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Abstract

The orbital approximation for stellar streams is the assumption that all stars in a stream
can be described as following the same orbit. In this thesis, I evaluate this approximation as
a method for constraining the potential of the Milky Way. I wrote a program in MATLAB
which integrates the orbits of test particles in a potential model which resembles that of
the Milky Way’s halo and disc. The group of particles are set off with a velocity and
position dispersion to act like a typical satellite. By varying the satellite’s initial position,
velocity and angle of the velocity relative to the disc, a large variety of different streams
were created. The formed streams were treated as real observations, to determine how well
the method works on actual streams. Using the position and velocity of the central particle
in the satellite, orbits were fitted to the stream by altering the disc and halo masses and
calculating the log-likelihood of each orbit. I try to constrain the mass values using a 90%
confidence region in a 2D log-likelihood plot. The error in the orbital approximation is
clearly visible when plotting the central orbit together with the simulated stream stars.
No specific initial parameter (of the ones changed) gave a predictable confidence region,
meaning that the approximation fails whatever the details of the stream models. It is
found that most streams do not produce a confidence region that contain the masses of the
potential they were actually created in. The percentage of confidence regions which had
the actual masses inside them were 22.90%, which is very far from the 90% expected (from
the confidence region) if the the orbital approximation was accurate. Only using streams
with confidence regions entirely in the positive mass region gave a percentage of 12.50%.
This means that past studies which used the orbit approximation are likely to have found
incorrect answers regarding the shape and mass of the Milky Way.





Populärvetenskaplig beskrivning

Om dina ögon vore lika känsliga som astronomers toppmoderna teleskop skulle du kunna
se l̊anga band av ljus när du kollar upp mot himlen. Dessa band kallas stjärnströmmar och
befinner sig i yttre delen av v̊aran galax, Vintergatan. Strömmarna skapas fr̊an en klump
av stjärnor, t.ex. en dvärggalax, medan de roterar runt Vintergatan. Det som händer är
att stjärnor slits loss fr̊an klumpen och dras ut till en l̊ang ström av stjärnor, som, i vissa
fall, kan omfamna hela galaxen. Själva processen som drar ut stjärnorna till en l̊ang ström
är densamma som f̊ar månen att orsaka tidvatten p̊a jorden; stjärnorna i klumpen som är
närmre Vintergatan p̊averkas mer av galaxens gravitation och blir utdragna ur klumpen.

Det tog inte l̊ang tid förrän astronomer kom p̊a hur de kunde använda stjärnströmmar
för att lära sig mer om Vintergatan. Exempelvis kan stjärnströmmar användas för att
uppskatta galaxens massa, eftersom massan är relaterad till gravitationen som skapade
strömmarna. Ett av sätten flera forskare använt för att ta reda p̊a massan är att anta att
alla stjärnorna i en stjärnström ligger p̊a samma bana, dvs. stjärnorna följer efter varandra
medan de roterar runt galaxen. Man vet att detta antagande inte är exakt rätt, men fr̊agan
är: hur fel är det?

I detta projekt undersöker jag ifall stjärnorna i en stjärnström verkligen kan sägas ligga
p̊a samma bana. Jag skriver kod och skapar ett program vilket till̊ater mig att skjuta iväg
en grupp partiklar i ett gravitationssystem, som ska föreställa Vintergatans. Efter att ha
l̊atit partiklarna rotera runt ett tag bildar de stjärnströmmar och jag kan undersöka hur
väl dessa följer en bana. Om banan och stjärnorna mestadels inte stämmer överens s̊a vet
vi att antagandet inte funkar. Målet är att göra detta för en massvis olika stjärnströmmar
och avgöra ifall det finns specifika typer av strömmar för vilka antagandet kan användas.
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Chapter 1

Introduction

The standard theory for structure build-up in the Universe is derived from the ΛCDM
model, which is based on the idea that the Universe is dominated by cold dark matter
(Madau et al. 2008). According to the model, the structures of a galaxy like the Milky
Way originate from the hierarchical merging of smaller systems into larger ones. Accreted
systems which do not merge with the galactic structure, become self-bound systems residing
in the galactic halo. These are the substructures of a galaxy (referred to as subhalos and
satellites) predicted by current theories and which are observed both in the Galaxy and
simulations. There is one major discrepancy between simulations and observations; far
fewer satellites have been detected in the Milky Way. This is known as the ”missing
satellites” problem (Moore et al. 1999; Klypin et al. 1999) and several solutions have been
suggested. For example, it is possible that the missing satellites have yet to be seen, that
there is something missing in the model or that the subhalos consist primarily of dark
matter.

Stellar streams are disrupted satellites, e.g. dwarf galaxies and star clusters, in the
halo of a galaxy. They are formed due to the tidal forces acting on satellites as they orbit
around the galaxy. Several streams have been observed in the outskirts of the Milky Way
and appear as long bands of stars across the sky. Belokurov et al. (2006) used photometric
data from the Sloan Digital Sky Survey (SDSS), Data Release 5, to create an image of a
part of the sky in which numerous streams reside. They called the region ”The Field of
Streams” and Figure 1.1 shows the region using Data Release 7 from the SDSS (GAIA-ESO
Website 2013). Most notable is the Sagittarius (Sgr) stream, composed of stars from the
Sagittarius dwarf galaxy, which was first discovered by Ibata et al. (1995). The Sgr stream
is believed to wrap around the Galaxy and has multiple discernible substructures, e.g. the
leading and trailing arm. The two branches of the Sgr stream, A and B, are thought to be
stream debris from different time periods. A few other examples of streams in the Milky
Way halo are the Monoceros ring (Newberg et al. 2002), the Orphan stream (named after
its unknown origin) (Grillmair 2006) and the GD-1 stream (Grillmair & Dionatos 2006).
As might be expected, satellites and streams have been observed in other galaxies as well;
e.g. in the vicinity of Andromeda, Ibata et al. (2001) discovered a massive satellite and its
stream, the giant southern stream (GSS).
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CHAPTER 1. INTRODUCTION

Figure 1.1: The Field of Streams, first imaged by Belokurov et al. (2006). The colours
represent the distance to the stream stars, with red indicating distant stars and bluer
colours for closer objects. The two adjacent, thick lines are the A and B branch (lower and
upper, respectively) of the Sgr stream. The thin line passing through them is the Orphan
stream. Source: GAIA-ESO Website

Stellar streams are powerful sources for determining properties of the Milky Way and
its formation and evolution, since their progenitors were created together with the Galaxy
and the streams formed from interaction with its potential. An application of observations
of the streams is to establish the parameters which describe the gravitational potential of
the Galaxy. Specifically, the total mass of the Galaxy is crucial to know, because galactic
formation simulations dictate that a typical galaxy with a given mass should have certain
characteristics. The missing satellites problem is an example of questions in cosmology
which depend on whether the Milky way is a typical galaxy for its mass. Of course, the
mass of the Milky Way needs to be known to answer this question.

Koposov et al. (2010) observed the GD-1 stream, created a 6D phase-space map of
the stream (using data from SDSS, Calar Alto and USNO-B) and analysed the stars’
positions, proper motions and radial velocities to constrain the gravitational potential of
the Milky Way. Their main results were presented as the flattening of the total potential
and the circular velocity at the Galactocentric distance of the Sun. They worked with
the approximation that all the stars in a stream follow the same orbital path, which is
useful because it reduces the complexity of the problem to one orbit. The approximation
is known to be incorrect from how streams form; the stars need to be on separate orbits
for a stream to form after the tidal forces tear the satellite apart. It was still believed to be
a reasonable approximation, since the stream stars all have similar orbits. A specific orbit
arises only for a particular potential. Given an orbit, the potential can be ascertained;
represented by a certain set of (galactic) parameters. By fitting an orbit to the GD-1
stream, Koposov et al. determined the range of these parameters with a 90% confidence.
The GD-1 stream was chosen because it is a long and thin stream and, in contrast to
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1.1. THE MILKY WAY CHAPTER 1. INTRODUCTION

previous constraints (using the orbital approximation) on the wider Sgr stream (Law et al.
2005; Johnston et al. 2005), a thinner stream would result in a better fit, which translates
into more precise values (according to Koposov et al.). A thin stream is formed from
a satellite with relatively low internal energy, meaning most stream stars have similar
velocities, which makes the orbital approximation seem appealing. Despite it sounding
correct, the accuracy of the approximation needs to be established.

In this project, I aim to use a similar method as the one used by Koposov et al. to
constrain the gravitational potential of the Milky Way, but with focus on determining
the viability of the orbital approximation for stellar streams. The major difference is
that I will write a computer simulation to create several streams and then treat them as
real observations. By evaluating streams formed from satellites with different properties
(e.g. initial values), I hope to ascertain if there are particular cases for which the orbital
approximation holds. In Chapter 2, a model potential is introduced to emulate the potential
of the Milky Way. The treatment of this potential, in order for particles to form orbits
in the simulations, is also shown. Additionally, Chapter 2 involves the fitting method
of an orbit to the stream and how the values are constrained with a confidence region.
Chapter 3 demonstrates how the streams were formed during the simulations and examples
of the fitting and confidence region. The relevant data found for the streams is revealed
in multiple tables and discussed. Finally, Chapter 4 explains what can be said about the
orbital approximation for stellar streams, what else can be done and how it relates to e.g.
galactic formation. At the end of the Chapter, a link is given to the code I produced.

1.1 The Milky Way

The Milky Way is generally identified as a barred spiral galaxy, by the Hubble classification.
The three characteristics of a spiral galaxy are the bulge, disc and halo. The bulge is the
massive, galactic centre (GC) of the Galaxy, made out of stars which extend into a bar-like
structure, but is also believed to contain a supermassive black hole in the middle. The
disc is the flat plane of gas clouds and stars surrounding the bulge, forming a spiral arm
structure. The halo enwraps the entire Galaxy, stretching out well beyond the disc, and
it is in the outer halo where most satellites and, by extension, streams reside. The halo
consists dominantly of dark matter, which can not be directly detected, but is inferred by
the constant rotational speed of certain objects in the Galaxy. The high speeds observed
at large distances are explained by the, roughly spherical, dark matter halo (e.g. Phillips
2005).
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Chapter 2

Method

2.1 Units

SI units can be inconvenient when working with the masses and distances associated with
stars and galaxies. Expressing the unit of mass in terms solar masses M�, the distance in
parsecs [pc] and velocity in km/s, the gravitational constant can be written

G = 0.004301 pc (km/s)2 M−1
�

and the unit of time becomes

1 pc/(km/s) = 0.9778 Myr.

2.2 The Galactic Coordinate System

The galactic coordinate system is based on the location of the Solar system in the Milky
Way (evaluated in this project to be 8 kpc from the GC), making it frequently used when
examining objects inside the Galaxy. The coordinates are: the galactic latitude b, which
is the angle from the disc plane, and the galactic longitude `, the angle in the plane from
the GC (increasing in the opposite direction of the galactic rotation) (e.g Lindegren 2014).
Both angles are expressed in degrees. The galactic coordinates together with the distance
(from the Sun) r� to the observed object give its exact position in the Galaxy.

The primary coordinates used in the simulation process are galactocentric Cartesian (x,
y, z) coordinates. The Cartesian coordinates were made heliocentric and then transformed
into the galactic coordinates.

2.3 The Modelled Potential

The gravitational potential of the Milky Way is represented by the aforementioned (section
1.1) components in a spiral galaxy. This project concerns the Galaxy’s satellites and,
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2.4. APPLYING THE POTENTIAL CHAPTER 2. METHOD

therefore, only the potential from the disc and halo are considered when modelling the
potential, as the bulge should have a negligible contribution at typical stream distances.
The Milky Way disc is regarded as being homogeneous and has an axisymmetric, highly
flattened potential, which can be described by a Miyamoto-Nagai potential (Miyamoto &
Nagai, 1975), shown below.

Φdisc = − GMdisc√
(x2 + y2 + (adisc +

√
z2 + b2disc)

2)
, (2.1)

where the scale height and width for the Milky Way are adisc = 3.7 kpc and bdisc = 0.2 kpc,
respectively, and are representative of the size and shape of the disc. The disc and halo
masses Mdisc, Mhalo are treated as free variables during the simulation.

The potential of the halo is assumed spherically symmetric and given by a Hernquist
potential, which can be derived from the Hernquist model density distribution (Hernquist
1990), found in e.g. Binney & Tremaine (2008), to be

Φhalo = − GMhalo

r + ahalo
. (2.2)

The scale radius of the halo’s potential, ahalo = 18.5 kpc was treated as a free variable
when fitting for a few simulations (more discussed in Section 3.4).

The total potential exerted on an object sum in the same way as for the total force.
This can be derived from forces being added linearly and the potential simply being the
integral of the gravitational forces (as seen in Eq. (2.4)). The total potential of the Galaxy
is then merely the addition of the two components,

Φtot = Φhalo + Φdisc. (2.3)

2.4 Applying the Potential

2.4.1 Equations of Motion

The force referred to in this project is per mass unit, also called specific force. The force is
then evidently equivalent to the acceleration, which simplifies relevant equations by getting
rid of the mass of individual particles. The acceleration of a test particle in a potential
Φ(x, y, z) can then be determined from the derivative of the potential along the individual
coordinates, as shown below.

~a =



d2x

dt2
= −∂Φ

∂x
d2y

dt2
= −∂Φ

∂y

d2z

dt2
= −∂Φ

∂z

(2.4)
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As the potential is dependent on all three directions, the three second-order ordinary
differential equations (ODE) need to be solved simultaneously. For numerical integration,
this is accomplished by re-writing them as six first-order ODEs. The velocities (u, v, w)
are naturally the derivative of the positional coordinates, which gives the following set of
ODEs. 

dx

dt
= u

dy

dt
= v

dz

dt
= w

du

dt
= −∂Φ

∂x
dv

dt
= −∂Φ

∂y
dw

dt
= −∂Φ

∂z

(2.5)

We can solve these ODEs if the initial position and velocity of the particle are given. (e.g.
Lindegren 2014)

2.4.2 MATLAB ODE45

The programming is done in MATLAB and uses their built-in solver for ODEs, ode45.
There are several different versions for the integrator, denoted by the number in its name.
The ode45 is an all-purpose ODE solver, viable for most problems. It applies a specific
Runge-Kutta method for solving the equations, provided the start variables, e.g. written
in the form W = (x0, u0, y0, v0, z0, w0), and the time interval. If a timestep is not specified
then ode45 will alter the timestep while integrating; for efficient computation (MathWorks
Website 2017).

2.4.3 Circular Velocity

The velocity needed for the orbit to be circular in a potential is found by balancing the
gravitational and centripetal force. The circular velocity can then be calculated from

v2c
r

=

∣∣∣∣∂Φ

∂r

∣∣∣∣. (2.6)

The circular velocity is useful when assigning initial velocities to the objects in the potential.
Choosing a velocity near the circular velocity is a convenient choice because the satellite
will not escape nor “fall” into the potential for these velocities.
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2.5 Fitting method

The approximation that stellar streams follow an orbital path entails that every individual
stream star follows the same orbit. Simply fitting a line that contains most of the stream
stars and calling this their orbit does not work, since the velocities of the individual stream
stars are not considered. The central particle is in the satellite’s centre and has no peculiar
velocity, so it should the best representation of the satellite as a whole; the average position
and velocity of all particles equals that of the central particle. We decide on using the
position and velocity of the central particle for the fitting process, with the assumption
that these values are exactly known from observations. This is a reasonable approximation
because the velocity of the satellite that is being stripped can be determined very accurately
from combining observational data from stars in the stream. Using the velocity and position
of this central particle at the time the stream is observed, yields the orbital path of the
particle when integrated forwards and backwards in time. By changing the disc and halo
mass, the potential is altered until the best fit of the model to the stream is achieved. If
streams really follow an orbit (as in the approximation by Koposov et al.) then this would
be the actual potential of the Galaxy.

2.5.1 Orbit likelihood fitting

The likelihood that a stream star fits the modelled stream orbit is a comparison between the
position of the star and the model, represented by normal distributions. This is a statistical
approach, which necessitates an uncertainty in the values. Since there are no systematic
errors in a simulation, the values used for the uncertainties used are found on observational
errors. The simulated stream stars were treated as real observations. Therefore, the normal
distributions contained the variables in the galactic coordinate system. The latitude and
distance of the stream stars were treated as functions of the longitude `; hence, there are
values for each longitude. Then, for a given ` there is a likelihood for a stream star to be
part of the stream model, as shown in the equation below. This method assumes there is
only one star per ` value.

P (b, r|`) =
1√

2πσ2
b

exp
(
− 1

2

(
bmodel − b

σb

)2)
× 1√

2πσ2
r

exp
(
− 1

2

(
rmodel − r

σr

)2)
,

(2.7)

where the uncertainties are σb = 1◦, which is an estimate of the stream width, and σr = 3
kpc, a typical uncertainty in distance; in reality, it changes with the distance to the observed
object.

Multiplying these probabilities for every star gives the total likelihood that the model
fits the stream. Maximising this probability, by modifying the potential, results in the
potential parameters which give the best fit. The logarithm of the likelihood, log-likelihood,
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2.5. FITTING METHOD CHAPTER 2. METHOD

is used to avoid numerical problems caused by the magnitude of the total probability
becoming minuscule. The total log probability for a given ` that the model fits the stream
is

logP =
n∑

i=1

(
log

1√
2πσ2

b

exp
(
− 1

2

(
bmodel − bi

σb

)2)
+ log

1√
2πσ2

r

exp
(
− 1

2

(
rmodel − ri

σr

)2))
,

(2.8)

where the index i denotes a specific star. The fitting is based on finding the highest
log-likelihood for the two functions, displayed for an example stream in Figure 2.1.

Figure 2.1: An example of the two functions fitted for orbits to a stream. Distance to
the Sun as a function of the longitude (left graph) and the latitude as a function of the
longitude (right graph). The lines are the values for the orbit models and the asterisks ’*’
are the simulated stream stars.

2.5.2 Confidence Region

Because the fitting is statistical, it is possible for the actual value to not be the most prob-
able one. A confidence region (CR) is a region where there is a pre-established confidence
that the actual value must be a part of it. The region is defined as the range the probabili-
ties have to lie within, around the maximum likelihood Pmax, for a certain confidence level
to be achieved. The CR size and shape changes depending on the confidence level and the
degrees of freedom. In this project, a 90% CR is established for a 2D likelihood plot, since
we have two free variables (halo and disc mass). The log-likelihood is then defined to lie
within the range

logP > logPmax − 2.30 (2.9)

in order for us to have a 90% confidence that the actual disc and halo mass are inside the
CR (e.g. Lindegren 2016). An example of how a typical confidence region is displayed in
this project can be seen in e.g. Figure 3.4.
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The CR can be used to constrain the gravitational parameters by inspecting the values
at the borders of the region. This will only provide accurate results if the orbital approx-
imation works, since the likelihoods calculated are derived from a single orbit. There is
no definitive method to assess if the approximation is inaccurate from looking at the CR.
However, even though the actual values might still be inside the CR, if the approximation
is not valid then they are not expected to consistently be within it. By judging from several
log-likelihood plots, it should become evident if the actual values do not fall into the CR
ninety percent of the time.
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Chapter 3

Results

3.1 Creating Streams

In the simulation, streams were formed from a hundred test particles spherically dis-
tributed, formed from randomly generated normal distributions in each of the three Carte-
sian coordinates. The radius of the sphere was 0.1 kpc, as it is a typical size of a satellite.
The central particle of the satellite was given an initial position and velocity v0, which
were altered to create a variety of streams. The initial position r0 was set in the disc
plane and the initial velocity had an angle θ relative to that plane. The Galactocentric
distance of streams can vary substantially, but most of the streams presented were created
at r0 = 12 kpc, which corresponds to vc(12 kpc) = 189 km/s. The angle was changed with
a 15◦ interval, not including 0◦ or 90◦ (because these values formed unnatural streams
which have not been observed); i.e. 15◦, 30◦, 45◦, 60◦, 75◦. The magnitude of the velocity
was varied relatively near the circular velocity for the distance of the initial position. The
particles surrounding the central particle were assigned a similar initial velocity, but with
a normally distributed peculiar velocity added (set as maximum five percent of the circular
velocity) to emulate the behaviour in an actual satellite. The peculiar velocities were also
meant to reflect that we did not know these velocities exactly.

There is no handling of the gravitation between stars in the satellites, as the satellites are
considered to have already become disrupted and are not gravitationally bound any more.
The satellites are therefore treated as having become disrupted just as the simulation starts,
which can be explained by the disruption taking place from a single event (and not over a
period of time). Placing the satellite in the disc can be justified as disc shock - disruption
from passing through the disc. The orbit of each particle was found by integrating their
coordinates over a period of time. As the integration time is increased, the satellite gets
more stretched out and starts looking like a typically observed stream. This is viewable
in Figure 3.1, along with the orbital path of the central particle as a comparison between
the orbital approximation and the position of the simulated stream stars. For some of
the integration times shown the stream seemingly follows the orbit, while for others the
orbit and stream massively differ; making it a faulty approximation. The inaccuracy of the
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assumption that the particles follow the same orbit is made obvious in Figure 3.2, where
each individual orbit is plotted for 10 particles. Shown in one plane (the x-y plane) so to
reduce the number of images presented.

Figure 3.1: 2D images from the simulation of the stream creation process, showing how
it takes form with the increasing integration time t. The asteriks ’*’ represent the stars
in the satellite/stream and the plus sign ’+’ marks the centre of the satellite. The GC is
represented as the ’o’. The curve shown is the orbit of the central particle near its current
position.
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Figure 3.2: The orbits for a satellite of ten particles displayed in 2D for a full lap. The
orbits are clearly spreading out and do not follow a single orbit. A peak separation of
around 3 kpc between orbits can be measured.

3.2 Fitting Stream Orbits

Figure 3.4 and 3.5 show examples of two different streams and the log-likelihood plots
produced from fitting orbits to them. Each figure has two different graphs of the stream,
one with the orbit of the central particle and the other with the best fit orbit. Figure 3.4
shows the orbital approximation follows the stream well in the x-y plane, when judging by
eye, while the other Figure 3.5 shows the results when the orbital approximation is clearly
not viable. The best fit that could be achieved for this stream still does not contain all the
stream stars, however, this confirms that the stream can not be described by an orbit with
the velocity and position of the central particle. The coloured parts in the likelihood plots
are all within the 90% CR and the colours correspond to different log-likelihood values.
Since the fitting method only involves achieving the best fit, the CR may contain negative
mass values as long as the fit is good. However, negative mass is unphysical so the plots
used are cut off at zero mass for both components and the area below is discarded. With
the 90% CR as defined above in Eq.(2.9), we can not be certain that this is a completely
fair approximation when the CR is cut off. Nevertheless, this approximation is applied to
the CR throughout the project.

The significance of some set parameters for the CR was investigated. First off, the
randomly generated velocity and position dispersions appear to affect the CR significantly
when integrating a stream several times using the same initial conditions. The CR “jumps
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around” on the likelihood plot and the area marginally changes, as seen for one example in
Figure 3.3. Increasing the number of particles used for the simulation was found to slightly
decrease the area of the CR, but the jumping around of the CR did not. However, longer
integration times diminished the CR moving. These conclusions were motivated by the
values in Table A.1 and show that 100 particles have a CR similar to 200 particles. The
obvious advantage of fewer particles is that it corresponds to less simulation time.

Figure 3.3: The CRs from integrating 100 particles with the same initial conditions, mean-
ing the only difference is how the velocity and position of particles are randomly distributed.
It is worth mentioning that these examples are for an early stream with a big CR area.
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Figure 3.4: The image to the left displays a stream where the orbit of the central particle
seemingly contains most stream stars. The middle images shows the best fit for the stream,
corresponding to the masses found in the log-likelihood plot (to the right) marked by ’o’.
The ’x’ in the log-likelihood plot points at the actual values.

Figure 3.5: The image to the left displays a stream (in 2D) where the stream stars do not
fall on the orbit of the central particle. The middle image shows the best fit for the stream,
corresponding to the masses found in the log-likelihood plot (to the right) marked by ’o’.
The ’x’ in the log-likelihood plot points at the actual values.

3.3 Quantifying Fitting Results

All the streams were created in a potential with known disc and halo masses and reasonably
the CR should centre around, or at least contain, these “true” values. For all results
presented, these masses were Mdisc = 8 · 1010M� and Mhalo = 20 · 1010M�. For example,
Figure 3.4 and 3.5 highlight the actual masses and those which gave the best fit. The figures
demonstrate that the masses differ noticeably for both, even though one seems to follow
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the orbital approximation. The best fit parameters and whether or not the actual value is
in the 90% CR are therefore important when evaluating the streams. Another noteworthy
property is the area (unit [(1010M�)2]) of the confidence region (for masses above zero),
because it is directly related to how precise the fit is. These significant variables of the
stream fitting are used to represent the streams in the tables below.

The integration time used for the streams does not have a set interval. Instead, it is
decided to be from when the simulated stars first form a recognisable stream until the
stream has stretched about half a lap around the galaxy, which is usually when the CR
became too small to evaluate. Neither do the streams in the tables use the same integration
time, because some stream models give maximum log-likelihoods (and CR) that are at
very negative masses for one or the other component. This means that the peak values
are distant from the actual values and the area in the positive region is zero. This type of
data is not useful when trying to find out if and how the different stream variables relate
to each other. However, they are still of use when determining how many streams contain
the actual values. It is also important to note that when a model gives results so far from
the true values (we do not even consider them to be physical), it is further evidence that
the orbit fitting approach is not correct.
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3.3.1 Varying Initial Angle

Distance 12 kpc

Table 3.1: The relevant parameters for streams created at r0 = 12 kpc with constant initial
velocity v0 = 1.2vc and a range of angles, observed at different times. The masses presented
are for the best fit.

θ [◦] t [Myr] CR area In 90% CR? Mdisc [1010M�] Mhalo [1010M�]
15 600 1200 No 13 60

1000 170 Yes 5 35
1300 96 No 15 27

30 600 584 Yes 8 22
1000 82 No 2 60
1300 5 No 7 39

45 800 525 Yes 7 22
1000 160 No 3 70
1400 3.5 No 14.0 3.5
2200 2.5 No 14 2

60 500 300 No 2 110
950 117 No 12 2

1250 37 No 2 21
1580 50.5 No 8.5 28.0

75 500 844 No 22 3
960 2 No 16 -19

1560 66.8 No 3.5 42.0

I varied the angle of the initial velocity, while keeping the speed constant, for a satellite at
the initial distance 12 kpc. The values for these streams are presented in Table 3.1. In the
x-y plane, I noticed that the streams created seemed to form a coherent line of stars that
got slightly more spread out as the angle was increased. In the x-z plane, both low and
high angles were spread out; higher angles more than lower. Both planes are shown for
streams created from three different initial angles (at high integration times) in Figure 3.6.
Since the modelled halo potential is spherically symmetric, the change in stream values
for different angles is caused by the disc potential. A stream very close to the disc plane
(small angle) is more strongly and uniformly affected by the disc potential; it gets wider
in the z-direction but is still around the central orbit. Larger angles have one side of the
stream getting pulled more than the other, effectively tearing away stars. The difference
in the effects can be seen in the figure, but it is difficult to predict how these would affect
the CR. At most, the 75◦ stream looks harder to fit an orbit to. The stream data does
not help identifying any relation between variables, except for the area decreasing with
time (which is further discussed in Section 3.3.3). The lack of actual values in the CRs is
investigated in Section 3.3.4.
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Figure 3.6: Orbits in the x-y and x-z plane for three streams with different angles and the
same velocity 1.2vc. The line is the central orbit, the asterisks ’*’ are the stream stars and
’o’ the GC.
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Distance 24 kpc

Table 3.2: The relevant parameters for streams created at r0 = 24 kpc (corresponding to
vc(24 kpc) = 159 km/s) with constant initial velocity v0 = 1.2vc and a range of angles,
observed at different times. The masses presented are for the peak log-likelihood.

θ [◦] t [Myr] CR area In 90% CR? Mdisc [1010M�] Mhalo [1010M�]
15 1300 348 No 4 54

1800 750 Yes 12 12
2600 100 No 7 33
3400 94 Yes 12 8
3800 24 No 7 25
4300 51 No 12 9
4800 22 No 11 21

30 1300 516 No 16 25
1800 820 Yes 8 34
2400 46.8 No 11.5 8
2800 236 No 2 42
3400 54 No 15 3
4300 92.5 No 4.5 22.0
4600 16.3 No 9.5 9.0
4800 13.5 No 18.0 2.5

45 1300 568 No 10 42
2500 58 No 15 7
2800 192 No 6 48
3400 40 No 9 12
4100 48 No 17 6

60 1300 476 No 10 30
2000 133 No 34 -20
2500 74 No 14 5
3400 61 No 11 8

75 1300 484 No 12 40
2500 80 No 6 38
2700 120 Yes 4 32
3400 33 No 14 6
4100 24.8 No 14.5 3.5

The angle was altered for a constant velocity for a satellite at the initial distance 24 kpc.
The stream results are presented in Table 3.2. The first thing to be noted is that there are
many more values in this table than Table 3.3, which is simply because it was easier for me
to find streams which had a CR around the positive mass region for this initial distance.
This implies that a distance further away gives more reasonable values than closer values.
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I observed that the streams with a large initial angle have stars slightly more spread out
from the stream; I refer to Figure 3.6 from before. With the disc being further away, the
total potential felt by the streams should be more spherically symmetric, meaning the angle
matters less. Evidently, there is still a difference between angles for the same integration
time as the stream values are not the same. Once again, the area is seen decreasing, but
at some points it increases. The integration time and 90% CR is discussed more in-depth
in Section 3.3.3 and Section 3.3.4, respectively.

3.3.2 Varying Initial Velocity

Table 3.3: The relevant parameters for streams created at r0 = 12 kpc with constant angle
θ = 45◦ and a range of initial velocities, observed at different times. The masses presented
are for the peak log-likelihood.

v0 [vc] t [Myr] CR area In 90% CR? Mdisc [1010M�] Mhalo [1010M�]
0.9 520 324 No 12 -14

1000 50 No 17.2 17.2
1.0 650 1000 Yes 10 38

700 100 No 24 20
950 0.8 No 14.5 0.3

1300 6.7 No 16.5 9.0
1.1 700 308 No 2 42

1150 14.3 No 6.5 33.0
1450 4.3 No 11.0 3.0
1600 7.1 No 6.5 39.0

1.2 800 525 Yes 7 22
1000 160 No 3 70
1400 3.5 No 14.0 3.5
2200 2.5 No 14 2

1.3 600 130 Yes 4 49
1040 640 Yes 6 18
1250 35.1 No 8.5 28.0

The velocity of the central particle was altered near the circular velocity at a constant angle.
The values for these streams are presented in Table 3.3. Figure 3.7 shows the x-y and x-z
planes of three example stream at high integration times. I observed that the satellites with
a high velocity formed rather narrow streams compared to low velocity streams, which had
stars more spread out. The satellites with a speed lower than the circular velocity orbited
closer to the GC and are therefore closer to the centre of the potential, which could cause
the spreading. Due to the closer orbit, these streams also travel through the disc more
often, which could contribute to tearing them apart and appear wider. Another factor
could be that the peculiar velocity has a bigger impact when the stars in the satellite have
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a lower velocity (dispersion is relatively larger). These observations can not be seen in the
stream values and neither can any other clear relation be deducted from the data. The
exception to this is the area decreasing with time, discussed in Section 3.3.3.

Figure 3.7: Orbits in the x-y and x-z plane for three streams with different velocities and
the same angle 45◦. The line is the central orbit, the asterisks ’*’ are the stream stars and
’o’ the GC.

3.3.3 Increasing Integration Time

Using the tables for the different streams above, a solid trend is clear: the area of the
CR decreases with time. This relation is logical, as time passes the stream gets further
dragged out and the fitting becomes more precise. An especially clear example of how
the area decreases is shown in Figure 3.8. The area over time can be seen having bumps,
increasing for one specific time then decreasing again. This is just attributed to the streams
becoming wider at certain points in time, possibly due to when passing through the disc.
The integration time is equivalent to the time at which the stream is observed. Almost
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all streams with a low integration time have a large CR area, which makes sense since the
early streams are very wide. What can be seen in both figure and data is that the CR
does not just become narrower, it also changes position outside of the previous CR. This is
additional proof that the orbit fitting method is not a viable approximation; the potential
derived changes depending on when the stream is observed.

Figure 3.8: The log-likelihood plots of a stream, showing how the CR area decreases with
time.

From observing the different CRs, they can be seen to have a characteristic inclination,
which comes from the fact that the total mass within the region of the stream must be
almost constant. This is because the total mass is roughly what dictates the curvature of
the orbit. If the disc mass is altered then the halo mass must be changed accordingly, in
order for an orbit to be similar to the best fit orbit. This is the linear relation seen in the
CRs.

3.3.4 Testing 90% CR

This section is dedicated to determine how often the actual masses are inside the CR, so
that I can include streams which are very distant from the positive mass region. Therefore,
Table 3.4 only presents if the streams are in the 90% CR or not, for the entire range of
initial angles and velocities considered.
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Table 3.4: Data for whether streams’ 90% CR contain the actual masses. The streams
presented were created at r0 = 12 kpc and with a range of initial velocities and angles.
The data for streams created with the velocity v0 = 1.2vc are shown in Table 3.3.

v0 [vc] θ [◦] t [Myr] In 90% CR?
0.9 15 300 Yes

800 No
1300 No

30 300 Yes
800 No

1300 No
45 300 No

500 No
700 No
800 No

1000 No
60 300 No

800 No
75 300 Yes

940 No
1.0 15 600 No

30 600 Yes
950 No

45 600 No
650 Yes
700 No
800 No
950 No

1050 No
1300 No

60 600 No
640 No
670 Yes

75 600 No
700 Yes

1000 No

v0 [vc] θ [◦] t [Myr] In 90% CR?
1.1 15 300 Yes

800 No
1300 No

30 600 No
1000 No

45 600 No
800 No

1000 No
1300 No

60 600 No
800 Yes

1000 No
75 600 Yes

800 No
1.3 15 600 Yes

1000 No
30 600 Yes

1000 Yes
1300 No

45 600 Yes
1000 No
1250 No

60 600 No
1000 Yes
1300 No

75 600 Yes
800 No

1300 No

In addition to this Table, I also use data from the tables above ( 3.1, 3.4 and 3.2)
to draw conclusions. The few CRs that have the true values are mostly streams which
are early in their formation, with a large area and peak values far-off the actual masses.
Therefore, they do not necessarily confirm the orbital approximation, the CR merely has
a high uncertainty and many masses give a sufficiently good fit. Despite this, they are
still counted when determining the ratio of streams which have a CR with the actual value
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inside them. Using the data from all the streams, the ratio of streams is determined to be
23/105 ≈ 21.90%. If I choose to only look at streams with a CR that does not get cut off,
the streams that qualify must either have a small CR area or be far away from zero mass
values (these two conditions must be balanced). Doing this, I get the ratio 4/32 ≈ 12.50%.
The ratio decreases since this approach gets rid off most early streams, which have a very
large CR area that, usually, includes the actual masses.

3.4 Trying to Fit with Scale Radius

The scale radius of the halo was considered to be treated as a free variable, but fitting to
three parameters complicated the simulation further. Considering the scale radius meant
an increase in the simulation time and constraining the parameters with a 3D CR would
be difficult. It was briefly used as a free variable to fit some streams, but the scale radius
was found to not have as a big impact on the fitting as the halo and disc mass (unless
changed drastically). Also, it can be seen from the Hernquist potential, Eq.(2.2), to mostly
be important when the distance of the stars to GC is smaller than or close to the scale
radius. Therefore, the scale radius was not altered during the fitting.
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Conclusions

In this project, I have created a program to produce a variety of streams in a potential
model which resembles the Milky Way’s potential. By fitting orbits to the streams, I have
analysed the viability of the orbital approximation for stellar streams using a 90% CR.
From the figures and data in the tables presented, I mainly find evidence which opposes
the orbital fitting method. Already when beginning the simulations and forming orbits for
test particles it became evident that the simulated stars did not follow the same orbit and
that the orbital approximation does not contain all of the stream stars. A significant part
of streams gave CRs with a large part of their area in the negative mass region, which is
unphysical; further proof against the orbit fitting method. When evaluating the ratio of
CRs with the actual value inside them I found that for all streams presented I get a ratio
21.90% of streams. A more selective evaluation, only including streams with a CR entirely
inside the positive mass region, yields a ratio of 12.50%. These ratios do not correspond
to the 90% expected from applying a 90% CR. My key conclusion after observing all of
this is that the orbital approximation is severely inaccurate and can not be used for stellar
streams.

The method of fitting an orbit to streams has been used before, e.g. by Koposov et al., to
constrain the potential of the Milky Way. In this project, I have tried constraining the mass
of the Galaxy and shown this method to be incorrect. The error of this approximation,
of course, carries on to the results, giving you inaccurate values. It is crucial for the
approximation to be recognised as faulty and effort put into other, more reliable, methods.
The scientific importance of accurately determining the total mass of the Galaxy lies in
establishing whether the Milky Way is a typical galaxy for its mass. Several questions in
cosmology depend on knowing this, e.g. the missing satellites problem, and it is impossible
to ascertain if the Galaxy is typical before knowing its total mass.

The best fit for the simulated stream in Figure 3.5 further showed that it is very difficult
to achieve a good fit (which includes most stream stars) when taking into consideration
the orbit of one of the stream stars. Figure 3.4 demonstrated that even when the orbital
approximation appears acceptable by sight, a statistical analysis finds a different best
fitting mass, with a confidence region which does not contain the actual mass values.
However, it should be noted that the fitting is done in 3D while the image is in 2D. The
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difference between actual and best fit masses can be expected to be due to the offset of
the orbit in the z-coordinates. This is in accordance with a change in mass ratio (between
halo and disc) mostly affecting the z-direction, since the halo is spherical and disc close
to flat (lying in the x-y plane). The CR is extended along a line in the halo mass - disc
mass plane which corresponds to a constant combined mass contained within some radius
(probably the typical Galactocentric radius of the stream) and the actual masses almost
fall on this line, but they are still not in the 90% CR because the mass ratio is wrong. This
can be related to one of the main results found by Koposov et al., they claimed to have
determined the flattening of the total potential, the axis ratio in z-direction. The mass
ratio, as it affects the z-direction, is similar to this and the example presented in the figure
tells us that also this result by Koposov et al. is not accurate.

Among my main conclusions, I also found a few relations between stream parameters.
Most noticeable is the decrease of the CR area as the time is increased. This sounds
logical, since the stream gets more dragged out with time, meaning it gets thinner and
fitting an orbit to it gives more precise results. Since young streams therefore give very
large CRs (using this model) it seems likely that the same will be true even with better
approximations. They are therefore unlikely to be useful for learning about the potential.
A few streams had an increase in the CR area at some integration times, which just shows
that the stream most likely became wider at some points (e.g. from passing through the
disc). The random generation of the position and velocity dispersion affect the CR in
unpredictable ways, but is diminished with increased particles and integration time. Other
relations are observed for streams created with other initial conditions (mainly angle and
velocity), but can not be confirmed from the tables. It is possible that the random effects
outweigh the minor changes I observed.

There are other assumptions that I have made while analysing the orbital approxima-
tion. Most notably, cutting off the CR for negative mass values. I tried to rectify this
by determining the ratio of streams described by the orbit fitting method only for CR
inside the positive mass region and compare with the total ratio. However, I recognise
that further analysing of CRs in the positive mass region could be done so to avoid making
the ”cut-off” approximation. When doing so, I would recommend using long integration
times, so to decrease the area of the CR. I also assumed that for each ` there is only one
b and r value, which implies that there is only one star per ` coordinate. Evidently this
can cause issues during the fitting process. The assumption of single-event disruption is
usually not the case in reality and could be improved in this project by, instead of releasing
all particles at once, releasing them over time as the satellite is orbiting. Interaction be-
tween the simulated stars was considered a fair assumption because it is not a substantial
effect during the stream creation phase of a disrupted satellite. Of course, implementing
interaction would make the stream model more realistic, but would require quite a bit of
computing power. The velocity of the central particle in the satellites created were assumed
to be known exactly, which can be justified by the fact that the satellite’s average velocity
(equivalent to the central particles velocity) can be determined accurately from combining
observational data from many stars. This saves us from having to add the velocity as
another variable, but in reality a range of values should be considered. Lastly, the velocity
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dispersion was added in this project to simulate a satellite and because we assumed to not
know the exact velocities of any other particle. If one accurately knows the velocities for
some streams stars, this data could be added to improve the model for real streams. They
could also have been used in the simulation, where we know these values exactly.

The orbit fitting method should not be applied on stellar streams. However, there
are other methods which allow for accurate stream models. First off are N-body simu-
lations, which incorporate the interaction between bodies and produces realistic models.
Unfortunately, they are computationally expensive and, therefore, unfit for investigating
a large quantity of parameters. Another approach to forming stream models is the use of
streaklines, a concept from fluid dynamics used to visualise flow. Streaklines are created
by releasing test particles with a slight difference in position and velocity from an orbit-
ing satellite. The particles are released at a constant time interval while the satellite and
particles orbit (Küpper et al. 2012). A second example of methods uses the distribution of
orbital frequencies to place stars at different positions and velocities near a similar starting
point: thus, creating a stream. The orbital frequencies vary slightly, which corresponds to
the different positions and velocities. This method was first applied by Bovy et al. (2016),
having been proposed by Bovy (2014).

All of my code used has been uploaded to github and can be found on this webpage:
https://www.github.com/13ET/Analysing-Stellar-Streams
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Appendix A

Additional Stream Values
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A.1. NUMBER OF PARTICLES APPENDIX A. ADDITIONAL STREAM VALUES

A.1 Number of Particles

Table A.1: The relevant parameters for streams created at r0 = 12 kpc with constant
angle θ = 45◦ and initial velocity v0 = 1.2vc. The masses presented are for the peak
log-likelihood.

# particles t [Myr] CR area Mdisc [1010M�] Mhalo [1010M�]
50 1000 600 -7 55

650 10 11
1050 9 36
540 -3 50
525 2 23

1500 10 56
100 1000 300 -5 50

480 7 23
525 3 31
600 3 28
345 8 15
465 11 12
400 2 53

1400 10.0 8.5 21.0
8.3 8.5 22.5
8.5 9.0 17.0

200 1000 440 4 27
300 5 35
420 8 27
180 -3 37
150 -2 35

1400 5.5 9.0 17.0
3.3 7.5 26.0
5.0 10.0 24.0

500 1000 240 5 29
330 1 59
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