) LUND UNIVERSITY

5/ Faculty of Science

Many-body-based DFT treatment
of fermions in optical lattices

Jérémie Westergren

Thesis submitted for the degree of Bachelor of Science
Project duration: 2 months, 15 hp

Supervised by Ass. Prof. Claudio Verdozzi and Miroslav Hopjan




Abstract

With recent advances in the field of ultra cold atoms one can, by trapping atoms
at low temperatures by laser beams, simulate systems which can be adequately
described by single-band lattice Hamiltonians. Also, due to the high parameter
tunability of the experimental setups, lattice disorder can be introduced in a con-
trolled fashion in these systems. This thesis considers disordered/ordered interacting
fermion lattice systems in equilibrium in one and two dimensions, subject to trap-
ping parabolic potentials, where different levels of description, ranging from exact
where possible (in 1D, Density Matrix Renormalization Group, DMRG), to approxi-
mate (based on several local-density approximations within the framework of Lattice
Density Functional Theory) are used. The exchange-correlation potentials consid-
ered come from Many-Body Approximations obtained using Green’s functions, as
well as from an exact local-density approximation (LDA) based on the Bethe-Ansatz
(BALDA) in 1D. Both one- and two-dimensional systems were studied in equilib-
rium, essentially looking at the ground state density profiles. Furthermore, in 2D,
a pseudo-dynamics representing the trap-opening in the complete adiabatic limit
was also studied. For one-dimensional systems, it is found that, in general, BALDA
yields very good results compared to DMRG, except for the low density limit, but
DMRG can describe features that none of the LDA:s considered can reproduce. It
is also found that the strength of the external potential affects the impact that the
exchange-correlation potential has on the system. Many of these features translate
to the 2D case. However, a new aspect emerges in two dimensions, related to the
competition of disorder and interaction. Here an important outcome is that, on
opening the trap at an ideally adiabatic rate, different MBA:s (and thus different
LDA:s) provide different minimal vs maximal expansion radii of the particle cloud, as
a result of the interplay of disorder and interaction, and the underlying square lattice
structure. For the 2D results, exact benchmarks were not available, and our findings
may thus need further validation, by e.g. considering several disorder configurations
or, ideally, by performing full Green’s function calculations. These considerations
are summarised in our conclusions and outlook remarks, where possible directions
for future investigation are highlighted.
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1 Introduction

Describing realistic quantum many-body systems is a daunting task that has troubled
many physicists since the advent of quantum mechanics. The solution to this problem
is of utmost importance if we want to understand the world around us, considering how
practically all systems that have any relevance to humans are comprised of a very large
numbers of particles (the Avogadro number, Ny = 10?*] is usually used to define the
macroscopic limit). While quantum mechanics in principle gives the correct description
of any (non-relativistic) system, most calculation involving a macroscopic number of par-
ticles is in practice impossible, in spite of the increase in computational power that has
been achieved over the last few decades. In order to circumvent this obstacle, physicists
need to find ways to obtain knowledge about the system at hand, without solving for the
many-body wavefunction of the system. A case in point is Density Functional Theory
[1, 2|, which is the main topic of this thesis.

When faced with the task of simplifying a practically intractable problem to something
that can actually be calculated, there is no single obviously correct approach. One must
often rely on physical intuition in deciding how to reduce the problem to one that is
tractable. One way to tackle this problem is to focus on certain aspects of the problem,
and try to replace the Hamiltonian of the initial problem with a simpler model Hamilto-
nian [2|, which still retains the properties of interest. One particular model Hamiltonian
which is of great interest to the condensed matter community is the Hubbard model [3].
The Hubbard model is a lattice model, in which the position eigenstates are discretised.
In its most simple incarnation, the particles can tunnel between nearest neighbour sites,
like in the tight binding model, and interact locally with particles on the same site. Since
its conception in the 1960s, the Hubbard model has been used to study phenomena such
as magnetism, electron correlation and high temperature superconductors [4], but interest
in this model has greatly increased recently because of its ability to accurately describe
ultracold atoms in optical lattices.

The field of ultracold atoms [5] can be said to have had its genesis with the experimen-
tal observation of Bose-Einstein condensate in 1995 [6]. Development of techniques such
as laser cooling, which began being developed as early as in the 1960s [7], also played
a large role to its emergence [7]. The field have later on expanded to also include the
treatment of fermions. Ultracold atoms can be trapped in optical lattices, consisting of
counterpropagating lasers forming standing waves, resulting in a static landscape with
evenly spaced lattice sites. By utilising the so called Feshbach-resonances [8, 7| one can
emulate repulsive or attractive fermions(bosons) on a discrete lattice, such as described
by the Hubbard model. The parameters of these systems, e.g. the strength of the on-site
interaction, can be controlled with very good precision, and effects like disorder, which is
an inseparable part of any real solid state system, can be introduced in a controlled fashion.

The close resemblance to ideal systems provides an optimal setting to study for example
the interplay between interaction and disorder, which is one of the topics of this thesis.
Furthermore, the field of ultracold atoms is a research area in which new theoretical ap-
proaches are needed in order to interpret experimental results [7]. On the theoretical side,
much has already been done in 1D, see for example Refs. [9, 10|, where exact numerical



methods such as DMRG are viable. In higher dimensions, much less is known at present,
though higher dimensions remains an active area of research [11, 12].

Furthermore, by choosing the right formulation of the initial problem, solutions tend to
not be as elusive as they may be within the generic wavefunction formulation of quantum
mechanics. One formulation which is conceptually easy to grasp is Density Functional
Theory (DFT), which is an exact reformulation of quantum mechanics where the particle
density plays the main part, rather than the wave function from the Schrodinger for-
mulation, or the state vectors in the matrix mechanics formulation. Calculations within
DFT have the advantage of being computationally inexpensive, relative to other methods,
which enables one to treat quite sizeable systems efficiently. The central quantity within
the DFT formulation is the so-called exchange-correlation potential, which encompasses
all the many-body intricacies of the system, and is defined as the variational derivative
of the exchange-correlation energy with respect to the density. However, even though
DFT is an exact reformulation of quantum mechanics, we must employ approximations
in order to make use of the theory in practice. The exchange-correlation energy is usually
the main object of approximation, and is taken from a reference system in which analytic,
numerically exact, or reliable approximate solutions are accessible.

As an example of a reference system Fig. 1 displays the exchange-correlation poten-
tial obtained from a Hubbard dimer occupied by two repulsive fermions with interaction
strength U. Note the symmetry around half-filling, which is a general feature exhibited by
exchange-correlation potentials of fermionic systems on a bipartite lattice. The exchange-
correlation potential of such a rudimentary system could in principle be applied to larger
and more complex systems to obtain qualitative results, but in order to obtain quantita-
tive results exchange-correlation potentials from more sophisticated reference systems are
a necessity.
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Figure 1: Exchange-correlation potential obtained from exact numerical solutions of a Hubbard dimer (a
two-site system) occupied by two repulsive fermions of opposite spin, for 6 different interaction strengths
U. The exchange-correlation potential, v,., is plotted against the density n. The subscript a refers to
the site index, as the fixed number of particles enables a full description of the system by only studying
one of the sites.

Another approach to the many-body problem is to try to approximate the solution by
initially neglecting the many-body effects on the system, and include them later in a
perturbative manner. In this approach, one-particle Green’s functions can be used to



compute the expectation values of any one-particle operators, but also quantities like the
total energy. The different approximation schemes for Green’s functions can be visualised
in terms of Feynman diagrams, which is of great aid when traversing into uncharted ter-
ritory where physical intuition is the primary guiding light.

For systems with a small number of interacting particles, exact numerical diagonalization
is also an option, but the size of the systems which can be treated by this approach is
at present limited to 10-20 particles. A more sophisticated and powerful method of the
exact kind is the Density Matrix Renormalization Group (DMRG). Solutions from these
methods can be used as benchmarks against which the approximate solutions are evalu-
ated. For a few, very simple systems, one may be inspired and find an analytical solution
to the problem. The systems for which there are analytical solutions available are rare.
The analytical expressions obtained from such systems may serve as a starting point from
which analysis of more complex systems may be undertaken.

Exact
nonlocal
(DMRG/ED)

Exact LDA
(Bethe Ansatz
based)

local density
approximation
(LDA)

many body
approximation
(MBA)

N

Perturbative
nonlocal
(Green's function)

Perturbative
based LDA
(this thesis)

Figure 2: Pictorial description of the different levels of description for the systems under consideration.
The primary focus of this thesis is on the bottom left MBA-based LDA.

The goal of this thesis is to compare different levels of description from various com-
binations of all above mentioned approaches, (see Fig. 2, where the different levels of
description are displayed pictorially). The model chosen as the stage for this study is
the 1D and 2D fermionic Hubbard model, where ground-state calculations will be un-
dertaken. Both ordered and disordered systems will be considered, in an attempt to
evaluate the effects of disorder on fermions in optical lattices. The primary view point
will be that of DFT, used in an approximate fashion, with many-body approximations
(MBA) entering as means to approximate the exchange-correlation potential of the ref-
erence system. In one dimension, exact DMRG calculations will be performed. The
analytical solution to the Hubbard model based on the Bethe-ansatz, will be utilised to
provide exchange-correlation potentials (BALDA) for DFT calculations. This provides
benchmarks to which the approximate results stemming from the MBA potentials can be
evaluated. This corresponds to the top left (DMRG), top right (BALDA) and bottom
right (MBA-LDA) bubbles in Fig. 2, respectively. The conclusions from the calculations
in 1D, where much is already known from earlier studies [10, 13, 14|, will then be carried
over to 2D, where much less is known and only MBA potentials are available, in order to
provide some insight in the performance of the new approximate potentials.



2 Theory

2.1 Density functional theory

Density Functional Theory (DFT) has its origin in the 1964 Hohenberg-Kohn paper [1]
(HK). HK proved that there is a unique mapping between the external potential and the
ground-state one particle density, up to a constant in the potential. From this follows
that also the groundstate (GS) wavefunction, ¥, is uniquely determined by the GS-
density, except for multiplication by an arbitrary phase. Utilising this correspondence,

the universal functional, o
Fln] = (W,|T + U]0,) (1)

can be defined, where T and U are the kinetic and inter-particle interaction operators,
respectively. From F'[n(r)], the energy functional is defined,
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where v(r) is the external potential. The need to define the energy functional as a Legendre
transform of F[n] arises from the fact that the density, n, is the variational derivative of
the energy with respect to the external potential, and one cannot completely specify a
function in terms of its derivative. HK subsequently proved that E,[n] is minimized for
the correct GS-density. Thus the problem of determining the ground state properties of
a system is exactly reformulated into a variational problem in the one particle density.
However, due to the equivalence of the wavefunction and DFT descriptions, the complexity
of the problem is unchanged. Obtaining F'[n| requires the same effort as solving the initial

Schrodinger equation. In order to make use of DFT one must find means of approximating

2.2 Kohn-Sham one particle scheme

In the previous section, DFT was presented as an alternative way of describing quantum
mechanical systems, but without any suggestions for how DFT can be applied in practice.
One way of approaching the problem of determining F'[n] is to employ a method where
quantities that are easily calculated are extracted from the density functional, with the
hopes that the remaining part will be small and can be treated approximately. Kohn and
Sham [15] (KS) proposed a separation of F'[n] into three parts,

Fln] = Tln] + Uln] = To[n] + Enln] + Ex[n] (3)

where Tp[n] is the non-interacting part of the kinetic energy, Ex[n] =3 [ [ %W is
the Hartree energy and FE,.[n| = T,.[n] + U.[n| is the contributions to the kinetic and
interaction energy due to exchange and correlation between particles. KS introduced a
fictitious non-interacting system, tailored to have the same density as the original system,

from which Ty[n| is obtained as the kinetic energy. The KS-equations have the form,

(_% V2t vks) i = €y (4)



where ¢; are the KS-orbitals and vy, is the KS-potential, defined as
oE OF,.
=i

Vgs = Vegt +

on on

= Vegt + Vi + Vse (5)
where % represents the variational derivative with respect to the density. As vy, de-
pends on the density, the set of equations (4) have be solved self-consistently. In general,
the eigenvalues and the solutions to the KS-equation do not have any obvious physical
interpretation. One exception is that the energy of the highest occupied KS-orbital cor-
responds to the ionization energy of the system [16]. Otherwise, the KS-orbitals can be
seen as mathematical tools for obtaining the GS-density [2|. The density is obtained by
squaring and summing up all the filled KS-orbitals,

occ

n= Z |Gio|? (6)

. . . . . . Ndr!
where the index ¢ indicates summing over spins. The Hartree potential, vy = ﬁ(f_)T,T ,

is explicitly known and the external potential, v, is given. This leaves one with the
problem of determining the exchange-correlation potential, v,., which contains all the
exchange and correlation effects of the system. Solving self-consistent one particle equa-
tions is a relatively simple task, so once v,. is known or adequately approximated, all the
GS-properties of the system can be calculated. It is, however, not certain that arbitrary
densities can be reproduced by a non-interacting KS-system, i.e. if it is non-interacting
v representable. Looking at eq (5) one can see that representability is directly related to

the existence of the variational derivative 2= [2].

However, the exchange-correlation potential is a highly complicated object, which depends
non-locally on the density, and it is known only for a few very simple systems. Hence this
is the point where approximations must be made in order to make progress in the KS-
approach. One drastic simplification that can be made, is to assume that the exchange-
correlation potential is not explicitly non-local, i.e. the exchange-correlation potential
can be expressed as a regular function of the local density, v,.[n(r)] = v.(n), rather
than a functional of the entire density profile. Such a local density approximation (LDA)
is obtained by solving a reference system where the exchange-correlation potential has
the aforementioned property of not being explicitly non-local. This reference system is
solved exactly or approximately and from the obtained solution an exchange-correlation
potential can be extracted. The far most common reference system for LDA is the free
electron gas, or in the case of lattice DFT [17], the homogeneous Hubbard model. In
this latter case, the exchange-correlation potential is obtained by taking the variational
derivative of the exchange-correlation energy per site with respect to the density. We
wish to note that, in a strict sense, the LDA is not a mean field method, since it includes
electronic correlations [2].

2.3 Lattice DFT and the Hubbard model

While the original HK theorems dealt with a reformulation of quantum mechanics into a
theory where the continuous one-particle density is the basic variable, one might ask if the
framework of DFT can be used to reformulate problems in terms of some local variable
other than the density. Schonhammer, Gunnarsson and Noack [18] studied the underlying
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theoretical framework of DFT, where they extended the HK theorem pertaining to the
minimization of the energy functional for the correct GS-density, to functionals of any
local variable which couples linearly to an external parameter. One of these DFT type
theories is Site Occupation Functional Theory (SOFT), introduced by Schonhammer and
Gunnarsson [17] , which is a lattice DF'T where the site occupation number assumes the
role of the density type variable.

Lattice DFT has one obvious advantage over its continuous counterpart, which is that
the standard reference system for obtaining the exchange-correlation potential, the Ho-
mogeneous Hubbard model, is analytically solvable in one dimension [9]. In contrast, the
paradigm reference system for continuous DFT, the homogeneous electron gas, has no
analytical solution [4].

The Hubbard model is a lattice model introduced first by John Hubbard in 1963 [3].
The model was developed in order to study correlation effects in transition and rare-
earth metals where the electron gas description is no longer appropriate. For systems
where the electron density is concentrated around the nuclei that make up the lattice,
and the overlap of electrons orbiting different nuclei is small, it seems reasonable to adopt
a lattice description where only the interaction of electrons located around the same
nucleus is taken into account. In its most basic form, the Hamiltonian of the Hubbard
model written in second quantization is,

H=—t; Y (604 ,60)+UY elcinel ey (7)
(i,j),0 i

where éjjg, ¢i» are creation and annihilation operators for a fermion with spin o at site
¢ and éjyaéi,a = N, 1s the spin resolved site occupation number operator. The hopping
matrix, ¢;;, controls the tunnelling rate between the sites 7 and j, and U is the on-site
interaction. Each lattice site has a single energy level, and can accommodate one electron
of each spin. The particular form of the Hamiltonian in equation (7) is valid for any
dimensionality, and the geometry of the system is defined by the hopping matrix, ¢;;. In
the present work we consider only geometries where t;; = t = 1 for nearest neighbours
and t;; = 0 otherwise, hence the subscripts will be dropped from here on. Note that all
quantities in this thesis e.g. interaction U, external potential v.,; and disorder W are
expressed in units of £. Thus the unit charge, e, and h are set to be equal to one.

To study the behaviour of electrons on a lattice subject to an external perturbation, an
additional term must be added to the Hamiltonian in equation (7),

H=—tY (el t10+el,00)+UY e b+ higvie (8)
(g0

i=1 io

where v; is the external potential at site i. While equations (7) and (8) are spin resolved,
only spin independent external potentials are considered in this thesis.



2.4 Self-consistent solutions of the Kohn-Sham equa-
tions

In order to obtain the GS-density using DFT, the corresponding Kohn-Sham one particle
equations were solved, by means of exact diagonalization described in section 3.1,

(T + @ks)ﬁbu = €.y (9)

where since vgs(n) is a function of the density itself, one must adopt a self-consistent
iterative approach. This method consist of choosing an initial density {n;}, usually the
density of the corresponding non-interacting system, which is obtained by first solving
the KS-equations for vgs = verr. A new KS-potential is then assembled according to,

Vks (1) = Vet (1) + Vi (1) + Vae(n4) (10)

where vy (n;) = %U n? is the Hartree-potential and the exchange-correlation potential v, is
obtained from a homogeneous reference system, v,.(n) = v7% (n). This new KS-potential
is then used to compute the density, and this is repeated until the difference between
two consecutively computed densities is below some threshold value, i.e. convergence is
reached. In order to avoid getting stuck in a self consistent loop, a mixing parameter «
is introduced, and the new densities, {n'}, are obtained by linear mixing of the density
from the previous step and the density calculated at the current step.

né,tﬂ = a1+ (1 — O‘)”Q,t (11)

where ¢ indicates the number of iterations. 1 > a > 0, usually with o < 1.



3 Other Methods

3.1 Exact Diagonalization

In this thesis, exact diagonalization [4, 19], in the sense of arbitrary numerical preci-
sion, was used to solve the smallest systems under consideration. The DSYEV routine
contained in LAPACK [20] was used to obtain the eigenvalues and eigenvectors of the
Hamiltonian. Exact diagonalization quickly becomes intractable, considering that the
dimensionality of the Hilbert space grows (considering only systems with fixed spin) as
( ]\I;T) ( Ji)’ where L is the number of lattice sites and N, is the number of fermions with
spin o. Diagonalizing the corresponding matrices quickly gets out of hand, considering
that direct and full diagonalization of matrices grows in complexity as the cube of the

dimensionality of the matrix.

3.2 Density Matrix Renormalization Group Calcula-
tions

DMRG was used to obtain numerically exact GS-densities in 1D. The DMRG algorithm
for an infinite 1D chain is implemented as follows [21]:

1. A small subset of the system, called left block is coupled to a single neighbouring
site, making an enlarged block.

2. The enlarged left block is then coupled to a similarly constructed enlarged right
block, and the ground state for this system, called a super block, is found through
exact diagonalization.

3. From the groundstate the reduced density matrix of the left enlarged block is con-
structed, and a truncated basis is defined from the eigenstates of the density matrix
with the largest statistical weights.

4. All the relevant operators and the groundstate are then renormalized to the new
truncated basis and the process is repeated until the desired system size is reached.

This process works for infinite systems (where the process would be repeated until e.g. the
groundstate energy has converged), but to apply it to finite systems one has to modify the
algorithm once the super block reaches the size of the finite system under consideration.
At this point one starts to reduce the size of the right block as the left block grows. All
the right blocks needed from this point on has already been constructed in previous steps,
and the two sites joining the left and right block "sweep" across the chain until the end
of the chain is reached. The role of the left and right blocks are then reversed, and the
sweeping starts in the opposite direction. After each sweep a better approximation for the
groundstate is found, and convergence is reached typically within a few sweeps [22, 21].
The point of this method is that, instead of just keeping the energetically lowest lying
states of the iteratively growing left block, implicitly assuming that the ground state of
the entire system can be described in terms of low energy states of the subsystems, one
keep the statistically most favourable states of the left block coupled to the environment
(the right block).



3.3 Methods for the infinite homogeneous Hubbard model

In the context of DFT, the 1D Hubbard model has the advantage that it is analytically
solvable in the homogeneous case (as mentioned earlier in section 2.3) using Bethe-ansatz
[9], which is not the case for the homogeneous electron gas. The exact solution allows
one to construct an optimal LDA denoted BALDA, where the acronym stands for Bethe-
Ansatz Local Density Approximation.

However, for the two-dimensional Hubbard model, the exact solution for the ground state
energy is lacking, and the available numerically approximate solutions are inadequate
around half-filling (n = 1) [11]. This prevents us from finding the exact (paramagnetic)
ground state energies for an optimal LDA. Thus one has to resort to approximate solutions,
which may work in certain parameter ranges. Here we choose to compute the ground state
energies with the many-body diagrammatic method for computing the Green’s functions
[23]. That is, we work with the second Born approximation (2B), T-matrix approximation
[24] (TMA) and GW approximation [25], and test their performance in relation to each
other.

The approximations can be represented by self-consistently dressed diagrams, which re-
spect certain conservation laws of Baym and Kadanoff [26]. For the dressed diagrams,
the total energy can be computed with the so-called Galitskii-Migdal formula [27], which
for the homogeneous system can be written in (w, q) space [28]:

By = # / /B dudqleo-+ eq) TG (v, ) ()

_ 2 [ el
n = (am) P /_OO/BZdwqu G (w,q) f(w).

with D being the dimensionality, G the retarded propagator [23], €, the single particle
energy and f the statistical Fermi factor. For the homogeneous Hubbard reference system,
we use

(12)

OE (n)
on
where E%P™(n) = EP"(n) — Ty(n) + Eg(n).! The three terms on the right hand side
are the total energy in the particular approximation, the non-interacting kinetic energy
and the Hartree energy for the D-dimensional homogeneous Hubbard model, respectively.

o (n) =

(12)

It is convenient to perform calculations in (w, q) space. For example, for the 2B case, one
gets:

1
G( 7q) W_E( _UH_EQB

20 (w,q) = (22D / / /BZ/Bdw dw"ddq'dq

X Gw',q)GW"qd")Gw - +",q—q +q"),

IThe actual calculation of E{ZP™(n) was outside the scope of this thesis, and details are deferred to a

future publication, see J. Westergren, M. Hopjan and C. Verdozzi, in preparation.



where G(w,q) is the time ordered propagator. The equations are iterated until self-
consistency is reached.
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Figure 3: Diagrammatic representation of the many-body self-energies used in this thesis. The top row
is the 2B approximation which includes all diagrams up to second order. The middle row is the TMA,
which includes all the so called ladder diagrams up to infinite order. The GW approximation includes all
bubble diagrams up to infinite order, which represents repeated electron-hole creation and annihilation.
The + and — signs in the diagrams represent the different spin projections of the propagators.

Fig. 3 displays the diagrams for the chosen approximations. The 2B approximation
contains all diagrams up to second order, thus it is not expected to work for strong in-
teractions. The TMA and GW approximations include diagrams of a certain type up to
infinite order. The TMA is suitable for low (high) filling and short range interactions (e.g.
Hubbard interaction), where the diagrams describing multiple scattering events between
the same two particles become the dominant contribution to the self-energy. One can
show, that for the one-band fermionic Hubbard Hamiltonian, in the TMA approximation,
the contribution from the exchange diagrams exactly cancel the contribution from same
spin direct diagrams [29, 30]. Hence in the diagrammatic expansion in Fig. 3, beyond
second order, this cancelation is already taken into account. The GW performs better
for systems with long range weak interactions, where screening is caused by electron-hole
excitations. Since the Hubbard model describes short range interactions, it is expected
that TMA should perform well at low (high) filling.
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4 Results

The results emerging from this study can be divided into three parts. Section 4.1 consists
of an analysis of the exchange-correlation potentials from approximate and exact solutions
for the homogeneous Hubbard model in one, two and three dimensions. The analysis is
focused primarily on the behaviour of the potentials in the dilute limit (n = 0—0.3), and
how well they perform in relation to the available exact potentials in one and three di-
mensions. The conclusions from the analysis of the potentials in one and three dimensions
will then be carried over to 2D, in order to make an educated guess about the quality of
the approximate potentials in 2D.

In section 4.2 the available exchange-correlation potentials in one dimension are used to
perform DFT ground-state calculations of repulsive fermions in a Hubbard chain subject
to an external parabolic potential, primarily for the low density limit. This serves to de-
scribe an important class of experiments where cold atoms in optical lattices are subjected
to an external potential forcing the particles to the centre of the lattice. Both ordered and
disordered cases are considered, and all the DFT calculations are compared to numerically
exact benchmarks coming from DMRG calculations. This serves to provide insight into
how accurately the LDA potentials from the homogeneous Hubbard model can describe
the correlation effects in these non-homogeneous systems, and to investigate for which
external parameters the LDA breaks down. The study in one dimension also seeks to
highlight what effect the differences in the approximate and exact LDA potentials have
on the density profile of the system. The conclusions from this part provides additional
understanding of how capable the approximate LDA:s are in capturing the features of the
true system, which are then utilized in the investigation of the two dimensional Hubbard
model.

Section 4.3 deals with results from DFT ground-state calculations in the two dimen-
sional Hubbard model, once again subject to an external parabolic trapping potential.
As in 1D, both ordered and disordered systems are being treated, in order to try to
disentangle the effects of interaction from those of disorder. To achieve that, the radii
of the fermionic clouds are examined in the absence and presence of disorder. In 2D
there is no numerically exact solution or exact LDA available, hence all the exchange-
correlation potentials come from approximate perturbative solutions to the homogeneous
Hubbard model. However, the conclusions from the first two parts provide a reasonably
firm foundation for the analysis of the results, even in the absence of numerically exact or
exact LDA benchmarks. Furthermore, dynamics in the fully adiabatic limit is emulated
by performing ground-state calculations for varying strengths of the parabolic potential,
which is to be understood as adiabatically removing the trapping potential for a system
of ultracold atoms and letting them expand into an optical lattice.

4.1 Exchange-correlation potentials for the infinite ho-
mogeneous Hubbard model

In this section the exchange-correlation potentials from exact and approximate solutions to
the infinite homogeneous Hubbard model (in one, two and three dimensions) are presented,
and trends of the potentials with respect to dimensionality and level of approximation are
discussed. However, in the subsequent sections, only 1D and 2D potentials are applied,
and here the potentials from the solutions of the three dimensional Hubbard model are dis-
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played in order to support our educated guess about the quality of the approximate poten-
tials in two dimensions. In Fig. 4 the potentials for one, two and three dimensions, are dis-
played?.

Starting the discussion with gzjg"q“ﬂ
the 1D potentials, the ap- U=4,28
proximate perturbative solu- U=4, TMA
. . U=6.7, BALDA
tions are compared with the U=6.7. Gil
exact solution by Lieb and U=6.7,2B
Wu [9]. The exact (non- oo T
perturbative) solution shows
a discontinuity at half-filling,
reflecting Mott physics which
in 1D persists for all non-zero U=4, G
interaction strengths. None EijiiA
of the approximate solutions U=12, GW
are able to reproduce the dis- Eiii;
continuity at half-filling; this
is a typical feature of the
MBA solutions and can be
seen already for the non-
self-consistent second Born
approximation, see [18, 33]. . U=8,LDA
Another general feature of U=8,GW
the approximate solutions, is Ei:iiA
that they approach zero for U=24,1DA
zero filling. Among the ap- U=24,Gu

. . U=24,2B
proximate solutions, TMA =24, TR
behaves better in comparison
to the exact solution, at low
and high filling (0-0.3 and

1.7-2.0), than 2B and GW;
the latter two overestimate
the exchange-correlation po- Density

tential in this density range. Figure 4: Exchange-correlation potential, v,. for various values of
Additionally, in the density U, asa function of the total density. Top is 1D, mid 2D and bottom

range (0.3-0.5), despite the 3D.

devation of TMA from the exact solution, the derivative of the TMA potential still main-
tains the same sign as the derivative of the exact potential. This is not the case for the 2B
and GW potentials, which exhibit the complete opposite behaviour in this density range.

Next is the 3D Hubbard model where the "exact"? (paramagnetic) solution is obtained
from Dynamical Mean Field Theory [34] (DMFT), where a 3D cubic lattice is mapped

2Some of the potentials in Fig. 4 are taken from previous works. In 1D the BALDA and 2B potentials
were reported in [31], and the TMA for U = 4 is taken from [28]. In 3D the DMFT-LDA:s come from
[32] while the 2B potentials as well as TMA for U = 24 are coming from [28]. All the other potentials,
and in particular the 2D potentials have not previously been reported.

3Exact in limit of infinite dimension.

12



onto an Anderson impurity model [32|. Here the discontinuity occurs only above a critical
interaction strength. The analysis of the perturbative potentials is similar to the 1D case.
The TMA is generally superior in comparison to the 2B and GW approximations, and
the TMA potential approaches the "exact" one for low and high filling (0-0.3 and 1.7-2.0).
As for the one dimensional case the approximate solutions do not predict a discontinuity,
for any interaction strength.

The similar conclusions emerging from the 1D and 3D potentials allow us to make
an educated guess about the behaviour and quality of the approximation in 2D. In 2D
the approximate solutions cannot be compared to exact solutions, however the relative
behaviour of the approximate solutions, see Fig. 4, tells us that the potentials exhibit
similar behaviour to the 1D and 3D case with respect to each other. There are no surprises
in terms of behaviour at low (high) densities and at half-filling. Arguably one can make
a bold statement, and say that: In 2D it is again the TMA which is superior compared
to the 2B and GW approzimations. This means that TMA gives approximately exact
description of the potential at lower and higher filling (0-0.3 and 1.7-2.0). Justified by
the conclusions on the behaviour of the approximate potentials in relation to the exact
solution in 1D and 2D, as well as the observation that the hierarchy of the approximations
is retained also in 2D, TMA will be used at lower fillings as a "close to exact" solution,
and the performance of the other approximate potentials in relation to TMA will be
elaborated on in the following sections.

We note that the used interaction strengths U were not chosen consistently in relation
to the bandwidth, W = 2zt, where z is the number of nearest neighbours and ¢ is the
hopping parameter. In one dimension, the choice of U = 4 over U = 2 for the weaker
interaction case was made to make features in the potentials and the corresponding density
profiles more readily visible for discussion. This can be compared to the results in section
4.3 where, in 2D, for U = 4 there are hardly any differences in the density profiles coming
from the three approximate LDA:s. The stronger interaction U = 6.7 was chosen as it was
found to give the strongly correlated regime [28]. In 2D, there were no potentials available
at the time this study was initiated, and the interactions U = 4 and U = 12 were chosen
simply as two values symmetric around the bandwidth W = 8. In three dimensions, the
interactions U = 8 and U = 24 were chosen as there were already DMFT results available
for these interaction strengths from earlier works [32].

4.2 One dimensional fermionic systems in parabolic traps

In this section results from GS-calculations of a 1D Hubbard chain, with number of
sites L = 100, are presented. The system is subject to an external parabolic potential
Vewt = k(i — L/2)?. The GS-densities were obtained using the KS-LDA-scheme described
in section 3.2, with v,. coming from the exact Bethe-Ansatz (BALDA) and MBA so-
lutions to the reference system, the homogeneous 1D Hubbard model. Three different
MBA:s were used, TMA, 2B and GW. The results from the GS-calculations were com-
pared to exact DMRG benchmarks in order to get insight into where LDA:s based on the
homogeneous Hubbard model are permissible.

It is important to note that we are dealing with 3 different levels of description here, see
Fig. 2. In the LDA one approximates the exchange-correlation potential of the system
of interest by the v,. of the reference system. The BALDA is thus an exact LDA. The
MBA potentials, TMA, 2B and GW, are obtained from further simplifications, where the
reference system is only solved approximately. The agreement of DMRG and BALDA

13



shows that the effects of correlations are inherently local (however, one should keep in
mind that vBAXP4 contains all non-local correlations of the homogeneous reference sys-
tem). Furthermore, comparisons between the densities obtained from approximate LDA:s
and BALDA are indicative of when the approximations capture the true behaviour of the
reference system. This two-step comparison is necessary due to the two levels of approx-
imation for v,,. from MBA:s. There might be systems where an MBA-LDA outperforms
BALDA compared to DMRG by mere coincidence, due to the errors from the two levels
of approximation cancelling.
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Figure 5: Comparison of BALDA and approximate LDA:s TMA, 2B and GW with DMRG. The densities
are plotted against site number of a system consisting of L = 100 sites trapped in a parabolic potential
with £ = 0.001. Left panels corresponds to U = 4, Right panels to U = 6.7. Top panels corresponds to
4 fermions and bottom panels 8 fermions.

Fig. 5 displays results from calculations on systems with 4 and 8 repulsive fermions, on a
L =100 chain subject to an external potential ve. (i) = k(i — L/2)? with k = 0.001. Cal-
culations were made for U = 4 and U = 6.7. For these particle numbers the density is kept
far away from half-filling, where the approximate LDA:s are expected to break down, due
to the lack of a discontinuity in the exchange-correlation potential at half-filling [2]. The
first thing one notices is that at the lowest particle number DMRG has features that none
of the LDA:s are able to replicate, even though the BALDA solution follows the general
shape of the exact solution. Moving up in particle numbers BALDA performs better and
better and at 16 and 32 fermions it performs very well, for both U = 4 and U = 6.7, see
Fig. 6. Note that even as the number of fermions are increased to 32, the system is still
far away from half-filling. Out of the three approximate LDA:s, TMA does in general per-
form better than 2B and GW, as is expected from the analysis of the potentials in section
4.1, but also noted in a previous review [35]. For the densities where BALDA does well in
comparison to DMRG, TMA is still off by a significant amount compared to BALDA. We
also wish to remark that for all DFT calculations presented in this section, the density
of the fermionic cloud is negligible at the boundaries (at most 107° at the boundary sites).
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Figure 6: Densities plotted against site number of a system consisting of L = 100 sites trapped in a
parabolic potential with & = 0.001. Top panels are 16 fermions and bottom panels 32 fermions. Left
panels are U = 4, Right panels U = 6.7. Comparison of BALDA and approximate LDA:s TMA, 2B and
GW with DMRG.

A closer inspection of 2B and GW results reveals that the density profiles for 4 particles
are the narrowest, but becomes "squashed" as the particle number increases. Because
of this GW and 2B happen to perform better at the top than TMA at 8 particles for
both interaction strengths. To understand why this is happening one must look at the
exchange-correlation potentials for GW and 2B, see Fig. 4. On speculative ground it
appears that the nature of the density profile is affected by the steepness of the potential
at low densities. For densities n < 0.2 the potential is decreasing, forcing particles to
concentrate at the centre. At n = 0.2 there is a minimum, after which the potential
increases. This has the effect of flattening the density profile. In between the narrow
and flat density profiles, there is a "sweet-spot" where GW and 2B by coincidence just
happen to perform better than TMA. Furthermore, at the lowest particle number the 2B
and GW curves become more localized when going from weaker to stronger interaction,
which goes against physical intuition. This behaviour was not observed for any of the
other configurations in 1D.

The discrepancies between BALDA and DMRG at low density raises the question of
why BALDA performs better as the density is increased. One possible explanation is that
for the low density systems, the exchange-correlation potential plays a much larger role
in shaping the density profile. This could lead to an exaggeration of features arising from
small differences in the exchange-correlation potentials. Moving up in particle number, the
interplay between the quickly increasing external potential in the boundary regions and
the Hartree-Fock part of the on-site interactions takes control over shaping the density
profile, resulting in a reduced impact of small differences in the exchange-correlation
potentials. The features unique to the DMRG solution are present in all cases, but become
less and less noticeable as the number of fermions are increased. Fig. 7 displays the
density profiles arising from BALDA and Hartree-Fock given the density from BALDA,
as well as the self-consistent HF-solution. The particle exchange is already taken into
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account by the model itself. This means that HF, in practice, is the same as the Hartree
approximation. The HF-solution obtained from the BALDA density is not self-consistent,
but uses the BALDA density as a single input in order to obtain a HF-potential for which
the single particle equations are solved for. This procedure seeks to highlight the impact
the exchange-correlation potential will have on the system. As is readily visible, for 4
fermions, the non-self-consistent HF and BALDA have essentially nothing in common,
while the density profiles at 32 fermions both have a large concentration of particles in
the center of the parabola. This does seem to support the view that the properties of the
system (i.e. the external potential and the number of fermions in it) dictates how big an
impact the exchange-correlation potential has on the density.
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Figure 7: The density profiles from BALDA and a single Hartree-Fock calculation using the BALDA
density to obtain the HF potential. The self-consistent BALDA and HF densities are also displayed for
comparison. In all cases = 6.7. Left panel is for 4 fermions, right panel 32 fermions. The centre panel
displays the HF plus external potential coming from the self-consistent BALDA and HF densities in the
4 fermion case.

Fig. 8 displays results from calculations of 70 repulsive fermions in an external parabolic
potential with k£ = 0.006, for interaction strengths U = 4 and U = 6.7. Here the density in
the centre goes well beyond 1, and it is clear that the approximate LDA:s cannot reproduce
the plateau at n = 1. This region of constant density is called a Mott plateau and
represents an insulating phase, brought on by the inter-particle interactions, as opposed
to a band insulating phase arising from filled bands [13]. BALDA overestimates the
features of the Mott-region compared to DMRG, which is most noticeable at U = 4, and
predicts sharper edges of the transition. This can be compared to the results presented
in a paper by G. Xianlong et al. [10] where BALDA was found to predict the existence of
a Mott phase where numerically exact Quantum Monte Carlo calculations did not. The
reason why the approximate LDA:s are unable to predict this phase transition can be
attributed to the absence of a discontinuity in their corresponding v,. at half-filling [2].
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Figure 8: Comparison of BALDA and approximate LDA:s (TMA, 2B and GW) densities with DMRG.
Left panels are U = 4, Right panels U = 6.7. The density is plotted against site number for a system
consisting of L = 100 sites trapped in a parabolic potential with k& = 0.006 for 70 fermions.

16



We finally briefly address the disordered case. Disorder was introduced into the 1D chain
by letting vegi; — Vexti + Wi , where W is selected from a uniform distribution between
W/2 and —W/2, with W = 0.5 determining the strength of the disorder. Compared to
the hopping parameter ¢ = 1 this is considered to be fairly weak disorder. These are
preliminary calculations that explore disorder only superficially. The calculations were
made for only one set {W;}. In the case of 32 fermions, it appears that the relative
differences between the densities coming from the different potentials and DMRG are
preserved for both U = 4 and U = 6.7, see Fig. 9. For the low density case, with
only 4 fermions, the density from DMRG differs much more from the densities resulting
from DFT calculations, while the differences between the MBA:s and BALDA are less
pronounced, see Fig. 10. For 4 fermions, the differences between U = 4 and U = 6.7
for DMRG are hardly noticeable in the presence of disorder. Looking back at Fig. 5, we
can see that this also seems to be the case in the absence of disorder. At present, we are
unable to give a completely satisfactory explanation for this.
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Figure 9: Comparison of BALDA and approximate LDA:s (TMA, 2B and GW) densities with DMRG
in the presence of disorder W = 0.5. Left panels are U = 4, Right panels U = 6.7. The density is
plotted against site number for a system consisting of L = 100 sites trapped in a parabolic potential with
k = 0.001 for 32 fermions.
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Figure 10: Comparison of BALDA and approximate LDA:s (TMA, 2B and GW) densities with DMRG

in the presence of disorder W = 0.5. Left panels are U = 4, Right panels U = 6.7. The density is

plotted against site number for a system consisting of L = 100 sites trapped in a parabolic potential with

k = 0.001 for 4 fermions.
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4.3 Two dimensional fermionic systems in parabolic traps

In this section we present DF'T results for a 2D Hubbard lattice, obtained with an LDA
based on TMA, 2B and GW. The lattice is once again exposed to an external parabolic
potential v (7, 7;k) = k((i — L/2)> + (j — L/2)?). Calculations were made for two in-
teraction strengths, U = 4 and U = 12. As opposed to the 1D case, there are no longer
any exact, or exact LDA, benchmarks to compare to. The GS-densities were obtained by
using the same Kohn-Sham method as in the 1D case. Due to the degeneracy arising from
the symmetries of the 2D lattice and the circularly symmetric external potential, reaching
convergence is sometimes very difficult. In the non-interacting case the KS-eigenstates
can be grouped into shells like a harmonic oscillator, where the degeneracy of the states
inside the shells is lifted due to the absence of perfect rotational symmetry. But as the
interaction strength increases, some degeneracies seem to become resolved while new de-
generacies emerge, making it very hard to find particle numbers for which the calculations
converge for all 3 potentials. Eventually, this was possible for a number of cases, those
actually reported here.
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Figure 11: Density profile of 72 fermions on a 60 by 60 lattice, with interaction U = 4, from the three
approximate LDA:s based on GW, 2B and TMA, in an external parabolic potential ve,: = v(i,j; k) at 3
different strengths. Left column: k& = 0.01, mid: k& = 0.004 right: & = 0.001. Top panels are GW, mid
panels are 2B and bottom panels are TMA results, respectively

To investigate the effects of disorder in the 2D Hubbard model, disorder of the form
Vewti — Veati + Wi , where W, is selected from a uniform distribution between W/2 and
—W/2, with W = 1 determining the strength of the disorder. The set {W;} was chosen
to be the same for all calculations. Note that this means that only one disordered setup
is considered in these calculations. We plan to systematically investigate the role of sev-
eral disorder configurations in a follow-up work. Here, within an exploratory perspective,
we focus only on one disorder configuration. Calculations were performed on a system
consisting of 72 repulsive fermion, for three different strengths of the external potential,
k=102 k=4 x 1073, kK = 1073, in order to emulate dynamics in the fully adiabatic
limit. As in the previous section, the fermionic cloud never touches the boundary in any
of the presented results.
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Density

Figure 12: Density profile of 72 fermions on a 60 by 60 lattice, with interaction U = 4, in the presence
of disorder W = 1, from the three approximate LDA:s based on GW, 2B and TMA, in an external
parabolic potential ve,: = v(4,j; k) at 3 different strengths. Left column: k£ = 0.01, mid: k& = 0.004 right:
k = 0.001. Top panels are GW, mid panels are 2B and bottom panels are TMA results, respectively
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Figure 13: Maximum and minimum radii at which the density of the fermionic cloud drops below 1073,
for 72 fermions, for approximate LDA:s from GW, 2B and TMA, subject to parabolic potentials with 3
different strengths k. Top (bottom) of the bars are maximum (minimum) radius centred at the mean
radius. Left panels are for the ordered case, and right panels are in the presence of disorder W = 1. Top

panels are for U = 4 and bottom panels are for U = 12.
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Figure 14: Density profile of 72 fermions on a 60 by 60 lattice, with interaction U = 12, from the three
approximate LDA:s based on GW, 2B and TMA, in an external parabolic potential ve,; = v(i, j; k) at 3
different strengths. Left column: k£ = 0.01, mid: k& = 0.004 right: & = 0.001. Top panels are GW, mid
panels are 2B and bottom panels are TMA results, respectively

What is apparent from looking at Fig. 11 is that for the weaker interaction strength, the
density profiles arising from the three potentials are nearly identical. In Fig. 13 the radii
at which the density of the clouds drops below 1072 are plotted, which can be seen to
reinforce the previous statement of the similarities between the density profiles at U = 4.
Only GW yields a slightly more localized cloud compared to the others. The similarities
between the 3 different approximate LDA:s persist in the presence of disorder, which only
serves do destroy the nearly perfect circular symmetry which is observed in the ordered
case. Upon increasing the interaction strength, the three potentials produce radically
different results, with 2B and in particular GW being very resistant against expanding
out into the lattice, see Fig. 14. Both 2B and GW are visibly more dense at the core for
U = 12 compared to U = 4, which is counter-intuitive to how one would expect the sys-
tem to behave upon increasing the interaction strength. However, this type of behaviour
is hinted at already in section 4.2. This behaviour also persists under the influence of
disorder.

To understand why this is happening, it is helpful to take a closer look at the exchange-
correlation potential displayed in Fig. 4. The 2B and GW potentials for U = 12 are very
steep in the low density regime. This can be compared to the discontinuity in the BALDA
and DMF'T potentials at half filling for 1D and 3D, which gives rise to the Mott insulating
phase characterized by a region of uniform density |13, 12]. In particular the density pro-
file arising from GW exhibits a similar behaviour, with a flatter top followed by a rapid
decline in density at the edges of the cloud. Looking at Fig. 13, the significantly more
localized behaviour of 2B and GW is clearly visible. For all three external potentials,
2B and GW becomes more localized upon increasing the interaction strength, while only
TMA exhibits a tendency to delocalize when the interaction strength increases. Also for
U = 12 the fermionic clouds exhibit nearly perfect circular symmetry in the ordered case.
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As indicated from the results in 1D, the effects of the exchange-correlation potential on
the density profile may vary significantly from system to system. This may serve as an ad-
ditional explanation for the behaviour observed when the parabola is opened up. Looking
at Fig. 14 and 13, for the weakest parabola £ = 0.001 in the ordered system, the density
from 2B differs more from GW than one might expect from simply looking at the differ-
ences in the exchange-correlation potentials. The differences in v,. for 2B and GW are
certainly smaller for this density range compared to the wider density range observed for
the stronger external potentials, yet the difference in the density is far more pronounced.
In the cases where the difference is most readily visible, see the leftmost panels in Fig.
14, all the exchange-correlation potentials are monotonically decreasing functions of the
density, see Fig. 4, i.e. they all favour pushing the fermions to higher densities. This
causes sort of an "avalanche" effect where higher densities favour increasing the density
further. This amplifies the seemingly small differences between the potentials from 2B
and GW, resulting in the different density profiles.

Figure 15: Density profile of 72 fermions on a 60 by 60 lattice, with interaction U = 12, in the presence
of disorder W = 1, from the three approximate LDA:s based on GW, 2B and TMA, in an external
parabolic potential ve,: = v(i,Jj; k) at 3 different strengths. Left column: & = 0.01, mid: k¥ = 0.004 right:
k = 0.001. Top panels are GW, mid panels are 2B and bottom panels are TMA results, respectively

Note also how the difference that emerges between the maximum and minimum radii of
the clouds, in the disordered case, when the interaction strength is increased. This can
be seen by comparing the top right and bottom right panels in Fig. 13, where one can
see that difference between maximum and minimum radius increases for GW and 2B,
while it decreases for TMA, upon increasing U. This might just be an effect of the clouds
covering different regions of the disordered lattice, in the cases where U = 12 (see bottom
right panel in Fig. 13). However, another possible interpretation is that the interplay
between interaction and disorder produces different results for TMA compared to GW
and 2B, causing TMA to yield a more circularly symmetric cloud. Note again that these
conclusions stem from calculations on only one disorder configuration, and are going to
be re-examined for a large number of configurations in the future.
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5 Conclusions and outlook

In this thesis, we have proposed and compared different levels of description (from exact
to approximate) of ultracold fermion atoms in one and two dimensional optical lattices.
The results from various approximations were mutually compared to highlight their sim-
ilarities and differences. For 1D lattices, it was also possible to test the approximate
treatments against numerically exact methods such as DMRG.

The primary accomplishment of this work has been the retrieval of exchange-correlation
potentials for the 2D Hubbard model, and the determination of the TMA approximation
as close to exact in the dilute limit.

A general feature emerging from our study is that the way differences in the exchange-
correlation potentials reflects into differences of the corresponding densities is a non-trivial,
system-dependent trait. That is, naive assessments of the potentials might not be enough
to determine if the densities coming from different potentials are going to agree or not.

We also found that in one dimension, where DMRG and the exact LDA from the Bethe-
ansatz are available, the TMA generally outperforms 2B and GW. Also, for the setups
considered, TMA seems to be consistent relative to BALDA. On the other hand, the way
2B and GW density profiles compare to DMRG ones changes quite substantially upon
varying parameters such as particle number or the external potential. Sometimes, in both
one and two dimension, GW and 2B produced results which go against physical intuition:
Namely, for some setups the density profile becomes more localized upon increasing the
interaction strength, a behaviour not observed for TMA in any of the considered systems.

Regarding the interplay of interaction and disorder in 2D, our results hint that TMA
might behave differently from 2B and GW, as e.g. it appears from the values of expansion
radii at different strengths of the trapping potential. However, these indications are in
no way conclusive, since only one disorder configuration was considered. In this case,
the appropriate strategy would be to consider several disorder configurations, looking at
averaged quantities or, better, at histogram distributions of the observable of interest (e.g.
the expansion radii).

These last considerations make here a suitable place to restate that most of the work
done in this thesis is quite exploratory in character, and in many aspects, rather incom-
plete. For example, as just said, our investigation and discussion of disorder only grasps
the surface of the complex issue of how interactions and disorder mutually screen each
other. In fact, as shown e.g. in the context of theories of many-body localization in disor-
dered systems, an important role is played by temperature [36, 37|. A possible extension
of the present work could be the inclusion of finite temperature effects within thermal
DFT. Another methodologically interesting aspect to address is how exchange-correlation
potentials from MBA:s evolve for hypercubic lattices of increasingly high dimensions, by
e.g. determining the infinite dimensional limit of such potentials. A completely differ-
ent and wide avenue for further progress would be to perform time-dependent adiabatic
calculations with our DFT potentials. Studies of this sort would have a high degree of
novelty for 2D systems and, as mentioned for the equilibrium case, they would permit to
see how the behaviour of the cloud radii reported here would be modified in the presence
of a truly dynamical (albeit adiabatic) opening of the confining potential.

These are some of the possibilities that come to mind at this stage to extend and gen-
eralize the work done in this thesis, and we look very much forward to the possibility of
pursuing these (and other possible) lines of investigation in the future.
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