
June 12, 2017

Master thesis

Division of Mathematical Physics, Department of Physics,
Lund University

Non-linear electronic entanglement
witness based on current cross

correlations

Author:
Samuel Vermeulen

Supervisor:
Peter Samuelsson

Co-supervisor:
Fredrik Brange





Abstract

Demonstration of entanglements of mobile electrons in solid state conductors using
minimal entanglement linear witness from electrical current correlations has been given.
However, detection of maximally entangled states and some mixed states is lacking if the
witness is based on two cross correlation measurements only. This thesis is trying to detect
them with the same number of measurements by investigating nonlinear witnesses which,
in principle, should be able to detect more states than a linear witness. This is done
theoretically with a generic entangler-detector setup. We found that all entangled states
are detectable when considering pure states only but when considering mixed states, there
is no improvement compared to a linear witness. This was done using the symmetries
between the two operators corresponding to each measurement.
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Chapter 1

Introduction

Information is one of the main issues of our modern world: how to manipulate, trans-
mit, process, store it with a increasingly high demand in speed, reliability and security.
Quantum physics and more particularly quantum information have allowed us to create
completely new ways to process information, that cannot be accomplished by means of
classical resources. Some examples are quantum computers, quantum teleportation or
quantum cryptography. Quantum information is currently receiving enormous invest-
ments by private companies as well as public funding. The European Commission will
launch in 2018 a 1 billion euros funding for research over the next 20 years in quantum
technologies [1]. In the private industry, the biggest tech companies in the world are
also investing considerable amount of money into quantum technologies. Google with its
Quantum Artificial Intelligence Lab, IBM with IBM Q, Microsoft with Station Q are all
spending lots of resources in this field, aware of the fact that a new revolution of the
industry is coming [2].

Quantum entanglement is a concept at the root of many of these quantum technolo-
gies. It is considered as being the most non-classical manifestation of quantum mechanics
and was originally introduced by Einstein, Podolsky and Rosen (EPR) [3] and also by
Schrodinger [4] and Bohr [5] at the beginning of the 1930’s. We are reaching a point
where it will be used in the industry 100 years after its discovery. This emphasizes the
importance of past and future research that has been done about it. But it is also an
excellent example of the importance of academic research, which provides investments for
research of very abstract subjects for the industry that will have practical applications in
the long term.

In practice, entanglement is very fragile and it can be degraded by decoherence that
results from interaction of the state with its environment. Knowing whether a state is
entangled or not is of crucial importance. Different methods have been proposed to detect
the presence of entanglement for different types of entangled states, but this problem is
still not solved for all kinds of entangled states. The method of entanglement witness is of
particular interest as it is a simple method that only requires a few local measurements.
Unlike quantum tomography, which provides a full reconstruction of the quantum states,
witnesses allow to detect if a state is entangled using a minimal number of measurements.

Witnesses are particularly interesting for qubits travelling in solid state conductors
where detection of entanglement is not yet perfectly understood. The background of this
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thesis will be mainly based on the article [6] which consider minimal linear entanglement
witnesses from electrical current correlations. These minimal entanglement witnesses can
detect with only two currents correlation all entangled pure states, with the exception
of maximally entangled states, and some mixed states. In this thesis, we will consider
non-linear entanglement witnesses which, in principle, should allow us to detect more
entangled states and hopefully detect the maximally entangled states.
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Chapter 2

Theory

In this chapter, we will describe two different types of quantum states: the separable states
and the entangled states. The separability problem consists of making the distinction
between those two kinds of states, and we will go through different ways that have been
found to partially solve such problem. We will focus particularly on the entanglement
witnesses, which is the subject of this thesis. We will also introduce the mixed states as a
way to describe statistical ensembles of quantum states, and which requires the formalism
of density matrices to describe them.

2.1 Quantum system

We will work with qubits travelling in solid state conductors, the expression flying electron
is usually used in that case. Those electrons can be described as a quantum system. We
will see how we can describe them mathematically and how we can classify them based
on their physical property. All the material in this section can be found in standard text
books about quantum information, see e.g. Ref. [7].

2.1.1 Description of a quantum system

We can make the distinction between two types of quantum states: pure states and mixed
states.

Pure states

A quantum system can be represented by an Hilbert space H. A pure state of such a
system is represented by a ray in that space:

|ψ〉 =
∑
i

ci |φi〉 (2.1)

where {|φi〉} is an orthonormal basis of H, the ci = 〈φi|ψ〉 are the components of |ψ〉 in
that basis and a ray is a set of vectors which only differ by a phase.

Mixed states

In real conditions, quantum states are interacting with their environment and decoherence
can occur: some information about the state is lost into the environment. All we know is
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the probability that the system will be in a certain state, i.e., our system is a statistical
ensemble of pure states. Such a state is called a mixed state, we can see it as a result of
some lack of knowledge about a quantum system. A mixed state cannot be written as a
vector in H and, to describe mathematically all the information we have about it, we can
use the formalism of density matrices.

Density matrix

Any quantum state, pure or mixed, can be represented by a matrix ρ called density matrix
which satisfies the following properties:

1. ρ = ρ†

2. tr ρ = 1

3. ρ ≥ 0⇔ eigenvalues are non-negative

Any density matrix can be decomposed as follow:

ρ =
∑
i

pi |φi〉 〈φi| (2.2)

with
∑

i pi = 1 and where |φi〉 〈φi| is the density matrix of a pure state. Physically we
can see ρ as being a statistical ensemble of pure states |φi〉 associated to the probability
pi.

2.1.2 Composite system

Entanglement can occur between two or more quantum systems. In this thesis we will
look at the entanglement of pairs of electrons which can be represented by two quantum
systems and we would like to describe that system as a whole. Such system is called a
composite system. We will only focus here on bipartite quantum systems, i.e. a quan-
tum system that can always be decomposed into two subsystems. In particular, we only
consider subsystems of two dimensions that are represented by 2 × 2 density matrices.
In quantum information such systems are called two qubits, where a qubit is a two-state
quantum system.

Let’s represent those two quantum systems by the two Hilbert spaces HA and HB.
Let |ai〉 be a basis of HA and |bi〉 a basis of HB. The composite system of those two
subsystems is represented by the space of the tensor product HAB = HA ⊗HB.

A pure state of the composite system is described by a vector in HAB which can be
written as:

|ψ〉 =
∑
ij

cij |ai〉 ⊗ |bj〉 (2.3)

where {|ai〉 ⊗ |bj〉} is a basis of HAB.

A mixed state of the composite system is represented by a density matrix ρAB and
can always be decomposed in a chosen product basis as:

8



ρAB =
∑
ijkl

P ij
kl |ai〉 〈aj| ⊗ |bk〉 〈bl| (2.4)

Those definitions can be generalized to an arbitrary number of subsystems but those
will not be further considered here.

In composite systems further differences appear between classical and quantum ob-
jects which make them interesting object to study. Classically, if we take all possible pure
states of the A system and all possible pure states of the B system then all the possible
combination of states is forming the space of all the bipartite states. In the quantum me-
chanics world this is not the case anymore. The space of the bipartite states is bigger, we
have a new kind of states: the entangled states. Let’s define more precisely the different
kinds of bipartite states we can encounter.

2.1.3 Type of quantum states

Product states

A state is called product state if its density matrix can be written as:

ρ = ρA ⊗ ρB (2.5)

Physically, we say that the product states are uncorrelated which mean that if we
perform a measurement on one of the subsystems, the results will not be correlated with
the outcome of measurements on the other subsystems. Those states can be created
locally which means that they can be produced independently from each other.

Separable states

A state is called separable state if its density matrix can be written as:

ρ =
∑
i

piρ
A
i ⊗ ρBi (2.6)

where pi is the probability associated to each product states ρAi ⊗ρBi . So, we have
∑

i pi = 1
and pi ≥ 0 ∀i.

In the bracket notation, a pure state |ψ〉 ∈ HAB is separable if it can be written as:

|ψ〉 = |φA〉 ⊗ |φB〉 (2.7)

where |φA〉 ∈ HA and |φB〉 ∈ HB.

Physically, the results of measurements on the subsystem of a separable state can be
correlated between the two subsystems but the correlations are coming from the distri-
bution of probability of the product states which can be generated classically and are
described by the mixed states. So, the origin of the correlation is not purely quantum
mechanical. Product states are a subclass of separable states which do not have any
classical correlation.
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It can be easily shown that the set of separable states is convex which means that any
convex linear combination of separable states is a separable state:

∀ρ1 and ρ2 separable, ∃λ > 0 such that ρ = λρ1 + (1− λ) ρ2 is a separable state (2.8)

From a geometrically point of view, we can visualize this as any pair of separable
states can be joined by a straight line which is always in the set of separable states.

Entangled state

A state which is not a separable state is called an entangled state. We cannot write the
density matrix in terms of a sum of products of the density matrices of each subsystem.
The system cannot be described as two subsystems separately.

In that case, the correlation between the two subsystems is coming from quantum
mechanics only. A measurement performed on one of the subsystems will influence the
state of the other subsystem thus there is a correlation between local measurements on
each subsystem.

An example of well-known entangled states are the Bell states. We are going to refer
to them very frequently in this thesis, they can be represented by the following matrices
in the standard basis {|↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉}:

ρB1 =


1
2

0 0 1
2

0 0 0 0
0 0 0 0
1
2

0 0 1
2

 ρB2 =


1
2

0 0 −1
2

0 0 0 0
0 0 0 0
−1

2
0 0 1

2

 (2.9)

ρB3 =


0 0 0 0
0 1

2
1
2

0
0 1

2
1
2

0
0 0 0 0

 ρB4 =


0 0 0 0
0 1

2
−1

2
0

0 −1
2

1
2

0
0 0 0 0


Geometrical visualization of the different types of quantum states

The set of all quantum states is also convex. The set of separable states is then a convex
subset of the set of all quantum states and the set of entangled states a non-convex subset.
Furthermore, the extremal points of the convex set of separable states are product states
as any separable states can be written as a convex combination of product states. So, we
can visualize those sets as shown in Fig. 2.1.
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Figure 2.1: Geometrical representation of the different types of quantum states.

This geometrical representation can be sometimes tricky as we are representing a high
dimensional convex set into a two-dimensional picture. Therefore, we must be careful
in the interpretations we are basing on it. We will come back to the geometrical inter-
pretation a couple of times throughout this thesis as it is a good way to visualize the
situation.

2.1.4 Summary

Table 2.1: Summary of the different type of states

pure states mixed states product states separable states entangled states
Hilbert
space

|ψ〉 =
∑

i ci |φi〉 - |ψ〉 = |φA〉 ⊗ |φB〉 - -

Density
matrix

ρ = |ψ〉 〈ψ| ρ =
∑

i pi |φi〉 〈φi| ρ = ρA ⊗ ρB ρ =
∑

i piρ
A
i ⊗ ρBi -

2.2 Tools for density matrix and multipartite system

Density matrices constitute a different language from the more familiar Dirac notation to
describe quantum systems. To compute information about the system and subsystems in
this formalism we define here different tools in algebra.

2.2.1 Properties of quantum system

Expectation value

The expectation value of an observable A of the state represented by the density matrix
ρ is given by:

〈A〉ρ = tr (ρA) (2.10)
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Purity

Given a density matrix ρ the purity P of the state ρ is given by

P (ρ) = tr
(
ρ2
)

(2.11)

where P (ρ) = 1 for pure states and P (ρ) < 1 for mixed states. The purity is a way to
quantify how much a state is mixed. The maximally mixed states are the states where
the pi’s of Eq. (2.2) form a uniform probability distribution, all the states occur with
the same probability. It can be easily shown that a pure state has only one non-zero
eigenvalue equal to 1.

Concurrence

The concurrence is a quantity which allows to quantify the amount of entanglement of a
given state.

A general pure state of a two-qubit system can always be expressed in the standard
basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} as:

|ψ〉 = a |↑↑〉+ b |↑↓〉+ c |↓↑〉+ d |↓↓〉 (2.12)

where a, b, c, d ∈ C such that |a|2 + |b|2 + |c|2 + |d|2 = 1
The concurrence C of |ψ〉 is given by [8] :

C(|ψ〉) = 2|ad− bc| (2.13)

It has also been shown that it is equivalently given by:

C(|ψ〉) =
√

2 [1− tr (ρ2
A)] (2.14)

where ρA corresponds to the reduced state of |ψ〉 on the A side which is introduced in Sec.
2.2.2. The concurrence ranges from 0 for separable states to 1 for maximally entangled
states such as the Bell states.

For a bipartite mixed state ρ, it has been shown that the concurrence is given by [9]:

C(ρ) = max {0, λ1 − λ2 − λ3 − λ4} (2.15)

where the λi are the eigenvalues, in decreasing order, of the hermitian matrix
√√

ρρ̃
√
ρ

with ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy) and ρ∗ is the complex conjugate of ρ.

2.2.2 Properties of quantum subsystems

Partial trace

The partial trace is used to describe parts of a larger quantum system. If we have two
physical systems A and B which are described by the density matrix ρAB, the reduced
density matrix of system A is given by ρA = trB (ρAB) where trB is called the partial trace
over B and is defined as follow:
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∑
ijkl

P ij
kl |ai〉 〈aj| ⊗ |bk〉 〈bl| 7→

∑
ijkl

P ij
kl |ai〉 〈aj| ⊗ tr (|bk〉 〈bl|)

We can look at some examples to understand physically what happens:

1. If we take the partial trace of a product state we get trB (ρA ⊗ ρB) = ρA trB (ρB) =
ρA. No information about state A is lost.

2. Let’s consider one of the Bell state ρB1 which is a pure entangled state. The partial
trace with respect to the B system only picks up the matrix elements on the diagonal
and all the information that are not on the diagonal are lost: trB (ρB1) = 1

2
I2×2. If

we try to describe A as a system by itself, we get a maximally mixed state i.e. we
have the minimum amount of information about the state. So, we know everything
that can be known about the combination of system A and B but we know nothing
about system A and system B.

Expectation values

We can use the partial trace to compute the expectation value for an observable of one of
the subsystem. The expectation value of an observable OA of the subsystem A is given
by:

〈OA〉 = tr ((OA ⊗ IB) ρAB) = trA (OA trB (ρAB)) (2.16)

Partial transposition

The partial transposition is a local operator Γ that acts on the density matrix of composite
systems and will be used in the next section. The partial transpose of a state ρ, that can
be written as ρ =

∑
ijkl P

ij
kl |i〉 〈j| ⊗ |k〉 〈l|, with respect to the A and B side is defined by:

ρΓA =
∑
ijkl

P ij
kl (|i〉 〈j|)T ⊗ |k〉 〈l| =

∑
ijkl

P ij
kl |j〉 〈i| ⊗ |k〉 〈l| =

∑
ijkl

P ji
kl |i〉 〈j| ⊗ |k〉 〈l| (2.17)

ρΓB =
∑
ijkl

P ij
kl |i〉 〈j| ⊗ (|k〉 〈l|)T =

∑
ijkl

P ij
kl |i〉 〈j| ⊗ |l〉 〈k| =

∑
ijkl

P ij
lk |i〉 〈j| ⊗ |k〉 〈l| (2.18)

2.3 The separability problem

Given a state ρ, the separability problem is the problem of determining whether ρ is
separable or entangled.

There are several criteria to determine if a state is separable or entangled but, up to
now, there is no general solution for the separability problem. For a 2×2 or 3×2 systems,
there is however a necessary and sufficient condition, as we will see.
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2.3.1 Schmidt decomposition

Let HA and HB be two Hilbert spaces, and let |ai〉 and |bi〉 be two arbitrary basis for HA

and HB respectively. Then we know from Eq. (2.3) that any pure state in HA ⊗HB can
be written as:

|ψ〉 =
∑
i,j

Dij |ai〉 |bj〉 (2.19)

We could choose any basis to write the state |ψ〉 and the matrix D will change accord-
ingly. Algebra tells us [10] that for every complex matrix D, there is always a unitary
transformation U and V such that the matrix UDV is diagonal. This is called the singular
value decomposition of D. The direct application of this in quantum information is called
the Schmidt decomposition:

Let |ψ〉 be a bipartite pure state where |ψ〉 ∈ HA ⊗HB; then it is always possible to
write it as follow:

|ψ〉 =
d−1∑
i=0

λi |i〉A |i〉B (2.20)

This is called the Schmidt decomposition where we have that:

• The λi are real, strictly positive and normalized so that
∑d−1

i=0 λi = 1.

• The Schmidt coefficients λi are uniquely defined.

• {|i〉A} and {|i〉B} form an orthonormal basis of HA and HB.

• d is called the Schmidt rank and is limited by the dimension of the smaller subsystem.
It satisfies d ≤ min {dim(HA), dim(HB)}. So, in our case we have d ≤ 2.

The Schmidt decomposition allows us to have a deeper insight for the distinction be-
tween separable and entangled states. Indeed, as the Schmidt basis elements are separable
states, all the information of the entanglement is encoded in the Schmidt coefficients.

If there is only one non-vanishing Schmidt coefficient, then |ψ〉 is separable. Otherwise,
when at least two Schmidt coefficients are different from zero, it is not possible to express
|ψ〉 as a product state. Consequently, we can conclude that a pure state is separable if
and only if it has only one non-vanishing Schmidt coefficient.

The Schmidt decomposition provides us with a necessary and sufficient criterion to de-
termine if a pure state is entangled. Unfortunately, for mixed states such a decomposition
does not exist [11].

2.3.2 PPT criterion

The PPT criterion, originally introduced in [12], is a simple condition to determine if a
state is entangled or not given its density matrix.
We say that a matrix is PPT (positive partial transpose) if its partial transposition de-
fined by Eq. (2.17) and (2.18) is positive semidefinite, i.e. has non-negative eigenvalues.

The PPT criterion tells us that if ρ is a bipartite separable state then ρ is PPT.

14



Let us note that this is not a necessary and sufficient criterion. In other words, if the
state is not PPT then it is not a separable state and it is an entangled state. But if the
state is PPT then it could be separable or entangled. From a geometrically point of view,
the convex set of the positive partial transpose is larger than the convex set of separable
states. So, we can have positive partial state which are not separable states.

We will not give a rigorous proof of the PPT criterion which can be found at [13], but
explain the idea:

If we take the transpose of a density matrix the spectrum is preserved [10] hence its
trace, hermiticity and positivity is also conserved. So, the transpose of a density matrix is
still a density matrix. But the positivity of the density matrix is not necessarily conserved
by the partial transpose operator. It is however always conserved for separable states as
they can always be written as Eq. (2.6). Indeed, we have

(ρ)ΓA =
∑
i

pi
(
ρAi
)T ⊗ ρBi (2.21)

where T is the transpose of ρAi which is a density matrix hence the positivity is preserved
so ρ is still a state and a positive matrix. But for entangled states, it is not possible to
write the density matrix as in Eq. (2.6) since the positivity of the partial tranpose is not
always guaranteed.

2.3.3 Horodecki criterion

For a certain class of states the PPT criterion becomes a necessary and sufficient condition
known as the Horodecki theorem:

If the state is 2× 2 or 2× 3 then the density matrix is PPT if and only if it the state
is separable. But in other dimensions, this is not the case. A proof of this theorem can
be found at [14].

2.4 Witness

All the previous criteria we saw were requiring to know the exact form of the density ma-
trix of the state. An entanglement witness is trying to solve the separability problem by
performing only a limited number of measurements on the state. Based on the outcomes
of those measurements it is possible to determine if a state is entangled. In this thesis,
our goal is to determine if two qubits in a semiconductor are entangled or not by only
performing two measurements based on current cross correlations. This section will be a
general introduction to witness while chapter 3 will introduce the specific type of witness
we are using in this thesis.

2.4.1 Geometrical interpretation

We will start by giving a geometrical intuition of what a witness is and then give a more
formal definition.

A corollary of the Hahn–Banach theorem [15] tells us that given a convex set and a
point outside of it, there exists a (hyper)plane such that the point is on one side of it and
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the convex set is on the other side. This is obvious in two or three dimensions when we
look at Fig. 2.2, but this holds for any dimensions.

Figure 2.2: Geometrical representation of a linear witness

We can apply this corollary with the convex set of separable states introduced in Sec.
2.1.3. The witness will define the plane which separates the entangled states from the
convex set of separable states.

For any points outside the convex set of separable states, corresponding to an entangled
state, we can define a plane which separates it from the convex set. Thus, for any entangled
state, it is always possible to define a witness to detect it, a formal proof can be found
in [13]. All the difficulty is to find that witness. Let’s now express those intuitive ideas
more mathematically.

2.4.2 Definition

Definition 1

The discussion which will follow is inspired by [16]. Let’s consider a vector space V , we
can define a plane in V by all the vectors |v〉 satisfying the inner product 〈w|v〉 = C where
w is a unit vector perpendicular to the plane and C is a constant.

Let’s consider the vector space of hermitian operators and let’s define the following
inner product between two elements of that space:

〈H1|H2〉 = tr(H†1H2) = tr(H1H2) (2.22)

It can be easily shown that it is indeed an inner product. We can use it to define a
plane W in the vector space of the hermitian operators:

tr(Wρ) = C (2.23)

where W and ρ are hermitian operators.

Given an entangled state ρent, we want to find W such that tr(Wρ) > C (tr(Wρ) < C)
for ρent and tr(Wρ) < C (tr(Wρ) > C) for ρsep.It corresponds to the picture ”being on
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each side of the plane” given in the geometrical interpretation where we can choose either
side of the plane for the set of separable states. We say that W is a witness if it can
detect at least one entangled state. The main difficulty in using witnesses is to find them,
we know they exist but we do not know how they look.

The way we define a witness is only a matter of conventions. In most papers, the
scientific community usually chooses 0 for the constant C and chooses tr(ρW ) > 0 for the
side of the plane with the convex set of separable state and tr(ρW ) ≤ 0 for the side of
the plane with the entangled state we want to detect. So, the typical formal definition of
a witness is given by:

A witness W is an hermitian operator which is positive on all the separable states and
negative for at least one entangled states which is equivalent to:

tr (ρW ) ≥ 0 for all separable states (2.24)

tr (ρW ) < 0 for at least one entangled state

So if the expectation value of the witness is positive the state can be either entangled
or separable and if the expectation value is negative then the state is entangled.

Looking at the definition 2.10 of the expectation value of a state described by a den-
sity matrix, we now understand why we used the inner product defined by 2.22. Indeed,
the definition of the witness is expressed in terms of the expectation value of W for the
state ρ. This achieves the connection between pure math with the Banach theorem and
physics with measurement than can be performed in a lab which makes the witness a very
powerful tool.

A witness W is said to be optimal if there is no other (linear) witness which can detect
more states than all the entangled states W can already detect. This implies that for any
positive operator P , the observable X = W − P is not a witness anymore.Indeed, P will
shift some states from the positive side to the negative and it stays a witness if it only
shift entangled states. We can see an optimal witness geometrically as the plane which is
tangent to the set of separable states. However, this is only a necessary condition, more
details can be found in [13]. Our goal is to have a witness which is as optimal as possible
but that use observables that are easily accessible in the lab.

Definition 2

The definition 2.24 of a witness is more appropriate for a mathematical treatment of a
witness. In this section, we will give an equivalent definition which is more appropriate
for experimental applications of a witness and this is the one we will use in this thesis.
It was introduced in [6] where a witness is defined as an observable quantity for which
at least one entangled state takes on a value outside the range accessible for separable
states. So, the definition of a witness becomes:

W is an entanglement witness if there is at least one entangled state ρ such that of
one the two following conditions is fulfilled:

∆W+
ρ = tr (ρW )−max

ρs
tr (ρsW ) > 0 for at least one entangled state ρ (2.25)

∆W−
ρ = min

ρs
tr (ρsW )− tr (ρW ) > 0 for at least one entangled state ρ
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where ρs are the density matrices of the separable states and ∆W±
ρ are called the detection

margins. In this thesis, we will refer to tr (ρW ) as witness and to W as the witness
operator.

This definition is equivalent to the previous definition 2.24 of a witness. We just use
a different constant than 0 and we use two inequalities instead of one:

tr (ρW ) > C = max
ρs

tr (ρsW ) for at least one entangled state (2.26)

tr (ρW ) < D = min
ρs

tr (ρsW ) for at least one entangled state

D ≤ tr (ρW ) ≤ C for all separable states

Geometrically, we can see that as using two parallel planes to define our witness.
It divides the space into three parts where the middle part contains the convex set of
separable states and the two other parts contain entangled states only.

Figure 2.3: Geometrical representation of a linear witness for the definition 2.25

Line representation of a witness

A witness is an operator which associates a state which is a multi-dimensional object
to a combination of expectation values which is a real number. We use those values to
distinguish the separable and entangled states. We can represent a given witness by a
one-dimensional axis which corresponds to the combination of the expectation values.
Let’s call this the line representation of a witness.
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Figure 2.4: Line representation of a witness where the horizontal axis corresponds to
the expectation value of the witness operator. The value for the separable state that
maximize and minimize the witness and the entangled state that maximize the witness
are represented.

Example

We can give a simple example of construction of a witness operator. For any entangled
state, we can construct a witness detecting it based on the PPT criterion [17]. Let ρent be
the density matrix of an entangled state, we know from the PPT criterion that its partial
transpose ρΓ

ent has negative eigenvalue λ−. Let |ψ〉 be the eigenstate associated to this
negative eigenvalue then W = |ψ〉 〈ψ|Γ is a witness detecting ρ according to definition
2.24. Indeed:

tr(ρentW ) = tr(ρent |ψ〉 〈ψ|Γ) = tr(ρΓ
ent |ψ〉 〈ψ|) = 〈ψ| ρΓ

ent |ψ〉 = λ− < 0

tr(ρsepW ) = 〈ψ| ρΓ
sep |ψ〉 = λ+ ≥ 0

The problem might seem to be solved, we can detect any entangled state we want.
But this witness has some drawbacks. W cannot necessarily be expressed in terms of
simple measurable observables which makes it much harder to use it practically. Another
problem is that the witness is constructed based on the density matrix of the entangled
states we want to detect while all the point of a witness is that it does not require to
know the explicit form of the density matrix but only requires to know some expectation
values of the state. Last but not least, this only works for pure states.

2.4.3 Linear vs non-linear witness

We can make the distinction between two kinds of witnesses: linear witnesses and non-
linear witnesses.

A linear entanglement witness is defined as being a linear functional FL (ρ) of expec-
tation values of the density matrix.

A non-linear entanglement witness FNL (ρ) is defined as being a non-linear functional
of expectation values of the density matrix.

In this thesis, we will focus about non-linear witnesses. Let’s briefly summarize first
what have been done so far in the scientific literature. The definition 2.24 of a witness is
being used in this section.
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Example of construction of non-linear witness

It has been shown in [18] that it is always possible for any bipartite linear witness FL to
be improved by non-linear terms X(ρ) which are a non-linear combinations of expectation
values. So, the non-linear witness is written as:

FNL (ρ) = tr(Wρ)−X(ρ) (2.27)

Improving means here that FNL is still a witness, i.e., is positive on all separable states
and FNL can detect all states FL can detect plus some new states in addition.

The non-linear term is a quadratic function of the expectation values and thus is
always positive. By having the line representation of a witness in mind we can see the
action of the non-linear term as shifting the states left. But as the FNL is still a witness,
all the separable states are still yielding positive values while some entangled states might
be shifted enough such that they yield a negative expectation value and thus become
detectable hence FNL can detect more states than FL.

In [19], that method was iterated to generate a sequence of non-linear witness which
become better at each iteration.

The main problems with all the methods that have been studied so far is that the non-
linear witness cannot necessarily be expressed in terms of very simple observables easily
accessible in a lab. Or if we build a non-linear witness starting from a linear witness, the
non-linear terms require some additional measurements. We will investigate here only
non-linear witnesses which use the same expectation values as the linear ones.

Geometric interpretation

We can visualize a non-linear witness as follow:

Figure 2.5: Example of a geometrical representation of a non-linear witness constructed
from a linear witness where we can see that the non-linear witness can detect more
entangled states than another linear witness.
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Chapter 3

Witnesses based on cross correlation
measurements

This thesis is a follow-up of the paper [6] ”Minimal Entanglement Witness From Electrical
Current Correlations”. In this paper, the authors are constructing and investigating linear
witnesses to detect entanglement between two mobile electrons in solid state conductors
using only two current cross correlation measurements. The goal of this thesis is to
investigate what is possible to do by considering non-linear witnesses based on the same
measurements. We will summarize this paper in this section and start by describing a
generic entangler-detector set-up from which we will construct the witness.

3.1 Set-up

An entangler emits identical split pairs of spin or orbitally entangled electrons at a rate
Γ. The electrons are then separated and go through a pair of detector system A and B.

First, the electrons are going through a polarizer which projects their spin along the
direction of the polarizing vectors a and b. Then, the electrons go through a beam splitter
which separates the electrons whether the spin is up or down along the direction of the
polarizer. And finally, the electrons reach the detector terminals A+, A− or B+,B−
depending on the orientation of their spin. We suppose all the electrons that arrive at the
detector terminals contribute to an electric current which means that the detectors have
an ideal efficiency.

We also introduce the beam splitter efficiencies 0 ≤ ζA, ζB ≤ 1 to take into account
undesirable different physical effects such as dephasing or non-perfect polarization of
ferromagnetic detector terminals. It means that an electron at A will be projected along
the direction a with a probability ζA and be transmitted to A+ or A− accordingly. And
there is a probability 1 − ζA that it is not projected along the direction of a and has
an equal probability to end up on the A+ or A− detector. The set-up is schematically
represented in Fig. 3.1.
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Figure 3.1: Schematic representation of the entangler-detector setup from which the wit-
ness is constructed.

3.1.1 Current cross correlation and witness

It is currently very challenging to perform real-time detection of quantum properties of
flying electrons. Instead we can use the current generated by all the electrons reaching
the detector terminals A±,B± and look at cross correlations of those currents. In the
aim of detecting entanglement we can write a current cross correlator as [20]:

S±±AB (a,b) = e2Γ tr [(1± ζAa · σ)⊗ (1± ζBb · σ) ρ] (3.1)

where Γ is the rate at which the entangler emits the pair electrons, σ = (σx, σy, σz) is a
vector of Pauli matrices and ρ is the density matrix of the two-particle spin. It has been
shown in [21] that correlations between the currents is equivalent to a pair measurement
so that only correlations between the electrons from the same entangled pair contribute.
This justifies why we can use cross correlation measurements to detect entanglement.

We would like to construct an entanglement witness based on such current cross corre-
lations. But to be experimentally viable, we want to minimize the number of correlations
measurements and the number of detector terminal pairs A±,B±. Based on those require-
ments, the authors build the following operator based on the measurement of N current
cross correlations at two detectors terminals A+ B+:

W (N) =
N∑
i=1

(1 + ζAai · σ)⊗ (1 + ζBbi · σ) (3.2)
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The authors of the paper [6] found that by considering Eq. (3.2) where N = 2,

W (2) = (1 + ζAa1 · σ)⊗ (1 + ζBb1 · σ) + (1 + ζAa2 · σ)⊗ (1 + ζBb2 · σ)

≡ W(1) +W(2)

(3.3)

they can detect all pure entangled states except the maximally entangled ones and some
mixed states. This makes the operator of Eq. (3.3) a witness operator. The witness
associated to such witness operator is given by:

FL(ρ) = tr(ρW (2)) = tr(ρW(1)) + tr(ρW(2)) (3.4)

This quantity is directly related to the cross correlation measurements by:

tr(ρW(1)) + tr(ρW(2)) =
1

e2Γ

(
S++
AB (a1,b1) + S++

AB (a2,b2)
)

(3.5)

3.1.2 Goal

Our starting point are the results given in the last section. We would like to answer
the following question: is it possible to obtain a better witness than Eq. (3.4) by using
non-linear combination of the same expectation values tr(ρW (1)) and tr(ρW (2))? Better
means here an improvement of the detection margin ∆W so that we are able to detect
more states for a given settings or even detect states that cannot be detected at all in
the linear case. Our main goal will be to find a non-linear witness which is able to detect
maximally entangled states as they cannot be detected in the linear case.

3.2 Settings and rotation

Another important point that needs to be discussed and which is not fully explained in
the paper [6] is the way we define our witness. As we will see in the next chapter, this
will be a key point to investigate the non-linear witness.

3.2.1 Fixing the state vs. fixing the witness

To define our witness we use what we call settings : the splitters efficiencies ζA, ζB which
are scalars and the polarization vectors a1, a2,b1,b2 which lie in a three dimensional
space. The polarization vectors have a fix length so we need 4× 2 parameters to describe
them. To define the polarization vectors we have to choose two local basis on the A and
B side.

We can choose those local basis such that a given configuration of the polarization
vectors a1 and a2 (b1 and b2) lie in the XZ plane, symmetrically around the Z axis. We
will call that the standard configuration. The relative angle between a1 and a2 (b1 and
b2) is called θA (θB). This is represented in Fig. 3.2.
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Figure 3.2: Standard configuration of the polarization vectors where they lie in the XZ
plane symmetrically around the Z axis.

We can fix a state and go through all the settings of the witness to see which one can
detect it. However, the standard configuration covers only a fraction of all the settings that
can parametrize the witness. To parametrize all of them, we can consider all the rotations
of those polarization vectors in the standard configuration to cover all the sphere. So, the
witness is defined by 2×5 parameters: the relative angle θA and θB between the polariza-
tion vectors, the splitter efficiencies ζA, ζB and the 2×3 rotation angles R1a, R2a, R3a, R1b,
R2b, R3b. The goal is to find for which of those parameters the state is detectable. We
will call (θA, θB, ζA, ζB) the basic settings and (θA, θB, ζA, ζB, R1a, R2a, R3a, R1b, R2b, R3b)
the settings of the witness, where: 0 < R1a, R3a, R1b, R3b < 2π,0 < R2a, R2b < π,
0 < ζA, ζB < 1, 0 < θA, θB < π.

The other option is to choose to fix the basic settings in the standard configuration
and look through all the entangled states to see which one yields a positive detection
margin and hence is detectable. But this requires to parametrize all the entangled states
which is not easy in the mixed case.

Ideally, we could solve the problem by going through all the states and all the settings
at the same time but this would require to maximize a function of 25 parameters in the
case of the mixed states which is quite complicated. However, we will see in the next
section that this will not be necessary when we look at the symmetries of the witness
which will allow us to construct classes of states so that we can restrict ourselves to one
of the two options described above.

3.2.2 Implementing the rotation

As described in the last section, the polarization vector defining the witness are defined
by three dimensional vectors but the witness itself is defined by a 4× 4 hermitian matrix
so they lie in a different space and thus rotations act differently on them. The rotations in
3D space on the polarization vectors on one side are implemented by elements of the group
SO(3) which are 3× 3 matrices. But the representation of those rotations on the witness
are given by the group SU(2) whose elements are 2 × 2 matrices. Indeed, there exists a
two-to-one surjective homorphism of the group SU(2) onto the group SO(3) which means
representation of SO(3) are also representation of SU(2). The Euler parameterization of
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an arbitrary matrix SU(2) is given by:

eiR1σzeiR2σxeiR3σz (3.6)

where 0 ≤ R2 ≤ π, 0 ≤ R1 ≤ 2π, 0 ≤ R3 ≤ 4π. If we want to restrict ourselves to the
parametric space of SO(3) we can fix those angles as follow: 0 ≤ R3 ≤ 2π and make the
identification R3 ∼ R3 + 2π

As the witness is defined by the tensor product of the two operators then the rotations
U ∈ SU(2)⊗ SU(2) of the witness can be written as:

U = UA ⊗ UB = eiR1aσzeiR2aσxeiR3aσz ⊗ eiR1bσzeiR2bσxeiR3bσz (3.7)

3.2.3 Equivalence classes

Doing an unitary operation on the witness operator is mathematically equivalent in our
case to doing an unitary operation on the state. It gives the same result as the trace is
cyclic:

tr(ρUWU †) = tr(U †ρUW ) (3.8)

What this implies is that if we can find a state ρ∗ which can be detected by a given
setting, then we can easily determine the settings to detect all the states generated by
all the unitary operations of ρ∗ and the settings of the witness that detect it. This will
be explained in details in the next section first we need to answer the following question:
given a two-qubit state, if we apply all unitary operations possible, what kind of states
are we producing?

It can be easily shown that rotation operators preserve the trace, positivity and her-
micity and it can also be shown that they preserve the concurrence. So, we know that
by considering all the rotations of a given state, we are generating states with the same
concurrence.

Any pure two-qubit system which can always be written as |ψ〉 = a |↑↑〉+b |↑↓〉+c |↓↑〉+
d |↓↓〉 with a2 + b2 + c2 + d2 = 1 can always be transformed into |Φ〉 = a′ |↑↑〉 + d′ |↓↓〉
where a′2 + d′2 = 1 with local unitary transformation U = UA ⊗ UB acting on |ψ〉 where
|ψ〉 and |Φ〉 have the same concurrence.

Indeed, we can always write the general bipartite state |ψ〉 as |ψ〉 =
∑
aij |i〉 |j〉 where

the coefficients aij can be seen as a matrix A characterizing the state. Performing local
unitary operation U ⊗ V on |ψ〉 is then equivalent to the transformation of the matrix
A −→ UAV T . Using the singular value decomposition introduced in Sec. 2.3.1, we can
diagonalised any matrix A using the proper choice of U and V and thus transform a state
of the form |ψ〉 to a state of the form |Φ〉.

We say that two density matrix ρ and ρ′ are equivalent under local unitary transfor-
mation when there exists an operator UA ⊗ UB such that

ρ′ = (UA ⊗ UB) ρ (UA ⊗ UB)† (3.9)

All the density matrices ρ and ρ′ which are equivalent under local unitary transforma-
tion form what we will call the Concurrence class (C-class) which class the states based
on their concurrence.
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Equivalently we can introduce Concurrence Purity class (CP-class) for the mixed states
where each class is defined by the concurrence and the purity of the mixed state. It can
be easily shown that the purity is also conserved for local unitary transformation.

3.2.4 Rotation and equivalence classes

One might see a problem here: all the witnesses are generated by elements of SU(2) ⊗
SU(2) while all the states of a given class are generated by elements of U(2)⊗U(2) which
are two different groups. However, U(2) and U(1)× SU(2) are isomorphic. As U(1) cor-
respond to a phase, any transformation of the form ρ→ UρU †, where U ∈ U(1), leaves ρ
invariant: SU(2) and U(2) have the same representation on hermitian matrices. So, when
we consider local unitary transformation of states we can restrict ourselves to elements of
SU(2)⊗SU(2). Any transformation between two states of a class correspond to a rotation
of the witness. Therefore we will use the term rotation when we apply SU(2) ⊗ SU(2),
parametrized by Eq. (3.7), on the state or the witness.

3.2.5 Using the equivalence classes

Maximization

If we are using the definition 2.25 of a witness, we need to perform the maximization
max
ρs

tr (ρsW ) where ρs are all the density matrix of the separable states. Using rotation,

it is easy to show that the value of the maximum will not depend on the rotation angles
we choose to define the settings of the witness. Let’s suppose that ρ∗s is the separable
state which maximizes the witness with the value M :

max
ρs

tr (ρsW ) = M = tr (ρ∗sW ) (3.10)

∀W ′ which can be written as UWU † we have:

max
ρs

tr (ρsW
′) = max

ρs
tr
(
ρsUWU †

)
= max

ρs
tr
(
U †ρsUW

)
= max

ρ′s
tr (ρ′sW )

= M

So, the maximum only depends on the basic settings and not on the rotation angles.
We can for example choose the calculate the maximum value in the standard configuration
and as we will see in the next chapter, this will greatly simplify the problem.

Detection of states

If we want to show that we can detect all the states of a given C-class or CP-class, we just
have to show that we can detect one state of that given class. We know that we can also
detect all the other states of the same class with the same detection margin with settings
that can be found very easily.

If ρent is detectable by the witness operator W with a detection margin ∆W by the
definition 2.25 of a witness we have:
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∆W = tr (ρentW )−max
ρs

tr (ρsW ) > 0 (3.11)

then any state ρent which is in the same C-class or CP-class as ρent, i.e. can be written
as ρ′ent = UρentU

†, is detectable by the witness operator W ′ = UWU † with the same
detection margin:

tr (ρ′entW
′)−max

ρs
tr (ρsW

′) = tr
(
UρentU

†UWU †
)
−max

ρs
tr
(
ρsUWU †

)
= tr (ρentW )−max

ρs
tr (ρsW )

= ∆W

Conclusion

The goal is to find a pair state-setting such that the state is detectable and in the best
case such that the detection margin is maximized. Then we know how to detect all the
other states in the same C-class or CP-class. There are two options to do that:

We can choose a state in a given class and find the settings which can detect it and
ideally find the setting which give the biggest detection margin ∆W . But this requires to
go through all the parameters (θA, θB, ζA, ζB, R1a, R2a, R3a, R1b, R2b, R3b).

The other option is to fix the rotation angles and find a state in a C-class or CP-class
which is detectable. This requires to parametrize the separable states to perform the
maximization and to parametrize the entangled state to find a state we can detect. The
maximization can be performed in any configuration and as we will see in the next chapter
performing it in the standard configuration will greatly simplify the problem.
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Chapter 4

Result and analysis of a non-linear
witness

In this section, we will analyze a non-linear witness which uses the same expectation
values as the linear witness introduced in [6]. First, we will investigate the case of pure
states and compare it with the results obtained with the linear witness. To have a deeper
insight on these differences, we will use the standard configuration, where we will see that
the witness has an interesting symmetry. Then we will do the same in the more general
case of mixed states, which is much bigger than the set of pure states and requires much
more parameters to describe it. But once again, looking at the problem in the standard
configuration will simplify the problem.

4.1 Definition of the non-linear witness

The first non-linear combination of expectation values of W (1) and W (2) that comes to
mind is simply the multiplication of those two expectation values. So, we consider the
following functional:

FNL = tr(ρW (1)) tr(ρW (2)) (4.1)

We want to verify if FNL is a witness and can detect at least one entangled state. By
using definition 2.25 of a witness this requires to find settings for W (1) and W (2) such that
for at least one entangled state, we have:

tr(ρW (1)) tr(ρW (2))−max
ρs

[
tr(ρsW

(1)) tr(ρsW
(2))
]
> 0 (4.2)

The first step is to perform the maximization over the separable states. This requires
to parametrize all the separable states which is not difficult in the pure case but becomes
much more complicated in the mixed case.

4.2 Detection of pure states

In this section, we only restrict ourselves to the pure states meaning that in Eq. (4.2), ρ
and ρs are pure states only.
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4.2.1 Parametrization of the pure separable states

We parametrize the density matrices ρsep of the two qubits pure separable states |ψS〉 as
follow:

By using the Eq. (2.2), we can write the density matrix of any pure state |ψS〉 as

ρsep = |ψS〉 〈ψS| (4.3)

By using the Eq. (2.7), any bipartite pure separable state can be written as :

|ψS〉 = |ψA〉 ⊗ |ψB〉 (4.4)

In the case when |ψA〉 and |ψB〉 are qubits, we can parametrize them as:

|ψA〉 = cosφA |↑〉+ eiΨA sinφA |↓〉 (4.5)

|ψB〉 = cosφB |↑〉+ eiΨB sinφB |↓〉 (4.6)

where 0 < φA, φB < π and 0 < ΨA,ΨB < 2π.

By putting together Eq. (4.3), Eq. (4.4), Eq. (4.5) and Eq. (4.6) we can parametrize
all the density matrices of the two-qubits pure separable states in terms of the four
parameters {φA, φB,ΨA,ΨB}.

Using that parametrization, we can compute the analytical expression of FNL in terms
of those parameters. We choose the standard configuration of our witness and thus we
can express it only in terms of the basic settings {ξA, ξB, α, β}. Using Mathematica to
compute FNL with the parametrized pure states, we get the following expression:

tr(W (1)ρsep) tr(W (2)ρsep) = (4.7)[(
1 + ζA cos

(α
2

)
cos(2φA)

)2

−
(
ζA cos(ΨA) sin

(α
2

)
sin(2φA)

)2
]
×[(

1 + ζB cos

(
β

2

)
cos(2φB)

)2

−
(
ζB cos (ΨB) sin

(
β

2

)
sin (2φB)

)2
]

4.2.2 Maximization over the pure states

We want to find the maximum value of the expression given in Eq. (4.7) which requires
to find at least on separable state which maximizes it. So, we need to maximize Eq.
(4.7) over the parameters {φA, φB,ΨA,ΨB} while keeping the basic settings general. The
details can be found in the appendix A. The final result is given by:

max
ρsep

tr(W (1)ρsep) tr(W (2)ρsep) =
(

1 + ζA cos(
α

2
)
)2
(

1 + ζB cos(
β

2
)

)2

(4.8)

This expression of the maximum is valid for any set of basic settings. Moreover, we
know from Sec. 3.2.5 that the value of the maximum does not depend on the rotation, so
all the results we found for the standard configuration can be used in any configuration.
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4.2.3 Detection of the entangled states with FNL

Now that we have an analytical expression for the value of the maximum of FNL for
separable states, let’s see which entangled states we can detect.

Bell states and maximally entangled states

Let’s directly go to what the linear witness could not do: see if we can detect maximally en-
tangled states. We choose to fix a maximally entangled state and perform a maximization
of the detection margin ∆W over the parameters (θA, θB, ζA, ζB, R1a, R2a, R3a, R1b, R2b, R3b)
using Matlab. We performed that maximization with the singlet state ρB1 and found that
a maximum was reached with the following settings:

θA = π, θB = π, ζA = 1, ζB = 1 (4.9)

R1a = 0, R2a = 0, R3a = 0, R1b = 0, R2b = 0, R3b = 0 (4.10)

with a detection margin of 3. It turns out that with the same settings we can also detect
the Bell state ρB3 with the same detection margin ∆W = 3.

So, we can detect ρB1 (and ρB3) and from Sec. 3.2.5 it implies we can also detect any
maximally entangled states with the same detection margin using the same basic settings
but by considering rotations. Let’s do that explicitly and use the rotations to generate
the three witnesses which can detect the other Bell states. The details can be found in
the appendix B and the final results are given in the table 4.1:

Table 4.1: Settings that maximize the detection margin for the Bell states obtain by using
the rotations on the basic settings 4.9 as seen in appendix B.

Witness ζA ζB α β R1a R2a R3a R1b R2b R3b
Bell states
detectable

∆W

W1 1 1 π π 0 0 0 0 0 0 ρB1, ρB3 3
W2 1 1 π π 0 0 π π 0 π ρB2, ρB4 3
W3 1 1 π π π π π/2 π π π/2 ρB3, ρB2 3
W4 1 1 π π π π π/2 π 0 π/2 ρB4, ρB1 3

Another thing we could do is to look at what range of settings are able to detect
the singlet state ρB1 and look what happens around the optimal point (π, π, 1, 1). We
are limited to represent two dimensions of settings only and thus will look at symmetric
settings on system A and B. In Fig. 4.1, we represent the detection margin for the singlet
state using a color bar with respect to symmetric settings θ = θA = θB and ζ = ζA = ζB:
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Figure 4.1: Detection margin ∆W for the singlet state ρB1 in terms of symmetric settings
θ = θA = θB and ζ = ζA = ζB in the standard configuration. The area in dark blue
represents the settings for which ∆W is negative, i.e., the singlet state is not detectable
but the color intensity in this area is not proportional to ∆W . The lighter area which
corresponds to the color bar represents settings for which the singlet state is detectable.

We can see that all the settings represented by the area around the point (π, π, 1, 1) are
able to detect the singlet state. For any values of ζ, we can find orientation of the polariz-
ing vectors such that the singlet state is detectable. This means that even in the presence
of undesirable physical effects on the beam splitter, no matter how important they are, we
can still detect the singlet state and in consequence all the maximally entangled states.

In the four dimensional space of the four basic settings, we can visualize the zone
where we can detect the singlet state as a hypervolume around the point θA = π, θB =
π, ζA = 1, ζB = 1.

All pure entangled states

We showed in the last paragraph that the non-linear witness with appropriate settings
could detect all maximally entangled states. Another thing we could do is to determine if
the non-linear witness is able to detect all the other pure entangled states that the linear
witness could detect. To do that we parametrize one entangled state for each C-class and
maximize the detection margin over all the settings of the witness.

We know from Sec. 3.2.3 that we can parametrize an element of every C-class of
two-qubits pure entangled states as follow:

|ψ(ω)〉 = cosω |↑↑〉+ sinω |↓↓〉 (4.11)

where ω ∈
]
0, π

4

]
and the associated density matrix is given by ρ = |ψ(ω)〉 〈ψ(ω)|. If we

can show we can detect |ψ(ω)〉 for all ω then it means we can detect all pure entangled
states with the same detection margin using different settings. Using matlab we performed
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a maximization of ∆W over all the settings of the witness. We did it for 100 values of ω
and plot the resulting ∆W with respect to the concurrence introduced in Sec. 2.2.1:

Figure 4.2: Maximization of ∆W over all the settings with respect to the concurrence of
the entangled states in the pure case.

We can see that for any value of ω, we have a positive detection margin which means
that we can detect all pure entangled state with the witness FNL. As expected, for a
concurrence of 0, which corresponds to a separable state, the detection margin equals to
0. Another interesting thing is that the detection margin is monotonically increasing with
respect to the concurrence. So, the value of the detection margin could be a new quantity
to quantify the degree of entanglement of a state which would be directly measurable by
the witness. So, the witness would not only be able to determine if the state is entangled
or not but in addition it gives information about the degree of entanglement of the state.

Investigation of the settings θA = π, θB = π, ζA = 1, ζB = 1

In the last section, we numerically calculated the settings that were maximizing ∆W for
a pure state of every C-class. The next step would be to do that analytically and have
an expression of the best set of settings in terms of ω which would allow us to easily
determine the best witness to detect any given entangled state. However, this would
require long calculation and will not provide us with a very useful result. So, instead let’s
try to find one basic setting that can detect all entangled states and which curve is as
close as possible as the one for the optimal case in Fig. 4.2.

The following settings θA = π, θB = π, ζA = 1, ζB = 1 is a good option for that. Let’s
compute the corresponding ∆W with respect to ω and let’s compare it with the optimal
result:
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Figure 4.3: In blue is the same curve as in Fig. 4.2 where the detection margin is
maximized over all settings and in orange it is the curve when the settings are fixed to
θA = π, θB = π, ζA = 1, ζB = 1.

As expected, the curves are the same for the maximally entangled states but also for
states with an high entanglement. Then the orange curve gets slightly lower than the
optimal curve and then meet again, as expected, at the point (0,0).

So, the best setting to detect highly entangled states of the form 4.11 is θA = π, θB =
π, ζA = 1, ζB = 1 while the state that are non highly entangled correspond to a different
regime of optimal settings. We could construct all the witness starting from that config-
uration, it will not maximize the detection margin in every case but will still provide a
good enough solution to detect all the entangled states.

4.2.4 Comparison of the linear witness and non-linear witness
using the symmetries in the standard configuration

We showed in the last section that we can detect the maximally entangled states using
the non-linear witness defined by Eq. (4.1) which was not possible with linear witnesses
used in [6] as explained in Sec. 3.1.1. Let’s try to understand more in details where that
improvement is coming from by using the symmetries of the problem and let’s illustrate
that by comparing numerical results for the linear and non-linear witness. All the results
in this section will be reused to study the case of mixed states.

Decomposition of the witness operator

Let’s put ourselves into the standard configuration where the polarization vectors lie in
the XZ plane. In this case the witness operators W (1) and W (2) have the following form:

W (1) =


a b c d
e f g h
i j k l
m n o p

 ,W (2) =


a −b −c d
−e f g −h
−i j k −l
m −n −o p

 (4.12)
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which allows us to rewrite them as:

W (1) =


a 0 0 d
0 f g 0
0 j k 0
m 0 0 p

+


0 b c 0
e 0 0 h
i 0 0 l
0 n o 0

 ≡ W1 +W2 (4.13)

W (2) =


a 0 0 d
0 f g 0
0 j k 0
m 0 0 p

+


0 −b −c 0
−e 0 0 −h
−i 0 0 −l
0 −n −o 0

 ≡ W1 −W2 (4.14)

So, the two witness operators W (1) and W (2) can be expressed in terms of the two
operators W1 and W2 which have a particular form. Let’s call matrix of the form W1 the
X-form and matrix of the form W2 the O-form. All the matrix which do not have an X
form are called non-X and same thing for non-O. Let’s see what the linear and non-linear
witness become under that decomposition.

Expressing the witness in terms of new operators

The linear witness becomes:

tr
(
ρW (1)

)
+ tr

(
ρW (2)

)
= tr (ρ (W1 +W2)) + tr (ρ (W1 −W2))

= 2 tr (ρW1) (4.15)

The witness only depends on the X elements of the density matrix as W1 has the X-form.
Thus, changing the O-elements of the density matrix don’t change the value of the witness.

The non-linear witness becomes:

tr
(
ρW (1)

)
tr
(
ρW (2)

)
= tr (ρ (W1 +W2)) tr (ρ (W1 −W2))

= (tr (ρW1))2 − (tr (ρW2))2 (4.16)

The witness now depends on a difference of two positive terms where the first one depends
only on X-elements of the density matrix while the second one depends on O-elements of
the density matrix only. The second term is the main difference with the linear witness
so let’s investigate its effect in more details.

Effect of the second term on the separable states that maximize the witness

The linear witness cannot detect any maximally entangled states. Which means that:

∀W1,∀ρmaxent ,∃ρsep such that tr(ρsepW1) ≥ tr(ρmaxent W1) (4.17)

In particular, it was found that for any given witness W1, for the maximally entangled
states ρ̃maxent that maximize the witness it is always possible to find a separable state which
yield the same value. Or alternatively for any given maximally entangled states, for the
witness operator ∗W1 which settings maximize the witness, it is always possible to find a
separable state ρs which yield the same value:

∀W1such that tr(ρ̃maxent W1) = max
ρmax
ent

tr(ρmaxent W1)⇒ tr(ρ̃maxent W1) = max
ρs

tr(ρsW1) (4.18)
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∀ρmaxent such that tr(ρmaxent W
∗
1 ) = max

W1

tr(ρmaxent W1)⇒ tr(ρmaxent W
∗
1 ) = max

ρsep
tr(ρsepW

∗
1 ) (4.19)

So, if we find a way to lower maxρsep tr(ρsepW
∗
1 ) more than tr(ρmaxent W

∗
1 ) or maxρsep tr(ρsepW1)

more than tr(ρ̃maxent W1) then we can detect any maximally entangled states. And this is
exactly what the second term in the non-linear witness will do. As this second term only
depends the O-elements of the density matrix, this will put more constraint on the state
maximizing the witness and allow us to break that symmetry. Let’s first show that the
maximum is indeed shifted.

As the non-linear witness can be expressed in terms of a difference of two squared
term, if we find a state which maximizes the first term and minimizes the second term
separately, then this state would maximize the non-linear witness but also the linear
witness which only depends on the first term and both witnesses would be equivalent.

However, it can be shown that for some settings, this is not possible if we consider only
pure states. We can see that if Ω1 = {separable states which maximize the firts term of 4.16}
and Ω2 = {separable states which maximize the second term of 4.16} then Ω1 ∩ Ω2 = ∅
for some settings. Indeed, Ω1 is the same set of states that maximize the linear witness
and by looking at the expression of the states of Ω2 we see that they have no elements in
common with Ω1 for the settings for which the singlet state is detectable.

Effect of the second term on the X states in the standard configuration

In the second term of 4.16, W2 has the O-form so there is only a dependence on the
O-elements of ρ. Thus, this term will be 0 for all the X-states and will not make any
difference compared to the linear witness. This explains why we can now detect the Bell
states: the value of the maximum is shifted left while the value of the Bell states stay the
same as they have the X-form. So, all the Bell states that in the standard configuration
were yielding the same value as a separable state are now detectable. It can be visualized
in Fig. 4.4 with the line representation of the witness:

Figure 4.4: Line representation of a witness that illustrates why the singlet state becomes
detectable. The values of the detection margin are different here for the linear witness
and the non-linear witness and cannot be compared but what is important is the relative
position of the states.

35



This can be illustrated numerically by doing the same thing we did in Fig. 4.2 but for
the linear witness and then compare both together:

Figure 4.5: Maximization of ∆W over all the settings for the linear witness and the
non-linear witness

Let’s first emphasis here that we cannot compare the numerical values of both detection
margins as they are coming from different witnesses. We can only make observations on
the sign of the detection margin and on the shape of the curve.

We see that the detection margin of maximally entangled states is 0 for the linear
witness hence making them undetectable. While the detection margin is positive for
the non-linear witness. We also see that the detection margin is maximized around a
concurrence of 0.7 and then is decreasing to 0 for a concurrence of 1. While for the non-
linear witness, the detection margin is monotonically increasing with the concurrence.
So, a shift of the maximum allows a better detection of all the high entangled states in
general and not only the maximally entangled ones.

Effect of the second term on the non-X states in the standard configuration

What will happen with all the non-X states? As the second term is always positive, it will
shift them towards lower values, which will reduce the detection margin and might even
make it negative for some states that were detectable. So, the outcome will depend on the
clash between those two effects: the shifting of the maximum separable state left which
increase the detection margin and the shifting of the non-X states left which decrease the
detection margin. Here is a visual example where the shift would allow us to detect an
additional entangled state:
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Figure 4.6: Line representation of a witness to illustrate a case where the shift of the
maximum is bigger than the shift of the entangled states which allows to detect more
entangled states.

Rotation

All the analysis above was done in the standard configuration which fixes the rotation
angles. We learned that it was shifting the maximum left, not changing the position of
the X states but was shifting all the non-X states left. But if we consider other settings,
we no longer have the symmetries of the standard configuration and we cannot talk about
X-states anymore. So, what happens for settings in the non-standard configuration?

To consider settings in the non-standard configuration, we can use the rotations intro-
duced in Sec. 3.2.2. As explained in Sec. 3.2.3 those rotations leave the detection margin
invariant and transform one state into another state of the same C-class.

The standard configuration will be the best configuration to detect X states as the
second term is then minimized. The maximization performed to produce Fig. 4.5 was
performed over all settings parameters. But as the entangled states are parametrized here
by the X-state, we know the best settings will be in the standard configuration. So, per-
forming the maximization in the standard configuration only, which reduce the number
of parameters over which we maximize by 6, would yield the exact same result. Let’s call
the set of X states ΩX and let’s call the set of witnesses in the standard configuration WX .

If we use a rotation R to go into another configuration R†WXR and transform ΩX

accordingly, the best configuration to detect R†ΩXR will be R†WXR as the detection
margin is always constant under any rotation.

The decomposition of the witness in terms of the difference of the square of the expecta-
tions values of two other observables will also still be valid. In the standard configuration,
those new observables take the X-form and O-form. In other configurations, they will
have different form but the second term will still be canceled by the new set R†ΩXR.

So, using the standard configuration allows us to greatly simplify the problem and
deduce what will happen in other configurations. This will be even more useful when we
consider mixed states where the problem becomes much more complicated.
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4.3 Detection of mixed states

In the last section, we performed a maximization over the pure separable states which
were easily parametrizable. By only considering pure states, everything looks great: we
can detect the maximally entangled states with the same measurements we use for the
linear witness, our goal is completed. Let’s now see what happens if we consider the
mixed states.

4.3.1 Why do we need to consider the mixed states?

In practice, it is already hard to create entangled states but what is even harder is to
maintain and manipulate them under laboratory conditions. A quantum system could
interact with its environment which could result in entanglement between our system and
the environment; this is called decoherence. As we saw in Sec. 2.2.2, when we take the
partial trace of a Bell state to describe a subsystem we get a mixed state: we cannot
describe the part of an entangled state by a pure state. So, if our system interacts with
the environment and becomes entangled with it, we cannot describe it by a pure state.
The pure state is the theoretical ideal solution while the mixed states are representing
states under laboratory conditions.

4.3.2 Maximization over the mixed states

Linear vs non-linear witness

In the case of the linear witness, the problem was easier, as we know we only have to
consider pure states in the maximization. Indeed, we know from Eq. (2.2) that any mixed
states can be written as the convex combination of pure states. The linear witness can
then be written as:

tr
(
ρmix

(
W (1) +W (2)

))
=
∑
i

λi tr
(
ρpurei

(
W (1) +W (2)

))
(4.20)

then it is easy to see that we have:∑
i

λi tr
(
ρpurei

(
W (1) +W (2)

))
≤ max

ρpurei

tr
(
ρpurei

(
W (1) +W (2)

))
. (4.21)

This means that the linear witness can always be maximized by pure states only and we
don’t need to perform the maximization over mixed states.

In the case of non-linear witness, the argument no longer holds because we now have
cross terms and thus the witness can be maximized by mixed states only:

∑
ij

λiλj tr
(
ρpurei W (1)

)
tr
(
ρpurej W (2)

)
≥ max

ρpure
tr
(
ρpureW

(1)
)

tr
(
ρpureW

(2)
)

(4.22)

This means that we must perform the maximization of the non-linear witness over all
the mixed states.
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Strategy to follow

The problem to solve is given by maxρsep tr
(
ρW (1)

)
tr
(
ρW (2)

)
, where the maximization

is performed over all the pure and mixed states. Maximizing over all the mixed states
would require to parametrize all the mixed separable state which is a difficult task given
the number of parameters. Furthermore, maximizing over all those parameters becomes
a very difficult problem.

We first tried to solve that problem by using ingenious brute forcing. By doing this,
we discovered the existence of the X-states introduce in Sec. 4.2.4 and they will allow us
to greatly simplify the problem.

Solving the problem

Once again, let’s put ourselves in the standard configuration where we can write our
witness as:

tr
(
ρW (1)

)
tr
(
ρW (2)

)
= tr (ρ (W1 +W2)) tr (ρ (W1 −W2))

= tr2 (ρW1)− tr2 (ρW2)

In the pure case, it was not possible to find a state which could maximize the first
term and minimize the last term. For the mixed case, this is however the case. Let’s see
how we can construct this state:

1. We find a separable state which maximizes the first term. This state will also
maximize the linear witness.

2. We replace all the non-X elements of the density matrix by 0 to get a density matrix
of the X-form, let’s call this operation the X-map. It can be shown that applying
the X-map on a separable state will always yield another separable state. However,
this doesn’t work in the pure case as this operation always transform a pure state
into a mixed state. The proof can be found in appendix C.

W1 has the X-form so the first term only depends on the X-elements of ρsep. As
the X-map only modifies the X-elements, the X-states will still maximize the first term.
W2 has the O-form so the second term only depends on the O-elements of ρsep. All the
O-elements of the X-state are 0 so the second term will be 0 and thus be minimized.

Thus we have found a state which maximizes tr
(
ρW (1)

)
tr
(
ρW (2)

)
and found a way

to construct it for any settings of the witness in the standard configuration. As usual, the
equivalent state that maximizes the witness in other configurations always exists and can
be easily found.

Let’s note that it could be possible to find a state that maximizes the first term and
minimize the second term separately but which does not have the X-form. But this state
would yield the same value as an X-state and in our case, we are not particularly interested
in finding all the states which maximize the witness but are more interested in the value
of that maximum.

Conclusion

If we compare the expression of the linear and the non-linear witness, we now see that
any state which maximizes the non-linear witness also maximize the linear witness.
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tr
(
ρW (1)

)
tr
(
ρW (2)

)
= tr2 (ρW1)− tr2 (ρW2) (4.23)

tr
(
ρW (1)

)
+ tr

(
ρW (2)

)
= 2 tr (ρW1) (4.24)

As in the standard configuration, it is always possible to find a state which cancels
the second term and maximizes the first one, then the same thing will be possible in any
configurations and the maximum for the linear and non-linear witness will always be given
by the same state for any settings. Does it mean that the linear witness and non-linear
witness are exactly the same? The value of the maximum will obviously change but the
relative position will stay the same for both witnesses. It means that all the entangled
states that were smaller or bigger than the maximum will stay the same way thus will
not allow to detect more states. One last thing needs to be investigated, the second term
which might change the relative position of some states.

4.3.3 Effect of the second term in equation 4.23

In the case of mixed cases, the second term will have the same effect than it had in the
pure cases: shifting all the state that do not cancel the second term left. But this time
it will not shift the maximum left. So, it is making the situation worse than the linear
witness. Let’s see what happens with pure states.

In Fig. 4.7, we performed the same maximization we did in Fig. 4.2 but this time
using the new maximum for mixed states. As we are parametrizing the pure states by X
states, the second term will always be equal to zero so we expect to get a curve identical
to the linear witness just with a different scale.

Figure 4.7: Comparison of the non-linear witness to detect pure entangled states in the
pure and mixed case. In the mixed case, we are back to a curve similar to the linear
witness and thus do not have any improvements.

It is indeed what we get. So, we are still able to find settings to detect all pure
entangled states except the maximally pure entangled ones. But in a given C-class, the
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non-linear witness will be worse than the linear witness to detect states that do not cancel
the second term.

4.3.4 Conclusion

When considering all the mixed states, the non-linear witness given by Eq. (4.1) is equal
or worse than the linear witness used in [6]. Meaning that we can detect the same or less
entangled states, pure or mixed, than the linear witness. In other words, the non-linear
witness is useless in the mixed case.
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Chapter 5

Outlook

5.1 Summary

We looked at two different types of states: the pure states and the mixed states and
considered the non-linear witness defined by Eq. (4.1) to detect entanglements.

We found that by considering only the pure states, we can detect, with appropriate
settings, all the pure entangled states, which is an improvement compared to the linear
witness which couldn’t detect the maximally entangled states.

When considering mixed states, a linear witness can always be maximized by a pure
state while non-linear witness can be maximized by mixed states only. This require to
perform the maximization over all the mixed states which is a much more complicated
problem. However, we found that it was always possible to construct a state which is
maximizing the linear and the non-linear witness at the same time. We found that it
implies that the non-linear witness is equal or worse than the linear witness.

However, going from pure states to mixed states is a big step and can be seen as two
extreme cases. It would be for example possible to limit the purity of the set of mixed
states to a certain value.

Furthermore, we only looked at a very specific non-linear witness. But one could try
to look at different non-linear witnesses and try to build one which is not maximized by
the same states as the linear witness. In our case, we were lucky because the symmetries
allowed us to use the X-states which simplified the problem however this cannot be used
for any non-linear combination of the expectation values and the problem of maximizing
over all the mixed states might not be avoided.

Another path to follow would be to generalize the definition of a witness and see if
with only two measurements it is possible to detect or not the maximally entangled states
no matter what the witness is. But again, avoiding to look at the parametrization of all
mixed states might be difficult.

All those ideas are discussed with more details in the next sections.

5.2 Purity

The process explained in Sec. 4.3.2 to construct a state that maximize the non-linear
witness is starting with a state that maximize the first term of Eq. (4.23) or equivalently
the linear witness and then consist of setting the non-X elements of the matrix to 0. This
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operation always reduces the purity of a non-X state. Indeed, the purity of a general 4×4
hermitian is given by:

tr
(
ρ2

sep

)
= ρ2

11 +ρ2
22 +ρ2

33 +ρ2
44 +2|ρ12|2 +2|ρ13|2 +2|ρ23|2 +2|ρ14|2 +2|ρ24|2 +2|ρ34|2 (5.1)

Setting the non-X elements of the density matrix to 0 sets some terms of Eq. (5.1) to 0
and as it is a sum of positive terms, this always reduce the purity.

The question is what is the minimum amount by which the purity is reduced? Knowing
that, we could impose a limit on the purity such that the process can no longer work.
Answering that question is not easy but a motivation to investigate it can be given by
Fig. 5.1. To make this graph, we generated five million random density matrix, we used
the PPT criterion to make the distinction between entangled and separable states and
then we plotted the expectation value tr

(
ρW (1)

)
tr
(
ρW (2)

)
with respect to the purity of

the state.

Figure 5.1: tr
(
ρW (1)

)
tr
(
ρW (2)

)
(non-linear witness) in terms of the purity of the states

for 5 million density matrices randomly generated.

We can see that the higher the purity is the more entangled states yields a bigger
value than the separable state and hence are detectable.

If we take the example of the Bell states which would be represented on this graph at
the point (1, 4) then we know that we have a mixed state at the point (0.5, 4) which yields
the same expectation value making it undetectable. The question is what is the minimum
purity required such that no separable states can give a value of 4 for the witness. Based
on this graph we can see that the expectation value of separable state decrease with the
purity so trying to do that would make sense. However, five millions is not a lot for an
object that has 15 degrees of freedom and we have to be careful with the conclusions we
can draw with such a plot.

If we can solve that problem and can modelize the interaction of the qubit with the
environment we know what is the minimum purity we could expect for the state we want
to detect after decoherence and thus determine if it would be possible to practically detect
those states in the lab.
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Another interesting thing to look at is the same type of plot than Fig. 5.1 but for the
linear witness and compare the situation between the two. This plot can be seen on Fig.
5.2.

Figure 5.2: tr
(
ρW (1)

)
+ tr

(
ρW (2)

)
(linear witness) in terms of the purity of the states for

5 million density matrices randomly generated.

We can see a clear difference between the linear witness and the non linear witness
for states having an high purity. Indeed, the states with high purity tend to yield higher
values for the linear witness than the non-linear one. Thus, if we limit the purity there
are still a difference between the linear and non-linear witness where the non-linear one
should perform better.

5.3 Generalization of the problem

The building blocks of our cross correlation witness are the two expectation values of the
observables W (1) and W (2). A functional f of those observables allows us to distinguish
between separable states and entangled states when the value of f for an entangled state
yields a value outside of the range of the separable states and then f is called a witness.
We can express in terms of a simple idea in which case it is possible to make of f a witness.
Indeed, every time the two expectation values of an entangled state ρent cannot be repro-
duced by a separable state, we can build a function which is maximized for ρent and thus
satisfies the definition 2.25 of a witness. This more general definition can be expressed as
follow:

We can build a witness of the form f(tr
(
ρW (1)

)
, tr
(
ρW (2)

)
) if ∃ρent such that

tr
(
ρentW

(1)
)
6= tr

(
ρsepW

(1)
)

and/or tr
(
ρentW

(2)
)
6= tr

(
ρsepW

(2)
)
∀ρsep (5.2)

We can also say that an entangled state ρent will not be detectable by any witness of
the form f(tr

(
ρW (1)

)
, tr
(
ρW (2)

)
) if ∃ρ∗sep such that:
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tr
(
ρentW

(1)
)

= tr
(
ρ∗sepW

(1)
)

and tr
(
ρentW

(2)
)

= tr
(
ρ∗sepW

(2)
)

(5.3)

We could for example use definition 5.2 to determine if we could detect one of the Bell
states. This would require to pick a set of settings for the witness and go through all the
mixed separable state or to parametrize one state in every CP-class and go through all
the settings using the rotation of the witness. Using definition 5.3 to show that it is not
possible to detect a given entangled states might be slightly easier to use as it doesn’t
necessarily require to go through all the mixed separable state but just to find on.

I personally think that the solution resides in the use of the symmetries in the structure
of the sets of separable states, entangled states and witnesses. This would require to use
group theory and for example study in more details the structure of the X states and
symmetries in general. I think some ideas could be inspired by the use of group theory
physicists do in theoretical particle physics.
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Appendix A

Maximization of the pure states

Let’s maximize the following expression over the parameters φA,ΨA, φB,ΨB while keeping
the basic settings α, β, ζA, ζB general. The result might then depend on the values of the
basic settings but their values are restricted on 0 < α, β < π and 0 < ζA, ζB < 1.

tr(W (1)ρsep) tr(W (2)ρsep) =

[(
1 + ζA cos(

α

2
) cos(2φA)

)2

−
(
ζA cos(ΨA) sin(

α

2
) sin(2φA)

)2
]
×[(

1 + ζB cos(
β

2
) cos(2φB)

)2

−
(
ζB cos(ΨB) sin(

β

2
) sin(2φB)

)2
]

We see that the expression is a function of the form f(A)f(B) whereA = {φA,ΨA, ξA, α}
andB = {φB,ΨB, ξB, β} so the two terms are symmetric and independent from each other.
It can also be easily shown that f(A) > 0 ∀A.

It implies that to maximize the whole expression, we can maximize f(A) and f(B)
separately and we just need to maximize one of the them as they are the same with
different variables name. This make the problem already much easier. Let’s consider the
first term: [(

1 + ζA cos(
α

2
) cos(2φA)

)2

−
(
ζA cos(ΨA) sin(

α

2
) sin(2φA)

)2
]

(A.1)

We see that it is a difference of two positive terms. But we cannot maximize the first
term and minimize the second term separately as they depend on the same parameter φA
unless the value of φA which maximizes the first term also minimize the second term. It
turns out this is the case as we will see below.

We have to take into account the sign of cos(α
2
) but as α is restricted between 0

and π we only have the two following cases to consider: cos(α
2
) > 0 ⇔ α ∈ [0, π[ and

cos(α
2
) = 0⇔ α = π.

A.1 cos(α2 ) = 0

In the case where cos(α
2
) = 0, the second term of A.1 is 0 so the expression becomes:

1− (ζA cos(ΨA) sin(2φA))2 (A.2)

To maximize this expression the second term has to be equal to 0 which can be done
with the following solutions:
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ΨA =
π

2
or

3π

2
∪ φA ∈ [0, π] ∪ ζA ∈ ]0, 1] (A.3)

φA = 0 or
π

2
or π ∪ ΨA ∈ [0, 2π] ∪ ζA ∈ ]0, 1] (A.4)

ζA = 0 ∪ ΨA ∈ [0, 2π] ∪ φA ∈ [0, π] (A.5)

In those cases the maximum is given by:

max
ρsep

tr(W (1)ρsep) tr(W (2)ρsep) = 1 (A.6)

A.2 cos(α2 ) > 0

The values of ΨA and φA that minimize the second term of A.1 are the same as the one
given in the last section. To maximize the first term of A.1 we have cos(2φA) = 1⇔ φA =
0 or π. So, the solution that maximizes the first term and minimize the second term at
the same time are given by:

φA = 0 or π ∪ ΨA ∈ [0, 2π] ∪ ζA ∈ ]0, 1] (A.7)

ζA = 0 ∪ ΨA ∈ [0, 2π] ∪ φA ∈ [0, π] (A.8)

A.3 Value of the maximum

The value of the maximization over the pure separable states in terms of the settings is
simply given by:

max
ρsep

tr(W (1)ρsep) tr(W (2)ρsep) =
(

1 + ζA cos(
α

2
)
)2
(

1 + ζB cos(
β

2
)

)2

(A.9)

In the case cos(α
2
) = 0, we have much more states which maximize the witness than

the case where cos(α
2
) > 0. But in the former, the maximum will always be given by 1

while in the latter, the maximum can vary between 1 and 4 depending on the settings.
We also note that only X states are maximizing the witness for the setting cos(α

2
) > 0

while X states and non-X states can maximize the witness for the case cos(α
2
) = 0.

But let’s keep in mind that those are the separable states that maximize the witness
in the standard configuration. The states that maximize the witness for other settings
takes different form and can be obtain using the rotations.
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Appendix B

Investigation of the Bell states

We found that we can detect ρB1 and ρB3 in the standard configuration with the following
basic settings: θA = π, θB = π, ζA = 1, ζB = 1. From that information let’s build other
witnesses which can detect the other Bell states.

The first step is to find the unitary operations which link ρB1 and ρB3 to the other
Bell states. Those unitary operations are not unique and we will not go into details to
characterize all of them but we will just give here a set of unitary operations that do the
job. Those transformations can be parametrized by:

U = UA ⊗ UB = eiR1aσzeiR2aσxeiR3aσz ⊗ eiR1bσzeiR2bσxeiR3bσz (B.1)

They allow us to link the four Bell states as represented in Fig. B.1 where each color
corresponds to a set of parameters, given in table B.1, of Eq. (B.1).

Figure B.1: Unitary operations on the Bell states are represented by arrows with different
colors.

Table B.1: Settings associated to each unitary operator represented in Fig. B.1
Color R1a R2a R3a R1b R2b R3b

Red 0 0 π π 0 π
Blue π π π/2 π π π/2
Green π π π/2 π 0 π/2
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By applying the red, green and blue unitary operator to the original witness W1 which
can detect ρB1 and ρB2 we can generate 3 new witnesses which will be able to detect the
other Bell states:

Figure B.2: Unitary operations on the witnesses are represented by arrows with different
colors

By using the diagrams B.1 and B.2 we can easily determine which Bell states we will
be able to detect with the witnesses constructed in Fig. B.2 as shown in table B.2.

Table B.2: Witness generated by applying the transformations on W1 and the corre-
sponding Bell states we can detect.

Witness Transformation Bell states detectable

W1
ρB1

ρB3

W2 Red
ρB1 → ρB2

ρB3 → ρB4

W3 Blue
ρB1 → ρB3

ρB3 → ρB2

W4 Green
ρB1 → ρB4

ρB3 → ρB1

We can visualize this with the line representation of a witness. Here is for example
what happens if we apply the red transformation on the witness W1 which is equivalent
to applying them to the states.
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Figure B.3: Line representation of the witness that illustrate what happens when we apply
the red transformation on the Bell states and the witness in the standard configuration.
As we can see, there is a cyclic permutation of the Bell states
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Appendix C

Transformation of separable states
into X states

C.1 Map

We want to show that if we are starting from a density matrix of a separable state:

ρsep =


ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

 (C.1)

And replace all the non-X elements by 0,

ρX =


ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44

 (C.2)

ρX still represents a separable state. Let’s call that operation the X-map. We have to
show that the following properties are conserved under a X-map: trace one, positive
semi-definite, hermitian, PPT.

C.2 Hermicity and trace one

The trace is invariant and still equal to one as we are not modifying any diagonal elements.
The hermicity is conserved as the 0 elements are put symmetrically around the diagonal.

C.3 Positivity

The X-matrix is still positive semi-definite. To show that, we use the following criteria:
a Hermitian matrix is positive semidefinite if and only if all of its principal minors are
non-negative. The principal minors are defined as follow:

Let M be a n× n matrix. The k × k submatrices of M formed by deleting the n− k
rows of M and the same n − k columns of M are called the principal submatrices of M.
The determinants of the principal submatrices are called the principal minors of M.
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ρsep is positive semi-definite, so all of its principal minors are non-negative. For our
proof, we will only need second order principal minors where two rows and columns are
deleted:

ρ33ρ44 − |ρ34|2 > 0 (C.3)

ρ22ρ44 − |ρ24|2 > 0 (C.4)

ρ22ρ33 − |ρ23|2 > 0 (C.5)

ρ11ρ44 − |ρ14|2 > 0 (C.6)

ρ11ρ33 − |ρ13|2 > 0 (C.7)

ρ11ρ22 − |ρ12|2 > 0 (C.8)

Let’s show that this imply that all the principal minors of the X-matrix are non-
negative:

1st order The principal minors of 1st order are the diagonal elements ρ11, ρ22, ρ33, ρ44

of ρX which are the same as the diagonal elements ρsep. And they are all real and non-
negative by the definition of a density matrix.

2nd order The principal minors of 2nd order are given by: ρ33ρ44, ρ22ρ44, ρ22ρ33, ρ11ρ44, ρ11ρ33, ρ11ρ22

which are product of diagonal elements, hence non-negative.

3rd order The principal minors of 3rd order are given by:

ρ44

(
ρ22ρ33 − |ρ23|2

)
(C.9)

ρ33

(
ρ11ρ44 − |ρ14|2

)
(C.10)

ρ22

(
ρ11ρ44 − |ρ14|2

)
(C.11)

ρ11

(
ρ22ρ33 − |ρ23|2

)
(C.12)

and are all positive by using the Eq. (C.5) and (C.6) and the fact that diagonals elements
are positive.

4th order The principal minors of 4th order is given by the determinant of ρsep which
is given by:

det(ρX) = |ρ14|2|ρ23|2 − |ρ14|2ρ22ρ33 − ρ11ρ44|ρ23|2 + ρ11ρ22ρ33ρ44

=
(
ρ22ρ33 − |ρ23|2

) (
ρ11ρ44 − |ρ14|2

)
> 0

So, ρX is indeed semi positive as all of its principal minors are non-negative. To
summarize we showed that the X-map of any Positive semi-definite hermitian (PSDH)
matrix is still a PSDH matrix.
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C.4 PPT

The last step is to show that the ρX is still separable. To do so, we can use the PPT
criterion and show that the partial transpose of ρX is positive semidefinite.

ρsep is PPT as it is a separable state so its partial transpose will be a PSDH matrix.
By using the result from last section, we know that its partial transpose will also be
positive. And we showed in last section that the X-map of any PSDH matrix is still a
PSDH matrix. Hence the X-state is PPT and it is then a separable state. The proof can
be easily visualize by looking at Fig. C.1.

Figure C.1: Diagram that shows why ρX is still separable.

C.5 Pure state

The X-map do not preserve the purity of a state. Indeed, the purity of ρsep is given by
tr
(
ρ2

sep

)
which is equal to: ρ2

11 + ρ2
22 + ρ2

33 + ρ2
44 + 2|ρ12|2 + 2|ρ13|2 + 2|ρ23|2 + 2|ρ14|2 +

2|ρ24|2 + 2|ρ34|2. So, setting the non-X elements to 0 will change the value of tr
(
ρ2

sep

)
and

hence might transform a pure state into a mixed state. That is another reason to see why
the maximum is shifted in the pure case but not in the mixed case.
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