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ABSTRACT

This thesis empirically tests the explanatory power of structural models on the European corporate
bond market. Using new evaluation methods, including LASSO and gradient boosting regression,
we can provide an in-depth assessment of the models’ shortcomings. With these tools we show
that the structural models tend to systematically overstate or understate the spread due to an
oversensitivity to leverage ratio and asset volatility. We introduce a novel extension to the Black
Cox model in order to mitigate the observed weaknesses. Our extension is calibrated to match
historical default probabilities with an additional baseline default risk component attributable to
all firms. This approach manages to increase the R-squared from 39 % to 47 % and at the same

time reduce the residual dependencies of leverage ratio and asset volatility.
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1 Introduction

1.1 Background

Companies in need of financing can besides from raising capital through bank loans, issue bonds to
investors. A bond is a contractual agreement, in which a firm promises investors to receive future
payments in exchange for an upfront payment at the date of issue. The general structure of a bond
contract is in many ways similar to a bank loan. However, there are important differences between
the two ways of financing that affect the value of the contracts and the incentives of stakeholders.
From the issuer’s point of view, a bond can finance projects and activities that are too large and
risky for a single bank to fund alone. Instead capital and risk is pooled among more investors owning
a smaller share of the debt. From the investors’ perspective, the upside of a bond investment is
that the returns of promised future cash flows often exceed the interest rate of a risk-free position.
The investors also have the possibility of quickly re-gaining cash, by selling the bond contract on
the secondary market. Moreover, there are various bond types and contractual specifications that
introduce an additional freedom for the bond issuer and investor. This contractual flexibility imply
that the stakeholders can agree to mutually optimal conditions, circumventing the usually stricter

requirements posed by banks.

Obviously, corporate bonds have additional risks compared to government bonds, which are usually
considered risk-free. The most central part in the assessment of a corporate bond is to understand
and quantify the risks associated with the firm and the specific contract. More specifically, this
means that the investor needs to investigate whether the borrower will be able to meet its obligations
defined in the bond contract. If a firm fails to meet its repayment obligations when due, a legal
process takes place in which investors reclaim their legislative assets as defined in the contract. The
recovery of a defaulted bond varies depending on the outcome of the legal process, the bankruptcy

costs and the liquidation of assets, causing additional downside risk faced by the investor. Other



considerable risk components include for example the risk of the investor not being able to sell
the bond contract when desired or the risk of inflation denomination of the contracted amount.
Naturally, these risk components depend strongly on numerous characteristics of the issuer, the
bond contract and the state of the economy. For example, the issuer’s financial leverage should
intuitively affect the firm’s probability of default over time. Moreover, an infrequently traded
bond contract is likely harder to sell upon desire, suggesting that trade frequency should affect the
liquidity risk. All of these factors - that affect the risk exposure of the investor - ought to be reflected
in the market’s pricing of a bond contract. The price of a bond is commonly quoted in terms of its
yield spread, which is the difference in yield between the bond and its benchmark government bond.
With higher risk, investors demand additional risk premium in terms of increased yield spreads and

thereby inducing a higher potential pay-off.

Due to the complex nature of corporate debt, the translation of bond characteristics to yield spread
is not straightforward and research has therefore historically focused on trying to describe yields
on the market through different theoretically founded models. There are primarily two classes of
models used to value defaultable bonds, namely the structural and the reduced form models. The
structural approach was first pioneered by Black and Scholes ( ) and Merton ( ), who view
equity and debt of a firm as contingent claims of the firm’s asset value. In this setting it is assumed
that a firm’s total debt is financed by a single zero-coupon bond. Upon maturity the bond holders
are first paid the face value and the equity holders will receive the remaining amount of the firm
value. If the firm value is less than the nominal amount of debt at maturity, the debt holders will
only be partially reimbursed, while the equity holders will receive nothing. Thereby the equity is
valued as an European call option with the firm value as underlying instrument. Analogously the
debt is valued as a short position in a European put option combined with a long risk-free position.

These concepts will be explained in-depth later on in this report.

The fundamental idea of the structural model, referred to as the Merton model, has further been
extended and modified to incorporate features observed on the market. To name a few, Black
and Cox ( ) allow the firm to default prior to the debt’s maturity if the firm value falls below a
exogenous threshold. Geske ( ) introduces the possibility for the firm to raise new funds in order
to finance its payment obligations. Longstaff and Schwartz ( ) extend the Merton framework

into a two-factor model, which has stochastic interest rates. Leland and Toft ( ) take tax and



bankruptcy costs into consideration when defining their modifications to the Merton model. The
reduced form models on the other hand regard the event of a default as a Poisson process with
time and state dependent intensity of default. The main benefit of this class of models is their
mathematical tractability. However, in contrast to the structural models the Poisson process of
default lack an intuitive interpretation, which explains why the success of reduced form models is

relatively limited (Arora, Bohn, & Zhu, ).

Neither of the two model families have been recognised to fully explain the true yield spreads
observed on the markets. The most common explanation to the models’ shortcoming is the fact
that yield spreads should constitute of a default component and a non-default component, of which
credit spread models allegedly only account for the former. However, the composition of yield
spreads is broadly debated and different research papers show different results depending on the

scope and time horizon of the study.

Traditionally, structural models are widely recognised to underestimate corporate yield spreads.
This inability to predict true empirical results is commonly referred to as the Credit Spread Puzzle.
Huang & Huang ( ) show that only a small fraction of the investment grade yield spread is
due to model implied credit risk, while for speculative bonds, credit risk accounts for a somewhat
larger fraction of the yield spread. In contrast, more recent studies by Chen, Collin-Dufresne, and
Goldstein ( ) and Feldhiitter and Schaefer ( ) question the existence of the Credit Spread
Puzzle. Schaefer & Feldhiitter argue that structural models in fact are able to match empirical data
for all ratings when calibrated to a longer history of default rates. Evidently, there is no general
consensus on the performance and adequacy of the structural approach of modelling corporate yield

spreads.

Previous research on the field of structural models have mainly been based on US bond data
provided by open databases such as the Mergent Fixed Investment Securities Database (FISD),
the Trade Reporting and Compliance Engine (TRACE) and COMPUSTAT. There are at least two
reasons causing this skewed research scope. Firstly, the US bond market is significantly larger in
terms of the total amount outstanding and can thereby be regarded as more developed than other
markets (Blackrock, ). The implication is that there is greater interest among investors to fully
understand the market dynamics, and that researchers have reason to believe that the market is

well-functioning. Secondly, there is an availability bias, which arises from the ease of obtaining US



bond data. Data for European corporate bond trades and the issuing firms’ accounting data is not

packaged and readily available, resulting in a less studied sample.

Since the financial crisis in 2009, the European corporate bond market has experienced a steady
expansion in terms of its size, thus becoming increasingly interesting for a broader scale of investors.
The growth has been boosted by factors such as the European Central Bank’s Corporate Sector
Purchase Program (CSPP), record low interest rates and the banking sector’s stricter capital re-
quirements. Furthermore, as the market is maturing, European corporate data is available to a
greater extent. In the beginning of 2018 the Financial Instruments Directive IT (MiFID IT), which
is a compulsory reporting system for public European bond trades, will take effect. The American
equivalent of centralised bond reporting, named TRACE, has been in place since 2002. Conse-
quently, the MiFID II environment is expected to bring more academic attention to the European

bond market (Blackrock, ).

To the authors’ best knowledge, previous academic research on determinants of yield spreads on
the European bond market is limited and inconclusive with respect to the success of credit spread
models. In addition, the European bond market is growing and data is becoming accessible to a
greater extent. With these arguments we motivate that there is a need for further exploration of
structural models applied on European corporate bonds and this is the research gap we intend to

investigate in this thesis.



1.2 Problem Formulation

Clearly, there are several open and debated topics within the area of yield spread modelling. Pro-
ceeding from the discussion above, this thesis will address the question whether structural models
have explanatory power when applied on the European fixed income markets. Regarding the ex-

planatory power of structural models, we will attempt to answer the following questions

- To what extent can yield spreads for European corporate bonds be explained by structural

models with respect to
- cross sectional average yield spreads?
- time series variation in yield spreads?
- individual bond yield spreads?

- Which structural and non-structural parameters affect unexplained yield spreads and how

large are their corresponding influences?

- Is it possible to remove all dependence of the input parameters of the structural models?

1.3 Thesis Outline

Chapter 2 explains the mathematical, statistical and financial concepts used in this thesis. Chapter
3 discusses the data gathering, data preparation and removal of outliers and deficiencies in the
data. Chapter 4 involves the details of the methodology of the empirical study. We also explain
how the data and input parameters are structured in order to evaluate the model implied spreads.
Chapter 5 presents the results of the study and Chapter 6 discusses the results and presents a novel

extension to structural models of yield spreads. Chapter 7 concludes.



2 Theory & Concepts

2.1 Mathematical and Statistical Theory

2.1.1 The Brownian Motion

The Brownian motion is named after Robert Brown (1773-1858) who studied the motion of pollen
seeds suspended in liquids. Brown’s observations laid the ground for the discovery and explanation
of the random movements of particles due to collisions on molecular level (Mazo, ). Since the
discovery of the Brownian motion, the phenomenon has been subject to extensive research and
proven to be of great importance in several academic disciplines such as finance and the valuation

of derivatives.

Definition of Brownian Motion

Let {W,};>0 be a stochastic process defined on R. Then {W;},;>¢ is a Brownian motion if
- Wo =X

For all times t; <ty < .-+ <t, we have that Wy, — W, _, I W, =Wy , A - 1L Wy, —
Wi,

- For all times 0 < s < t we have that W, — W, ~ N(0,¢ — s)
- The function ¢t — W, is almost surely continuous.

The standard Brownian motion satisfy all conditions above, with the exception that its initial value

is Wop = 0.



Stochastic Integral and Stochastic Differential Equations

Let W; be a Brownian motion defined on the probability space (2, F,P) and adapted to the complete
filtration {F; : ¢ > 0}. For a function f(t,x) € £? it is now possible to define the stochastic integral
as

T
| rewoaw, 2.1)
0

where f(t,W;) is a stochastic process driven by W;. Since the Brownian motion is almost surely
of infinite variation, the Lebesgue integral approach to Equation 2.1 is not well defined (Morters &
Peres, ). However, since the Brownian motion is bounded in quadratic variation in probability,
it is possible to define an integral with respect to W; (Aberg, ). This is performed in the It6

formula for the standard Brownian motion wich states that

T T T 52
f(T,WT)=f(0,0)+/0 de/o Wth—s—;/o %dt (2.2)

= f(O,()) +/0T u(t, Wt> dt+/0T O'(t, Wt)th (23)

Due to notational convenience the relation in Equation 2.3 is often stated in the stochastic differ-

ential equation (SDE) form below

df(t, W) = ult, Wy) dt + o (t, W) dW; (2.4)

with
uie,wy) = (gtWt) + %azf ;ZQW” (2.5)
;= UG 29

Geometric Brownian Motion

The stochastic process Xy = f (¢, W;) is said to be a geometric Brownian motion (GBM) if it satisfies

the following stochastic differential form
dXt == /LXtdt + O'Xtth (27)

where p and o are fixed constants. To solve the SDE for a given initial value of Xy = x(, the

transform Z; = In(X}) is applied. Using the It6 formula (Equation 2.3) with this transformation and
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rearranging the drift and diffusion terms, we arrive at the stochastic differential expression
o2

Zoy =In(zo) (2.9)

which has the solution Z, < In(zg) + (1 — %Q)t + 0y/tG where G is a standard normal distributed
random variable. Taking exponential of the solution for Z;, we return to the X; domain and arrive
at the GBM solution

X, L ggelb— )+ ViG (2.10)

The expected value of the solution is given by EX; = =zpe*® and its variance is Var X; =
x3 ez“t(e"Qt —1). A simulation of 1000 identically distributed and independent geometric Brownian
motions is summarised by Figure 2.1. The purpose is to let the reader familiarise with the concept

of a stochastic process and statistical measures associated the process. (Bjork, 2004)

— mean

5 = sample path 1
sampls path 2
sampls path 3
95% band

Figure 2.1: A visualisation of the trajectory for a GBM with parameters pn = 0.1 and o = 0.3, generated
from 1000 Euler-Maruyama simulations. The figure shows the simulated mean, the 50 %- and 95 %-quantile

bands and 8 sample paths from the simulation set.
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The maximum likelihood parameter estimates of an observed geometric Brownian motion, {4, ..., z¢, },

on an equidistant time grid are

1 n
n=—3S" 2 2.11
fr=—r ;z (2.11)
Pr IS . (zi — 1 A)? (2.12)
(n—1)A
i=1
where z; = In(xy, /zy,_,) and A =¢; —t,_1. (Lindstrom, Madsen, & Nygaard Nielsen, )

2.1.2 EM Algorithm

The EM algorithm provides a method of generating maximum likelihood parameter estimates in
cases where data is incomplete, meaning that there are either missing or hidden data. In the general
setting we assume observed data X and unobserved data Y and a set of parameters # connected

through a joint density function
p(X, Y [0) =p(Y [ X,0)p(X | 0) (2.13)

The overall objective is to find a maximum likelihood estimate of the complete log-likelihood func-
tion £(0 | X,Y) = logp(X,Y | ). However, finding the optimal parameters is often hard and
analytic solutions may be unavailable. In this setting the EM algorithm provides a tractable and
efficient method of iteratively optimising the log-likelihood function above. First, the E-step finds
the expected value with respect to Y of the log-likelihood function given the observed X and the
current value of the parameters #%°~1) . This expected value of the log-likelihood function, denoted

Q0] 6P—1), is calculated as
QE,07Y) =Ex (0] X,Y) | X, 007D = / (0 X.yply | X, 00" D)dy  (2.14)
Y

where p(y | X,0®P~1) is the marginal distribution of ¥ given X and §®~1). Second, the M-step

finds the parameter value that maximises the expected log-likelihood such that
0®) = arg max Q(0,0P~)) (2.15)
0

The E and M-steps are iterated until a convergence in 6(?) is reached. Each iteration is guaranteed
to increase the log-likelihood and the algorithm is guaranteed to converge to a local maximum of

the likelihood function. (Bilmes, )
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2.1.3 Linear Regression

We jump directly to review the multivariate linear regression model. The additive linear model for

relating a dependent variable to p independent variables is
yi =Bo + Brxin + Prxia + -+ Bpwip +ei Vi=1...n (2.16)

where all ¢; are assumed to be independent identically distributed Guassian random variables with
zero-mean and variance o2. A more conventional form of expressing the multivariate linear model

in 2.16, is by using matrix notations instead

Y =XB+¢ (2.17)

In order to find parameters for the model we consider the ordinary least square optimisation problem

as follows

B=argmin || Y — X8 ||2 (2.18)
s

If an inverse to X T X exists, the least square estimate of the coefficients is unique and given by
B = (XTX) (XTY). Moreover, it can be shown that the estimate is unbiased and distributed as
B~ N(B,(XTX) 102), if the chosen model is correct. (Rawlings, Pantula, & Dickey, )

The model proposed in Equation 2.16 can deal with categorical covariates, by introducing dummy
variables. Given a categorical feature C' with F-factors, these are encoded by the F' independent
variables x¢ 1, ... zc,F, each corresponding to one of the factors. An observation in the sample ac-
tivates the independent variable corresponding to its categorical factor. The activated independent
variable is assigned the value 1, while the other dummy variables are 0. It shall be noted that this
representation can also be reduced to F' — 1 variables, where the baseline factor is embedded in the

intercept and activated when all dummy variables are zero.

2.1.4 LASSO

Least absolute shrinkage and selection operator (LASSO) is a method to estimate a linear regression

model, which was first proposed by Tibshirani ( ). The LASSO model introduces a regularising
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Lq-penalty term to the objective function, in order to constrain the size of the coefficients. Because
of the nature of this constraint it tends to produce coefficients that are exactly 0 for less contributing
covariates. Hence, the LASSO gives interpretable models containing only a selection of the most

influencing covariates. The objective function in the LASSO method is set as
BzarggrlinllY*Xﬁ\lg +allBlh (2.19)

This setting differs just slightly from the Ridge regression, which has La-penalty term instead. While
the Ridge regression has a closed form solution, the solution to the LASSO model is a quadratic
programming problem that can be solved with standard numerical methods. (J. Friedman, Hastie,

& Tibshirani, )

2.1.5 Gradient Boosting Regression

Gradient boosting regression is a machine learning algorithm used in this thesis to find a regression
model that minimises a pre-determined penalty function. The main idea of the algorithm is to
build a strong prediction model by iteratively combining weaker simple models, called learners.
That is, given a set of observations (x;,y;)1<i<n, Where x; is the input vector of an observation
and y; the corresponding scalar output, we want to find a model F); such that the loss function
L(y,F(z)) = >, L(y;, F(x;)) is minimised. Each consecutive stage, m € [1, M], of the regression

model is constructed as an ensemble of functions
Fn=Fo+ > h; (2.20)

where Fp is some initial model and h; € H are learners constricted to some set of functions. The
learners are updated based on the present value of F;, such that
F,, = F,,_1 +argmin L(y, F,,,_1(x) + h(x)) (2.21)
heH
In general the optimisation problem in 2.21 is computationally demanding. This problem is ad-
dressed by considering the steepest descent step g,, € RV defined by

Gi,m = OF (:) Vi € [1,N] (2.22)

F(x;)=Fm—1(z:)

14



Assigning hy,, = pm gm where py, is defined as p,, = argmin L(y, Fi—1(x) — p grm) would minimise
Equation 2.21 in an efficient manner. However, since tﬁe gradient is only defined on the training
set, this optimisation would not be robust out of sample. Instead a tree regression is performed
such that a tree T}, fits the negative gradients defined in Equation 2.22. This fitted tree regression
is assumed to have J,,, terminal regions R, for j € [1, J,,] in which T, is constant. The constants

are updated in each terminal region by
Vjm = argmin Z L(yi, Frn—1(x:) +7) Vj €[l Jn] (2.23)
v T, €ER; m
The learner is now defined using the terminal regions from the negative gradient tree regression

and the constants derived in Equation 2.23 as
Jm
hm(l‘) = Z’Vj,m]lxeRj,m (224)
j=1

Lastly, the model is updated as in Equation 2.21 above

Jm
Fm(x) = Fm—l(gj) + ZVj,m]lmGRj,m (225)
j=1

This procedure is iterated until a pre-specified convergence condition is achieved. In order to con-
straint M and mitigate the risk of overfitting, such a conditions involve both minimising the pre-

diction error in a test sample and introducing a regularising term. (J. Friedman et al., )
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2.2 Financial Theory

Now that the most central mathematical concepts for this thesis have been introduced to the reader,

we shift focus to review the financial concepts and models applicable for this thesis.

2.2.1 Corporate Bonds

Corporate bonds are debt securities that are issued by corporations and sold to investors. Selling
bonds to the primary market is a method for corporations to raise money and finance its investments
today, in exchange for promised future payments to the bond holders. The future payments consist
of a principal amount paid on the bond’s maturity date 7' and most commonly also periodical
payments, named coupons. The coupons are defined by a yearly coupon rate, which is a fraction of
the principal amount, and a frequency (e.g. quarterly, semi-annually or annually) for which they
are paid until maturity. A bond that doesn’t pay any coupons is termed a zero-coupon bond (ZCB).

The terms and conditions for the future payments are specified in the bond certificate.

Investors of corporate bonds face the risk that the issuer does not honour the payments as con-
tracted. The rating agency Moody’s Investors Service, often referred to as Moody’s, define four

scenarios that trigger a debt default:

1. a missed or delayed disbursement of a contractually-obligated interest or principal payment
(excluding missed payments cured within a contractually allowed grace period), as defined in

credit agreements and indentures;

2. a bankruptcy filing or legal receivership by the debt issuer or obligor that will likely cause a

miss or delay in future contractually-obligated debt service payments;

3. a distressed exchange whereby 1) an issuer offers creditors a new or restructured debt, or a
new package of securities, cash or assets, that amount to a diminished value relative to the
debt obligation’s original promise and 2) the exchange has the effect of allowing the issuer to

avoid a likely eventual default;

4. a change in the payment terms of a credit agreement or indenture imposed by the sovereign

that results in a diminished financial obligation, such as a forced currency re-denomination or

16



a forced change in some other aspect of the original promise, such as indexation or maturity.

Compared to bank loans, the risk of not receiving the future payments is pooled among a larger
group of participants. This opens up the possibility for firms to raise larger amounts of capital and

find investors that accept increased risks.

2.2.2 Structural Models

In this thesis we will focus only on the Merton and Black Cox framework to model credit spreads.
Notwithstanding the fact that involved extensions of structural models might be more realistic,
Huang & Huang ( )show that a wide class of structural models and extensions perform similarly
when calibrating to historical default loss experience and equity returns. Consequently, Merton and
Black Cox provide a framework for pricing of corporate debt which is intuitive, analytically tractable
and robust over a wide class of structural models. The general setting of Merton and Black Cox is
to assume that a firm is financed by a single zero-coupon bond with maturity 7" and equity. The
bond value and equity make up the firm’s asset value, which is assumed to evolve in the physical
measure as the following

AV, = (7} + 1 — 6)Vidt + oVidW) (2.26)

where V; is the firm value at time t and W} is the standard Brownian motion under the physical
measure. Furthermore, 7} is the asset risk premium, r; risk-free rate and §; the firm’s continuous
payout of dividend and interests as a ratio of the firm value. Under the risk-neutral measure Q the

dynamic of the firm value becomes

AV; = (1, — 6,)Vidt + oV, dW2 (2.27)

where I/VtQ is the standard Brownian motion under the risk-neutral measure. Given the above
dynamic of the firm value process corporate debt and equity is prised under the Black & Scholes
framework of option pricing. The analogy to option pricing derives from the fact that debt holders
are prioritised higher than equity holders in terms of repayment. Imagine a firm active only during
one year and liquidated at the end of that year. If the firm remains solvent until liquidation, debt
holders are repaid the nominal amount of debt and equity holders receive the residual firm value

after debt repayment. However, in the event of default during the active year, debt holders are

17



repaid the residual firm value after bankruptcy costs, and equity holders receive nothing. With
this repayment structure, the firm equity dynamics are equivalent to that of a European call option
with the nominal amount of debt as strike price. With similar arguments, debt dynamics are
equivalent to a long risk-free position amounting the discounted nominal debt and a short position
in a European put option with the nominal amount of debt as strike price. This simplified but
intuitive interpretation of corporate debt and equity is the essence of structural models and the

foundation to all extensions thereof.

Obviously, the default trigger is central for valuing corporate debt through the structural approach.
Within the family of structural models, a default event will occur when the firm fail to meet the
solvency conditions specified in each model. When the issuer of a bond defaults, the bond holders
receive a fraction of the predetermined face value. Within the structural framework this fraction is
often referred to as the recovery rate (RR) and it reflects the expected shortfall of firm value and the
expected costs of bankruptcy. The RR is incorporated in the structural models through additional

downside risk exposure yielding the following pay-off to the bond holder at maturity

K Issuing firm remains solvent
d({Vito<i<r) = (2.28)
FK, {Vi}to<i<, RR,0) Issuing firm defaults

where f(-) represents a model specific pay-off at default and © holds model specific parameters.
Note that in some models ® may contain unobservable parameters. For a given variety of structural
models, the probability of default (PD) and value of debt (P) can be calculated on a closed form

using the following set of input parameters
PD(t,T,V;, K,0,7:.7,0,7 ,0) (2.29)

P(t,T,Vi,K,o,r.1,0, RR,O) (2.30)

where O is defined as in Equation 2.28. An important note is that PD is calculated in the physical
measure while P is derived through risk-neutral option pricing. This allows us to calibrate model
parameters to real world observed default frequencies. Having defined the price function the model

implied spreads are calculated by using the yield to maturity relation

eIV E — P(t,T,V;, K, 0,7.7,0, RR, ©) (2.31)

18



Solving for s in Equation 2.31 we get

1 In [P(t,T,Vt,K, o,77,0, RR, ©)
(T —1t) K

—r (2.32)

S = —

Merton

The idea of the original Merton model, is that the issuing firm can default only at the time of
maturity and the default boundary is the nominal amount of debt. That is, the recovery rate is set

to one, implying the following pay-off to bond holders at maturity

K Vi>K
o(Vr) = (2:33)
Ve V< K

Under the Merton assumptions, the value at time ¢ for a bond with maturity 7', face value K,
underlying asset process {V; }o<i<7, asset volatility o and payout ratio § is described by

P = e (T-0r gQ [K — (K — V)R (2.34)

where F; is the natural filtration of the firm value process up to time ¢t. Standard arguments in

risk-neutral derivative pricing lead to

P=e " T"9"K(1 — N(—dy)) + TV N(—dy) (2.35)
where - )
1 t o
di=————|In|=)+(r-6+—=)(T-t
LT T i [“(K) (r 2)( )] (2.36)
d2 :dl—a\/Tft

The probability of default for bond at a given time is, as mentioned above, equivalent to the
probability that the underlying firm value will fall below the face value of debt at maturity. That
is, the probability of default at time ¢ is

PD(t,T) =P(Vy < K|F) = P(V; ert™ —0-07/2(T=t)+oVT—1 G - | 7,) (2.37)

where G is a normally distributed random variable such that G ~ N(0,1). The solution to Equation
2.37 is

PD*(1,T) = IP’(G < % {m (K> + (r g 022) (T - t)] ‘]—‘t) (2.38)



Binary Merton

The binary Merton model is closely related to the original version. The important difference between
the models is that the binary Merton has an exogenously given recovery rate. That is, at maturity
the bond holder receives the following pay-off
K Vp > K
o(Vr) = (2.39)
RR-K Vr< K
Since Merton and binary Merton model have identical solvency conditions we can deduce that the
probability of default for given input parameters are equal for the two models. That is, for the
binary Merton model the physical measure probability of default at time t for given structural input

parameters is defined as

PDP(,T) = N(U\/%_t {m (2) + (r i ";) (T - t)} ) (2.40)

Given the structural input parameters and the default probability function derived above, the

risk-neutral price of a bond is described by

P = e*“T*t)]E@(QS(VT)) - e*’“<T*t>E@(1VT§KRR K+ 1VT>KK) (2.41)

Since we calculate the price under the risk-neutral measure, Equation 2.40 is transformed into
risk-neutral probabilities by removing the credit risk premium 7. The resulting price function
becomes

P =TT (PDQ(L T)RR-K +(1— PD@)K) (2.42)

Black Cox

The Black Cox model values corporate debt as a barrier option with down and out structure.
Under the Black Cox framework, the firm can default at any time on or before maturity if the
corresponding value process falls below a predetermined fraction, d, of debt. That is, the firm

defaults at time 7 defined as 7 = inf{¢ : V; < dK'}. By the event of default the bond holder receives
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a fixed amount, RR - K yielding the following pay-off function at maturity

RR-K 7<T
o({Vito<i<r) = (2.43)
K otherwise

As shown in Equation 2.43 the expected pay-off conditioned on default is deterministic and thus
independent of the firm value process. This characteristic of the pay-off function is unwanted but
necessary to achieve analytical tractability. The cumulative default probability at time ¢, for a bond
with maturity 7', leverage ratio L = K/Vp, underlying asset process {V;}o<i<7, asset volatility o,

payout ratio § and default boundary d is derived in Bao ( ) as

log(dL) — (r + 7t —§ — LZ)T
PD(t,T) =N | T 2|+ (240
oo {210g(dL)(7“ ﬂ;f — 05— %)}N{bg(ﬂ) * (r;:/i —0- %)T} (2.45)

This default probability is calculated in the physical measure when calibrating to historical default
rates. As familiar from conventional bond pricing theory, the price of a bond with pay-off function

as in Equation 2.44 can be written as
P, = efﬂT*t)E@(gﬁ({mogg)) = "T-OEQ (]lTSTRR K+ ]l(TST)cK> (2.46)

Using Equations 2.46 and 2.44, it is possible to construct an analytic expression for the theoretical

bond price under the Black Cox framework. The resulting price equation is
P, = e T IE? 6({Vi}osicr)]
— e (T (PD@(t, T)RR-K + (1 - PDYt, T))K)

= e (T (K(l — (1 - RR)PD(t, T))) (2.47)
Using the yield to maturity relation and Equation 2.47, the bond spread is calculated as
e rFIT=DR — "= K (1 — (1 - RR)PD(¢, T)) (2.48)

Finally, as implied by Equation 2.48, we get the following expression to calculate bond spreads in

the Black Cox setting

log(1 — (1 — RR)PD(t,T)) (2.49)

5= —

Tt
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3 Data

As mentioned above, the structural approach to credit spread modelling requires both time series
data and technical metadata for all bonds within the scope of this thesis. As of today there is no
centralised and complete reporting environment for the European bonds. Fortunately, the required
data is made available to an acceptable extent by combining data from the sources: Bloomberg
Professional API, Compustat - Capital 1Q, Reuters EIKON, ECB Statistical Warehouse and the
German Bundesbank. However, using data which is aggregated and combined from different sources
with varying reporting standards, requires great forethought and extensive preparatory data mod-
ifications. This section aims to explain and motivate the details of the data gathering and the

preparatory modifications performed on the data before modelling.

3.1 Selection of Bonds

The bond sample used for the empirical modelling is a subset of all available bonds monitored by
Bloomberg’s fixed income security database called SRCH. A bond is included if and only if all the

following criteria are satisfied
- The bond is either active or inactive

The bond issuer has rating data from at least one of S&P, Moody’s or Fitch

The bond issuer is not a financial corporation or a government
- The bond issuer is not a private company’

- The bond issuer’s country of domicile is any European country

The bond type is either fixed coupon, zero coupon or defaulted

IThis is the search criteria used to distinguish public companies in Bloomberg SRCH.
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- The bond matures on or after 2000-01-01

With these restrictions, the dataset constitutes of both active, inactive and defaulted bullet bonds
issued by European firms. Defaulted bonds are included in order to minimise the effects of a
survival biased sample. The survival bias is reduced but still prevalent, since we require that the
issuer’s equity is public. Thus the defaulted bonds in our sample are issued by firms that have had
insolvency problems, but managed to continue to its operations through a reconstruction process or
debt write-down. Financial corporations, such as insurance companies and banks, are excluded due
to their distinctiveness in capital structure and regulatory environment. Lastly, the issuing firms
are required to be public due to the simple fact that equity data is necessary as model inputs. With
these filter restrictions the Bloomberg SRCH database generates a sample of 3992 bonds from 702

distinct firms.

3.1.1 Merge of Bloomberg and Compustat data

The Bloomberg API is used to gather bond level metadata and historical market data of equity
and bonds, while Compustat is used to obtain accounting data for the issuing firms. To be able
to merge data from the Bloomberg API with Compustat, it is necessary that the issuing firms are
monitored by both databases. The linkage between the database services is enabled by identifying
issuers through their ISIN (International Securities Identification Number). In order to deal with
complex subsidiary structures, the issuing firm for each bond is identified using the Bloomberg field
ISSUER_PARENT_EQY_TICKER. In this way it is possible to aggregate bonds issued by local

branches to the parent entity and regard the parent company’s balance sheet in Compustat.

The currency used in this study is chosen to be euro, due to convenience following characteristics
of the sample set. The daily equity quotes from the Bloomberg API are all quoted in euro, thanks
to its internal currency conversion engine. On the other hand the Compustat accounting data
is quoted quarterly in the issuer’s accounting currency. Quarterly historical exchange rates are
gathered from ECB’s Statistical Data Warehouse and used to convert the accounting currency to
euro when needed. Bonds from firms with an accounting currency that is not included in ECB’s

Statistical Data Warehouse are removed.
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The Compustat database is comprehensive and covers the majority of the firms in the first draft of
the sample. However, since the firms originate from different industries and countries of domicile,
the accounting standards lack general consistency through the whole dataset. This problem was
addressed in 2005 when the International Financial Reporting Standards (IFRS) became mandatory
for all companies listed in Europe (European Commission, ). Another issue with the Compustat
database is that there is a delay between the publishing of financial statements and when the data
is available at Compustat. The consequence of this is that accounting data after the second quarter
of 2016 is scarce. In order to ensure comparability and a consistency of sample depth over time,
the time span for the dataset narrowed to include bonds that are active in some part of the period
between 2005-01-01 and 2016-06-30. The number of firms that meet the above requirements is
reduced to 570, that collectively have 2995 bonds.

3.1.2 Liquidity Requirements and Missing Quotes

The time series of equity and bond quotes are central components to our study, as they are input
respectively target measures for the models. Therefore we require that the data quality of these
observations are reliable, comparable and robust. An important assumption in the Black Scholes
framework for option pricing is that the underlying asset is perfectly liquid and implicitly the
contingent claim as well (Black & Scholes, ). Therefore it is reasonable to disregard firms and

bonds with inferior trading frequency.

The equity is traded on public stock exchanges across Europe. These market places provide high
transparency of trades and are generally considered liquid markets. Different stock exchanges may
have different business days and bank holidays, causing missing data points in the time series.
Besides market holidays, a missing data point could also be explained by the fact that no deals
are closed in a given day. To mitigate the potential illiquidity problem, an issuer’s stock must
have quotes on at least 200 of the trailing 252 business days to be included as a observation. A
few missing data points is not considered a problem, since the issuer’s market capitalisation is
aggregated to a monthly mean. The firm’s interday market capitalisation is used to calculate its
equity and asset volatility, which is a calculation considered acceptably robust when missing up to

52 quotes of the trailing 252 business days.
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The bonds on the other hand are in general traded over-the-counter (OTC) between a limited num-
ber of market participants, causing an issue of quote opacity and reduced liquidity. In comparison to
equity, bond deals are characterised by less frequent trades and each trade involving a high volume
of bonds. As a consequence of bond trades not needing to comply with the transparent reporting
standards of public stock exchanges, there is a possibility that OTC deals are never reported to a
pricing source. The Bloomberg database is to our best knowledge the most fair inter-day pricing of
bonds that we can obtain. Since Bloomberg aggregates trade data from several pricing sources, it is
a good attempt to provide an as complete market valuation as possible. However, within the active
period of a bond, it is hard to know whether a missing quote is due to trades done on a non-covered
exchange or the nonexistence of any completed trades. Since the API don’t give access to the daily
volumes traded, we can only assume that the daily quotes listed by Bloomberg are backed by an

acceptable number of trades.

The dataset of daily bond quotes that are retrieved from the Bloomberg API, reveal that a note-
worthy fraction, 1141 of 3995 bonds, don’t have any trades registered. In total 2521 bonds have
more than 100 registered end of day quotes in Bloomberg. Yet some of these bonds could still suffer
from liquidity issues, since these trades do not necessarily occur on consecutive business days. For
a bond to be included as a monthly observation, we require that it has at least 15 quotes reported

in Bloomberg for the given months.

When studying the dataset in more depth some inconsistencies and extreme outliers were detected
and removed. For example, this manual cleaning task included removal of errant price quotes ? and

one bond trading at spreads far below zero.

To summarise the restrictions posed in this section concerning bond and equity liquidity, a bonds
and its issuing firm need to fulfil the following requirements to qualify as a bond month observa-

tion.

- The issuing firm has equity price quotes on at least 200 of the trailing 365 days from the

month’s end date.

- The bond has price quotes on at least 15 of the business days within the current month.

2A bond was traded at levels more than 10 times higher than its nominal value of 100.
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When all modifications and restrictions are implemented, the dataset consists of 402 firms and 2

171 bonds and 91 510 end-of-month observations.

3.1.3 Data limitations

Issue Currency

In order to avoid unnecessary complexity, we chose to exclude bonds with other issue currency
than EUR. This choice of sample reduction is motivated by the fact that the bond yields have
systematic differences depending on the currency it is issued in. For example the average yield for
EUR denominated bonds is 2.94 %, while the average yield in GBP is 4.51 % and CHF is 1.14 %.
The natural explanation for these differences is the variations in federal interest rates for different
currencies. The 12-month LIBOR rate during the period 2005-01-01 to 2016-06-30 was 1.88 % for
EUR, 2.63 % for GBP and 0.87 % for CHF respectively (ICE Benchmark Administration Limited
(IBA), ). Clearly, the bond yields are closely related to a premium on top of the risk-free
interest rate denominated in the same currency. Other explanations for these variations include
varying views of political and inflation risks, as well as market discrepancies with respect to demand,

supply and risk appetite.

Time to maturity

In other empirical studies of structural models, it has been shown that bonds with very short or
very long residual time to maturity are difficult to model. Therefore these observations are usually
disregarded from the sample. Eom, Helwege, and Huang ( ) include only bonds that mature
within the span of 1 to 30 year, while Feldhiitter and Schaefer ( ) look at bonds with 3 to 30 years
of residual time to maturity. We have chosen to restrict our sample to bonds with maturies between

1 and 20 years, in order to match well with Moody’s table for expected default frequencies.

After these final reduction operations we arrive at a sample set that consists of 1 116 bonds (289
firms) observed over 138 months (2005-01-01 to 2016-06-30). In total the dataset has 50 222 bond-

month observations.
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3.1.4 Selection Bias

Since we perform an extensive cleaning of the initial bond sample, there is a mentionable and
unavoidable risk that the sample is no longer entirely representative of the true population. When
bonds with unsatisfactory level of data quality are removed, this selection bias becomes even more
relevant. This possible selection bias is unavoidable in order to maintain a consistent and generalised
model approach. The consequence of the selection bias is that our model results will only be

applicable to bonds that meet the same requirements to qualify for the sample set.

3.2 Interest Rate Parameters

The historical yield curves of European risk-free interest rates are retrieved from the German
Bundesbank. These yield cureves are based on market quotes of listed German federal securities
denominated in euro. Many investors regard the German Bunds as the most reliable federal security
in the Euro-zone, which therefore functions as a good benchmark for the risk-free rate. The yield
curves are compiled and published on a monthly basis by the German Bundesbank using the
Svensson method (Svensson, ), to approximate the term structure. At the end of each month
the yields are reported for residual maturities of 0.5 years and integer years from 1 to 30. Given
a bond observation, we match its residual maturity with the same yield quoted by the German
Bundesbank in that specific month. When a bond has residual maturity between two integer years

in the term structure, the risk-free rate is obtained by a linear interpolation.

3.3 Rating

As a constraint in the bond data retrieval from Bloomberg, described in Section 3.1, we require that
the bond issuer has rating data from at least one of the top three rating agencies: Standard & Poor,
Moody’s or Fitch. Unfortunately, as it turned out, this query suffered from two weaknesses. First,
the rating agencies use different criteria in their rating assessments and different labelling. Therefore
comparability across rating agencies is neither straightforward nor unambiguous. Furthermore, it

was later on noticed that Bloomberg regards a withdrawn rating as a non-empty rating field in our
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query, implying that such bonds are included in our sample. To avoid additional complexity in this
matter, we use the ratings reported by Moody’s to form three rating groups: 'Investment Grade’
(IG), ’Sub-Investment Grade’ (SG) and 'Without Rating’ (WR). All Aaa-Baa rated bonds are
labelled 'Investment Grade’ while Ba-C are labelled ’Sub-Investment Grade’. The bonds without
rating from Moody’s are grouped together into "Without Rating’” (WR). The latter group also
includes bonds in which Moody’s have withdrawn rating. Secondly, the rating data in Bloomberg
is an instantaneous snapshot taken on the date of the data request®. Despite great efforts to obtain
historical rating changes, we did not manage to compile this to an acceptable extent. Instead, the
current rating for the issuers is back-filled and assigned to all historic observations of the same

issuer.

3The data from Bloomberg was retrieved on 2017-03-01.
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4 Method

”Successful modelling of a complex dataset is part science, part statistical methods, and

part experience and common sense.” (Hosmer Jr, Lemeshow, & Sturdivant, )

When assessing the overall explanatory power of structural models, the objective is to understand
to what extent the fundamental ideas of Merton and Black Cox are incorporated in the market’s
valuation of corporate debt. Departing from a large set of observed bond data there are numerous
ways to translate the input data to comparable model output. The limited academic research done
on the European bond market, brings an uncertainty (and freedom) regarding how to construct
input variables that are reasonable for the model assumptions and that are comparable to the
conducted research on American bonds. Furthermore, the method of evaluating explanatory ability
from model output to observed data is neither straightforward nor univocal. Different choices of
input data structures and assessment structures will generate varying results - each requiring its
own interpretation - and it is therefore important to understand the methodology in detail. This
section concerns, (1) the construction of input data, (2) model calibration and (3) the structure
of the model assessment. The reader should be familiar with the main concepts explained in the

theory chapter, as these concepts will now be applied to a practical setting.

4.1 Structural Models Input

As mentioned above, the bond data consists of a snapshot of the basic bond meta data such
as issuing date, maturity date, coupon rate, rating and coupon frequency. In addition, we have
access to time series data for the firm’s equity and balance sheet, as well as the observed bond
quotes. In line with Feldhiitter and Schaefer ( ) and Duffee ( ) a sample set of monthly
bond observations is constructed as the foundation to the assessment of structural models. More

specifically, this means that time series data is averaged on a monthly basis, while balance sheet
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data is set such that all months within a given quarter have the same accounting data as reported
for the quarter a posteriori. The bond meta data is not time dependent and remains constant
within the active period of each bond. The remaining features and model inputs are generated and
estimated as functions of the raw data and, where applicable, put together on the monthly averaged
bond observation form. In Sections 4.1.1 to 4.1.5 the feature estimation methods and corresponding

assumptions are explained in detail.

4.1.1 Asset Volatility

As familiar, the firm value process is unobservable thus making it hard to estimate the volatility.
There are a broad range of alternatives that have been used in the literature, these are further
reviewed and discussed in Appendix A.1. We choose to implement the KMV! method to obtain
the asset volatility as it is closely aligned to the Merton framework. The KMV estimation of asset
volatility is based on the one-to-one mapping, from firm value to equity value which is observable
on the market. Given k + 1 historically observed daily equity quotes {E,, E,...Ey, } for a certain
firm and an initial asset volatility estimate &5,0 ) it is possible to imply the asset value by using the
Black-Scholes call option formula relationship. This corresponds to the E-step in the EM-algorithm
described in Section 2.1.2. At iteration p in the EM-algorithm, the implied firm value is calculated

by numerically finding the root to the Black-Scholes call option formula. This procedure is denoted

as
V") = BSCall "\ (E,, |67, 0) Vi, € {to..t} (4.1)

where © contains the firm specific variables needed to compute the Black Scholes call option for-

mula?. Next the M-step of the EM-algorithm is performed, which corresponds to finding the pa-

IThe firm KMV is named after Kealhofer, McQuown and Vasicek, the founders of the company in 2002. It has

since been sold to Moody’s.
2If a company has several outstanding bonds at time ¢, the company’s maturity 7 is set to the average of the

bonds. The risk-free rate is also approximated by the average risk-free rate between ¢ and the individual the bonds’
maturities. The firm’s leverage ratio is specified in the next section (4.1.2). However, since it relies on reported
balance sheet data from Compustat there will almost surely be quarterly jumps in the leverage ratio. The jumps in
debt can be regarded as a partially observable stochastic process. Consequently, the jumps in debt are also prevalent
in the implied asset value process, which contradicts the assumption of a continuous geometric Brownian motion.

As a simple solution to mitigate unwanted jumps, we linearly interpolated the debt for time points between the
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rameters that maximises the log-likelihood function for the sequence of implied asset values.

k
arg malen(f(Vt(ip)mV,aV)) (4.2)
{nv,ov} i=0

Given the assumption that the firm value process is a geometric Brownian motion, the maximum-

likelihood estimate of the diffusion parameter o, can be calculated as shown in Section 2.1.1

AR ii(r —7)?  where ry, = In( Vtiﬂ) (4:3)
v E—14&0t " VL |
= i—1

The E- and M-steps are repeated until the parameter estimate of o has converged. The condition
for convergence is chosen to be when the absolute relative change falls below a predetermined

threshold, that is |a$f+1) — 0$)|1 <e.

Due to notational challenges we have left out a subtle detail in the description of our implementation.
Instead of calculating a constant asset volatility for each firm, oy f, as the formulas above suggest,
our implementation allows a time varying asset volatility. For each day t; the asset volatility is
estimated using the trailing 252 business days of implied firm value. What motivates the time-
varying asset volatility is that a constant volatility estimate contains an inconsistent mixture of
both future and historic information, depending on which point in time is regarded. Consequently
the early time points in the sample, will have an asset volatility estimate dependent on a high

fraction of future information, while the opposite applies for more recent time points.

4.1.2 Leverage

Leverage ratio measures the relation between a corporation’s debt and equity and is therefore closely
related to credit risk. The definition of the measure varies within different applications, but will in

this thesis be defined as
- Dy+Ep,
where FE,, is the market value of equity and Dy is the book value of debt. The market value of

L

equity is calculated on a daily basis and on firm level as the product of shares outstanding and price

per share. The book value of debt is estimated as the sum of long term debt (dlttq)® and debt in

quarterly reporting dates.
3The text codes in parenthesis are field codes for the Compustat - Capital IQ data. Full variable descriptions

are available in Appendix A.6
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current liabilities (dleq) from the subsequent quarter end in relation to the data date. For a given
month, ¢, and firm, f, the monthly averaged leverage observation is defined as

Dy g

Dy si+ Em gt

where E,,. .t is the t-month average of daily market cap observations for firm f. The combining of
market value of equity and book value of debt is a noteworthy simplification in the model input.
Again this is a simplification made due to the limited observability of market value of debt. However,
most bonds are traded close to par and the debt book value is therefore believed to constitute a
good proxy for the market value of debt. This view of using book value as a proxy of market value

is in line with Eom et al. ( ) and Feldhiitter and Schaefer ( ).

4.1.3 Payout Ratio

Financial cash flows such as dividends and interest rate payments affect the firm value process and
are incorporated in the structural models through the payout ratio. The yearly outflow of cash
to financial stakeholders is estimated as the sum of yearly total dividend payments (dvty), yearly
interest and related expenses (xinty) and yearly purchase of common and preferred stock (prstkey).
For a given firm f and month ¢ in year y, the payout ratio is calculated as

FCFy—Lf

4.5
Vi, (4.5)

Oft =

where V;  is the monthly averaged firm value defined by V; y = Dy 5+ —|—Em, .t with the same nota-
tion as in 4.1.2 and FCFy_, s is the sum of dvty, xinty and prstkcy for year y—1 and firm f.

4.1.4 Recovery Rate

Our implementations of binary Merton and Black Cox both require an exogenously given estimate
of the recovery rates at default. Moody’s Investors Service ( ) estimate of the long term average
recovery rate for senior unsecured bonds amounts to 37.5 %. In line with this historical average,

we set the recovery rate to be 40 % for all bonds in the sample.
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4.1.5 Summary Structural Models Input

The observed monthly structural inputs are summarised in Table 4.1 below. The data contains
meta data of European bullet bonds actively traded within the period from 2005-01-01 to 2016-06-
30. In total, the dataset contains 50 222 bond month observations generated by 1 116 bonds and

289 unique firms. The data sources are Bloomberg professional and Compustat - Capital 1Q.

Table 4.1: Summary statistics. The actual spread is expressed in basis points calculated as the difference
between yield to maturity and the spot risk-free rate with corresponding maturity. The equity volatility is the
standard deviation of the issuing firm’s equity log-returns, based on the trailing 252 business days. Time to
maturity is given in years. The details of our derivations of asset volatility, leverage ratio and payout ratio
are described in Sections 4.1.1, 4.1.2 and 4.1.8 respectively. A full description of the rating encodings IG,
SG and WR is available in Section 3.3.

mean std min 5% 50% 95% max

Actual Spread 1G 113.217 72.064 -84.147 35.187 97.287  248.040 1426.347
SG | 262.167 249.232 2.062 58.659 215.090 594.400  4828.649

WR | 239.386 436.576  -9.633 47.844 167.381 576.289 25194.930

Equity Volatility | IG 0.280 0.105 0.062  0.167 0.257 0.485 1.067
SG 0.364 0.127 0.152  0.198 0.344 0.613 1.007

WR 0.311 0.129 0.062 0.178 0.279 0.561 1.482

Asset Volatility 1G 0.187 0.086 0.046  0.102 0.167 0.351 0.960
SG 0.211 0.104 0.056  0.096 0.178 0.434 0.784

WR 0.206 0.102 0.022 0.086 0.188 0.393 0.957

Leverage Ratio IG 0.379 0.165 0.025  0.140 0.359 0.661 0.884
SG 0.487 0.216 0.002 0.140 0.494 0.830 0.951

WR 0.390 0.206 0.014 0.114 0.358 0.812 0.963

Payout Ratio IG 0.033 0.017 0.000  0.007 0.032 0.062 0.098
SG 0.036 0.017 0.000 0.009 0.035 0.063 0.096

WR 0.029 0.017  -0.001 0.005 0.029 0.056 0.353

Time to Maturity | IG 5.969 3.789 1.003 1.468 5.153 13.752 19.995
SG 4.762 3.006 1.003 1.382 4.111 10.749 19.995

WR 4.850 3.168 1.003 1.397 4.173 11.216 19.942
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4.2 Model Calibration

Compared to the original Merton model, the Black Cox framework provides an additional degree of
freedom through its down and out structure. As the firm’s default boundaries are unobservable the
variables are estimated by calibrating the model implied default probabilities to match historical
averages. The calibration target is the reported average issuer weighted default frequencies tracked
by Moody’s within the period between 1920 and 2016. In order to understand the logic behind
our calibration method, one first needs to understand the methodology of Moody’s reporting of
expected default frequencies. At the beginning of each year (1920-2016) rated firms within the
same rating category form a cohort group. For each consecutive year Moody’s track the fraction of
firms that have defaulted within each cohort and time horizon. More specifically, for a given year,

y, rating group z, and time interval, ¢, the marginal default probability df (t) is calculated as

d2 (1) = 8 (4.6)

where z7(t) is the number of defaulted firms within the cohort and n(¢) is the size of the cohort.

8
< w

3
< w

The cumulative default probability for the same cohort as above, and a given investment horizon
T is calculated as

D3(T) = 1 - T, (1 di (1) (4.7)

The average cumulative default probability for the investment horizon T over a set of years Y is

defines as

Z

D (1) =1-TL,(1-d (1) (48)

where
2 yey Ty(t)
> oyey ny(t)

Moody’s cumulative average issuer weighted default probabilities are shown in Table A.1. Corollary,

d (t)= (4.9)

depending on the state of the economy default probabilities are subject to change but should
correspond to Table A.1 on average over time. This perspective of the over time average default
probabilities is hereafter referred to as through the cycle. Since the Moody’s default probabilities
are target variables when estimating the default boundary, it is reasonable to imitate Moody’s

methodology as close as possible. This is achieved by calibrating implied default probabilities
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through the cycle. In Section 2.2.2 the Black Cox implied physical cumulative default probability

is derived as

—log(dL) — (r + ¥ —§ — %2)T
PD"(d,0) =N | TT }
4o rzlog(dL)(r;wP —5— %)}Nrbg(d@ + (Zj/%fp —6- %)T} (4.10)

where d is the percentage default boundary expressed as a fraction of the face value of debt and
O represents the remaining input variables to the model. Calibrating towards real world default
probabilities, we use the physical default probability implied by the Black Cox framework. This
important detail adds the credit risk premium 7 to the input parameter set ©. In line with Chen
et al. ( ) we use a constant Sharpe ratio of 8, = 0.22 in order to calculate the credit risk premium
as

=6, oy (4.11)

For a given cohort with ratings z and time horizon interval 7 we calibrate the default boundary dZ

such that it minimises

N
1 _
mi 75 PD,(d..)—PD, , |? 4.12
ar(;gzjln| Ny:1 y( 3 ) 3 | ( )

where PD,(d, ) is the average model implied physical default probability on year y and cohort
group {z,7}. PD, . is the corresponding target default probability for the cohort {z,7} given by
Moody’s (Appendix A.1). With this methodology, the yearly default rate is allowed to vary within
each cohort, but corresponds to the observed target default rates on average over time. Moody’s

Investors Service ( )

35



4.3 Model Assessment

Our overall objective in this thesis is to investigate the structural credit risk models’ ability to
explain European bond yield spreads. In order to evaluate the descriptive power of the structural
models tested in this thesis, we need a fair and comparable method of model assessment. A well per-
forming descriptive model generates model output consistently close to the observed data. However,
another equally important but not as obvious aspect of the model’s descriptive power is to what
extent the input data depends on the actual yield spread observations and model residuals. The
break down of the model assessment involves (1) an dependency analysis of the relation between all

available input features and the output data and (2) model prediction and residual analysis.

4.3.1 Dependency Analysis

The initial phase aims to identify dependencies between input data and output data before modelling
yield spreads within the structural frameworks. To identify the most influencing input parameters a
LASSO regression is performed with all available data as explanatory variables. As the input data is
not completely comprehensive, missing values are imputed with its corresponding mean value over
time. To obtain comparable regression coeflicients, the input data is standardised such that each
feature has zero mean and unit variance. The most influencing features are found by identifying
non-trivial covariates with respect to absolute coefficient value after the LASSO regression. In order
to include as much descriptive information as possible in the dataset, additional auxiliary features

are generated. Below is a summary of the additional features included in the regression input

De Facto Seniority

In Bao and Hou ( ) they show that de facto seniority has a non-trivial influence on market
yield spreads of corporate bonds. De facto seniority is a measure on the amount of debt that is
due prior to a given bond’s maturity. Intuitively, if most of the firm debt is due prior to a bond’s
maturity, the bond is considered more risky in relation to earlier maturing bonds. Analogously, if a
bond matures before the majority of the firm debt, the bond is considered less risky. Given a firm

with n loans and bonds outstanding { K7, K>, ..., K,,} with increasing time to maturity, such that
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TTM(K,) <TTM(K,) < ... <TTM(K,), the de facto seniority for bond K; is defined as

0 t=1
DFS(K,) = (4.13)

SUIK YK, t=2...m

Amount Issued Relative

The amount issued relative is a measure of an individual bond’s issued amount in comparison to
the firm’s total debt. The feature holds information about whether the bond constitutes for a
large or small fraction of the total book value of debt. This measure brings additional bond level
information since the models assume that the face value each bond is equal to the issuing firm’s

total debt. The amount issued relative is calculated as

K

AIR = — (4.14)

b

EBITDA to firm value ratio

Structural models do not include measures on the profitability of the issuing firms. However, a well
performing firm with high profitability might be considered less risky than a non-profitable peer.
In order to take profitability in consideration, we introduce the EBITDA to firm value ratio defined
as

EBITDA

EFr=———7— 4.15
r Db+Em ( )

FX Converted Balance Sheet

Issuing firms from several different countries are included in the bond month dataset. As a conse-
quence the accounting currencies for these firms are not completely uniform. While a majority of
the firms report in EUR, a mentionable set of firms have other accounting currencies such as GBP,
CHF or SEK. All financial fields in quoted in non-EUR are converted to EUR using data from the
European Central Bank. The FX converted balance sheet feature is a factor variable that states

weather a firm’s accounting data has been converted to EUR or not.

37



4.3.2 Descriptive Power of Structural Models

The second phase aims to explore the descriptive power of the structural models and calibration
methods discussed in this thesis. The reader should be aware that the are a vast number of ways
of evaluating and interpreting a model’s performance, which may lead to different conclusions.
Therefore our intention is to view each model from several aspects in order to get a comprehensive

assessment of the performance. Each structural model will be examined on the three levels:
1. Group averages and median spread
2. Individual bond spread
3. Time series spread

We believe that these three perspectives are collectively exhaustive to understand the descriptiveness
of the models. As a further motivation for these choices we will outline how they have been

implemented by other researchers.

1) The majority of the previous empirical studies conducted on structural models have mainly
evaluated the performance on bond groups, generally based on rating and residual time to maturity.
For example, in the seminal paper by Huang & Huang ( ), they construct a representative firm
for each group and compare the model results to the actual average spreads within the groups.
Their evaluation methodology corresponds to a one-to-one comparison on an average level. In the
way the assessment is constructed, heterogeneity among firms is vanished, and thus the model is
robust against potential outliers. Furthermore, due to the convex characteristics that structural
models exhibit, Jensen’s inequality suggests that the representative firm approach will undershoot
compared to applying the model on several firms and then averaging. This topic is addressed in
Feldhiitter and Schaefer ( ), in which they mitigate the convexity bias by applying the model
on individual firms and then comparing the group averages. As expected Feldhiitter and Schaefer’s
methodology showed higher on average spread than Huang and Huang, suggesting that there is no

credit spread puzzle.

Regarding the choice of partitioning by time to maturity and rating categories, there is a trade
off between sample size and homogeneity. With increasing group sizes the idiosyncratic errors will

decrease causing stable and more reliable model outputs. However, if the subset is not homogeneous,
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one may be averaging out important differences in underlying risk and misestimating spot rates
because they are estimated for a group of bonds where subsets of the group have different yield

curves.

2) What both Huang & Huang ( ) and Feldhiitter and Schaefer omit in their empirical studies
is a deeper comparison on the bond level performance. By solely comparing model spreads on
average levels, it does not necessarily mean that the model performs well. The average spreads will
likely mask pricing errors on individual bonds. Examining the model’s performance on individual
bonds is a more natural measure of performance in the sense that the results could be applicable
to real investment strategies. A bond level analysis is conducted in Eom et al. ( ), where
they investigate the performance of five structural model extensions on firms with simple capital
structure. For each year and bond within their sample the authors match the December average
bond prices with the year end accounting data in order to compute bond level spreads. The bond
level analysis is more sensitive to outliers and data anomalies, but the result is more likely to reveal

information on how and where structural models perform well or underperform.

3) As an additional way of assessing the model we will view the model and actual spreads in a time
series perspective. This analysis will be done by comparing the model and actual average spreads
as well as the of quantiles in each point in time for the sample period. In this setting it is possible

to identify how the performance may vary through different cycles of the industry.

By assuming that the model is able to capture the default risk factors of the yield spread, the
residuals of the model should in that case not be dependent to the model input. To test this idea
we will conduct a new LASSO regression on the residuals to obtain the most influencing parameters.
If there is a high dependence between the model residuals and input variables, it would indicate that
the model fail to correctly use the information embedded in the data. Similarly, if the dependence
is low, the model succeeds to capture structures in the data to explain the dependent variable.
In other words, the ideal describing model generates output satisfactory close to the observed
data in combination with low residual dependence of the input variables. The influencing LASSO
coefficients will be compared to results from the initial dependency analysis, which will be seen as

a proxy.
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5 Results

Knowledge about the process being modelled starts fairly low, then increases as under-

standing is obtained and tapers off to a high value at the end. (Chestnut, )

5.1 Dependency Analysis

5.1.1 LASSO Regression

A LASSO regression is performed - as described in Section 4.3.1 above - with the standardised
input dataset as independent variables and all of the bond month observations as dependent. From
a 10-fold cross validation' the punishment coefficient turned out to be optimal for a = 1.44. In this
model the intercept was 163.8 and 61 of 289 available features are identified as contributing. The 10
most influencing positive feature coefficients and 10 most influencing negative feature coefficients

are presented in Figure 5.1. A full variable code description is available in Appendix A.6.

From the figure we can deduce that a selection of the structural model input variables, namely
leverage ratio, asset volatility and time to maturity, are included in the set of influencing features.
Both leverage ratio and asset volatility have positive coefficients and therefore positively correlated
to observed yield spreads according to the LASSO model. Time to maturity on the other hand, is
less than zero indicating that yield curve is downward sloping. The fact that these parameters are
included in the top 20 most influencing features indicates that structural models have potential to

describe the dynamics of market yield spreads to some extent.

We note that there are several other dependencies prevalent, not the least common liquidity risk
factors, such as trailing bond trade count (1 month) and bid ask spread. The trailing bond trade

count measures the number of days that a bond trade has occurred the last 30 days while bid

IThe cross validation chooses the « that gives the lowest mean square error on average for the 10 folds.
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ask spread measures the relative difference of bid and ask prices quoted for the bonds. Other
important influencing features are firm level parameters such as industry, total liabilities, equity
drift and market cap. The fact that non-structural features are influential weakens the hypothesis

that structural models alone can describe credit spreads observed on the market.

LASSO Influencing Coefficients for Actual Spreads: 5, = WTX_.
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Figure 5.1: The figure displays 20 of the most influencing coefficients in a LASSO model trained to predict
the actual spreads with all available bond month data as independent variables. Note that the model implied

spreads are not included as covariates. Full variable descriptions are available in Appendix A.6

5.1.2 Analysis of Influential Features

As mentioned above, the LASSO regression identified a set of influential features when trained to
predict actual market spreads. To further investigate how the influential input relate to observed
spreads, their dependencies are reviewed visually through compound scatter plots. Figure 5.2
below shows the relation between a selection of the most influencing input variables identified in
the LASSO model and the observed spreads. The figure is organised in such way that the top row
presents input variables for the structural models, while the bottom row displays other dependencies.
The observed data divided into three subgroups depending on bond rating. As described in Section
3.3, all Aaa-Baa are labelled Investment Grade’ (IG) while Ba-C are labelled ’Sub-Investment
Grade’ (SG). The unrated bonds are grouped together into "Without Rating’ (WR).
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Figure 5.2: The compounded scatter plots show the relation between time to maturity, leverage ratio, asset

volatility, monthly number of trades, bid-ask spread and industry sector to the observed spreads.

Interestingly, the term structures of time to maturity and leverage ratio are similar to those implied
by structural models (Figure A.1). On the contrary, the relation between asset volatility and market
spreads seems to deviate from the structural model predictions. Specifically, the Sub-Investment
Grade group shows deviant behaviour in that the average spreads are similar for the two extreme
groups (0,0.1] and (0.4,0.5]. For the factors in between, (0.1,0.2] to (0.3,0.4], the average spreads
are lower but increasing with asset volatility. Note that the number of constituents in each group

vary, possibly causing deviant behaviour in the figure, such as in the case mentioned above.

The features shown in the bottom row in Figure 5.2, are not taken into consideration in the struc-
tural models. Nonetheless, it is possible to detect clear patterns and differences within these non-
structural features. The most distinguished feature is the bid ask spread which seems to have a

strong linear-like dependence to observed spreads. When a bond is traded at sub-par levels the bid
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ask spread widens, due to increased uncertainty among buyers and holders. However, since both
the yield spread and bid ask spread are strongly interlinked with the traded price of a bond, the
causality in this relationship is unclear. For the trailing bond trade count, it is harder to detect a
clear dependence. What we can deduce however, is that the variability of observed spreads seems

to increase within the factors with less frequently traded bonds.

43



5.2 Descriptive Power of Structural Models

5.2.1 Merton

Group spreads

The group comparisons presented in Appendix A.4 show a systematic underprediction on both mean
and median levels. The median values of the spreads indicate that a large fraction of the spreads
are nearly zero. Combining this knowledge with the observation of slightly higher levels of mean

spread, hints that there are spreads within the groups that are significantly higher, thus bringing
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Figure 5.3: Merton: The two figures to the left show the time series performance on a bond month level.
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The upper left shows averages and 90%-quantile bands for the model spreads and actual spreads in each
month. The lower left figure shows the distribution of the model errors in each year. The model errors
measured by the ratio between model spread and actual spread. The scatter plots to the right display the
relation between average actual and model spread for each bond. The colour encoding in the scatter plots

represents the average leverage ratio of the bond’s issuing firm.
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the mean up. Interestingly the groups along the time to maturity axis, show some similarities with
respect to the shape of the yield curve. There is an increase from short to medium term maturities
and a decrease from medium to long term maturities in yield spreads. In that aspect, even if the
absolute prediction errors are very wrong, the model is capable of capturing the innovations between

different maturities on a mean level to some extent.

Time Series

The time series plot of the Merton model shows that there is an apparent and systematic underpre-
diction of yield spreads in the Merton model. Apart from a single period during the financial crisis
the mean prediction spread is strictly below the actual mean spread. For a few periods we notice
that not even the 90%-quantile bands overlap, which is caused by the fact that a greater part of
the model spreads are close to zero. During the period 2005-2007 before the financial crisis, 86 %
of the model implied spreads explained 10 % or less than their actual values. The same measure
decreased to 61 % in the period 2010-2016, after the financial crisis. It is notable that the Merton
model manages to predict the spreads relatively well in the financially distressed period of 2008 and
2009. The reasons behind the improved performance lies in the drastic changes of input parameters
to the model. As the stock markets fell, the leverage ratios of the firms in our sample increased,
leading to a high risk of default according to the model. In addition, the volatile equity markets are

reflected into the EM-estimate of asset volatility, which also increased during this period.

Bond level

Regarding the individual bond performance the scatter plot shows that there is a large cluster
of model spreads equal or close to zero. (19 414 out of 50 079 samples). This indicates that in
the model framework these bonds are considered equally as risky as the benchmark government
bond. In other words the closed form solution of the probability of default, expressed by Equation
2.38, is very small for a majority of the bonds. As the colour encoding of leverage ratio indicates,
the underprediction of spreads is mainly prevalent for low levered firms. The model seems to do
relatively well for high levered firms, as the residuals for this subset are both positive and negative.

An explanation for these observed phenomena may be found in the way the spread is derived in the
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Merton model. Recall from Section 2.2.2 that there is no exogenously fixed loss given default as
parameter input to the original Merton model. Instead the recovery rate experienced by the bond
investors is stochastic and could be time varying. One might argue that this setting is realistic,
since the recovery rate for bonds traded on the market typically have stochastic elements. However
the stochastic recovery rate in the Merton model setting is highly dependent of the firm’s leverage.
With the Merton model the expected loss given default is higher for firms with a large fraction of
debt compared to lower levered firms. As we in the next section shift focus to the binary Merton

model, the recovery rate is fixed, which in particular will have effect on the low levered firms.
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5.2.2 Binary Merton

Group spreads

The binary Merton model demonstrates a systematic underprediction of yield spreads on average.
However, the model generates higher spreads on average for short and medium maturities ranging
from 1 to 10 years compared to the original Merton. For longer maturities on the other hand,
binary Merton generates lower spreads on average compared to Merton. Median spreads are higher
likely due to the fact that the number of model spreads less than 1 BPS is decreased to 14 332.

The reduction of model implied zero spreads follows from that the binary Merton has an exogenous
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Figure 5.4: Binary Merton: The two figures to the left show the time series performance on a bond month

Log Actual

% of sampls

2004

Log Modsl

level. The upper left shows averages and 90%-quantile bands for the model spreads and actual spreads in
each month. The lower left figure shows the distribution of the model errors in each year. The model errors
measured by the ratio between model spread and actual spread. The scatter plots to the right display the
relation between average actual and model spread for each bond. The colour encoding in the scatter plots

represents the average leverage ratio of the bond’s issuing firm.
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and deterministic loss given default. Consequently, bonds with short to medium term maturities,

as well as bonds with lower leverage ratio, are more risky compared to Merton.

Time series

The time series aspect further prove the systematic underprediction in the binary Merton setting.
It is noteworthy that under a short time period in 2009 the average implied spreads are higher than
the real spreads. In line with Merton the 90 % confidence band overlaps poorly before 2009 and
overlap better after 2009. Comparing the time series yearly distribution plots for Merton and the
binary version, the fraction of samples that explain below 10 % of the actual spread have decreased
from 86 % to 75 % in the pre financial crisis period (2005 to 2007). In addition, the corresponding

reduction after the financial crisis was from 61 % to 44 %.

Bond Level

As mentioned above the clustering around zero for model implied spreads is slightly improved in the
binary Merton model. Looking at the scatter plots in Figure 5.4 it is possible to detect systematicity
in the relation between model error and leverage. For highly levered bonds (dark red) the model
seems to overshoot systematically, subject to a few exceptions. The explanation to this is the fact
that the model implied bankruptcy costs for a majority of the defaulted bonds are significantly
increased implying an augmented risk and thus higher model spreads. On the contrary, for low

levered bonds (dark blue) the model seems to undershoot systematically.
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5.2.3 Black Cox

Calibration

The default boundary calibration is implemented as described in Section 4.2. For each cohort a
unique default boundary is calibrated to match the corresponding target default frequency obtained

from Moody’s. The results of the calibration are presented below in Table 5.1.

Table 5.1: The table shows the calibrated default boundaries, d, for each cohort group. The default boundaries
are calibrated such that the average model implied probability of default matches Moody’s reported default

frequencies for each group.

(1, 2] (2, 5 (5, 7] (7, 10 (10, 15] (15, 20]
Investment Grade 0.765083  0.694399 0.712877 0.665603 0.661463 0.8773
Sub-investment Grade | 0.926038 0.816824 0.790879 0.809423 0.710546 1.28644
Without Rating 0.91173  0.8513 0.745958 0.737812 0.93235  0.734807

The average calibrated default boundary amounts to 0.81 while the corresponding weighted average
is 0.75. Our average of 0.81 consort well with the default boundary calibrated in Feldhiitter and
Schaefer ( ) which they found to be 0.87. However, in (Feldhiitter & Schaefer, ) they use
this averaged boundary as a constant for all bonds independent of rating and time to maturity. In
contrast, our approach is to evaluate the model groupwise, using the calibrated default boundary
for each cohort. That is, for a given monthly bond observation the bond’s cohort is identified and
the model implied spread is calculated using the cohort’s calibrated default boundary. Allocating a
default boundary to each cohort, we allow for heterogeneity and group level differences that could
otherwise be averaged out. Therefore this additional model dynamic is in many ways more natural
than the method used by Feldhiitter and Schaefer, but it brings the disadvantage of loss of intuition.
One can question the plausibility of two companies having different default boundaries solely due to
differences in bond rating or time to maturity. Looking to the purpose of the model calibration, we
want to evaluate the model spreads having similar model implied default frequencies as historically
realised, using as much information as possible from Moody’s reported expected default frequency
Appendix A.1. For this purpose we believe that our calibration method is more appropriate despite

its diminutive deficiency.
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Group Spreads

For the calibrated Black Cox model there is a systematic underprediction of bond spreads within
the investment grade cohort. Across the group, model implied average spreads explained 69 % of
the real yield spreads. The median spreads are significantly lower than the mean values indicating
that the modelled spreads are skewed and that a large share of the spreads are close to zero. The
without rating groups have similar results with consistent underprediction explaining 78 % of the
observed spreads. The median model spreads are again significantly smaller than the mean levels.
Within the sub-investment grade groups the underprediction is not equally present. For the groups

(1,2] and (7,10] to (15, 20] the model overshoots whereas the medium term maturities (2,5] and
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Figure 5.5: Calibrated Black Cox The two figures to the left show the time series performance on a bond
month level. The upper left shows averages and 90%-quantile bands for the model spreads and actual spreads
in each month. The lower left figure shows the distribution of the model errors in each year. The model
errors measured by the ratio between model spread and actual spread. The scatter plots to the right display
the relation between average actual and model spread for each bond. The colour encoding in the scatter plots

represents the average leverage ratio of the bond’s issuing firm.
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(5,7) are below the actual spreads. On average the model overshoots the actual spreads of the
sub-investment grade group by 9 %. Interestingly, the sub-investment grade median spreads are
distinctly larger compared to the investment grade and without rating groups. On median level,
the model generates spreads that correspond to 65 % of the realised spreads on average, compared
to 23 % and 25 % for investment grade and without rating respectively. This difference show that
the problem with model implied zero-spreads is improved for the sub-investment grade group when

calibrating to historical default frequencies.

Time Series

As stated above, the group level result reveals a systematic underprediction for the investment
grade (IG) and without rating (WR) group and a slight overprediction within the sub-investment
group. This is reflected in the time series plot in Figure 5.5 by the 90 % band being significantly
widened compared to both Merton and binary Merton models. The model overshoot during the
financial crisis is further amplified indicating a greater model sensitivity to changes in model inputs
such as leverage ratio and asset volatility. The yearly distributions of model explained spreads show
that the share of observations with 10 % or less explanatory ability is 81 % during the pre-financial

crisis. The same measure after the financial crisis amounts to 58 %.

Bond Level

The calibrated Black Cox framework demonstrates a wider interval of model implied spreads with a
maximum average bond spread of 3862 bps, compared to 2879 bps for Merton and 1693 for binary
Merton. In Figure 5.5 the scatter plot shows a preserved systematicity with respect to leverage
and model implied spreads, where highly levered firms are overpredicted and low levered firms are

underpredicted in the model.
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5.2.4 Summary

An overview of the structural models’ explanatory abilities is presented in Table 5.2 below. To
summarise the results we note that Merton, binary Merton and calibrated Black Cox generate
model spreads that on average amount to 42 %, 57 % and 85 % respectively of the observed spreads.
These results are based on an average level spanning over all rating groups and maturities. One
should note that the Black Cox model is calibrated towards historical default frequency data while
the remaining models rely only on observed structural inputs. In order to convey a complete picture
of the models’ performance the following sections will focus on evaluating the model residuals and

applying conventional and comparable statistical inference on the models.

Table 5.2: The table presents the fraction (in percent) of the actual credit spread that the three models
capture in each cohort group. The absolute model implied group level spreads are found Appendiz A.4. A
full description of the rating encodings IG, SG and WR is available in Section 3.3.

G SG WR
TAU (1,2 (25 (5,7 (7,100 (10,15 (15,20] | (1,2] (2,5 (5,7] (7,10] (10,15 (15,20] | (1,2] (2,5] (5,7 (7,10 (10, 15]
Merton 19 31 39 55 62 42 18 31 45 56 69 47 30 39 49 49 29
Binary Merton 61 62 63 69 60 35 93 82 69 64 50 28 2 61 50 42 35
Calibrated Black Cox | 41 47 60 75 83 08| 104 76 97 120 104 154 94 78 63 67 92
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5.2.5 Residual Analysis with LASSO

We now conduct a comparison between the models by regarding how well they have captured the
credit risk components in the LASSO model. Recall the initial dependency analysis conducted with
a LASSO regression at the beginning of the results section. We noted that the actual spreads have
a positive dependency of the firm’s leverage ratio and asset volatility, while there was a negative
dependency of the residual time to maturity. Given the model results presented above, we now want
to check whether these dependencies have been incorporated by the model. Therefore new LASSO
regressions are conducted on the model residuals, in order to extract the most influencing covariates
in the dataset. The results from these regressions are presented in Figure 5.6, by graphically
displaying the twenty most influencing covariates in each of the residual regressions. A noteworthy
observation is that in all of the three regressions, the residual dependencies to leverage ratio and
asset volatility have opposite signs compared to the initial dependency analysis. In addition, the
absolute values of these two coefficients have increased in relation to the other covariates, thus
considered strong contributors to the LASSO model’s explanatory power. Together these two effects
imply that a small increment in asset volatility or leverage ratio corresponds to a larger negative
residual, which means that our implemented structural models overstate the credit spread. Our
interpretation of these results are that the structural models have too sensitive characteristics along

the dimensions asset volatility and leverage compared to the market’s valuation.
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Figure 5.6: Three LASSO regressions are performed with the model residuals as dependent variables. All of the bond month observations,

including numerical and categorical features, are included as independent variables. First a LASSO regression was performed for each
model generating three model specific punishment terms. In order to preserve comparability each regression is performed again with o set
to the average of the individual punishment terms. The average punishment term turned out to be o = 3.15. The 10 most influencing

positive feature coefficients and 10 most influencing negative feature coefficients generated with the average punishment term are presented

for each model in the figures. A full variable code description is available in Appendiz A.6



5.2.6 Evaluation Metrics

In the previous sections we have analysed the results from the models based on their group, time
series and bond-level performance. Moreover, the residual dependencies have been analysed by
means of a LASSO regression. All of these aspects bring insights on the performance and deficiencies
of the models but does not fully include conventional model validation techniques. In order to
achieve more formal and comparable results, a simple linear regression is performed according to
Equation 5.1 below

Sobs — Sobs = B(smodel - gmodel) +e (51)

where the dependent variable is observed yield spread and the the regressor is the modelled spread.
For each structural model the observed spread is predicted with its corresponding linear regression
generating the sets S M, S B and S e of predicted values. The structural models are then evaluated
through computing mean square errors, median absolute errors and R-squared on the sets S M, S
and S Bc. The innovation correlation, pa is calculated as the correlation between the differentiated
time series of modelled bond month spreads, Smmoder, and differentiated observed monthly spreads
Sobs- In Table 5.3 a summary of the linear regressions and evaluation metrics explained above are

presented. Note that the 8 column is supplemented with the regression parameter t-stat values.

Table 5.3: The table shows summary statistics for the tree implemented structural models.

B MSE  MAE R? pa
Merton 0.69063 (158) 28 421 55.321 0.33300 0.19375
Binary Merton 0.48169 (141) 30516 52.127 0.28383 0.27972

Calibrated Black Cox 0.44785 (165) 25978 51.102 0.39032 0.28198

The slopes from the linear regressions are all significantly different from both zero and one indicating
that the modelled model spreads to some extent have explanatory power to the observed spreads.
Regarding slope the Merton model has largest 8 and calibrated Black Cox has smallest slope value.
With respect to MSE, MAE and R-squared the calibrated Black Cox model consistently performs

best and the model seems to be able to explain about 40 % of the variation in observed spreads. One
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should bear in mind that MSE, MAE and R-squared are measures of the overall model performance
with respect to total variability. That is, the measures do not indicate to what extent changes in
the modelled spreads relate to changes in observed spreads. This aspect is interesting under the
assumption that yield spreads are generated by default and non-default components. In such case
the structural models would not generate spreads on the same level as the observed, but changes in
modelled spreads would correspond to changes in observed spreads. To investigate how innovations
in model spreads correspond to changes in observed spreads we compute the innovation correlation.
As shown in Table 5.3, the innovation correlation (pa) is on the same level for binary Merton and
Black Cox while significantly lower for the Merton model. The interpretation of this is that binary
Merton and Black Cox absorb information in changes in input variables better than the Merton

model.
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6 Discussion

Complete realism is clearly unattainable, and the question whether a theory is realistic
enough can be settled only by seeing whether it yields predictions that are good enough
for the purpose in hand or that are better than predictions from alternative theories.

(M. Friedman, )

6.1 General Results

The common denominator for the structural models evaluated in this thesis is a consistent under-
prediction of the average observed yield spreads on the European bond markets. This result is in
line with previous research, not the least the seminal paper by Huang & Huang ( ). In this
broad point of view, the structural models seem to behave similarly, and the applicability of the
models appear to be limited. However, analysing the model results from other aspects it is possible
to detect significant discrepancies and differences within the models. This knowledge helps to in-
dicate where and how structural models perform well and how they might be improved in order to
increase their explanatory power and thus applicability in practice. Without definitive conclusions,
previous research explore the possibility of real spreads being built up not only by structural default
components but a combination of these default components and non default components. If the
structural models succeeded to model out the dependence of structural input variables, we could
deduce that we have correctly used all the default risk information in the input data. Therefore
the remaining unexplained yield should be related to non default components. In Section 5.2.5
we conclude that all the evaluated structural models have significant residual dependence to asset
volatility and leverage ratio. In this aspect the binary Merton have least residual dependence to
these structural input parameters and could for this reason be considered to be better in capturing

the credit risk components than the original Merton and Black Cox models.
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Looking at the evaluation metrics in Section 5.2.6, the MSE, MAE and R-squared indicate that
Black Cox has the highest explanatory power to the variations in the observed spreads. In addition
Black Cox has the highest innovation correlation reflecting that innovations in model spread are
correlated to innovations in observed spreads to a greater extent for Black Cox than Merton and
binary Merton. For Black Cox and binary Merton we can detect clear systematic prediction errors on
bond level with respect to leverage ratio (see the bottom right scatter plots in Figures 5.4 and 5.5).
For high levered firms the spreads are overpredicted, while low levered firms are underpredicted.
This feature, common to binary Merton and Black Cox, can be interpreted as an oversensitivity to
leverage ratio which is likely due to discrepancies between the models’ and market’s view of credit

risk as a function of leverage.

Neither of the aspects discussed above can alone resolve which model performs best or explains real
yield spreads best. When analysing the results from different point of views, we can not appoint
a model that consistently performs superior to the others. The binary Merton manages to remove
the influence of input parameters most efficiently making the result a cleaner measure of default
risk. On the other hand Black Cox is superior with respect to explanatory power of variability of
observed spreads. What the two models have in common is the clear over sensitivity to leverage
ratio asset volatility as evidenced by bond level analysis and LASSO residual regressions above.

The high level of sensitivity in these two dimensions is further visualised in Figure A.1.

Moreover, our findings are in line with the the empirical studies on structural models conducted by
Bao ( ) and Eom et al. ( ). Bao concludes that in the cross section, Black Cox can explain
approximately 45 % of observed yield spreads on the US bond market and that future research
should focus on finding theoretically founded models that explain observed yield spreads better.
In similar spirit, Eom et al. concludes that structural model spreads are often either close to zero
or extremely large. In order to further improve the understanding and performance of structural
models we believe that addressing this over-sensitivity is of great importance. Recirculating back
to our problem formulation, we asked whether the structural models can absorb the observed
dependencies of its input parameters. Based on our findings and backed by these results from
previous research, will now attempt to explore ways of improving structural models’ performance
with respect to residual dependencies. Due mainly to three reasons we have chosen to continue

to evaluate explanatory ability of structural models through the Black Cox model. First, the
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Black Cox framework is the most realistic model containing the important feature of default before
maturity. Secondly, Black Cox is the most commonly used model in the literature, making our
results comparable to a greater extent. Lastly, the model involves more degrees of freedom implying

broader aspects of improvement compared to Merton and binary Merton.

6.2 Black Cox Extensions

6.2.1 Targeting Over Influencing Input Parameters

As our objective in the following extensions is not to match model spreads with actual spread, but
to evaluate explanatory abilities, this further exploration aims rather to continue the removal of
credit risk factors from the residuals. The two dependencies that we will to address in this further
investigation are leverage ratio and asset volatility. In order to better understand their impact we
begin by looking at their dependencies isolated from other factors. First, we imply out what the
leverage ratio and asset volatility should be given the remaining input parameters and the observed
yields spreads in a structural setting. Secondly, we use gradient boosting regression to find how the

model residuals depend on leverage ratio and asset volatility separately.

To imply out the theoretical levels of leverage ratio and asset volatility, the Black Cox framework
is used. In Section 2.2.2 we derived an expression for the model implied spread given all input
parameters. With a slight modification in our notations, we disaggregate the leverage ratio and get

the following expression for the model spread

1
3(Opps, L) = - log(1 — (1 — RR)PDY(t, T, Oups, L)) (6.1)

where O, is the set of observed structural inputs excluding the leverage ratio. Given the spread
formula above and a specific monthly bond observation we then imply out the theoretical leverage
ratio by optimising

L* = argmin | sops — §(Oops, L) | (6.2)
L

where s, is the observed yield spread. With analogous methodology we imply out the theoretical
asset volatility. The results of the implied leverage ratio and asset volatility are presented in Figures

6.1a and 6.1b, where the bond month observations are aggregated to firm level averages. Each point
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represents a specific firm’s average actual value on the x-axis and the corresponding model implied
value on the y-axis. The scatter plots are complemented with two lines, one which represents the
y = x curve (blue line) and one which represents a linear regression from actual parameter values

to implied (green line).
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Figure 6.1: The left figure shows the relation between model implied leverage ratio and observed leverage
ratio on firm level average. The right figure shows the relation between model asset volatility and observed
asset volatility on firm level average. The blue line is represents y = x, while the green line is a linear

regression from actual to implied values.

As seen in Figures 6.1a and 6.1b above, the implied leverage ratios are overstated for the low levered
firms and understated for high levered firms. This result confirms that the model is oversensitive to
leverage ratios. This oversensitivity could be due to limitations in the model structure but it can
also be an indication that the market has a different view of credit risk regarding leverage ratio.
For the asset volatility, the results are not as clear. The regression line is slightly above the 45
degree line for all asset volatilities. However, looking at the scatter plot it is possible to distinguish
possible outliers and leverage points that might affect the regression significantly. The scatter plot
indicates that the low actual asset volatilities seem to correspond fairly well to the theoretical, while

the higher actual volatilities have a more diffused relation to the theoretical.
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Moving on to the gradient boosting regression analysis, we want to investigate the relation between
model residuals and the identified over-influential input parameters. A 50 % quantile regression is
performed with gradient boosting where the number of leaves is limited to 100 and the number of
tree estimators is fixed to 20. More specifically, this means that leverage ratio and asset volatility
are partitioned by the gradient boosting algorithm into a maximum of 100 - 20 sub-intervals. Each
interval is assigned a value, corresponding to the median model residuals within each interval. In

Figure 6.2 below, the results of the regressions are presented.
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Figure 6.2: The figures show gradient boosting regressions with leverage ratio (left) and asset volatility
(right) as independent variables. The calibrated Black Cox model residuals are set as dependent variable.
The gradient boosting regression is performed as a quantile regression in order to stabilise the resulting
model and making it more tractable and easily interpreted. The figures show that the residuals are positive
for small values of the independent variables and become negative as they increase. The break point from

underprediction to overprediction seems to occur at 0.7 for leverage ratio and 0.4 for asset volatility.

The gradient boosting regressions once again show an underprediction associated with low leverage
ratios and the contrary for high leverage ratios. This result is completely in line with previous
conclusions and therefore little unexpected. In contrast to the theoretical approach above, the

regression model for asset volatility demonstrate a clear - almost linear - relationship to the model

residuals.
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6.2.2 Intercept Calibrated Leverage Ratio

To begin with we target the dependence of leverage ratio and find inspiration from the conventional
calibration methods used in Huang & Huang ( ) and Feldhiitter and Schaefer ( ). The default
boundary for the Black Cox model is calibrated against historical expected default probabilities by
adjusting d in Equation 2.44. The adjustments to d correspond to fractional changes in the default
boundary. In effect high levered firms will still remain more likely to default on their debt than
low levered firms. In reality the amount of debt to equity is not necessarily a good proxy for the
default risk, as it may vary widely between different industries and firms. For example, an IT-
company with 20 % leverage ratio may have bonds traded at higher spreads than a highly levered
real-estate company. The issue with the fractional default boundary is that the systematic over-
and underprediction dependence of leverage ratio remains unsolved. We propose a novel approach,
which we name intercept calibrated leverage ratio (ICLR), set out to target these systematic errors

in leverage ratio.

The idea behind the ICLR approach is that the exogenous default boundary for a firm is constructed
by a fixed and a fractional component, instead of solely a fraction of the debt. The fixed component,
or the intercept, corresponds to a baseline level of risk of default. In some sense it can be regarded
as a systematic market risk of default, which can be caused by for example force majeure or a
major scandal. Therefore a systematic default risk should be assigned to every firm no matter
its leverage ratio, which is the intuition behind the intercept term. The fractional component, or
the slope, represents investors interpretation of additional risk as a function of leverage ratio. If
we assume that the intercept is positive and the slope is greater than zero and less than one, the
ICLR approach corresponds to a linear transform of the default boundary. This transform shifts
the default boundary up for low levered firms and down for high levered firms. These are the
characteristics that we found when looking at the implied leverage ratio and asset volatility in the

previous section.

To formalise the ICLR approach we first need to recall how the default time, first-passage time, is
defined in the original Black Cox model. The model assumes that a firm will be forced into default
when the firm value process falls below a fraction of the debt. The stochastic time when a default

occurs is 7, defined as 7 = inf{t : V;/Vy < dK/Vy}, where L = K/Vj is the leverage ratio and d is
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an exogenous model parameter. In the ICLR approach we modify this first-passage time slightly
by adding an intercept term to the right-hand side. The resulting expression for the default time
is denoted 7 and defined by 7 = inf{t : V;/Vy) < a + SK/Vp}. With this minor modification the
probability of default in the ICLR is higher for firms with low leverage and the contrary applies
for high levered firms. These effects are visualised in Figure 6.3, where the probability of default
is compared for the two default boundary definitions. We can deduce that the introduction of an

intercept to the default boundary achieves the desired effect, which we discussed earlier.
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Figure 6.3: The figure shows two physical probability of default measures as a function of leverage ratio,
L, for the same firm (0 = 0.2, 8 = 0.22 § = 0.02 r = 0.03). The original Black Coz has its probability
of default given by Equation 2.44, where d = 0.87 in this example. The intercept calibrated leverage ratio
has the probability of default given by Equation 6.3, where we have set o = 0.2 and 8 = 0.5. Note that the

probability of default axis is log-scaled.
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