strictly
smaller than one. We note that when ψ approaches one, the model approaches
linearity, and when ψ approaches zero, the model approaches a step function
with values +1 or -1 depending on the sign of v. Clearly ψ differs in size from
stock to stock, as is seen in Figure 4.3, but values around ψ = 1/2 are to be
expected. The variable α0 should prove to be insignificant, i.e. α0 = 0 since
all plots cross the origin. In qualitative terms that hypothesis is derived from
the assumption that zero aggregated volume generates zero impact. As for
α1, it explains the inclination of the function, and it is expected to differ in
size between different stocks. Hopefully statistical tests will show that these
instantaneous models can be concatenated into one collective function without
loss of too much accuracy.

4.3 Method: Added Time Dependency
If one again looks at the plots in Figure 4.1 where we see the micro-price change
in basis points as a function of the aggregated net bought over a minute divided
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by turnover, one can see that this somewhat noisy relationship cannot easily
be described by a function of aggregated net bought and turnover. Similar, or
even equal, x-values seem to give rise to a variety of different y-values, which
contradicts the very definition of a function.

As an example, we can take a closer look at the data we have from the stock
ATCO A (Atlas Copco). At 2016-01-01 09:24:00-09:24:59 the aggregated net
bought was -1563743 SEK, i.e. there were 1563743 more SEK worth of stock
sold than bought during this minute. The price impact was at this minute -
9.4507 BPS. Based on the theory we have presented this is somewhat expected;
a big pressure on the sell side should lead to a drop in price. However, the
same day but between 13:40:00 and 13:40:59 a similar net bought was recorded
(-1515100 SEK) but during this minute the price of the stock instead increased
with 4.6064 BPS! This example is maybe extreme and could possibly have been
caused by some important news. There are however more examples like this,
and they show that there is more than just the aggregated net bought that
decides what the impact should be.

As we already have argued, the price impact model should have some de-
pendence on historic data, described by the decay function. In order to examine
this, we form the following time lagging model for the price impact Rt

Rt = f(vt) +

N∑
s=1

βsf(vt−s), (10)

where f(·) is the impact function presented in the previous section and βs are
the coefficients that should describe how the impact depends on previous data,
we call them decay coefficients. Before estimating these values, it is interesting
to analyze what kind of behavior we should expect. In Section 3 we explained
how Gerig argues that, as a consequence of the highly correlated order signs, a
surprise in order flow has to impact prices more in order for price changes to
remain uncorrelated. This means that we should expect negative decay coeffi-
cients. We can demonstrate this by a simple example.

Example 4.2. We wish to calculate the price impact at t = 3 using the
impacts from t = 0, 1, 2. Assume the net bought, vt, has been positive
for all previous time points, which implies f(vt) > 0 ∀ t ≤ 2. Now
consider two scenarios; we buy at t = 3 (f(v3) > 0) or we sell at t = 3
(f(v3) < 0). The impact at this time becomes

R3 = f(v3) + β1f(v2) + β2f(v1) + β3f(v0)

If all the βs are negative the absolute value of the impact will be greater
for the scenario where f(v3) < 0, i.e. where we sell at t = 3, than for
the scenario where we buy. This is in accordance with the theory that a
surprise in the order flow should impact prices more.

If we instead choose to compare our model setup with (3) in Section 3.2 (the one
Gatheral uses), we can see that the βs-values should form the decay function
G(·). However, Gatheral, and a lot of other researchers, argue that this decay
function should be positive and decay as a power-law. This seems to contradict
the "surprise-in-order-flow"-theory.
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We choose to model the price impact function f(·) in the same way as before.
So (10) can be written as

Rt = α0 + α1 · sign(vt)|vt|ψ +

N∑
s=1

βs(α0 + α1 · sign(vt−s)|vt−s|ψ),

where the parameters α0, α1, and ψ are to be estimated with the instantaneous
model. The decay coefficients will then be fitted using a linear regression model
according to

Yt = f(vt) +

N∑
s=1

βsf(vt−s) + ηt, (11)

where ηt is the residual term.
Once the decay coefficients βs have been determined, they are to be approxi-

mated by a function, the decay function G(·). The shape of this function will be
determined by the values obtained from (11) through another non-linear least
square fitting.
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5 Results
By now the general model has been set, and it is to be adapted into its final
form by estimating parameters and analyzing the generated results. Through
various tests and approximations the instantaneous model is justifiably simpli-
fied into a final model of square root shape with only one individual parameter
per stock. Interestingly enough the decay function, which is an aggregate of the
estimated coefficients over time lagged data, proves to be approximated best by
an exponentially decreasing function at odds with our previous hypothesis.

The analysis in this chapter is conducted on both individual stocks and the
entire set of stocks at once in order to make comparisons and draw conclusions
about the nature of the market. When it came to extracting the temporal effects
of price impact on one stock at a time, it proved necessary to introduce more
data than originally needed, which will be explained in detail as the time arrives.
Keep in mind that one of the objectives of this thesis is to make a compara-
tive analysis of price impact on different trading markets, although the model
is derived from the primary trading ground in Sweden; the Stockholm Stock
Exchange (holds about 60%3 of trades involving OMXS30 when comparing all
venues as of end 2016).

5.1 Instantaneous Part of the Model
As mentioned in Section 4.2 parameters are to be fitted using a non-linear least
square method with the following model,

Yt = α0 + α1 · sign(vt) · |vt|ψ + ηt, ψ ∈ (0, 1), α0 ∈ IR, α1 > 0, (12)

where Yt are the observed price changes, i.e. micro-price changes, and ηt is the
residual term.

Table 1 presents the resulting parameters of each stock when the model in
(12) is used for the month of November 2016.

From an initial look at Table 1 it is evident that all α1s and ψs are significant
on a very strict level, and that the hypothesis of ψ ≈ 1/2 was reasonable. That
the parameters α0 were to be insignificant turns out to be partially true. The
statistically significant α0s might exhibit their relatively large magnitude due
to the method of division into quantiles, or simply due to noisy data. In fact,
if the same nonlinear least square estimate scheme is conducted for the model
without the parameter α0, the residual sum of squares increases only marginally
(0.036% at most), which is why model (12) is updated to

Yt = α1 · sign(vt) · |vt|ψ + ηt, ψ ∈ (0, 1), α1 > 0. (13)

The parameters, α1 and ψ, in the fitted models obtain new but very similar
values when version (13) is fitted. The new values, that are not presented here,
fall in the ranges α1 ∈ [2.533, 9.671] and ψ ∈ [0.304, 0.702].

It would be convenient if the 29 individual models could be contracted into
one, but is it justifiable to assume pairwise equality between the ψs and α1s?

3As seen in Figure C.1 in Appendix C.1.
3Residual Sum of Squares
4Simultaneous fit for model including α0, see (12)
5Simultaneous fit for model excluding α0, see (13)

24



Stock Code α0 (×10−4) α1 (×10−4) ψ RSS3 (×10−3)

ABB 0.091 2.532 • 0.304 • 1.72
ALFA 0.322 • 5.825 • 0.648 • 3.15
ASSA B 0.111 4.749 • 0.549 • 2.61
ATCO A 0.349 • 4.454 • 0.495 • 3.21
ATCO B -0.076 4.823 • 0.351 • 3.96
AZN -0.122 3.670 • 0.430 • 5.82
BOL 0.148 7.202 • 0.683 • 6.37
ELUX B -0.064 5.467 • 0.580 • 3.06
ERIC B 0.266 • 6.854 • 0.682 • 4.39
GETI B 0.160 ◦ 5.089 • 0.628 • 2.29
HM B 0.057 4.599 • 0.585 • 2.41
INVE B 0.031 3.260 • 0.426 • 1.76
KINV B -0.169 ◦ 4.300 • 0.557 • 1.84
LUPE -0.048 6.664 • 0.550 • 4.54
NDA SEK 0.166 • 4.096 • 0.507 • 2.41
NOKIA SEK -0.159 4.562 • 0.542 • 6.19
SAND 0.265 • 6.092 • 0.587 • 3.28
SCA B -0.132 ◦ 4.283 • 0.536 • 2.20
SEB A 0.137 ◦ 4.027 • 0.494 • 2.31
SECU B 0.014 5.948 • 0.702 • 4.11
SHB A 0.114 4.793 • 0.544 • 2.49
SKA B 0.053 4.251 • 0.485 • 2.44
SKF B 0.133 5.807 • 0.476 • 4.00
SSAB A 0.020 9.670 • 0.558 • 8.96
SWED A 0.053 3.760 • 0.436 • 1.96
SWMA -0.029 3.874 • 0.495 • 2.02
TEL2 B -0.220 • 3.958 • 0.602 • 2.13
TELIA -0.136 • 3.411 • 0.560 • 1.32
VOLV B 0.048 4.499 • 0.530 • 2.79

Mean 0.0429 4.92 0.535 3.3
Standard Dev. 0.0214 2.07 0.093 1.72

Sim. (12)4 0.0491 ◦ 4.87 • 0.527 • 99.2
Sim. (13)5 4.87 • 0.527 • 99.3

Table 1: Level of significance indicated by • = 0.1%, ◦ = 5%; thus • implies ◦.

A 5%-confidence interval (±2.5%) is provided with the nonlinear least square
function in R. In Figure 5.1, estimates of the parameters α1 and ψ are plotted
as dots along with their confidence intervals as vertical blue lines. The red line
represents the estimates found in the final row of Table 1.

According to the confidence intervals neither parameter is equal for all stocks.
However, ψ does seem to be more forgiving in this respect. It should be men-
tioned again that the confidence intervals are calculated under the assumption
of normally distributed data; an assumption that we showed is a rather poor
approximation of our data. However, what is seen in Figure 5.1 is what inspired
the idea to test whether or not it is reasonable to fix one or both of the pa-
rameters. It is in our interest to minimize the number of variables in this early
stage of the model building since an effort will be made to explain the remaining
variables through external factors.

If parameters α1 and ψ are both fixed (either as the mean of all 29 estimated
individual ones or as the estimated values generated through collective fitting),
the accuracy lessens significantly. The same worsening effect is observed when
ψ is allowed to vary but α1 is fixed. As it turns out, a fixed ψ and varying
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Figure 5.1: Estimates of the parameters in model (13) along with their confidence
intervals.

α1 gives the best trade-of between convenience in number of parameters and
accuracy. Therefore, the parameter ψ will hereafter be set as,

ψ = 0.5,

hence the non-temporal model obtains a square root appearance. Very much
in analogy with previous research. Note that also the ψ estimated overall (ψ =
0.527) was tested, but the result turned out nearly identical in terms of RSS as
well as outcome of the parameters α1.

In more detail, the chosen simplifications discussed above are derived from
a comparison between (13) and the model

Yt = α1 · sign(vt) ·
√
|vt|+ ηt, α1 > 0. (14)

We find a very slight increase in error (maximum 1.3% in terms of RSS), and
new but yet again very similar values of α1. The parameters α1 exhibit the exact
same pattern as that seen in Figure 5.1 when plotted, however the confidence
intervals become somewhat tighter.

Given the presented results and approximations, we leave the instantaneous
model as seen in (14), hence generating an updated version of the function f(·)
seen in (8):

f(vt) = α · sign(vt) ·
√
|vt|, α > 0, (15)

where the index of α1 has been dropped, and is therefore renamed α.

5.2 Temporal Part of the Model
By the end of Section 4.3, it was determined that a linear regression method
was to be used to estimate the parameters βs in model (11). Explicitly, the
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following model will be fitted,

Yt = f(vt) +

N∑
s=1

βsf(vt−s) + ηt, (16)

where f(·) is taken from (15) with its parameters set as constants, and ηt is the
residual term.

In the plots of Figure 5.2 decay coefficients have been fitted for 100 lags on six
of the 29 analyzed stocks. We have also included the 95% confidence intervals for
the estimates, represented by the vertical lines crossing each data point. Since
the confidence intervals are a bit hard to see we have market significant estimates
as red, and insignificant as blue. Again, the confidence intervals, and thus the
significance of estimates, are based on the rather inaccurate approximation of
normally distributed data. Conclusions are thus not solely based on these.

Figure 5.2: Decay coefficients for six stocks. Significant estimates are marked red,
while insignificant ones are marked blue.

One can start by looking at the decay coefficients after lag 30 and note that there
is very little structure. The decay coefficients seem to be close to uniformly
distributed, not around zero but around some small negative number as the
majority of the points are negative. If we shift focus to the first 30 data points
we can see that they seem to follow an increasing trend. For the stocks plotted
in Figure 5.2, this is probably most evident for ATCO A (Atlas Copco), but
for the other stocks one can at least see that the majority of the data points
are negative. This is in line with what we expect when arguing from the Gerig
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perspective. However, far from all of the 30 first data points, only around 5-10
depending on which stock we look at, are classified as significant when using a
95% confidence interval. When looking at these plots for the other 23 stocks
we see the same pattern; mostly negative values, an increasing trend for the
first ∼30 lags, but a great part of them classified as insignificant. The trend
indicates that recent trades affect the price more than earlier ones; a behavior
that seems reasonable and is thus in our interest to verify. However, the fact
that a lot of the decay coefficients are very close to zero and also classified as
insignificant makes it hard to do this when looking at stocks individually. The
small values (and the insignificance) of the coefficients could be interpreted as
price impact not being dependent on past trading history. This interpretation
does however contradict the theory that has been presented in earlier sections,
which is why we will investigate this further.

In order to find out whether the insignificance of the decay coefficients is
reasonable or not we can first compare the estimates for all stocks. When doing
this we discover that for the first ten lags separately, the average number of
stocks that has a positive coefficient are 5.44. To clarify, for each βi when
1 ≤ i ≤ 10, roughly 5-6 stocks out of 29 have βi > 0, the rest have negative
βi. Moreover, the positive coefficients seem to be randomly distributed among
different stocks, i.e. we do not see that one stock have positive decay coefficients
for all i ∈ [1, 10]. If the coefficients were truly insignificant, wouldn’t we see
roughly the same amount of positive and negative ones? From a probabilistic
point of view it is highly unlikely that, if positive and negative coefficients were
equally likely, we would for a certain lag, say βk, see 6 or less coefficients with
positive sign. One can easily calculate this probability as

6∑
n=0

(
29

n

)
· 0.529 ≈ 0.001158.

And since this is the case for almost all βi when i ≤ 10 this becomes even more
improbable. Furthermore, we can look at the mean of the decay coefficients for
all stocks, which is presented in Figure 5.3.

Figure 5.3: Mean value of decay coefficients for all 29 stocks

Here we can see that all the coefficients, but perhaps two or three, are negative
(from the first 30 lags), and they seem to be increasing (or decreasing in magni-
tude). From this plot one can also note that the vast majority of the points are
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negative even for lags up to 100, although the increasing trend seems to stop
after around lag 30.

Finally, if we try to model the price impact on all the stocks at the same
time, similar to what we did for the instantaneous impact function, the pattern
discussed above becomes even more clear. The estimated decay coefficients for
100 lags is show in Figure 5.4.

Figure 5.4: Decay coefficients estimated for all 29 stocks collectively. The increasing
structure is much more clear. It is also easier to see that the majority of the estimates
are negative.

First we note that this plot is very similar to that of Figure 5.3. We see a very
clear pattern of negative and increasing coefficients. A lot more coefficients are
also classified as significant. This could be an indicator that the coefficients are
indeed less than zero, but when estimating these for individual stocks we do
not have enough data to get a small enough standard deviation to verify this.
We can further see that 81/100 coefficients are negative and that none of the
positive coefficients are significant. We did also look at lags greater than 100 but
after this there seemed to be a close to even split between negative and positive
coefficients. We can conclude that when estimating the decay coefficients for all
stocks at the same time they satisfy the following:

1. The majority is less than zero up to lag ∼100

2. Based on the amount of data we have used, the coefficients after lag ∼100
can be approximated by zero.

3. The magnitude decreases until lag ∼30, after which there seems to be no
structure except for the majority of the coefficients being negative.

We cannot statistically say that the conditions above hold for individual stocks,
even though we have reasons to believe they should. What is important to note
is that when the decay coefficients for all stocks combined were estimated, 29
times more data could be used compared to when each stock where estimated
individually. A hypothesis is that the characteristics mentioned in the three
points above hold for each stock individually, it is merely a question of having
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enough data to support it. In order to, maybe not prove, but at least strengthen
this hypothesis we estimate the decay coefficients for each stock on a bigger data
set. Instead of just using one month of data we now use six, from January 2016
to June 2016. When doing this, the structure of the decay coefficients is much
more similar to the one shown in Figure 5.4. In the Figure 5.5, one can see the
estimates of the decay coefficients when one month of data is used compared
to when six months of data is used. We have deliberately plotted three stocks
where the change is easily spotted. In Appendix C.4 one can see all estimates
both when one and six months of data are used.

Figure 5.5: Decay coefficients estimated for three stocks with one month and six
months of data

With the result from the six months estimates we can conclude that for all of
the stocks, a great majority of the decay coefficients are negative, and for almost
all stocks one can detect an increasing pattern for the first 15-25 lags. Since this
increasing pattern is important and was not as clear when only one month of
data was used, all estimates on individual stocks will from this point be made
on the six-month data set.

5.3 Decay Function
As mentioned above the decay coefficients seem to be negative and increasing
with the number of lags. This is not really in line with the theory of a positive
power-law decay function. As a matter of fact, negative and increasing betas is
the opposite of positive decaying ones. Since this section is dedicated to finding
a functional form of the decay coefficients comparable to previous research the
stock returns can be expressed as

Rt = f(vt)−
N∑
i=1

G(i)f(vt−i), (17)

where G(i) will be estimated using −βi. For notational convenience, −βi will
be denoted by β̂i. In Figure 5.6, β̂i is plotted for the same stocks as in Figure
5.2.
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Figure 5.6: Estimated β̂i:s for six stocks

Even though the data points are somewhat noisy one can see that there is a
non-linear decay that flattens out after around lag 30. The intercept and the
steepness of the decay seem to vary a bit from stock to stock, but overall the
structure seems to be very similar for all stocks.

5.3.1 Shape of the Decay Function

Since the decay seems to be similar for each stock we will use the data seen in
Figure 5.7 to find the most suitable shape of the decay function G(·) and then
estimate the parameters of this model for each stock. The lag coefficients seen
in the plot are estimated in the same way as the ones seen in Figure 5.4, however
these ones are estimated on a bigger data set (Jan 2016 - June 2016). This is
because, as mentioned above, we will later on use this data set to estimate the
parameters on each stock. As one can see from the plot in Figure 5.7, the points
follow a very similar structure to what one can see in Figure 5.4, but as a result
of the bigger data set the confidence intervals (that are not included in the plot)
are smaller.

It is obvious that G(·) should not be linear, which is why we try to fit three
different non-linear decreasing functions to the data seen in Figure 5.7:

1. Exponential function: Gexp(τ) = a · ebτ

2. Logarithmic function: Glog(τ) = a+ b · log(τ)

3. Power-Law function: Gpow(τ) = a · τ b

The results of the non-linear least square estimation are presented in the fol-
lowing table and visualized in Figure 5.8.
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Figure 5.7: β̂i:s estimated on all 29 stocks.

Figure 5.8: Fitted functions in normal and logarithmic scale

The number after the ±-sign indicates the 95% confidence interval for the es-
timate. From Figure 5.8 it is not obvious, but possible to see that the power
law-function fits the data worse than the exponential and logarithmic function.
This becomes clearer when looking at the residual sum of squares. A surprising
result since the most discussed decay function in previous literature is in fact
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Method Esimates (a, b) RSS
Gpow(τ) 0.0277± 0.0047 −0.5191± 0.0701 0.00096
Glog(τ) 0.0219± 0.0021 −0.0048± 0.0050 0.00067
Gexp(τ) 0.0205± 0.0022 −0.0491± 0.0037 0.00058

Table 2: Estimated parameters of three different types of decay functions along with
their respective confidence intervals and residual sum of squares (RSS).

the power-law function. The table above also tells us that, even though it is
very hard to tell from the plots, the exponential function is, at least based on
the RSS, a better fit than the logarithmic. In terms of the residuals it is hard to
separate the accuracy of the models. A Shapiro-Wilk normality test indicates
that we cannot reject normality of neither the log nor the exponential function,
and QQ-plots further show that both the exponential and the logarithmic fit
produce close to normally distributed residuals.

Furthermore, each of the different functional forms has a disadvantage. The
exponential decay violates the no-dynamic arbitrage principle as discussed in
the Theory section, while the logarithmic decay can give rise to negative β̂i:s.
Since we expect the β̂i:s to be positive the logarithmic function should satisfy
the following constraint:

a+ b · log(τ) > 0 ∀ τ ∈ [1, 100]

We have a > 0 and b < 0 and since log(x) is strictly increasing it suffices to say
that

−a
b
> log(100) ≈ 4.60517.

This condition is in fact not satisfied by the estimated parameters a and b in
the above table, and it is not unreasonable to assume that when fitting these
parameters on individual stocks the condition above will be violated as well.

All in all, the logarithmic and the exponential decay both follow the data
well. Based on the theory presented however, both functional forms have their
pros and cons. The exponential decay is strictly positive but violates the no-
dynamic arbitrage condition. The logarithmic decay on the other hand gives
rise to negative values, and it has not been calculated whether it violates the
arbitrage conditions or not, making a comparison between the two either incon-
clusive or in favor of the exponential function. The final means of comparison
available is the RSS, which is slightly higher in the logarithmic case, which is
why we move on to using the exponential decay when fitting the parameters on
individual stocks in the next section.

5.3.2 Performance on Individual Stocks

Having concluded that the decay coefficients follow an exponential structure we
now move on to fitting the a- and b-parameters on all stocks separately. In the
following plots one can see the estimates for the a- and b-parameters together
with their 95% confidence intervals.
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Figure 5.9: Estimated values of the a- and b-parameters for all stocks

Figure 5.10: Exponential function fitted on decay coefficients of six different stocks

As a result of the noisy structure of the decay coefficients, the fitted function
is a pretty rough estimate. The mean RSS of all estimates is 0.00885, which is
roughly 15 times higher than the RSS for the function estimated on all stocks
at the same time. However, one can see in Appendix C.5, where the fitted
functions for all 29 stocks are shown, that some stocks have very high variance
of the data, which obviously increases the mean RSS. In order to determine
whether exponential decay is a reasonable fit for the individual stocks the mean
RSS can be compared to some base line estimate, such as just estimating the
data with the mean value of all data points. The RSS of this mean estimate is
0.085, i.e. 10 times higher than the mean RSS of the exponential fit.
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In Figure 5.9 one can see that the confidence intervals of the estimates are
relatively broad, especially for ATCO B, AZN and NOKIA (Atlas Copco, Astra
Zeneca and Nokia). Many of the confidence intervals covers the mean of all
estimates which is represented by the dotted line, the parameter b more so than
a. This could indicate that using the mean values of a and b might not be that
much worse of an estimate. In Figure 5.11, we have fitted the decay functions
using a = 0.0277 and b = −0.0681 for the same stocks as in Figure 5.2. One can
see that the fit is quite rough, but the RSS of 0.00938 reveals that it is actually
not that much worse than when unique parameters for each stock were used.
Thus, we have found an estimation of the decay function that is independent of
what stock we try to model.

Figure 5.11: Exponential function with fixed a and b and decay coefficients of six
different stocks

5.4 Summary
The obtained results of Section 5.1 allowed for a justifiable simplification of
the instantaneous model. This part was developed to capture the trends of
price impact as a function of aggregated volume, which in its own constitutes
the foundation of a final model. The section started with having three stock-
specific parameters that were later lessened to only one with minimal loss of
accuracy. A result that improves the simplicity of the model, and in turn allows
for more generality.

When analyzing the decay coefficients estimated on all stocks there was a
clear decaying structure and the data was well estimated with both a logarithmic
and an exponential decay. According to the RSS the exponential decay was a
slightly better fit. Even though it violates the no dynamic arbitrage condition,
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we used this model for our shape of the decay function over the logarithmic
shape based on three key points:

1. The logarithmic function produced negative β̂i:s that are unwanted.

2. We still do not know if the logarithmic function satisfies the no dynamic
arbitrage conditions.

3. The RSS of the exponential fit is lower.

When using an exponential decay on each stock separately the estimates be-
came more noisy resulting in higher RSS. However, despite the noisy data and
rough estimate, the decay coefficients are clearly better approximated by an
exponential function than the mean value of all data points for all of the 29
stocks, indicating that the exponential shape is present. Further we saw that
fixing both a and b to the mean of all estimated values gave a relatively good
estimate which is why we choose to model the decay coefficients as:

G(τ) = 0.02877e−0.0681τ . (18)
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6 Discussion
It is evident from the previous sections of this thesis that the way price impact
affects stock movements cannot be ignored. Price impact has also been seen to
be an odd and increasing function of net bought relative to a stock’s turnover
with a dependence on previous trades. Moreover it is concave in order size.
These characteristics have been verified for 29 different stocks on data taken
with minutely intervals for six months. We will in this section discuss what these
characteristics might imply for the stock market in general. We will also more
thoroughly discuss what was just mentioned, that price impact is a function
net bought relative to a stocks turnover, and how this might affect the market
structures we see today. However, before discussing the broader, and maybe
more easily verified, characteristics of price impact we will analyze the specifics
of the model. Since a lot of simplifications were made when deciding both the
instantaneous impact function and the decay function it is interesting to see
if our model is reasonable, if can reconstruct the characteristics of how stock
prices move and how it compares to other models derived in previous literature
on this topic.

6.1 Model Evaluation
At this point a model for price impact has been derived. First the immediate
impact function was estimated, and then in order to account for the correlation
in order signs as well as the noisy behavior of the data clouds, we estimated a
decay effect to the impact function. The final model, after some simplifications,
turned out to be:

Yt = f(vt)−
100∑
τ=1

G(τ)f(vt−τ ) + ηt, (19)

f(vt) = α · sign(vt)
√
|vt|, G(τ) = 0.02877 · e−0.0681τ ,

where vt is the fraction between the number of stocks bought and the aver-
age minutely turnover for the specific stock analyzed, and α is a stock specific
parameter. Moreover ηt is a noise term which includes price changes caused
by other factors than the buy-/sell-pressure, such as budget reports and other
news.

It is now time to see if this model is able reconstruct the characteristics
of stock returns, i.e. are the returns uncorrelated and to what extent do they
follow the actual stock movement? We will also see how much of the variance
in price movements our model suggests to be a result of the buy-/sell-pressure.

6.1.1 Characteristics of Stock Returns

Theoretically, if we managed to split up the stock returns in changes caused by
price impact and changes caused by other factors, and if we assume that these
other factors are not autocorrelated, we would expect the price changes caused
by price impact to be uncorrelated as well. As mentioned numerous times in
this thesis the autocorrelation of trade sign would give rise to autocorrelated
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price changes if no decay function was added to the model. Thus, we added this,
and as one can see in Figure 6.1, the estimated change in micro-price caused
by price impact seems to be uncorrelated, at least if we assume that the actual
micro-price changes are not autocorrelated. In the plots in question, it looks as
if there is a correlation at lag one. However it should be underlined that the
micro-price changes are not normally distributed, one should therefore not pay
too much attention to the confidence intervals, but instead compare the two
autocorrelation functions.

Figure 6.1: Autocorrelation function for real micro-price changes (top) vs. price
changes caused by price impact (bottom).

We can compare the plots in Figure 6.1 to the autocorrelation function plot of
the model without decay function. As one can see in Figure 6.2 the returns
are now (more) autocorrelated, meaning that the decay function does serve its
purpose by cancelling out the autocorrelation from the order signs.

Figure 6.2: Autocorrelation function for price impact when no decay function is added.
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6.1.2 How Much is Explained?

As we saw above the decay function is necessary in order to produce uncorrelated
stock returns, but we also added the decay function with hopes of explaining
more of the variance in the micro-price changes. That being said, we did not
expect the micro-price change explained by our price impact function to have the
same variance as the real data cloud, since that would imply that the variance
caused by factors such as news would not induce any variance in the stock prices
(i.e. Var(ηt) = 0).

The real micro-price changes are plotted as a function of the aggregated net
bought together with the micro-price changes estimated from our price impact
function in Figure 6.3. One can clearly see that the variance is much higher
for the real data. This is the case for all 29 stocks analyzed, and based on
these plots it can be concluded that the decaying part of the impact function
is necessary in order to keep prices uncorrelated, but in terms of predicting the
price changes, the mean and variance of the residuals are not that much worse
without the decay function.

Figure 6.3: Real cloud of micro-price change as a function of buy-/sell-pressure vs
changes in micro-price caused by price impact.

In order to quantify, the variance of the modelled price impact is only about
10-35% of the variance in the real micro-price change, depending on which stock
we look at. It can also be mentioned that the mean variance of the micro-price
change for all stocks between January 2016 and June 2016 is around 84 (BPS)
while the mean variance of the estimated price changes caused by price impact is
only 20 (BPS). Almost all of this variance comes from the instantaneous impact
function (around 19 BPS on average).

6.1.3 Real vs. Predicted Prices

Now observe the plot of the returns caused by price impact and compare it to
the actual returns. It should be mentioned that in the plots of Figure 6.4 & 6.5,
the blue line named ’pred’ might be misinterpreted as an actual prediction of
the stock movements. This is not the case, the blue line rather represents how
the stock would have moved if, according to our model, all the price movements
of a stock were a result of aggregated buy-/sell-pressure. However, we will
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sometimes refer to the blue line as ’predicted returns’ due to lack of a better
word.

When we looked at the data between January and June 2016 we saw that in
January, the blue and the red lines differed a lot, and we thus chose to compare
this plot to a month were the real and predicted returns differed less. That
is why there are two plots of the same six stocks, one for returns in January
(Figure 6.4) and one for April (Figure 6.5).

Figure 6.4: Real returns vs predicted price impact-returns in January 2016.

For the other months (Feb, Mar, May and June), the two lines followed each
other pretty well, not as good as in April, but much better than the January plot.
This indicates that returns are (often) increasing if there is a pressure on the buy
side, and decreasing if there is a sell pressure. However, for all stocks one can
find segments where the red and the blue line move in opposite directions, and in
January this seems to happen at all instants. The first thought we had was that
maybe it is not a coincidence that the price impact function followed the returns
poorly this specific month, as usually there is a lot of news and people might be
trading based on upcoming full year reports and such. However, would it not be
reasonable to assume that if a lot of bad news hit a stock a specific month this
would be reflected in the buy-/sell-pressure? For instance, would we not see a
greater sell pressure if there is a lot negative news regarding a certain stock?
Clearly, this does not seem to be the case, which might sound counter intuitive,
but imagine a certain time period where there are no specific news regarding a
certain stock. If there is a pressure on the buy side, i.e. sell orders are being filled
more often than the buy orders, then of course market participants will notice
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Figure 6.5: Real returns vs predicted price impact-returns in April 2016.

this and is able to add more expensive sell orders which will continue being filled
and cause a price increase until the buy pressure stops. Imagine then, without
loss of generality, that negative news about the stock is published. People will
then expect the price to go down and add sell orders at a certain price into the
order book. This price will however rather be conditioned on the importance of
the news than the buy-/sell-pressure in the order book. And hence a lot of the
sell orders could potentially be filled quickly if people value the importance of
the news differently, so even though more sell orders than buy orders are being
filled (i.e. there is a buy-pressure) the stock price will fall because the orders are
being filled at a lower price. This could explain why the actual stock price goes
down even though we experience a buy-pressure. Recall the Efficient Market
Hypothesis which states that all available information regarding a stock should
be reflected in its price. In times of no new public information about stocks
the only information market participant receives is the one reflected in the buy-
or sell-pressure and thus it seems reasonable that prices will move according to
this. However as public news are released the trading is instead conditioned on
these, and the buy-/sell-pressure is no longer as important.

6.1.4 Is the Model Accurate?

What is clear from the plots and numbers shown in the previous section is
that the model in (19) reconstructs the data clouds poorly (as we see in Figure
6.3). The variance of the real micro-price changes is clearly higher and behave
differently than our model. However, this fact does not have to imply that our
impact function is not accurate. Remember that we are not trying to find a
model for the total movements in stock prices, but only the movements caused
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by buy-/sell-pressure. What Figure 6.3 tells us is that (under the assumption
that the price impact function is accurate) a lot of the movements in stock prices
are caused by other factors than the buy-/sell-pressure. But how do we know if
the price impact function in (19) is accurate? Testing our model becomes a bit
tricky since there is no data that says exactly why a stock price changes, just
that it does. However, one way to try and find out how well the model is able
to describe the price changes caused by price impact is to study the residual
term ηt. If the first terms of (19) describe all price changes caused by the buy-
/sell-pressure then the residual term ηt should theoretically describe the price
changes caused by other factors, and one would thus expect this term to be
uncorrelated with vt. As one can see in Figure 6.6, the data points of ηt seems
to be neither increasing nor decreasing with vt. The pattern one can detect from
the plots is that there are more extreme values around vt = 0. This can however
be explained by the stochastic nature of ηt. There are more data points around
vt = 0 and thus the number of extreme values would from a probabilistic point
of view increase.

Figure 6.6: Data cloud of real returns vs Data cloud of ηt.

6.1.5 This Model vs. Previous Models

As mentioned in the beginning of this thesis, considerable research has been
done on the subject of price impact. However, most of this research has been
done from a trader’s perspective and the objective has thus been to examine how
much an individual trade affects the price of stocks. This research is important
since traders, or more accurately trading algorithms, want to know how one
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accumulates a certain amount of stocks at a certain time point to the lowest
cost. When our model was estimated, it was done from a market perspective
where we wanted to find to what extent, and how, aggregated buy-/sell-pressure
on stocks affect their movement. These two ways of attacking the problem are
indeed similar, since they both boil down to finding a model for price impact.
However, since we look at aggregated sell-/buy-pressure we divided our data
into minutely intervals, instead of looking at each individual trade. Therefore,
the constraints mentioned in Section 3 about what impact functions are deemed
reasonable and which decay function that are compatible might not apply for
us. That being said, it is still interesting to make the comparison.

There are a lot of similarities between our model and previous ones, mainly
on two key parts; the shape of the instantaneous impact function and the sur-
prise in order flow-theory. The instantaneous impact function was in line with
what previous researchers had discovered. As written in the Theory section,
the instantaneous impact function was argued to be concave and odd, with the
signed concavity best described by a power-law. These are all characteristics
that we found to be true for our data. We did however see that, even though
we fixed the power-law exponent to 0.5, this value did vary in the range 0.4-0.8
from stock to stock. We did also have a scale factor to the instantaneous impact
function which had to be estimated for each separate stock. A lot of time was
spent on understanding why this factor, the sensitivity to price impact, varied
between different stocks. Some correlation was found between these parameters
and the stock specific spread (averaged for the relevant time period), and in fact
a rough approximation was obtained albeit not explanatory enough to give any
further meaning to this thesis. All in all the instantaneous impact function we
estimated was pretty much in line with what people had argued before us.

Secondly, we mentioned how the decay function was necessary in order to
keep prices uncorrelated. Our estimated decay function was tuned in such way
that it cancelled out the correlation in order sign, and it did also have negative
decay coefficients which verified the "surprise in order book"-theory that was
mentioned in the Gerig literature. That is, a surprise in the order book does in
fact impact prices more.

When it came to the actual shape of the decay function there were more
dissimilarities. In the Theory section, we mentioned that a non-linear instan-
taneous impact function should not be compatible with an exponential decay
function since it would give rise to arbitrage opportunities. The decay function
we found to fit our data the best was however exponential. Although, after eval-
uating the result and showing how little the decay function actually impacted
the final model (from a residual point of view) we could probably have used a
power law or a logarithmic decay function and achieved similar results. With
respect to what has been mentioned, it is not surprising that the part of our
model that depends on previous trades was the one that did not really agree
with the theory presented. The time dependence is naturally weakened when
the data is partitioned into minutely intervals rather than individual trades. For
instance, it is argued that the autocorrelation of order signs comes from large
orders being divided up in smaller pieces. This property is not captured as well
when the data is partitioned into minutely intervals, which may both weaken
the importance of the decay function as well as changing the shape of it.
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6.2 The Effects of Price Impact
What was discovered when analyzing the instantaneous price impact function
was that there was a concave relationship between aggregated volume and the
micro-price changes. This was evident for all 29 stocks analyzed, as one can see
in Appedix C.3. When modelling this concave shape, we chose to define our
input variable vt as the aggregated net bought divided by the minutely average
turnover for each stock. This was done as we wanted to find a model as general
as possible that varied as little as possible between different stocks. In Figure 6.7
we see data from all 29 stocks that has been divided into partitions depending
on the size of the input (Net Bought) in order to calculate the mean Net Bought
and mean Impact for those partitions. This method should be recognized from
previous sections. One can see how the division of average minutely turnover
(bottom plot) creates more similar trends between the different stocks. In the
Method section we did not analyze what effect this (possible) dependency on
turnover has, we only recognized its importance and moved on to fitting pa-
rameters. At this point in the analysis however, with a ready model for price
impact, it is in order to see how said turnover affects the observed impact more
thoroughly.

Figure 6.7: All 29 with data divided into partitions depending on the size of the input
(Net Bought). In the top plot the input parameter is Net Bought while in the bottom
plot it is Net Bought divided by average minutely turnover. Each color represent data
from a certain stock. As one can see the differences between stocks are smaller in the
bottom plot.
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6.2.1 First Observations

An illustrative way to see the effects of an asset’s turnover is to compare that
asset on two different venues for the same time period, where turnover differs
between the two. Starting with an example, the stock SEB A is traded on Nas-
daq Stockholm as well as Chi-X (the pan-European venue explained in Section
4.1 & 2.2), specifically, 69.4% of the two venues’ added turnover was traded
at Nasdaq Stockholm in June 2016 (leaving 30.6% on Chi-X). As seen on the
inclination of the bottom left plot in Figure 6.8, Chi-X appears to be consid-
erably more sensitive to price impact than Nasdaq Stockholm. But how do we
know if this effect is not just venue specific, and actually independent on the
difference in turnover between the two venues? Would a 50/50 divide impose
similar inclination in the two venues? Note that a steeper inclination implies
more sensitivity in the sense that small differences in traded volume affect prices
to a larger extent.

Figure 6.8: SEB A during June 2016; 69.4/30.6 in favor of Nasdaq Stockholm

Figure 6.8 depicts the original data cloud for one stock during one month
in the top left corner, where Chi-X data (red) is plotted on top of Nasdaq
Stockholm data (blue). Clearly, there is a difference between the two venues,
although to say exactly what differs is difficult from this plot alone. In the
bottom left corner, the same data has been partitioned as in Figure 6.7. In
the plot in question, the difference between the two venues becomes much more
visible; a steeper inclination is observed from the Chi-X data, hence leaving us
with the conclusion that the stock prices on Chi-X in this case are affected more
by trade than those on Nasdaq Stockholm. But as the input variable is divided
by the average daily turnover (before partitioning and averaging the data) the
difference diminishes, see bottom right plot in Figure 6.8. The conclusion is
updated. Perhaps it is not Chi-X that is more susceptible to price change due
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to trading than Nasdaq Stockholm per se, but instead it is an effect of how large
the traded volumes are on the venue.

Since the alteration of input data is meant to simulate a scenario where equal
turnover is observed on the two venues, we take a look at another example. In
Figure 6.9, the stock SAND (Sandvik) is plotted for the month of January 2016,
when the division of turnover happened to be near equal.

Figure 6.9: SAND during January 2016; 50.2/49.8 in favor of Nasdaq Stockholm

As expected, the dissimilarities between the left and right plots are negligible
since we are dividing both the Nasdaq and Chi-X data with similar numbers.
But what further strengthens our hypothesis that turnover is important in de-
ciding the sensitivity of price impact is that the difference is small before the
division of average minutely turnover.

6.2.2 Low Turnover Implies High Impact

We have now seen two examples that suggests a strong connection between
magnitude of traded volume and price impact. However, before trying to analyze
what effect this might have we include some more examples like the one we see
in Figure 6.9. In Figure 6.10 one can see the mean data of six different stocks
traded on Nasdaq and Chi-X before and after division by average minutely
turnover. Again, the pattern is clear; in the original data the venue with smaller
turnover (Chi-X) is the one with steeper inclination, and the difference is clearly
decreased as the input variable (Net Bought) is divided by average minutely
turnover. Before making a claim that this relationship holds we can recall the
model used in previous sections to model the instantaneous impact function

f(v) = α · sign(v) ·
√
|v|, α > 0.
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Figure 6.10: Impact in BPS as a function of Net Bought in the first six plots and Net
Bought divided by average minutely turnover in the last six plots.

The value of α describes the inclination of the s-shaped curve seen in the previous
plots. We can estimate two alphas for each stock; one for the Nasdaq and one
for Chi-X. As the plots in Figure 6.10 indicate, all the stocks have a higher
Chi-X alpha, say αC , than Nasdaq alpha, αN . More specifically, when looking
at the data used to construct the plots in question (April 2016), the average
ratio αC/αN is 1.58. That is, the value which describes the inclination of the
instantaneous impact function for separate stocks is on average 58% higher on
Chi-X compared to Nasdaq. However, when we instead estimate the α:s but
with v defined as net bought divided by the stock’s average turnover this ratio
decreases to 1.05. In the table below we have done the same comparison for
all months between January and June. The fraction αpctC /αpctN is ratio of the
α:s on Chi-X and Nasdaq when the input parameter is net bought divided
buy minutely average turnover. As we can see from the values in Table 3, the
difference in sensitivity to price impact is almost removed (except for January)
when we model net bought relative to average turnover. We make the following
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Month Jan Feb Mar Arp May Jun
αC/αN 1.75 1.46 1.52 1.58 1.43 1.44
αpctC /αpctN 1.37 1.05 1.11 1.05 0.96 0.98

Table 3: Fractions of the inclination parameters αC and αN , for Chi-X and Nasdaq
respectively, compared to the same fraction where a division by average minutely
turnover has been made (pct).

claim:

Trading venues with a higher turnover are less sensitive to price impact.

An implication of this claim is that on trading markets with higher turnover it
is harder to manipulate prices by accumulating and liquidating stocks according
to certain strategies.

6.2.3 Fragmentation of the Market

As described in Section 2.2, new market places for trading has emerged during
the last decade. The shift in trade from a primary market to a secondary one
is often referred to as fragmentation of the market, and naturally it comes at
a cost for the primaries. In the case of Nasdaq Stockholm and Chi-X, contin-
ued cannibalization possibly lessens the total turnover of Nasdaq Stockholm,
and increases that of Chi-X. As previously concluded, a large turnover has a
stabilizing effect on price impact. We form the following hypothesis:

A fragmented market invokes sensitivity to price impact.

The hypothesis states that fragmentation of the stock market generates stock
dynamics that are more sensitive to incoming trade. The previous section in-
spired this hypothesis as we saw how the inclination of the impact curve was
affected by turnover. However, changes that occur over time might contribute
to price impact sensitivity to the extent that decreasing turnover becomes irrel-
evant.

In order to analyze how fragmentation affects sensitivity for price impact we
need to look at data where there has been a considerable shift in market share.
As mentioned in the Theory section, the cannibalization of Nasdaq’s market
share by Chi-X was steadily increasing until around 2013 but has stagnated
since. Unfortunately, no data from years prior to 2013 were available rendering
the fragmenting dynamics of Chi-X and Nasdaq uninteresting for the purposes
of this section. However, the smaller MTF Turquoise has been increasing in
market share between 2013 and 2016. In Table 4 the average daily turnover
(ADT) is presented for Nasdaq, Chi-X and Turquoise, along with the average
market share for each venue. The data is taken from the first six months of 2013
and 2016. It should be added that the numbers and plots in this section come
from the 26 stocks that the OMXS30 index has in common for 2013 and 2016.

As the market share of these three venues combined is almost 95% it is clear
that Turquoise has taken market share from Nasdaq and Chi-X. The increase in
market share has resulted in larger turnover, which according to our hypothesis,
would result in less sensitivity to price impact, i.e. a flatter curve, compared
to 2013. For Nasdaq and Chi-X the market share has decreased for all months,
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Jan Feb Mar Apr May Jun

Nasdaq
2013 ADT 6.21 6.83 6.30 7.67 6.10 7.01

MS 60% 60% 60% 62% 60% 59%

2016 ADT 6.33 7.79 5.73 6.99 5.78 6.22
MS 56% 57% 55% 56% 57% 56%

Chi-X
2013 ADT 2.68 2.99 2.63 2.78 2.41 3.01

MS 29% 29% 29% 28% 29% 30%

2016 ADT 4.00 3.91 2.68 2.60 2.14 2.54
MS 26% 25% 24% 24% 24% 25%

Turquoise
2013 ADT 0.50 0.61 0.59 0.66 0.59 0.82

MS 4.2% 4.5% 4.7% 4.7% 5.0% 6.0%

2016 ADT 2.16 2.38 2.20 2.22 1.69 1.98
MS 10.8% 11.9% 14.3% 12.5% 12.1% 12.2%

Table 4: Average Daily Turnover (ADT) and average Market Share (MS) of the three
venues Nasdaq Stockholm, Chi-X and Turquoise for each of the six available months
in 2013 and 2016. ADT values are in SEK billions. MS values are taken from bats.com
[15][16][17].

while the turnover has decreased for some and increased for some, which should
result in a steeper curve for some while a flatter for some. However, plots showed
that the steepness of the price impact curve of Chi-X and Nasdaq had increased
or remained stable for all months. We noticed that an increase in steepness
always came with an increase in spread (i.e. the average of TWA_SPREAD
explained in Appendix A), and for the months were the impact curve remained
stable the difference in spread was negligible. In order to neutralize this potential
spread-effect the y-axis in Figure 6.11, and in the following plots, is therefore
divided by the average monthly spread.

In Figure 6.11 data from March and April is plotted and a linear fit is added
in order to give a rough estimate of how the steepness of the curves has changed.
From Table 4 one can see that between March 2013 and March 2016 there was a
small decrease in turnover for Nasdaq while it increased very slightly for Chi-X.
Despite this increase in turnover we see a small increase in the steepness of
the impact curve for Chi-X. However, the increase is greater for Nasdaq, where
there actually was a decrease in turnover. We further see that the impact
curve for Turquoise has moved in the opposite way, maybe as a result of the
significantly increased turnover. For April the inclination of the impact curve
seems to have increased slightly for both Nasdaq and Chi-X, which is in line
with our hypothesis since they both decreased in turnover slightly. Moreover,
we can note that the decrease in steepness is obvious for Turquoise yet again,
which strengthen the hypothesis that an increase (decrease) in turnover yields
less (more) sensitivity to price impact also over time.

If we shift focus to the lines measuring the steepness we can in a more quan-
titative way study how change in turnover changes sensitivity to price impact
over time. Of course the lines is not a very good fit to the data, but they do
indicate the average inclination of the impact curve. We denote the inclination
with λ. In Table 5 the change in inclination is presented and one can from these
numbers together with the data in Table 4 conclude the following:

1. For Nasdaq turnover has increased for Jan and Feb and λ has increased
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Figure 6.11: Plots of price impact for Chi-X, Nasdaq and Turquoise for March and
April. The x-axis is divided by the total turnover over all venues in order to simplify
comparisons, and in order to neutralize the effect of spread the y-axis is divided by
spread. For all six months (January - June), see Figures C.7 & C.8 in Appendix C.6.

Jan Feb Mar Apr May Jun

Nasdaq
2013 28 33 32 36 37 39
2016 44 48 44 40 46 46

Change 57% 43% 39% 10% 24% 19%

Chi-X
2013 56 66 66 81 77 81
2016 85 86 85 88 98 93

Change 53% 39% 29% 9% 28% 15%

Turquoise
2013 118 144 138 158 145 145
2016 99 91 79 80 94 92

Change -17% -37% -43% -49% -37% -37%

Table 5: Average Daily Turnover (ADT) and average Market Share (MS) of the three
venues Nasdaq Stockholm, Chi-X and Turquoise for each of the six available months
in 2013 and 2016. ADT values are in SEK billions.
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for all months.

2. For Chi-X turnover has increased for Jan, Feb and Mar and λ has increased
for all months.

3. For Turquoise turnover has increased for all months and λ has decreased
for all months.

4. All venues have the highest increase (least negative for TRQX) in λ in Jan
and the lowest (most negative for TRQX) in Apr.

Based on these facts it seems as there is more than just change in turnover that
affects sensitivity to price impact over time. More specifically, there seems to
be factors pushing the sensitivity of price impact up from 2013 to 2016 based on
the fact that inclination has increased for months where turnover has remained
stable. How much the price impact sensitivity increases varies a lot from month
to month and what causes this increase is outside the scope of this analysis.
However, what is evident based on the figures shown is that the sensitivity has
gone up for Nasdaq and Chi-X where the market share has remained fairly
constant (or slightly decreasing), while for Turquoise the inclination of the price
impact curve has decreased. One can thus argue that the naturally caused
positive change to the inclination of the impact curve across all venues instead
turned to a negative change for Turquoise as a result of the big increase in
turnover. What is argued here is that if everything but turnover would have
stayed constant, we would have seen a greater negative change in λ for Turquoise
and a closer to zero change in λ for Chi-X and Nasdaq. A natural counter
argument to this could be that the factors pushing the inclination up for Chi-X
and Nasdaq could be the ones pushing it down for Turquoise, making the change
in turnover irrelevant. However, based on the data for the months analyzed
above there is a correlation of -0.814 between the change in λ and the change
in turnover, which, combined with the plots and the data presented above, is a
strong indicator that the hypothesis stated earlier should not be rejected. One
could thus, based on the idea that a greater price impact sensitivity induces
more price manipulation opportunities, question whether the rise of smaller
trading venues and the fragmentation that comes with it really is a good thing
for the stock market.
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7 Conclusions
The correlation between an incoming order’s nature and subsequent price change
is no new field of financial studies, in fact considerable research has been made
on the subject commonly known as market impact. A less exploited field is that
of price impact, where all trades during a specific time period is considered.
Throughout this thesis, various previously composed theories and models of
market impact have been evaluated and refitted onto the financial data provided
by Nasdaq Stockholm AB in order to explain the phenomenon of price impact
thoroughly and hopefully in a comprehensible way.

A first look at the data suggested a signed concave model to explain price
changes as a function of buy-/sell-pressure where, to begin with, no time de-
pendency was present. The concave instantaneous model was equipped with
the sign-function, leaving the sign of the output directly dependent of whether
the bulk of the input consists of sell- or buy-orders. A.N. Gerig among oth-
ers suggested that the order signs of historical trades are autocorrelated, and
that autocorrelation must not be reflected in the model’s output. Hence, af-
ter verifying the claim of the order signs’ property, a time dependent part was
added to account for the discrepancy. The added time dependency was sup-
posed to serve two purposes, eliminate autocorrelation of output and account
for the observed variability that was not covered by an instantaneous model.
The effects of the time dependency did not cover as much of the variability as
expected, but served its purpose well in the question of autocorrelation. Explic-
itly, the time dependence was added to the instantaneous model as a function
of time lagged inputs, making the completed model dependent on several esti-
mated parameters. Some variables could be generalized over time and assets,
but the modelling part of this thesis is left with one stock-specific parameter
that additional research might be able to explain in a more general way. What
was concluded was that a square root shape best described the shape of price
impact, adjusted by an exponentially decaying function of time lagged data.

When the performance of the model was tested onto observed data, under
the assumption that the model covers what was intended, it became clear that
a great part of price changes is independent of the actual buy-/sell-pressure. It
was observed that, according to our model, price changes caused by price impact
only explains around 10-35% of the variability in real price changes. Moreover,
it was seen that the stock movements implied by price impact followed the
real stock movements poorly in the month of January, and much better for
other months. Suggesting that this could be explained by the amount of news
released in January led to the conclusion that buy-/sell-pressure indicate stock
movements poorly when a lot of news are released, and better in times of less
news. The price impact model derived in the thesis was also compared to earlier
models derived for market impact. The instantaneous part followed previous
theory well while the decaying part did not. An exponential decay was found to
fit the data the best despite this shape of decay function was argued against as it
led to arbitrage opportunities. However, the reason the decay function differed
from theory could be a consequence of the fact that we are comparing a model
for aggregated trades to models for single trades, which most likely affects the
time dependency of the model.

Moving on from the process of modelling, price impact was analyzed with
respect to turnover. In order to keep as many stock market properties as possible
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constant, the analysis was conducted over one month and stock at a time but
observed on different trading venues where turnover differed. As it turned out,
turnover has a clear effect on how sensitive an asset is to price impact, namely
that less turnover implies more sensitivity. This "discovery" was further tested
by another approach, by comparing the three major trading venues involved in
OMXS30 trade.

Among the three largest venues that trade OMXS30 in Europe (Nasdaq
Stockholm, Chi-X and Turquoise; in descending order in terms of turnover), it
is evident that considerable market share has shifted from the two larger ones
to Turquoise when looking at data from 2013 and 2016. This shift in market
share comes hand in hand with a shift in turnover, thus leading to increased
stability in terms of price impact at Turquoise, and a less stable environment at
Nasdaq and Chi-X. The results invite the question of whether or not multiple
trading platforms is in the best interest of the market or not.
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A Variables
1. CODE_CUR. Code under which the stock is traded.

2. PID. Venue where data has been gathered. BOOK for Nasdaq Stockholm,
CHIX for Chi-X, or TRQX for Turquoise.

3. TIME_MINUTE. Time of the day from 540 (9:00AM) until 1044 (5:24PM);
market closes at 5:30PM.

4. NET_BOUGHT. Aggregated buying pressure on the market, i.e.

bidprice ∗ bidsize− askprice ∗ asksize,

summed for all instants during that minute. The prices are the best offers
at said instant and the sizes correspond to those prices. Measured in
Swedish kronor (SEK).

5. TURNOVER. Total turnover, measured as NET_BOUGHT but each instant cal-
culated as,

bidprice ∗ bidsize + askprice ∗ asksize.

6. NET_BOUGHT_Vpct. Calculated as NET_BOUGHT divided by the mean TURNOVER
for this stock on this market. This is the variable used as the input of the
models.

7. MICROPRICE_CHANGE. An order book weighted mid-point price, calculated
according to,

bidprice ∗ asksize + askprice ∗ bidsize
bidsize + asksize

,

where the quantities have the same properties and relationship as in
NET_BOUGHT. This is the output of the model, i.e. the observed price
impact.

8. TWA_SPREAD. TimeWeighted Average of the spread during relevant minute.
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B Tables

B.1 List of Stocks in OMXS30
As of mid 2016 and end of 2016, the following stocks were included in OMXS30
(updated biannually).

Company name Stock code GICS1 Sector Weight2
ABB Ltd ABB Industrial Machinery 2.36
Alfa Laval ALFA Industrial Machinery 1.65
Assa Abloy B ASSA B Building Products 3.55
AstraZeneca AZN Pharmaceuticals 3.13
Atlas Copco A ATCO A Industrial Machinery 5.24
Atlas Copco B ATCO B Industrial Machinery 1.67
Boliden BOL Diversified Metals and Mining 4.97
Electrolux B ELUX B Household Appliances 1.84
Ericsson B ERIC B Communications Equipment 7.04
Fingerprint Cards B3,4 FING B Diversified Support Services 5.23
Getinge B GETI B Health Care Equipment 0.76
Hennes & Mauritz B HM B Apparel Retail 7.56
Investor B INVE B Multi-Sector Holdings 3.40
Kinnevik B4 KINV B Multi-Sector Holdings 1.03
Lundin Petroleum LUPE Oil and Gas Exploration and Prod. 1.22
Nokia Oyj4 NOKIA SEK Communications Equipment 0.94
Nordea Bank NDA SEK Diversified Banks 6.24
Sandvik SAND Industrial Machinery 4.36
SCA B SCA B Paper Products 3.69
SEB A SEB A Diversified Banks 4.72
Securitas B SECU B Professional Services 1.83
Skanska B SKA B Construction and Engineering 2.06
SKF B SKF B Industrial Machinery 3.22
SSAB A SSAB A Steel 2.16
Svenska Handelsbanken A SHB A Diversified Banks 3.38
Swedbank A SWED A Diversified Banks 4.75
Swedish Match SWMA Tobacco 1.47
Tele2 B TEL2 B Integrated Telecom Services 1.60
Telia Company4 TELIA Integrated Telecom Services 3.05
Volvo B VOLV B Heavy Trucks 5.90

1Global Industry Classification Standard.
2Contribution to OMXS30 index (%) in terms of turnover by end of November 2016.
3Excluded stock due to irregular behavior.
4Not part of OMXS30 during 2013, thus excluded from comparisons in Section 6.2.3.
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C Plots

C.1 Market Share of Different Venues

Figure C.1: Share of total traded volume of the stocks comprising OMXS30 for Nas-
daq Stockholm, Chi-X and Turquoise. Clearly, the primary trading venue has lost
a lot of market shares since the introduction of alternative venues. It does look like
the secondary venues, and Chi-X especially, have stabilized around a market share
percentage. The data was downloaded from bats.com [15][16][17].
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C.2 Visualization of all Stocks

Figure C.2: A visualization of all stocks in OMXS30.
Axes: observed price impact = micro-price change
Axes: v = aggregated volume ÷ individual minutely average turnover
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C.3 Visualization of Quantile Means for all Stocks

Figure C.3: A visualization of all stocks in OMXS30, altered according to the mean-
scheme described in Section 4.2.
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C.4 Estimated β:s Using One and Six Months of Data for
all Stocks

Figure C.4: Estimated β:s for all 29 stocks using only one month of data.
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Figure C.5: Estimated β:s for all 29 stocks using six months of data. Note that the
increasing structure is much more clear than in Figure C.4.

62



C.5 Fitted G(·) over β̂:s for all Stocks

Figure C.6: Fitted G(·) over β̂:s for all Stocks.
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C.6 Plots of Price Impact for Chi-X, Nasdaq and Turquoise

Figure C.7: Monthly plots of price impact for Chi-X, Nasdaq and Turquoise for the
first quarter. The x-axis is divided by the total turnover over all venues in order
to simplify comparisons, and in order to neutralize the effect of spread the y-axis is
divided by spread.
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Figure C.8: Monthly plots of price impact for Chi-X, Nasdaq and Turquoise for the
second quarter. The x-axis is divided by the total turnover over all venues in order
to simplify comparisons, and in order to neutralize the effect of spread the y-axis is
divided by spread.
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