
Acknowledgments

We would like to thank Axis Communications for the opportunity to do this thesis at
Axis, and supplying necessary hardware and software. We would also like to thank our
supervisors, Jiandan Chen, Martin Ljungqvist och Mikael Nilsson, providing invaluable
advise and guidance. Finally, we would like to extend our thanks to the 313 Axis
employees who provided their consent to use their employee photos in this thesis.

Abstract

Achieving high performance face recognition often requires large manually labeled train-
ing datasets. As such datasets can be difficult to obtain, we investigate whether smaller
datasets can be augmented synthetically in order to increase performance.

We use 3D morphable models to create 3D reconstructions of faces from only a single
image. The 3D reconstructions are used to render new face images in different poses in
order to augment the original dataset. We also investigate whether generative adversarial
networks (GANs) can be used to create completely synthetic training datasets for face
recognition.

We show that recognition performance can be improved for non-frontal images when
augmenting with similarly posed synthetic images. Quality over quantity is found to be
one of the most important aspects of the synthesizing procedure, where few high quality
synthetic images perform better than many low quality synthetic images. We conclude
that if higher quality reconstructions are achieved, the performance could be further
improved. For future work, GANs seem promising for the task at hand.

Contents

1 Introduction 4
1.1 Main Objective . 4
1.2 Related Work . 5

1.2.1 Effective Face Recognition . 5
1.2.2 Morphable Face Models . 5
1.2.3 Generative Adversarial Networks 5

2 Theory 7
2.1 Image Synthesis . 7

2.1.1 3D Morphable Model . 7
2.1.2 Camera Fitting . 8
2.1.3 Shape Fitting . 8
2.1.4 Facial Expression Fitting . 9
2.1.5 Texture Fitting . 9

2.2 An Overview of Neural Networks . 11
2.2.1 Convolutional Neural Networks 12
2.2.2 Residual Blocks . 14
2.2.3 Inception Modules . 14
2.2.4 Loss Functions . 15

2.3 Neural Networks for Face Detection . 18
2.3.1 Multi-task Cascaded Convolutional Networks 18

2.4 Neural Networks for Image Generation 18
2.4.1 Generative Adversarial Networks 18
2.4.2 Boundary Equilibrium Generative Adversarial Networks 19

3 Methodology 21
3.1 Tools Used . 21

3.1.1 TensorFlow . 21
3.1.2 Eos . 21
3.1.3 Dlib . 22
3.1.4 OpenGL . 22
3.1.5 OpenCV . 22

3.2 Datasets . 22
3.2.1 FaceScrub . 22
3.2.2 Labeled Faces in the Wild . 23
3.2.3 FERET . 23
3.2.4 Large Scale CelebFace Attributes 23
3.2.5 Axis Employee Database . 23
3.2.6 Axis Internal Dataset . 23

3.3 Training Face Verification Networks . 23

1

3.3.1 Network Architecture . 24
3.3.2 Training Procedure . 24
3.3.3 Evaluation . 25

3.4 Face Recognition . 26
3.4.1 Network Architecture . 27
3.4.2 Evaluation . 27

3.5 3D-Augmentation . 29
3.5.1 Pose- and Shape Synthesis . 29
3.5.2 Multitexture Rendering . 32
3.5.3 Pose Evaluation . 33

3.6 Augmentation Using BEGAN . 35
3.6.1 Training Procedure . 35
3.6.2 Dataset Generation . 35
3.6.3 Evaluation . 36

4 Results and Discussion 37
4.1 Face Verification Using Fine-tuned Networks 37

4.1.1 Center Loss . 37
4.1.2 Triplet Loss . 38
4.1.3 Generative Adversarial Networks 40

4.2 Face Recognition Using the Pre-trained Network 41
4.2.1 Axis Internal Dataset . 41
4.2.2 FERET Dataset . 52

4.3 Augmentation . 65
4.4 Synthetic Images Using BEGAN . 66

4.4.1 Generated Images for Face Verification 66
4.4.2 Generated Images for Face Recognition 67

4.5 Face Recognition Prototype . 69

5 Conclusion 71
5.1 The Surrey Face Model . 71
5.2 The Million Faces Model . 71
5.3 Generative Adversarial Networks . 72
5.4 Future Work . 72

2

Glossary

AP Average Precision. 28, 42, 45, 52–58, 61

AUC area under the curve. 26, 29, 37–40, 50, 52

BEGAN Boundary Equilibrium Generative Adversarial Network . 4, 7, 19–21, 23, 35,
36, 40, 66, 72

CelebA Large Scale CelebFace Attributes. 23, 35

CMC Cumulative Match Characteristic. 28, 49–51, 57, 64

GAN Generative Adversarial Network . 4–6, 18, 19, 21, 24, 72

landmark A characteristic point in a face, such as the corner of the eye, the tip of
nose, or the corner of the mouth. 8, 9, 21, 22, 29

LFW Labeled Faces in the Wild . 16, 23–26, 38–40

MFM Million Faces Model . 5, 24, 29, 33, 34, 38, 39, 46, 47, 49–52, 55–58, 65, 71, 72

PnP Perspective-n-Point, A common computer vision problem where one has a set of
3D-points and a corresponding set of 2D-points, and wants to find rotation and
translation matrices so that the projection error of the 3D-points on to a 2D-plane
is minimized when using a projection matrix C. 29

ROC Receiver Operator Characteristic. 26, 29, 37–40, 49–52

SFM Surrey Face Model . 5, 21, 24, 29, 30, 34, 38, 39, 41, 43, 46, 47, 49–52, 55, 57, 58,
64–66, 71, 72

SVD Singular Value Decomposition. 8

vertex A point of a 3D-model mesh, which contain various attributes such as 3D-
coordinates. 5, 7–10, 29, 30

YTF YouTube Faces Database. 16

3

Chapter 1

Introduction

Identifying faces is a daunting task, tackled by many. Modern algorithms, such as Google
FaceNet [34], utilizing deep learning architectures are able to achieve great recognition
performance. However, in order to properly train these deep neural networks, very
large datasets are needed. In the case of [34], 200 million images were used in the
training. Unfortunately, due to the immense time and resources needed to construct
these types of datasets, this task has become a significant bottleneck in a lot of facial
recognition research. This is addressed in the paper [22], where the authors point out
that the majority of the top performing models are created by large corporations, that
have the resources needed to collect immense datasets. However, these large corporately
collected datasets are seldom released for academic use and publicly available datasets
are typically much smaller.

In order to mitigate this problem, synthetic data may be used. This may include
2D augmentations i.e. in plane rotations, skews, and mirroring. However, using 3D
augmentations allows for more variation and rapid expansion of training and testing
data, as both pose, camera parameters and facial expression can be used to perform the
augmentation.

The core of this report entails augmentation in 3D-space, a very active area of
research in the last couple of years. Using a sparse set of 2D facial-landmarks, a 3D-
morphable model of a face is fitted to the landmarks. From this model, an arbitrary
number of poses can be applied to each face, thus expanding the dataset drastically.
This thesis also investigates how 3D-augmentation might be applied in order to the
increase the accuracy of facial recognition, without the tremendous task of manually
labeling large datasets.

As Generative Adversarial Networks (GANs) have improved quickly since their in-
troduction in [8], it might also be possible to use such networks to create completely
synthetic datasets. A recent variant called the Boundary Equilibrium Generative Ad-
versarial Network (BEGAN) [4] seems to be the current state of the art when it comes
to image generation.

1.1 Main Objective

The goal of this thesis is to investigate how recently suggested data augmentation pro-
cedures might be applied in order to improve facial recognition and verification perfor-
mance. By adjusting pitch, yaw, and facial expression of fitted 3D-models, the number
of possible augmentations is very large. However, the augmentation schemes are only
helpful if the recognition or verification rates can be improved upon. If the augmen-

4

tations are applied non-optimally, no improvement, or even worse performance might
occur, which makes it imperative to determine what separates a ‘good augmentation’
from a ‘bad augmentation’. Therefore, this thesis investigates a number of recent aug-
mentation techniques and tries to determine how synthesized images should be applied
when performing data augmentation to actually make an improvement in the recognition
or verification performance.

1.2 Related Work

1.2.1 Effective Face Recognition

In the paper [22] some of the problems of current day facial recognition systems are
outlined, as well as new synthesis techniques for faces. There is a possibility to get
very high accuracy using current systems, such as Google’s FaceNet [34], but at the
cost of immense quantities of training data. The problem can be somewhat eased by
introduction of augmentation methods, such as mirroring, noise introduction, as well as
oversampling, i.e. offsetting the face crop.

Although facial synthesis has been used in prior works, such as [12], this paper
proposes to use the technique in order to introduce more variability in both pose and
facial expression. In this thesis work, the method in [22] will be referred to as the Million
Faces Model (MFM).

1.2.2 Morphable Face Models

A Morphable model is statistical approach to fit a 3D-shape to a 2D-image. In [25],
the Basel Face Model is introduced and has been a basis for further morphable model
research, such as [22], [14], and [3]. Although depicting a large portion of the face and
allows fitting to both shape- and color spaces, the released model is very restrictive,
with little documentation of its features and no framework to fit unknown faces to the
model. In [3] a fitting framework is built up using a deep-learning approach, but due
to resolution limitations in the color fitting process, high-frequency color-information is
lost, making it unsuitable to use the model for the goals of this thesis.

In [17] a novel 3D morphable model is presented, called the Surrey Face Model
(SFM). In essence, hundreds of face scans are used to create a generic face model and
a set of principal components describing a face. With this generic face and principal
components as a basis, the face-model can be fitted to sets of 2D facial landmarks.
Characteristics of a face such as pose, shape and facial expression can be divided into
separate parameters, making the fitting process and especially further augmentation
simpler. However training such a model is very difficult and as such, the use of these
kinds of models are very limited. Unlike earlier but similar models, such as [25], the
SFM [17] is released for multiple resolutions, ranging from 3448 - 29587 vertices. A
fitting framework is also released to further promote the use of this model.

1.2.3 Generative Adversarial Networks

While deep neural networks have been successfully deployed in the task of classification,
a new trend in the machine learning world is to use neural networks to generate new
images, using a model called GAN. First mentioned in [8], this network architecture
consist of two sub-networks. A generator G(z) that aims, given some input z, to generate
a synthetic image very similar to real images from some training dataset. Meanwhile,
a discriminator D(G(z)) is being tasked with separating the synthetic images from the

5

training data. Once the discriminator is unable to tell synthetic from real images,
the model has converged. In the work by [6], the generative model is extended and
the aim of the paper is to create a generative model where the input represents easily
interpretable information, such as which number to generate if applied on the MNIST-
digit dataset, or facial characteristics such as ”smile”, ”man” or ”beard” in the case
of facial generation. In the article [16], the focus has been on the task of synthesizing
frontal faces from extreme face poses, such as profile faces, while still maintaining the
identity of the original face, using several loss functions to encourage this behavior.
The very recent paper [4] describes a novel GAN-architecture, which introduces a new
equilibrium concept in order to balance the generator and discriminator functions during
training, as well as a novel method to determine convergence of GANs.

6

Chapter 2

Theory

This chapter first delves into 3D-morphable models, which are one of the methods
prominently used throughout the thesis for the task of image synthesis. An overview of
neural networks are then given as they are used to perform face verification, recognition,
detection and generation. In particular architectural design choices such as inception
modules and residual blocks are presented along with different loss functions used during
face verification training. The chapter ends with a description of how neural networks
are used to perform image generation, with a focus on the BEGAN-architecture.

2.1 Image Synthesis

2.1.1 3D Morphable Model

A 3D Morphable Model is a statistical model of a human face. Using only a few facial
landmarks, the model can be fitted against any face. The task is however not trivial,
and contains many parameters. This section will first describe the basics of morphable
models, then continue with algorithms used to fit the model to an arbitrary face. A 3D-
model, S, can be seen as a collection of points in R3 that spans triangles between them.
However, a high dimensional interpretation of the 3D-model is a linear combination of
basisvectors in R3N , where N are the number of 3D-points, also called vertices. Formally
speaking, the 3D-model can be expressed as

S ∈ R3N . (2.1)

In the morphable model used in [17], faces of 169 identities were scanned and ex-
pressed in the same notations as in 2.1. We denote the 169 scanned faces as M . All
faces share similar characteristics, and by utilizing those characteristics, a new basis
describing a face can be found. Principal Component Analysis can be used to find those
facial similarities, described in [24]. First the M scanned faces, in this particular case
169, are expressed in the notation in Eq. 2.1 and brought together in a matrix A. A is
a M × 3N matrix, where each column is a face. The scanned faces can be interpreted
as a set of vectors that span a linear subspace to R3N with M basis vectors. From these
scanned faces, a mean face, v0, can be constructed as

v0 =
1

M

M∑
i=1

Si (2.2)

where Si is the ith scanned face and M is the number of scanned faces. Now, v0

is subtracted from each face in A, thereby moving the origin of the scanned faces to

7

the centroid of the face-data. This can be seen as reducing the linear subspace by 1
dimension as the most principal component is effectively removed. So now A spans a
subspace of M − 1 basis-vectors.

The problem is now to find the principal vectors of A, and retrieve a basis of principal
components for a face. This can be solved by applying a Singular Value Decomposition
(SVD) on A, where the singular vectors Vi and corresponding standard deviations σi
form a new basis

S(ααα) = v0 +
M−1∑

i

σiαiVi (2.3)

where v0 is the “mean” face and Vi is the ith principal component, M−1 is the number
of principal components used. σi is the standard deviation corresponding to the ith

principal component and αi are the individual principal component weights.
When the fitting procedure is conducted, the weight coefficients, expressed as ααα are

varied to fit the shape to an input image, as seen in the PhD work [14]. Finally a
subset of the 3D-vertices are mapped to a specific landmark point, which in the this
model are the 68 ibug landmarks, from the work in [31]. The actual fitting works from
coarse to fine adjustments, from global transforms to fit the pose, to finer per-vertex
augmentations later on.

2.1.2 Camera Fitting

The first part of the fitting framework is to estimate a camera matrix, seen in the
works [2] and [14]. This is done by usage of the Gold standard algorithm, described
in [11]. Firstly, a small preprocessing step occurs as both 3D-model points in R3 and
the image landmark points, in R2, are normalized and expanded into their respective
projective spaces, P3 and P2. The model- and image centers are translated by similarity
transforms T and U so that the Root Mean-Square distance between the points and the
center are

√
3 for the model and

√
2 for the image. Then a normalized affine camera

matrix P̃ is calculated, using 4 or more point correspondences. In the fitting framework
developed in [17], this is implemented with a Direct Linear Transform, also described in
[11]. Lastly, the camera matrix is un-normalized again as P = T−1P̃U. The 3D-model
and corresponding 2D-landmark can be considered to be aligned with each other, and
the next part of the fitting procedure is commenced.

2.1.3 Shape Fitting

The 3D-model and the correspondence are now in alignment, and the next step of the
fitting algorithm is finding the shape parameters. Finding the optimal shape parameter
ααα from Eq. 2.3 is done by minimizing the shape-cost function

E(ααα) =

3N∑
i=1

(ym2D,i − yi)2

(2σ2
2D)

+ λ‖ααα‖22 (2.4)

where yi is the i:th landmark point, and ααα are the shape parameters. ym2D are the
projected 3D-points, using the previously estimated camera P. In other words

ym2D = PS(ααα) (2.5)

where P is the estimated camera matrix and S(ααα) the currently fitted face, generated
using Eq. 2.3. The term ‖ααα‖22 is a regularization term, used to prevent overfitting of

8

the shape by discouraging large values in ααα, this is further described in [5]. λ controls
the influence of the regularizer. Finally, σ2

2D is an optional variance parameter of the
landmark points.

Both the shape and pose fitting procedures are iterable and a shape estimate can be
used to refine the camera, which in turn can improve the shape fit by minimizing Eq.
2.4 again. However, since the fitting is based on a sparse set of landmarks in comparison
to the dense set of points in the 3D-model, the quality of the fit will degrade the further
from the landmarks the specific vertices are.

2.1.4 Facial Expression Fitting

Facial expressions can also be fitted and utilizes a similar methodology as the shape
fitting procedure in the previous section. However, now the basis consists of blendshapes,
per-vertex offsets for facial expressions. In the work [17] these consist of neutral, anger,
disgust, fear, happiness, sadness, surprise. The neutral1 expression can thought of a
sort of expression normalization, as the expression closes the mouth. Renders of the
different expressions can be seen in Fig. 2.1. The expression model is defined as follows

Sexpression = Sneutral +

6∑
i

βiGi (2.6)

where Sneutral is the fitted shape, βi are the weights for a specific blendshape, and
Gi is a blendshape vector corresponding to a specific facial expression. The actual
expression fitting occurs in the same way as the shape coefficients in Eq. 2.4. I.e. the
vertices that correspond to detected 2D-landmarks are projected down to the image-
space and projection error is to be minimized, but now with respect to the expression
coefficients βββ instead of the shape coefficients ααα.

(a) Neutral

(b) Anger (c) Disgust (d) Fear

(e) Happiness (f) Sadness (g) Surprise

Figure 2.1: All blendshapes, as well as the neutral expression.

2.1.5 Texture Fitting

The face pose, shape, and expression have now been determined. Before new faces can
be rendered some color information is needed as well. There are different approaches
to extracting the color information. In the works by [25], [14], and [2], a color model,

1The “neutral” face is simply the estimated face shape without blendshape influence.

9

Model space, R3 Isomap space, R2
iso

Figure 2.2: The isomap projection.

Isomap space, R2
iso

Image space, R2
image

Transform pixel in R2
iso to R2

image

Color from pixel-region in R2
image

Figure 2.3: Each pixel in the isomap image is traversed and mapped to the projection
of the 3D-model in the input image. The region covered by the transformed isomap
image pixel is interpolated to determine the pixel color, illustrated by the drawn square
in iso-space and its transformed counterpart in image-space. The pixel sizes have been
exaggerated in the illustration.

similar to the shape model in Eq. 2.3 is used. However all the visible vertices of the
projected mesh can be used for the color fitting estimation. In the PhD-thesis [14]
this estimation technique is expanded by using a Phong reflection model, which allows
for estimation of light- intensity and direction in the input image. An issue with this
approach to determine the color-information is that the sampling points are restricted to
the vertices, which with lower resolution models means that high frequency information
might get lost.

In [17] another approach is suggested, here the isomap algorithm, first mentioned
in [37] is implemented and used to project the fitted 3D-model to a plane so that the
geodesic distance, I.e. internal vertex-distances of the model, are preserved. The result
of the projection can be seen in Fig. 2.2, and denote the projected space as R2

iso.

Once the isomap has been computed, the task is now to generate an isomap texture
of the face. This is done by projecting the 3D-model onto the input image, and then
computing a composite mapping from the isomap space, R2

iso to the image space, R2
image.

A texture resolution is now set, which determines how the isomap texture in R2
iso will

be divided into pixels. Now, each pixel in the isomap texture is traversed in R2
iso and

transformed to R2
image. If the transformed pixel is not obscured by other parts of the

projected model, the pixel color is determined by sampling the transformed pixel region
and applying either bilinear, mean, or nearest neighbor interpolation. The process is
repeated until the isomap texture is complete.

10

2.2 An Overview of Neural Networks

A neural network is a machine learning tool inspired by biological neural networks. In
this thesis work, neural networks are used to perform face recognition and face verifi-
cation. The smallest component of a neural network is the neuron. A neuron has an
arbitrary number of inputs a1, a2, . . . , an and one output a′. Each input has a corre-
sponding weight w1, w2, . . . , wn and each neuron has a corresponding bias. A non-linear
activation function f is often applied to the output so that the output does not depend
linearly on the input. The output for a single neuron is calculated according to Eq. 2.7
as

a′ = f

(∑
k

wkak + b

)
. (2.7)

A depiction of a neuron is shown in Fig. 2.4.

a1

a2

...

an

b

∑
w1

w2

wn

f(·) a′

Figure 2.4: An artificial neuron.

A complete neural network can be constructed by grouping together several neurons
into layers and letting the outputs from neurons in one layer be the inputs to neurons
in another layer. An example is shown in Fig. 2.5. In this thesis work, only feedforward
neural networks are considered. A feedforward network is a special type of neural
network where no loops in the network graph are allowed. That is, the output from a
layer cannot be connected to the input of a previous layer.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.5: A simple neural network with an input layer, a hidden layer and an output
layer.

11

2.2.0.1 Training the Network

For a given input the weights and biases are the parameters that determine the output
of the network. In the case of supervised learning a set of labeled training data is used
to optimize these parameters so that ideally each input is mapped to the correct output
label. This is known as training the network. A trained network can be used to predict
the output for some new unseen input data.

In order to train a neural network one must be able to determine the current perfor-
mance of the network. This is done using a loss function. The loss function describes
the prediction error the network currently makes with regard to the training data. The
goal is then to modify the weights and biases in order to decrease the prediction error.

Training neural networks is achieved using backpropagation. Given a loss function
L, the partial derivatives ∂L/∂wi and ∂L/∂bi for all weights and biases wi and bi are
used to optimize the function L towards a minimum. Ideally this should be the global
minimum but in practice a local minimum close to the global minimum is typically good
enough.

2.2.0.2 Overfitting

In machine learning in general it is common to divide the available data into a training
and testing set. The purpose of the testing set is to not use it while training the
network, only once the network is fully trained the testing data is used to evaluate the
performance of the network on data it has not encountered before. A properly trained
network should be capable of performing well on both the test and the training datasets.
A network that performs well on the training set but not on the testing set might be
suffering from overfitting. Overfitting occurs because the network has started to learn
details about the training data that does not generalize to the testing data.

Because the number of parameters in the network can be very large, overfitting easily
becomes a major issue. There are many ways to combat overfitting, among them are
dropout, weight decay and data augmentation. In this thesis work, data augmentation
is the key component that will be investigated.

2.2.1 Convolutional Neural Networks

A convolutional neural network is a special kind of feedforward network. The key dif-
ference is the use of convolutional layers instead of only using fully connected layers.

2.2.1.1 Convolutional Layers

The input to a convolutional layer is a two dimensional grid rather than a one dimen-
sional layer of neurons. A kernel is then convolved with the entire grid to produce the
output known as an activation map. This can be done using different strides of the ker-
nel which affects the output size of the convolutional layer. The parameters of the kernel
are the weights for that layer. Several kernels can be used for each layer and ideally
these will learn different weights and therefore produce different activation maps. The
output of a convolutional layer is therefore a 3 dimensional tensor (width, height, depth)
where the width and height represents the size of the output grid and the depth the
number of activation maps. An illustration is shown in Fig. 2.6.

When working with images, the weights for the kernels in the early convolutional
layers will often cause the kernel to perform basic image processing tasks, such as edge or
blob detection. Further down the network the kernels will start to detect more general
features representing the training data.

12

Figure 2.6: A Convolutional layer where a kernel (dark red) is being convolved with an
input layer (red). The output layer (blue) has depth 5 in this illustration.

2.2.1.2 Pooling

Pooling layers are used to down-sample the input to the layer. The purpose of this is
partially to reduce the number of parameters the model has but also to provide transla-
tion invariance. A smaller number of parameters will make the training computationally
more efficient and will also reduce the risk of overfitting of the model.

There are several ways to perform the pooling operation. Some of the most com-
monly used variations are max pooling, average pooling and L2-norm pooling. The most
commonly used pooling operation in the networks used in this thesis work is max pool-
ing. It has been shown to perform better than various other pooling operations by [33].
Max pooling is performed by sliding a grid of size (n, n) over the input with some stride
d. The maximum value in the n×n grid is chosen as its output. In order to down-sample
the input by a factor of two a grid size of (2, 2) with a stride of 2 would be used. An
illustration is shown in Fig. 2.7.

5 2 8 1

9 0 2 4

2 6 4 7

5 1 8 3

9 8

6 8

Figure 2.7: A max pooling operation with stride 2 and and grid size (2, 2). The bold
numbers in the input to the left represent the maximum value for each grid.

13

2.2.1.3 Activation Functions

Non-linear activation functions are often applied after the pooling or convolutional lay-
ers. There are many choices of activation functions but the one used most commonly in
this work is the rectifier function which is defined as

f(x) = max(0, x). (2.8)

A layer applying the rectifier function is known as a rectified linear unit (ReLU). The
benefit of the rectified linear unit is that it is fast to compute while also performing well
compared to other popular choices according to [20].

2.2.2 Residual Blocks

A relatively new technique for constructing convolutional networks is the use of residual
blocks introduced by [13]. The purpose of the residual block is to make it easier to train
deep neural networks. A deep network should never have a higher training error than
a corresponding shallower network as the additional layers could in the worst case be
identity mappings. In practice however, it turns out that this is not always the case as
is shown by [13]. Residual blocks are designed to circumvent this problem.

x

layer

layer

F (x)

+

x

H(x) = F (x) + x

Figure 2.8: A residual block.

A residual block is constructed by adding a shortcut connection from the input to the
block to the output of the block as is shown in Fig. 2.8. The mapping that now needs
to be optimized is F (x) = H(x) − x. According to [13] the residual could be easier
to optimize than the original mapping. In the case where the layers should perform
identity mappings it could also be easier to optimize the residuals toward zero rather
than making the original mapping perform an identity mapping.

2.2.3 Inception Modules

Inception modules were first introduced in [35] and later improved upon in [36]. In its
simplest form, the inception module consists of several convolutional and pooling layers
in parallel, whose output is concatenated at the end of the module as is shown in figure
2.9. The benefit of these modules is that they are capable of handling features in the
input at different scales, compared to a conventional fixed size convolutional layer.

The main problem with this approach is that it becomes very computationally ex-
pensive to stack several inception modules on top of each other, in order to create deep
networks. This is resolved by dimensionality reduction using 1 × 1 convolutions as is

14

Previous layer

3× 3 convolution1× 1 convolution 5× 5 convolution pooling

concatenation

Figure 2.9: A naive implementation of the inception module. No dimensionality reduc-
tion is performed.

shown in Fig. 2.10. The 1 × 1 convolutions shrink the dimension of the filter bank so
that fewer 3 × 3 and 5 × 5 convolutions need to be performed. This method is based
on the idea that a low dimensional feature vector often can contain a lot of information
about a higher dimensional vector, such as an image.

Previous layer

1× 1 convolution

3× 3 convolution1× 1 convolution 5× 5 convolution

1× 1 convolution

1× 1 convolution

pooling

concatenation

Figure 2.10: An inception module where dimensionality reduction is performed before
the expensive 3× 3 and 5× 5 convolutions.

2.2.4 Loss Functions

To evaluate the performance of the network during training, and to determine how the
parameters should be updated, a loss function is needed. The loss function measures
the error that the network currently makes.

2.2.4.1 Softmax Cross Entropy Loss

The softmax cross entropy loss is defined as

Ls = − 1

n

n∑
i=1

m∑
j=1

yij log(pij) (2.9)

15

where yij represents the ground truth for sample i and class j and pij represents the
output from the final softmax layer for sample i and class j. The variable n represents
the total number of samples and the variable m represents the total number of classes.

2.2.4.2 Center Loss

The center loss function was introduced by [38] who showed that it can reach state of
the art performance on the Labeled Faces in the Wild (LFW) and the YouTube Faces
Database (YTF)[39] datasets. The purpose of the center loss function is to group to-
gether the deep features that belong to the same class into clusters so that the intra-class
variance for the features is small. This is done by training the network as a classifier
using the softmax cross entropy loss function and adding the center loss to the total
loss. The center loss function is defined as

Lc =
1

2

m∑
i=1

‖xi − cyi‖
2
2 (2.10)

where xi denotes the ith feature vector for the yith class, cyi denotes the yith class
center. The total loss is defined as

Lt = Ls + λcLc (2.11)

where Ls represents the softmax loss, the parameter λc is a regularization term.
For the center loss to work properly each class center must be updated after every

mini-batch. The center for class j during iteration t is updated as

ct+1
j = ctj − αc ·∆ctj . (2.12)

The centers are updated in the direction ∆cj defined as

∆cj =

∑m
i=1 δ(yi = j) · (cj − xi)

1 +
∑m

i=1 δ(yi = j)
(2.13)

where δ(condition) = 1 if the condition is satisfied, otherwise δ(condition) = 0. The
parameter αc determines the learning rate of the centers.

Training a network with center loss is similar to training a classifier with only soft-
max loss. The main difference is that the hyperparameters αc and λc must be chosen.
However, experiments conducted by [38] show that αc and λc are not very sensitive
to small changes and can be chosen fairly roughly, at least for their architecture and
training dataset.

2.2.4.3 Triplet Loss

The idea of triplet loss was introduced by [34] who at the time achieved the record
accuracy on the LFW and YTF datasets. The idea behind triplet loss is to minimize
the distance between features that belong to the same class and maximizing the distance
between features belonging to different classes. This is done by feeding the network three
images at a time, an anchor, a positive and a negative. The anchor and the positive
should belong to the same class and the negative to a different class. Fig. 2.12 shows
an illustration.

Given an image x, the features the network generates are represented by f(x) ∈ Rd
where d is the number of features used. The features are constrained by ‖f(x)‖2 = 1 so
that they lie on the d-dimensional unit sphere. The goal is to make sure that an anchor

16

image C C FC +

Softmax loss

Center loss

λc

Total loss

Figure 2.11: A network illustrating the center loss function. The C’s stand for con-
volutional layers and FC for fully connected layers. The final fully connected layer is
connected both to the softmax loss layer for linear classification and to the center loss
function.

A

N

P

(a) Before training.

A

P

N

αt

(b) After training.

Figure 2.12: Illustrating the process of training using triplet loss. Before the network is
trained the negative image might be closer to the anchor than the positive image. After
training the positive image should be closer to the anchor than the negative image, with
some margin αt.

image xai for a class is closer to all other images xpi for the same class than it is to any
image xni for any other class. This goal can be expressed as

‖f(xai)− f(xpi)‖
2
2 + αt < ‖f(xai)− f(xni)‖22 , ∀(f(xai), f(xpi), f(xni)) ∈ T (2.14)

where the set T represents every possible triplet in the training dataset and α represents
the desired margin to have between positive and negative pairs. The loss function to
minimize, based on this constraint, is∑

i

max
(
‖f(xai)− f(xpi)‖

2
2 − ‖f(xai)− f(xni)‖22 + αt, 0

)
. (2.15)

Training with triplet loss can be quite complicated as selecting triplets in a naive
way often results in slow convergence. If a triplet already satisfies the condition in
Eq. 2.14 then the loss function will evaluate to zero and it will not contribute to
the training. Therefore it is important to choose triplets that violate this condition.
Given an anchor image xai this can be achieved by selecting the positive image as

argmaxxp
i
‖f(xai)− f(xpi)‖

2
2 and the negative image as argminxn

i
‖f(xai)− f(xni)‖22. For

large training sets this will be take a long time to compute and therefore a different
strategy is needed.

The authors of [34] propose two different methods of choosing triplets. In this thesis
work the ”Generate triplets online” method is used. Instead of using the entire training
set, a mini-batch of a few thousand images are sampled. The images are sampled in
such a way that there are around 40 images for each class. The argmax and argmin

17

can be computed on this smaller set which should give the network triplets that violate
Eq. 2.14 in a reasonable amount of time. Once the sampled triplets are exhausted, new
images are randomly sampled.

2.3 Neural Networks for Face Detection

Face detection is required in order to extract crops of faces from a larger image, as is
depicted in Fig. 2.13. The cropped face images can then used for tasks such as training
face verification networks or extracting deep facial features for face recognition.

Face recognition Filip

Figure 2.13: Face detection used to perform face recognition.

2.3.1 Multi-task Cascaded Convolutional Networks

Face detection using Multi-task Cascaded Convolutional Networks was introduced by
[40]. This method consists of three main stages.

In the first stage the input image is resized to several smaller scales, constructing
an image pyramid. The image pyramid is then fed as input to a convolutional network
called the Proposal Network (P-Net). The P-Net finds several candidate bounding boxes
in the image. Non-maximum suppression is then used to reject some highly overlapping
candidates.

The candidates from the first stage are then fed into the second stage. The second
stage consists of another convolutional network called the Refine Network (R-Net). This
network further rejects some candidate bounding boxes and performs non-maximum
suppression.

The third stage is similar to the second stage. The output from the second stage
is fed in to another convolutional network called the Output Network (O-Net). This
network attempts to find the final bounding boxes that contain a face. It also outputs
five facial landmarks. One for each corner of the mouth, one for each eye and one for
the tip of the nose.

2.4 Neural Networks for Image Generation

2.4.1 Generative Adversarial Networks

A GAN [8] consists of two separate networks, the generator G and the discriminator
D. Given a training dataset, the idea is to let the generator G approximate the latent
distribution pdata, representing the training data. This can be achieved by letting the
generator represent a mapping G : RNz → RNx where typically Nz < Nx. Here Nz

represents the size of the input vector to the generator while Nx represents the total
number of pixels in the generated image. In the case of image generation, an input
vector z ∈ RNz , sampled from a uniform distribution, would be mapped to an image
G(z) ∈ RNx . The discriminator on the other hand is responsible for detecting images

18

G(z) that were unlikely to have been sampled from pdata. The function D(G(z)) repre-
sents the probability that G(z) was generated from the distribution pdata rather than the
distribution approximated by G(z). To achieve these goals the generator and discrim-
inator networks are often trained simultaneously in a two-player minimax game. The
generator tries to approximate the latent distribution so accurately that the discrimi-
nator cannot tell whether the image G(z) is real or generated. The discriminator on
the other hand tries to become increasingly better at detecting the differences between
real and generated images. In the end the generator should ideally be able to generate
images that are visually indistinguishable from images sampled from pdata while the
discriminator should be randomly guessing whether the generated images are real or
not.

2.4.2 Boundary Equilibrium Generative Adversarial Networks

The Boundary Equilibrium Generative Adversarial Network (BEGAN) [4] is a recent
improvement on the generative adversarial networks. The key improvements include
the equilibrium concept where the idea is to balance the discriminator and generator
against each other, so that neither wins too easily. A new way of controlling the trade-off
between image quality and image diversity is also proposed. This method uses an auto-
encoder based generative adversarial network. The generator network is represented by
the decoder part of an auto-encoder network while the discriminator is represented by
a complete auto-encoder network.

2.4.2.1 Loss Functions

One important difference between a traditional GAN and a BEGAN is that while the
former attempts to match the data distributions the latter tries to match the reconstruc-
tion loss distributions for the auto-encoder instead. The loss function L : RNx → R+

for the auto-encoder is given as

L(v) = |v −D(v)| (2.16)

where D : RNx → RNx represents the auto-encoder function and v ∈ RNx represents an
image. The losses for the generator LG and discriminator LD are defined as{

LD = L(x)− L(G(z))

LG = L(G(z))
(2.17)

where L(x) represents the auto-encoder loss for a real image x and L(G(z)) represents
the auto-encoder loss for a generated image G(z). The reasoning behind this is that the
discriminator should be good at reconstructing real images while it at the same time
should attempt to maximize the reconstruction error for the generated images. The
generator on the other hand tries to minimize the reconstruction error for the generated
images. Since the generator cannot affect the auto-encoder, the only way it can minimize
its loss is by generating images that look more realistic.

The theoretical background to the choice of loss functions is based on the 1-Wasserstein
distance function between two probability distributions µ1 and µ2, defined as

W1(µ1, µ2) = inf
γ∈Γ(µ1,µ2)

E(x1,x2)∼γ [|x1 − x2|] . (2.18)

Here, Γ(µ1, µ2) represents the set of all couplings of µ1 and µ2, where a coupling rep-
resents a joint probability distribution γ who’s marginal distributions correspond to µ1

19

and µ2. Using Jensen’s inequality, the authors of [4] show that W1(µ1, µ2) is lower bound
by |m1 −m2| where m1 and m2 are the means of the distributions µ1 and µ2. The idea
is then to let the distribution µ1 represent the distribution of the losses L(x) and let
the distribution µ2 represent the distribution of the losses L(G(z)). By maximizing the
1-Wasserstein distance between these distributions, the discriminator should be capa-
ble of separating real and generated images. Maximizing W1(µ1, µ2) can be achieved
by letting m1 → 0 and m2 → ∞ as W1(µ1, µ2) ≥ m2 − m1. This naturally leads to
the definition of the discriminator loss LD which is minimized by minimizing the loss
L(x) corresponding to m1 and maximizing the loss L(G(z)) corresponding to m2. The
generator loss LG tries to achieve the opposite by minimizing L(G(z)) instead.

2.4.2.2 Boundary Equilibrium

The concept of equilibrium is defined as

E[L(x)] = E[L(G(z))] (2.19)

as an attempt to balance the discriminator and generator against each other. By intro-
ducing a parameter γe ∈ [0, 1] the equilibrium constraint can be modified as

γe =
E[L(G(z))]

E[L(x)]
(2.20)

which makes it possible to affect the balancing ratio. To attempt to enforce this ratio
γe during training we note that we would like to achieve γeL(x) − L(G(z)) = 0 which
the authors of [4] have solved using proportional control theory. The discriminator loss
is modified to become LD = L(x)− kt · L(G(z)) where kt controls how much emphasis
is put on L(G(z)). The variable kt is updated every training iteration according to
kt+1 = kt + λk(γeL(x) − L(G(z))) where λk acts as the proportional gain. Putting all
the pieces together the final BEGAN objective is

LD = L(x)− kt · L(G(z))

LG = L(G(z))

kt+1 = kt + λk(γeL(x)− L(G(z)))

. (2.21)

20

Chapter 3

Methodology

In this section the software tools used for this thesis work are outlined followed by a
short introduction to the datasets used for training and evaluation. This is followed
by a presentation of methods used for face verification, face recognition and finally the
different augmentation schemes. As face recognition, face verification networks and
GANs are trained and evaluated, Tab. 3.1 gives an overview of which dataset (section
3.2) is used for what.

Training Evaluation Type

Axis employee database Axis internal dataset Face recognition
FERET dataset (Original subset) FERET dataset (first half) Face recognition

FaceScrub Labeled faces in the wild Face verification
Datasets generated using BEGAN Labeled faces in the wild Face verification

CelebA N/A Face generation

Table 3.1: Each row states which dataset is used for training, which dataset is used
for evaluation and what type of task is being solved. For face generation there is no
evaluation dataset as visual inspection is used to determine if the training was successful
or not. For a description of the datasets, see section 3.2.

3.1 Tools Used

3.1.1 TensorFlow

TensorFlow [1] is a software library designed for machine learning. In this work it is
used mainly to define and train convolutional neural networks. It is capable of running
on GPUs and uses the NVIDIA CUDA Deep Neural Network library (cuDNN) which
delivers GPU accelerated implementations of common neural network routines.

The TensorFlow-Slim library is used as it provides definitions of several common
convolutional network architectures. It also provides pre-trained parameters for these
networks. The parameters are a result of training the networks on the ImageNet Large
Scale Visual Recognition Dataset from 2012.

3.1.2 Eos

The Eos model-fitting library is developed at University of Surrey, presented in the
paper [17], and is used to perform the fitting of the SFM to a specified set of ibug facial
landmark points, developed in [29], [30] and [31]. Pose, shape, expression and facial

21

texture can be estimated using this framework. Meshes and textures can be exported
as wavefront objects, .obj , and images respectively.

3.1.3 Dlib

Dlib is a machine learning library for C++ developed in [19]. Although the library offers
a wide range of functionality, its facial landmark detector, based on the paper [18], is
the feature mainly used in this thesis. An example of fitted landmarks can be seen in
Fig. 3.1.

Figure 3.1: Face with detected ibug landmarks

3.1.4 OpenGL

OpenGL is a graphics library that allows for hardware accelerated computations, mainly
concerning graphical applications. The library consists of two parts:

� A graphics language, GLSL (Graphics Library Shading Language), that allows the
user to write programs, shaders, to be run on the computer GPU.

� An API for setting up models, assigning the correct shaders and textures, and
rendering the images to buffers on the GPU.

In this thesis, a Python version of the library, pyopenGL, as well as GLUT are used to
render the fitted 3D-models into new poses. GLUT stands for openGL Utility Toolkit
and is a small extension to the ordinary OpenGL, handling windowing functions, and
user events. This allows the user to actually see what is being rendered with OpenGL.

3.1.5 OpenCV

OpenCV is an open source library for various image processing tasks, such as image
alignment, camera calibration, and pose estimation. In this thesis work version 2.4 is
used.

3.2 Datasets

3.2.1 FaceScrub

The FaceScrub dataset originally contains 106, 863 face images belonging to 530 different
identities, developed in [23]. The dataset is provided in the form of URLs to the images.
Unfortunately some of the URLs are no longer valid and therefore the dataset used in

22

this work contains 77, 852 images and 530 identities. Some of the identities in the dataset
also belong to the Labeled Faces in the Wild dataset, which is used for evaluation. These
are removed so that they do not affect the final results. Therefore the size of the dataset
is further reduced to 54, 139 images and 384 identities.

3.2.2 Labeled Faces in the Wild

The LFW dataset is a popular dataset for evaluating the performance of face verification
algorithms. It originates from the work by [15]. It contains 13, 233 face images belonging
to 5, 749 different identities.

3.2.3 FERET

The FERET dataset consists of 14, 051 images of 1, 199 identities, collected by the
George Mason University under the FERET program, sponsored by the DOD Counter
drug Technology Development Program Office, for the work in [26], [27] and [28]. The
dataset differs from the previously mentioned sets in that each identity is imaged under
large pose variations, ranging from left profile, to right profile.

3.2.4 Large Scale CelebFace Attributes

The Large Scale CelebFace Attributes (CelebA) is a dataset consisting of 202,599 images
of celebrities over 10,177 identities, collected by the Chinese University of Hong Kong
for the work in [21]. This dataset is primarily used in this thesis to train the BEGAN.

3.2.5 Axis Employee Database

A set of 298 high resolution images of Axis employees were obtained at the beginning
of the thesis work. Prior to the thesis work, a questionnaire was sent out to all axis
employees asking whether or not they would be willing to be participate in a new
dataset for use in research. The identities in this dataset are the employees who gave
their consent in the questionnaire. There is one portrait image per identity in the
database. This database of images is used for 3D reconstruction, as a training set for
face recognition and as an aid for manual data collection.

3.2.6 Axis Internal Dataset

A dataset containing Axis employees from selected surveillance cameras at Axis. Us-
ing the Axis employee database as an identity gallery, this dataset was collected from
surveillance footage in a semi-automatic fashion. During the capture phase, surveil-
lance snapshots were sent to a server hosting a deep neural network, where the network
attempted to classify each image to one of identities in the Axis employee database.
However, due to issues in the classification, manual labeling was employed as well in or-
der to correctly classify the images. The dataset was also extended by labeling datasets
from previous axis projects as well. As there were only a few different cameras from
where the footage was obtained, images from all the 298 identities could not be collected.
The Axis internal dataset consists of 1, 793 images belonging to 31 identities.

3.3 Training Face Verification Networks

Training large face verification networks from scratch that can perform at the current
state of the art takes a long time and can require up to millions of correctly labeled train-

23

ing images. In order to save time we instead fine-tuned existing pre-trained networks
where smaller datasets (around tens of thousands of images) can be used to achieve
reasonable performance. We are interested in answering the following questions:

� Can center loss and triplet loss, mentioned in section 2.2.4.2 and 2.2.4.3, be used
effectively to generate discriminating feature vectors when fine-tuning pre-trained
networks, using a relatively small training dataset (around 50, 000 images)?

� Can real images in the training dataset be replaced with synthetic images?

� Can completely synthetic datasets generated by GANs be used to fine-tune the
pre-trained networks?

3.3.1 Network Architecture

We use the GoogLeNet [35] (also known as the InceptionV1) architecture when per-
forming the fine-tuning. An overview of the network architecture is shown in Tab. 3.2.
The reason behind this choice is that the network achieves a fairly high performance
on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) from 2012 while
still being a significantly smaller network than the highest performing networks, such
as the Inception-ResNet-V2 or ResNet-152 networks. The pre-trained weights for the
GoogLeNet network, trained for the ILSVRC, are provided by TensorFlow-Slim which
is another reason for choosing this particular network architecture.

When fine-tuning the network the final fully connected layer is changed to a layer
with an output size of 128 in order to create feature vectors in R128. For the last two
inception modules, called inception 5a and inception 5b, the pre-trained weights are not
loaded and are instead trained from scratch.

3.3.2 Training Procedure

The FaceScrub dataset is used for fine-tuning the network. There are several overlapping
identities between the FaceScrub dataset and the LFW dataset. These are removed from
the FaceScrub dataset as LFW will be used for evaluation. After this, there are 54, 139
images belonging to 384 different identities left in the dataset. These are used to fine-
tune the pre-trained GoogLeNet network both using center loss and triplet loss.

The training dataset is then shrunk down by keeping all images larger than 600 ×
600 pixels and discarding the rest. This leads to a dataset containing 10, 309 images
belonging to 382 different identities. This is done so that the SFM can be used to
create 3D reconstructions from these images, as it requires a fairly high quality image
for the reconstruction to work properly. The network is then fine-tuned on these 10, 309
images. Three different augmented datasets are then constructed so that each contains
roughly 50, 000 images. These datasets are constructed using the SFM, the MFM and
conventional 2D augmentation techniques respectively.

3.3.2.1 Training Procedure Using Center Loss

When fine-tuning using center loss a batch size of 50 images is used. Stochastic gradient
decent is used during backpropagation with a learning rate of 0.01. The parameters
specific to center loss were chosen to be αc = 0.1 and λc = 10−4. The networks were
fine-tuned for approximately 30 minutes to one hour, depending on the training dataset,
and stopped when the validation accuracy on the LFW dataset had converged.

24

Layer type Kernel size / stride Output size

Convolution 7× 7 / 2 112× 112× 64
Max pool 3× 3 / 2 56× 56× 64
Convolution 3× 3 / 1 56× 56× 192
Max pool 3× 3 / 2 28× 28× 192
Inception 3a 28× 28× 256
Inception 3b 28× 28× 480
Max pool 3× 3 / 2 14× 14× 480
Inception 4a 14× 14× 512
Inception 4b 14× 14× 512
Inception 4c 14× 14× 512
Inception 4d 14× 14× 528
Inception 4e 14× 14× 832
Max pool 3× 3 / 2 7× 7× 832
Inception 5a 7× 7× 832
Inception 5b 7× 7× 1024
Average pool 7× 7 / 1 1× 1× 1024
Fully connected 1× 1× 128
Softmax 1× 1×Nc

Table 3.2: The layers in the GoogLeNet architecture. All inception modules have an
architecture similar to Fig. 2.10. The softmax layer is only used when training using
center loss and is not necessary when training using triplet loss. The variable Nc rep-
resents the number of classes in the training dataset. The input to the network is an
image of size 224× 224× 3.

3.3.2.2 Training Procedure Using Triplet Loss

When fine-tuning using triplet loss 30 identities with 30 images per identity are sampled
in order to generate triplets that violate the triplet constraint in Eq. 2.14. Stochastic
gradient decent is used during backpropagation with a learning rate of 10−3. The margin
αt between the positive and negative pairs was chosen as αt = 0.2. A batch size of 90
was used. The networks were fine-tuned for approximately two hours and stopped when
the validation accuracy on the LFW dataset seemed to have converged.

3.3.3 Evaluation

To determine if two images belong to the same identity, the distance between the features
vectors from the two images is calculated. If the distance between the feature vectors is
below some threshold then the two images are considered to belong to the same identity,
otherwise they are considered to belong to different identities. This allows us to calculate
the accuracy, false positive rate and true positive rate for each threshold value. False
and true positive rates are defined as

True positive rate =
True positives

True positives + False negatives
(3.1)

False positive rate =
False positives

False positives + True negatives
. (3.2)

For different thresholds the accuracy will vary. Therefore the accuracy is reported as
the best performing accuracy for all thresholds.

25

The fine-tuned networks are evaluated on the LFW dataset, where our method falls
into the ”Unrestricted, labeled outside data” category, as we use labeled data which is
not the LFW training dataset. The creators of the LFW dataset provide 10 randomly
generated splits of the dataset so that 10-fold cross validation can be used. The final
accuracy of the trained network is reported as the mean accuracy for the 10 splits, along
with the standard deviation. The true positive rate and the false positive rates are also
calculated as the mean of the rates for each split. These rates are plotted as Receiver
Operator Characteristic (ROC) curves. The area under the curves (AUCs) is used as a
measure of performance, a higher area under the curve means a higher performance.

3.4 Face Recognition

Face recognition is performed using a pre-trained face verification network as our own
fine-tuned networks are not expected to achieve state of the art accuracy. The testing
datasets contain labeled images that need to be correctly identified. That is, given an
image we need to answer the question, ”What is the identity of the face in the image?”.
The task of face verification, given two images, is on the other hand to answer the
question ”Do these two faces belong to the same identity?”. In order to solve this problem
using face verification networks, we have a training database of labeled images that the
test images can be compared against. For an input face image, the face verification
network returns a feature vector representing the face. Feature vectors that are close to
each other are more likely to belong to the same identity than feature vectors that are
far apart. Given an image from the testing dataset, we make the guess that the identity
of the closest feature vector in the training database is the identity of the test image.
In other words, we use nearest neighbour classification. This is illustrated in Fig. 3.2.

0.54

1.01

Figure 3.2: The database of images is shown to the right and contains two identities.
A testing image is compared to all images in the database. The image with the lowest
distance to the testing image is assumed to be the correct identity. In this case the
correct choice was made.

Fig. 3.3 shows a principal component analysis of feature vectors from real images,
extracted from the face verification network. As can be seen, images captured at different
angles produce feature vectors that cluster together into their own groups. As all training
images we have are frontal facing images, we might not be able to properly identify
images taken at an angle. Ideally we would like to have training samples that have
feature vectors close to images taken at an angle as well. However, as we do not have

26

such images, we aim to create them synthetically using the SFM and the MFM.

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

First principal component

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

S
e
co

n
d
 p

ri
n
ci

p
a
l
co

m
p
o
n
e
n
t

Person 1, 45 degrees

Person 1, frontal

Person 1, profile

Person 2, 45 degrees

Person 2, frontal

Person 2, profile

Figure 3.3: Principal component analysis of feature vectors from real images. All feature
vectors belong to two identities. For each identity there are frontal images, images
taken at approximately a 45° angle and profile images. Images taken at different angles
generate different clusters.

3.4.1 Network Architecture

The pre-trained face verification network used for face recognition is an Inception-
ResNet-V1 network. This network has been trained on a subset of the MS-Celeb-1M
[10] dataset using center loss for input images of size 160× 160 pixels 1.

3.4.2 Evaluation

3.4.2.1 Precision, Recall and Average Precision

To evaluate the performance of the different augmentation strategies, we calculate the
precision-recall curve for the classifier for each augmentation strategy. To be able to
calculate precision and recall, we turn the multiclass classification problem into a binary
classification problem by introducing a decision threshold. The threshold is used to de-
termine if the closest match found by the face verification network should be considered
to correspond to the correct identity or not. This gives us the possibility to find the
number of true positives, false positives, true negatives and false negatives, which are
calculated according to the following criteria:

1The network weights were obtained at https://github.com/davidsandberg/facenet

27

https://github.com/davidsandberg/facenet

� True positive: The distance to the closest match is below the threshold and the
correct identity is found.

� False positive: The distance to the closest match is below the threshold and an
incorrect identity is found.

� True negative: The distance to the closest match is above the threshold and an
incorrect identity is found.

� False negative: The distance to the closest match is above the threshold and the
correct identity is found.

The precision and recall are then calculated as

Precision =
True positives

True positives + False positives
(3.3)

Recall =
True positives

True positives + False negatives
. (3.4)

To generate precision-recall curves, the precision and recall are calculated at various
thresholds. These thresholds are chosen by finding the distance to the closest training
image for every testing image, as it is at these distance thresholds that the precision
and recall could possibly change. Once all precision and recall values are obtained, the
precision can be plotted as a function of the recall.

In this thesis work we use a method called 11-point interpolated precision-recall
[7] to present our precision-recall curves. The idea is to remove the jagged structure
that a precision-recall curve typically has. This is done by calculating the interpolated
precision pinterp(r) at 11 fixed recall values r ∈ {0, 0.1, . . . , 1.0} as

pinterp(r) = max
r̃:r̃≥r

p(r̃) (3.5)

where p(r̃) is the precision at recall r̃. The Average Precision (AP) score is then calcu-
lated as

AP =
1

11

∑
r∈{0,0.1,...,1.0}

pinterp(r) (3.6)

where a higher AP score is better.

3.4.2.2 Cumulative Match Characteristics and Rank-N Accuracy

When performing face recognition on a test image, the database of training images is
ranked based on the distance from the test image to the training images. When calculat-
ing precision and recall, only the closest image is considered and therefore information
regarding the remaining ranked images is lost. When calculating rank-N accuracy, the
N closest images are considered. If a training image, who’s label matches the test im-
age’s label, is included among the N closest training images then this is considered a
correct prediction. The Cumulative Match Characteristic (CMC) [9] is defined as the
accuracy as a function of the rank.

28

3.4.2.3 Receiver Operator Characteristics

ROC curves are also calculated by calculating the distance for every image in the test
dataset to every image in the training dataset to see how well the face verification, which
is a part of face recognition, performs. The true positive rates and the false positive
rates are calculated as mentioned in section 3.3.3. The AUC is also presented.

3.5 3D-Augmentation

Several types of augmentation were carried out in this thesis work. Firstly, the facial
landmarks were extracted in input image, using the Dlib implementation. When the
landmarks have been found, or the image has been rejected, the synthesizing of new
images ensues. The following synthesis-schemes are evaluated:

� Pre-Estimated pose and shape augmentation, using the MFM as suggested in [22].

� 3D-pose augmentation, using the SFM from the work in [17] and rendered using
OpenGL.

Using the MFM approach, the PnP-problem, see [11] is solved using a common algo-
rithm supplied with OpenCV and used to estimate the rotation and translation of a
pre-determined pose2 and shape face-model in R3 in comparison to the set of input
facial landmarks in R2. Once the pose of the model in relation to the image has been es-
timated, the model is projected down to R2 and the image is remapped to the projected
coordinates. However, if the image poses are too extreme, I.e. occluding large parts of
the face, some parts of the augmentation are skipped, as there simply is not enough data
for proper image synthesis. Since the models are supplied with pre-calculated intrinsic
camera-matrices and applied poses, this augmentation scheme is very fast, and can be
applied to large datasets rapidly.

3.5.1 Pose- and Shape Synthesis

The SFM used in this thesis is supplied at multiple 3D-resolutions:

� 3,448 vertices

� 16,759 vertices

� 29,587 vertices

Samples of each resolution can be seen in Fig. 3.4.

2The model was provided at specific yaw angles, (0°,±40°,±75°), where the positive orientations are
found by mirroring the image.

29

(a) 3,448 vertices (b) 16,759 vertices (c) 29,587 vertices

Figure 3.4: The wireframe mesh of the SFM rendered at different resolutions

Each model is supplied with corresponding sets of blendshapes and landmark anno-
tations. Of these models, the 3,448 version is used most prominently throughout this
thesis. While the larger models might be able to match some parts of the face more ac-
curately, the entire fitting procedure is still only based on the 68 landmark-points, which
with the higher resolution models can cause unwanted results and even collapse of the
model. This can be aided by stricter regularization parameters, but in turn requires
more fit-iterations, resulting in unfeasible computation times.

Using the 3,448 vertex version, the SFM is fitted to the set of landmarks, producing
an estimate of the camera pose, 3D-shape and facial expression and facial expression of
the depicted face. The process is iteratively applied in order to further refine the shape
fit and minimize Eq. 2.4. A complete facial texture is also created using the iso-mapping
algorithm. An example can be seen in Fig. 3.5.

(a) Fitted model (b) Corresponding
isomap texture

Figure 3.5: Output of the SFM-augmentation procedure

At this point new views can be rendered using OpenGL, which are either pose
augmentations by supplying different rotational matrices or expression augmentations
by varying the blendshape coefficients. “Expression normalization” can also be applied
by simply setting all blendshape parameters to zero. In order to provide more variation
in the images during the synthesizing stage, a random background image can be selected
each time an augmentation is performed. An example of the procedure can be seen in
Fig. 3.6

30

Mouth Stencil

Face model

result

Background

Figure 3.7: Rendering scheme in OpenGL

Figure 3.6: Render with random backgrounds applied.

When using large blendshape weights, the background image tended to be shown
through the mouth, producing unnatural artifacts that might decrease recognition per-
formance. Especially when rendering back on the input image, some augmentations
might get an extra set of mouths. Two counter measures were conceived to counter
these artifacts. Firstly, the inside3 of the face model was colored in a dark red color.
Using this technique, the background would get occluded by the inside of the mouth at
large yaw angles. Secondly a texture depicting the inside of a mouth is drawn on to a
quad behind the face, and a stencil buffer is utilized to mask out parts of the mouth
texture either covered by the face or outside the face. The complete rendering scheme
is visualized in Fig. 3.7: New poses of the 3D-face can now be synthesized by applying
rotational matrices to the model prior to rendering. In this thesis work we vary yaw
and pitch. The rotations are visualized in Fig. 3.8. Note that roll is not utilized as
it is considered very similar to the common 2D image synthesis technique of in plane
rotations of the image.

3The “inside” of the model can be thought of as visible parts of the models that are back-facing in
relation to the camera, I.e. n · c < 0 where n is the triangle normal and c is the principal axis of the
camera.

31

Figure 3.8: Reference image for yaw and pitch rotation.

3.5.2 Multitexture Rendering

Even if each fitted model has a corresponding texture for the entire face, there are some
parts of the face that are occluded, which means parts of the facial information is missing.
In order to circumvent this issue a rendering scheme using multiple face-textures was
employed. From each input image, an isomap texture as well as the cameras principal
axis is saved as seen in Fig. 3.9.

Figure 3.9: Synthesized model textures, and their corresponding camera’s principal axis,
seen from above.

At render time, all of the textures are loaded with the 3D-model and interpolated
using Gaussian interpolators over the model. The interpolation weight of each texture
is based upon the dot product between the principal axis of the current camera used,
c and the principal axis of the camera used to extract a specific facial texture, ci. An
example can be seen in Fig. 3.10. Both texture and orientation vectors are loaded into
OpenGL using GLtextureArrays, which packs the data in a layered structure, which
allows for fast and easy access from within GLSL.

32

(a) Left (b) Front (c) Right

Figure 3.10: Pose synthesis utilizing multi-texture interpolation. The three textures
used the same as in Fig. 3.9.

3.5.3 Pose Evaluation

3.5.3.1 FERET Dataset

In order to evaluate possible performance enhancements with pose augmentations, the
first half of the FERET dataset is selected as the evaluation dataset. This gives us
7,085 images spread over 725 identities. The data is then sorted into subsets, depending
on pose, as seen in Tab. 3.3. A frontal image from each identity is selected for the
3D-augmentation and sorted into a separate subset, Original. This subset will also be
used as a baseline when testing against the other subsets.

Name Orientation Angle(radians)

f front 0.0

hl half-left ∼ −1.18

hr half-right ∼ 1.18

ql quarter-left −0.4

qr quarter-right 0.4

pl profile-left −π/2
pr profile-right π/2

r randomly-posed -

Original Frontal, for augmentation 0.0

Table 3.3: FERET subsets

The augmentation procedure is then applied, where 10 iterations of the fitting algo-
rithm was applied. Expression-neutralized images are synthesized at yaw angles corre-
sponding to the poses in the dataset. The synthesized images are then verified against
each of the testing subsets, where the hypothesis is that the synthesized images at similar
yaw-angles as the test subsets will produce higher verification scores than the original
frontal subset. In order to compare the two main methods in this thesis, the MFM was
employed on the frontal Original subset as well. Examples of the test images as well as
synthesized images using the two methods can be seen in Fig. 3.11.

33

Input image

SFM augmentations

Test subsetsaugmentationsMFM

Input image

Figure 3.11: Augmentation scheme for the FERET dataset. Using the SFM and MFM,
a single image is used to synthesize new poses. Each of the synthesized images are the
tested against the images in the test sets. The hypothesis being that synthesized- and
test images at similar poses perform better than the initial image.

3.5.3.2 Axis Internal Dataset

Evaluating the face recognition performance of pose augmentations using the Axis in-
ternal dataset is done by using the Axis employee database as the training dataset and
using the entire Axis internal dataset as the evaluation dataset. The training dataset is
augmented using the SFM and the MFM. Conventional 2D augmentation, in the form
of in-plane rotations, is also used to compare it to the 3D augmentation techniques.

The 3D reconstructions created using the SFM are rendered at yaw angles in the
range [−0.8, 0.8] radians with an increment of 0.1 radians and at pitch angles in the
range [0,−0.4] radians with and increment of 0.1 radians. The choice of yaw and pitch
angles are based on the yaw and pitch angles appearing in the Axis internal dataset, as
we are interested in finding out if synthetic images, with a pose similar to the testing
images, can achieve better face recognition performance than real frontal images.

The MFM is used to create synthetic images at ±40° which is roughly equal to ±0.7
radians. The MFM can also generate images at ±75° which is roughly equal to ±1.3
radians. This is however outside of the range we are interested in for the Axis internal
dataset and these are therefore discarded.

The synthetic images generated for each pitch and yaw angle pair using the SFM
are used as training data when evaluating on the Axis internal dataset, in order to find
the optimal pitch and yaw angles. The synthetic images are also used to augment the
Axis employee database symmetrically. This means that for each pitch and yaw angle
pair, both the positive and negative yaw angle is used at the same time.

34

3.6 Augmentation Using BEGAN

The BEGAN is used to attempt to create training data both for face verification and
for face recognition, which both require a different method of data generation. For
face verification it is only important to be able to generate several images belonging
to the same identity. For face recognition it is also important to be able to generate
several images belonging to the same identity, but the images also have to resemble some
existing identity.

3.6.1 Training Procedure

The BEGAN itself was trained on the CelebA dataset for approximately 70 hours on an
Nvidia GTX 1070 with 8 GB of GDDR5 RAM. The image size was set to 128×128 pixels
and the dimension of the input vector z was set to 64. The equilibrium parameter was
set to γe = 0.7. The training procedure is unsupervised, which means that no manual
data labeling is required.

3.6.2 Dataset Generation

3.6.2.1 Face Verification

To be able to use generated images for fine-tuning a face verification network, images
that seem to belong to the same identity need to be grouped together. We use a simple
approach where the input vector z is sampled in a uniformly random way to create
images that seem to belong to different people. For every input vector that represents a
different identity, we randomly generate new input vectors using a multivariate normal
distribution with the original input vector acting as the mean of the distribution and
using a diagonal covariance matrix σ2I, where I is the identity matrix. For small values
of σ2 the generated input vectors should be different to the mean but fairly close and
should hopefully create synthetic images G(z) similar to the mean image but with slight
variations.

3.6.2.2 Face Recognition

We also use the BEGAN to generate images that look similar to some existing identity.
For some image x, this is achieved by choosing a random sample vector z ∈ [−1, 1]Nz

where Nz = 64 and generating an image G(z). The following optimization problem is
then solved

argmin
z∈R64

|x−G(z)| (3.7)

to find the sample vector that best represents the identity in the image x. In theory
the optimization should be subject to z ∈ [−1, 1]64 but this is ignored for the sake of
simplicity, hoping that the optimal vector z will be a valid vector anyway. Even if the
optimal vector is not valid, it can still be used as input to the generator. However, the
generated output from a invalid input vector is unlikely to look like a face. Assuming
that the face in image G(z) belongs to the identity in image x it would then be possible
to generate more images belonging to that identity, using the same scheme as for creating
datasets for face verification.

35

3.6.3 Evaluation

In order to evaluate if the generated datasets are useful, datasets containing approxi-
mately 50, 000 images each were generated for the task of fine-tuning face verification
networks. The datasets were generated with a different number of images per identity
to see how that affects the performance. For the covariance matrix, σ2 = 0.08 was used
as this seemed to generate images that had a decent amount of variation within each
identity but still not too much to make them look like different identities. The number
of images per identity and the number of identities for the generated datasets are shown
in Tab. 3.4.

Images per identity Number of identities Total number of images

16 3, 125 50, 000
32 1, 563 50, 016
64 782 50, 048
128 391 50, 048

Table 3.4: Four datasets were generated using the BEGAN with a varying amount of
images per identity.

36

Chapter 4

Results and Discussion

The results obtained in this thesis work are presented and discussed in this chapter.
We have fine-tuned face verification networks using a variety of datasets with different
augmentations, and we have explored the difference between center loss and triplet
loss for these networks. We have also used the pre-trained face verification network to
perform face recognition on the Axis internal dataset and the FERET dataset. We show
results of the synthetic images generated using the different methods as well to perform
visual assessment of the quality of the synthetic images.

4.1 Face Verification Using Fine-tuned Networks

4.1.1 Center Loss

Fig. 4.1 shows the ROC curve for different augmentation strategies when fine-tuning
using center loss. Tab. 4.1 shows the AUC and the accuracies with their standard
deviations for the different augmentation methods.

AUC Accuracy

Real images (54, 139 images) 0.960 0.894± 0.019
Real images (10, 309 images) 0.871 0.791± 0.018
SFM (10, 309→ 50, 000 images) 0.903 0.827± 0.011
2D (10, 309→ 50, 000 images) 0.936 0.865± 0.015
MFM (10, 309→ 50, 000 images) 0.927 0.853± 0.016

Table 4.1: The AUC for the curves in Fig 4.1.

The results in Tab. 4.1 clearly show that using more data is useful as the area under
the curve and the accuracy for the dataset containing 10, 309 real images is significantly
smaller than the area under the curve and the accuracy for the dataset containing 54, 139
real images. The augmented datasets all show an improvement compared to the dataset
containing 10, 309 images but none of them can quite reach the same accuracy as the
larger dataset with 54, 139 real images.

Among the augmented datasets the conventional 2D augmentation technique works
best while the datasets augmented using the 3D augmentation techniques are not quite
as successful. The reason for this might be that when performing the 3D reconstruction
of faces, several important details such as hair and ears are missing as the 3D model
does not cover these areas of the face. Even though the 3D model can be rendered from
a variety of different poses it still lacks some fundamental features.

37

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r
a
te

Real images (54,139)

Real images (10,309)

SFM (10,309 -> 50,000)

2D (10,309 -> 50,000)

MFM (10,309 -> 50,000)

Figure 4.1: The figure shows the ROC curves when evaluating on the LFW dataset, us-
ing different training datasets and fine-tuning with center loss. The red curve represents
the performance when fine-tuning using 54, 139 real images while the blue curve repre-
sents the performance when fine-tuning using 10, 309 real images. The yellow, black and
purple curves represent the performance when the 10, 309 real images have been aug-
mented to a dataset of approximately 50, 000 images using the different augmentation
techniques.

Another problem with the 3D augmentation techniques is that the reconstruction
procedure can fail and create low quality synthetic augmentations. In the worst case
the synthetic images might no longer represent the correct identity. This seems to occur
more often for the SFM which might explain why it cannot perform quite as well as the
MFM. The MFM is capable of predicting when a synthetic image is going to be bad
and can therefore reduce the number of bad images. No such fail-safe is implemented
for the SFM.

The benefit of the 3D augmentations is that they provide more variation within the
identities. If the quality of the synthetic images would be better, they could potentially
outperform the 2D augmentations.

4.1.2 Triplet Loss

Fig. 4.2 shows the ROC curves for different augmentation strategies when fine-tuning
using triplet loss. Tab. 4.2 shows the AUC and the accuracies with their standard
deviations for the different augmentation methods.

Tab. 4.2 and 4.1 show that using triplet loss leads to worse performance than using
center loss. Triplet loss seems to require a lot more data and training time in order to

38

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r
a
te

Real images (54,139)

Real images (10,309)

SFM (10,309 -> 50,000)

2D (10,309 -> 50,000)

MFM (10,309 -> 50,000)

Figure 4.2: The ROC curves when evaluating on the LFW dataset, using different
training datasets and fine-tuning with triplet loss. The red curve represents the perfor-
mance when fine-tuning using 54, 139 real images while the blue curve represents the
performance when fine-tuning using 10, 309 real images. The yellow, black and purple
curves represent the performance when the 10, 309 real images have been augmented to
a dataset of approximately 50, 000 images using the different augmentation techniques.

AUC Accuracy

Real images (54, 139 images) 0.773 0.703± 0.010
Real images (10, 309 images) 0.749 0.679± 0.019
SFM (10, 309→ 50, 000 images) 0.774 0.696± 0.016
2D (10, 309→ 50, 000 images) 0.746 0.686± 0.019
MFM (10, 309→ 50, 000 images) 0.779 0.707± 0.011

Table 4.2: The AUC for the curves in Fig 4.2.

achieve high performance compared to center loss. According to [34], 100M-200M face
images consisting of 8M different identities were used as training data when training
the FaceNet model using triplet loss. The model was also trained for approximately
1, 000 to 2, 000 hours. Comparing this to experiments performed by [38], only 0.7M
face images consisting of 17, 189 identities were used and the model was only trained
for 14 hours using center loss while still achieving almost as good accuracy. This seems
to suggest that center loss might be more suitable in our setting and might explain the
lower performance using triplet loss. It is worth noting that triplet loss currently has
the highest performance on the LFW dataset, at least as far as we know.

The difference between the different augmentation methods are difficult to analyze

39

for triplet loss as the performance is quite similar. It is still possible to see that using
the large dataset of real images performs better than using the small dataset of real
images, as expected.

4.1.3 Generative Adversarial Networks

Fig. 4.3 shows the ROC curve when fine-tuning using center loss and training with the
datasets generated using the BEGAN, as mentioned in section 3.6.3. Tab. 4.2 shows
the area under the curve AUC and the accuracies with their standard deviations for the
different synthetically generated datasets.

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
 p
o
si
ti
v
e
 r
a
te

128 images per identity

64 images per identity

32 images per identity

16 images per identity

Figure 4.3: The ROC curves when evaluating on the LFW dataset, using BEGAN to
synthetically generate training datasets and fine-tuning with center loss. For the four
different curves approximately 50, 000 training images were used.

AUC Accuracy

128 images per identity 0.807 0.733± 0.014
64 images per identity 0.782 0.716± 0.015
32 images per identity 0.785 0.713± 0.020
16 images per identity 0.783 0.710± 0.020

Table 4.3: The AUC for the curves in Fig 4.3.

The performance, when training with completely synthetic datasets, cannot quite
reach the same performance as training with only real images. As can be seen from the
results in Section 4.4 the BEGAN can generate images that look realistic, however our
method of generating the synthetic datasets probably do not introduce enough variation

40

for each identity to successfully train a face verification network. However, the fact that
better than random performance can be achieved using only synthetic data suggests
that this method could have potential.

It seems beneficial to use more images per identity and fewer identities than to use few
images per identity and many identities, as using 128 images per identity outperforms
the other methods. Using 16, 32, or 64 images per identity hardly seems to make a
difference as the standard deviation of the accuracies is too large to claim that one is
better than the other. The authors of [22] state that it is not only important to have
many identities in order to learn differences between the identities. It is also important
to have many images per identity to learn the possible variations within an identity.
This might explain why using 128 images per identity is the preferable method.

It is also worth considering which dataset construction strategy is most suitable for
the BEGAN. A generator could in theory learn to generate any image but in practice
this might not occur. There is a limit to how diverse the images generated by the trained
BEGAN can be. By creating many different identities there is a risk of having several
identities that look very similar. The BEGAN can also fail to create a realistic looking
face for certain input vectors. The question is then if it is better to have a few identities
where many images look unrealistic or to have many identities where a few images look
unrealistic.

4.2 Face Recognition Using the Pre-trained Network

4.2.1 Axis Internal Dataset

The Axis internal dataset acts as an evaluation dataset containing surveillance images.
Face recognition is performed using the Axis employee database as the training dataset.
To get a baseline performance for the face recognition system the precision-recall curve
is calculated for the employee database without any additional augmentations. The
results are shown in Fig. 4.4. Different augmentation techniques are then evaluated and
presented below.

4.2.1.1 Augmentations Using the SFM

4.2.1.1.1 Finding Ideal Augmentations

Using the SFM we are capable of producing a wide range of different augmentations
to the original dataset, as the model can be rotated around freely in 3D space. The
reconstructed 3D models of the images in the Axis employee database are rotated and
rendered at a variety of different pitch and yaw angles. The precision-recall curve and the
average precision are calculated for the synthetic images generated using these pitch and
yaw values, in order to find the optimal angles. The average precision for these synthetic
images are shown as a heat map in Fig. 4.5. The top-10 yaw and pitch combinations
based on the heat map are shown in Tab. 4.4 along with their corresponding average
precision scores. When constructing the heat map, the Axis employee database has not
been augmented with the synthetic images. Instead, the real images in the database are
replaced with the synthetic ones in order to see how well they perform alone.

From the heat map in Fig. 4.5 one can see that images that are rendered slightly
from above with a pitch angle of around −0.1 radians, and slightly from the right with
a yaw angle of around −0.3 radians, seem to achieve the best performance. Overall,
images rendered from the right seem to perform better than images rendered from the

41

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0
P
re
ci
si
o
n

Baseline

Figure 4.4: The baseline precision-recall using the Axis internal dataset for evaluation
and the Axis employee database as the training dataset. The AP is 0.912.

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Yaw

0.0

-0.1

-0.2

-0.3

-0.4

P
it
ch

0.52
0.56
0.60
0.64
0.68
0.72
0.76
0.80
0.84

Figure 4.5: A heat map for different pitch and yaw angles. Each square contains the
average precision for that pitch and yaw. A negative pitch angle indicates that the image
is rendered from above. A negative yaw angle indicates that the image is rendered from
the right, and a positive angle that the image is rendered from the left. When both the
pitch and yaw are zero the camera is facing straight at the 3D model.

left. In fact, the mean average precision of all images rendered from the right is 0.796

42

Pitch (radians) Yaw (radians) AP

-0.1 -0.3 0.871
-0.2 -0.4 0.867
0 -0.1 0.864
0 -0.2 0.863

-0.2 -0.2 0.853
0 0 0.848
0 0.1 0.847
0 -0.3 0.843

-0.1 -0.2 0.842
-0.1 0 0.839

Table 4.4: The ten best performing pitch and yaw angle combinations, along with their
average precision, based on the heat map in Fig. 4.5.

while the mean average precision of all images rendered from the left is 0.755. The
Axis internal dataset is gathered from only a few different surveillance cameras, which
results in most images being captured from the same direction. Surveillance cameras
are also often mounted to capture images from above. These two factors could explain
why certain pitch and yaw angles perform better than others. By visually examining
the Axis internal dataset, one can see that there indeed seem to be more images taken
from the right than from the left. The images that are taken from the left also seem to
have a higher yaw angle which also would agree with the heat map.

For more extreme yaw and pitch angles the area under the curve starts to deteriorate.
This might be caused by the evaluation dataset not containing images taken at such wide
angles. It might also be caused by the deteriorating quality of the images rendered at
wide yaw and pitch angles.

In order to further explore this result, the original database of Axis employee images
is augmented based on the best performing yaw and pitch values from the heat map.
The 20 best performing yaw and pitch combinations are used to augment the original
database of employee images. The synthetic images are also used without the original
real images. The results are shown in Fig. 4.6 where the top 20, 10, 5, 3, 2 and
1 synthetic images are used to augment the employee database. The corresponding
average precision scores are shown in Tab. 4.5.

Only synthetic Synthetic + real Only real

Top 20 0.842 0.906 0.912
Top 10 0.862 0.921 0.912
Top 5 0.872 0.922 0.912
Top 3 0.874 0.923 0.912
Top 2 0.875 0.921 0.912
Top 1 0.871 0.918 0.912

Table 4.5: The average precision for the top 20, 10, 5, 3, 2 and 1 synthetic images. The
largest average precision score is written in bold text.

Fig. 4.6 and Tab. 4.5 show that when augmenting the Axis employee database
using synthetic images generated using the SFM, the performance increases. The top
3 augmentations where three synthetic images and one real image is used performs the
best. As the database of real images is augmented further the performance starts to

43

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

Baseline

Baseline + Top 20

Top 20

(a) Top-20

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

Baseline

Baseline + Top 10

Top 10

(b) Top-10

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

Baseline

Baseline + Top 5

Top 5

(c) Top-5

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

Baseline

Baseline + Top 3

Top 3

(d) Top-3

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

Baseline

Baseline + Top 2

Top 2

(e) Top-2

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

Baseline

Baseline + Top 1

Top 1

(f) Top-1

Figure 4.6: The precision-recall curves for the top 20, 10, 5, 3, 2 and 1 synthetic images.
Each graph contains three precision recall curves. One for the original images (red), one
for the original and the synthetic images (green) and one for only the synthetic images
(blue).

decrease. According to the top 20 average precision score, the augmentations seem to
be doing more harm than good.

As more and more synthetic images are added to the database of real images, more
noise might also added to the augmented database if the synthetic images do not look
realistic enough. If the classifier cannot handle high levels of noise, it might lead to
augmentations causing more miss-classifications than correct classifications. This will
lead to a lower performance compared to not using any augmentations at all.

44

4.2.1.1.2 Using Generic Augmentation

The best performing synthetic images are chosen based on their performance on the
Axis internal dataset. If one does not know the most common yaw and pitch angles of the
dataset beforehand it is not possible to find the ideal augmentations. We therefore also
choose augmentations that would make sense to use on an unseen dataset. In particular
we augment the employee database symmetrically to get side views from both left and
right. The average precision for the different symmetrical augmentations is shown as a
heat map in Fig. 4.7.

The precision-recall curve for the best symmetric augmentation strategy is shown in
Fig. 4.8. The average precision for the four best augmentation strategies are also given
in Tab. 4.6.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Yaw

0.0

-0.1

-0.2

-0.3

-0.4

P
it
ch

0.870

0.876

0.882

0.888

0.894

0.900

0.906

0.912

0.918

Figure 4.7: A heat map showing the AP for different tilts and symmetrical augmen-
tations. The yaw values on the x-axis indicate that the original images have been
augmented using synthetic images rendered at that yaw angle, both from the left and
the right side. As an example the augmented database used for the AP in the top left
corner contains the original image, a synthetic image with pitch 0 radians and yaw 0.1
radians and another synthetic image with pitch 0 radians and yaw -0.1 radians.

AP

Pitch: 0 Yaw: -0.1, 0.1 0.923
Pitch: -0.2, Yaw: -0.1, 0.1 0.923
Pitch: -0.1, Yaw: -0.2, 0.2 0.921
Pitch: -0.2, Yaw: -0.4, 0.4 0.921

Table 4.6: The average precision for the four best symmetric augmentations, evaluated
on the Axis internal dataset. The highest performing augmentation strategy, pitch 0
radians and yaw −0.1 and 0.1 radians is also shown in Fig. 4.8

The symmetric augmentations give a similar performance compared to choosing the
optimal augmentations. Some of the best performing pitch and yaw angles for the sym-
metric augmentations also seem to appear among the optimal augmentations. As an
example, pitch −0.2 radians at yaw −0.4 radians is the second best synthetic image
according to Tab. 4.4 but it is also included in the fourth best symmetric augmentation.
Even though pitch −0.2 radians at yaw 0.4 radians is not a part of the top perform-

45

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0
P
re
ci
si
o
n

Baseline

Baseline + Pitch: {0, 0}, Yaw: {0.1, -0.1}

Figure 4.8: The precision-recall curves for the best performing symmetric augmentation
strategy, and the baseline. Both are evaluated on the Axis internal dataset.

ing synthetic images it still does not seem to affect the performance of the symmetric
augmentation in a negative way.

4.2.1.2 Augmentations Using the MFM

This augmentation scheme is not as flexible as the SFM and can not be rotated around
freely in 3D space. Therefore the only synthetic images used are images rotated 40
degrees (approximately 0.7 radians) to the left and to the right at a tilt angle of 0
degrees. The images rendered at 75 degrees are not used since images with such a wide
angle do not exist in the Axis internal dataset. Fig. 4.9 shows the precision-recall curves
for these augmentations and Tab. 4.7 shows the average precision scores.

AP

Baseline 0.912
Baseline + synthetic 40 0.912
Baseline + synthetic −40 0.907
Baseline + synthetic −40, 40 0.907
Synthetic 40 0.826
Synthetic −40 0.797

Table 4.7: The average precision for the precision-recall curves from Fig. 4.9.

The results using the MFM are not quite as good compared to the SFM. According
to Tab. 4.7 it is the database of real images that performs best and any additional

46

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

1.1
P
re
ci
si
o
n

Yaw: -40

Yaw: 40

Baseline + Yaw: -40

Baseline + Yaw: 40

Baseline + Yaw: {40, -40}

Baseline

Figure 4.9: The precision-recall curves for the baseline and the different augmentation
techniques, evaluated on the Axis internal dataset.

augmentations only decreases the performance. This is perhaps not surprising as the
synthetic images can only be rendered at fixed angles that might be too large for this
purpose. The best performing augmented dataset is the one using the original images
and synthetic images rendered 40 degrees from the left. This seems to contradict the
idea that images rendered from the right should perform better on the Axis internal
dataset. However, according to the heat map in Fig. 4.5 it seems like slightly wider
angles (0.5 to 0.7 radians) also perform better at images rendered from the left for the
SFM, which agrees with the results for the MFM.

4.2.1.3 Augmentations Using Conventional 2D Techniques

We create 2D augmentations by performing in-plane rotations of the images in the Axis
employee database. Fig. 4.10 shows the result using rotated images as augmentations
to the database. Tab. 4.8 shows the average precision for these methods.

For certain rotations the performance increases but not quite to the same level as
for the SFM. The performance increase might be related to the fact that some faces in
the Axis internal dataset are slightly in-plane rotated.

Comparing the performance of the 2D rotated images alone with the 3D recon-
structed images alone, one can see that the 2D rotated images clearly outperform the
3D reconstructed images. Still the 3D reconstructed images together with the original
images yields better performance, see Tab. 4.9. This suggests that it is not as easy
as simply choosing the best performing augmentation methods and combining them.
Instead, using methods that contribute new information might be useful even if they

47

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

Baseline + Rotation: -0.1

Baseline + Rotation: {0.1, -0.1}

Baseline + Rotation: 0.1

Rotation: -0.1

Rotation: 0.1

Baseline

(a) Rotated 0.1 radians

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

Baseline + Rotation: -0.2

Baseline + Rotation: {0.2, -0.2}

Baseline + Rotation: 0.2

Rotation: -0.2

Rotation: 0.2

Baseline

(b) Rotated 0.2 radians

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.5

0.6

0.7

0.8

0.9

1.0

1.1

P
re
ci
si
o
n

Baseline + Rotation: -0.3

Baseline + Rotation: {0.3, -0.3}

Baseline + Rotation: 0.3

Rotation: -0.3

Rotation: 0.3

Baseline

(c) Rotated 0.3 radians

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re
ci
si
o
n

Baseline + Rotation: -0.4

Baseline + Rotation: {0.4, -0.4}

Baseline + Rotation: 0.4

Rotation: -0.4

Rotation: 0.4

Baseline

(d) Rotated 0.4 radians

Figure 4.10: The precision-recall curves for augmentations using 2D rotations. Each
graph shows the results for one rotation angle. The baseline is shown along with five
additional augmentation strategies. The Axis internal dataset is used for evaluation.

0.1 radians 0.2 radians 0.3 radians 0.4 radians

Baseline 0.912 0.912 0.912 0.912
Baseline + CW and CCW 0.912 0.915 0.913 0.880
Baseline + CCW 0.919 0.919 0.912 0.881
Baseline + CW 0.907 0.913 0.915 0.905
CCW 0.912 0.879 0.859 0.803
CW 0.907 0.903 0.896 0.846

Table 4.8: The average precision for the baseline and the augmentations performed using
2D rotations, as is shown in Fig. 4.10. CW stands for clockwise rotation while CCW
stands for counter clockwise rotation.

are not always perfect on their own.

We also experiment with what happens when we reduce the quality of the original
high resolution images. The precision-recall curves are shown in Fig. 4.11. The per-
formance seems to decrease when reducing the image quality. It seems to indicate that
high quality is a key component for achieving high performance. This might partially
explain why some synthetic images perform worse than realistic ones, as their quality
often degrades as a part of the texture fitting process.

48

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0
P
re
ci
si
o
n

Downsampled 25%

Downsampled 50%

Downsampled 75%

Baseline

Figure 4.11: The precision-recall curves for the baseline and the downsampled versions
of the original Axis employee database. An image that is downsampled 75% is first
resized to 75% of its original size and then resized back to its original size, degrading
the image quality. The evaluation is performed on the Axis internal dataset.

4.2.1.4 Comparing the Augmentation Methods

We compare the best performing SFM, MFM and 2D augmentation strategies in order
to see which one is preferable. Precision-recall, CMC and ROC are used to perform the
evaluation.

4.2.1.4.1 Precision-Recall

The precision-recall curves for the different augmentation methods are shown in Fig.
4.12 and their average precision’s are shown in Tab. 4.9.

Method Augmentation Strategy AP

Baseline N/A 0.912
SFM Pitch: 0 rad Yaw: −0.1, 0.1 rad 0.923
MFM Pitch: 0° Yaw: 40° 0.912
2D CCW, rotated 0.1 rad 0.919

Table 4.9: The average precision for the baseline and the augmentations performed using
2D rotations, as is shown in Fig. 4.12. CCW stands for counter clockwise rotation.

49

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.6

0.7

0.8

0.9

1.0
P
re
ci
si
o
n

Best 2D

Best MFM

Baseline

Best SFM

Figure 4.12: The precision-recall curves for the baseline and the best performing aug-
mentation strategies for the different methods. The evaluation is performed on the Axis
internal dataset.

4.2.1.4.2 Cumulative Match Characteristic

The CMC are also calculated for the best performing augmentation strategies for
each method. The result is shown in Fig. 4.13. The accuracies at rank 1, 10, 50 and
100 are also shown in Tab. 4.10

Rank-1 Rank-10 Rank-50 Rank-100

Baseline 0.631 0.860 0.946 0.968
Best SFM 0.646 0.861 0.948 0.970
Best MFM 0.637 0.861 0.954 0.967
Best 2D 0.639 0.863 0.944 0.967

Table 4.10: The rank 1, 10, 50 and 100 accuracy for the best performing augmentation
strategies for the different methods, based on the results from Fig. 4.13.

4.2.1.5 Receiver Operator Characteristic

The ROC curves and the AUC are calculated for the best performing augmentation
methods, as mentioned in section 3.3.3. The results are presented in Fig. 4.14 and Tab.
4.11.

Based on the results from Fig. 4.12 and Tab. 4.9, it seems like the SFM and the
2D augmentations are capable of performing better than the baseline, while the MFM

50

0 50 100 150 200 250

Rank

0.6

0.7

0.8

0.9

1.0

A
cc
u
ra
cy

Baseline

Best 2D

Best MFM

Best SFM

(a) Up to rank 298

0 20 40 60 80 100

Rank

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc
u
ra
cy

Baseline

Best 2D

Best MFM

Best SFM

(b) Up to rank 100

0 10 20 30 40 50

Rank

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc
u
ra
cy

Baseline

Best 2D

Best MFM

Best SFM

(c) Up to rank 50

0 2 4 6 8 10

Rank

0.65

0.70

0.75

0.80

0.85

A
cc
u
ra
cy

Baseline

Best 2D

Best MFM

Best SFM

(d) Up to rank 10

Figure 4.13: The CMC curves for the best performing augmentation strategies for each
method. Each sub-figure displays the same CMC curves but is gradually zoomed at
lower ranks to show more details. The evaluation is performed on the Axis internal
dataset.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
 P
o
si
ti
v
e
 R
a
te

Baseline

Best 2D

Best MFM

Best SFM

(a) The whole ROC curve

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

False Positive Rate

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
ru
e
 P
o
si
ti
v
e
 R
a
te

Baseline

Best 2D

Best MFM

Best SFM

(b) The top left corner of the ROC curve

Figure 4.14: The ROC curves for the best performing augmentation strategies for each
method. The evaluation is performed on the Axis internal dataset.

cannot improve performance. Both the SFM and the 2D augmentations have the benefit
of being able to create a wide variety of different augmentations, from which we have
chosen the best performing ones. Perhaps the MFM could achieve similar or better
performance if it had the same flexibility as the SFM.

The CMC in Fig. 4.13 and Tab. 4.10 show that all methods have quite similar

51

AUC

Baseline 0.955
Best SFM 0.953
Best MFM 0.955
Best 2D 0.955

Table 4.11: The AUC for the best performing augmentation strategies for the different
methods, based on the results from Fig. 4.14.

performance as the rank is increased. The largest difference is seen at rank-1 accuracy
where all three augmentation methods achieve a higher accuracy than the baseline. For
low rank values the accuracy initially increases very quickly. This indicates that the face
recognizer is often close to finding the correct answer. This could be useful in practice
as a face recognition system could potentially return the five best matches and let a
human perform the final identification among the top 5 manually.

The ROC curves in Fig. 4.14 and the AUC scores in Tab. 4.11 show very little
difference between the methods. The SFM achieves a slightly lower AUC score compared
to the other methods, which likely occurs since the true positive rate for the SFM is
also slightly lower at false positive rates in the range [0.02, 0.04] and [0.06, 0.20]. Ideally
one would like to have a true positive rate of 1 with a false positive rate of 0. This is
not quite achieved but the true positive rate increases quickly for low false positive rates
which is a good sign as one would like to have many true positives while keeping the
false positives at a minimum.

Overall the SFM seems to be the most desirable option for data augmentation when
evaluating on the Axis internal dataset. While it can only slightly improve the recogni-
tion performance compared to the other methods, it seems to have the highest potential
as it can be freely rotated in 3D space. The 2D augmentations can also achieve good
performance and can be useful, especially if the testing dataset contains in-plane rotated
face images. The MFM does not work quite as well on the Axis internal dataset as it is
only capable of generating images that rarely appear in the testing set. One additional
advantage the SFM has over the MFM and the 2D augmentations when evaluating on
the Axis internal dataset is that the training images in the Axis employee database have
very high quality and resolution. This is critical for the SFM to perform well but not
quite as important for the MFM or the 2D augmentations method.

4.2.2 FERET Dataset

The initial recognition performance, using only one frontal image per identity, on the f
test subset from FERET dataset can be seen in Fig. 4.15. Here the the Original subset
of frontal images are used as an identity gallery in order to classifly test images from the
frontal testset from Tab. 3.3, f. The AP is 0.990 and is calculated using eleven-point
average.

4.2.2.1 Augmentations Using the SFM

Testing against synthesized images at yaw angles corresponding to the subsets of Tab.
3.3 gives us the plot in Fig. 4.16a. Models with slight yaw to the right seem to produce
slightly higher recognition scores than the real frontal images in the Original subset.
Changing the testing set to the ql produces the results in plot in Fig. 4.16c. Plots
corresponding to subsets ql, qr, hl, hr, pl, pr and r can be seen in Figs. 4.16c, 4.16d,

52

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original

Figure 4.15: Precision recall curve, f subset verified against the Original subset of the
FERET dataset

Pose\Subset f r ql qr hl hr pl pr

Original 0.9902 0.9966 0.9982 0.9976 0.9977 0.9944 0.9195 0.8268
yaw 0.0 0.9834 0.9893 0.9887 0.9957 0.9879 0.9816 0.8210 0.6869
yaw -0.4 0.9893 0.9897 0.9942 0.9956 0.9900 0.9786 0.8625 0.7688
yaw 0.4 0.9941 0.9946 0.9960 0.9980 0.98845 0.9881 0.8302 0.7688
yaw -1.2 0.9232 0.9449 0.9450 0.9534 0.9425 0.8679 0.8001 0.7054
yaw 1.2 0.9098 0.9473 0.9473 0.9603 0.8820 0.9193 0.6325 0.7357
yaw -1.5 0.5486 0.5772 0.5772 0.5766 0.5901 0.4975 0.3605 0.3176
yaw 1.5 0.3938 0.4982 0.5637 0.5795 0.4558 0.5157 0.2426 0.3236

From Fig. 4.16a 4.16b 4.16c 4.16d 4.16e 4.16f 4.16g 4.16h

Table 4.12: AP for each subset and orientation augmentation, corresponding to Fig.
4.16. The orientation augmentation that produced the highest AP for each test set is
marked in bold. The second highest AP is marked in italics.

4.16e, 4.16f, 4.16g, 4.16h and 4.16b. The corresponding average precision values can be
seen in Tab. 4.12. In Fig. 4.16d, the synthesized images with a yaw similar to that of
the qr test achieves higher recognition scores than frontal images in the Original subset.
However, the average precision only increases 5h-units above the original frontal face.

In nearly all test cases, the synthesized images get lower recognition scores than the
frontal facing images in the Original subset. Since the synthesized images are based
on frontal images, the accuracy of texture fit deteriorates the further from the frontal
pose the model is oriented. However, at large poses (subsets hl, hr, pl, and pr), the
recognition performance worsens. It is also worth noting that the second highest average
precision score is oriented in the same direction as the test image in subsets (hl-pr) in
Tab. 4.12. This would suggest that the orientation augmentation, while causing some
artifacts that lowers the recognition score, might be able to be used to improve the
recognition performance when used in combination with the original image. When
one synthesized image per identity is added to the Original subset, nearly all testcases
improve. The precision-recall curves can be seen in Fig. 4.17 and their corresponding

53

average precision can be seen in Tab. 4.13. The performance increase are quite small,
but present. Looking at the performance on the subsets (r -hr, pr), the most performance
is gained from augmentations that depict similar poses as in the specified test set.

However, it seems that full profile poses are too extreme to provide any improvement,
and in many cases lowers the recognition score below the Original subset.

Pose\Subset f r ql qr hl hr pl pr

Original 0.9902 0.9966 0.9982 0.9976 0.9977 0.9944 0.9195 0.8250

Original
+ yaw 0.0

0.9954 0.9976 0.9986 0.9988 0.9986 0.9952 0.9199 0.8269

Original
+ yaw -0.4

0.9914 0.9977 0.9990 0.9986 0.9991 0.9954 0.9189 0.8312

Original
+ yaw 0.4

0.9914 0.9978 0.9986 0.9986 0.9983 0.9958 0.9190 0.8312

Original
+ yaw -1.2

0.9905 0.9966 0.9982 0.9976 0.9979 0.9943 0.9118 0.8250

Original
+ yaw 1.2

0.9905 0.9968 0.9982 0.9976 0.9979 0.9945 0.9000 0.8336

Original
+ yaw -1.5

0.9903 0.9955 0.9982 0.9976 0.9974 0.9929 0.8332 0.7273

Original
+ yaw 1.5

0.9902 0.9956 0.9982 0.9976 0.9974 0.9926 0.8436 0.7206

From Fig. 4.17a 4.17b 4.17c 4.17d 4.17e 4.17f 4.17g 4.17h

Table 4.13: Average precision for each subset and orientation augmentation, correspond-
ing to Fig. 4.17. The orientation augmentation that produced the highest AP for each
test set is marked in bold. The second highest AP score is marked in italics.

Adding more images to the identity-galleries of the evaluated poses increases the
performance in the range of 1h to 1 ppm unit. However from Tab. 4.13 we can see
that the best performing augmentations are not necessarily the synthetic images that
are posed exactly like the test subsets. Therefore the same recognition test with the
identity gallery configuration(the Original subset + one synthetic image per identity)
was repeated over the entire range (±π/2) in increments of 0.1. The average precision for
each test subset is represented as heatmaps found in Fig. 4.18. Due to the distribution
of the AP, the color scale is non-linear and unique for each heat map.

Here we see that the best performing synthesized image is posed in the test subset
direction, but always with a yaw angle offset towards the frontal pose. However, the
angle offset of 0.2-0.5 radians, (11-30 degrees) is persistent in all test subsets. The
largest offset occurs when testing against the pl and pr subsets, which could be caused by
quality degradation of the model texture. This limit of ‘usefulness’ could stem from that
reconstruction artifacts from the synthesized image become more prominent at larger
pose angles. The smaller angle offsets occurs when testing against subsets ql, hl, qr and
hr. Portions of these offsets could be attributed to pose estimation errors in the data
collection process, such that the posed images in the affected testsets are actually closer
to the highest performing synthetic poses. This claim might be plausible considering
the pose estimation technique used in the collection of the dataset, mentioned in [27].
Another source of error could be the conversion from degrees, used in the FERET
dataset, to radians used in our renderer, where for example the hl subset was posed at
22.5°, which amounts to about 0.393 radians, while the rendered pose was at 0.4 radians.

54

Test subset Augmentation AP Original AP

f Original+ yaw(0.0) 0.9954 0.9902
r Original+ yaw(0.2) 0.9978 0.9966
ql Original+ yaw(0.2) 0.9994 0.9982
hl Original+ yaw(-0.7) 0.9991 0.9977
pl Original+ yaw(-0.8) 0.9265 0.9195
qr Original+ yaw(-0.1) 0.9990 0.9982
hr Original+ yaw(1.0) 0.9959 0.9960
pr Original+ yaw(0.9) 0.8437 0.8268

Table 4.14: The best single synthesized image augmentation using the SFM on each test
subset. The choice of augmentations are based of the heatmaps in Fig. 4.18

Worth noting is also that local performance maximum appear for the mirrored syn-
thetic image poses, i.e. poses with negative yaw for the positive qr,hr,pr, and the
other way around. This suggests that even though the added pose is in the “wrong”
yaw-direction, the added information to identity gallery can still be useful. The best
performing augmentation from each test subset is summarized in Tab. 4.14.

4.2.2.2 Augmentation Using the MFM

Changing to the MFM from the work [22] and using the same subsets as in the prior
section, produces the results seen in Fig. 4.19. Average precision can be seen in Tab.
4.15. Here the synthetic images with positive yaw are mirrored images with the corre-
sponding negative yaw. For Figs. 4.19a-4.19h, the performance of the synthetic images
are comparable to those in the Original subset. The main trend with these augmenta-
tions is similar to those of the SFM augmentations, in that orientation augmentations
at smaller angles perform better than their more extreme angle counterparts. However,
the frontal augmentation, both mirrored and non-mirrored, outperforms the Original
subset in Figs. 4.19a-4.19d as well as 4.19b. The largest yaw angles, +1.3 and -1.3
radians respectively, produce the lowest AP scores.

Pose\Subset f r ql qr hl hr pl pr

Original 0.9902 0.9967 0.9982 0.9976 0.9977 0.9944 0.9195 0.8268
yaw -0.0 0.9948 0.9975 0.9980 0.9996 0.9963 0.9935 0.8832 0.7913
yaw +0.0 0.9901 0.9976 0.9985 0.9996 0.9966 0.9917 0.8883 0.7945
yaw -0.7 0.9956 0.9963 0.9990 0.9976 0.9919 0.9839 0.9058 0.8152
yaw +0.7 0.9948 0.9958 0.9983 0.9980 0.9920 0.9829 0.8997 0.7937
yaw -1.3 0.9599 0.9652 0.9800 0.9701 0.9644 0.9235 0.8127 0.7015
yaw +1.3 0.9356 0.9490 0.9687 0.9523 0.9431 0.9431 0.7574 0.6764

From Fig. 4.19a 4.19b 4.19c 4.19d 4.19e 4.19f 4.19g 4.19h

Table 4.15: Average precision for each subset and orientation augmentation, using the
MFM. The orientation augmentation that produced the highest AP for each test set is
marked in bold. The second highest AP is marked in italics.

Adding one augmentation to the identity gallery and then testing against each test
subset produces the plots seen in Fig. 4.20. The performance increases in Figs. 4.20b-
4.20h, where the greatest performance increase can be seen in the pr subset in Tab.
4.16. In this subset the performance increased by nearly 1%-unit, thereby suggesting
that the augmentation procedure is helpful.

55

Pose\Subset f r ql qr hl hr pl pr

Original 0.9902 0.9966 0.9982 0.9976 0.9977 0.994 0.9195 0.8268

Original
+yaw -0.0

0.9951 0.9977 0.9996 0.9990 0.9990 0.9958 0.9235 0.8331

Original
+yaw +0.0

0.9956 0.9977 0.9996 0.9998 0.9990 0.9960 0.9237 0.8299

Original
+yaw -0.7

0.9917 0.9977 0.9992 0.9986 0.9987 0.9958 0.9251 0.8322

Original
+yaw +0.7

0.9980 0.9980 0.9992 0.9986 0.9992 0.9956 0.9228 0.8332

Original
+yaw -1.3

0.9980 0.9969 0.9982 0.9976 0.9982 0.9945 0.9094 0.8172

Original
+yaw +1.3

0.9908 0.9970 0.9982 0.9976 0.9977 0.9941 0.8918 0.7965

From Fig. 4.20a 4.20b 4.20c 4.20d 4.20e 4.20f 4.20g 4.20h

Table 4.16: Average precision for each subset and orientation augmentation, using the
MFM. The orientation augmentation that produced the highest AP for each test set is
marked in bold. The second highest AP is marked in italics.

Judging by Tab. 4.16, the best augmentations seem to be the mirrored frontal
synthesized image (+yaw 0.0) and the positive yaw angle of 0.7 (+yaw +0.7). Using
the two top performing synthesized images from each subset form Tab.4.16 together
with the Original subset increased the performance slightly for some test subsets, but
a diminishing returns effect seems to occur, I.e. each added synthetic image affect the
result to a lesser and lesser degree. The average precision can be seen in Tab. 4.17.
In some of the tests, the possible improvement is beyond the sixth digit of accuracy,
meaning that the contribution of the augmentations are minuscule. However, in the
extremely posed images, the AP is noteworthy higher. The performance on the pr
subset can be slightly improved upon up to an AP of 0.8391, by adding the orientation
augmentation of -0.7 radians as well.

Pose
\Subset

f r ql qr hl hr pl pr

Original 0.9902 0.9966 0.9982 0.9976 0.9977 0.994 0.9195 0.8268

Original
+yaw
(+0.0)

0.9956 0.9977 0.9996 0.9998 0.9990 0.9960 0.9237 0.8299

Original
+yaw
(+0.7)

0.9915 0.9980 0.9992 0.9986 0.9992 0.9956 0.9228 0.8332

Original
+yaw

(+0.0, +0.7)

0.9958 0.9980 0.9996 0.9998 0.9993 0.9961 0.9252 0.8361

Table 4.17: Average precision for each subset and the two top performing orientation
augmentations, using the MFM. The orientation augmentation that produced the high-
est AP for each test set is marked in bold. The second highest AP is marked in italics.

As shown in Tab. 4.13 and 4.16, most of the performance gains are found at more

56

extreme poses. However, when using synthesized images at extreme poses, (yaw: ±1.2
up to ±1.5), the performance generally worsens. The cause of this might be twofold.
Firstly, the basis for the synthesized images are frontal images. These were selected
for the synthesis basis as the most accurate landmarks can be found from the frontal
pose. This also means that the reconstructed textures are of the highest quality in the
frontal parts of the face as well, and degrading towards the edges of the 3D-model,
where stretching of the fitted image occurs. Secondly, the mesh face model used ends at
the ears and just below the jawline of a human. When the model is posed at the most
extreme yaw-angles, the ’edge’ of the face is visible in the bounding box of the face,
thereby causing sharp and unnatural image-distortions.

Changing the background color of the synthesized MFM images to white and doing
the same test as in Tab. 4.15, i.e. testing only synthesized images against test subsets,
reduced the performance slightly on test subsets ql and qr. Adding the synthesized
images to the Original and comparing against the performance results found in Tab.
4.16, the difference in performance was lessened. Although some parts of background
are present in the face crop, these do not seem to affect the performance of the MFM
that much.

Performing a similar experiment on the SFM, i.e. changing the background color
from white to black did not affect the results significantly in the majority of the cases.
Using the random background approach from section 3.5.1 the performance was slightly
improved for the hr subset and the pr subset. In the case of the pr subset, the AP-score
was increased by 2% units when compared to the Original subset. In order to more
closely observe the different augmentation schemes on the pr test subset, CMC-curves
were calculated for these testcases. The results can be seen in Fig. 4.21.

From Fig. 4.21 we see that the top performing augmentation switches between the
SFM with random background and the SFM with white background. Both datasets are
constructed by adding one synthetic image to each identity. This oscillatory behavior
of top performing would suggest that random or white background does not necessarily
increase or decrease accuracy significantly. However, choosing a background color other
than black seems to improve results drastically, most noticeable in Fig. 4.21d. One
reason for this behavior could be that the edges of the model are more prominent
with the black background, which could cause unnatural responses when feed into the
classification network.

In Tab. 4.18, the best performing SFM augmentations are compared against the best
MFM augmentations. There are only very small differences present in the performance,
but in the majority of the testcases the MFM seems to slightly outperform the SFM.
However, in the pl and pr the SFM outperforms the MFM slightly. The reason behind
this is that a better pose-fit exists beyond the 75°, (∼ 0.7 radians), posed MFM model,
which we are able to find using the SFM model. In conclusion of the tests carried out
on the FERET datasets, the MFM seem to produce more robust synthesized images
that are more likely to be of high quality while the SFM provides the means of a more
flexible synthesis scheme, allowing for more precise pose augmentation.

57

Augmentation\subset f ql hl pl

Best MFM
(White BG)

(-0.0) 0.9961 (+0.0) 0.9994 (+0.7) 0.9993 (+0.7) 0.9240

Best MFM
(Black BG)

(+0.0) 0.9956 (+0.0) 0.9996 (+0.7) 0.9992 (-0.7) 0.9251

Best SFM
(White BG)

(+0.0) 0.9954 (+0.2) 0.9994 (-0.7) 0.9991 (-0.8) 0.9265

Best SFM
(Black BG)

(+0.0) 0.9933 (+0.2) 0.9994 (-1.0) 0.9992 (-0.8) 0.9229

Best SFM
(Random BG)

(+0.4) 0.9933 (0.2) 0.9992 (-0.8) 0.9992 (-0.9) 0.9245

Original 0.9902 0.9990 0.9977 0.9195

Augmentation\subset r qr hr pr

Best MFM
(White BG)

(-0.0) 0.9978 (+0.0) 0.9203 (-0.0) 0.9956 (+0.0) 0.8316

Best MFM
(Black BG)

(+0.7) 0.9980 (+0.0) 0.9998 (+0.0) 0.9960 (+0.7) 0.8332

Best SFM
(White BG)

(+0.2) 0.9978 (-0.1) 0.9990 (+1.0) 0.9959 (+0.9) 0.8437

Best SFM
(Black BG)

(+0.5) 0.9979 (+0.2) 0.9990 (+0.1) 0.9959 (-0.8) 0.8310

Best SFM
(Random BG)

(+0.5) 0.9979 (+0.2) 0.9992 (+0.7) 0.9960 (+1.0) 0.8468

Original 0.9966 0.9976 0.9944 0.8268

Table 4.18: The best performing augmentations on each subset compared to each other.
In each case, the synthesized image has been added to the identity gallery. The yaw for
each synthesized image is expressed in radians and in parenthesis next to the AP. The
top performing augmentation for the subset is marked in bold.

58

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
yaw -0.4
yaw -1.2
yaw -1.5
yaw 0.0
yaw 0.4
yaw 1.2
yaw 1.5

(a) Precision-recall curve, f subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
yaw -0.4
yaw -1.2
yaw -1.5
yaw 0.0
yaw 0.4
yaw 1.2
yaw 1.5

(b) Precision-recall curve, r subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
yaw -0.4
yaw -1.2
yaw -1.5
yaw 0.0
yaw 0.4
yaw 1.2
yaw 1.5

(c) Precision-recall curve, ql subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
yaw -0.4
yaw -1.2
yaw -1.5
yaw 0.0
yaw 0.4
yaw 1.2
yaw 1.5

(d) Precision-recall curve, qr subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
yaw -0.4
yaw -1.2
yaw -1.5
yaw 0.0
yaw 0.4
yaw 1.2
yaw 1.5

(e) Precision-recall curve, hl subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
yaw -0.4
yaw -1.2
yaw -1.5
yaw 0.0
yaw 0.4
yaw 1.2
yaw 1.5

(f) Precision-recall curve, hr subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
yaw -0.4
yaw -1.2
yaw -1.5
yaw 0.0
yaw 0.4
yaw 1.2
yaw 1.5

(g) Precision-recall curve, pl subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
yaw -0.4
yaw -1.2
yaw -1.5
yaw 0.0
yaw 0.4
yaw 1.2
yaw 1.5

(h) Precision-recall curve, pr subset.

Figure 4.16: Precision-recall curves for each test subset in the FERET dataset, using
only synthetic images or only real images for recognition.

59

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw -0.4
Original + yaw -1.2
Original + yaw -1.5
Original + yaw 0.0
Original + yaw 0.4
Original + yaw 1.2
Original + yaw 1.5

(a) Precision-recall curve, f subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw -0.4
Original + yaw -1.2
Original + yaw -1.5
Original + yaw 0.0
Original + yaw 0.4
Original + yaw 1.2
Original + yaw 1.5

(b) Precision-recall curve, r subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw -0.4
Original + yaw -1.2
Original + yaw -1.5
Original + yaw 0.0
Original + yaw 0.4
Original + yaw 1.2
Original + yaw 1.5

(c) Precision-recall curve, ql subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw -0.4
Original + yaw -1.2
Original + yaw -1.5
Original + yaw 0.0
Original + yaw 0.4
Original + yaw 1.2
Original + yaw 1.5

(d) Precision-recall curve, qr subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw -0.4
Original + yaw -1.2
Original + yaw -1.5
Original + yaw 0.0
Original + yaw 0.4
Original + yaw 1.2
Original + yaw 1.5

(e) Precision-recall curve, hl subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw -0.4
Original + yaw -1.2
Original + yaw -1.5
Original + yaw 0.0
Original + yaw 0.4
Original + yaw 1.2
Original + yaw 1.5

(f) Precision-recall curve, hr subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
Original + yaw -0.4
Original + yaw -1.2
Original + yaw -1.5
Original + yaw 0.0
Original + yaw 0.4
Original + yaw 1.2
Original + yaw 1.5

(g) Precision-recall curve, pl subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
Original + yaw -0.4
Original + yaw -1.2
Original + yaw -1.5
Original + yaw 0.0
Original + yaw 0.4
Original + yaw 1.2
Original + yaw 1.5

(h) Precision-recall curve, pr subset.

Figure 4.17: Precision-recall curves for each test subset in the FERET dataset, using
the original subset and one synthesized image per identity in order to classify each test
set. 60

r

-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Ya
w

0.99550.99580.99610.9964
0.9967

0.9970

0.9973

0.9976

pl

-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Ya
w

0.830.840.850.860.87
0.88

0.89

0.90

0.91

0.92

hl

-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Ya
w

0.99760.99780.9980
0.9982
0.9984

0.9986

0.9988

0.9990

ql

-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Ya
w

0.9982

0.9984

0.9986

0.9988

0.9990

0.9992

0.9994

f

-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Ya
w

0.9904

0.9910

0.9916

0.9922

0.9928

0.9934

0.9940

0.9946

0.9952

qr

-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Ya
w

0.99740.99760.99780.9980
0.9982

0.9984

0.9986

0.9988

hr

-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Ya
w

0.99240.99280.99320.9936
0.9940

0.9944

0.9948

0.9952

0.9956

pr

-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Ya
w

0.7200.7350.7500.765
0.780

0.795

0.810

0.825

0.840

Figure 4.18: Heatmap plots over AP for different poses of the synthesized images for
each test subset. Note that the color-mapping is unique for each plot and non-linear.

61

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io
n

Original
yaw 0.0
yaw 0.7
yaw 1.3
yaw -0.0
yaw -0.7
yaw -1.3

(a) Precision-recall curve, f subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.85

0.90

0.95

1.00

Pr
ec

is
io
n

Original
yaw 0.0
yaw 0.7
yaw 1.3
yaw -0.0
yaw -0.7
yaw -1.3

(b) Precision-recall curve, r subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Pr
ec

is
io
n

Original
yaw 0.0
yaw 0.7
yaw 1.3
yaw -0.0
yaw -0.7
yaw -1.3

(c) Precision-recall curve, ql subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.85

0.90

0.95

1.00

Pr
ec

is
io
n

Original
yaw 0.0
yaw 0.7
yaw 1.3
yaw -0.0
yaw -0.7
yaw -1.3

(d) Precision-recall curve, qr subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io
n

Original
yaw 0.0
yaw 0.7
yaw 1.3
yaw -0.0
yaw -0.7
yaw -1.3

(e) Precision-recall curve, hl subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Pr
ec

is
io
n

Original
yaw 0.0
yaw 0.7
yaw 1.3
yaw -0.0
yaw -0.7
yaw -1.3

(f) Precision-recall curve, hr subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
yaw 0.0
yaw 0.7
yaw 1.3
yaw -0.0
yaw -0.7
yaw -1.3

(g) Precision-recall curve, pl subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io
n

Original
yaw 0.0
yaw 0.7
yaw 1.3
yaw -0.0
yaw -0.7
yaw -1.3

(h) Precision-recall curve, pr subset.

Figure 4.19: Precision-recall curves for each test subset in the FERET dataset, using the
only one synthesized image per identity, using the method in [22] , in order to classify
each test set. 62

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw 0.0
Original + yaw 0.7
Original + yaw 1.3
Original + yaw -0.0
Original + yaw -0.7
Original + yaw -1.3

(a) Precision-recall curve, f subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw 0.0
Original + yaw 0.7
Original + yaw 1.3
Original + yaw -0.0
Original + yaw -0.7
Original + yaw -1.3

(b) Precision-recall curve, r subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw 0.0
Original + yaw 0.7
Original + yaw 1.3
Original + yaw -0.0
Original + yaw -0.7
Original + yaw -1.3

(c) Precision-recall curve, ql subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw 0.0
Original + yaw 0.7
Original + yaw 1.3
Original + yaw -0.0
Original + yaw -0.7
Original + yaw -1.3

(d) Precision-recall curve, qr subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw 0.0
Original + yaw 0.7
Original + yaw 1.3
Original + yaw -0.0
Original + yaw -0.7
Original + yaw -1.3

(e) Precision-recall curve, hl subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Pr
ec

is
io
n

Original
Original + yaw 0.0
Original + yaw 0.7
Original + yaw 1.3
Original + yaw -0.0
Original + yaw -0.7
Original + yaw -1.3

(f) Precision-recall curve, hr subset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

is
io
n

Original
Original + yaw 0.0
Original + yaw 0.7
Original + yaw 1.3
Original + yaw -0.0
Original + yaw -0.7
Original + yaw -1.3

(g) Precision-recall curve, pl subset.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Pr
ec

is
io
n

Original
Original + yaw 0.0
Original + yaw 0.7
Original + yaw 1.3
Original + yaw -0.0
Original + yaw -0.7
Original + yaw -1.3

(h) Precision-recall curve, pr subset.

Figure 4.20: Precision-recall curves for each test subset in the FERET dataset, using
the original subset and one synthesized image per identity, using the method in [22] ,
in order to classify each test set. 63

0 100 200 300 400 500 600 700 800
Rank

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

pr_vs_Black_ori+yaw-08
pr_vs_Million_ori+yaw+40_01
pr_vs_Million_white_ori+yaw+00_01
pr_vs_RandomBG_ori+yaw10
pr_vs_noAug
pr_vs_ori+yaw09

(a) Up to rank 725

0 20 40 60 80 100
Rank

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

pr_vs_Black_ori+yaw-08
pr_vs_Million_ori+yaw+40_01
pr_vs_Million_white_ori+yaw+00_01
pr_vs_RandomBG_ori+yaw10
pr_vs_noAug
pr_vs_ori+yaw09

(b) Up to rank 100

0 10 20 30 40 50
Rank

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

pr_vs_Black_ori+yaw-08
pr_vs_Million_ori+yaw+40_01
pr_vs_Million_white_ori+yaw+00_01
pr_vs_RandomBG_ori+yaw10
pr_vs_noAug
pr_vs_ori+yaw09

(c) Up to rank 50

0 2 4 6 8 10
Rank

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

pr_vs_Black_ori+yaw-08
pr_vs_Million_ori+yaw+40_01
pr_vs_Million_white_ori+yaw+00_01
pr_vs_RandomBG_ori+yaw10
pr_vs_noAug
pr_vs_ori+yaw09

(d) Up to rank 10

Figure 4.21: The CMC curves for the best performing augmentation strategies for the
SFM. Each sub-figure displays the same CMC curves but is gradually zoomed at lower
ranks to show more details. The evaluation is performed on the pr subset of the FERET
dataset

64

4.3 Augmentation

The results of the various augmentation schemes are presented here. Using the MFM
described in [22] augmentations at fixed angles could be extracted, the number of angles
depending on the face orientation of the initial image. Examples can be seen in Fig.
4.22. Each identity can be rendered at fixed yaw angles.

(a) Input image (b) Frontal (c) 40° (d) 75°

Figure 4.22: Synthesized images using the MFM. The background of the input image is
usually distorted, so a solid color is used as background instead.

For identities with a “neutral” facial expression, the augmentations produce images
that are similar to the original image, preserving important facial details. However, us-
age of images with more varied facial expressions produces somewhat erroneous renders.
An example can be seen in Fig. 4.23.

(a) Input image (b) Frontal (c) 75° yaw

Figure 4.23: Augmentation with open mouth in original image.

Looking more closely at the mouth in Fig. 4.23c, the teeth of the mouth are actually
mapped to the upper lip of the model. This causes a slightly erroneous render, which in
some instances could make the recognition harder. If more extreme facial expressions
are present, the quality of the render further deteriorates.

The problem of teeth is addressed in the SFM, where the blendshapes are employed to
attempt to map the input image to the face model more precisely, by finding a matching
facial expression to the input image. Since this fitting scheme outputs a full 3D-model
with an accompanied texture, more poses can be employed, as well as control of facial
expressions, within the confines of the blendshapes. This allows for many possible
augmentations by adjusting the rotation matrix for both yaw - and pitch rotations of
the face model. A sample of the possible augmentations can be seen in Fig. 4.24.

The proposed multi texturing technique in section 3.5.2 was found to produce more
erroneous results than simply rendering the model with a single texture. Fitted textures
captured at similar angles tended to contain slight miss-alignments of key facial features,
such as eyes and nostrils, so that many facial features tended to get lost when applying
the technique. The same artifacts also occurred when more than ∼ 5 textures, captured
at evenly distributed pose angles, were used. Differences in lighting conditions as well
as various image qualities further introduced distortions that deteriorated the quality of
the face. Therefore the multi-texturing technique was not investigated further and all
synthesized faces used only one texture per identity, constructed from a single frontal

65

image. The technique might be utilized if a more robust shape-fitting procedure is
employed.

Figure 4.24: A sample of possible synthesized poses using the SFM. Here the “neutral”
facial expression is used.

4.4 Synthetic Images Using BEGAN

Using the trained BEGAN network, synthetic images of faces can be generated. Fig.
4.25 shows 25 face images that were generated from random sample vectors.

4.4.1 Generated Images for Face Verification

Fig. 4.26 shows examples of successful and unsuccessful images created for face verifi-
cation according to section 3.6.2.1. As we are sampling input vectors that are supposed
to belong to the same identity from a multivariate normal distribution with a small
variance, it is likely that many images will have qualities that make them look similar.
As can be seen from Fig. 4.26a most of the images look like they could belong to the
same identity. There is also some variation between the images which is desired as long
as the images still seem to belong to the same identity.

In Fig. 4.26b the images seem to have low quality. Most of them resemble face
images but they are blurry, lacking details and have strange artifacts such as blobs of
color appearing randomly over the image. This can occur since the images are based on
random generated input vectors. Not all input vectors generate realistic looking images
and without manual intervention this is difficult to detect.

For the images in Fig 4.26c there seem to be too much variation within the identity.
This is one issue with simply sampling from a multivariate normal distribution. If the

66

Figure 4.25: Synthetic images generated using the BEGAN network.

variance is too large then images belonging to different identities will appear, if the
variance is too small the images will become too similar. Ideally one would like to
have large variations within the same identity such as rotations of the head, different
facial expressions, different lighting conditions, etc. Using this method this is difficult
to achieve.

4.4.2 Generated Images for Face Recognition

The results of the optimization experiment described in section 3.6.2.2 are shown in Fig.
4.27.

As can be seen from Fig. 4.27 the generated images tend to converge towards
something resembling each original image. However, the finer details in the original
images cannot be generated and therefore the identities in the generated images seem
to be different than the identities in the original images. The quality of the generated
images is also significantly worse than the original images even though they are both
128× 128 pixels large. As the image do not resemble the correct identity these are not
used as training data for face recognition.

As the optimization does not constrain the sample vector z to [−1, 1]64, it is possible
that the optimal vector found is not a valid vector. Input vectors z that are not withing
the correct range can still be used as input to the network. If this is done the generated
images often start to loose many of the qualities that otherwise make them look like
face images, such as the eyes, the nose or the mouth.

Even if the optimal input vector is valid, the generator might simply not be able to
recreate some of the features of the original images. As an example, non of the optimal

67

(a) Successful

(b) Low image quality

(c) Too much variation

Figure 4.26: Successful and unsuccessful image generation using BEGAN. Each sub-
figure shows images belonging to the same identity.

images shown in Fig. 4.27 have glasses while most of the original ones do. Most of
the generated images are also frontal, looking into the ”camera”. The generator can
only learn features that exist in the training dataset. If most of the training images are
frontal without glasses then that is what the generator will learn. To achieve a more
general generator, a more diverse training dataset is needed.

68

Figure 4.27: The leftmost image shows the generated image G(z) for the initial sample
vectors z. The rightmost image shows the original image x. The images the middle
show the progress of the optimization.

4.5 Face Recognition Prototype

We run the face recognition system in real time using an Axis P1357-E1 camera. As
face detection is a part of performing face recognition, we use the Multi-task Cascaded
Convolutional Network, mentioned in section 2.3.1, for face detection. The pre-trained
Inception-ResNet-V1 network is used to actually recognize the identities of the detected
face images. Both the face detection and the recognition are performed on one Nvidia
GTX 1060 with 6 GB of GDDR5 RAM. Tab. 4.19 shows the average time it takes to
detect and recognize one face using this setup for different resolutions. Tab. 4.20 shows
how the recognition time is affected by using a larger training dataset.

640× 360 800× 450 1280× 720 1920× 1080

Detection 30.08 ms 40.31 ms 81.92 ms 163.76 ms

Table 4.19: Each column represents the time it takes to perform face detection at
different camera resolutions.

298 images 2980 images 29800 images

Recognition 22.81 ms 26.91 ms 29.36 ms

Table 4.20: Each column represents the time it takes to perform face recognition at
different training dataset sizes.

Face detection seems to consume more time than face recognition. Unlike face recog-
nition which is always performed on images of size 160× 160 pixels, the face detection
slows down as the camera resolution increases. This can be seen in Tab. 4.19. The
detection time increases as the P-Net, mentioned in section 2.3.1, is forced to handle

69

images of larger sizes.
As the size of the training dataset increases there are more images that need to be

compared in order to perform face recognition. This increases the time needed to find
the best match as is illustrated in Tab. 4.20. The Axis employee database consists of 298
training images and reaches up to 894 training images when using the best performing
SFM augmentation strategy. This hardly affects the recognition time compared to the
detection time. Even when using 29, 800 training images, the time it takes to recognize
one face image is smaller than the time it takes to detect the face. This is true even at
the smallest resolution of 640× 360 pixels.

At resolution 640×360 pixels when using only the 298 training images from the Axis
employee database, the total time needed to detect and recognize a face is on average
52.89 ms. This is equivalent to approximately 19 frames per second, which is enough to
make the video stream seem smooth.

70

Chapter 5

Conclusion

In this thesis work we explored different data augmentation techniques. In particular
we used 3D morphable models, the SFM and the MFM, in an attempt to enhance
face verification and recognition. We also explored how generative adversarial networks
could be used to create synthetic datasets for training face verification networks, and if
these synthetic images potentially could be used for face recognition as well. We also
constructed an evaluation dataset from surveillance images for internal use at Axis.

Using synthetic images in conjunction with the original image, we were able increase
the recognition performance, as can be seen in Fig. 4.8. However, the possible perfor-
mance increase differs greatly between the different synthetic images, where inclusion
of low-quality synthetic images actually decrease performance significantly. This can be
seen in Tab. 4.5, where performance starts to decrease after using more than 3 synthetic
images, as well as in Tab. 4.7.

5.1 The Surrey Face Model

The SFM proved to be useful when performing face recognition. It does require a high
resolution image for the 3D reconstruction but can therefore also create high quality
synthetic images if the reconstruction is successful. If the pose of the faces in the
input images to the face recognition system is known, this method could improve the
performance. This is a likely scenario to occur in video surveillance as cameras are often
capturing images from a fixed direction. When tested on the FERET dataset at specific
pose angles, it was seen that the performance was increased when using augmentations
with similarly posed synthetic images as in the test set. A subtle performance increase
could also be found if the mirrored synthetic pose image was used instead, i.e. comparing
a synthetic image at a negative yaw angle with a test image at a positive yaw.

For face verification the SFM was not quite as useful as the other augmentation
methods. As the reconstruction can fail fairly easily for images that are of lower resolu-
tion, not sharp enough or where the face is partially occluded the method is not ideal
for augmenting large diverse datasets.

5.2 The Million Faces Model

The MFM was useful when training face verification networks. It was both faster and
could handle lower resolution images better than the SFM which made it ideal for large
data augmentation. It provided synthetic images where the visual quality was decent,

71

although not quite as high as the best performing synthetic images using SFM. Instead
it was stable and often produced usable synthetic images.

For face recognition the MFM was not quite as useful as it can only be rendered at
a few different yaw angles. This makes it less ideal for the scenario where a surveillance
camera is capturing images at a fixed angle. However, when comparing the synthetic
MFM images to similarly posed test images in the FERET set, the MFM achieved
slightly higher performance than the corresponding SFM synthetic images. This might
be caused by the dense texture mapping applied within the MFM fitting scheme, which
causes less distortions near the edges of the face.

5.3 Generative Adversarial Networks

The BEGAN used in this thesis work proved to be very good at creating realistic looking
face images. However, for face verification or recognition this is not enough as the
training data must be labeled. We attempted to use the BEGAN to generate several
synthetic images belonging to the same identity, while still being somewhat different.
Our technique was capable of generating images that seemingly belonged to the same
identity, but in order to generate more versatile images within an identity a different
strategy would be needed. Still, we were capable of fine-tuning a face verification network
using completely synthetic data and performing no manual data labeling.

We also tried to generate data for face recognition where we wanted more images of an
already known identity. The method used was capable of generating images resembling
the known identity but they were not good enough to actually seem to belong to the
same person.

The main benefit of the generative adversarial networks was that they generated
images of complete faces, including hair and ears, unlike the 3D morphable models that
only reconstructed parts of the face. The generated faces were also often more realistic
looking than the ones reconstructed using the 3D morphable models. This gives them
great potential.

5.4 Future Work

There are a variety of different methods that could be explored in order to improve
the current performance. There are recent techniques for improved facial textures for
3D morphable models, such as [32], where a full high quality texture is generated even
for occluded regions of the face. Improved landmark detection could also be useful to
increase the quality of the reconstruction, and could make the augmentation process
more robust. Creating completely new morphable models that covers a larger region of
the face would be useful, although difficult and time consuming.

Generative adversarial networks show a lot of promise as they are capable of gen-
erating realistic looking faces compared to the slightly artificial look of the morphable
models. A new strategy for dataset generation with more variation within identities,
compared to our method, would be useful. There are also other interesting works such
as [16] that use GANs to generate faces at different yaw angles given a profile input
image.

72

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] Oswald Aldrian and William AP Smith. Inverse rendering of faces with a 3d mor-
phable model. IEEE transactions on pattern analysis and machine intelligence,
35(5):1080–1093, 2013.

[3] Anh Tu an Trãn, Tal Hassner, Iacopo Masi, and Gérard Medioni. Regressing robust
and discriminative 3D morphable models with a very deep neural network. arXiv
preprint arXiv:1612.04904, 2016.

[4] D. Berthelot, T. Schumm, and L. Metz. BEGAN: Boundary Equilibrium Generative
Adversarial Networks. ArXiv e-prints, March 2017.

[5] Christopher M Bishop. Pattern recognition. Machine Learning, 128:1–58, 2006.

[6] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. Infogan: Interpretable representation learning by information maximizing
generative adversarial nets. CoRR, abs/1606.03657, 2016.

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International Journal of Computer
Vision, 88(2):303–338, June 2010.

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
networks. June 2014.

[9] Patrick Grother, Ross J. Micheals, and P. Jonathon Phillips. Face recognition
vendor test 2002 performance metrics. In Proceedings of the 4th International Con-
ference on Audio- and Video-based Biometric Person Authentication, AVBPA’03,
pages 937–945, Berlin, Heidelberg, 2003. Springer-Verlag.

[10] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. Ms-
celeb-1m: A dataset and benchmark for large-scale face recognition. CoRR,
abs/1607.08221, 2016.

73

[11] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[12] T. Hassner, S. Harel, E. Paz, and R. Enbar. Effective face frontalization in uncon-
strained images. ArXiv e-prints, November 2014.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[14] Guosheng Hu. Face analysis using 3D morphable models. PhD thesis, University
of Surrey, 2015.

[15] Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled
faces in the wild: A database for studying face recognition in unconstrained envi-
ronments. Technical report, Technical Report 07-49, University of Massachusetts,
Amherst, 2007.

[16] R. Huang, S. Zhang, T. Li, and R. He. Beyond Face Rotation: Global and Local
Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis.
ArXiv e-prints, April 2017.

[17] Patrik Huber, Guosheng Hu, Rafael Tena, Pouria Mortazavian, Willem P Koppen,
William Christmas, Matthias Rätsch, and Josef Kittler. A multiresolution 3d mor-
phable face model and fitting framework. In International Conference on Computer
Vision Theory and Applications (VISAPP), pages 1–8, 2016.

[18] Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with an
ensemble of regression trees. In CVPR, 2014.

[19] Davis E. King. Dlib-ml: A machine learning toolkit. Journal of Machine Learning
Research, 10:1755–1758, 2009.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[21] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face at-
tributes in the wild. In Proceedings of International Conference on Computer Vision
(ICCV), 2015.

[22] Iacopo Masi, Anh Tu an Trãn, Tal Hassner, Jatuporn Toy Leksut, and Gérard
Medioni. Do we really need to collect millions of faces for effective face recognition?
In European Conference on Computer Vision (ECCV), October 2016.

[23] Hong-Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face
datasets. In Image Processing (ICIP), 2014 IEEE International Conference on,
pages 343–347. IEEE, 2014.

[24] Mortazavian P. Face Recognition in Low Resolution Using a 3D Morphable Model.
PhD thesis, University of Surrey, 2013.

[25] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A 3d face model for
pose and illumination invariant face recognition. In 2009 Sixth IEEE International
Conference on Advanced Video and Signal Based Surveillance, pages 296–301, Sept
2009.

74

[26] P. J. Phillips, Hyeonjoon Moon, S. A. Rizvi, and P. J. Rauss. The feret evalua-
tion methodology for face-recognition algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(10):1090–1104, Oct 2000.

[27] P Jonathon Phillips, Sandor Z Der, Patrick J Rauss, and Or Z Der. FERET (face
recognition technology) recognition algorithm development and test results. Army
Research Laboratory Adelphi, MD, 1996.

[28] P.Jonathon Phillips, Harry Wechsler, Jeffery Huang, and Patrick J. Rauss. The
feret database and evaluation procedure for face-recognition algorithms. Image and
Vision Computing, 16(5):295 – 306, 1998.

[29] Christos Sagonas, Epameinondas Antonakos, Georgios Tzimiropoulos, Stefanos
Zafeiriou, and Maja Pantic. 300 faces in-the-wild challenge: Database and results.
Image and Vision Computing, 47:3–18, 2016.

[30] Christos Sagonas, Georgios Tzimiropoulos, Stefanos Zafeiriou, and Maja Pantic.
300 faces in-the-wild challenge: The first facial landmark localization challenge. In
The IEEE International Conference on Computer Vision (ICCV) Workshops, June
2013.

[31] Christos Sagonas, Georgios Tzimiropoulos, Stefanos Zafeiriou, and Maja Pantic. A
semi-automatic methodology for facial landmark annotation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages
896–903, 2013.

[32] Shunsuke Saito, Lingyu Wei, Liwen Hu, Koki Nagano, and Hao Li. Photorealistic
facial texture inference using deep neural networks. CoRR, abs/1612.00523, 2016.

[33] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling oper-
ations in convolutional architectures for object recognition. In Proceedings of the
20th International Conference on Artificial Neural Networks: Part III, ICANN’10,
pages 92–101, Berlin, Heidelberg, 2010. Springer-Verlag.

[34] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified
embedding for face recognition and clustering. CoRR, abs/1503.03832, 2015.

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the inception architecture for computer vision. CoRR,
abs/1512.00567, 2015.

[37] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric
framework for nonlinear dimensionality reduction. science, 290(5500):2319–2323,
2000.

[38] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature
learning approach for deep face recognition. pages 499–515, 2016.

[39] Lior Wolf, Tal Hassner, and Itay Maoz. Face recognition in unconstrained videos
with matched background similarity. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 529–534. IEEE, 2011.

75

[40] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection and alignment us-
ing multitask cascaded convolutional networks. IEEE Signal Processing Letters,
23(10):1499–1503, Oct 2016.

76

	Introduction
	Main Objective
	Related Work
	Effective Face Recognition
	Morphable Face Models
	Generative Adversarial Networks

	Theory
	Image Synthesis
	3D Morphable Model
	Camera Fitting
	Shape Fitting
	Facial Expression Fitting
	Texture Fitting

	An Overview of Neural Networks
	Convolutional Neural Networks
	Residual Blocks
	Inception Modules
	Loss Functions

	Neural Networks for Face Detection
	Multi-task Cascaded Convolutional Networks

	Neural Networks for Image Generation
	Generative Adversarial Networks
	Boundary Equilibrium Generative Adversarial Networks

	Methodology
	Tools Used
	TensorFlow
	Eos
	Dlib
	OpenGL
	OpenCV

	Datasets
	FaceScrub
	Labeled Faces in the Wild
	FERET
	Large Scale CelebFace Attributes
	Axis Employee Database
	Axis Internal Dataset

	Training Face Verification Networks
	Network Architecture
	Training Procedure
	Evaluation

	Face Recognition
	Network Architecture
	Evaluation

	3D-Augmentation
	Pose- and Shape Synthesis
	Multitexture Rendering
	Pose Evaluation

	Augmentation Using BEGAN
	Training Procedure
	Dataset Generation
	Evaluation

	Results and Discussion
	Face Verification Using Fine-tuned Networks
	Center Loss
	Triplet Loss
	Generative Adversarial Networks

	Face Recognition Using the Pre-trained Network
	Axis Internal Dataset
	FERET Dataset

	Augmentation
	Synthetic Images Using BEGAN
	Generated Images for Face Verification
	Generated Images for Face Recognition

	Face Recognition Prototype

	Conclusion
	The Surrey Face Model
	The Million Faces Model
	Generative Adversarial Networks
	Future Work

