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Abstract

This thesis empirically tests the explanatory power of structural models on the European corporate

bond market. Using new evaluation methods, including LASSO and gradient boosting regression,

we can provide an in-depth assessment of the models’ shortcomings. With these tools we show

that the structural models tend to systematically overstate or understate the spread due to an

oversensitivity to leverage ratio and asset volatility. We introduce a novel extension to the Black

Cox model in order to mitigate the observed weaknesses. Our extension is calibrated to match

historical default probabilities with an additional baseline default risk component attributable to

all firms. This approach manages to increase the R-squared from 39 % to 47 % and at the same

time reduce the residual dependencies of leverage ratio and asset volatility.
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1 Introduction

1.1 Background

Companies in need of financing can besides from raising capital through bank loans, issue bonds to

investors. A bond is a contractual agreement, in which a firm promises investors to receive future

payments in exchange for an upfront payment at the date of issue. The general structure of a bond

contract is in many ways similar to a bank loan. However, there are important differences between

the two ways of financing that affect the value of the contracts and the incentives of stakeholders.

From the issuer’s point of view, a bond can finance projects and activities that are too large and

risky for a single bank to fund alone. Instead capital and risk is pooled among more investors owning

a smaller share of the debt. From the investors’ perspective, the upside of a bond investment is

that the returns of promised future cash flows often exceed the interest rate of a risk-free position.

The investors also have the possibility of quickly re-gaining cash, by selling the bond contract on

the secondary market. Moreover, there are various bond types and contractual specifications that

introduce an additional freedom for the bond issuer and investor. This contractual flexibility imply

that the stakeholders can agree to mutually optimal conditions, circumventing the usually stricter

requirements posed by banks.

Obviously, corporate bonds have additional risks compared to government bonds, which are usually

considered risk-free. The most central part in the assessment of a corporate bond is to understand

and quantify the risks associated with the firm and the specific contract. More specifically, this

means that the investor needs to investigate whether the borrower will be able to meet its obligations

defined in the bond contract. If a firm fails to meet its repayment obligations when due, a legal

process takes place in which investors reclaim their legislative assets as defined in the contract. The

recovery of a defaulted bond varies depending on the outcome of the legal process, the bankruptcy

costs and the liquidation of assets, causing additional downside risk faced by the investor. Other
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considerable risk components include for example the risk of the investor not being able to sell

the bond contract when desired or the risk of inflation denomination of the contracted amount.

Naturally, these risk components depend strongly on numerous characteristics of the issuer, the

bond contract and the state of the economy. For example, the issuer’s financial leverage should

intuitively affect the firm’s probability of default over time. Moreover, an infrequently traded

bond contract is likely harder to sell upon desire, suggesting that trade frequency should affect the

liquidity risk. All of these factors - that affect the risk exposure of the investor - ought to be reflected

in the market’s pricing of a bond contract. The price of a bond is commonly quoted in terms of its

yield spread, which is the difference in yield between the bond and its benchmark government bond.

With higher risk, investors demand additional risk premium in terms of increased yield spreads and

thereby inducing a higher potential pay-off.

Due to the complex nature of corporate debt, the translation of bond characteristics to yield spread

is not straightforward and research has therefore historically focused on trying to describe yields

on the market through different theoretically founded models. There are primarily two classes of

models used to value defaultable bonds, namely the structural and the reduced form models. The

structural approach was first pioneered by Black and Scholes (1973) and Merton (1974), who view

equity and debt of a firm as contingent claims of the firm’s asset value. In this setting it is assumed

that a firm’s total debt is financed by a single zero-coupon bond. Upon maturity the bond holders

are first paid the face value and the equity holders will receive the remaining amount of the firm

value. If the firm value is less than the nominal amount of debt at maturity, the debt holders will

only be partially reimbursed, while the equity holders will receive nothing. Thereby the equity is

valued as an European call option with the firm value as underlying instrument. Analogously the

debt is valued as a short position in a European put option combined with a long risk-free position.

These concepts will be explained in-depth later on in this report.

The fundamental idea of the structural model, referred to as the Merton model, has further been

extended and modified to incorporate features observed on the market. To name a few, Black

and Cox (1976) allow the firm to default prior to the debt’s maturity if the firm value falls below a

exogenous threshold. Geske (1977) introduces the possibility for the firm to raise new funds in order

to finance its payment obligations. Longstaff and Schwartz (1995) extend the Merton framework

into a two-factor model, which has stochastic interest rates. Leland and Toft (1996) take tax and
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bankruptcy costs into consideration when defining their modifications to the Merton model. The

reduced form models on the other hand regard the event of a default as a Poisson process with

time and state dependent intensity of default. The main benefit of this class of models is their

mathematical tractability. However, in contrast to the structural models the Poisson process of

default lack an intuitive interpretation, which explains why the success of reduced form models is

relatively limited (Arora, Bohn, & Zhu, 2005).

Neither of the two model families have been recognised to fully explain the true yield spreads

observed on the markets. The most common explanation to the models’ shortcoming is the fact

that yield spreads should constitute of a default component and a non-default component, of which

credit spread models allegedly only account for the former. However, the composition of yield

spreads is broadly debated and different research papers show different results depending on the

scope and time horizon of the study.

Traditionally, structural models are widely recognised to underestimate corporate yield spreads.

This inability to predict true empirical results is commonly referred to as the Credit Spread Puzzle.

Huang & Huang (2012) show that only a small fraction of the investment grade yield spread is

due to model implied credit risk, while for speculative bonds, credit risk accounts for a somewhat

larger fraction of the yield spread. In contrast, more recent studies by Chen, Collin-Dufresne, and

Goldstein (2009) and Feldhütter and Schaefer (2016) question the existence of the Credit Spread

Puzzle. Schaefer & Feldhütter argue that structural models in fact are able to match empirical data

for all ratings when calibrated to a longer history of default rates. Evidently, there is no general

consensus on the performance and adequacy of the structural approach of modelling corporate yield

spreads.

Previous research on the field of structural models have mainly been based on US bond data

provided by open databases such as the Mergent Fixed Investment Securities Database (FISD),

the Trade Reporting and Compliance Engine (TRACE) and COMPUSTAT. There are at least two

reasons causing this skewed research scope. Firstly, the US bond market is significantly larger in

terms of the total amount outstanding and can thereby be regarded as more developed than other

markets (Blackrock, 2016). The implication is that there is greater interest among investors to fully

understand the market dynamics, and that researchers have reason to believe that the market is

well-functioning. Secondly, there is an availability bias, which arises from the ease of obtaining US
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bond data. Data for European corporate bond trades and the issuing firms’ accounting data is not

packaged and readily available, resulting in a less studied sample.

Since the financial crisis in 2009, the European corporate bond market has experienced a steady

expansion in terms of its size, thus becoming increasingly interesting for a broader scale of investors.

The growth has been boosted by factors such as the European Central Bank’s Corporate Sector

Purchase Program (CSPP), record low interest rates and the banking sector’s stricter capital re-

quirements. Furthermore, as the market is maturing, European corporate data is available to a

greater extent. In the beginning of 2018 the Financial Instruments Directive II (MiFID II), which

is a compulsory reporting system for public European bond trades, will take effect. The American

equivalent of centralised bond reporting, named TRACE, has been in place since 2002. Conse-

quently, the MiFID II environment is expected to bring more academic attention to the European

bond market (Blackrock, 2016).

To the authors’ best knowledge, previous academic research on determinants of yield spreads on

the European bond market is limited and inconclusive with respect to the success of credit spread

models. In addition, the European bond market is growing and data is becoming accessible to a

greater extent. With these arguments we motivate that there is a need for further exploration of

structural models applied on European corporate bonds and this is the research gap we intend to

investigate in this thesis.
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1.2 Problem Formulation

Clearly, there are several open and debated topics within the area of yield spread modelling. Pro-

ceeding from the discussion above, this thesis will address the question whether structural models

have explanatory power when applied on the European fixed income markets. Regarding the ex-

planatory power of structural models, we will attempt to answer the following questions

- To what extent can yield spreads for European corporate bonds be explained by structural

models with respect to

- cross sectional average yield spreads?

- time series variation in yield spreads?

- individual bond yield spreads?

- Which structural and non-structural parameters affect unexplained yield spreads and how

large are their corresponding influences?

- Is it possible to remove all dependence of the input parameters of the structural models?

1.3 Thesis Outline

Chapter 2 explains the mathematical, statistical and financial concepts used in this thesis. Chapter

3 discusses the data gathering, data preparation and removal of outliers and deficiencies in the

data. Chapter 4 involves the details of the methodology of the empirical study. We also explain

how the data and input parameters are structured in order to evaluate the model implied spreads.

Chapter 5 presents the results of the study and Chapter 6 discusses the results and presents a novel

extension to structural models of yield spreads. Chapter 7 concludes.
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2 Theory & Concepts

2.1 Mathematical and Statistical Theory

2.1.1 The Brownian Motion

The Brownian motion is named after Robert Brown (1773–1858) who studied the motion of pollen

seeds suspended in liquids. Brown’s observations laid the ground for the discovery and explanation

of the random movements of particles due to collisions on molecular level (Mazo, 2008). Since the

discovery of the Brownian motion, the phenomenon has been subject to extensive research and

proven to be of great importance in several academic disciplines such as finance and the valuation

of derivatives.

Definition of Brownian Motion

Let {Wt}t≥0 be a stochastic process defined on R. Then {Wt}t≥0 is a Brownian motion if

- W0 = x

- For all times t1 ≤ t2 ≤ · · · ≤ tn we have that Wtn −Wtn−1 |= Wtn−1 −Wtn−2 |= · · · |= Wt2 −

Wt1

- For all times 0 ≤ s < t we have that Wt −Ws ∼ N(0, t− s)

- The function t 7→Wtt is almost surely continuous.

The standard Brownian motion satisfy all conditions above, with the exception that its initial value

is W0 = 0.
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Stochastic Integral and Stochastic Differential Equations

LetWt be a Brownian motion defined on the probability space (Ω,F ,P) and adapted to the complete

filtration {Ft : t ≥ 0}. For a function f(t, x) ∈ L2 it is now possible to define the stochastic integral

as ∫ T

0

f(t,Wt)dWt (2.1)

where f(t,Wt) is a stochastic process driven by Wt. Since the Brownian motion is almost surely

of infinite variation, the Lebesgue integral approach to Equation 2.1 is not well defined (Mörters &

Peres, 2010). However, since the Brownian motion is bounded in quadratic variation in probability,

it is possible to define an integral with respect to Wt (Åberg, 2010). This is performed in the Itô

formula for the standard Brownian motion wich states that

f(T,WT ) = f(0, 0) +

∫ T

0

∂f(t,Wt)

∂t
dt+

∫ T

0

∂f(t,Wt)

∂x
dWt +

1

2

∫ T

0

∂2f(t,Wt)

∂x2
dt (2.2)

= f(0, 0) +

∫ T

0

µ(t,Wt) dt+

∫ T

0

σ(t,Wt) dWt (2.3)

Due to notational convenience the relation in Equation 2.3 is often stated in the stochastic differ-

ential equation (SDE) form below

df(t,Wt) = µ(t,Wt) dt+ σ(t,Wt) dWt (2.4)

with

µ(t,Wt) =
∂f(t,Wt)

∂t
+

1

2

∂2f(t,Wt)

∂x2
(2.5)

σ =
∂f(t,Wt)

∂x
(2.6)

Geometric Brownian Motion

The stochastic process Xt = f(t,Wt) is said to be a geometric Brownian motion (GBM) if it satisfies

the following stochastic differential form

dXt = µXtdt+ σXtdWt (2.7)

where µ and σ are fixed constants. To solve the SDE for a given initial value of X0 = x0, the

transform Zt = ln(Xt) is applied. Using the Itô formula (Equation 2.3) with this transformation and
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rearranging the drift and diffusion terms, we arrive at the stochastic differential expression

dZt =(µ− σ2

2
)dt+ σdWt (2.8)

Z0 =ln(x0) (2.9)

which has the solution Zt
d
= ln(x0) + (µ− σ2

2 )t+ σ
√
tG where G is a standard normal distributed

random variable. Taking exponential of the solution for Zt, we return to the Xt domain and arrive

at the GBM solution

Xt
d
= x0e

(µ−σ22 )t+σ
√
tG (2.10)

The expected value of the solution is given by EXt = x0e
µt and its variance is VarXt =

x2
0 e

2µt(eσ
2t−1). A simulation of 1000 identically distributed and independent geometric Brownian

motions is summarised by Figure 2.1. The purpose is to let the reader familiarise with the concept

of a stochastic process and statistical measures associated the process. (Björk, 2004)

Figure 2.1: A visualisation of the trajectory for a GBM with parameters µ = 0.1 and σ = 0.3, generated

from 1000 Euler-Maruyama simulations. The figure shows the simulated mean, the 50 %- and 95 %-quantile

bands and 3 sample paths from the simulation set.
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The maximum likelihood parameter estimates of an observed geometric Brownian motion, {xt0 , ..., xtn},

on an equidistant time grid are

µ̂ =
1

n∆

n∑
i=1

zi (2.11)

σ̂2 =
1

(n− 1)∆

n∑
i=1

(zi − µ̂∆)2 (2.12)

where zi = ln(xti/xti−1
) and ∆ = ti − ti−1. (Lindström, Madsen, & Nygaard Nielsen, 2015)

2.1.2 EM Algorithm

The EM algorithm provides a method of generating maximum likelihood parameter estimates in

cases where data is incomplete, meaning that there are either missing or hidden data. In the general

setting we assume observed data X and unobserved data Y and a set of parameters θ connected

through a joint density function

p(X,Y | θ) = p(Y | X, θ) p(X | θ) (2.13)

The overall objective is to find a maximum likelihood estimate of the complete log-likelihood func-

tion `(θ | X,Y ) = log p(X,Y | θ). However, finding the optimal parameters is often hard and

analytic solutions may be unavailable. In this setting the EM algorithm provides a tractable and

efficient method of iteratively optimising the log-likelihood function above. First, the E-step finds

the expected value with respect to Y of the log-likelihood function given the observed X and the

current value of the parameters θ(p−1). This expected value of the log-likelihood function, denoted

Q(θ | θ(p−1)), is calculated as

Q(θ, θ(p−1)) = E Y [`(θ | X,Y ) | X, θ(p−1)] =

∫
Y

`(θ | X, y)p(y | X, θ(p−1))dy (2.14)

where p(y | X, θ(p−1)) is the marginal distribution of Y given X and θ(p−1). Second, the M-step

finds the parameter value that maximises the expected log-likelihood such that

θ(p) = arg max
θ

Q(θ, θ(p−1)) (2.15)

The E and M-steps are iterated until a convergence in θ(p) is reached. Each iteration is guaranteed

to increase the log-likelihood and the algorithm is guaranteed to converge to a local maximum of

the likelihood function. (Bilmes, 1998)
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2.1.3 Linear Regression

We jump directly to review the multivariate linear regression model. The additive linear model for

relating a dependent variable to p independent variables is

yi =β0 + β1xi1 + β1xi2 + · · ·+ βpxip + εi ∀i = 1 . . . n (2.16)

where all εi are assumed to be independent identically distributed Guassian random variables with

zero-mean and variance σ2
ε . A more conventional form of expressing the multivariate linear model

in 2.16, is by using matrix notations instead

Y = Xβ + ε (2.17)

In order to find parameters for the model we consider the ordinary least square optimisation problem

as follows

β̂ = arg min
β

|| Y −Xβ ||22 (2.18)

If an inverse to XTX exists, the least square estimate of the coefficients is unique and given by

β̂ = (XTX)−1(XTY ). Moreover, it can be shown that the estimate is unbiased and distributed as

β̂ ∼ N(β, (XTX)−1σ2
ε), if the chosen model is correct. (Rawlings, Pantula, & Dickey, 2001)

The model proposed in Equation 2.16 can deal with categorical covariates, by introducing dummy

variables. Given a categorical feature C with F -factors, these are encoded by the F independent

variables xC,1, . . . xC,F , each corresponding to one of the factors. An observation in the sample ac-

tivates the independent variable corresponding to its categorical factor. The activated independent

variable is assigned the value 1, while the other dummy variables are 0. It shall be noted that this

representation can also be reduced to F − 1 variables, where the baseline factor is embedded in the

intercept and activated when all dummy variables are zero.

2.1.4 LASSO

Least absolute shrinkage and selection operator (LASSO) is a method to estimate a linear regression

model, which was first proposed by Tibshirani (1996). The LASSO model introduces a regularising
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L1-penalty term to the objective function, in order to constrain the size of the coefficients. Because

of the nature of this constraint it tends to produce coefficients that are exactly 0 for less contributing

covariates. Hence, the LASSO gives interpretable models containing only a selection of the most

influencing covariates. The objective function in the LASSO method is set as

β̂ = arg min
β

|| Y −Xβ ||22 + α || β ||1 (2.19)

This setting differs just slightly from the Ridge regression, which has L2-penalty term instead. While

the Ridge regression has a closed form solution, the solution to the LASSO model is a quadratic

programming problem that can be solved with standard numerical methods. (J. Friedman, Hastie,

& Tibshirani, 2001)

2.1.5 Gradient Boosting Regression

Gradient boosting regression is a machine learning algorithm used in this thesis to find a regression

model that minimises a pre-determined penalty function. The main idea of the algorithm is to

build a strong prediction model by iteratively combining weaker simple models, called learners.

That is, given a set of observations (xi, yi)1≤i≤n, where xi is the input vector of an observation

and yi the corresponding scalar output, we want to find a model FM such that the loss function

L(y, F (x)) =
∑n
i=1 L(yi, F (xi)) is minimised. Each consecutive stage, m ∈ [1,M ], of the regression

model is constructed as an ensemble of functions

Fm = F0 +

m∑
i=1

hi (2.20)

where F0 is some initial model and hi ∈ H are learners constricted to some set of functions. The

learners are updated based on the present value of Fm such that

Fm = Fm−1 + arg min
h∈H

L(y, Fm−1(x) + h(x)) (2.21)

In general the optimisation problem in 2.21 is computationally demanding. This problem is ad-

dressed by considering the steepest descent step gm ∈ RN defined by

gi,m = −∂L(yi, F (xi))

∂F (xi)

∣∣∣∣∣
F (xi)=Fm−1(xi)

∀i ∈ [1, N ] (2.22)
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Assigning hm = ρm gm where ρm is defined as ρm = arg min
ρ

L(y, Fm−1(x)− ρ gm) would minimise

Equation 2.21 in an efficient manner. However, since the gradient is only defined on the training

set, this optimisation would not be robust out of sample. Instead a tree regression is performed

such that a tree Tm fits the negative gradients defined in Equation 2.22. This fitted tree regression

is assumed to have Jm terminal regions Rj,m for j ∈ [1, Jm] in which Tm is constant. The constants

are updated in each terminal region by

γj,m = arg min
γ

∑
xi∈Rj,m

L(yi, Fm−1(xi) + γ) ∀j ∈ [1, Jm] (2.23)

The learner is now defined using the terminal regions from the negative gradient tree regression

and the constants derived in Equation 2.23 as

hm(x) =

Jm∑
j=1

γj,m1x∈Rj,m (2.24)

Lastly, the model is updated as in Equation 2.21 above

Fm(x) = Fm−1(x) +

Jm∑
j=1

γj,m1x∈Rj,m (2.25)

This procedure is iterated until a pre-specified convergence condition is achieved. In order to con-

straint M and mitigate the risk of overfitting, such a conditions involve both minimising the pre-

diction error in a test sample and introducing a regularising term. (J. Friedman et al., 2001)
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2.2 Financial Theory

Now that the most central mathematical concepts for this thesis have been introduced to the reader,

we shift focus to review the financial concepts and models applicable for this thesis.

2.2.1 Corporate Bonds

Corporate bonds are debt securities that are issued by corporations and sold to investors. Selling

bonds to the primary market is a method for corporations to raise money and finance its investments

today, in exchange for promised future payments to the bond holders. The future payments consist

of a principal amount paid on the bond’s maturity date T and most commonly also periodical

payments, named coupons. The coupons are defined by a yearly coupon rate, which is a fraction of

the principal amount, and a frequency (e.g. quarterly, semi-annually or annually) for which they

are paid until maturity. A bond that doesn’t pay any coupons is termed a zero-coupon bond (ZCB).

The terms and conditions for the future payments are specified in the bond certificate.

Investors of corporate bonds face the risk that the issuer does not honour the payments as con-

tracted. The rating agency Moody’s Investors Service, often referred to as Moody’s, define four

scenarios that trigger a debt default:

1. a missed or delayed disbursement of a contractually-obligated interest or principal payment

(excluding missed payments cured within a contractually allowed grace period), as defined in

credit agreements and indentures;

2. a bankruptcy filing or legal receivership by the debt issuer or obligor that will likely cause a

miss or delay in future contractually-obligated debt service payments;

3. a distressed exchange whereby 1) an issuer offers creditors a new or restructured debt, or a

new package of securities, cash or assets, that amount to a diminished value relative to the

debt obligation’s original promise and 2) the exchange has the effect of allowing the issuer to

avoid a likely eventual default;

4. a change in the payment terms of a credit agreement or indenture imposed by the sovereign

that results in a diminished financial obligation, such as a forced currency re-denomination or
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a forced change in some other aspect of the original promise, such as indexation or maturity.

Compared to bank loans, the risk of not receiving the future payments is pooled among a larger

group of participants. This opens up the possibility for firms to raise larger amounts of capital and

find investors that accept increased risks.

2.2.2 Structural Models

In this thesis we will focus only on the Merton and Black Cox framework to model credit spreads.

Notwithstanding the fact that involved extensions of structural models might be more realistic,

Huang & Huang (2012)show that a wide class of structural models and extensions perform similarly

when calibrating to historical default loss experience and equity returns. Consequently, Merton and

Black Cox provide a framework for pricing of corporate debt which is intuitive, analytically tractable

and robust over a wide class of structural models. The general setting of Merton and Black Cox is

to assume that a firm is financed by a single zero-coupon bond with maturity T and equity. The

bond value and equity make up the firm’s asset value, which is assumed to evolve in the physical

measure as the following

dVt = (πP
t + rt − δt)Vtdt+ σVtdW

P
t (2.26)

where Vt is the firm value at time t and W P
t is the standard Brownian motion under the physical

measure. Furthermore, πP
t is the asset risk premium, rt risk-free rate and δt the firm’s continuous

payout of dividend and interests as a ratio of the firm value. Under the risk-neutral measure Q the

dynamic of the firm value becomes

dVt = (rt − δt)Vtdt+ σVtdW
Q
t (2.27)

where WQ
t is the standard Brownian motion under the risk-neutral measure. Given the above

dynamic of the firm value process corporate debt and equity is prised under the Black & Scholes

framework of option pricing. The analogy to option pricing derives from the fact that debt holders

are prioritised higher than equity holders in terms of repayment. Imagine a firm active only during

one year and liquidated at the end of that year. If the firm remains solvent until liquidation, debt

holders are repaid the nominal amount of debt and equity holders receive the residual firm value

after debt repayment. However, in the event of default during the active year, debt holders are
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repaid the residual firm value after bankruptcy costs, and equity holders receive nothing. With

this repayment structure, the firm equity dynamics are equivalent to that of a European call option

with the nominal amount of debt as strike price. With similar arguments, debt dynamics are

equivalent to a long risk-free position amounting the discounted nominal debt and a short position

in a European put option with the nominal amount of debt as strike price. This simplified but

intuitive interpretation of corporate debt and equity is the essence of structural models and the

foundation to all extensions thereof.

Obviously, the default trigger is central for valuing corporate debt through the structural approach.

Within the family of structural models, a default event will occur when the firm fail to meet the

solvency conditions specified in each model. When the issuer of a bond defaults, the bond holders

receive a fraction of the predetermined face value. Within the structural framework this fraction is

often referred to as the recovery rate (RR) and it reflects the expected shortfall of firm value and the

expected costs of bankruptcy. The RR is incorporated in the structural models through additional

downside risk exposure yielding the following pay-off to the bond holder at maturity

φ({Vt}0≤t≤T ) =

K Issuing firm remains solvent

f(K, {Vt}0≤t≤T , RR,Θ) Issuing firm defaults

(2.28)

where f(·) represents a model specific pay-off at default and Θ holds model specific parameters.

Note that in some models Θ may contain unobservable parameters. For a given variety of structural

models, the probability of default (PD) and value of debt (P) can be calculated on a closed form

using the following set of input parameters

PD(t, T, Vt,K, σ, rt,T , δ, π
P
t ,Θ) (2.29)

P (t, T, Vt,K, σ, rt,T , δ, RR,Θ) (2.30)

where Θ is defined as in Equation 2.28. An important note is that PD is calculated in the physical

measure while P is derived through risk-neutral option pricing. This allows us to calibrate model

parameters to real world observed default frequencies. Having defined the price function the model

implied spreads are calculated by using the yield to maturity relation

e−(r+s)(T−t)K = P (t, T, Vt,K, σ, rt,T , δ, RR,Θ) (2.31)
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Solving for s in Equation 2.31 we get

s = − 1

(T − t)
ln
[P (t, T, Vt,K, σ, rt,T , δ, RR,Θ)

K

]
− r (2.32)

Merton

The idea of the original Merton model, is that the issuing firm can default only at the time of

maturity and the default boundary is the nominal amount of debt. That is, the recovery rate is set

to one, implying the following pay-off to bond holders at maturity

φ(VT ) =

K VT ≥ K

VT VT < K

(2.33)

Under the Merton assumptions, the value at time t for a bond with maturity T , face value K,

underlying asset process {Vt}0≤t≤T , asset volatility σ and payout ratio δ is described by

Pt = e−(T−t)r E Q
[
K − (K − VT )+|Ft

]
(2.34)

where Ft is the natural filtration of the firm value process up to time t. Standard arguments in

risk-neutral derivative pricing lead to

Pt = e−(T−t)rK(1−N(−d2)) + e(T−t)δN(−d1) (2.35)

where

d1 =
1

σ
√
T − t

[
ln

(
Vt
K

)
+

(
r − δ +

σ2

2

)
(T − t)

]
d2 = d1 − σ

√
T − t

(2.36)

The probability of default for bond at a given time is, as mentioned above, equivalent to the

probability that the underlying firm value will fall below the face value of debt at maturity. That

is, the probability of default at time t is

PD(t, T ) = P(VT < K|Ft) = P(Vt e
(r+πP−δ−σ2/2)(T−t)+σ

√
T−t G < K|Ft) (2.37)

where G is a normally distributed random variable such that G ∼ N(0, 1). The solution to Equation

2.37 is

PDP(t, T ) = P
(
G <

1

σ
√
T − t

[
ln

(
K

Vt

)
+

(
r + πP − δ − σ2

2

)
(T − t)

] ∣∣∣Ft) (2.38)
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Binary Merton

The binary Merton model is closely related to the original version. The important difference between

the models is that the binary Merton has an exogenously given recovery rate. That is, at maturity

the bond holder receives the following pay-off

φ(VT ) =

K VT ≥ K

RR ·K VT < K

(2.39)

Since Merton and binary Merton model have identical solvency conditions we can deduce that the

probability of default for given input parameters are equal for the two models. That is, for the

binary Merton model the physical measure probability of default at time t for given structural input

parameters is defined as

PDP(t, T ) = N
( 1

σ
√
T − t

[
ln

(
Vt
K

)
+

(
r + πP − δ +

σ2

2

)
(T − t)

])
(2.40)

Given the structural input parameters and the default probability function derived above, the

risk-neutral price of a bond is described by

Pt = e−r(T−t)E Q
(
φ(VT )

)
= e−r(T−t)E Q

(
1VT≤KRR ·K + 1VT>KK

)
(2.41)

Since we calculate the price under the risk-neutral measure, Equation 2.40 is transformed into

risk-neutral probabilities by removing the credit risk premium πP. The resulting price function

becomes

Pt = e−r(T−t)
(
PDQ(t, T )RR ·K + (1− PDQ)K

)
(2.42)

Black Cox

The Black Cox model values corporate debt as a barrier option with down and out structure.

Under the Black Cox framework, the firm can default at any time on or before maturity if the

corresponding value process falls below a predetermined fraction, d, of debt. That is, the firm

defaults at time τ defined as τ = inf{t : Vt < dK}. By the event of default the bond holder receives
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a fixed amount, RR ·K yielding the following pay-off function at maturity

φ({Vt}0≤t≤T ) =

RR ·K τ ≤ T

K otherwise

(2.43)

As shown in Equation 2.43 the expected pay-off conditioned on default is deterministic and thus

independent of the firm value process. This characteristic of the pay-off function is unwanted but

necessary to achieve analytical tractability. The cumulative default probability at time t, for a bond

with maturity T , leverage ratio L = K/V0, underlying asset process {Vi}0≤i≤T , asset volatility σ,

payout ratio δ and default boundary d is derived in Bao (2009) as

PDP(t, T ) =N
[ log(dL)− (r + πP − δ − σ2

2 )T

σ
√
T

]
+ (2.44)

exp
[2 log(dL)(r + πP − δ − σ2

2 )

σ2

]
N
[ log(dL) + (r + πP − δ − σ2

2 )T

σ
√
T

]
(2.45)

This default probability is calculated in the physical measure when calibrating to historical default

rates. As familiar from conventional bond pricing theory, the price of a bond with pay-off function

as in Equation 2.44 can be written as

Pt = e−r(T−t)E Q
(
φ({Vt}0≤t≤T )

)
= e−r(T−t)E Q

(
1τ≤TRR ·K + 1(τ≤T ){K

)
(2.46)

Using Equations 2.46 and 2.44, it is possible to construct an analytic expression for the theoretical

bond price under the Black Cox framework. The resulting price equation is

Pt = e−r(T−t)EQ
[
φ({Vt}0≤t≤T )

]
= e−r(T−t)

(
PDQ(t, T )RR ·K + (1− PDQ(t, T ))K

)
= e−r(T−t)

(
K(1− (1−RR)PDQ(t, T ))

)
(2.47)

Using the yield to maturity relation and Equation 2.47, the bond spread is calculated as

e−(r+s)(T−t)K = e−r(T−t)K(1− (1−RR)PDQ(t, T )) (2.48)

Finally, as implied by Equation 2.48, we get the following expression to calculate bond spreads in

the Black Cox setting

s = − 1

T − t
log(1− (1−RR)PDQ(t, T )) (2.49)
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3 Data

As mentioned above, the structural approach to credit spread modelling requires both time series

data and technical metadata for all bonds within the scope of this thesis. As of today there is no

centralised and complete reporting environment for the European bonds. Fortunately, the required

data is made available to an acceptable extent by combining data from the sources: Bloomberg

Professional API, Compustat - Capital IQ, Reuters EIKON, ECB Statistical Warehouse and the

German Bundesbank. However, using data which is aggregated and combined from different sources

with varying reporting standards, requires great forethought and extensive preparatory data mod-

ifications. This section aims to explain and motivate the details of the data gathering and the

preparatory modifications performed on the data before modelling.

3.1 Selection of Bonds

The bond sample used for the empirical modelling is a subset of all available bonds monitored by

Bloomberg’s fixed income security database called SRCH. A bond is included if and only if all the

following criteria are satisfied

- The bond is either active or inactive

- The bond issuer has rating data from at least one of S&P, Moody’s or Fitch

- The bond issuer is not a financial corporation or a government

- The bond issuer is not a private company1

- The bond issuer’s country of domicile is any European country

- The bond type is either fixed coupon, zero coupon or defaulted

1This is the search criteria used to distinguish public companies in Bloomberg SRCH.
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- The bond matures on or after 2000-01-01

With these restrictions, the dataset constitutes of both active, inactive and defaulted bullet bonds

issued by European firms. Defaulted bonds are included in order to minimise the effects of a

survival biased sample. The survival bias is reduced but still prevalent, since we require that the

issuer’s equity is public. Thus the defaulted bonds in our sample are issued by firms that have had

insolvency problems, but managed to continue to its operations through a reconstruction process or

debt write-down. Financial corporations, such as insurance companies and banks, are excluded due

to their distinctiveness in capital structure and regulatory environment. Lastly, the issuing firms

are required to be public due to the simple fact that equity data is necessary as model inputs. With

these filter restrictions the Bloomberg SRCH database generates a sample of 3992 bonds from 702

distinct firms.

3.1.1 Merge of Bloomberg and Compustat data

The Bloomberg API is used to gather bond level metadata and historical market data of equity

and bonds, while Compustat is used to obtain accounting data for the issuing firms. To be able

to merge data from the Bloomberg API with Compustat, it is necessary that the issuing firms are

monitored by both databases. The linkage between the database services is enabled by identifying

issuers through their ISIN (International Securities Identification Number). In order to deal with

complex subsidiary structures, the issuing firm for each bond is identified using the Bloomberg field

ISSUER PARENT EQY TICKER. In this way it is possible to aggregate bonds issued by local

branches to the parent entity and regard the parent company’s balance sheet in Compustat.

The currency used in this study is chosen to be euro, due to convenience following characteristics

of the sample set. The daily equity quotes from the Bloomberg API are all quoted in euro, thanks

to its internal currency conversion engine. On the other hand the Compustat accounting data

is quoted quarterly in the issuer’s accounting currency. Quarterly historical exchange rates are

gathered from ECB’s Statistical Data Warehouse and used to convert the accounting currency to

euro when needed. Bonds from firms with an accounting currency that is not included in ECB’s

Statistical Data Warehouse are removed.
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The Compustat database is comprehensive and covers the majority of the firms in the first draft of

the sample. However, since the firms originate from different industries and countries of domicile,

the accounting standards lack general consistency through the whole dataset. This problem was

addressed in 2005 when the International Financial Reporting Standards (IFRS) became mandatory

for all companies listed in Europe (European Commission, 2016). Another issue with the Compustat

database is that there is a delay between the publishing of financial statements and when the data

is available at Compustat. The consequence of this is that accounting data after the second quarter

of 2016 is scarce. In order to ensure comparability and a consistency of sample depth over time,

the time span for the dataset narrowed to include bonds that are active in some part of the period

between 2005-01-01 and 2016-06-30. The number of firms that meet the above requirements is

reduced to 570, that collectively have 2995 bonds.

3.1.2 Liquidity Requirements and Missing Quotes

The time series of equity and bond quotes are central components to our study, as they are input

respectively target measures for the models. Therefore we require that the data quality of these

observations are reliable, comparable and robust. An important assumption in the Black Scholes

framework for option pricing is that the underlying asset is perfectly liquid and implicitly the

contingent claim as well (Black & Scholes, 1973). Therefore it is reasonable to disregard firms and

bonds with inferior trading frequency.

The equity is traded on public stock exchanges across Europe. These market places provide high

transparency of trades and are generally considered liquid markets. Different stock exchanges may

have different business days and bank holidays, causing missing data points in the time series.

Besides market holidays, a missing data point could also be explained by the fact that no deals

are closed in a given day. To mitigate the potential illiquidity problem, an issuer’s stock must

have quotes on at least 200 of the trailing 252 business days to be included as a observation. A

few missing data points is not considered a problem, since the issuer’s market capitalisation is

aggregated to a monthly mean. The firm’s interday market capitalisation is used to calculate its

equity and asset volatility, which is a calculation considered acceptably robust when missing up to

52 quotes of the trailing 252 business days.
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The bonds on the other hand are in general traded over-the-counter (OTC) between a limited num-

ber of market participants, causing an issue of quote opacity and reduced liquidity. In comparison to

equity, bond deals are characterised by less frequent trades and each trade involving a high volume

of bonds. As a consequence of bond trades not needing to comply with the transparent reporting

standards of public stock exchanges, there is a possibility that OTC deals are never reported to a

pricing source. The Bloomberg database is to our best knowledge the most fair inter-day pricing of

bonds that we can obtain. Since Bloomberg aggregates trade data from several pricing sources, it is

a good attempt to provide an as complete market valuation as possible. However, within the active

period of a bond, it is hard to know whether a missing quote is due to trades done on a non-covered

exchange or the nonexistence of any completed trades. Since the API don’t give access to the daily

volumes traded, we can only assume that the daily quotes listed by Bloomberg are backed by an

acceptable number of trades.

The dataset of daily bond quotes that are retrieved from the Bloomberg API, reveal that a note-

worthy fraction, 1141 of 3995 bonds, don’t have any trades registered. In total 2521 bonds have

more than 100 registered end of day quotes in Bloomberg. Yet some of these bonds could still suffer

from liquidity issues, since these trades do not necessarily occur on consecutive business days. For

a bond to be included as a monthly observation, we require that it has at least 15 quotes reported

in Bloomberg for the given months.

When studying the dataset in more depth some inconsistencies and extreme outliers were detected

and removed. For example, this manual cleaning task included removal of errant price quotes 2 and

one bond trading at spreads far below zero.

To summarise the restrictions posed in this section concerning bond and equity liquidity, a bonds

and its issuing firm need to fulfil the following requirements to qualify as a bond month observa-

tion.

- The issuing firm has equity price quotes on at least 200 of the trailing 365 days from the

month’s end date.

- The bond has price quotes on at least 15 of the business days within the current month.

2A bond was traded at levels more than 10 times higher than its nominal value of 100.
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When all modifications and restrictions are implemented, the dataset consists of 402 firms and 2

171 bonds and 91 510 end-of-month observations.

3.1.3 Data limitations

Issue Currency

In order to avoid unnecessary complexity, we chose to exclude bonds with other issue currency

than EUR. This choice of sample reduction is motivated by the fact that the bond yields have

systematic differences depending on the currency it is issued in. For example the average yield for

EUR denominated bonds is 2.94 %, while the average yield in GBP is 4.51 % and CHF is 1.14 %.

The natural explanation for these differences is the variations in federal interest rates for different

currencies. The 12-month LIBOR rate during the period 2005-01-01 to 2016-06-30 was 1.88 % for

EUR, 2.63 % for GBP and 0.87 % for CHF respectively (ICE Benchmark Administration Limited

(IBA), 2017). Clearly, the bond yields are closely related to a premium on top of the risk-free

interest rate denominated in the same currency. Other explanations for these variations include

varying views of political and inflation risks, as well as market discrepancies with respect to demand,

supply and risk appetite.

Time to maturity

In other empirical studies of structural models, it has been shown that bonds with very short or

very long residual time to maturity are difficult to model. Therefore these observations are usually

disregarded from the sample. Eom, Helwege, and Huang (2004) include only bonds that mature

within the span of 1 to 30 year, while Feldhütter and Schaefer (2016) look at bonds with 3 to 30 years

of residual time to maturity. We have chosen to restrict our sample to bonds with maturies between

1 and 20 years, in order to match well with Moody’s table for expected default frequencies.

After these final reduction operations we arrive at a sample set that consists of 1 116 bonds (289

firms) observed over 138 months (2005-01-01 to 2016-06-30). In total the dataset has 50 222 bond-

month observations.
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3.1.4 Selection Bias

Since we perform an extensive cleaning of the initial bond sample, there is a mentionable and

unavoidable risk that the sample is no longer entirely representative of the true population. When

bonds with unsatisfactory level of data quality are removed, this selection bias becomes even more

relevant. This possible selection bias is unavoidable in order to maintain a consistent and generalised

model approach. The consequence of the selection bias is that our model results will only be

applicable to bonds that meet the same requirements to qualify for the sample set.

3.2 Interest Rate Parameters

The historical yield curves of European risk-free interest rates are retrieved from the German

Bundesbank. These yield cureves are based on market quotes of listed German federal securities

denominated in euro. Many investors regard the German Bunds as the most reliable federal security

in the Euro-zone, which therefore functions as a good benchmark for the risk-free rate. The yield

curves are compiled and published on a monthly basis by the German Bundesbank using the

Svensson method (Svensson, 1994), to approximate the term structure. At the end of each month

the yields are reported for residual maturities of 0.5 years and integer years from 1 to 30. Given

a bond observation, we match its residual maturity with the same yield quoted by the German

Bundesbank in that specific month. When a bond has residual maturity between two integer years

in the term structure, the risk-free rate is obtained by a linear interpolation.

3.3 Rating

As a constraint in the bond data retrieval from Bloomberg, described in Section 3.1, we require that

the bond issuer has rating data from at least one of the top three rating agencies: Standard & Poor,

Moody’s or Fitch. Unfortunately, as it turned out, this query suffered from two weaknesses. First,

the rating agencies use different criteria in their rating assessments and different labelling. Therefore

comparability across rating agencies is neither straightforward nor unambiguous. Furthermore, it

was later on noticed that Bloomberg regards a withdrawn rating as a non-empty rating field in our
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query, implying that such bonds are included in our sample. To avoid additional complexity in this

matter, we use the ratings reported by Moody’s to form three rating groups: ’Investment Grade’

(IG), ’Sub-Investment Grade’ (SG) and ’Without Rating’ (WR). All Aaa-Baa rated bonds are

labelled ’Investment Grade’ while Ba-C are labelled ’Sub-Investment Grade’. The bonds without

rating from Moody’s are grouped together into ’Without Rating’ (WR). The latter group also

includes bonds in which Moody’s have withdrawn rating. Secondly, the rating data in Bloomberg

is an instantaneous snapshot taken on the date of the data request3. Despite great efforts to obtain

historical rating changes, we did not manage to compile this to an acceptable extent. Instead, the

current rating for the issuers is back-filled and assigned to all historic observations of the same

issuer.

3The data from Bloomberg was retrieved on 2017-03-01.
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4 Method

”Successful modelling of a complex dataset is part science, part statistical methods, and

part experience and common sense.” (Hosmer Jr, Lemeshow, & Sturdivant, 2013)

When assessing the overall explanatory power of structural models, the objective is to understand

to what extent the fundamental ideas of Merton and Black Cox are incorporated in the market’s

valuation of corporate debt. Departing from a large set of observed bond data there are numerous

ways to translate the input data to comparable model output. The limited academic research done

on the European bond market, brings an uncertainty (and freedom) regarding how to construct

input variables that are reasonable for the model assumptions and that are comparable to the

conducted research on American bonds. Furthermore, the method of evaluating explanatory ability

from model output to observed data is neither straightforward nor univocal. Different choices of

input data structures and assessment structures will generate varying results - each requiring its

own interpretation - and it is therefore important to understand the methodology in detail. This

section concerns, (1) the construction of input data, (2) model calibration and (3) the structure

of the model assessment. The reader should be familiar with the main concepts explained in the

theory chapter, as these concepts will now be applied to a practical setting.

4.1 Structural Models Input

As mentioned above, the bond data consists of a snapshot of the basic bond meta data such

as issuing date, maturity date, coupon rate, rating and coupon frequency. In addition, we have

access to time series data for the firm’s equity and balance sheet, as well as the observed bond

quotes. In line with Feldhütter and Schaefer (2016) and Duffee (1998) a sample set of monthly

bond observations is constructed as the foundation to the assessment of structural models. More

specifically, this means that time series data is averaged on a monthly basis, while balance sheet
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data is set such that all months within a given quarter have the same accounting data as reported

for the quarter a posteriori. The bond meta data is not time dependent and remains constant

within the active period of each bond. The remaining features and model inputs are generated and

estimated as functions of the raw data and, where applicable, put together on the monthly averaged

bond observation form. In Sections 4.1.1 to 4.1.5 the feature estimation methods and corresponding

assumptions are explained in detail.

4.1.1 Asset Volatility

As familiar, the firm value process is unobservable thus making it hard to estimate the volatility.

There are a broad range of alternatives that have been used in the literature, these are further

reviewed and discussed in Appendix A.1. We choose to implement the KMV1 method to obtain

the asset volatility as it is closely aligned to the Merton framework. The KMV estimation of asset

volatility is based on the one-to-one mapping, from firm value to equity value which is observable

on the market. Given k + 1 historically observed daily equity quotes {Et0 , Et1 ...Etk} for a certain

firm and an initial asset volatility estimate σ̂
(0)
V it is possible to imply the asset value by using the

Black-Scholes call option formula relationship. This corresponds to the E-step in the EM-algorithm

described in Section 2.1.2. At iteration p in the EM-algorithm, the implied firm value is calculated

by numerically finding the root to the Black-Scholes call option formula. This procedure is denoted

as

V
(p)
ti = BSCall−1(Eti |σ̂

(p)
V ,Θ) ∀ti ∈ {t0...tk} (4.1)

where Θ contains the firm specific variables needed to compute the Black Scholes call option for-

mula2. Next the M-step of the EM-algorithm is performed, which corresponds to finding the pa-

1The firm KMV is named after Kealhofer, McQuown and Vasicek, the founders of the company in 2002. It has

since been sold to Moody’s.
2If a company has several outstanding bonds at time t, the company’s maturity T is set to the average of the

bonds. The risk-free rate is also approximated by the average risk-free rate between t and the individual the bonds’

maturities. The firm’s leverage ratio is specified in the next section (4.1.2). However, since it relies on reported

balance sheet data from Compustat there will almost surely be quarterly jumps in the leverage ratio. The jumps in

debt can be regarded as a partially observable stochastic process. Consequently, the jumps in debt are also prevalent

in the implied asset value process, which contradicts the assumption of a continuous geometric Brownian motion.

As a simple solution to mitigate unwanted jumps, we linearly interpolated the debt for time points between the
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rameters that maximises the log-likelihood function for the sequence of implied asset values.

arg max
{µV ,σV }

k∑
i=0

ln(f(V
(p)
ti |µV , σV )) (4.2)

Given the assumption that the firm value process is a geometric Brownian motion, the maximum-

likelihood estimate of the diffusion parameter σ, can be calculated as shown in Section 2.1.1

σ
(p+1)
V =

1

k − 1

k∑
i=1

(rti − r̄)2 where rti = ln(
V

(p)
ti

V
(p)
ti−1

) (4.3)

The E- and M-steps are repeated until the parameter estimate of σ has converged. The condition

for convergence is chosen to be when the absolute relative change falls below a predetermined

threshold, that is |σ(p+1)
V − σ(p)

V |1 < ε.

Due to notational challenges we have left out a subtle detail in the description of our implementation.

Instead of calculating a constant asset volatility for each firm, σV,f , as the formulas above suggest,

our implementation allows a time varying asset volatility. For each day ti the asset volatility is

estimated using the trailing 252 business days of implied firm value. What motivates the time-

varying asset volatility is that a constant volatility estimate contains an inconsistent mixture of

both future and historic information, depending on which point in time is regarded. Consequently

the early time points in the sample, will have an asset volatility estimate dependent on a high

fraction of future information, while the opposite applies for more recent time points.

4.1.2 Leverage

Leverage ratio measures the relation between a corporation’s debt and equity and is therefore closely

related to credit risk. The definition of the measure varies within different applications, but will in

this thesis be defined as

L =
Db

Db + Em

where Em is the market value of equity and Db is the book value of debt. The market value of

equity is calculated on a daily basis and on firm level as the product of shares outstanding and price

per share. The book value of debt is estimated as the sum of long term debt (dlttq)3 and debt in

quarterly reporting dates.
3The text codes in parenthesis are field codes for the Compustat - Capital IQ data. Full variable descriptions

are available in Appendix A.6
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current liabilities (dlcq) from the subsequent quarter end in relation to the data date. For a given

month, t, and firm, f , the monthly averaged leverage observation is defined as

L =
Db,f,t

Db,f,t + Em,f,t
(4.4)

where Em,f,t is the t-month average of daily market cap observations for firm f . The combining of

market value of equity and book value of debt is a noteworthy simplification in the model input.

Again this is a simplification made due to the limited observability of market value of debt. However,

most bonds are traded close to par and the debt book value is therefore believed to constitute a

good proxy for the market value of debt. This view of using book value as a proxy of market value

is in line with Eom et al. (2004) and Feldhütter and Schaefer (2016).

4.1.3 Payout Ratio

Financial cash flows such as dividends and interest rate payments affect the firm value process and

are incorporated in the structural models through the payout ratio. The yearly outflow of cash

to financial stakeholders is estimated as the sum of yearly total dividend payments (dvty), yearly

interest and related expenses (xinty) and yearly purchase of common and preferred stock (prstkcy).

For a given firm f and month t in year y, the payout ratio is calculated as

δf,t =
FCFy−1,f

Vt,f
(4.5)

where Vt,f is the monthly averaged firm value defined by Vt,f = Db,f,t+Em,f,t with the same nota-

tion as in 4.1.2 and FCFy−1,f is the sum of dvty, xinty and prstkcy for year y−1 and firm f .

4.1.4 Recovery Rate

Our implementations of binary Merton and Black Cox both require an exogenously given estimate

of the recovery rates at default. Moody’s Investors Service (2017) estimate of the long term average

recovery rate for senior unsecured bonds amounts to 37.5 %. In line with this historical average,

we set the recovery rate to be 40 % for all bonds in the sample.
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4.1.5 Summary Structural Models Input

The observed monthly structural inputs are summarised in Table 4.1 below. The data contains

meta data of European bullet bonds actively traded within the period from 2005-01-01 to 2016-06-

30. In total, the dataset contains 50 222 bond month observations generated by 1 116 bonds and

289 unique firms. The data sources are Bloomberg professional and Compustat - Capital IQ.

Table 4.1: Summary statistics. The actual spread is expressed in basis points calculated as the difference

between yield to maturity and the spot risk-free rate with corresponding maturity. The equity volatility is the

standard deviation of the issuing firm’s equity log-returns, based on the trailing 252 business days. Time to

maturity is given in years. The details of our derivations of asset volatility, leverage ratio and payout ratio

are described in Sections 4.1.1, 4.1.2 and 4.1.3 respectively. A full description of the rating encodings IG,

SG and WR is available in Section 3.3.

mean std min 5% 50% 95% max

Actual Spread IG 113.217 72.064 -84.147 35.187 97.287 248.040 1426.347

SG 262.167 249.232 2.062 58.659 215.090 594.400 4828.649

WR 239.386 436.576 -9.633 47.844 167.381 576.289 25194.930

Equity Volatility IG 0.280 0.105 0.062 0.167 0.257 0.485 1.067

SG 0.364 0.127 0.152 0.198 0.344 0.613 1.007

WR 0.311 0.129 0.062 0.178 0.279 0.561 1.482

Asset Volatility IG 0.187 0.086 0.046 0.102 0.167 0.351 0.960

SG 0.211 0.104 0.056 0.096 0.178 0.434 0.784

WR 0.206 0.102 0.022 0.086 0.188 0.393 0.957

Leverage Ratio IG 0.379 0.165 0.025 0.140 0.359 0.661 0.884

SG 0.487 0.216 0.002 0.140 0.494 0.830 0.951

WR 0.390 0.206 0.014 0.114 0.358 0.812 0.963

Payout Ratio IG 0.033 0.017 0.000 0.007 0.032 0.062 0.098

SG 0.036 0.017 0.000 0.009 0.035 0.063 0.096

WR 0.029 0.017 -0.001 0.005 0.029 0.056 0.353

Time to Maturity IG 5.969 3.789 1.003 1.468 5.153 13.752 19.995

SG 4.762 3.006 1.003 1.382 4.111 10.749 19.995

WR 4.850 3.168 1.003 1.397 4.173 11.216 19.942
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4.2 Model Calibration

Compared to the original Merton model, the Black Cox framework provides an additional degree of

freedom through its down and out structure. As the firm’s default boundaries are unobservable the

variables are estimated by calibrating the model implied default probabilities to match historical

averages. The calibration target is the reported average issuer weighted default frequencies tracked

by Moody’s within the period between 1920 and 2016. In order to understand the logic behind

our calibration method, one first needs to understand the methodology of Moody’s reporting of

expected default frequencies. At the beginning of each year (1920-2016) rated firms within the

same rating category form a cohort group. For each consecutive year Moody’s track the fraction of

firms that have defaulted within each cohort and time horizon. More specifically, for a given year,

y, rating group z, and time interval, t, the marginal default probability dzy(t) is calculated as

dzy(t) =
xzy(t)

nzy(t)
(4.6)

where xzy(t) is the number of defaulted firms within the cohort and nzy(t) is the size of the cohort.

The cumulative default probability for the same cohort as above, and a given investment horizon

T is calculated as

Dz
y(T ) = 1−ΠT

t=1(1− dzy(t)) (4.7)

The average cumulative default probability for the investment horizon T over a set of years Y is

defines as

D
z
(T ) = 1−ΠT

t=1(1− dz(t)) (4.8)

where

d
z
(t) =

∑
y∈Y x

z
y(t)∑

y∈Y n
z
y(t)

(4.9)

Moody’s cumulative average issuer weighted default probabilities are shown in Table A.1. Corollary,

depending on the state of the economy default probabilities are subject to change but should

correspond to Table A.1 on average over time. This perspective of the over time average default

probabilities is hereafter referred to as through the cycle. Since the Moody’s default probabilities

are target variables when estimating the default boundary, it is reasonable to imitate Moody’s

methodology as close as possible. This is achieved by calibrating implied default probabilities
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through the cycle. In Section 2.2.2 the Black Cox implied physical cumulative default probability

is derived as

PDP(d,Θ) =N
[− log(dL)− (r + πP − δ − σ2

2 )T

σ
√
T

]
+ exp

[−2 log(dL)(r + πP − δ − σ2

2 )

σ2

]
N
[− log(dL) + (r + πP − δ − σ2

2 )T

σ
√
T

]
(4.10)

where d is the percentage default boundary expressed as a fraction of the face value of debt and

Θ represents the remaining input variables to the model. Calibrating towards real world default

probabilities, we use the physical default probability implied by the Black Cox framework. This

important detail adds the credit risk premium πP to the input parameter set Θ. In line with Chen

et al. (2009) we use a constant Sharpe ratio of θs = 0.22 in order to calculate the credit risk premium

as

πP = θs · σV (4.11)

For a given cohort with ratings z and time horizon interval τ we calibrate the default boundary dzτ

such that it minimises

arg min
dz,τ

| 1

N

N∑
y=1

PDy(dz,τ )− PDz,τ |2 (4.12)

where PDy(dz,τ ) is the average model implied physical default probability on year y and cohort

group {z, τ}. PDz,τ is the corresponding target default probability for the cohort {z, τ} given by

Moody’s (Appendix A.1). With this methodology, the yearly default rate is allowed to vary within

each cohort, but corresponds to the observed target default rates on average over time. Moody’s

Investors Service (2006)
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4.3 Model Assessment

Our overall objective in this thesis is to investigate the structural credit risk models’ ability to

explain European bond yield spreads. In order to evaluate the descriptive power of the structural

models tested in this thesis, we need a fair and comparable method of model assessment. A well per-

forming descriptive model generates model output consistently close to the observed data. However,

another equally important but not as obvious aspect of the model’s descriptive power is to what

extent the input data depends on the actual yield spread observations and model residuals. The

break down of the model assessment involves (1) an dependency analysis of the relation between all

available input features and the output data and (2) model prediction and residual analysis.

4.3.1 Dependency Analysis

The initial phase aims to identify dependencies between input data and output data before modelling

yield spreads within the structural frameworks. To identify the most influencing input parameters a

LASSO regression is performed with all available data as explanatory variables. As the input data is

not completely comprehensive, missing values are imputed with its corresponding mean value over

time. To obtain comparable regression coefficients, the input data is standardised such that each

feature has zero mean and unit variance. The most influencing features are found by identifying

non-trivial covariates with respect to absolute coefficient value after the LASSO regression. In order

to include as much descriptive information as possible in the dataset, additional auxiliary features

are generated. Below is a summary of the additional features included in the regression input

De Facto Seniority

In Bao and Hou (2016) they show that de facto seniority has a non-trivial influence on market

yield spreads of corporate bonds. De facto seniority is a measure on the amount of debt that is

due prior to a given bond’s maturity. Intuitively, if most of the firm debt is due prior to a bond’s

maturity, the bond is considered more risky in relation to earlier maturing bonds. Analogously, if a

bond matures before the majority of the firm debt, the bond is considered less risky. Given a firm

with n loans and bonds outstanding {K1,K2, ...,Kn} with increasing time to maturity, such that
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TTM(K1) ≤ TTM(K2) ≤ ... ≤ TTM(Kn), the de facto seniority for bond Kt is defined as

DFS(Kt) =

0 t = 1∑t−1
i=1 Ki

/∑n
i=1Ki t = 2 . . . n

(4.13)

Amount Issued Relative

The amount issued relative is a measure of an individual bond’s issued amount in comparison to

the firm’s total debt. The feature holds information about whether the bond constitutes for a

large or small fraction of the total book value of debt. This measure brings additional bond level

information since the models assume that the face value each bond is equal to the issuing firm’s

total debt. The amount issued relative is calculated as

AIR =
Ki

Db
(4.14)

EBITDA to firm value ratio

Structural models do not include measures on the profitability of the issuing firms. However, a well

performing firm with high profitability might be considered less risky than a non-profitable peer.

In order to take profitability in consideration, we introduce the EBITDA to firm value ratio defined

as

ER =
EBITDA

Db + Em
(4.15)

FX Converted Balance Sheet

Issuing firms from several different countries are included in the bond month dataset. As a conse-

quence the accounting currencies for these firms are not completely uniform. While a majority of

the firms report in EUR, a mentionable set of firms have other accounting currencies such as GBP,

CHF or SEK. All financial fields in quoted in non-EUR are converted to EUR using data from the

European Central Bank. The FX converted balance sheet feature is a factor variable that states

weather a firm’s accounting data has been converted to EUR or not.
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4.3.2 Descriptive Power of Structural Models

The second phase aims to explore the descriptive power of the structural models and calibration

methods discussed in this thesis. The reader should be aware that the are a vast number of ways

of evaluating and interpreting a model’s performance, which may lead to different conclusions.

Therefore our intention is to view each model from several aspects in order to get a comprehensive

assessment of the performance. Each structural model will be examined on the three levels:

1. Group averages and median spread

2. Individual bond spread

3. Time series spread

We believe that these three perspectives are collectively exhaustive to understand the descriptiveness

of the models. As a further motivation for these choices we will outline how they have been

implemented by other researchers.

1) The majority of the previous empirical studies conducted on structural models have mainly

evaluated the performance on bond groups, generally based on rating and residual time to maturity.

For example, in the seminal paper by Huang & Huang (2012), they construct a representative firm

for each group and compare the model results to the actual average spreads within the groups.

Their evaluation methodology corresponds to a one-to-one comparison on an average level. In the

way the assessment is constructed, heterogeneity among firms is vanished, and thus the model is

robust against potential outliers. Furthermore, due to the convex characteristics that structural

models exhibit, Jensen’s inequality suggests that the representative firm approach will undershoot

compared to applying the model on several firms and then averaging. This topic is addressed in

Feldhütter and Schaefer (2016), in which they mitigate the convexity bias by applying the model

on individual firms and then comparing the group averages. As expected Feldhütter and Schaefer’s

methodology showed higher on average spread than Huang and Huang, suggesting that there is no

credit spread puzzle.

Regarding the choice of partitioning by time to maturity and rating categories, there is a trade

off between sample size and homogeneity. With increasing group sizes the idiosyncratic errors will

decrease causing stable and more reliable model outputs. However, if the subset is not homogeneous,
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one may be averaging out important differences in underlying risk and misestimating spot rates

because they are estimated for a group of bonds where subsets of the group have different yield

curves.

2) What both Huang & Huang (2012) and Feldhütter and Schaefer omit in their empirical studies

is a deeper comparison on the bond level performance. By solely comparing model spreads on

average levels, it does not necessarily mean that the model performs well. The average spreads will

likely mask pricing errors on individual bonds. Examining the model’s performance on individual

bonds is a more natural measure of performance in the sense that the results could be applicable

to real investment strategies. A bond level analysis is conducted in Eom et al. (2004), where

they investigate the performance of five structural model extensions on firms with simple capital

structure. For each year and bond within their sample the authors match the December average

bond prices with the year end accounting data in order to compute bond level spreads. The bond

level analysis is more sensitive to outliers and data anomalies, but the result is more likely to reveal

information on how and where structural models perform well or underperform.

3) As an additional way of assessing the model we will view the model and actual spreads in a time

series perspective. This analysis will be done by comparing the model and actual average spreads

as well as the of quantiles in each point in time for the sample period. In this setting it is possible

to identify how the performance may vary through different cycles of the industry.

By assuming that the model is able to capture the default risk factors of the yield spread, the

residuals of the model should in that case not be dependent to the model input. To test this idea

we will conduct a new LASSO regression on the residuals to obtain the most influencing parameters.

If there is a high dependence between the model residuals and input variables, it would indicate that

the model fail to correctly use the information embedded in the data. Similarly, if the dependence

is low, the model succeeds to capture structures in the data to explain the dependent variable.

In other words, the ideal describing model generates output satisfactory close to the observed

data in combination with low residual dependence of the input variables. The influencing LASSO

coefficients will be compared to results from the initial dependency analysis, which will be seen as

a proxy.
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5 Results

Knowledge about the process being modelled starts fairly low, then increases as under-

standing is obtained and tapers off to a high value at the end. (Chestnut, 1965)

5.1 Dependency Analysis

5.1.1 LASSO Regression

A LASSO regression is performed - as described in Section 4.3.1 above - with the standardised

input dataset as independent variables and all of the bond month observations as dependent. From

a 10-fold cross validation1 the punishment coefficient turned out to be optimal for α = 1.44. In this

model the intercept was 163.8 and 61 of 289 available features are identified as contributing. The 10

most influencing positive feature coefficients and 10 most influencing negative feature coefficients

are presented in Figure 5.1. A full variable code description is available in Appendix A.6.

From the figure we can deduce that a selection of the structural model input variables, namely

leverage ratio, asset volatility and time to maturity, are included in the set of influencing features.

Both leverage ratio and asset volatility have positive coefficients and therefore positively correlated

to observed yield spreads according to the LASSO model. Time to maturity on the other hand, is

less than zero indicating that yield curve is downward sloping. The fact that these parameters are

included in the top 20 most influencing features indicates that structural models have potential to

describe the dynamics of market yield spreads to some extent.

We note that there are several other dependencies prevalent, not the least common liquidity risk

factors, such as trailing bond trade count (1 month) and bid ask spread. The trailing bond trade

count measures the number of days that a bond trade has occurred the last 30 days while bid

1The cross validation chooses the α that gives the lowest mean square error on average for the 10 folds.
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ask spread measures the relative difference of bid and ask prices quoted for the bonds. Other

important influencing features are firm level parameters such as industry, total liabilities, equity

drift and market cap. The fact that non-structural features are influential weakens the hypothesis

that structural models alone can describe credit spreads observed on the market.

Figure 5.1: The figure displays 20 of the most influencing coefficients in a LASSO model trained to predict

the actual spreads with all available bond month data as independent variables. Note that the model implied

spreads are not included as covariates. Full variable descriptions are available in Appendix A.6

5.1.2 Analysis of Influential Features

As mentioned above, the LASSO regression identified a set of influential features when trained to

predict actual market spreads. To further investigate how the influential input relate to observed

spreads, their dependencies are reviewed visually through compound scatter plots. Figure 5.2

below shows the relation between a selection of the most influencing input variables identified in

the LASSO model and the observed spreads. The figure is organised in such way that the top row

presents input variables for the structural models, while the bottom row displays other dependencies.

The observed data divided into three subgroups depending on bond rating. As described in Section

3.3, all Aaa-Baa are labelled ’Investment Grade’ (IG) while Ba-C are labelled ’Sub-Investment

Grade’ (SG). The unrated bonds are grouped together into ’Without Rating’ (WR).
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Figure 5.2: The compounded scatter plots show the relation between time to maturity, leverage ratio, asset

volatility, monthly number of trades, bid-ask spread and industry sector to the observed spreads.

Interestingly, the term structures of time to maturity and leverage ratio are similar to those implied

by structural models (Figure A.1). On the contrary, the relation between asset volatility and market

spreads seems to deviate from the structural model predictions. Specifically, the Sub-Investment

Grade group shows deviant behaviour in that the average spreads are similar for the two extreme

groups (0, 0.1] and (0.4, 0.5]. For the factors in between, (0.1, 0.2] to (0.3, 0.4], the average spreads

are lower but increasing with asset volatility. Note that the number of constituents in each group

vary, possibly causing deviant behaviour in the figure, such as in the case mentioned above.

The features shown in the bottom row in Figure 5.2, are not taken into consideration in the struc-

tural models. Nonetheless, it is possible to detect clear patterns and differences within these non-

structural features. The most distinguished feature is the bid ask spread which seems to have a

strong linear-like dependence to observed spreads. When a bond is traded at sub-par levels the bid
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ask spread widens, due to increased uncertainty among buyers and holders. However, since both

the yield spread and bid ask spread are strongly interlinked with the traded price of a bond, the

causality in this relationship is unclear. For the trailing bond trade count, it is harder to detect a

clear dependence. What we can deduce however, is that the variability of observed spreads seems

to increase within the factors with less frequently traded bonds.
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5.2 Descriptive Power of Structural Models

5.2.1 Merton

Group spreads

The group comparisons presented in Appendix A.4 show a systematic underprediction on both mean

and median levels. The median values of the spreads indicate that a large fraction of the spreads

are nearly zero. Combining this knowledge with the observation of slightly higher levels of mean

spread, hints that there are spreads within the groups that are significantly higher, thus bringing

Figure 5.3: Merton: The two figures to the left show the time series performance on a bond month level.

The upper left shows averages and 90%-quantile bands for the model spreads and actual spreads in each

month. The lower left figure shows the distribution of the model errors in each year. The model errors

measured by the ratio between model spread and actual spread. The scatter plots to the right display the

relation between average actual and model spread for each bond. The colour encoding in the scatter plots

represents the average leverage ratio of the bond’s issuing firm.
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the mean up. Interestingly the groups along the time to maturity axis, show some similarities with

respect to the shape of the yield curve. There is an increase from short to medium term maturities

and a decrease from medium to long term maturities in yield spreads. In that aspect, even if the

absolute prediction errors are very wrong, the model is capable of capturing the innovations between

different maturities on a mean level to some extent.

Time Series

The time series plot of the Merton model shows that there is an apparent and systematic underpre-

diction of yield spreads in the Merton model. Apart from a single period during the financial crisis

the mean prediction spread is strictly below the actual mean spread. For a few periods we notice

that not even the 90%-quantile bands overlap, which is caused by the fact that a greater part of

the model spreads are close to zero. During the period 2005-2007 before the financial crisis, 86 %

of the model implied spreads explained 10 % or less than their actual values. The same measure

decreased to 61 % in the period 2010-2016, after the financial crisis. It is notable that the Merton

model manages to predict the spreads relatively well in the financially distressed period of 2008 and

2009. The reasons behind the improved performance lies in the drastic changes of input parameters

to the model. As the stock markets fell, the leverage ratios of the firms in our sample increased,

leading to a high risk of default according to the model. In addition, the volatile equity markets are

reflected into the EM-estimate of asset volatility, which also increased during this period.

Bond level

Regarding the individual bond performance the scatter plot shows that there is a large cluster

of model spreads equal or close to zero. (19 414 out of 50 079 samples). This indicates that in

the model framework these bonds are considered equally as risky as the benchmark government

bond. In other words the closed form solution of the probability of default, expressed by Equation

2.38, is very small for a majority of the bonds. As the colour encoding of leverage ratio indicates,

the underprediction of spreads is mainly prevalent for low levered firms. The model seems to do

relatively well for high levered firms, as the residuals for this subset are both positive and negative.

An explanation for these observed phenomena may be found in the way the spread is derived in the

45



Merton model. Recall from Section 2.2.2 that there is no exogenously fixed loss given default as

parameter input to the original Merton model. Instead the recovery rate experienced by the bond

investors is stochastic and could be time varying. One might argue that this setting is realistic,

since the recovery rate for bonds traded on the market typically have stochastic elements. However

the stochastic recovery rate in the Merton model setting is highly dependent of the firm’s leverage.

With the Merton model the expected loss given default is higher for firms with a large fraction of

debt compared to lower levered firms. As we in the next section shift focus to the binary Merton

model, the recovery rate is fixed, which in particular will have effect on the low levered firms.
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5.2.2 Binary Merton

Group spreads

The binary Merton model demonstrates a systematic underprediction of yield spreads on average.

However, the model generates higher spreads on average for short and medium maturities ranging

from 1 to 10 years compared to the original Merton. For longer maturities on the other hand,

binary Merton generates lower spreads on average compared to Merton. Median spreads are higher

likely due to the fact that the number of model spreads less than 1 BPS is decreased to 14 332.

The reduction of model implied zero spreads follows from that the binary Merton has an exogenous

Figure 5.4: Binary Merton: The two figures to the left show the time series performance on a bond month

level. The upper left shows averages and 90%-quantile bands for the model spreads and actual spreads in

each month. The lower left figure shows the distribution of the model errors in each year. The model errors

measured by the ratio between model spread and actual spread. The scatter plots to the right display the

relation between average actual and model spread for each bond. The colour encoding in the scatter plots

represents the average leverage ratio of the bond’s issuing firm.
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and deterministic loss given default. Consequently, bonds with short to medium term maturities,

as well as bonds with lower leverage ratio, are more risky compared to Merton.

Time series

The time series aspect further prove the systematic underprediction in the binary Merton setting.

It is noteworthy that under a short time period in 2009 the average implied spreads are higher than

the real spreads. In line with Merton the 90 % confidence band overlaps poorly before 2009 and

overlap better after 2009. Comparing the time series yearly distribution plots for Merton and the

binary version, the fraction of samples that explain below 10 % of the actual spread have decreased

from 86 % to 75 % in the pre financial crisis period (2005 to 2007). In addition, the corresponding

reduction after the financial crisis was from 61 % to 44 %.

Bond Level

As mentioned above the clustering around zero for model implied spreads is slightly improved in the

binary Merton model. Looking at the scatter plots in Figure 5.4 it is possible to detect systematicity

in the relation between model error and leverage. For highly levered bonds (dark red) the model

seems to overshoot systematically, subject to a few exceptions. The explanation to this is the fact

that the model implied bankruptcy costs for a majority of the defaulted bonds are significantly

increased implying an augmented risk and thus higher model spreads. On the contrary, for low

levered bonds (dark blue) the model seems to undershoot systematically.
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5.2.3 Black Cox

Calibration

The default boundary calibration is implemented as described in Section 4.2. For each cohort a

unique default boundary is calibrated to match the corresponding target default frequency obtained

from Moody’s. The results of the calibration are presented below in Table 5.1.

Table 5.1: The table shows the calibrated default boundaries, d, for each cohort group. The default boundaries

are calibrated such that the average model implied probability of default matches Moody’s reported default

frequencies for each group.

(1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20]

Investment Grade 0.765083 0.694399 0.712877 0.665603 0.661463 0.8773

Sub-investment Grade 0.926038 0.816824 0.790879 0.809423 0.710546 1.28644

Without Rating 0.91173 0.8513 0.745958 0.737812 0.93235 0.734807

The average calibrated default boundary amounts to 0.81 while the corresponding weighted average

is 0.75. Our average of 0.81 consort well with the default boundary calibrated in Feldhütter and

Schaefer (2016) which they found to be 0.87. However, in (Feldhütter & Schaefer, 2016) they use

this averaged boundary as a constant for all bonds independent of rating and time to maturity. In

contrast, our approach is to evaluate the model groupwise, using the calibrated default boundary

for each cohort. That is, for a given monthly bond observation the bond’s cohort is identified and

the model implied spread is calculated using the cohort’s calibrated default boundary. Allocating a

default boundary to each cohort, we allow for heterogeneity and group level differences that could

otherwise be averaged out. Therefore this additional model dynamic is in many ways more natural

than the method used by Feldhütter and Schaefer, but it brings the disadvantage of loss of intuition.

One can question the plausibility of two companies having different default boundaries solely due to

differences in bond rating or time to maturity. Looking to the purpose of the model calibration, we

want to evaluate the model spreads having similar model implied default frequencies as historically

realised, using as much information as possible from Moody’s reported expected default frequency

Appendix A.1. For this purpose we believe that our calibration method is more appropriate despite

its diminutive deficiency.
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Group Spreads

For the calibrated Black Cox model there is a systematic underprediction of bond spreads within

the investment grade cohort. Across the group, model implied average spreads explained 69 % of

the real yield spreads. The median spreads are significantly lower than the mean values indicating

that the modelled spreads are skewed and that a large share of the spreads are close to zero. The

without rating groups have similar results with consistent underprediction explaining 78 % of the

observed spreads. The median model spreads are again significantly smaller than the mean levels.

Within the sub-investment grade groups the underprediction is not equally present. For the groups

(1,2] and (7,10] to (15, 20] the model overshoots whereas the medium term maturities (2,5] and

Figure 5.5: Calibrated Black Cox The two figures to the left show the time series performance on a bond

month level. The upper left shows averages and 90%-quantile bands for the model spreads and actual spreads

in each month. The lower left figure shows the distribution of the model errors in each year. The model

errors measured by the ratio between model spread and actual spread. The scatter plots to the right display

the relation between average actual and model spread for each bond. The colour encoding in the scatter plots

represents the average leverage ratio of the bond’s issuing firm.
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(5,7] are below the actual spreads. On average the model overshoots the actual spreads of the

sub-investment grade group by 9 %. Interestingly, the sub-investment grade median spreads are

distinctly larger compared to the investment grade and without rating groups. On median level,

the model generates spreads that correspond to 65 % of the realised spreads on average, compared

to 23 % and 25 % for investment grade and without rating respectively. This difference show that

the problem with model implied zero-spreads is improved for the sub-investment grade group when

calibrating to historical default frequencies.

Time Series

As stated above, the group level result reveals a systematic underprediction for the investment

grade (IG) and without rating (WR) group and a slight overprediction within the sub-investment

group. This is reflected in the time series plot in Figure 5.5 by the 90 % band being significantly

widened compared to both Merton and binary Merton models. The model overshoot during the

financial crisis is further amplified indicating a greater model sensitivity to changes in model inputs

such as leverage ratio and asset volatility. The yearly distributions of model explained spreads show

that the share of observations with 10 % or less explanatory ability is 81 % during the pre-financial

crisis. The same measure after the financial crisis amounts to 58 %.

Bond Level

The calibrated Black Cox framework demonstrates a wider interval of model implied spreads with a

maximum average bond spread of 3862 bps, compared to 2879 bps for Merton and 1693 for binary

Merton. In Figure 5.5 the scatter plot shows a preserved systematicity with respect to leverage

and model implied spreads, where highly levered firms are overpredicted and low levered firms are

underpredicted in the model.
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5.2.4 Summary

An overview of the structural models’ explanatory abilities is presented in Table 5.2 below. To

summarise the results we note that Merton, binary Merton and calibrated Black Cox generate

model spreads that on average amount to 42 %, 57 % and 85 % respectively of the observed spreads.

These results are based on an average level spanning over all rating groups and maturities. One

should note that the Black Cox model is calibrated towards historical default frequency data while

the remaining models rely only on observed structural inputs. In order to convey a complete picture

of the models’ performance the following sections will focus on evaluating the model residuals and

applying conventional and comparable statistical inference on the models.

Table 5.2: The table presents the fraction (in percent) of the actual credit spread that the three models

capture in each cohort group. The absolute model implied group level spreads are found Appendix A.4. A

full description of the rating encodings IG, SG and WR is available in Section 3.3.

IG SG WR

TAU (1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20] (1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20] (1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20]

Merton 19 31 39 55 62 42 18 31 45 56 69 47 30 39 49 49 29 43

Binary Merton 61 62 63 69 60 35 93 82 69 64 50 28 72 61 50 42 35 33

Calibrated Black Cox 41 47 60 75 83 108 104 76 97 120 104 154 94 78 63 67 92 74
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5.2.5 Residual Analysis with LASSO

We now conduct a comparison between the models by regarding how well they have captured the

credit risk components in the LASSO model. Recall the initial dependency analysis conducted with

a LASSO regression at the beginning of the results section. We noted that the actual spreads have

a positive dependency of the firm’s leverage ratio and asset volatility, while there was a negative

dependency of the residual time to maturity. Given the model results presented above, we now want

to check whether these dependencies have been incorporated by the model. Therefore new LASSO

regressions are conducted on the model residuals, in order to extract the most influencing covariates

in the dataset. The results from these regressions are presented in Figure 5.6, by graphically

displaying the twenty most influencing covariates in each of the residual regressions. A noteworthy

observation is that in all of the three regressions, the residual dependencies to leverage ratio and

asset volatility have opposite signs compared to the initial dependency analysis. In addition, the

absolute values of these two coefficients have increased in relation to the other covariates, thus

considered strong contributors to the LASSO model’s explanatory power. Together these two effects

imply that a small increment in asset volatility or leverage ratio corresponds to a larger negative

residual, which means that our implemented structural models overstate the credit spread. Our

interpretation of these results are that the structural models have too sensitive characteristics along

the dimensions asset volatility and leverage compared to the market’s valuation.
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(a) Merton (b) Binary Merton

(c) Calibrated Black Cox

Figure 5.6: Three LASSO regressions are performed with the model residuals as dependent variables. All of the bond month observations,

including numerical and categorical features, are included as independent variables. First a LASSO regression was performed for each

model generating three model specific punishment terms. In order to preserve comparability each regression is performed again with α set

to the average of the individual punishment terms. The average punishment term turned out to be α = 3.15. The 10 most influencing

positive feature coefficients and 10 most influencing negative feature coefficients generated with the average punishment term are presented

for each model in the figures. A full variable code description is available in Appendix A.6
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5.2.6 Evaluation Metrics

In the previous sections we have analysed the results from the models based on their group, time

series and bond-level performance. Moreover, the residual dependencies have been analysed by

means of a LASSO regression. All of these aspects bring insights on the performance and deficiencies

of the models but does not fully include conventional model validation techniques. In order to

achieve more formal and comparable results, a simple linear regression is performed according to

Equation 5.1 below

sobs − s̄obs = β(smodel − s̄model) + e (5.1)

where the dependent variable is observed yield spread and the the regressor is the modelled spread.

For each structural model the observed spread is predicted with its corresponding linear regression

generating the sets ŜM , ŜBM and ŜBC of predicted values. The structural models are then evaluated

through computing mean square errors, median absolute errors and R-squared on the sets ŜM , ŜBM

and ŜBC . The innovation correlation, ρ∆ is calculated as the correlation between the differentiated

time series of modelled bond month spreads, smodel, and differentiated observed monthly spreads

sobs. In Table 5.3 a summary of the linear regressions and evaluation metrics explained above are

presented. Note that the β column is supplemented with the regression parameter t-stat values.

Table 5.3: The table shows summary statistics for the tree implemented structural models.

β MSE MAE R2 ρ∆

Merton 0.69063 (158) 28 421 55.321 0.33300 0.19375

Binary Merton 0.48169 (141) 30 516 52.127 0.28383 0.27972

Calibrated Black Cox 0.44785 (165) 25 978 51.102 0.39032 0.28198

The slopes from the linear regressions are all significantly different from both zero and one indicating

that the modelled model spreads to some extent have explanatory power to the observed spreads.

Regarding slope the Merton model has largest β and calibrated Black Cox has smallest slope value.

With respect to MSE, MAE and R-squared the calibrated Black Cox model consistently performs

best and the model seems to be able to explain about 40 % of the variation in observed spreads. One
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should bear in mind that MSE, MAE and R-squared are measures of the overall model performance

with respect to total variability. That is, the measures do not indicate to what extent changes in

the modelled spreads relate to changes in observed spreads. This aspect is interesting under the

assumption that yield spreads are generated by default and non-default components. In such case

the structural models would not generate spreads on the same level as the observed, but changes in

modelled spreads would correspond to changes in observed spreads. To investigate how innovations

in model spreads correspond to changes in observed spreads we compute the innovation correlation.

As shown in Table 5.3, the innovation correlation (ρ∆) is on the same level for binary Merton and

Black Cox while significantly lower for the Merton model. The interpretation of this is that binary

Merton and Black Cox absorb information in changes in input variables better than the Merton

model.
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6 Discussion

Complete realism is clearly unattainable, and the question whether a theory is realistic

enough can be settled only by seeing whether it yields predictions that are good enough

for the purpose in hand or that are better than predictions from alternative theories.

(M. Friedman, 1953)

6.1 General Results

The common denominator for the structural models evaluated in this thesis is a consistent under-

prediction of the average observed yield spreads on the European bond markets. This result is in

line with previous research, not the least the seminal paper by Huang & Huang (2012). In this

broad point of view, the structural models seem to behave similarly, and the applicability of the

models appear to be limited. However, analysing the model results from other aspects it is possible

to detect significant discrepancies and differences within the models. This knowledge helps to in-

dicate where and how structural models perform well and how they might be improved in order to

increase their explanatory power and thus applicability in practice. Without definitive conclusions,

previous research explore the possibility of real spreads being built up not only by structural default

components but a combination of these default components and non default components. If the

structural models succeeded to model out the dependence of structural input variables, we could

deduce that we have correctly used all the default risk information in the input data. Therefore

the remaining unexplained yield should be related to non default components. In Section 5.2.5

we conclude that all the evaluated structural models have significant residual dependence to asset

volatility and leverage ratio. In this aspect the binary Merton have least residual dependence to

these structural input parameters and could for this reason be considered to be better in capturing

the credit risk components than the original Merton and Black Cox models.
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Looking at the evaluation metrics in Section 5.2.6, the MSE, MAE and R-squared indicate that

Black Cox has the highest explanatory power to the variations in the observed spreads. In addition

Black Cox has the highest innovation correlation reflecting that innovations in model spread are

correlated to innovations in observed spreads to a greater extent for Black Cox than Merton and

binary Merton. For Black Cox and binary Merton we can detect clear systematic prediction errors on

bond level with respect to leverage ratio (see the bottom right scatter plots in Figures 5.4 and 5.5).

For high levered firms the spreads are overpredicted, while low levered firms are underpredicted.

This feature, common to binary Merton and Black Cox, can be interpreted as an oversensitivity to

leverage ratio which is likely due to discrepancies between the models’ and market’s view of credit

risk as a function of leverage.

Neither of the aspects discussed above can alone resolve which model performs best or explains real

yield spreads best. When analysing the results from different point of views, we can not appoint

a model that consistently performs superior to the others. The binary Merton manages to remove

the influence of input parameters most efficiently making the result a cleaner measure of default

risk. On the other hand Black Cox is superior with respect to explanatory power of variability of

observed spreads. What the two models have in common is the clear over sensitivity to leverage

ratio asset volatility as evidenced by bond level analysis and LASSO residual regressions above.

The high level of sensitivity in these two dimensions is further visualised in Figure A.1.

Moreover, our findings are in line with the the empirical studies on structural models conducted by

Bao (2009) and Eom et al. (2004). Bao concludes that in the cross section, Black Cox can explain

approximately 45 % of observed yield spreads on the US bond market and that future research

should focus on finding theoretically founded models that explain observed yield spreads better.

In similar spirit, Eom et al. concludes that structural model spreads are often either close to zero

or extremely large. In order to further improve the understanding and performance of structural

models we believe that addressing this over-sensitivity is of great importance. Recirculating back

to our problem formulation, we asked whether the structural models can absorb the observed

dependencies of its input parameters. Based on our findings and backed by these results from

previous research, will now attempt to explore ways of improving structural models’ performance

with respect to residual dependencies. Due mainly to three reasons we have chosen to continue

to evaluate explanatory ability of structural models through the Black Cox model. First, the
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Black Cox framework is the most realistic model containing the important feature of default before

maturity. Secondly, Black Cox is the most commonly used model in the literature, making our

results comparable to a greater extent. Lastly, the model involves more degrees of freedom implying

broader aspects of improvement compared to Merton and binary Merton.

6.2 Black Cox Extensions

6.2.1 Targeting Over Influencing Input Parameters

As our objective in the following extensions is not to match model spreads with actual spread, but

to evaluate explanatory abilities, this further exploration aims rather to continue the removal of

credit risk factors from the residuals. The two dependencies that we will to address in this further

investigation are leverage ratio and asset volatility. In order to better understand their impact we

begin by looking at their dependencies isolated from other factors. First, we imply out what the

leverage ratio and asset volatility should be given the remaining input parameters and the observed

yields spreads in a structural setting. Secondly, we use gradient boosting regression to find how the

model residuals depend on leverage ratio and asset volatility separately.

To imply out the theoretical levels of leverage ratio and asset volatility, the Black Cox framework

is used. In Section 2.2.2 we derived an expression for the model implied spread given all input

parameters. With a slight modification in our notations, we disaggregate the leverage ratio and get

the following expression for the model spread

ŝ(Θobs, L) = − 1

T − t
log(1− (1−RR)PDQ(t, T,Θobs, L)) (6.1)

where Θobs is the set of observed structural inputs excluding the leverage ratio. Given the spread

formula above and a specific monthly bond observation we then imply out the theoretical leverage

ratio by optimising

L∗ = arg min
L

| sobs − ŝ(Θobs, L) | (6.2)

where sobs is the observed yield spread. With analogous methodology we imply out the theoretical

asset volatility. The results of the implied leverage ratio and asset volatility are presented in Figures

6.1a and 6.1b, where the bond month observations are aggregated to firm level averages. Each point
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represents a specific firm’s average actual value on the x-axis and the corresponding model implied

value on the y-axis. The scatter plots are complemented with two lines, one which represents the

y = x curve (blue line) and one which represents a linear regression from actual parameter values

to implied (green line).

(a) Regression: Limp = 0.363 + 0.313 L (b) Regression: σv,imp = 0.117 + 0.900 σv

Figure 6.1: The left figure shows the relation between model implied leverage ratio and observed leverage

ratio on firm level average. The right figure shows the relation between model asset volatility and observed

asset volatility on firm level average. The blue line is represents y = x, while the green line is a linear

regression from actual to implied values.

As seen in Figures 6.1a and 6.1b above, the implied leverage ratios are overstated for the low levered

firms and understated for high levered firms. This result confirms that the model is oversensitive to

leverage ratios. This oversensitivity could be due to limitations in the model structure but it can

also be an indication that the market has a different view of credit risk regarding leverage ratio.

For the asset volatility, the results are not as clear. The regression line is slightly above the 45

degree line for all asset volatilities. However, looking at the scatter plot it is possible to distinguish

possible outliers and leverage points that might affect the regression significantly. The scatter plot

indicates that the low actual asset volatilities seem to correspond fairly well to the theoretical, while

the higher actual volatilities have a more diffused relation to the theoretical.
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Moving on to the gradient boosting regression analysis, we want to investigate the relation between

model residuals and the identified over-influential input parameters. A 50 % quantile regression is

performed with gradient boosting where the number of leaves is limited to 100 and the number of

tree estimators is fixed to 20. More specifically, this means that leverage ratio and asset volatility

are partitioned by the gradient boosting algorithm into a maximum of 100 · 20 sub-intervals. Each

interval is assigned a value, corresponding to the median model residuals within each interval. In

Figure 6.2 below, the results of the regressions are presented.

Figure 6.2: The figures show gradient boosting regressions with leverage ratio (left) and asset volatility

(right) as independent variables. The calibrated Black Cox model residuals are set as dependent variable.

The gradient boosting regression is performed as a quantile regression in order to stabilise the resulting

model and making it more tractable and easily interpreted. The figures show that the residuals are positive

for small values of the independent variables and become negative as they increase. The break point from

underprediction to overprediction seems to occur at 0.7 for leverage ratio and 0.4 for asset volatility.

The gradient boosting regressions once again show an underprediction associated with low leverage

ratios and the contrary for high leverage ratios. This result is completely in line with previous

conclusions and therefore little unexpected. In contrast to the theoretical approach above, the

regression model for asset volatility demonstrate a clear - almost linear - relationship to the model

residuals.
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6.2.2 Intercept Calibrated Leverage Ratio

To begin with we target the dependence of leverage ratio and find inspiration from the conventional

calibration methods used in Huang & Huang (2012) and Feldhütter and Schaefer (2016). The default

boundary for the Black Cox model is calibrated against historical expected default probabilities by

adjusting d in Equation 2.44. The adjustments to d correspond to fractional changes in the default

boundary. In effect high levered firms will still remain more likely to default on their debt than

low levered firms. In reality the amount of debt to equity is not necessarily a good proxy for the

default risk, as it may vary widely between different industries and firms. For example, an IT-

company with 20 % leverage ratio may have bonds traded at higher spreads than a highly levered

real-estate company. The issue with the fractional default boundary is that the systematic over-

and underprediction dependence of leverage ratio remains unsolved. We propose a novel approach,

which we name intercept calibrated leverage ratio (ICLR), set out to target these systematic errors

in leverage ratio.

The idea behind the ICLR approach is that the exogenous default boundary for a firm is constructed

by a fixed and a fractional component, instead of solely a fraction of the debt. The fixed component,

or the intercept, corresponds to a baseline level of risk of default. In some sense it can be regarded

as a systematic market risk of default, which can be caused by for example force majeure or a

major scandal. Therefore a systematic default risk should be assigned to every firm no matter

its leverage ratio, which is the intuition behind the intercept term. The fractional component, or

the slope, represents investors interpretation of additional risk as a function of leverage ratio. If

we assume that the intercept is positive and the slope is greater than zero and less than one, the

ICLR approach corresponds to a linear transform of the default boundary. This transform shifts

the default boundary up for low levered firms and down for high levered firms. These are the

characteristics that we found when looking at the implied leverage ratio and asset volatility in the

previous section.

To formalise the ICLR approach we first need to recall how the default time, first-passage time, is

defined in the original Black Cox model. The model assumes that a firm will be forced into default

when the firm value process falls below a fraction of the debt. The stochastic time when a default

occurs is τ , defined as τ = inf{t : Vt/V0 < dK/V0}, where L = K/V0 is the leverage ratio and d is
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an exogenous model parameter. In the ICLR approach we modify this first-passage time slightly

by adding an intercept term to the right-hand side. The resulting expression for the default time

is denoted τ̄ and defined by τ̄ = inf{t : Vt/V0 < α + βK/V0}. With this minor modification the

probability of default in the ICLR is higher for firms with low leverage and the contrary applies

for high levered firms. These effects are visualised in Figure 6.3, where the probability of default

is compared for the two default boundary definitions. We can deduce that the introduction of an

intercept to the default boundary achieves the desired effect, which we discussed earlier.

Figure 6.3: The figure shows two physical probability of default measures as a function of leverage ratio,

L, for the same firm (σ = 0.2, θ = 0.22 δ = 0.02 r = 0.03). The original Black Cox has its probability

of default given by Equation 2.44, where d = 0.87 in this example. The intercept calibrated leverage ratio

has the probability of default given by Equation 6.3, where we have set α = 0.2 and β = 0.5. Note that the

probability of default axis is log-scaled.

PDP(α, β,Θ) =N
[− log(α+ βL)− (r + πP − δ − σ2

2 )T

σ
√
T

]
+ exp

[−2 log(α+ βL)(r + πP − δ − σ2

2 )

σ2

]
(6.3)

·N
[− log(α+ βL) + (r + πP − δ − σ2

2 )T

σ
√
T

]
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Next we need to find estimates for the newly introduced parameters α and β by calibrating the

model to the historical default probabilities.

Calibration Results

Analogously to the calibrated Black Cox model, presented earlier in this report, we obtain estimates

for exogenous model parameters by calibrating cohort groups to match their corresponding expected

default frequencies through the cycle. In Appendix A.2 the calibration targets are summarised for

each cohort group. The objective function in the calibration procedure is a slight modification

to the method presented in Section 4.2, where we now have to optimise α and β for each group

as

arg min
αz,τ ,βz,τ

| 1

N

N∑
y=1

PDy(αz,τ , βz,τ )− PDz,τ |2 (6.4)

where y denotes a year in our sample ranging from 1 to N. The combination {z, τ} groups a bond

by its rating category and residual time to maturity according to the Appendix A.2.

With two degrees of freedom in the optimisation problem, there is a greater possibility for multiple

solutions. The solution to the optimisation problem is summarised by Table 6.1 below1. The average

α and β of the 18 cohort groups turn out to be 0.1087 respectively 0.6038. These results are in

line with the discussion of model implied leverage ratios a few paragraphs above. Furthermore the

results indicate that the convergence is consistent for each group, which becomes evident by looking

at the minimum, mean and maximum as well as the quantiles of the group estimates.

1We find that the convergence of the minimisation problem is sensitive to the initial guess. The solution presented

is the most robust with respect to convergence in different initial points and generating homogeneous results across

cohort groups.
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Table 6.1: The table shows a summary of the calibrated default boundary variables α̂ and β̂ for the 18

cohort groups. The default boundary variables are calibrated such that the average model implied probability

of default matches Moody’s reported default frequencies for each group.

Count Mean Std Min 25% 50% 75% Max

α̂ 18 0.108737 0.053455 0.041980 0.069001 0.101433 0.133484 0.250801

β̂ 18 0.603763 0.024256 0.573065 0.585620 0.600758 0.616683 0.666962

In order to evaluate the potential improvements achieved by the intercept calibrated leverage ratio

model, we compare it using the same measures as in the results section. The R-squared for the

ICLR model is 0.3793, which is directly comparable to 0.39032 for the calibrated Black Cox. Apart

from the intercept term these two models are identical with respect to input variables, model

assumptions and calibration techniques. From this perspective the intercept modifications did not

help to increase the explanatory power. The decrease in R-squared is so small that we can still can

consider them equally powerful in this aspect.

The interesting assessment of the ICLR model is to test its residual dependence of leverage ratio.

In the results section we have used the LASSO regression model as proxy measure of the models’

dependencies. With the same methodology as in Section 6.2.1, we complete the LASSO analysis

with a gradient boosting regression on the influencing input parameters to the residuals. To begin

with Figure 6.4 shows the residual LASSO dependencies for the ICLR approach. We can deduce

that the leverage ratio dependency has reduced compared to the calibrated Black Cox, even though

it is still a influencing parameter in the model. The results from the gradient boosting in Figure

6.5 show that the break point of leverage ratio overprediction is shifted from 0.7 to 0.9. As a

consequence, the median prediction error with respect to leverage ratio is more uniform. Therefore

we can conclude that the intercept term is a realistic extension to the Black Cox model, as we can

mitigate some of the original model’s systematic errors in leverage ratio. However, we find a clear

systematic dependency with respect to the asset volatility, which we will attempt to remove in the

next section.
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Figure 6.4: A LASSO regression is performed with the ICLR model residuals as dependent variables. All

of the bond month observations, including numerical and categorical features, are included as independent

variables. In order to preserve comparability the regression is performed once again with α = 3.15. The 10

most influencing positive feature coefficients and 10 most influencing negative feature coefficients generated

with the average punishment term are presented for each model in the figures. A full variable code description

is available in Appendix A.6

Figure 6.5: The figures show gradient boosting regressions with leverage ratio (left) and asset volatility

(right) as independent variables. The ICLR model residuals are set as dependent variable. The gradient

boosting regression is performed as a quantile regression in order to stabilise the resulting model and making

it more tractable and easily interpreted. The figures show that the residuals are positive for small values of

the independent variables and become negative as they increase. The break point from underprediction to

overprediction has shifted from 0.7 to 0.9 for leverage ratio. The residual dependence with respect to asset

volatility is unchanged in comparison to Figure 6.2.
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6.2.3 Asset Volatility Extensions

In order to reduce the Black Cox model’s oversensitivity to asset volatility, we have considered and

implemented a wide range of approaches. An initial approach to remove the systematicity, shown

in Figure 6.2, involved estimating an intercept model for the asset volatility in the same fashion

as in ICLR. The calibration procedure involved a minimisation problem in four variables including

intercept and slope for both leverage ratio and asset volatility. Due to an enlarged search space

and more degrees of freedom, we could not find robust and univocal solutions. In addition the right

graph in Figure 6.2 hints that the correction is not necessarily linear. Therefore we discontinued

the search for linear transformation parameters for the asset volatility.

Our next attempt to address the volatility dependence was to cap the time varying asset volatility

to 0.3. The cap level was chosen to 0.3, as it appears to be the upper limit of the well-behaving

region in Figure 6.2. In this setting the ICLR parameters were re-estimated resulting in an R-

squared of 0.402, which is close to the R-squared of calibrated Black Cox (0.390). With respect

to residual LASSO dependence (Appendix A.5) the capped asset volatility model managed to

reduce dependence to asset volatility, while the leverage ratio dependence increased slightly. Not

surprisingly the asset volatility dependence turned out to be more uniform in the gradient boosting

aspect as seen in Figure 6.6.

Yet another adjustment that we implemented, was a towards mean regression of the asset volatility.

The economic intuition for this approach is that investors do not have an instantaneous perspective

of a firm’s asset volatility as our implementation of structural models assume. When a certain

firm or the market in general is in a high volatility state, it’s possible that investors are aware

of the contingency of the extreme period. As a consequence the volatility should be adjusted to

reflect the investment horizon. In high volatility states this implies a downward adjustment of the

asset volatility, while the opposite applies for low volatility states. In summary this economically

tractable mechanism motivate a toward mean regression for the asset volatility. To implement

this regression we define the investment horizon adjusted asset volatility as a linear combination

of instantaneous volatility and the firm level mean volatility. In order to find the optimal weights,

which are aligned with the market’s valuation of debt, we conducted a least square optimisation

to match the model spreads with the actual spreads. In this new setting the asset volatility for a
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given firm at a certain time t, is calculated as

σ̂V,t = σV,t w + σ̄V (1− w), w ∈ [0, 1] (6.5)

where σ̄V is the firm’s average volatility in our sample period. The optimal weight was w = 0.13,

meaning that 13 % of the instantaneous asset volatility is attributable to the valuation of the bond.

The R-squared for the mean regressed model was 0.437 which is the highest noted for the models

included in this study so far. The reader should bear in mind that information from the actual

spreads is used to arrive at this result. An important observation is however that the instantaneous

asset volatility has little influence on the modelled spreads in comparison to the firms’ average asset

volatility.

As a final model approach, that doesn’t rely on the observed spreads, we let every bond have a

constant firm asset volatility and conduct the ICLR calibration once again. The intercept and the

slope was re-estimated as 0.13 respectively 0.63, which is consistent with our previous estimates.

The R-squared for this final model increased to 0.467. Compared to the initial ICLR model with

time varying asset volatility, which had an R-squared of 0.3793, the firm constant asset volatility

is better in these terms. The correlation between the model and actual spread’s innovation, which

Figure 6.6: The figures show gradient boosting regressions with leverage ratio (left) and asset volatility

(right) as independent variables. The four ICLR extensions’ model residuals are set as dependent variable.

The gradient boosting regressions are performed as a quantile regression in order to stabilise the resulting

model and making it more tractable and easily interpreted.
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we have termed innovation correlation, increased from 0.327 (ICLR) to 0.356. The interpretation is

that the model with firm constant asset volatility has an improved ability of explaining changes in

observed yield spreads. In Figure 6.6 gradient boosting regressions for the approaches introduced

in this section are presented.

From Figure 6.6 we can conclude that the original ICLR model performs best with respect to residual

dependence of leverage ratio in the gradient boosting models. On the other hand, regarding residual

dependence of asset volatility for the original ICLR it performs the worst. In the gradient boosting

aspect the overall best performing extensions seems to be ICLR with capped volatility or ICLR with

constant volatility. The results for the residual LASSO regressions for all the ICLR extensions are

presented in Appendix A.5. The LASSO analysis shows similar dependency patterns for all of the

ICLR extensions. Despite our effort to remove dependencies of leverage ratio and asset volatility,

we can deduce that the variables’ residual dependence are still prevalent. Our interpretation of this

result is that the structural model do not manage to incorporate these variables correctly. However,

since our ICLR extensions have reduced the the systematic errors in terms of decrease LASSO

coefficients and stabilised gradient boosting regressions, we can conclude that these improvements

manage to mitigate some of the structural models’ weaknesses.
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7 Conclusions

In this thesis we have conducted an empirical study of structural models’ ability to explain corporate

treasury yield spreads for European bonds. Our results have shown that structural models substan-

tially and systematically underpredict the spreads both on a cross-sectional level and for individual

bonds. The systematic underpredictions occur mainly due to the input parameters: leverage ratio

and asset volatility, which prove to be highly dependent in the residual analysis for all evaluated

models. Targeting these drawbacks of the structural models we introduce a novel approach of the

Black Cox framework, which manages to reduce the systematic errors caused by leverage ratio.

The improved model is still in line with economic intuition as its unique feature adds a base level

of default risk for all firms. This model manages to explain 38 % of the variability in the sample

set.

While reducing the residual dependence to leverage ratio compared to the calibrated Black Cox

model, asset volatility dependence remains substantial. In our search for methods to remove the

asset volatility dependence, we concluded that time varying asset volatility is neither evident in the

observed spreads nor realistic from an investor’s perspective. According to our results a constant

asset volatility model generates spreads that explain about half (47 %) of the variations in observed

spreads.

The residuals from our final model show decreased dependence of leverage ratio and asset volatility.

However, these input parameters along with the risk-free interest rate and payout ratio remain in-

fluential. This result hints that the structural models are not fully capable of absorbing the default

risk components of European corporate yield spreads. Other remaining dependencies are found

to originate from the bid ask spread, the size of the bond issue in relation to total debt, the US

federal swap rate and the market capitalisation as a few examples. Ultimately, the dependency

analysis show that other factors which are not considered in the structural models affect the level

of yield spreads on the European bond market. These factors are considered as non default compo-
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nents, which rather relate to liquidity, political, inflation and supply risks. Further research should

therefore focus on finding theoretically backed models of disaggregating default and non-default

components in the observed yield spreads. This will result in other model evaluation frameworks,

which can better assess and compare the explanatory ability of structural models.
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Appendix



A.1 Asset Volatility Estimation

In the literature researchers have discussed a wide range of different possible approaches to ob-

tain reasonable estimates of the asset volatility. To the authors knowledge there is no consensus

concerning which estimate is the most appropriate. That gives a freedom of choice, but for the

completeness we will briefly review the most common methods found in published articles.

A.1.1 De-levered Equity Volatility

In the Merton setting the firm value process is the sum of the equity and debt value processes.

From this relationship it can be shown that the two combined GBM processes have the following

diffusion parameter

σV,t = (1− Lt)2σ2
E,t + Ltσ

2
D,t + 2Lt(1− Lt)σED,t (A.1)

In S. M. Schaefer and Strebulaev (2008) they propose a lower bound for the asset volatility by

assuming that the debt volatility is zero. From their proposal it follows that the expression above

is reduced to σV,t = (1− Lt)σE,t Since the equity volatility σE,t is easy to obtain, this is a simple

and transparent method of estimating the asset volatility.

A.1.2 Itô Relationship

In line with the Merton framework we assume that a firm’s equity is a call option of the underlying

asset value process. Further assuming the the equity is a geometric Brownian motion and that the

contract can be replicated by the delta hedge, that is Et = ∂Et/∂VtVt+ (1−∂Et/∂Vt)Bt, we arrive

at the following relation to obtain the asset volatility

σV,t = σE,t
Et
Vt

∂Et
∂Vt

= σE,t
Et
Vt
N(d1) (A.2)
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A.2 Variable Sensitivity Black Cox

Figure A.1: This figure shows the the model implied spreads as a function of leverage ratio and asset

volatility, default boundary, value process drift (drift) and time to maturity (tau). The spread functions are

calculated holding all other structural inputs constant.
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A.3 Moody’s Expected Default Frequency (EDF)

Table A.1: Moody’s cumulative expected default probabilities in percent, grouped by letter rating. The data

is based on yearly cohort studies from 1920 to 2016. Further details about the methodology used by Moody’s

to generate this table are described in Section 4.2

Rating/Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Aaa 0 0.008 0.027 0.074 0.143 0.216 0.309 0.436 0.568 0.723 0.856 0.965 1.08 1.114 1.144 1.206 1.268 1.318 1.376 1.415

Aa 0.063 0.18 0.285 0.438 0.67 0.939 1.212 1.47 1.708 1.975 2.282 2.616 2.947 3.263 3.498 3.679 3.843 4.038 4.278 4.479

A 0.086 0.259 0.528 0.826 1.151 1.502 1.871 2.243 2.652 3.067 3.496 3.917 4.302 4.69 5.136 5.532 5.854 6.172 6.473 6.776

Baa 0.265 0.748 1.308 1.927 2.572 3.216 3.831 4.465 5.125 5.782 6.444 7.124 7.808 8.422 8.984 9.578 10.158 10.687 11.191 11.702

Ba 1.231 2.917 4.783 6.736 8.618 10.41 12.049 13.626 15.162 16.784 18.19 19.59 20.934 22.135 23.276 24.382 25.476 26.538 27.498 28.373

B 3.507 7.962 12.41 16.43 20.027 23.157 25.996 28.406 30.535 32.352 33.968 35.416 36.845 38.297 39.679 41.017 42.222 43.175 43.869 44.421

Caa-C 10.423 18.193 24.401 29.372 33.394 36.598 39.335 41.811 44.222 46.32 48.295 50.134 51.716 53.317 55.003 56.653 58.183 59.646 61.107 62.591

Inv Grade 0.145 0.414 0.742 1.112 1.515 1.934 2.349 2.769 3.207 3.652 4.11 4.574 5.022 5.439 5.842 6.224 6.566 6.897 7.223 7.54

Spec Grade 3.739 7.5 11.009 14.148 16.918 19.337 21.492 23.413 25.192 26.874 28.355 29.763 31.108 32.378 33.595 34.775 35.899 36.927 37.823 38.636

All 1.5 3.022 4.435 5.698 6.822 7.814 8.701 9.509 10.278 11.016 11.706 12.375 13.013 13.602 14.165 14.7 15.19 15.647 16.071 16.47

Table A.2: Target default frequencies for the time to maturity and rating cohorts.A full description of the

rating encodings IG, SG and WR is available in Section 3.3.

TAU (1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20]

IG 0.41 1.37 2.69 4.04 6.43 9.51

SG 2.51 6.32 10.32 14.23 19.46 25.94

WR 2.29 5.08 7.73 9.86 12.52 15.53
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A.4 Cross Sectional Tables

Table A.3: Count of the number of bond-month constituents in each cross-sectional group. A full description

of the rating encodings IG, SG and WR is available in Section 3.3.

TAU (1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20]

IG 3226 10870 6014 5561 2485 975

SG 610 2214 851 416 199 60

WR 2215 8579 3471 1420 727 329

Table A.4: A summary of the model spread and actual spread within each cross-section for the Merton

model. The left part of the table presents mean spreads while the right part presents median spreads. A full

description of the rating encodings IG, SG and WR is available in Section 3.3.

mean median

Merton (1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20] (1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20]

IG Actual 87 110 121 118 117 131 69 91 104 104 107 124

Model 17 34 47 64 72 54 0 1 7 16 27 35

SG Actual 205 270 292 223 214 147 162 214 267 197 167 111

Model 37 85 131 124 148 70 4 28 73 85 76 10

WR Actual 199 253 224 219 164 153 120 186 180 155 122 139

Model 57 73 76 96 47 65 0 2 7 14 21 44
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Table A.5: A summary of the model spread and actual spread within each cross-section for the Merton

model. The left part of the table presents mean spreads while the right part presents median spreads. A full

description of the rating encodings IG, SG and WR is available in Section 3.3.

Binary mean median

Merton (1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20] (1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20]

IG Actual 87 110 121 118 117 131 69 91 104 104 107 124

Model 53 67 76 81 70 45 0 4 25 42 47 42

SG Actual 205 270 292 223 214 147 162 214 267 197 167 111

Model 191 222 202 141 108 42 36 115 179 138 87 13

WR Actual 199 253 224 219 164 153 120 186 180 155 122 139

Model 145 151 110 91 58 51 0 9 24 38 36 44

Table A.6: A summary of the model spread and actual spread within each cross-section for the Merton

model. The left part of the table presents mean spreads while the right part presents median spreads. A full

description of the rating encodings IG, SG and WR is available in Section 3.3.

Calibrated mean median

Black Cox (1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20] (1, 2] (2, 5] (5, 7] (7, 10] (10, 15] (15, 20]

IG Actual 87 110 121 118 117 131 69 91 104 104 107 124

Model 30 43 61 73 80 116 0 0 5 12 26 96

SG Actual 205 270 292 223 214 147 162 214 267 197 167 111

Model 182 172 235 220 181 182 23 46 141 185 119 83

WR Actual 199 253 224 219 164 153 120 186 180 155 122 139

Model 154 165 120 121 124 94 0 4 10 20 74 68
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A.5 LASSO Regression for ICLR Extensions

(a) ICLR (b) ICLR Capped Asset Volatility

(c) ICLR To Mean Asset Volatility (d) ICLR Constant Asset Volatility

Figure A.2: LASSO regressions are performed with the four ICLR model extension residuals as dependent

variables. All of the bond month observations, including numerical and categorical features, are included as

independent variables. In order to preserve comparability the regressions are performed once again with α =

3.15. The 10 most influencing positive feature coefficients and 10 most influencing negative feature coefficients

generated with the average punishment term are presented for each model in the figures. A full variable code

description is available in Appendix A.6
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A.6 Compustat fields

Table A.7: Compustat field descriptions pt.1

Compustat Field Field type Description Compustat Field Field type Description

accdq NUM Accrued Expenses and Deferred Income cfpdoq NUM Commissions and Fees Paid - Other

accliy NUM Accrued Liabilities - Increase/Decrease cfpdoy NUM Commissions and Fees Paid - Other

accoq NUM Acceptances Outstanding chechy NUM Cash and Cash Equivalents - Increase (Decrease)

acctstdq CHAR Accounting Standard chenfdy NUM Cash/Cash Equivalents/Net Funds - Increase/Decrease

acoq NUM Current Assets - Other - Total cheq NUM Cash and Short-Term Investments

acoxq NUM Other Current Assets - Sundry chq NUM Cash

acqdisny NUM Acquisitions and Disposals - Net Cash Flow chsq NUM Cash and Deposits - Segregated

acqdisoy NUM Acquisitions and Disposals - Other cik CHAR CIK Number

actq NUM Current Assets - Total city CHAR City

add1 CHAR Address Line 1 cltq NUM Contingent Liabilities- Total

add2 CHAR Address Line 2 cogsq NUM Cost of Goods Sold

add3 CHAR Address Line 3 cogsy NUM Cost of Goods Sold

add4 CHAR Address Line 4 compstq CHAR Comparability Status

addzip CHAR Postal Code conm CHAR Company Name

adpacq NUM Amortization of Deferred Policy Acquisition Costs conml CHAR Company Legal Name

adpacy NUM Amortization of Deferred Policy Acquisition Costs county CHAR County Code

amq NUM Amortization of Intangibles cstkq NUM Common/Ordinary Stock (Capital)

amy NUM Amortization of Intangibles curcdq CHAR ISO Currency Code

ancq NUM Non-Current Assets - Total datacqtr CHAR Calendar Data Year and Quarter

aolochy NUM Assets and Liabilities - Other (Net Change) datafqtr CHAR Fiscal Data Year and Quarter

aoq NUM Assets - Other - Total dcsfdy NUM Current Debt - Source of Funds

aotq NUM Assets- Other- Total dcufdy NUM Current Debt - Use of Funds

apalchy NUM Accounts Payable and Accrued Liabilities - Increase (Decrease) dfpacq NUM Deferred Policy Acquisition Costs

apchy NUM Accounts Payable/Creditors - Increase(Decrease) dfxaq NUM Depreciation of Fixed Assets (Tangible)

apoq NUM Accounts Payable - Other dfxay NUM Depreciation of Fixed Assets (Tangible)

apq NUM Account Payable/Creditors - Trade dispochy NUM Disposals - Other - (Gain)/Loss

aqcy NUM Acquisitions ditq NUM Dividend Income

artfsq NUM Accounts Receivable/Debtors - Total dity NUM Dividend Income

asdisy NUM Associated Undertakings - Disposal dlcchy NUM Changes in Current Debt

asinvy NUM Associated Undertakings - Investment dlcq NUM Debt in Current Liabilities

atochy NUM Assets - Other - Change dldte DATE Research Company Deletion Date

atq NUM Assets - Total dlrsn CHAR Research Co Reason for Deletion

autxrq NUM Appropriations to Untaxed Reserves dltisy NUM Long-Term Debt - Issuance

autxry NUM Appropriations to Untaxed Reserves dltry NUM Long-Term Debt - Reduction

bcefq NUM Brokerage, Clearing and Exchange Fees dlttq NUM Long-Term Debt - Total

bcefy NUM Brokerage, Clearing and Exchange Fees docy NUM Discontinued Operations (FOF) - Memo

bctq NUM Benefits and Claims - Total (Insurance) dpactq NUM Depreciation, Depletion and Amortization (Accumulated)

bcty NUM Benefits and Claims - Total (Insurance) dpcy NUM Depreciation and Amortization - Statement of Cash Flows

bdiq NUM Broker / Dealer Income - Total dpq NUM Depreciation and Amortization - Total

bdiy NUM Broker / Dealer Income - Total dptbq NUM Deposits - Total - Banks

bsprq CHAR Balance Sheet Presentation dptcq NUM Deposits - Total - Customer

busdesc CHAR SandP Business Description dpy NUM Depreciation and Amortization - Total

capcstq NUM Capitalized Costs dvpdpq NUM Dividends and Bonuses Paid Policyholders

capcsty NUM Capitalized Costs dvpdpy NUM Dividends and Bonuses Paid Policyholders

capfly NUM Capital Element of Finance Lease Rental Payments dvrecy NUM Dividends Received

capr1q NUM Risk-Adjusted Capital Ratio - Tier 1 dvrreq NUM Development Revenue (Real Estate)

capr2q NUM Risk-Adjusted Capital Ratio - Tier 2 dvrrey NUM Development Revenue (Real Estate)

capr3q NUM Risk-Adjusted Capital Ratio - Combined dvtq NUM Dividends - Total

capsq NUM Capital Surplus/Share Premium Reserve dvty NUM Dividends - Total

capxfiy NUM Capital Expenditures and Financial Investment - Net Cash Flow dvy NUM Cash Dividends

capxy NUM Capital Expenditures eieacy NUM Equity Interest in Earnings of Associated Companies

caq NUM Customers’ Acceptance ein CHAR Employer Identification Number

ceqq NUM Common/Ordinary Equity - Total eqdivpy NUM Equity Dividend Paid

cfbdq NUM Commissions and Fees (Broker Dealer) eqrtq NUM Equity Reserves - Total

cfbdy NUM Commissions and Fees (Broker Dealer) eroq NUM Equity Reserves - Other

cfereq NUM Commissions and Fees (Real Estate) esubq NUM Equity in Earnings (I/S) - Unconsolidated Subsidiaries

cferey NUM Commissions and Fees (Real Estate) esuby NUM Equity in Earnings (I/S)- Unconsolidated Subsidiaries

cflaothy NUM Cash Flow Adjustments - Other exchg NUM Stock Exchange Code

cfoq NUM Commissions and Fees - Other exresy NUM Exchange Rate Effect - Source of Funds

cfoy NUM Commissions and Fees - Other exreuy NUM Exchange Rate Effect - Use of Funds
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Table A.8: Compustat field descriptions pt.2

Compustat Field Field type Description Compustat Field Field type Description

exrey NUM Exchange Rate Effect intpdy NUM Interest Paid

fax CHAR Fax Number intrcy NUM Interest Received

fcaq NUM Foreign Exchange Income (Loss) invchy NUM Inventory - Decrease (Increase)

fcay NUM Foreign Exchange Income (Loss) invdspy NUM Investments - Disposal

fdateq DATE Final Date invsvcy NUM Investments and Servicing of Finance - Net Cash Flow

feaq NUM Foreign Exchange Assets invtq NUM Inventories - Total

felq NUM Foreign Exchange Liabilities iobdq NUM Income - Other (Broker Dealer)

fiaoy NUM Financing Activities - Other iobdy NUM Income - Other (Broker Dealer)

fincfy NUM Financing Activities - Net Cash Flow ioiq NUM Income - Other (Insurance)

finincy NUM Financing Increase- Total ioiy NUM Income - Other (Insurance)

finley NUM Finance Lease Increases ioreq NUM Income - Other (Real Estate)

finrey NUM Financing Repayments/Reductions- Total iorey NUM Income - Other (Real Estate)

finvaoy NUM Funds from Investment and Finance Activities - Other ipodate DATE Company Initial Public Offering Date

fopoy NUM Funds from Operations - Other ipq NUM Investment Property

fqtr NUM Fiscal Quarter iptiq NUM Insurance Premiums - Total (Insurance)

fsrcopoy NUM Sources of Operating Funds - Other iptiy NUM Insurance Premiums - Total (Insurance)

fsrcopty NUM Source of Funds From Operations - Total isgtq NUM Investment Securities - Gain (Loss) - Total

fsrcoy NUM Sources of Funds - Other isgty NUM Investment Securities - Gain (Loss) - Total

fsrcty NUM Sources of Funds - Total isin CHAR International Security ID

fuseoy NUM Uses of Funds - Other istq NUM Investment Securities -Total

fusety NUM Uses of Funds - Total ivacoy NUM Investing Activities - Other

fyearq NUM Fiscal Year ivaeqq NUM Investment and Advances - Equity

fyr NUM Fiscal Year-end ivaoq NUM Investment and Advances - Other

fyr NUM Fiscal Year-end Month ivchy NUM Increase in Investments

fyr NUM Fiscal Year-end Month iviq NUM Investment Income - Total (Insurance)

fyrc NUM Current Fiscal Year End Month iviy NUM Investment Income - Total (Insurance)

gdwlamq NUM Amortization of Goodwill ivncfy NUM Investing Activities - Net Cash Flow

gdwlamy NUM Amortization of Goodwill ivptq NUM Investments - Permanent - Total

gdwlq NUM Goodwill (net) ivstchy NUM Short-Term Investments - Change

ggroup CHAR GIC Groups ivstq NUM Short-Term Investments- Total

gind CHAR GIC Industries ivtfsq NUM Financial Services Investment Assets- Total

gpq NUM Gross Profit (Loss) lcabgq NUM Loans/Claims/Advances - Banks and Government - Total

gpy NUM Gross Profit (Loss) lcacuq NUM Loans/Claims/Advances - Customers- Total

gsector CHAR GIC Sectors lcoq NUM Current Liabilities - Other - Total

gsubind CHAR GIC Sub-Industries lcoxq NUM Current Liabilities - Other (Sundry)

iatiq NUM Investment Assets - Total (Insurance) lctq NUM Current Liabilities - Total

ibcy NUM Income Before Extraordinary Items - Statement of Cash Flows liqresny NUM Management of Liquid Resources - Net Cash Flow

ibkiq NUM Investment Banking Income liqresoy NUM Liquid Resources - Other Movements

ibkiy NUM Investment Banking Income lltq NUM Long-Term Liabilities (Total)

ibmiiq NUM Income before Extraordinary Items and Noncontrolling Interests lndepy NUM Loans and Deposits - (Increase)/Decrease

ibmiiy NUM Income before Extraordinary Items and Noncontrolling Interests lnincy NUM Loan Increase/Additions

ibq NUM Income Before Extraordinary Items lnmdy NUM Loans (Made)/Repaid

iby NUM Income Before Extraordinary Items lnrepy NUM Loan Repayments/Reductions

idbflag CHAR International, Domestic, Both Indicator loc CHAR Current ISO Country Code - Headquarters

iditq NUM Interest Income - Total loq NUM Liabilities - Other

idity NUM Interest Income - Total lseq NUM Liabilities and Stockholders Equity - Total

iireq NUM Investment Income (Real Estate) lsq NUM Liabilities - Other

iirey NUM Investment Income (Real Estate) ltdchy NUM Long-Term Debt - Change

iitq NUM Insurance Income - Total ltdlchy NUM Long-Term Debt/Liabilities - Change

iity NUM Insurance Income - Total ltloy NUM Long-Term Liabilities - Other - Increase/(Decrease)

incorp CHAR Current State/Province of Incorporation Code ltmibq NUM Liabilities - Total and Noncontrolling Interest

intandy NUM Intangible Assets - Disposal ltq NUM Liabilities - Total

intanpy NUM Intangible Assets - Purchase mibnq NUM Noncontrolling Interests - Nonredeemable - Balance Sheet

intanq NUM Intangible Assets - Total mibq NUM Noncontrolling Interest - Redeemable - Balance Sheet

intcq NUM Interest Capitalized mibtq NUM Noncontrolling Interests - Total - Balance Sheet

intcy NUM Interest Capitalized micy NUM Noncontrolling Interest (FOF)

intfacty NUM Interest and Dividend Adjustments - Financing Activities miiq NUM Noncontrolling Interest - Income Account

intfly NUM Interest Element of Finance Leases miiy NUM Noncontrolling Interest - Income Account

intiacty NUM Interest and Dividend Adjustments - Investing Activities miseqy NUM Noncontrolling Interest In Stockholders Equity - Change

intoacty NUM Interest and Dividend Adjustments - Operating Activities mtlq NUM Loans From Securities Finance Companies for Margin Transactions
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Table A.9: Compustat field descriptions pt.3

Compustat Field Field type Description Compustat Field Field type Description

naics CHAR North American Industry Classification Code spiq NUM Special Items

ncfliqy NUM Net Cash Flow Before Management of Liquid Resources and Financing spiy NUM Special Items

neqmiy NUM Non-Equity and Noncontrolling Interest Dividends Paid sppchy NUM Sale of Fixed Assets - (Gain)/Loss

nitq NUM Net Item - Total sppivy NUM Sale of PPandE and Investments - (Gain) Loss

nity NUM Net Item - Total srcq NUM Source Code

noasuby NUM Net Overdrafts Acquired with Subsidiaries ssnpq NUM Securities Sold Not Yet Purchased

nopioq NUM Other Non-Operating Inc/Expense sstky NUM Sale of Common and Preferred Stock

nopioy NUM Other Non-Operating Inc/Expense staltq CHAR Status Alert

nopiq NUM Non-Operating Income (Expense) - Total state CHAR State/Province

nopiy NUM Non-Operating Income (Expense) - Total stfixay NUM Sale of Tangible Fixed Assets

oancfcy NUM Related to Continuing Operations stinvy NUM Short Term Investments - (Increase)/Decrease

oancfdy NUM Related to Discontinued Operations stkchq NUM Change in Stocks

oancfy NUM Operating Activities - Net Cash Flow stkchy NUM Change in Stocks

oiadpq NUM Operating Income After Depreciation - Quarterly stko NUM Stock Ownership Code

oiadpy NUM Operating Income After Depreciation - Year-to-Date subdisy NUM Subsidiary Undertakings - Disposal

oibdpq NUM Operating Income Before Depreciation - Quarterly subpury NUM Subsidiary Undertakings - Purchase

oibdpy NUM Operating Income Before Depreciation tdsgq NUM Trading/Dealing Securities - Gain (Loss)

opprfty NUM Operating Profit tdsgy NUM Trading/Dealing Securities - Gain (Loss)

oproq NUM Operating Revenues - Other tdstq NUM Trading/Dealing Account Securities - Total

oproy NUM Operating Revenues - Other teqq NUM Stockholders Equity - Total

pclq NUM Provision - Credit Losses (Income Account) transaq NUM Cumulative Translation Adjustment

pcly NUM Provision - Credit Losses (Income Account) tstkq NUM Treasury Stock - Total (All Capital)

pdateq DATE Preliminary Date txdbq NUM Deferred Taxes - Balance Sheet

pdq NUM Months in Period - Quarterly txdcy NUM Deferred Taxes (Statement of Cash Flows)

pdsa NUM Months in Period - Semi-annual txopy NUM Taxation - Operating Activities

pdytd NUM Months in Period - YTD txtq NUM Income Taxes - Total

phone CHAR Phone Number txty NUM Income Taxes - Total

piq NUM Pretax Income txy NUM Taxation

piy NUM Pretax Income unnpq NUM Unappropriated Net Profit (Shareholders” Equity)

pliachy NUM Pension Liabilities - Change updq NUM Update Code

ppentq NUM Property Plant and Equipment - Total (Net) wcapchcy NUM Working Capital - Change

prcq NUM Participation Rights Certificates wcapchy NUM Working Capital Changes - Total

prican CHAR Current Primary Issue Tag - Canada wcapopcy NUM Working Capital/Net Operating Assets - Change

prirow CHAR Primary Issue Tag - Rest of World wcapsay NUM Working Capital Change (Separate Account)

priusa CHAR Current Primary Issue Tag - US wcapsuy NUM Source and Use of Funds/Working Capital Adjustments - Other

prosaiy NUM Proceeds From Sale of Fixed Assets and Sale of Investments wcapsy NUM Working Capital Change - Source of Funds

prstkcy NUM Purchase of Common and Preferred Stock wcapty NUM Working Capital/Cash/Net Funds Change - Total

prvy NUM Provisions (FOF) wcapuy NUM Working Capital Change - Use of Funds

psfixy NUM Proceeds- Sale of Fixed Assets weburl CHAR Web URL

pstkq NUM Preferred/Preference Stock (Capital) - Total xagtq NUM Administrative and General Expense - Total

ptranq NUM Principal Transactions xagty NUM Administrative and General Expense - Total

ptrany NUM Principal Transactions xbdtq NUM Broker / Dealer Expense - Total

purtshry NUM Purchase of Treasury Shares xbdty NUM Broker / Dealer Expense - Total

pvoq NUM Provisions - Other (Net) xcomiq NUM Commissions Expense (Insurance)

pvoy NUM Provisions - Other (Net) xcomiy NUM Commissions Expense (Insurance)

pvtq NUM Provisions - Total xcomq NUM Communications Expense (Broker/Dealer)

ratiq NUM Reinsurance Assets - Total (Insurance) xcomy NUM Communications Expense (Broker/Dealer)

rawmsmq NUM Raw Materials, Supplies, and Merchandise xdvreq NUM Expense - Development (Real Estate)

rawmsmy NUM Raw Materials, Supplies, and Merchandise xdvrey NUM Expense - Development (Real Estate)

recchy NUM Accounts Receivable - Decrease (Increase) xidocy NUM Extraordinary Items and Discontinued Operations (Statement of Cash Flows)

reccoq NUM Receivables - Current - Other xintq NUM Interest and Related Expense- Total

rectoq NUM Receivables - Current Other incl Tax Refunds xinty NUM Interest and Related Expense- Total

rectq NUM Receivables - Total xioq NUM Insurance Expense - Other - Total

rectrq NUM Receivables - Trade xioy NUM Insurance Expense - Other - Total

reitq NUM Real Estate Income - Total xiq NUM Extraordinary Items

reity NUM Real Estate Income - Total xiviq NUM Investment Expense (Insurance)

req NUM Retained Earnings xiviy NUM Investment Expense (Insurance)

revtq NUM Revenue - Total xivreq NUM Expense - Investment (Real Estate)

revty NUM Revenue - Total xivrey NUM Expense - Investment (Real Estate)

risq NUM Revenue/Income - Sundry xiy NUM Extraordinary Items

risy NUM Revenue/Income - Sundry xobdq NUM Expense - Other (Broker/Dealer)

rltq NUM Reinsurance Liabilities - Total xobdy NUM Expense - Other (Broker/Dealer)

rp CHAR Reporting Periodicity xoiq NUM Expenses - Other (Insurance)

rvlrvq NUM Revaluation Reserve xoiy NUM Expenses - Other (Insurance)

rvtiq NUM Reserves - Total (Insurance) xoproq NUM Operating Expense - Other

rvutxq NUM Reserves - Untaxed xoproy NUM Operating Expense - Other

rvy NUM Reserves xoprq NUM Operating Expense- Total

saaq NUM Separate Account Assets xopry NUM Operating Expense- Total

saleq NUM Sales/Turnover (Net) xoreq NUM Expense - Other (Real Estate)

saley NUM Sales/Turnover (Net) xorey NUM Expense - Other (Real Estate)

salq NUM Separate Account Liabilities xppq NUM Prepaid Expenses and Accrued Income

sbdcq NUM Securities Borrowed and Deposited by Customers xretq NUM Real Estate Expense - Total

scfq NUM Cash Flow Model xrety NUM Real Estate Expense - Total

scoq NUM Share Capital - Other xsgaq NUM Selling, General and Administrative Expenses

scq NUM Securities In Custody xsgay NUM Selling, General and Administrative Expenses

sctq NUM Total Share Capital xsq NUM Expense - Sundry

sedol CHAR SEDOL xstoq NUM Staff Expense - Other

seqq NUM Stockholders Equity >Parent >Index Fundamental >Quarterly xstoy NUM Staff Expense - Other

shrcapy NUM Share Capital Transactions - Other xstq NUM Staff Expense - Wages/Salaries

sic CHAR Standard Industry Classification Code xsty NUM Staff Expense - Wages/Salaries

sivy NUM Sale of Investments xsy NUM Expense - Sundry

spcindcd NUM SandP Industry Sector Code xtq NUM Expense - Total

spcseccd NUM SandP Economic Sector Code xty NUM Expense - Total

spcsrc CHAR SandP Quality Ranking - Current
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