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Abstract

The subject of deep learning has become increasingly popular, especially for machine learning
applications where a large number of input variables have to be processed. However, there are
instances of problem solving, where a full understanding of the variables is of high importance.
When dealing with data sets containing a large number of input variables, the established
methods of feature selection require a considerable time investment. Regularization is a
method typically associated with prevention of overtraining, but in this study, the possibility
is explored of using LASSO regularization as a feature selection tool. The input variables of
several data sets were ranked with respect to a measure of synaptic weight magnitude. A
conclusion was drawn that this method is a very fast and efficient way of filtering out less
important variables.

Populärvetenskaplig sammanfattning

Artificiella neuronnät är ett samlingsnamn för maskininlärningsmetoder som försöker efter-
likna biologiska system i sin struktur. Ett neuronnät förbereds, med s̊a kallad träning, för till
exempel mönsterigenkänning, genom att man presenterar exempel p̊a den typ av data man
vill identifiera. Inom ett visst intervall uppdateras nätverkets inre struktur, med m̊alet att
utsignal anpassas till den signal som identifierar datatypen. När nätverket kan generalisera
den samlade informationen, och s̊a bra som möjligt fylla den funktion som ändam̊alet kräver,
är träningen klar. Detta kan liknas till en hjärnas plasticitet och förm̊aga att anpassa sig till
en ny färdighet eller kunskap. Inom mönsterigenkänning handlar det ofta om att identifiera
nya exempel, som aldrig presenterats för nätverket tidigare, och att placera dem i de kate-
gorier som man tidigare har tränat för.

Feature selection är metoder som hittar, och väljer ut, de variabler som i högsta grad p̊averkar
ett ändam̊al, och s̊allar bort de variabler som minst p̊averkar ändam̊alet. Vilken typ av vari-
abler som insignalen best̊ar av beror helt p̊a ändam̊alet, och kan vara allt ifr̊an ett f̊atal
variabler, till vektorer av stor dimension. Inom medicin och diagnostisering ställs ett särskilt
högt krav p̊a att resultat kan tolkas in i minsta detalj, och detta är en av de stora drivkrafterna
till att utveckla bättre metoder för att bearbeta variabler.

Regularisering är en särskild typ av funktionsanpassning som innebär att man med ytterligare
m̊att p̊a komplexitet, kan tvinga en funktion till att anta en mjukare och mer generaliserad
form. Ett problem som ofta förekommer i samband med träning av neuronnät är s̊a kallad
överinlärning, d̊a ett nätverk lär sig detaljer i träningsexempel istället för att generalisera,
och regularisering är att effektivt sätt att motverka detta.

LASSO (Least Absolute Shrinkage and Selection Operator), är en regulariseringsmetod som
användes i den här studien. Det intressanta med LASSO är att den ställer ett särskilt högt
krav p̊a nätverkets inre struktur och de variabler som insignalen inneh̊aller. Fr̊ageställningen
för studien var: ”Kan regularisering av neuronnät med LASSO, ge upphov till en användbar
rangordning av variabler?”
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1 Introduction

Artificial neural networks have become increasingly popular for their versatility and wide
range of applications. A use for specialized artificial neural networks that is actively being re-
searched [3], is the possibility of letting a network process raw data and automatically separate
useful input variables from random noise and less relevant variables. For high performance
applications the fine details of a network become vital, and understanding exactly how input
data affects the network performance is needed to justify the results.

Preparing a network, for a task such as classification, is done through a process known as
training. Examples of data are presented to the network, and the network’s inner structure
is updated until the output signal conforms with the so called label, which is the predeter-
mined classification of the example. A fully trained network is capable of approximating any
function [2], given enough complexity of its structure.

Feature selection, is the subject of studying the input variables of a data set, and extracting
information about its intricacies (features). As a concrete example, the input vector of a data
set could have variables that do not affect the classification, and the variables that do affect
the classification could be of varying importance. A deep neural net would be able to discern
and find the relevant features thanks to the many layers of abstraction [1], known better as
feature learning, but there are also methods for dealing with these issues in a more hands-on
way. The most naive form of feature selection is to rank input variables according to some
measure of importance, and removing variables from the bottom of the list. Finding the most
important subset of input variables can greatly reduce the complexity of both the problem
formulation and the method leading to its solution. Reduced complexity is sought after in
machine leaning for more efficient training, less redundancy in network design, and a better
understanding of how input data affect problem solutions.

A network that has been trained with few or too specific examples from a data set can
become overtrained, which is similar to an overfitted function approximation. In general, this
correlates with network weights being large or in excess. This is expressed by a difference in
the errors during training and errors when evaluating data never seen before. The overtrained
network becomes an expert in classifying the training data set, and does poorly in terms of
generalization. By using methods such as regularization, which is the addition of penalties
of the complexity of the network, function approximations can be forced to become more
generalized. In most cases this means reducing the size of the network weights.

LASSO (Least Absolute Shrinkage and Selection Operator) [13] is a regularization technique
with a particularly strong ability to force synaptic weights to zero. In this study, we explore
the possibility of LASSO being a solution to both overtraining and feature selection. Forc-
ing weights close to zero is a very effective way of reducing complexity, and the resilience
of surviving weights, can be associated with connected nodes, resulting in a straightforward
measure of ranking.
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Figure 1: An example schematic [6] of a fully connected multi layer perceptron with three
input nodes, four hidden nodes, and two output nodes.

2 Background and Theory

2.1 Multi layer perceptron

A multi layer perceptron (MLP) is based on the original perceptron by Rosenblatt [12] and
uses multiple layers of computational nodes to achieve non linear function approximation.
The layers are referred to as the input layer, output layer, and one or more hidden layers
[4]. The connections between nodes in a network are called synaptic weights [4], and define
the network function and performance. In most cases the network is fully connected, which
means that every node in one layer is connected to every node in adjacent layers (figure 1).

Input vectors x can contain anything from continuous variables, to discrete or binary vari-
ables. For the first hidden layer with nodes j, the product between input vector and synaptic
weight returns the so called induced local field vj (1) [4]:

vj =
∑
i

wijxi + w0j , (1)

where w0j is the weight in each node associated with the applied bias (+1). The bias acts
as a buffer and can control the solution distance from the origin. A non-linear activation
function ϕ is required for the network to function as a universal approximator [2], and is a
condition for non-linearity of solutions [4]. The universal approximation theorem [2] states
that a feed-forward network with at least one hidden layer can approximate any continuous
function in a given closed space. The network signal passes through an activation function in
the hidden layer(s) and in the output layer, and can be different for each layer. A sigmoidal
function, such as the hyperbolic tangent (2), figure 2a, or the logistic function (3), figure 2b,
are among the most common activation functions, and they can be interpreted as soft step
functions [4]

ϕ(vj) = tanh(vj) , (2)

ϕ(vj) =
1

1 + e−vj
. (3)

2



Another commonly used activation function is the rectified linear unit (ReLU) (4), figure 3

ϕ(vj) =

{
vj if vj > 0

0 else
. (4)

The output of the hidden layer, defined by the activation functions ϕhidden(vj), can also be
interpreted as the input of the next layer yj . This defines the induced local field u of a single
output node as:

u =
∑
j

wjyj + w0 . (5)

(a) Hyperbolic tangent. (b) The logistic function.

Figure 2: Two sigmoidal activation functions.

Figure 3: The rectified linear unit activation function.
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Figure 4: The contour identifying two classes, red and blue, in a two dimensional solution
space. The data set was randomly generated and separated into two classes by the median
value of an arbitrary polynomial function. A network was trained to separate the two classes,
and ended up with an elliptically shaped decision boundary. In this example, 3 out of 32 data
points were classified wrong, as there was some overlap between the classes.

2.2 Problem formulation

The general idea of the MLP learning algorithm is to turn an input vector x into an output
signal z that is as close as possible to the desired output signal d. This becomes possible be-
cause of the universal approximation theorem [2]. Given an input vector x and corresponding
label d the goal is to adjust network weights in such a way as to match the network output
with the desired output. This is achieved by minimizing some measure of error based on the
difference between network output and label of the example. Input data for classification is
in most cases structured in a labelled set {xn, dn}.

Solution spaces can be separated with a decision boundary of lower dimension. For example,
an input vector of two continuous variables can be separated by a line cutting across a two
dimensional plane, or in any other shape such as the elliptical contour in figure 4.

2.3 Training

The process of changing a network to minimize a given error measure is called training [4]. The
training is considered complete, when the chosen error measure has converged to a constant
value, or the error measure is under a given threshold.
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2.3.1 Loss function

The loss function is the measure of error of a given network. Our choice of loss function is
the mean square error (MSE) with respect to output signal and label. The mean square error
is given by:

E =
1

N

N∑
n

1

2
(dn − zn)2 , (6)

where zn and dn are output and label for example n, and N is the number of examples in the
data set. Additional terms can be added to the loss function, depending on the application,
but the error is the central component.

2.3.2 Gradient descent

In the method of gradient descent, the direction of each weight update is opposite to the rate
of change (gradient) of the loss function. This moves the network loss function in small steps
towards the nearest local minimum in the loss function solution space. The change ∆wij of
each weight is:

∆wij = −η ∂E
∂wij

. (7)

The step size η is known as the learning rate. In every time step t, the weights of each layer
are updated as following.

wij(t+ 1) = wij(t) + ∆wij(t) . (8)
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2.3.3 Backpropagation

Training an MLP is done using the so called backpropagation algorithm [4]. Backpropagation
is the implementation of gradient descent, that refers to the network output being the forward
evaluation, and the gradient of the loss function being the backwards propagated evaluation.
Using gradient descent, the weight update is proportional to the partial derivative of E , which
can be calculated using the chain rule. For a single output node with induced local field u(n)
and output signal zn = ϕoutput(u(n)), the following expansion is made with respect to weights
wj between the hidden and output layers:

∂E
∂wj

=
N∑
n

∂E
∂zn

∂zn
∂u(n)

∂u(n)

∂wj
, (9)

∂E
∂zn

=
∂

∂zn

1

N

N∑
n

1

2
(dn − zn)2 = − 1

N
(dn − zn) , (10)

∂zn
∂u(n)

=
∂

∂u(n)
ϕoutput(u(n)) = ϕ′output(u(n)) , (11)

∂u(n)

∂wj
=

∂

∂wj

∑
j

wjyj(n) = yj(n) . (12)

The error of the network E , is backpropagated through the hidden nodes j, and an expansion
can be made with respect to weights wij between input and hidden layers:

∂E
∂wij

=

N∑
n

∂E
∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂wij
, (13)

∂E
∂yj(n)

=
∂

∂yj(n)

1

N

N∑
n

1

2
(dn − zn)2 = (14)

= − 1

N

N∑
n

(dn − zn)
∂zn
∂yj(n)

=
1

N

N∑
n

(zn − dn)
∂zn
∂u(n)

∂u(n)

∂yj(n)
, (15)

∂zn
∂u(n)

= ϕ′output (u(n)) , (16)

∂u(n)

∂yj(n)
=

∂

∂yj(n)

∑
j

wjyj(n) = wj , (17)

∂yj(n)

∂vj(n)
=

∂

∂vj(n)
ϕhidden(vj(n)) = ϕ′hidden(vj(n)) , (18)
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∂vj(n)

∂wij
=

∂

∂wij

∑
i

wijxi(n) = xi(n) . (19)

The full expressions for the partial derivatives of E with respect to weights are:

∂E
∂wj

=
1

N

N∑
n

(zn − dn)ϕ′output(u(n)) · yj(n) weights after the hidden layer.

(20)

∂E
∂wij

=
1

N

N∑
n

(zn − dn)ϕ′output(u(n)) · wj · ϕ′hidden(vj(n)) · xi(n) weights after the input layer.

(21)

2.3.4 Dynamic learning rate

A dynamic learning rate was adopted [10] that greatly improves the performance of gradient
descent.

ηt+1 =

{
ηt · γ if E(t+ 1) ≥ E(t)

ηt · (1 + 1−γ
10 ) otherwise

, (22)

where gamma is a manually adjusted decay parameter less than one. This dynamic learning
rate is usually called a bold driver [10], because it slightly increases the learning rate while
the training is progressing towards lower values of the loss function, while in general you want
the learning rate to decrease as the loss function converges to an optimal value.

2.3.5 Resilient Backpropagation (RPROP)

An alternative method for updating weights [11] was implemented to test the consistency of
the program. RPROP uses learning rates corresponding to individual weights, and dynam-
ically updates the learning rates very similarly to (22). This means that the learning rates
can be of entirely different magnitudes, and some weights might converge at an optimal value
early while others require more time.
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Figure 5: Diagram [5] showing overfitting of a classifier.

2.4 Overtraining

Overtraining, is the concept of a completed network training having been misguided in one or
multiple ways. If the examples presented in the training data are not fully representative of
the problem at hand, the network can inadvertently be trained to give too specific solutions,
and never reach the generalized solution. A too specific solution would mean that the network
recognizes details in a training data set, where there would be none in a data set with more
examples. The function to be approximated is in most cases more smooth than the training
data set presented to the network. Training data can be limited for many reasons and this
makes proper validation of results of utmost importance. Data sets could also contain some
amount of noise that would be averaged to zero with a larger amount of training examples.

Given that a network has a large enough number of nodes, and therefore weights, overtraining
can be interpreted as the weights going beyond the required magnitude, to fully classify the
training data set. A naive comparison of overtraining can be made with overfitting of a two
dimensional decision boundary. Figure 5 shows how two classes of data point, in red and
blue, can be separated by either a smooth curve, shown in black, or an extremely compli-
cated curve, shown in green. The black curve does not correctly classify all data points in
the example, but in many real cases there is enough uncertainty, and random noise, for this
to be the correct decision boundary. Some caution has to be taken into account that input
variables in machine learning are not always continuous variables, but also discrete or binary.
A method for handling overtraining, called regularization, will be discuessed in the following
section.
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3 Methods

3.1 Regularization

Regularization is a method for reducing overtraining by introducing an additional term to the
loss function. In general it can be said that a regularization term would penalize a function
approximation for deviating from its most generalized form. To summarize, it can be found
[3, 4] that a lower complexity of a network usually leads to finding a more generalized solution.
A typical regularization term for an MLP is a parameter α multiplied by some function f of
the synaptic weights wij . For all mentions of regularization in this study, it is implied that
the penalty is applied to the first layer of weights only. It is reasonable to expect a separate
regularization parameter for each layer of weights, but for the purpose of feature selection
it was not explored at this time. Given a loss function E , a regularization term Ec is added
giving a total loss function:

Etot = E + Ec (23)

(a) L2 weight decay. (b) LASSO penalty for weight decay.

Figure 6: L2 compared to LASSO.

3.1.1 Weight decay

Methods of regularization where weights are penalized for their magnitude are called weight
decay [4]. A term is added to the loss function which directly increases the error when weights
are increased. This turns the training into a battle between lowering weight magnitudes and
lowering the total error. The most common form of weight decay is the L2 (24), which
is the square of the weight multiplied by a regularization parameter. See figure 6a for a
representation of this penalty. The penalty added to the loss function is:

Ec = α
∑
ij

w2
ij . (24)
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3.1.2 LASSO

LASSO (Least Absolute Shrinkage and Selection Operator) is a type of linear regression
method that applies the constraint of the sum of absolute values of synaptic weights to the
loss function [3, 13]. This is a more extreme form of weight decay, and is effectively the same
thing as an L1-penalty. The regularization parameter α controls the slope of the penalty
(figure 6b).

Ec = α
∑
ij

|wij | . (25)

As our gradient descent relies on the partial derivative of the loss function, we can easily
deduce that the partial derivative of the LASSO regularization term is the sign of the weight.
Some caution has to be taken for the case of a weight being exactly zero.

∂Ec
∂wij

= α · sign(wij) . (26)

3.2 Using LASSO as a feature selection tool

The method proposed in this paper, is that in addition to using LASSO for regularization,
the same constraint on weight magnitudes can give rise to a measure of input variable impor-
tance. Without any regularization, the magnitude of weights is somewhat arbitrary, but given
a constraint of magnitude, a relative difference in weight resilience should become apparent.
By associating weights with preceding connected nodes, this provides us with a naive, easy to
implement, ranking of node importance. With respect to the input nodes, this is the same as
ranking the input variables, and can be considered a form of feature selection. Overtraining
is not a condition for this method of feature selection to be viable, but it is often a problem
that can be solved simultaneously.

The absolute values of weights, associated with each input node, were summed into a node
magnitude coefficient:

ci =
∑
j

|wij | . (27)

An illustration of the synaptic connections associated to one input node can be seen in figure
7. This data was represented and ranked in two different ways. First, the weight magnitudes
were normalized to the coefficient of largest magnitude, and plotted as a function of the
regularization parameter. The ranking was done at the optimal regularization parameter
with respect to the validation error. Second, the previous function was integrated, giving a
measure that is similar to the average value of coefficients. This directly gives the second
method of ranking. A summary of both methods of ranking can be seen in table 1.
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Figure 7: [6] The magnitude of synaptic weights, connected to each node in the preceding
layer, were summed into a coefficient of node magnitude. This measure was used to rank
nodes in descending order.

Method (a) Method (b)

Normalized weight magnitudes, associated
with each input node, summed into a node
magnitude coefficient and represented as a
function of the regularization parameter.

The function of method (a) integrated over
the regularization parameter, which is simi-
lar to the average value of coefficients.

Table 1: The two proposed methods of ranking input variables using LASSO regularization.

3.3 Cross validation

To test the performance of a trained network, it is essential that there is as little overlap as
possible between data used for training and data used for validation. Our validation method
of choice is k-fold cross validation, which entails that a given data set is divided into k equal
parts. The network is trained and validated k times, with a full reset between each run. One
part is used for the validation, and the other k-1 parts are used for the training. This can be
repeated as many times as necessary, resulting in an average of n times k networks trained
and validated.
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3.4 Normalization

Normalizing the input variables improves general performance [4]. If input variables are of
substantially different magnitude, the training takes a lot more time to reach convergence.
The following normalization was applied to the input variables of every data set, leaving them
with a mean of zero and a variance of one.

x → x− < x >

σx
. (28)

3.5 Implementation

An implementation of an MLP, and related validation methods, with more than 70 manually
adjustable parameters, was written in the Python programming language. A minimal amount
of external libraries were used, including SciPy [8] for matrix operations, and Matplotlib [7]
for plotting data. Short scripts, also written in Python, were used for generating data sets,
sorting and ranking data, editing a large number of plots simultaneously, and calculating
differences between lists of rankings. The entire project had approximately 1500 lines of
code, and 1 GB of collected data (including plots).
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3.6 Datasets

Several data sets were used for experiments and validation of proposed methods. The data sets
presented in the results were all provided by the supervisor Mattias Ohlsson. Two generated
data sets were customized to give a concrete example of how extraneous input variables affect
results, and how they can be handled by proposed methods. Pima and PacVsN are medical
data sets, representing real world examples of problems where feature selection is of great
importance.

3.6.1 Pima

The Pima Indians diabetes data set can be found at the UCI Machine Learning Repository [9].
This is a medical data set, from the National Institute of Diabetes and Digestive and Kidney
Diseases (1990-05-09), classifying people with or without a positive diabetes diagnosis. The
data contains 768 examples with eight input variables that are thought to be correlated with
a positive diagnosis. A short description of each input variable can be seen in table 2.

1 Number of times pregnant

2 Plasma glucose concentration

3 Diastolic blood pressure

4 Triceps skin fold thickness

5 2-Hour serum insulin

6 Body mass index

7 Diabetes pedigree function

8 Age

Table 2: Description of the input variables in the Pima Indians diabetes data set [9].

3.6.2 Generated sets

Two randomly generated sets were studied, containing eight and twelve inputs, each one
being 1500 examples in size. In the set with eight inputs, the first four inputs are Gaussian
distributed variables, and the next four are random binary variables. In the second set with
twelve inputs, the first eight inputs are the same as in the first, and the four additional
variables are Gaussian distributed variables that were not used at all for the classification of
examples. The function used for classification was the following, where the set was sorted by
y and cut into two classes by the median value:

y = x1x2 + (x1)
2 + x3x4 + 4x5x6 + 2x7x8 + exp(x3)

By looking at this function, an educated guess would be that input variables 3 and 1 had the
greatest effect on the classification, followed by 5 and 6.
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3.6.3 PacVsN

PacVsN is a medical data set containing 351 input variables and 341 examples. The input
variables represents blood sample measurements of certain proteins, related to the immune
response system, that may or may not be related to a positive diagnosis of pancreatic cancer.
Measurements of both patients with a positive diagnosis and a control group of healthy
individuals are part of the examples.
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4 Results

For our purposes, there was no preprocessing of data sets (other than normalization), and
the label was treated as a predetermined unchanging truth. Any erroneous label or noisy
input variable were handled by methods such as regularization. A number of hidden nodes
between 8 and 32 was chosen for each data set, to make sure the training error was minimized
when no regularization was applied. Bias of each layer was set to a constant (+1) with bias
weights being exempt from regularization. A regularization parameter was implemented for
every layer of weights, but only the parameter of the input weights was non-zero, and that is
the parameter presented as the x-axis in every plot. Early stopping of training was allowed,
when the rate of change of the mean square error was sufficiently low, or the instantaneous
value was under 0.02.

4.1 Pima

Training a network for the Pima data set was relatively fast and provided an excellent first
example of overtraining. Hyperbolic tangent was used as the activation function for both
layers of the networks. The training error, with no regularization applied, was close to zero,
while the validation error was 0.32± 0.03.

Figure 8: The mean square error of training and validation of the Pima data set.

4.1.1 Improvements by regularization

Increasing the regularization parameter reduced the difference between training and validation
error very quickly, and they converged towards a value of 0.23 ± 0.02. See figure 8 for the
errors as a function of regularization parameter.
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Figure 9: The summed logarithmic mag-
nitudes of the weights associated with input
nodes during training of the Pima data set.

Figure 10: The summed and normalized
magnitudes of the weights associated with
input nodes during training of the Pima
data set.

2 6 1 7 3 8 5 4

(a) Ranking of input node magnitude at optimal regularization.

2 6 8 7 1 3 5 4

(b) Ranking of total area of normalized input node magnitude.

Table 3: Two methods of ranking the input variables in the Pima diabetes data set [9].

Figure 11: The mean square error of training and validation of the Pima data subset with
the top 4 input variables of table 3a.
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4.1.2 Features

The magnitudes of weights, associated with each input variable, are presented in figures (9,
10). Table 3 shows the ranking of input variables at the optimal value of the regularization
parameter as well as the ranking of the area under the curves of figure 10. To validate the
ranking of the data set, an additional training session was performed, using only the top 4
input variables of table 3a. The error of this validation can be seen in figure 11.

4.2 Generated sets

The generated sets were easy to train for and had relatively little overtraining. For the set
with extra inputs, that had no part in the classification, the validation error was slightly
higher regardless of regularization. The errors as a function of the regularization parameter
for both sets can be seen in figures (12, 13). Hyperbolic tangent was used as the activation
function for both layers of the networks.

Figure 12: The mean square error of train-
ing and validation of the generated data set
with 12 input variables.

Figure 13: The mean square error of train-
ing and validation of the generated data set
with 8 input variables.

4.2.1 Improvements by regularization

Regularization made a small but noticeable reduction of the validation error, and the training
session was ended when the validation error started to increase. The optimal regularization
parameter was 0.0003± 0.0001 for both sets.

4.2.2 Features

The ranking of input variables was very similar for both sets, and using both methods, and
corresponds very well to the prediction of input variables 3, 1, 5, and 6 being the most
important. Regularization effectively reduced the weights associated with the extraneous
input variables to zero. Representations of the weight magnitudes can be seen in figures (14,
15, 16, 17). The final rankings of input variables can be seen in tables (4, 5).
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Figure 14: The summed logarithmic mag-
nitudes of the weights associated with input
nodes during training of the generated data
set with 12 input variables.

Figure 15: The summed logarithmic mag-
nitudes of the weights associated with input
nodes during training of the generated data
set with 8 input variables.

Figure 16: The summed and normalized
magnitudes of the weights associated with
input nodes during training of the generated
data set with 12 input variables.

Figure 17: The summed and normalized
magnitudes of the weights associated with
input nodes during training of the generated
data set with 8 input variables.
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3 1 6 5 2 4 8 7 9 12 11 10

(a) Ranking of input node magnitude at optimal regularization.

3 1 6 5 2 4 8 7 9 12 10 11

(b) Ranking of total area of normalized input node magnitude.

Table 4: Two methods of ranking the input variables of the generated data set with 12 input
variables.

3 5 1 6 2 8 4 7

(a) Ranking of input node magnitude at optimal regularization.

3 1 5 6 2 4 8 7

(b) Ranking of total area of normalized input node magnitude.

Table 5: Two methods of ranking the input variables of the generated data set with 8 input
variables.

4.3 PacVsN

Training the PacVsN data set without regularization resulted in a particularly overtrained
network. The training and validation errors of this data set can be seen in figure 18. ReLU
was used as the activation function for the hidden layer, and the hyperbolic tangent was used
for the output node.

Figure 18: The mean square error of training and validation of the PacVsN data set with
351 input variables.
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4.3.1 Improvements by regularization

Overtraining was greatly reduced with increasing regularization parameter and the optimal
value was 0.00017 ± 0.00013. The training session was ended when the validation error
surpassed the value at no regularization.

Figure 19: The summed logarithmic mag-
nitudes of the weights associated with input
nodes during training of the PacVsN data
set with 351 input variables.

Figure 20: The summed and normalized
magnitudes of the weights associated with
input nodes during training of the PacVsN
data set with 351 input variables.

4.3.2 Features

Representations of the magnitude of weights associated with each input node can be seen
in figures (19, 20). The top 48 ranking input variables (arbitrary cut off point) using both
methods can be seen in tables (6a, 6b). For comparison, the top 48 input variables of two
different ranking methods have been included in tables (6c, 6d). To validate the rankings,
four additional training sessions were performed, using a different subset of input variables
each time. First, the top 10 inputs from table 6a were used and produced the errors of figure
21. Next, the bottom 10 inputs of the full ranking of the data set, using method (a), were
used and produced the errors of figure 22. The top 10 inputs of table 6c were tested, as seen
in figure 23, to see if this ranking was closest to the truth as assumed. Finally, as a control to
all previous tests, a training was performed with the first 10 input variables as they appeared
in the data set, and the errors can be seen in figure 24.
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163 211 115 182 171 137 138 330 92 308 93 241

316 295 259 152 237 149 99 96 120 193 248 144

22 209 109 265 129 122 145 4 303 205 8 83

110 147 261 208 252 169 128 312 1 141 247 290

(a) Ranking of input node magnitude at optimal regularization.

163 171 211 137 182 115 138 152 259 330 237 241

295 96 308 93 92 209 1 193 109 149 248 316

147 120 145 205 4 83 265 312 98 110 99 303

348 247 23 101 129 290 22 253 272 341 16 169

(b) Ranking of total area of normalized input node magnitude.

163 129 303 96 290 138 8 295 262 117 77 184

349 181 252 288 323 98 318 231 227 246 120 339

312 329 202 110 348 248 345 115 270 205 294 330

307 1 239 101 147 341 72 49 299 152 86 125

(c) Externally sourced ranking (by Mattias Ohlsson) using a sophisticated
method outside the scope of this study.

163 137 171 115 138 211 182 149 237 96 290 110

272 330 259 241 93 308 86 205 146 1 219 316

109 209 4 145 271 328 309 285 97 129 152 98

295 101 181 190 192 22 303 168 195 29 120 16

(d) Externally sourced ranking (by Mattias Ohlsson) using the removal of one
input variable at a time and comparing the relative difference in validation
error.

Table 6: Four methods of ranking the input variables of the PacVsN data set with 351 input
variables. The table is read from left to right and from top to bottom. The last two methods
of ranking were provided by Mattias Ohlsson.

Compared tables Overlap (out of 48) Mean distance of overlap

6a vs. 6b 40 5.98

6a vs. 6c 21 14.60

6a vs. 6d 34 7.47

6b vs. 6c 19 16.40

6b vs. 6d 30 9.57

6c vs. 6d 18 17.70

Table 7: Metric of the relative differences between the top 48 input variables from the four
methods of ranking the PacVsN data set.
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Figure 21: The mean square error of train-
ing and validation of the PacVsN data set
using the top 10 input variables of table 6a.

Figure 22: The mean square error of train-
ing and validation of the PacVsN data set
using the bottom 10 input variables of table
6a.

Figure 23: The mean square error of train-
ing and validation of the PacVsN data set
using the top 10 input variables of table 6c.

Figure 24: The mean square error of train-
ing and validation of the PacVsN data set
using the first 10 input variables as they ap-
pear in the data set.
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5 Discussion

5.1 Justifications for using hyperbolic tangent over the logistic function

The only reason for using the hyperbolic tangent over the logistic function in this study, was
the convenience of the student being more familiar with the former function. For neural
network tasks, using MSE as the loss function, and where the only use of the output signal
is for classification, there is not a big difference in performance between the functions. When
using the hyperbolic tangent, the output of the network is in the range [-1,1], and the optimal
labels for classes are +1 and -1, but other than that, the curve profile of the output is very
similar to the logistic function, as seen in figure 2.

5.2 Interpreting results

The ranking of input variables in the Pima data set seems consistent with the conventional
view of diabetes, with blood glucose concentration, variable 2, being on top of the list and
”Triceps skin fold thickness”, variable 4, being on the bottom of the list. The only contrasting
variable in the two methods of ranking was age, variable 8, which was ranked very high for
low values of the regularization parameter. Perhaps this can be explained by the variable
being correlated with the positive label but not being a good general classifier for both labels.
The training using only the top 4 variables of table 3a (figure 11), confirms that the features
selected contain enough information to give the same validation error as the full set.

For the generated data sets, regularization quickly reduced the weights associated with ex-
traneous input variables to zero. The ranking was reasonable for both sets and no extra
validation was needed as the error was clearly lower in the set without extraneous inputs.
Worth noting is that the ranking didn’t change much while increasing the regularization pa-
rameter. The extraneous input variables were ranked the lowest even with no regularization.

In the training of the PacVsN data set, a reasonable subset of most important input variables
was found. The validation error when training using only the top 10 input variables (table
6a) was considerably lower at optimal regularization (figure 21). The validation error using
the top 10 input variables of the outside sourced ranking (table 6c) was slightly better (figure
23), but that is to be expected since this ranking was the result of a sophisticated feature
selection algorithm.

It is important to understand that even if the features selected by two different methods
are completely different, they could still contain the same amount of information. If two
different variables contain the same amount of information about the classification, one of
them could be ranked highly while the other is neglected.
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5.3 On proper validation of feature selection

In this study every feature selection was performed on and evaluated using the same data set.
There is a non trivial concern that features selected are specific to the data set and would
not be a general solution to the problem that the data is representing. This is similar to
the issue of overtraining, as they are problems that arise from incomplete information. To
fully validate a method of feature selection, multiple data sets representing the same problem
would have to be used, for cross validation of the method itself.

5.4 Evaluating LASSO as a method of preventing overtraining

LASSO regularization is a very effective methods of preventing overtraining in applications
using multi layer perceptrons. The only downside might be that finding the optimal regular-
ization parameter requires some trial and error.

5.5 Evaluating LASSO as a method of ranking input variables

The greatest benefit of using LASSO as a feature selection tool would be that it is very fast
in comparison to most other methods. Judging by the current results, the features found are
at least somewhat close to the truth in terms of importance. If nothing else, the method has
proven to be very efficient in filtering out less relevant input variables.

5.6 Discussing the methods of ranking, other possibilities

The methods of ranking proposed in this paper can both be interpreted as the relative re-
silience of weights under the constraint of weight decay. Assuming that the loss function
gradient is greater for weights of higher importance, the resilience is directly related to the
importance of the weight. The second method proposed in this paper, of integrating the
weight magnitudes as a function of the regularization parameter, can be interpreted as the
average of the weight magnitudes, or the resilience of the weights ”over time”. An exam-
ple of another method that could be explored is comparing the relative difference in weight
magnitudes between no regularization and optimal regularization.

5.7 Comparisons to other methods of ranking input variables

Two additional ranking lists for the PacVsN data set were provided by Mattias Ohlsson, that
were produced using methods beyond the scope of this study. The second one of them was
using a method of removing one input variable at a time and comparing the relative difference
in validation error. These rankings were used to compare and validate the results attained.
A metric of the overlap between the top 48 variables of the rankings can be seen in table
7. When tested in training sessions using the top 10 input variables from each ranking, the
optimal validation errors were very similar (figures 21, 23).
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