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ABSTRACT 

 

Reliable information on land cover is required to assist and help in the decision-making 

process needed to face the environmental challenges society has to deal with due to 

climate change and other driving forces. Different methods can be used to gather this 

information but satellite earth observation techniques offer a suitable approach based on 

the coverage and type of data that are provided. Few years ago, the European Union (EU) 

started an ambitious program, Copernicus, that includes the launch of a new family of 

earth observation satellites known as Sentinel. Each Sentinel mission is based on a 

constellation of two satellites to fulfill specific requirements of coverage and revisit time. 

Among them are the Sentinel-1 and Sentinel-2 satellites. Sentinel-1 carries a Synthetic 

Aperture RADAR (SAR) that operates on the C-band. This platform offers SAR data day-

and-night and in all-weather conditions. Sentinel-2 is a multispectral high-resolution 

imaging mission. The sensor has 13 spectral channels, incorporating four visible and near-

infrared bands at 10 m resolution, six red-edge/shortwave-infrared bands at 20 m and 

three atmospheric correction bands at 60 m. The main objective of this study has been to 

investigate the classification accuracies of specific land covers obtained after a Random 

Forest classification of multi-temporal Sentinel data over an agricultural area. Four 

scenarios have been tested for the classification: i) Sentinel-1, ii) Sentinel-2, iii) Sentinel-

2 and vegetation indices, iv) Sentinel-1, Sentinel-2, and vegetation indices. The 

classifications have been performed using a pixel and polygon based approach. The 

results have shown that the best accuracies (0.98) are obtained when using and polygon 

based approach independently of the scenario that is selected. For the pixel based 

approach, the highest accuracy (0.84) is obtained when using Sentinel-1, Sentinel-2, and 

vegetation indices.  

 

Keywords: optical, SAR, land cover classification, Random Forest, temporal series.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ii 

ABSTRAKT 
 

Tillförlitlig information om markskydd är nödvändig för att hjälpa och hjälpa till i 

beslutsprocessen som behövs för att möta de miljöutmaningar som samhället måste 

hantera tack vare klimatförändringar och andra drivkrafter. Olika metoder kan användas 

för att samla denna information, men satellitjordobservationstekniker erbjuder ett 

lämpligt tillvägagångssätt baserat på täckning och typ av data som tillhandahålls. För 

några år sedan inledde Europeiska unionen (EU) ett ambitiöst program, Copernicus, som 

inkluderar lanseringen av en ny familj av jordobservationssatelliter som kallas Sentinel. 

Varje Sentinel-uppdrag bygger på en konstellation av två satelliter för att uppfylla 

specifika krav för täckning och återkommande tid. Bland dem är Sentinel-1 och Sentinel-

2 satelliterna. Sentinel-1 har en Synthetic Aperture RADAR (SAR) som fungerar på C-

bandet. Denna plattform erbjuder SAR-data dag och natt och i alla väderleksförhållanden. 

Sentinel-2 är ett multispectral högupplösta uppdrag. Sensorn har 13 spektralkanaler, som 

innehåller fyra synliga och nära infraröda band med 10 m upplösning, sex red-edge / 

shortwave-infrarödband vid 20 m och tre atmosfärskorrigeringsband vid 60 m. 

Huvudsyftet med denna studie har varit att undersöka klassifikationsnoggrannheten för 

specifika markdäck som erhållits efter en slumpmässig skogs klassificering av flera 

temporala Sentinel-data. Fyra scenarier har testats för klassificeringen: i) Sentinel-1, ii) 

Sentinel-2, iii) Sentinel-2 och vegetationsindex, iv) Sentinel-1, Sentinel-2 och 

vegetationsindex. Klassificeringen har utförts med hjälp av ett pixel- och objektbaserat 

tillvägagångssätt. Resultaten har visat att de bästa precisionerna (0.98) erhålls vid 

användning och objektbaserad tillvägagångssätt oberoende av det scenario som väljs. För 

det pixelbaserade tillvägagångssättet erhålls högsta noggrannhet (0,84) när man använder 

Sentinel-1, Sentinel-2 och vegetationsindex. 

 

Nyckelord: optisk, SAR, landskyddsklassificering, Random Forest, tidsserie. 
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1. INTRODUCTION  
 

1.1 Research background 

Over the last decades, driving forces such as growing population, higher demand for 

supplies or energy needs are leading to a more extensive and intensive use of natural 

resources. Among others, the use of the available land is suffering the consequences of 

this shift in the global needs by forcing land use conversions and damaging the 

environment. One of the main changes is led by agricultural expansion and the necessity 

of increasing crop yields. The improvement of agricultural production can be achieved 

by using different techniques that vary greatly across the world (FAO, 2009) and, the 

expansion of arable lands is one of the options.  

 

Following the necessity of better crop yields, the management of this resource has to be 

included in the discussion at different stakeholder levels. For example, farmers have to 

balance the use of irrigation systems, chemical fertilizers or pesticides with the 

environmental impact of these activities. By doing so, future scenarios where food 

production increases in the short-term but generates a long-term loss of ecosystem 

services, including those relevant for agriculture, can be solved (Foley, 2005). At a 

different scale, governments or international agencies require more detailed information 

that improves the decision-making process. Better crop-area identification, early 

estimation of production or validity of farmer’s application for subsidies are just some 

examples where accurate and precise information is valuable.  

 

One of the main tools used for the implementation of effective management decisions is 

agricultural mapping, which allows gathering information and statistics on crops and 

other related agricultural resources. Dealing with food security requires knowledge about 

the crop types and the land area that is being planted. In addition, data about the health 

and quality of the crops is essential to ensure the production levels. To collect the required 

data, one of the technologies that provides an economic and feasible approach for land 

cover information, and hence agricultural mapping, is remote sensing (Townshend, 

Justice, Li, Gurney, & McManus, 1991; Cihlar, 2000).  

 

Remote sensing enables proper observation, identification, mapping, assessment, and 

monitoring of land dynamics at a range of spatial and temporal resolutions (Rogan & 

Chen, 2004). The increased availability of earth observation data together with the 

technological improvements in processing capacity are guiding the advance of remote 

sensing as a robust and consistent methodology (Gómez, White, & Wulder, 2016). As an 

example, the state of the land is highly dynamic so that the frequency of the necessary 

information about this system has to be coupled. Remote sensing provides the flexibility 
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to monitor agricultural areas, that switch from bare soil at the beginning of the season to 

high density vegetated areas at the peak growth. 

 

The use of satellites for agriculture started in early 1970’s (Bauer, 1973; Doraiswamy, 

Moulin, Cook, & Stern, 2003) when the first Landsat satellite (Landsat 1) was launched 

by the U.S.A. to classify Midwestern agricultural landscape into maize or soybean fields 

(Mulla, 2013). Then, new satellites were incorporated by other countries such as SPOT 1 

(Satellite Pour l’Observation de la Terre – 1986, France) or IRS-1A (Indian Remote 

Sensing Satellite-1A – India, 1988), increasing the applications and possibilities of this 

technology. The large adoption of mapping and the inclusion of remote sensing as a 

relevant technology to address global applications has subsequently motivated the design 

of new and better satellite imaging systems. The main trends that lead the process are: 

resolution (spatial, temporal, radiometric and spectral), precision and information 

accuracy, processing data speed, and analysis capabilities (Wegener, 2001).  

 

Remote sensing applications in agriculture are based on the interaction of electromagnetic 

radiation with vegetation or soil, by capturing the reflected radiation emitted by either an 

active or passive sensor. The electromagnetic region captured by a sensor determines the 

information that can be derived. Mainly, earth observation remote sensing focuses on the 

visible, infrared or microwaves regions and, based on that, two main classifications are 

done: optical and SAR (Synthetic Aperture RADAR) remote sensing.  

 

Optical remote sensing uses the sun as an external source of irradiance and measures the 

reflected radiation from a surface in the visible and infrared part of the electromagnetic 

spectrum. In the visible part, green plants reflect radiation inversely related to the amount 

of radiation absorbed by their photosynthetic and accessory pigments. For example, the 

chlorophyll pigment absorbs most part of the radiation in the visible spectrum from 400 

nm to 700 nm, especially at 430 nm (blue) and 660 nm (red) and leads to low reflectance 

in these bands. (Chappelle, Kim, & McMurtrey, 1992). Contrarily, plant reflectance is 

high in the near infrared (NIR) region (700-1300 nm) as result of leaf inter-cellular 

structure, canopy density, and canopy structure effects (Mulla, 2013). Using these plant 

reflectance characteristics, many studies have been developed for different purposes. 

Song et al., (2017) used medium resolution optical satellite imagery to estimate 

cultivation area for soybeans at a national scale. Becker-Reshef et al., (2010) developed 

a Global Agricultural Monitoring Project (GLAM) using remotely-sensed optical data 

and derived products for crop condition monitoring and production assessment. Prasad, 

Chai, Singh, & Kafatos, (2006) combined derived products from optical imagery with 

surface parameters to estimate crop yield. An extensive review optical remote sensing 

applications in agriculture was conducted by Wojtowicz, Wojtowics, & Piekarczyk, 
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(2015). Despite the progress made with optical sensors, it is not always possible to 

provide the desired information due to constraints related to cloud cover and revisit time. 

 

The strong contrast of radiation absorption in the visible and infrared region of the 

spectrum makes possible to create quantitative indices of vegetation conditions. These 

mathematical quantitative combinations are known as vegetation indices. The usual form 

of a vegetation index is a ratio of reflectance measured in two bands or their algebraic 

combination.  Some examples are NDVI (Rouse, Haas, Schell, & Deering, 1974),  EVI2 

(Jiang, Huete, Didan, & Miura, 2008), Cl-RedEdge, (Gitelson, Keydan, & Merzlyak, 

2006; Gitelson, Gritz, & Merzlyak, 2003) and NDWI (Gao, 1996). Numerous papers have 

studied the use of vegetation indices for remote sensing applications either individually 

or in combination with spectral bands (Bannari, Morin, Bonn, & Huete, 1995; Mróz & 

Sobieraj, 2004; Dash et al., 2007; Campus et al., 2010) 

 

Unlike optical, SAR satellites use their own source of radiation. The microwave 

electromagnetic radiation used depends on the applications of each mission, but they 

mainly operate at the X-band (2.5 – 3.75 cm), C-band (3.75 – 7.5 cm) or L-band (15 – 30 

cm). By using active microwave radiation, SAR satellites can take advantage of its 

characteristics: penetration of waves in the ground (few centimetres), weather 

independence, and day-and-night imaging capability. Once the radiation is backscattered 

by a target, the sensor captures its strength and phase. The resulting value is directly 

linked with the wavelength, roughness, geometry, and material contents of the target. 

 

When using SAR technology for imaging, the spatial resolution of the final image has to 

be considered. The final pixel size is defined by the azimuth resolution (direction parallel 

to the flight path) and the range resolution (direction perpendicular to the flight path). The 

azimuth resolution established that two objects on the ground, and with the same slant 

range (distance between antenna and target) can only be sensed separately if they are not 

both within the radar beam at the same time. For a specific frequency f (or wavelength 

), the azimuth resolution is entirely dependent on the aperture length of the antenna.  So, 

high-resolution images in the azimuth direction require maximizing the diameter of 

antennas. However, space-engineering limitations make impossible to transport big 

devices. To solve this problem, the Doppler effect of echo signal can be used to synthesize 

artificially a much longer antenna aperture, and then produce images with higher spatial 

resolution. This type of procedure is used in all SAR satellites and that is the reason for 

its name: Synthetic Aperture RADAR. The range resolution is determined by the product 

of the speed of light by the pulse length divided by 2. 
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Many researches have explored the possibilities to use SAR in agriculture. Erten, Lopez-

Sanchez, Yuzugullu, & Hajnsek, (2016) compared different techniques to use SAR data 

to retrieve vegetation height from space. Moran et al., (2012) analysed the applicability 

of SAR time series for monitoring crop and soil conditions. Hirooka, Homma, Maki, & 

Sekiguchi, (2015) used SAR data to evaluate leaf area index (LAI) in rice fields.  

 

Due to the limitations in optical and SAR remote sensing technologies, there has been 

increasing interest in jointly using both of them for agricultural purposes, since combining 

both sensors can help in discriminating different classes (Pohl & Van Genderen, 1998). 

Many studies have performed multisensor analysis to improve mapping accuracy in 

agricultural scenarios (Ban, 2003; Brisco & Brown, 1995; Haack & Bechdol, 2000; 

Inglada, Vincent, Arias, & Marais-Sicre, 2016; Solberg, Jain, & Taxt, 1994).  

 

1.2 About this study 

Taking advantage of the efforts of the European Union (EU) to develop services based 

on satellite Earth Observation and in-situ data, this work aims at improving agricultural 

information based on a multisensor approach. A research is proposed to investigate the 

use of multi-temporal Sentinel-1 (SAR) and Sentinel-2 (Optical) satellite data, together 

with vegetation indices, for agricultural mapping.  

 

The family of Sentinel satellites is included in the space component of the Copernicus 

program of the EU and the European Space Agency (ESA) (previously known as Global 

Monitoring for Environment and Security – GMES). The objective of this initiative is to 

improve the management of the environment, study climate change impact, and ensure 

civil security. Through satellites and in-situ observations (ground based weather stations, 

air quality monitoring networks, etc.) this service delivers near real time data on a global 

level for applications at different scales. The space segment is formed by 6 constellations 

of two satellites each, with a range of technologies from SAR to multi-spectral imaging.  

 

The Sentinel-1 mission (formed by Sentinel-1A and Sentinel-1B satellites) is a polar 

orbiting day and night SAR imaging mission at an altitude of 700 km. Sentinel-1A was 

launched on April 3th 2014 and Sentinel-1B on April 25th 2016. The satellites work on the 

C-band, and in combination, their global revisit time is six days. There are four operation 

modes: interferometric wide-swath (IW) with a swath width of 250 km and 5x20 m2 pixel 

resolution, wave-mode (WV) at 20x20 km2 and 5x5 m2 pixel resolution, strip map (SM) 

mode at 80 km swath width and 5x5 m2 pixel resolution, and extra wide-swath (EW) at 

400 km swath width and 20x40 m2 pixel resolution. The satellite supports operations in a 

single (HH or VV) or dual polarization (VV+VH or HH+HV). Each Sentinel-1 product 

acquired in SM, IW and EW can be distributed at three processing levels: i) level-0 
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products are compressed and unfocused SAR raw data and are the basis from which 

higher level products are produced, ii) level-1 products are focused data and it is mainly 

designated for most data users. The processing from level-0 to level-1 includes Doppler 

centroid estimation, single look complex focusing, and image and post-processing for 

generation of the Single Look Complex (SLC) and Ground Range Detected (GRD) 

products. The SLC and GRD are two different level-1 sub-products, iii) level-2 consists 

of geolocated geophysical products derived from Level-1. 

 

The Sentinel-2 mission (formed by Sentinel-2A and Sentinel-2B) is a polar orbiting 

multi-spectral imaging mission with 13 spectral bands at an altitude of 786 km. Sentinel-

2A was launched on June 23th 2015 and Sentinel-2B on March 7th 2017. In combination, 

the two satellites provide a revisit time of 5 days at the equator. The 13 bands cover a 

range of the spectrum from 43 nm to 2190 nm with a swath width of 290 km and a spatial 

resolution of 10 m (4 visible and near-infrared bands), 20 m (6 red-edge/shortwave 

infrared bands), and 60 m (3 atmospheric correction bands). All data acquired by the 

satellite sensor is processed at different levels. The first one, Level-0, includes telemetry 

analysis, of low resolution image extraction and ancillary telemetry analysis among 

others. The second one, Level-1, is produced by using level-0 output and has three 

different sub-products: i) level-1A which decompresses relevant mission source packets, 

ii) level-1B which applies radiometric corrections to level-1A output, iii) level-1C where 

radiometric and geometric corrections (including orthorectification and spatial 

registration) are performed and Top Of the Atmosphere (TOA) are calculated. The third 

one, Level-2, includes a scene classification and an atmospheric correction applied to 

TOA values among others. The main output is then an orthoimage with Bottom Of the 

Atmosphere (BOA) reflectance values. It has to be highlighted that all the Sentinel-2 

products are systematically processed to level-1C and that this is the unique level released 

for users from ESA. If desired, level 2A can be processed on the user side through specific 

software (Sentinel-2 Toolbox). Table 1 summarizes the Sentinel-2 characteristics. 

 

Using remote sensing images for agricultural mapping requires the classification of the 

images into different crop types that are present in a specific area. Although many 

classification approaches have been developed, the selection of a specific algorithm is 

still one of the challenges when doing image classification. The selection requires the 

consideration of different factors such as computational resources, algorithm 

performance or classification accuracy (Defries & Chan, 2000). Algorithms can be per-

pixel, subpixel, and per-field and the process can be either supervised or un-supervised.  

 

In recent years, several algorithms developed for machine learning have been adopted for 

remote sensing applications. These include support vector machine, neural networks, and 
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Random Forest. In opposition to parametric classifiers, a machine learning approach does 

not start with a data model but instead learns the relationship between the training and the 

response dataset (Breiman, 2001). Over the last decades, the Random Forest algorithm 

has received increasing attention due to good classification results and the speed of 

processing (Du, Samat, Waske, Liu, & Li, 2015; Rodriguez-Galiano, Ghimire, Rogan, 

Chica-Olmo, & Rigol-Sanchez, 2012). 

 

Table 1. Sentinel-2 specifications. 

Band ID Resolution (m) Central wavelength (nm) Band width (nm) 

B01 60 443 20 

B02 10 490 65 

B03 10 560 35 

B04 10 665 30 

B05 20 705 15 

B06 20 740 15 

B07 20 783 20 

B08 10 842 115 

   B08A 20 865 20 

B09 60 945 20 

B10 60 1375 30 

B11 20 1610 90 

B12 20 2190 180 

 

The Random Forest classifier is an aggregated model, which means it uses the output 

from different models (trees) to calculate the response variable, in our case crop type. In 

recent years, a number of studies have reported that ensembles methodologies produce 

performance improvements over single base methods (Dahinden, 2009). Ensemble 

methods consist in learning several weak classifiers to generate a classifier with a strong 

decision rule. The combination of the tree’s outputs can be achieved using weighted or 

unweighted voting to classify new samples. Bagging (Breiman, 1996) and Boosting 

(Freund & Schapire, 1996) are well-known representatives of this methodology. 

 

To understand how Random Forest works, it is necessary to become familiar with 

decision trees. A known method to fit trees is CART (Classification And Regression Tree) 

(Breiman, Friedman, Olshen, & Stone, 1984).  Decision trees are predictive models that 

recursively split a dataset into regions by using a set of binary rules to calculate a target 

value for classification or regression purposes. In our case, classification trees will be 

used. Trees are created in the following manner. Given a training set with n number of 

samples and m number of variables, a random subset of samples n is selected with 

replacement (bagging approach) and used to construct a tree. At each node of the tree, a 
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random selection of variables m is used and, out of these variables, only the one providing 

the best split will be used to create two sub-nodes. By using a subset and random selection 

of variables, less correlation among trees and lower error rates can be achieved.  

 

The decision of which variable provides the best splitting criteria is made by using the 

GINI index (in CART algorithm). GINI index measures class homogeneity and as it 

increases, class heterogeneity increases as well. However, as GINI index decreases, class 

homogeneity increases. If a child node of GINI index is less than a parent node, then the 

split is successful. Tree splitting is finished when GINI index is zero. This means that 

only one class is present at each terminal node (Watts, Powell, & Lawrence, 2011). 

 

To create the forest, the user can determine two parameters. The first one is the number 

of trees that will be created. Since Random Forest is computationally efficient and does 

not overfit, the number of trees can be as large as desired. However, previous studies have 

shown that 500 trees are enough because errors usually stabilize before this number is 

achieved (Lawrence, Wood, & Sheley, 2006). The second parameter that can be chosen 

is the number of variables that are randomly selected when creating a splitting point. If 

not selected, a default value can be used instead. The default value is calculated using the 

square root of the total number of variables (Gislason, Benediktsson, & Sveinsson, 2006). 

By growing the forest up to the number of trees the user has selected, the algorithm creates 

trees that have high variance and low bias (Breiman, 2001). Once the forest is created, 

about two thirds of the samples have been used to train the model (in-bag samples) and 

the remaining one third will be used for an internal cross validation technique (out-of-the-

bag samples – OOB).  

 

One of the features of a Random Forest classification is variable importance (VI). It 

indicates the influence of each variable on the classification. VI can be calculated in 

different ways but because the CART algorithm uses the GINI index, the VI is obtained 

using the Mean Decrease in GINI (MDG) and the Mean Decrease in Accuracy (MDA). 

At every split, one of the randomly selected variables is used and there is a resulting 

decrease in the GINI. The sum of all decreases in the forest due to a given variable, 

normalized by the number of trees forms produces the Mean Decrease in GINI (MDG). 

The MDA takes into account the difference between the OOB error resulting from a 

dataset obtained through random permutations of the values of the different variables and 

the OOB error resulting from the original data set (Breiman, 2001) 

 

Once the forest is created, each pixel of a remote sensing image is classified by each tree, 

producing as many classifications as number of trees. Each tree votes for a class 

membership and then, the class with the maximum number of votes is selected as the final 
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class. Recently, many studies have shown the relevance of Random Forest for land cover 

mapping (Colditz, 2015; Stefanski, Mack, & Waske, 2013). A review of Random Forest 

applications in remote sensing can be founded in (Belgiu & Drăgu, 2016). 

 

1.3 Thesis Structure 

 

The thesis has been organized into six chapters. Chapter 1, Introduction, has presented 

a brief introduction to the problem, narrowing down the topic until the use of SAR and 

optical sensors in agriculture, and providing a description of Sentinel-1, Sentinel-2 and 

Random Forest. Chapter 2, Objectives, describes the main objective, secondary 

objectives, research questions, and hypothesis. Chapter 3, Methodology, explains the 

steps followed to carry out the research, from the selection of the datasets to the 

processing techniques and algorithms used for image analysis and classification. Chapter 

4, Results, presents the output of all the steps followed. Chapter 5, Discussion, discusses 

the result and development of the methodology. Finally, Chapter 6 presents the 

conclusions and recommendations.  
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2. OBJECTIVES  
 

2.1 Main objective 

To assess which classification approach and variable combination produce the best 

accuracy when using time series dataset of satellite remote sensing over an agricultural 

area. 

 

2.2 Specific objectives 

1- To determine the classification accuracy using Sentinel-1 data exclusively. 

2- To determine the classification accuracy using Sentinel-2 data exclusively. 

3- To determine if the combination of Sentinel-1 and Sentinel-2 data can improve the 

classification accuracy. 

4- To investigate if the inclusion of vegetation indices improves the classification. 

5- To analyse if the accuracy improves in a pixel based or in a polygon based 

classification approach. 

6- To analyse the influence of multi-temporal data in classification accuracy both in a 

pixel and polygon based approach. 

 

2.3 Research questions 

1- Which level of accuracy can be obtained using Sentinel-2 data, taking into account 

its spatial and temporal resolution? 

2- Can the combination of Sentinel-1 and Sentinel-2 increase the classification 

accuracy? 

3- Do Sentinel-1 data add relevant information when classifying remote sensing data? 

4- Do vegetation indices represent a valuable source of information when performing 

image classification? 

5- Which classification approach is better for crop identification? 

6- Could this combination of sensors improve crop management and decision making?  

7- Can time series data add valuable information when mapping crop types? 

 

2.4 Hypothesis 

• A multisensor approach (Sentinel-1 and Sentinel-2) will produce better results in 

classification accuracy since both interact with the target in different ways, retrieving 

distinct and valuable information.  

• Taking into account the spatial resolution of both satellites, the polygon based 

approach is expected to produce better results because it reduces mixed pixel and 

speckle effects of data. 

• The use of time series will provide a temporal perspective of the growing season 

helping in the discrimination of the different classes.  
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3. METHODOLOGY 
 

For this research, satellite imagery has been processed according to its characteristics to 

allow further image classification. Sentinel-1 images have been radiometrically corrected, 

terrain corrected, filtered for speckle noise, and cropped. Sentinel-2 images have been 

cropped as well and used to derived vegetation indices. After that, pixel based and 

polygon based Random Forest classifications were performed using different multi-

temporal and multi-sensor datasets over an agricultural area. Finally, the accuracies were 

compared. Figure 1 shows a flowchart of the methodology used for the implementation 

of this research. Further details of each step can be found in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of the methodology. 
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3.1 Study area 

The site is located in Sweden, in the south of the Skåne region between the cities of 

Malmö and Lund (55.66 N, 13.16 W). The main land use in this region is agriculture 

which counts for 40 % of the total land cover. The region has an oceanic climate, with 

average temperatures during summer around 20 ºC and around 3 ºC during winter. The 

annual precipitation can reach values up to 650 mm. The study site covers an agricultural 

area primarily, where the major crops are wheat, barley, sugar beet and rape covering 

together the 59% of the study area. They represent the 22%, 14%, 12%, and 11% of the 

agricultural fields respectively. In addition, some built-up zones and other minority crops 

can be found as well. The total coverage is about 67 km2, with approximately 10 km in 

the west-east direction and 6 km in the north-south. For this study, only the main land 

covers will be taken into account for the classification. Those are winter wheat, barley, 

rapeseed, sugar beet and built-up areas. The remaining classes will be considered as 

“others”.  Figure 2 shows the location of the study area. Figure 3 shows the extent of the 

selected land covers compared to the total extension of the study area.  

 
Figure 2. Study area. The left figure shows the location of the Skåne region inside Sweden. The 

right figure shows the location of the study area (orange) inside the Skåne region. 

Figure 3. Area (in ha) of land covers inside the study area. The lower bar shows the total extension 

of the study area. The higher bar shows the area of each land cover. 
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3.2 Projection  

All the satellite imagery, as well as additional datasets, are referenced in a projected 

coordinate system. The geographic coordinate system used is the World Geodetic System 

84 (WGS 84) and the selected projection is Universal Transverse Mercator zone 33N 

(UTM zone 33N). The identifier of the projection is EPSG 32633. 
 

3.3 Sentinel-2  

3.3.1 Data 

Using as reference the tiling grid system of Sentinel-2 products, all the cloud-free images 

and those with a low percentage (visually determined) of cloud cover available during the 

growing season for the tile 33UUB were considered as inputs for this study. In total, a 

dataset of 12 images was used. Images were downloaded from the Copernicus Open 

Access Hub of the European Space Agency (ESA) as Level-1C which means that those 

products are ortho-images in UTM/WGS84 projection, with per-pixel radiometric 

measurements provided in Top Of the Atmosphere (TOA) reflectance. The decision of 

choosing level 1C as the level for the optical imagery used in this project is based on the 

final objective of this study. Classification purposes do not always require the correction 

of atmospheric effects (C. Song, Woodcock, Seto, Lenney, & Macomber, 2001) 

especially if the spectral signatures characterizing the desired classes are derived from 

the images to be classified (Fraser, Bahethi, & Al-Abbas, 1977; Potter, 1974). 

Atmospheric correction would not be expected to increase classification accuracy but 

only to attain an estimation of the reflectance at the bottom of the atmosphere. Table 2 

shows the dates of the Sentinel-2 images. 
 

Table 2. Sentinel-2 image acquisition dates 

DATE ∆ Days DOY (2016) 

2016-04-22 - 113 

2016-05-02 10 123 

2016-05-05 3 126 

2016-05-12 7 133 

2016-05-22 10 143 

2016-05-25 3 146 

2016-06-04 10 156 

2016-06-24 20 176 

2016-07-11 17 193 

2016-07-21 10 203 

2016-07-24 3 206 

2016-07-31 7 213 
 

3.3.2 GDAL pre-processing  

Once downloaded, all the bands of the 12 images were converted from its original format 

(jpeg2000) to GeoTIFF. The procedure was done using the Geospatial Data Abstraction 
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Library (GDAL) translator library, licensed by the Open Source Geospatial Foundation 

(OSGeo) version 2.1.2, released on 2016/10/24. 
 

3.3.3 R processing 

After the format conversion, images were processed to homogenize the different spatial 

resolutions (10 meters bands 2, 3, 4, 8 – 20 meters bands 5, 6, 7, 8a, 11, 12 – 60 meters 

bands 1, 9, 10). This step is required to make them ready for the Random Forest 

classification. The process was performed using the R software and the rgdal and raster 

packages. The final spatial resolution chosen for all the bands is 10 m since this is the 

highest resolution that can be found in a Sentinel-2 product and the one that captures the 

highest level of details. By downscaling images from 20 or 60 meters pixel resolution to 

10 meters resolution, any original reflectance value is not lost and the original data are 

not changed except for the total number of pixels the images have. The opposite 

procedure, to upscale images from 10 meters to 20 or 60 meters, would have caused the 

loss of reflectance detail and a homogenization of the 10 meters bands and the advantage 

of the high resolution Sentinel-2 data would not be fully explored. Additionally, this 

smoothing process would affect bands in the visible and NIR part of the electromagnetic 

spectrum, which have useful information concerning vegetation.  

 

The procedure starts by cropping the band images to the size of the study area. This steps 

also helps to decrease the computation time of the following steps. Each cropped band 

image is then resampled depending on its original spatial resolution. The resampling is 

done by creating a new raster that is fitted on top of the cropped band image and with the 

same extension. The pixel size of the new raster is set to 10 m. The resampling method 

used to transfer pixel values is the nearest neighbour method. This method ensures that 

each pixel value is transferred correctly to its corresponding new pixel. Figure 4 shows a 

representation of the method for a 20x20 m2 raster. Figure 5 shows the same process for 

a 60x60 m2 raster. For visualization purposes, the raster figures are not overlaing.  

Figure 4. Resampling methodology for a 20x20 meters raster. The left figure shows the original 

raster. The right figure shows the output produced by the nearest neighbour method. 

5

5 5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5 5

Image band 60x60 meters pixel size Resample image 10x10 meters pixel size

60	m

6
0
	m

10	m

1
0
	m



 

 14 

Figure 5. Resampling methodology for a 60x60 meters raster. The left figure shows the original 

raster. The right figure shows the output produced by the nearest neighbour method. 

 

3.4 Vegetation indices 

A selection of 4 of the main vegetation indices used for remote sensing of agriculture has 

been chosen for this study. Their use is justified since they add valuable information that 

can help to distinguish different land cover classes. In some cases, vegetation indices can 

add more class separability than the data acquired by individual spectral wavebands. For 

each available image, the following vegetation indices have been derived: Normalized 

Difference Vegetation Index (NDVI), Two-band Enhanced Vegetation Index (EVI2), 

Normalized Difference Water Index (NDWI), Chlorophyll Red-Edge (ClRed-edge). Table 3 

presents the corresponding formulas used in each case.  

 

Table 3. Formulas of the vegetation indices used in this research. 

Index Formulation S-2 Reference 

ClRed-edge (
𝐵𝑎𝑛𝑑 7

𝐵𝑎𝑛𝑑 5
)-1 (Gitelson et al., 2003, 2006) 

NDVI (
𝐵𝑎𝑛𝑑 8 – 𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 8 + 𝐵𝑎𝑛𝑑 4
) (Rouse et al., 1974) 

NDWI (
𝐵𝑎𝑛𝑑 8 – 𝐵𝑎𝑛𝑑 11

𝐵𝑎𝑛𝑑 8 + 𝐵𝑎𝑛𝑑 11
) (Gao, 1996) 

EVI2 2.5 * (
𝐵𝑎𝑛𝑑 8 – 𝐵𝑎𝑛𝑑 4

𝐵𝑎𝑛𝑑 8 + 2.4 ∗ 𝐵𝑎𝑛𝑑 4 + 1
) (Jiang et al., 2008) 

 

3.5 Sentinel-1 

3.5.1 Data  

In order to combine Sentinel-2 images with Sentinel-1 images, a dataset has been selected 

so that each Sentinel-2 image has a corresponding Sentinel-1 image with the same sensing 

date. When this was not possible, a margin of ±7 days from the sensing date of a Sentinel-

2 image was used to select the corresponding Sentinel-1 image. The margin of days has 

been decided based on the dynamics of the target area, which usually does not change on 
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a weekly basis (except for the harvesting period). As with Sentinel-2, Sentinel-1 images 

were downloaded from the Copernicus Open Access Hub of the ESA. In total, a dataset 

of 10 images have been selected with the following characteristics: dual polarization 

VV+VH mode, Interferometric Wide (IW) sensing mode and Ground Range Detected 

(GRD) product type. When possible, an ascending orbit was preferred to a descending 

one. Table 4 shows the dates of the Sentinel-1 images.  

 

Table 4. Sentinel-1 image acquisition dates 

 

 

 

 

 

 

 

 

 

 

The dual polarization VV+VH was selected since the vertically-polarised electromagnetic 

field of the SAR interacts more strongly with the vertical stalks of a field of grains than 

would, say, a horizontally-polarised radar. Such interaction leads to differences in the 

power scattered back in those different polarizations. In addition, the specific structure of 

vegetation can cause a change in the orientation of the electromagnetic field from vertical 

to horizontal. Due to this, the VH polarization was also added. The dual VV-VH 

polarizations were selected in line with the results of previous studies that found these 

polarizations useful in crop classification (De Wit & Clevers, 2004; McNairn, 

Champagne, Shang, Holmstrom, & Reichert, 2009) 

 

The Interferometric Wide (IW) mode was chosen since it is the main and default 

operational mode over land of the Sentinel-1 satellite. The remaining ones (Stripmap – 

SM; Extra-Wide swath – EW; Wave - WV) where not taken into account because either 

they are primarily used for wide area coastal monitoring (EW), only available upon 

request for extraordinary events (SM), or do not have a dual polarization (WV).  

 

The Ground Range Detected (GRD) product type was used because they have been the 

multi-looked and projected to ground range. Although phase information of the signal is 

lost, for classification purposes the backscatter information is enough. In addition, pixels 

have approximately square resolution (20x22) and square pixel spacing (10x10 meters) 

which makes it easier to combine with Sentinel-2 data.  

DATE ∆Days DOY (2016) Orbit 

2016-04-26 - 117 Ascending 

2016-05-08 12 129 Ascending 

2016-05-20 12 141 Ascending 

2016-06-01 12 153 Ascending 

2016-06-06 5 158 Ascending 

2016-06-30 24 182 Ascending 

2016-07-12 12 194 Ascending 

2016-07-19 7 201 Ascending 

2016-07-24 5 206 Ascending 

2016-07-31 7 213 Ascending 
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The preference for an ascending orbit is based on the timing of the acquisition in the case 

of Sentinel-1. Ascending orbit senses usually at 16:50 p.m. approx. over the study area 

while a descending orbit would sense around 05:30 a.m. approx. Choosing the latest time 

of sensing allows preventing the absorption of the microwave radiation by water that 

could have been condensate during the night on the fields.  
 

3.5.2 Pre-processing  

Once the images were downloaded, a pre-processing chain was required to correct the 

SAR products. SAR images have to be radiometrically corrected, terrain corrected, and 

filtered due to speckle noise. In addition, an extra step has been added to this pre-

processing chain to calculate a ratio between the backscattered radiation of the VH and 

VV bands. The complete process is done using the intensity bands of the Sentinel-1 

products. The software used for this process is the Sentinel Application Platform (SNAP), 

provided free of charge by the ESA. 

 

Crop  

By decreasing the extension of the original product to one slightly bigger than the study 

area, the size of the input is reduced considerably. This helps to speed up the remaining 

steps and reduce the number of computational operations. The latitude/longitude 

coordinates of the polygon used to reduce the size of the original products are: i) 

55º19’33’’ – 012º 51’49’’; ii) 55º19’33’’ – 013 º40’33’’; iii) 55º52’04’’ –  013 º40’33’’; 

iv) 55º52’04’’ – 012º 51’49’’. 

 

Radiometric calibration  

Once cropped, the pixel values of the images have to be transformed so that they represent 

a measurement of the ground reflectivity or radar cross-section. The power of the received 

radar signal also accounts for factor such as antenna gain, system loss, etc. This introduces 

a significant radiometric bias in the SAR image. The radiometric calibration is done by 

calculating the sigma nought (σ0) or normalized radar cross-section coefficient. The 

produced output is a normalised measure of the radar return from a distributed target. 

 

Terrain correction 

Because of the side looking geometry of a SAR system, every target located on the terrain 

being observed by the radar will be mapped onto the slant range domain. The terrain 

correction is the process by which SAR data are converted from slant range to ground 

range geometry and in a defined cartographic system. SAR images are likely to be 

affected by geometric distortions and the most commons are: i) foreshortening (occurs 

when the radar beam reaches the base of a tall feature tillted towards the radar before it 
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reaches the top. The slope will appear compressed and the length of the slope will be 

represented incorrectly at the image plane), ii) layover (occurs when the radar beam 

reaches the top of a tall feature before it reaches the base. The return signal from the top 

of the feature will be received before the signal from the bottom. As a result, the top of 

the feature is displaced towards the radar from its true position on the ground, and, lays 

over the base of the feature (b' to a') iii) shadow (increases with greater incident angle θ, 

just as our shadows lengthen as the sun sets). The terrain correction process is done using 

the Range Doppler Terrain Correction tool of SNAP, which automatically downloads and 

uses the Digital Elevation Model provided by the NASA Shuttle Radar Topography 

Mission with a resolution of 3 arc-seconds. The resampling procedure is the bilinear 

interpolation method. The output of the terrain correction step is a geocoded image.  

 

Speckle filtering  

Speckle noise-like feature is a common phenomenon in SAR systems. It confers to SAR 

images a granular aspect and random spatial variation. The source of this noise is 

attributed to random interference between the coherent returns. The principle of speckle 

filtering is to reduce the variance of the complex speckled scattering and improve the 

estimate of the unspeckled scattering coefficient. The Lee sigma filter has been used for 

this research. The selection is based on previous studies that demonstrate that the Lee 

Sigma algorithm performs better than other speckle filters (Lee, Wen, Ainsworth, Chen, 

& Chen, 2009; Meenakshi & Punitham, 2011). The parameter values were set to the 

default values provided by SNAP when selecting this filter. Table 5 shows the parameters 

of the speckle filter used. 
 

Table 5. SAR Speckle filtering parameters. 

Parameter Value 

Filter Lee sigma 

Number of looks 1 

Window size 7x7 

Sigma 0.9 

Target window size 3x3 
 

 

Ratio calculation 

A new product consisting of the ratio between the pixel values of the intensity band in 

VH and VV has been calculated for each image. This allows deriving relevant information 

that can help to differentiate classes. The result is obtained using the raster calculator 

included in the SNAP software.  
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3.5.3 R processing 

After the pre-processing steps performed in SNAP, SAR images require extra processing 

to make them ready for the Random Forest classification. Images have to be cropped to 

the size of the study area. The process is similar to the one performed for Sentinel-2 

images but, since Sentinel-1 GRD products have already 10x10 m2 pixel spacing, this 

characteristic does not need to be modified. 
 

3.6 Sentinel-1 & Sentinel-2 data  

By combining the two sensor datasets, a total of 22 images were made available for this 

project. Table 6 shows the dates of Sentinel-2 images and the corresponding Sentinel-1 

image between a range of ±7 days. Due to the lack of Sentinel-1 images over the study 

area for some specific dates, the Sentinel-2 images of 2016-05-02 and 2016-05-05 uses 

the same Sentinel-1 image of 2016-05-08. The same situation happens for 2016-05-12 

and 2016-05-22, which have both the Sentinel-1 image of 2016-05-20 as a reference. Due 

to this, there are 12 Sentinel-2 images and 10 Sentinel-1 images. Figure 6 shows the 

temporal distribution of the images as Days of Year (DOY). 
 

Table 6. Combination of Sentinel-1 and Sentinel-2 image acquisition dates 

Date ±∆ Days Satellite 

2016-04-22 
4 

Sentinel-2 

2016-04-26 Sentinel-1 

2016-05-02 
6 

Sentinel-2 

2016-05-08 Sentinel-1 

2016-05-05 
3 

Sentinel-2 

2016-05-08 Sentinel-1 

2016-05-12 
8 

Sentinel-2 

2016-05-20 Sentinel-1 

2016-05-22 
-2 

Sentinel-2 

2016-05-20 Sentinel-1 

2016-05-25 
7 

Sentinel-2 

2016-06-01 Sentinel-1 

2016-06-04 
2 

Sentinel-2 

2016-06-06 Sentinel-1 

2016-06-24 
6 

Sentinel-2 

2016-06-30 Sentinel-1 

2016-07-11 
1 

Sentinel-2 

2016-07-12 Sentinel-1 

2016-07-21 
-2 

Sentinel-2 

2016-07-19 Sentinel-1 

2016-07-24 
0 

Sentinel-2 

2016-07-24 Sentinel-1 

2016-07-31 
0 

Sentinel-2 

2016-07-31 Sentinel-1 
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Figure 6. Temporal distribution of Sentinel-1 and Sentinel-2 images over the year 2016. 
 

3.7 Growing season  

The selection of the satellite imagery was coordinated with the growing calendar of the 

different crops of interest. This information has been provided by the Swedish University 

of Agricultural Sciences (SLU) researchers that manage the SITES experimental fields 

located inside the study area. This time perspective can improve the class differentiation 

and the quality of the classification. In addition, using the growing calendar helps to be 

sure that our fields were not being used for any other purpose than cultivating the crops 

we wanted to identify. For this reason, the latest sowing period and the first harvesting 

period were used as a reference. Using images (if available) from November 2015 or 

February 2016 would have added uncertainty to the final classification. Figure 7 shows 

the growing season of the crop types included in this study together with the available 

satellite imagery. Sowing and harvesting periods do not show specific dates since this can 

vary based on the decisions of farmers or specific field conditions. Harvesting periods 

start when the maximum growth is reached. 

 
Figure 7. Growing season of the crop types selected for this study. The dates of the satellite 

imagery datasets are shown as well. 

3.8 Classification scenarios  

Two different approaches have been selected to classify the images: pixel-based and 

polygon-based. The first approach performs the classification using the information at the 

pixel level in opposition to the polygon based approach which uses information at the 

field/polygon level. The boundaries of those polygons are provided by the SAB dataset.  
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For each polygon, the mean value of pixels inside is calculated. Each approach consists 

of 4 different scenarios where the input data presented previously varies. Using both a 

pixel and polygon based classification helps to maximize the information that could be 

extracted from the sensors. Although optical remote sensing produces relevant 

information at the pixel level, SAR data can be less effective at this level for some 

applications such as agricultural mapping. The characteristics of this product create 

difficulties to have homogeneous reflectance values over an area with similar 

characteristic. SAR images are known for suffering the salt-and-pepper effect, where one 

pixel can have a very high value and the one to the left a very low value. Since the main 

purpose of this research was to classify agricultural fields, the polygon based approach 

was suitable to deal whit this feature. Table 7 summarises the classification scenarios. 

 

Table 7. Classification scenarios used for this research 

Input Pixel-based Input Polygon-based 

Sentinel-1 Sentinel-1 

Sentinel-2 Sentinel-2 

S2 & vegetation indices S2 & vegetation indices 

S1 & S2 & vegetation indices S1 & S2 & vegetation indices 

 

To assess the influence of multi-temporal data in accuracy levels, the classification 

scenarios described previously are run using a progressive number of inputs starting only 

with one image and ending with the complete dataset of each scenario.  
 

3.9 SAB data 

Figure 8 presents the dataset of the year 2016 of the Swedish Agricultural Board (SAB) 

that has been used as reference data for this study. It consists of polygons representing 

the cadastral limits of the fields in the study area. Each polygon contains information such 

as the region of the country where the polygon is, the area, or the crop type that is been 

cultivated this year. For this study, only the boundaries and the crop type information 

have been used. The statistical information is collected by this organization with the help 

of farmers, which have to inform about the crop type they are planting on their fields. The 

decision of the land cover that will be classified was made from this dataset.  
 

3.10 Training dataset  

To perform the supervised classification proposed in this research, a training set is 

required. It allows the algorithm to learn the relation between the pixel values of the 

different image bands and the land cover class. For this purpose, a training set has been 

designed for this project using a stratified random sampling approach. For each one of 

the six land cover classes, 50 points have been selected randomly.  
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Figure 8. Swedish Agricultural Board (SAB) reference data. 

3.11 Random Forest Classification  

Following the scenarios described in the previous section, a Random Forest classification 

is run for each one. For the process, the Random Forest package version 4.6-12 of the 

Comprehensive R Archive Network (CRAN) implemented by Liaw and Wiener (Liaw & 

Wiener, 2002) was used. The process starts by stacking the SAB data layer to the set of 

images that will be used in each classification scenario. After that, the 300 training points 

(50 per class) are used. At their location, the values of each layer are extracted and saved 

in a table where each row represents a point and each column an image band. During the 

following step, the Random Forest classification model is trained using the training set. 

At this moment, the trees of the forest are created using the image bands to make split 

decisions. For this study, 500 trees have been created and the number of variables used 

correspond to the square root of the total amount of inputs in each scenario. Finally, after 

the training, the resulting Random Forest model is used to classify the inputs of each 

scenario and to extract the corresponding variable importance measures.  
 

3.12 Accuracy evaluation 

Once the classification is finished, it is necessary to know the accuracy of the process. 

For this purpose, a validation dataset is created. It consists, as the training dataset, of 50 

(different) random points selected for each class (300 points in total). The accuracy 

evaluation performs a cross-validation at those point locations comparing the class value 

from the SAB reference data versus the class obtained by the classification algorithm. 

This comparison produces an accuracy percentage and the kappa statistic.  
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4. RESULTS  
 

The present chapter introduces the results of all the steps that were taken to develop this 

research, from the pre-processing and processing of Sentinel-1 and Sentinel-2 images to 

the calculation of vegetation indices. The classifications obtained according to the 

different settings explained in the previous chapter are also shown. Due to the processing 

chain, each input image produces a high number of outputs. For this reason, the Sentinel-

2 image from May 25th, 2016 has been used as an example to show the intermediate 

results. For Sentinel-1, the corresponding image from June 1st, 2016 has been chosen.  

 

4.1 Sentinel-2 

4.1.1 Sentinel-2 original data 

Figure 9 shows an RGB composite (bands 4-3-2 for red, green, and blue bands, resolution 

10m) of an original Sentienl-2 level 1C product. It can be observed a low coverage of 

clouds over the complete area and the study area. 

4.1.2 Sentinel-2 R results  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Original Sentinel-2 product. The image is shown as an RGB composite. The study area 

is represented by the red rectangle. 
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Figure 10 shows the same image, in an RGB (4-3-2) composite after it has been processed 

in R and cropped to the size of the study area. The difference in the colour intensity is 

due to the colour stretching process. Since the image size is reduced, the minimum and 

maximum values have changed and the distribution of colours is affected. This affects 

only to the visualization and not to the real data of the pixels. 

Figure 10. RGB composition of a Sentinel-2 image cropped to the size of the study area. 

Figure 11 shows the band 6 (20 meters spatial resolution) of the same Sentinel-2 product, 

with a panchromatic colour scale after it has been resampled to 10 meters resolution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Band 6 of a Sentinel-2 image. A grey scale is used to represent reflectance values. 
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Since the resampling process does not produce any visual change, the histograms of the 

band 6 before and after the process are shown in Figure 12. It can be observed that the 

frequency of the pixel values is exactly 4 times the original one. The same result is 

obtained when processing the remaining bands of the product. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Histograms band 6 before (left) and after (right) resampling 

4.2 Vegetation indices 

The following figures show the 4 vegetation indices calculated for the Sentinel-2 product 

used as an example. Figure 13 shows the Normalized Difference Vegetation Index 

(NDVI), Figure 14 shows the Normalized Difference Water Index (NDWI), Figure 15 

shows the Two-band Enhanced Vegetation Index (EVI2) and Figure 16 shows the 

Chlorophyll Red-Edge (ClRed-edge) index. A colour scale has been used to represent index 

values. Green represents high values for each index while red is used for low values. 

Differences within the agricultural area can be observed. 

 

Figure 13. NDVI Index    Figure 14. NDWI Index 
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Figure 15. EVI2 Index    Figure 16. Red-Edge Index 

4.3 Sentinel-1 

4.3.1 Sentinel-1 original data 

As mentioned previously, the Sentinel-1 product from June 1st, 2016 has been selected as 

an example to show the results produced during the processing of the SAR images. Figure 

17 shows the intensity band in VV and VH polarization mode before any processing is 

done. Due to the acquisition geometry (ascending orbit) the image is flipped. The yellow 

arrow indicates the north direction. The blue arrows indicate the sensing direction. The 

study area is represented by the orange rectangle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Original S1intensity band in VV (a) and VH (b) polarization mode. 

(a) 

(b) 

 N 

 N 
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4.3.2 Sentinel-1 SNAP processing 

Figure 18 shows the result of the cropping process for the VV (a) and VH (b) intensity 

band. As we can see, the extent and size of the images have changed remarkably, allowing 

better computing performances in further steps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Cropped Sentinel-1 intensity band in VV (a) and VH (b) mode. 

Figure 19 shows the results of the radiometric calibration process for the VV (a) and VH 

(b) intensity band. It can be observed that the brightness and intensity of the colour have 

changed due to this calibration process that allows to better represent the characteristics 

of the interaction between targets and radiation. 
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Figure 19. Radiometric calibration of S1-VV (a) and S1-VH (b) 

Figure 20 shows the results of the terrain correction process for the VV (a) and VH (b) 

band. It can be observed how the correction of the SAR topographic distortions affects 

the size, orientation, and brightness (pixel value).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 20. Terrain correction of S1-VV (a) and S1-VH (b) image. 

Figure 21 shows the result of the speckle filtering process for the VV (a) and VH (b) 

polarizations. More homogeneous images are obtained once the random interference  

between the coherent returns is corrected.  

(b) 

(b) 

(a) 

 N 

 N 
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Figure 21. Sentinel-1 VV (a) and VH (b) band after the speckle filter. 

Figure 22 shows the results of the VH/VV ratio. High values are represented by white 

colours, which means that the scattering measured on the VH polarization mode was 

higher than in the VV polarization mode. In opposition, low values are represented by 

black colours and are linked to higher scattering in the VV polarization than in the VH. 

The main differences are observed between forested, urban, and agricultural areas.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 22. Ratio VH/VV calculated after the pre-processing of the Sentinel-1 product. 
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4.3.3 Sentinel-1 R processing 

In this section, the results of the processing steps performed in R are shown. Figure 23 

shows the output for the sigma (σ) VV band. It can be observed the differences between 

the VV scattering in urban areas and agricultural areas. Some fields present higher 

reflectance (white) than others (black). Figure 24 shows the result for the sigma (σ) VH 

band. The change of the polarization mode produces differences on the scattering of urban 

areas and agricultural fields. Some of them present higher reflectivity (white colour) and 

others are now darker.   

Figure 23. Sentinel-1 VV sigma (σ) band  Figure 24. Sentinel-1 VH sigma (σ) band 

cropped to the size of the study area  cropped to the size of the study area. 

Figure 25 shows the result of the ratio VH/VV after being processed in R. As for the rest, 

the extent has changed to the one of the study area. In general, we can see that agricultural 

fields present higher values (white) than urban areas (black). The structure of the different 

targets (plants, buildings, etc.) is linked to the strength of the scatter radiation in both 

polarizations and so to the pixel value of this ratio.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Ratio VH/VV cropped to the size of the study area. 
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4.4 Polygon based scenario 

The results of the mean calculation per polygon are shown in this subsection. For the 

Sentinel-2 dataset, band 6 of the Sentinel-2 product used as an example is shown. For the 

Sentinel-1 dataset, three bands are shown. It can be observed how the use of polygons 

and the calculation of statistics helps to distinguish land cover class. Figure 26 shows the 

mean pixel value calculations per polygon for band 6. By comparing this figure with 

Figure 11 it can be observed that both images look similar even if the polygon based 

approach has been implemented.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 26. Mean pixel value per polygon. Values represent TOA reflectance 

 

Figure 27 shows the mean pixel value calculation per polygon for the Sigma VH band. 

Comparing this image with the original (see Figure 24), the polygon based approach help 

to distinguish some fields from others but it also reduces the heterogeneity within each 

polygon. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 27. Mean pixel value per polygon. S1 sigma (σ) VH band 



 

 31 

Figure 28 shows the mean pixel value calculation per polygon for the Sigma VV band. 

As in the previous case, the polygon based approach help to distinguish fields when 

comparing this image to the original one (see Figure 23) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 28. Mean pixel value per polygon. S1 sigma (σ) VV band. 

Figure 29 shows the mean pixel value calculation per polygon. In this situation, the 

polygon based approach has a high impact and helps to visually interpret the image, which 

it is not possible in the original image (see Figure 25). Heterogeneity is reduced and 

polygons that could not be distinguished before are now visible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Mean pixel value per polygon. Ratio VH/VV. 
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4.5 Training and validation dataset 

The training and validation datasets used in this research are shown in this section. The 

pattern follows a stratified random sampling approach, with 50 random points for training 

and 50 different random points for validation. Figure 30 shows the training points (green) 

and validation points (red) selected for each class. 

 

 

 

Figure 30. Training (blue) and validation (red) points per land cover: (a) Winter wheat; (b) Sugar 

beet; (c) Rapeseed; (d) Others; (e) Built-up; (f) Barley. 

 

(a) (b) 

(c) (d) 

(e) (f) 
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4.6 Random Forest classification pixel based  

In this subsection, the results obtained with the pixel based Random Forest classification 

are presented. For each scenario, the result using 1 and 10/12 images are shown. The 

variable importance measures have been derived when using the complete dataset and are 

shown in Appendix II. Figure 31 shows the result of the pixel based S1 scenario using 1 

image (a) and 12 (b). The classification improves considerably when adding more data. 

Figure 31. S1 pixel based classification. (a) uses only 1 image, (b) uses the complete dataset. 

S1 − pixel based RF Classification − 1 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

S1 − pixel based RF Classification − 10 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

(a) 

(b) 
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In this case, the S2 pixel based scenario is shown in Figure 32. In comparison with the S1 

pixel based scenario, it can be observed that using only one image (a) already produces a 

better classification. Polygons are better defined and less noise is present on the image. 

As before, the class Others is barely present on the classification. When using the 12 

images (b), the noise is reduced and in some areas removed. The multi-temporal approach 

allows us to identify the fields and the Others class more precisely. 

Figure 32. S2 pixel based classification. (a) uses only 1 image, (b) uses the complete dataset. 

S2 − pixel based RF Classification − 1 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

S2 − pixel based RF Classification − 12 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

(a) 

(b) 
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Figure 33 shows the result of the S2-VI pixel based scenario using only 1 image (a) and 

12 images (b). In the first case, a similar result is obtained when combining Sentinel-2 

data with vegetation indices. The same noise and misclassification of same land cover 

classes take place. As before when using the complete dataset, those problems are solved. 

It has to be highlighted that some polygons change their classification from one class to 

another when using 1 or 12 images. This can be observed at the bottom centre.  

Figure 33. S2-VI pixel based classification. (a) uses only 1 image, (b) uses the complete dataset. 

S2 & VI − pixel based RF Classification − 1 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

S2 & VI − pixel based RF Classification − 12 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

(b) 

(a) 
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The last scenario of the pixel based approach, S1-S2-VI Figure 34, produces again very 

similar results in both cases where one image is used (a) or 12 images are used (b). The 

joint use of Sentinel-1, Sentinel-2, and vegetation indices produces the highest accuracy 

(see Table 8), but visually it is hard to distinguish any difference from the previous cases. 

The same distortions are found when using one image, and the same improvements are 

found when using 12 images. 

Figure 34. S1-S2-VI pixel based classification. (a) uses only 1 image, (b) uses the complete 

dataset. 

S2 & VI & S1 − pixel based RF Classification − 12 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

S2 & VI & S1 − pixel based RF Classification − 1 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

(a)  

(b)  
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4.7 Random Forest classification polygon based 

In this subsection, the results obtained on the Random Forest classification using the 

polygon based approach are presented. For each scenario, the result using 1 and 12 images 

are shown, except for the S1 scenarios where the complete dataset was formed by 10 

images. Figure 35 shows the result of the polygon based S1 scenario using 1 image (a) 

and 12 (b). Although similar, some differences can be observed in the classification of 

some polygons when using 1 or 12 images.  

Figure 35. S1 Polygon based classification. (a) uses only 1 image, (b) uses the complete dataset. 

S1 − object based RF Classification − 1 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

S1 − object based RF Classification − 10 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

(a)  

(b)  
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The following case shows Figure 36, which represent the S2 polygon based scenario. A 

common feature of the polygon based approach is that there is no presence of the 

disruptions caused by using information at the pixel level. Classifications, even if using 

one image (a) are not affected by noise or poorly defined polygons. As before, the main 

difference when using a multi-temporal dataset (b) is the change in class of some 

polygons. 

 Figure 36. S2 Polygon based classification. (a) uses only 1 image, (b) uses the complete dataset. 

S2 − object based RF Classification − 12 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

S2 − object based RF Classification − 1 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

(a)  

(b)  
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In this page, the S2-VI polygon based scenario is shown in Figure 37. As in the S2-VI 

pixel based scenario, the addition of vegetation indices did not improve the classification 

considerably. The use of 1 image (a) and 12 images (b) produce similar results than the 

ones obtained in the S2 polygon based scenario (see Figure 36). The same problem of 

misclassification at the polygon level is found although the confusion between classes is 

not the same. 

Figure 37. S2-VI Polygon based classification. (a) uses only 1 image, (b) uses the complete 

dataset. 

S2 & VI − object based RF Classification − 12 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

S2 & VI − object based RF Classification − 1 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

(b)  

(a)  
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Finally, Figure 38 shows the result obtained in the S1-S2-VI polygon based scenario using 

1 image (a) and 12 images (b). Again, when using only 1 image, the classification falls 

into more inaccuracies, assigning wrong categories to some fields. The more data are 

added; the higher accuracies are obtained. Visually, this results only in land cover class 

changes, as it can be observed in the figure below.  

Figure 38. S1-S2-VI Polygon based classification. (a) uses only 1 image, (b) uses the complete 

dataset. 

S2 & VI & S1 − object based RF Classification − 12 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

S2 & VI & S1 − object based RF Classification − 1 images

Winter Wheat Barley Rapeseed Sugar beet Built−up Others
0 km 2

N

(a)  

(b)  
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4.8 Accuracy evaluation 

The results of the cross-validation using the complete dataset (12 images) of each scenario 

are presented in Table 8. The corresponding confusion matrix can be found in Appendix 

I. In the pixel based approach, the more data is added, the higher the accuracy values. The 

bigger increment is seen when joining S1, S2, and VI. Moving from the S2 scenario to 

the S2-VI approach, it can be seen that the increment in accuracy is very low (only 

0.0067). In the polygon based approach, all the scenarios produced the same accuracy. 
 

Table 8. Classification accuracies and kappa values per scenario. 

 Accuracy Kappa 

Pixel based 

S1 0.76 0.712 

S2 0.83 0.796 

S2 & VI 0.8367 0.804 

S2 & VI & S1 0.8433 0.812 

Polygon based 

S1 0.9867 0.984 

S2 0.9867 0.984 

S2 & VI 0.9867 0.984 

S2 & VI & S1 0.9867 0.984 
 

Figure 39 shows the accuracies obtained for each scenario when varying the number of 

images used as input. The polygon based approach starts with high values of accuracies 

and it reaches a stability when using 4 images. Each pixel based scenario follows a 

different pattern, except the S1 scenario, they start and end at the same range of values. 

Figure 39. Accuracies per number of input images for each classification scenario. Dashed lines 

refer to the pixel based approach. Solid lines refer to the polygon based approach. 
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5 DISCUSSION 
 

In this research, two different classification approaches (each one with four different 

scenarios) have been performed. The first one, pixel based, used pixel values as a source 

to run the process. This means that the classification model is trained using information 

that is not contextualized, so the resulting Random Forest model contains more noise. 

Due to this, the more variables are added, the more information the model can have to 

make decisions. The second one, polygon based, used the mean pixel value per polygon. 

In this section, the results are discussed and findings are explained and justified. 

 

The pixel based approach has shown different accuracies based on the scenario. First, 

when running the process only with S1 images, the lowest accuracy is obtained (0.76). 

This can be explained by the high heterogeneity on pixel values of SAR images and the 

lower number of bands per image. As it can be observed in Figure 23 and Figure 24, over 

a field where only one crop is cultivated, SAR pixels can have high significant 

differences, which for a pixel based classification, represents a source of noise. This SAR 

feature is linked to coherent nature of SAR systems and is attributed to random 

interference of coherent returns issued from numerous scatters present on a surface on the 

scale of an image pixel (Gagnon & Jouan, 1997). These features results in wrong 

classification of pixels and, as it can be observed in Figure 31, in a final classification that 

looks less defined, with the boundaries of the fields less sharp.  

 

Second, the Sentinel-2 scenario shows a considerable improvement of the accuracy from 

the previous case (0.83 vs. 0.76). Optical imagery is not affected to the same extent by 

the characteristic salt-and-pepper effect or other distortions of SAR sensors so that inside 

a homogeneous area, pixel values are more similar and the presence of outliers is lower. 

This can be observed in Figure 11, specially over agricultural fields. Having images with 

low variance over the same target allows the classifier to recognize classes better and 

produce higher accuracies. In addition, each Sentinel-2 image has 13 bands instead of the 

3 bands per Sentinel-1 image. This means that the total amount of information made 

available for the classifier in this scenario is much higher.  

 

Third, the use of Sentinel-2 images with vegetation indices produced a slight increment 

of the accuracy (0.83 to 0.8367). Adding vegetation indices as new variables for the 

classification was expected to improve the results, but although it did it, the increment 

was not very significant. This situation can be explained because vegetation indices are 

just an arithmetic combination of the Sentinel-2 spectral bands (see Table 3), so 

completely new information is not added, but just a new visualization of the same data. 

As an example, when comparing the vegetation index figures (Figure 13, Figure 14, 
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Figure 15, Figure 16) it can be observed a similar pattern for class separability (except, 

in this case, for the Red-Edge index –Figure 16). The same situation happened for the 

remaining vegetation indices derived from the rest of the Sentinel-2 images.  

 

The fourth scenario, which combined data from both Sentinel satellites together with 

vegetation indices, results in the highest accuracy obtained in the pixel based approach 

(0.8433). Compared to the previous one (Sentinel-2 & vegetation indices), the accuracy 

has increased due to the contribution of the SAR sensor. In opposition to the previous 

case, these new variables are not related to the spectral bands of Sentinel-2, and because 

of that, the information is more valuable. This results in a higher accuracy increment than 

the one observed in the previous case (0.8367 to 0.8433). 

 

In the pixel based approach, the main source of error was the confusion between the 

classes Others and Built-up, as it can be observed in the confusion matrices in the 

Appendix I. On one hand, the Built-up class covers urban areas with buildings, roads, and 

some parks or grasslands. On the other hand, the Others class is more heterogeneous and 

includes mainly roads and buildings but also grasslands and other crop types that have 

not been specifically classified. Due to the similarity between the two classes, specially 

because both have roads and buildings, confusion was originated. However, since the 

main approach of this thesis was to map agricultural fields, it has to be highlighted the 

low confusion between the crop classes when using the complete datasets.  

 

In opposition to the pixel based, all the scenarios of the polygon based approach have 

produced the same level of accuracy (0.9867). For each scenario, the calculation of the 

mean pixel value per polygon of each input band removes outliers and reduce variation 

so that the classifier is not affected by noise in the data. The within-class variation is 

minimized and the between-class variation is maximized. An explanation of the high 

accuracies obtained in all cases is that if a polygon contains a training point, the remaining 

pixels will be classified correctly since they share the same pixel value as the one used 

for training. For each class, 50 points were randomly selected for the training set. As it 

can be observed in Figure 30 most of the polygons contains at least one training point 

which means that there will not be errors in classifying the remaining ones. The error is 

then produced by wrong classification of the pixels that are inside a polygon without 

training points. Knowing that having more than one training point per polygon does not 

help to better train the classifier. It only adds redundant information.  

 

For the polygon based approach, it has to be highlighted that all the scenarios led to the 

same accuracy levels when using their complete dataset. However, a specific mention 

should be made for the scenario where only Sentinel-1 data is used. Knowing the high 
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percentage of cloudy days over the study area, this option allows to use remote sensing 

data in cloudy conditions and still be able to produce accurate land cover maps.  

 

Another aspect to be mentioned is the use of multi-temporal data. In both approaches 

(pixel and polygon based) the four scenarios were tested using a progressive number of 

inputs, starting with one image and ending with the complete dataset of each scenario. 

 

For the polygon based approach, using only one image led to different accuracies for each 

scenario. This is explained by the different number of variable the model has to be trained. 

The more variables used as input, the more accurate the result will be. As it can be 

observed in Figure 39, using one image as input, the S1-S2-VI scenario produces higher 

accuracy than those with only one sensor (S1 or S2). Between those, the S1 scenario is 

the worst due to the lower number of bands per image (3 bands per image versus 13 bands 

per image in S2). As soon as more images are used, the accuracies of all the scenarios 

increased as well, approaching a maximum value that was reached when combining four 

images. The drop that is observed when introducing the image 3 into the classification 

can be due to the presence of some clouds over the study area. The S2 and S2-VI scenarios 

are more affected than those containing SAR data (S1; S1-S2-VI). It can be observed that 

the S1 classification is not affected at all since the accuracies keep increasing.  

 

For the pixel based approach, a similar behaviour can be found. Running the process with 

one image produce similar accuracies for all the scenarios except for S1 mainly because 

of the low number of bands per image and the heterogeneity in pixel values. Once the 

number of images is increased, the classifier can be trained with more data resulting in 

better classifications. As before, cloud presence in some images causes a drop of accuracy 

in the scenarios (S2; S2-VI) that do not have SAR data. In general, a maximum value is 

approximated when reaching 8 images. It can also be observed that the S2 and S2-VI 

scenarios follow a similar trend since the VI information is derived from S2. In addition, 

the S1-S2-VI scenario has a similar behaviour than the S1 (specially if clouds are present), 

but since it counts with the information from S2-VI, it reaches higher accuracies than S1.  

 

Finally, as it can be observed from Table 8, the joint use of S1 and S2 produce the best 

results in the pixel based approach. Although similar values are reached by the remaining 

scenarios when using multi-temporal datasets, the performance of the S1-S2-VI scenario 

is better when having fewer images as input and in cloudy conditions. This conclusion is 

in line with previous studies that have investigated the join used of optical and SAR 

satellite imagery (Dusseux, Corpetti, Hubert-Moy, & Corgne, 2014; Hong, Zhang, Zhou, 

& Brisco, 2014; Inglada et al., 2016). In the case of the polygon based, the same 

accuracies are reached and performances with low number of images are also similar.  
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6 CONCLUSIONS 

 
The pixel and polygon based classifications of specific land cover classes using multi-

temporal optical and SAR remote sensing data lead to the following conclusions:  

• The best accuracy (0.9867) was obtained with the polygon based approach, using 

the complete multi-temporal dataset and independently from the selected 

scenario. 

• For the pixel based approach, the best accuracy (0.8433) is obtained when using 

the complete multi-temporal dataset of the Sentinel-1, Sentinel-2 and vegetation 

indices scenario. 

• When combining data on the pixel based approach, the highest increment of 

accuracy is obtained when joining Sentinel-1 data with Sentinel-2 data and 

vegetation indices. 

• Adding vegetation indices as variables for the pixel based classification barely 

improves the accuracy results. 

• For the pixel and polygon based approach, Sentinel-1 data has demonstrated better 

performance when dealing with cloudy images. 

• If multi-temporal data is available, joining images from different sensors is not 

mandatory to achieve high accuracy values.  

• Combining SAR and optical is more relevant when dealing with a small number 

of input images or cloudy conditions.  

• Increasing the number of images improves the accuracy but only until a certain 

value in which a limit is approximated. 

• The benefits of joining Sentinel-1 and Sentinel-2 data are more relevant in the 

pixel based than in the polygon based approach 

 

The previous conclusions of the research lead to the following recommendations: 

 

• A new sampling schema should be tested in the polygon based approach. 

• Different vegetation indices should by tested.  

• Other classification algorithms should be tested to confirm the results obtained in 

this research.  

• Since polygon based leads to the best results, a different technique, such as image 

segmentation, should be tested in case field boundaries are not available from a 

governmental organization. 

• Removing images with clouds or masking them out. 

• Use Sentinel-1 data to fill gaps in Sentinel-2 time-series instead of using them in 

combination with a maximum or minimum delay on sensing time. 
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APPENDIX I 

 
The following tables show the confusion matrices obtained for each Random Forest 

classification scenario when using their corresponding complete dataset.  

 

 

 

Confusion Matrix S1 pixel based 

CM S1 pixel 

Reference  

Barley Others Rapeseed Sugar 

beet 

Built-

up 

Winter 

Wheat 

Totals User’s 

Accuracy 

P
re

d
ic

ti
o
n

 

Barley 44 4 0 1 0 8 57 77% 

Others 4 30 5 0 19 6 64 46% 

Rapeseed 0 2 44 0 0 0 46 95% 

Sugar beet 2 1 0 49 0 2 54 90% 

Built-up 0 12 1 0 31 0 44 70% 

Winter Wheat 0 1 0 0 0 34 35 97% 

Totals 50 50 50 50 50 50 300  

Producer’s Accuracy 88% 60% 88% 98% 62% 68%   

 

 

 

 

 

 

Confusion Matrix S2 pixel based 

CM S2 pixel 

Reference  

Barley Others Rapeseed Sugar 

beet 

Built-

up 

Winter 

Wheat 

Totals User’s 

Accuracy 

P
re

d
ic

ti
o
n

 

Barley 44 1 0 2 0 5 52 84% 

Others 4 35 4 1 8 3 55 63% 

Rapeseed 0 1 46 0 0 0 47 98% 

Sugar beet 2 0 0 47 0 0 49 96% 

Built-up 0 10 0 0 41 2 53 77% 

Winter Wheat 0 3 0 0 1 40 44 91% 

Totals 50 50 50 50 50 50 300  

Producer’s Accuracy 88% 70% 92% 94% 82% 80%   
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Confusion Matrix S2-VI pixel based 

CM S2-VI pixel 

Reference  

Barley Others Rapeseed Sugar 

beet 

Built-

up 

Winter 

Wheat 

Totals User’s 

Accuracy 

P
re

d
ic

ti
o
n

 

Barley 44 2 0 1 0 7 54 81% 

Others 4 33 2 2 9 1 51 65% 

Rapeseed 0 1 47 0 0 0 48 98% 

Sugar beet 2 0 0 47 0 0 49 96% 

Built-up 0 13 0 0 40 2 55 73% 

Winter Wheat 0 1 1 0 1 40 43 93% 

Totals 50 50 50 50 50 50 300  

Producer’s Accuracy 88% 66% 94% 94% 80% 80%   

 

Confusion Matrix S1-S2-VI pixel based 

CM S1-S2-VI pixel 

Reference  

Barley Others Rapeseed Sugar 

beet 

Built-

up 

Winter 

Wheat 

Totals User’s 

Accuracy 

P
re

d
ic

ti
o
n

 

Barley 44 2 0 1 0 7 54 81% 

Others 4 38 2 2 15 3 64 59% 

Rapeseed 0 2 47 0 0 0 49 96% 

Sugar beet 2 0 0 47 0 0 49 96% 

Built-up 0 8 1 0 35 1 45 78% 

Winter Wheat 0 0 0 0 0 39 39 100% 

Totals 50 50 50 50 50 50 300  

Producer’s Accuracy 88% 76% 94% 94% 70% 78%   

 

Confusion Matrix S1 polygon based 

CM S1 polygon 

Reference  

Barley Others Rapeseed Sugar 

beet 

Built-

up 

Winter 

Wheat 

Totals User’s 

Accuracy 

P
re

d
ic

ti
o
n

 

Barley 49 0 0 1 0 3 53 92% 

Others 1 50 0 0 0 0 51 98% 

Rapeseed 0 0 50 0 0 0 50 100% 

Sugar beet 0 0 0 49 0 0 49 100% 

Built-up 0 0 0 0 50 0 50 100% 

Winter Wheat 0 0 0 0 0 47 47 100% 

Totals 50 50 50 50 50 50 300  

Producer’s Accuracy 98% 100% 100% 98% 100% 94%   
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Confusion Matrix S2 polygon based 

CM S2 polygon 

Reference  

Barley Others Rapeseed Sugar 

beet 

Built-

up 

Winter 

Wheat 

Totals User’s 

Accuracy 

P
re

d
ic

ti
o
n

 

Barley 48 0 0 1 0 2 51 94% 

Others 0 50 0 0 0 0 50 100% 

Rapeseed 0 0 50 0 0 0 50 100% 

Sugar beet 0 0 0 49 0 0 49 100% 

Built-up 0 0 0 0 50 0 50 100% 

Winter Wheat 2 0 0 0 0 48 50 96% 

Totals 50 50 50 50 50 50 300  

Producer’s Accuracy 96% 100% 100% 98% 100% 96%   

 

Confusion Matrix S2-VI polygon based 

CM S2-VI polygon 

Reference  

Barley Others Rapeseed Sugar 

beet 

Built-

up 

Winter 

Wheat 

Totals User’s 

Accuracy 

P
re

d
ic

ti
o
n

 

Barley 48 0 0 1 0 2 51 94% 

Others 0 50 0 0 0 0 50 100% 

Rapeseed 0 0 50 0 0 0 50 100% 

Sugar beet 0 0 0 49 0 0 49 100% 

Built-up 0 0 0 0 50 0 50 100% 

Winter Wheat 2 0 0 0 0 48 50 96% 

Totals 50 50 50 50 50 50 300  

Producer’s Accuracy 96% 100% 100% 98% 100% 96%   

 

Confusion Matrix S1-S2-VI polygon based 

CM S1-S2-VI 

polygon 

Reference  

Barley Others Rapeseed Sugar 

beet 

Built-

up 

Winter 

Wheat 

Totals User’s 

Accuracy 

P
re

d
ic

ti
o
n

 

Barley 48 0 0 1 0 1 50 96% 

Others 0 50 0 0 0 0 50 100% 

Rapeseed 0 0 50 0 0 0 50 100% 

Sugar beet 0 0 0 49 0 0 49 100% 

Built-up 0 0 0 0 50 0 50 100% 

Winter Wheat 2 0 0 0 0 49 51 96% 

Totals 50 50 50 50 50 50 300  

Producer’s Accuracy 96% 100% 100% 98% 100% 98%   
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APPENDIX II 
 

The following figures show the variable importance measurements: Mean Decrease in 

GINI (MDG) and Mean Decrease in Accuracy (MDA). They are obtained for each 

Random Forest classification scenario when using their corresponding complete dataset. 
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