




Abstract

This thesis aims to shine light on some different machine learning methods. As ref-
erence a more common statistical prediction method, namely the generalized linear
model, is applied to compare the results of the machine learning methods. Six dif-
ferent machine learning methods are investigated. These methods are explained in
detail and used to predict hit rates within insurance customers. To further explore
the data sets and the methods, the data sets are rebalanced to deal with skewness
of the target class. The insurance data set used contains 86 features, including the
target feature, which can be troublesome in some cases, and therefore a feature re-
duction analysis is performed. Further the positives and negatives of the different
methods and how to put machine learning in practice was discussed. Lastly a new
data set is introduced and the machine learning methods are used to assess the risk
of default within credit customers.

The results show that random forest perform best of the different data sets, and it
is fairly easy to interpret. The k-nn, naïve Bayes and decision tree do not perform
as well as the random forest but are easier to use and requires much less computing
time to tune and train. These less computational complex methods can be good
when much data is available, but is inferior to regression methods when that is not
the case. The support vector machine and the neural network are complex but have
potential for greatness. Further investigation into the different models we used are
needed, especially the support vector machine and the neural network.

Key words: Machine learning, Artificial intelligence, Insurance, Credit
risk, SMOTE, k-NN, Naïve Bayes, Decision tree, Random forest, Sup-
port vector machine, Neural network, Generalized linear model, Receiver
operating characteristics, Hit rate
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Chapter 1

Introduction

Machine learning is defined as a set of methods which can be used to automatically
detect patterns in data. The uncovered patterns are usually used for predicting fu-
ture data. Machine learning originates in the field of computer science as it aims to
provide automated methods for data analysis and decision making. However these
kinds of problems come with a lot of uncertainty. Machine learning is also closely
related to the field of statistics to deal with the issue of uncertainty. It originates over
50 years ago but has in the recent decades become more popular and put in practice.
The last decade there was a great discovery within neural networks and since then
applications of machine learning are increasing within all fields of computer science.

There are mainly two types of machine learning: supervised and unsupervised learn-
ing. In supervised learning, or predictive learning, the target output is known, i.e.
the aim is to map inputs x to outputs y given a data set of input-output pairs. The
data set is called training set as it is used for training the models. Usually a part of
the data set is put aside and used for validating the model’s performance, see Section
2.1. The input parameters are commonly referred to as features or attributes, in this
report they will be referred to as features, while the output can be either categorical
or real-valued resulting in classification or regression, respectively. Supervised learn-
ing is the most common type of machine learning as you often know what it is that
you want to predict. It is therefore the applied type in this report.

As for the second type, unsupervised learning, or descriptive learning, the data has
no target output, instead the goal is to identify patterns in the data that might
be interesting. Problems that can be solved using unsupervised learning may be to
discover similarities within groups of the data or to determine the distribution of the
data within the input space. Unsupervised learning is a less well-defined problem
compared to supervised learning since it is unknown what to look for and since there
is no apparent performance measure.
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A third type of machine learning, which has gained more attention in recent years, is
known as reinforcement learning. Reinforcement learning is concerned with finding
actions suitable to the environment in which it operates by maximizing some notion
of reward. Unlike supervised learning, reinforcement learning algorithms are not
given examples of optimal output but must instead discover them for themselves by
trial and error, much like a baby learning to walk. The algorithm’s interaction with
the environment is typically described by sequences of states and actions that will
be differently rewarded depending on the outcome.

This report will first introduce the theory around different machine learning methods.
Then it will take on customer relations within insurance companies, focusing mainly
on predicting hit rates for caravan insurances. Two attempts to improve the results
are carried out: firstly by rebalancing the data and secondly by reducing the amount
of features in the data. This report also includes a comparison of how the machine
learning methods perform on a credit data set to predict defaults.

1.1 Objective
The objective of this report is to give an overview of some machine learning methods.
It aims to explain the idea and theory behind each chosen method in a way so that
little or no previous knowledge about machine learning is needed. As machine learn-
ing methods are currently not commonly used methods within the field of finance.
The methods will be evaluated on two typical financial data sets: insurance and
credit risk, to examine the methods’ applicability within the field. The performance
of each method will be compared to each other, but also to a benchmark model, the
generalized linear model, that have been trained on the same data. This is done to
compare to a statistical model that are commonly used on similar problems.

1.2 Limitations
To narrow down our scope we have chosen six machine learning methods. They are
naïve Bayes, k-nearest neighbors, decision tree, random forest, support vector ma-
chine and neural network. We chose them as they have different approaches, and they
are good representatives for the different available machine learning methods. The
support vector machine was tuned and trained using three different kernel functions.
They are the linear, polynomial and radial basis kernel. These three functions are
the most commonly used kernel functions since they cover many different invariances
within the data.
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Chapter 2

Theory

This chapter presents the theory behind the machine learning methods applied and
the performance measurement used. The example pictures in this chapter are gen-
erated from the famous iris data set collected by Anderson (1936) and first analyzed
by Fisher (1936). The data set consists of 4 features on each of 50 data points from
each of three species of iris: Iris setosa, versicolor and virginica. The features sepal
length and width and petal length and width, respectively, are given in centimeters.
The data was obtained through the programming language R by R Core Team (2016)
in which it is built-in.

2.1 Overfitting and cross validation

One of the risks when training a model to fit the training data is overfitting. This
means that the model describes the noise rather than captures the underlying rela-
tionship or trend of the points in the data set. In other words, the model will fit
the training data too well and overreacts to any minor fluctuation in the data used
to fit the model. The model’s predictive performance will therefore be very far off
when introduced to a new data set. Overfitting of a model is typically due to the
model being excessively complex for the data. There are different ways to deal with
the overfitting problem such as reducing the dimensionality of the input parameters
to reduce the risk of the model being too complex.

Another way of reducing the overfitting problem is to use cross validation when
training the model. In cross validation the training data is split into K subsets,
called folds. For k 2 1, ..., K a model is trained on every fold except the k’th and
its performance validated on the k’th fold. This is repeated for all K folds and the
averaged performance over all folds is used as the performance score for the model
(Murphy, 2012, p. 24). Another advantage of cross validation is that the technique
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solves the problem of having limited data since it uses all available data to asses
performance. The repeated training is however the technique’s biggest drawback as
this process itself becomes computationally expensive due to the training process
being carried out K times. (Bishop, 2006, pp. 32-33)

2.2 Weak and strong learners

Learner is a collective term for algorithms used for prediction, classification, etc. A
learner’s performance can be indicated as either random, weak or strong. A random
learner’s performance is equal to guessing the outcome without taking any features
into consideration. That is, a random learner on a binary classification problem
has a performance of 0.5 as there is a 50% chance of correct classification by just
guessing. A weak learner performs slightly better than a random learner, but its
performance is still relatively poor. The closer to 1 (100% correctly classified) a
learner’s performance is, the stronger it is. It is often, but not always, the case
that a weak learner is also computationally simple while strong learners can be
computationally expensive.

2.3 Ensemble Learning

Within machine learning the term ensemble learning corresponds to the methods
that combine multiple predictions to form a (hopefully) better predictor. It can be
describes as searching trough a space of predictors to find the one that has a suitable
predictive performance for the particular problem. Even if there is a very suitable
predictor for the particular problem, it can be very difficult to find it in the predictor
space. The idea is to combine several predictors in order to add certainty for new
predictions. It can be seen as performing a lot of extra computations to compensate
for poor learning algorithms. With y as the output and x as the input vector, the
general idea of the method is to construct a learner, f(y|x, on the form of

f(y|x) =
X

m2M

wmfm(y|x),

where the wm are tunable parameters, M is the predictor space and fm are predictors
in said space (Murphy, 2012, p. 580). The chosen learners in the prediction space
are usually weak learners for computational reasons, but the resulting learner f is
hopefully a strong learner. The learning algorithms fm are usually generated from
the same type of weak learner, but this can be extended to multiple types of weak
learning algorithms.
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2.3.1 Boosting

Boosting is an algorithm that aims to create a strong learner from a set of weak learn-
ers. The method consists of iteratively adding weak learners applied sequentially to
different versions of the data. Each version of the data is weighted differently so that
more weight is given to data points that were more likely to be misclassified by the
previous weak learner. The sequence of weak learners are then weighted together to
form a strong learner. It has been shown that the performance of any weak learner,
that performs slightly better than chance, can be boosted arbitrarily high. (Murphy,
2012, pp. 554-555)

The method works especially well for classifiers. There are many boosting algorithms,
and the main difference between them is the method of weighing the data points in
each iteration of the sequence.

2.3.2 Bagging

Bagging, or bootstrap aggregating as the acronym stands for, is a sampling method
commonly applied to machine learning techniques. The method aims to improve the
accuracy of the machine learning algorithm and to reduce the variance as well as the
risk of overfitting. The bagging method generates new training sets Di by sampling
uniformly with replacement from the original training data set D . For each training
set a predictor is calculated by:

f(x) =
MX

m=1

1

M
fm(x), (2.1)

where fm(x) is the weak predictor model. The output is the aggregated average over
all the versions of predictors when predicting a numerical outcome. When predicting
a class, the majority of votes is instead used. (Murphy, 2012, p. 551)

Since bagging is an additive ensemble technique, adding multiple linear models will
result in a new linear model. By adding randomness the mean-squared error produced
by bagging will be less than or equal to the mean-squared error of the original
predictor. Breiman (1996) shows both theoretically and empirically that the bagging
method works well in improving the performance of unstable procedures, such as
decision trees. However there is a limit to how much improvement can be achieved
by bagging. A predictor that performs at the limit of accuracy attainable on a data
set cannot be improved further, no matter how much bagging is done.
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2.4 Naïve Bayes

Naive Bayes is a classification method that uses the simplification that all features
are independent. The model uses the training set to calculate the probabilities of
being in a certain class given all features one at a time. When introducing new points
to the model, the joint probability of all its features is calculated. Since these are all
assumed to be independent, Bayes’ formula and the chain rule can be applied and
the following relation holds:

p(Ck|x1, x2, ..., xn�1, xn) =
p(x1, x2, ..., xn�1, xn, Ck)

p(x)
=

p(Ck)

p(x)

nY

i=1

p(xi|Ck),

where xi represent the n different features and Ck represents the k different classes.
The method is then to find the class which has the highest probability and classify
the new data point as this class. Since the class does not depend on p(x) this is just
a scaling factor and our problem to be solved is (Lewis, 1998):

ŷ = argmax

k2{1,...,K}
p(Ck)

nY

i=1

p(xi|Ck).

When the features’ values are continuous the distribution of the features of the
different classes has to be calculated. There are several distributions that can be
fitted to this but it is common to use a Gaussian distribution and to calculate the
probability of this. (Murphy, 2012)

2.5 k-Nearest Neighbors

The method called k-Nearest Neighbors (k-NN) is one of the simplest machine learn-
ing methods. It uses a new data point to find the k nearest neighbors of this point
within the training set. These points can then be used in the classification of the
new point based on the classification of these k nearest neighbors. The method uses
the majority vote of these neighbors to decide what class the new point is classified
as. The algorithm can also be used for regression. It uses the k nearest neighbors
to find the value of the new point by computing the average of these values. To
improve the predictions, weights are added to the algorithm. By using the inverse
relative distance and averaging over these the class or value is decided. The following
formula is used for regression:

ŷ =

1

Pk
i=1 e

�Di

kX

i=1

e�Diyi

6
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where yi is the value of the training point, Di is the distance to the new point and
ŷ is the value of the new point. When weights are used for classification the sum of
the inverse relative distances of each class is compared to each other and the class
maximum value is chosen. The distance in this formula can be calculated in different
ways but a common way is to use the Euclidean distance. The next thing to do is
to choose the best number of neighbors. The model is then optimized by using the
least squared error when using regression and by minimizing the misclassification
error when using classification. (Hill and Lewicki, 2007)

In Figure 2.1 the k-NN approach has been used for classification on the iris data set
for k = 1 and k = 9. The training data points are marked in the plot and a new
observation would be classified according to the field in which it would be placed,
either red, green or blue.
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(a) K-nearest neighbors using k=1.
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virginica

(b) K-nearest neighbors using k=9.

Figure 2.1: Two figures of k-NN classification on the same data set
with two different k-values.

2.6 Decision tree

The decision tree is a model where you partition the input space into cuboid regions
with edges aligned with the axes. This is done with a binary tree where the data set
is divided by a threshold in one feature of the data set. This is called a node. The
data set is split into two or more branches, and this is repeated a finite number of
times and end up in terminal nodes that are called leaves.
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To build the tree, nodes have to be chosen. Exploring all possible combination of
nodes is often not feasible because there can be an unlimited amount of possible
splittings. Therefore an algorithm is used to maximize the information gain by
minimizing the uncertainty of the input spaces using the following equation:

Costgain(D) = Cost(D)�
nX

i=1

|Di|
|D| Cost(Di)

where D is the data set before splitting the node and Di is the data set of the i’th
branch of the node after the split (Murphy, 2012, pp. 545-548). For classification
this cost function can be represented by three different functions: misclassification
rate, entropy or Gini index. The misclassification cost is described as follows:

Cost(D) =

1

|D|
X

i2D

I(yi 6= ŷc),

where ŷc is the most probable class defined as ŷc = argmax

c
(⇡̂c) and yi is the outcome

of the i’th point in the data set. Here ⇡̂c is the probability that a data point in the
region will be classified in a certain class. This is formulated as follows:

⇡̂c =
1

|D|
X

i2D

I(yi = c).

The cost function of entropy is explained as follows:

Cost(D) = �
CX

c=1

⇡̂c log2(⇡̂c).

The Gini index-cost function can be calculated with the following formula:

Cost(D) =

CX

c=1

⇡̂c(1� ⇡̂c).

For regression the split is chosen by choosing the feature that minimizes the sum of
squares:

Cost(D) =

kX

i=1

(yi � t)2.

where t is the threshold for the split. The threshold is chosen to minimize the sum
of squares, and the optimal choice of threshold is the mean of y:

t = ȳ =

1

|D|
X

i2D

yi.
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The best node is chosen repeatedly until the tree is fully grown. The theory of
deciding when a tree is fully grown and how to optimize the tree is explained in the
next section.

2.6.1 Overfitting – Stopping criterion – Pruning

When using the training set, the optimal tree for this set exists and is obtained when
the data set is completely separated. This does not necessarily reflect the truth but
is rather a symptom of overfitting. Another way to decide how far to build the
tree is to define a stopping criterion. This can be a so called complexity criterion,
a maximum number of nodes or a minimum number of elements in the node. The
complexity criterion is based on a complexity parameter, which is a measurement of
how much information you can gain by splitting after this point. These methods can
cut computational costs, but they are not perfect.

One method that can then be applied is to build a large tree and then “prune” the
tree to find the optimal tree. The different subtrees of the original large tree are
checked using either cross validation or a test set and then the sub-tree with the
least error is chosen.
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Petal.Width < 1.6

setosa
.33  .33  .33

100%

setosa
1.00  .00  .00

33%

versicolor
.00  .50  .50

67%

versicolor
.00  .96  .04

33%

virginica
.00  .04  .96

33%

yes no

setosa
versicolor
virginica

(a) A decision tree with three terminal nodes.
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(b) The decision trees predictions.

Figure 2.2: A pruned decision tree on the iris data set and its pre-
dictions.

In the left picture of the Figure 2.2, a decision tree has been grown from the iris data
set with only three terminal nodes. In the right picture the trees corresponding to
the prediction of new data points are shown, with the training data points marked.
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2.6.2 Random forest

The random forest method is a modification of bagging that grows multiple indepen-
dent decision trees and averages them together. In equation (2.1) this means that
fm(x) is the m’th tree. (Murphy, 2012, pp. 550-551)

Even though bagging will result in reduced variance, the variance reduction has a
limit since rerunning the same learning algorithms on different subsets will lead to
some highly correlated predictors. Random forests try to decorrelate the trees by not
only selecting a random subset of the input data but also by randomly selecting a
subset of the input features. For a data set with p input features, m  p is randomly
chosen for each split in the tree. For classification problems it is recommended to
use m =

p
p while for regression problems the recommendation is m = p/3 (Hastie

et al., 2009, p. 592). The prediction accuracy of random forests is often very good,
however the easy interpretation that decision trees provide is lost due to the multiple
trees.

2.7 Support Vector Machines

When talking about Support Vector Machines (SVMs), it is common to talk about
the two-class classification problem, but it can also be used for multiclass classifi-
cation and regression. The method is to train a hyperplane in a feature space that
splits the data set according to the classifications. This hyperplane is optimized to
maximize the perpendicular distance to the closest data points. The model will then
only depend on the closest data points, that are called support vectors, hence it is
independent of all other data points.
Figure 2.3 shows a SVM of the iris data set. The SVM is created using the two
features petal length and petal width. The line between the blue area and the white
area is a hyperplane that completely separates one, class and the line between the
white area and the pink area is a hyperplane that separates two classes using a soft
margin. The points marked with an X are the support vectors. When considering
the two-class classification, the following linear model is used:

y(x) = w

T�(x) + b,

where w are the data weights, �(x) denotes the fixed feature-space transformation
and b is a bias parameter. The target values t1, ..., tN corresponding to the N training
vectors x1, ...,xN are labelled with output values tn = {�1, 1} for computational
convenience, which makes the new data points to be classified as the sign of y(x). If
the data points are linearly separable in the feature space, the purpose of an SVM
is to minimize the generalization error. This is done by maximizing the margin,

10
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Figure 2.3: A plot of a three class classification SVM-model.

which is the distance between the decision boundary and the closest samples. The
samples at the margin are called support vectors, hence the name support vector
machine. The distance of a point xn to the hyperplane where y(x) = 0 is given by
|y(xn)|/||w||, where ||w|| is the euclidean norm. Since tny(xn) > 0, the following
equation gives the perpendicular distance of point xn to the decision surface:

tny(xn)

||w|| =

tn(w
T�(xn) + b)

||w|| . (2.2)

The problem is then to maximize equation (2.2) according to the point with the
minimum perpendicular distance to the decision surface. This is done by solving the
following equation:

argmax

w,b

⇢
1

||w|| min

n
[tn(w

T�(xn) + b)]

�
.

But by multiplying w and b with the same constant will not change equation (2.2).
The following equation can be used for the points closest to the decision surface:

tn(w
T�(xn) + b) = 1.

This means that the following equation is a constraint for any data point in the data
set:

tn(w
T�(xn) + b) � 1. (2.3)

11



2.7. SUPPORT VECTOR MACHINES CHAPTER 2. THEORY

The constraints where the equality holds are called active constraints and the in-
equality constraints are called inactive constraints. There will always be a point
closest to the decision surface, and when the margin is maximized there will always
be at least two. The problem is to maximize ||w||�1 subject to the constraints in
(2.3). For mathematical convenience it will be transformed. Using that this is equiv-
alent to minimizing ||w|| or ||w||2 and multiplying by a constant, the problem will
have the same solution as the following equation:

argmin

w,b

1

2

||w||2,

subject to the constraints in equation (2.3). The bias parameter b is taken out of this
equation but is implicitly accounted for in the constraints. Therefore this problem
can be solved by introducing the Lagrangian function:

L(w, b,a) =
1

2

||w||2 �
NX

n=1

an{tn(wT�(xn) + b)� 1}, (2.4)

where a = (a1, ..., an)
T , an � 0 are the Lagrange multipliers. The minus sign in (2.4)

is there because it is being minimized with respect to w and b and maximized with
respect to a. Using the derivatives of (2.4) with respect to w and that b equal to
zero the following equations are obtained:

w =

NX

n=1

antn�(x)

0 =

NX

n=1

antn.

These results are used to eliminate w and b from (2.4) and the results are

˜L(a) =
NX

n=1

an �
1

2

NX

n=1

NX

m=1

anamtntmk(xn,xm), (2.5)

constrained to

an � 0, n = 1, ..., N

NX

n=1

antn = 0.

To avoid working explicitly in the feature space, the kernel function is introduced:

12
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k(x,x0
) = �(x)�(x0

).

If this kernel is positive definite, it will make sure that equation (2.5) is bounded
from below and the problem is a well-defined optimization problem. For the purpose
of classification, the sign of y(x) is expressed in terms of the kernel and a as follows:

y(x) =

NX

n+1

antnk(xn,xm) + b, (2.6)

This constrained optimization problem satisfies the Karush-Kuhn-Tucker (KKT)
conditions, which means that the following properties hold:

an � 0

tny(xn)� 1 � 0

an{tny(xn)� 1} = 0.

These constraints say that if an > 0, then tny(xn) = 1, which means that only the
support vectors have a Lagrange multiplier different from zero. Therefore only the
active constraints will be considered in the sum in equation (2.6). The other points
in the training set are discarded, and the solution does not depend on them. When
the values of a are found, the value of the bias parameter b is found by noting that
any support vector xn satisfies tny(x) = 1 and using (2.6). This creates the following
equation:

tn

 
X

m2S

amtmk(xn,xm) + b

!
= 1, (2.7)

where S denotes the indices of the support vectors. The solution can be found by
using any of the support vectors, but a better method is to multiply both sides of
equation (2.7) by tn, use the fact that t2n = 1 and then take an average using all
support vectors. The solution then becomes (Bishop, 2006, 330):

b =
1

NS

X

n2S

 
tn �

X

m2S

amtmk(xn,xm)

!
.

When linearly separating the classes according to the feature space �(x) the solution
does not have to represent the best generalization. There is a possibility that the
class distributions overlap in the problem at hand. Therefore a modified version of
the SVM is proposed, where a slack variable ⇠n � 0 is introduced for when data points
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are on the wrong side of the margin hyperplane. The slack variable is a linear penalty,
defined as the distance between the point and the margin, ⇠ = |tn � y(xn)|. This is
called giving the problem a soft margin and allows some points to be misclassified.
The exact classification constraint is then defined as:

tny(xn) � 1� ⇠n, n = 1, ..., N (2.8)

which has the same properties as tny(xn) � 0 because ⇠ is 1 in the decision surface.
The optimization problem is then to minimize the following equation:

C
NX

n=1

⇠n +
1

2

||w||2, (2.9)

where C > 0 is a parameter that decides how hard the optimization is penalized by
the slack variables. It is true that if C ! 1, the case where there is no room for
misclassification is obtained. To minimize (2.9) under the constraints in (2.8) the
following Lagrangian is formed:

L(w, b,a) =
1

2

||w||2 + C
NX

n=1

⇠n �
NX

n=1

an{tny(xn)� 1 + ⇠n}�
NX

n=1

µn⇠n, (2.10)

where an � 0 and µn � 0 are the Lagrange multipliers. The KKT conditions are
then as follows:

an � 0

tny(xn)� 1 + ⇠n � 0

an(tny(xn)� 1 + ⇠n) = 0

µn � 0

⇠n � 0

µn⇠n = 0,

where n = 1, ..., N . The Lagrangian (2.10) is then optimized according to w, b and
⇠n which gives the following results:
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@L

@w
= 0 ) w =

NX

n=1

antn�(xn),

@L

@b
= 0 )

NX

n=1

antn = 0

@L

@⇠n
= 0 ) an = C � µn

and from this the following dual Lagrangian is as follows:

˜L(a) =
NX

n+1

an �
1

2

NX

n=1

NX

m=1

anamtntmk(xn,xm). (2.11)

This is the same as in the non-misclassification case except that the constrains dif-
fer. The Lagrangian (2.11) is therefore optimized with respect to a, subject to the
following constraints:

0  an  C

NX

n=1

antn = 0,

for n = 1, ..., N . The predictions for new data are still made by using (2.6) but with
the new Lagrangian multipliers a. The constraints work similarly here as in the
non-misclassification case such that if the following equality hold:

tny(xn) = 1� ⇠n,

then an differ from zero. The constraints also require that if an < C , that µ = 0,
which implies that ⇠ = 0 and therefore that the point is located on the margin.
If an = C, then the point is on the other side of the margin, and if ⇠ > 1 it is
misclassified. To determine the bias parameter b, the same equation as in the non-
misclassification case is used:

tn

 
X

m2S

amtmk(xn,xm)

!
= 1.

This time only the points where ⇠n = 0 can be used because then tny(xn) = 1. The
solution of b is then:
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b =
1

NM

X

n2M

 
tn �

X

m2S

amtmk(xn,xm)

!
,

where M denotes the indices of data points where ⇠ = 0. (Bishop, 2006, pp.326-345)

2.7.1 Choice of Kernel

The kernel function takes the data set into a feature space according to the proper-
ties of the function. This is useful when the problem is not linear and can therefore
be better solved in another space. The kernel function can be many different func-
tions but the polynomial and the radial are two of the most commonly used kernel
functions. The polynomial kernel is (�u0v + k)d where � and k are constants and d
is the degree of the kernel function. For d = 1 the kernel is called linear kernel. The
radial kernel is exp(��|u � v|2). The choice of kernel depends on the data and the
invariance of the data, where the different kernels solves different invariances.

2.8 Neural networks, Deep learning

A neural network is designed to replicate the system of neurons that exists in a hu-
man brain. A neuron is built up by an axon that sums up the information gathered
by a dendritic tree taking in information in different branches. If the dendritic tree
receives enough stimulation, it will create a spike to the axon. The axon is then
connected to a branch of another dendritic tree and the process repeats itself in a
net of neurons.
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Figure 2.4: Neural network with an input layer (black), a hidden
layer (red) and an output layer (green). The blue nodes represents
the bias for each layer.

The machine learning method works in the same way. The example neural network
in Figure 2.4 is constructed from the iris data using all 4 input features (the black
nodes), which are passed through 1 hidden layer of 5 nodes (red). The probability
for each class output is finally passed through the output layer (green nodes). The
input vector is multiplied by a weight vector, and if this sum exceeds some threshold
it will create an output. In each layer l of the neural network, there is a number
j of neurons that all take in a vector of i input values, all multiplied by weights.
These j neurons create outputs that will be represented as inputs in the next layer
of neurons. The amount of neurons in each layer can differ and the structure of the
neural net can be more or less advanced. For example, a node in the next layer can
skip some of the outputs from the earlier layer and/or sum up weighted outputs from
even earlier layers. How this architecture is built depends on the application area,
the data, which type of learning is used, among other things.

The weights are described by

w
(l)
i,j ,

8
><

>:

1  l  L layers
0  i  d(l�1) inputs
1  j  d(l) outputs

where L is the total number of layers, d(l) is the dimension of layer l and for i = 0
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the weight is from the bias. In theory there is a threshold connected to a step-
function that a neuron needs to exceed in order to create an output, the bias in
Figure 2.4 represents this threshold. This step-function is not differentiable in all
points, and it is therefore convenient to use some function that is. This function is
called an activation function and can be different functions depending on the learning
type and application area. When using a supervised learning algorithm for binary
classification, the logistic sigmoid function is commonly used. The output from each
node is given by

z
(l)
j = h

0

@
d(l�1)X

i=0

w
(l)
j,iz

(l�1)
i

1

A
= h(aj), (2.12)

where h(·) is the activation function. Equation (2.12) is applied recursively, starting
on the input z

(0)
= x = [x1 . . . xd(0) ] ending in the output z

(L)
= y in layer L. The

output is then the prediction of the network.

The machine learning algorithm is a way to minimize the error function according
to the different weights. The error function for a binary classification problem is the
cross entropy function:

E(w) =

NX

n=1

[tn log(y(xn,w)) + (1� tn) log(1� y(xn,w))],

where tn are the target values and y(xn,w) are the outputs. This is the sum of all
the N data points, and the function inside the sum will hereby be called En(w).
When using neural networks for regression, the error function can be described as
the squared error:

E(w) =

NX

n=1

1

2

(y(xn,w)� tn)
2.

This is optimized by an algorithm that changes the weights in each iteration until it
reaches a minimum. This iteration of weights is described by:

w

(⌧+1)
= w

(⌧)
+�w

(⌧),

where ⌧ labels the iteration step. This algorithm often uses some optimization algo-
rithm that uses the gradient of the error function to find a minimum, such as gradient
descent, conjugate gradients or quasi-Newton methods. To use these optimization
methods, the gradient needs to be calculated. This is done by using a backpropa-
gation method where the chain rule is used to find the derivatives of the different
weights. For the output weight the gradient becomes:
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@En

@w
(L)
j,i

=

@En

@y(xn,w)

@y(xn,w)

@w
(L)
j,i

=

@En

@y(xn,w)

@y(xn,w)

@aj

@aj

@w
(L)
j,i

=

@En

@y(xn,w)

h0
(aj)h(ai),

(2.13)
where

@En

@y(xn,w)

h0
(aj) = �j.

The logistic sigmoid function has the convenience of having the following derivative:

�0
= �(1� �),

and the derivative of the cross entropy error function is:

@En

@y(xn,w)

=

(y(xn,w)� tn)

(1� y(xn,w))y(xn,w)

.

With these results, the weights in the hidden layers can be decided. The last hidden
layer gets the following gradient:

@En

@w
(L�1)
j,i

=

@En

@y(xn,w)

@y(xn,w)

@w
(L�1)
j,i

=

@En

@y(xn,w)

@y(xn,w)

@ak

@ak

@w
(L�1)
j,i

=

@En

@y(xn,w)

@y(xn,w)

@ak

@ak
@h(aj)

@h(aj)

@w
(L�1)
j,i

=

@En

@y(xn,w)

@y(xn,w)

@ak

@ak
@h(aj)

@h(aj)

@aj

@aj

@w
(L�1)
j,i

,

where the first two partial derivatives are exactly the same as in (2.13) and the last
equation is the same but for this layer. By using all the outputs with their respective
weights, the equation can then be written:

@En

@w
(L�1)
j,i

= h(ai)h
0
(aj)

X

k

�kw
(L�1)
k,j ,

and by using the following simplification:

�j = h0
(aj)

X

k

�kw
(L�1)
k,j ,

the following formula can be used for all the hidden layers and the output layer:

19



2.9. ROC AND AUC CHAPTER 2. THEORY

@En

@w
(l)
j,i

= �jzi,

where the calculations use the results from the recently calculated layers until re-
sulting in the gradient according to the weights applied to the input vector. When
using the neural network algorithm, the weights are initially chosen at random. This
is because the error function is not a completely convex function according to the
weights and therefore multiple local minima can be found. There is no way to tell
if the local minimum that was actually found is a global minimum therefore the
algorithm needs to run multiple times to find different local minima. The best local
minimum is hopefully the global minimum or close to it. In order to not achieve the
same minimum every run, the initial weights are chosen at random.

The neural net can be designed with multiple hidden layers to become able to handle
non-linear problems. This is called a deep neural net and is the most common kind
of Deep Learning. These kinds of neural networks can model complex data with
fewer points than a more shallow neural network can. Deep neural networks can be
designed in many different ways depending on the target application. The research
on this is extensive and since deep learning is a very popular area, this research is
updated continuously. The neural networks can be created in different styles with
different weights between the different layer nodes etc. (Murphy, 2012, pp. 995-1007)

2.9 ROC and AUC
Receiving operating characteristics, ROC, is a way of visualizing classification per-
formance. The method is typically applied to binary classification problems, but
there are ways of extending it to multiple classes.

A classifier’s performance is typically measured by how many instances it predicts
correctly. If the data is skewed, which it often is in reality, this can be very problem-
atic. An imbalanced data set can produce a very high accuracy by just classifying
every instance as the majority class if the minority class is very small. In ROC the
false positive vs. false negative tradeoff is used instead (Murphy, 2012, p. 180).
That is, given a classifier and an instance, there are four possible outcomes: if the
instance is positive and classified as positive it is considered to be a true positive, if
the instance is instead classified as negative it is considered a false negative, if the
instance is negative and classified as negative it is considered a true negative, while if
it is classified as positive it is considered a false positive. These results are typically
presented in a confusion matrix, see Table 2.1.
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The ROC space consists of the true positive rate, tpr, on the y-axis and the false pos-
itive rate, fpr, on the x-axis, and a discrete classifier will be represented by a point.
Hence the point (0,1) in ROC space represents perfect classification (100% true pos-
itive rate and 0% false positive rate) while the points (0,0) and (1,1) represent the
extremes where all instances are classified as either negative or positive respectively.
The diagonal line x = y in the ROC space represents randomly guessing the class.
Thus a classifier should produce a point in the upper triangle as a point in the lower
triangle is to be considered worse than randomly guessing. By varying the threshold,
i.e. the probability that needs to be exceeded by the classifier to classify an instance
as positive, different points in the ROC space will be produced, which can be traced
to a curve. The best threshold is commonly given by Youden’s index, that is the
threshold that maximizes the equation tpr + 1 � fpr (Youden, 1950). This is the
threshold that classify a lot of true positives but few false positive and is commonly
recommended as the probability threshold when predicting new data points.

ROC curves are insensitive to changes in the class distribution which make them
very useful when comparing performance for classifiers on skewed data sets. To com-
pare classifiers, the quality of the ROC curve is summarized as a single scalar value
representing the expected performance by calculating the Area Under the Curve,
AUC. As the ROC operates in the unit square, the AUC will always have a value
between 0 and 1. A higher AUC score is better, and a score less than 0.5 is worse
than guessing. (Fawcett, 2006)

actual
value

Prediction outcome
p n total

p0 True
Positive

False
Negative P0

n0 False
Positive

True
Negative N0

total P N

Table 2.1: Confusion matrix
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Chapter 3

Insurance

3.1 Data

The data used in this and the following two chapters were provided by van der Put-
ten and van Someren. (2000) at the Dutch data mining company Sentient Machine
Research for the CoIL 2000 Challenge and was obtained through the web page of
Lichman (2013). The data contains information about customers consisting of 86
features. Features 1-43 contain socio-demographic data and features 44-86 contain
customer specific product ownership, where feature 86 is the target feature. The
socio-demographic data is derived from zip area codes and is an average of the popu-
lation living in that specific area, meaning that all customers living in the same area
will have the same socio-demographic features. However, the zip area codes are not
included in the data set. This is important to note to be able to correctly interpret
the data since it only provides a probable image of the customer and not the real
values for each specific customer. The product ownership features, column 44-86,
contains information about which insurances the customer currently own and their
costs. The target feature, feature 86 “CARAVAN: Number of mobile home policies”,
has only two classes, class 0 or class 1, i.e. the customer either has or does not have
a caravan insurance. Since the problem is to predict the presence of a caravan policy,
the desired class is 1. Information of all the attributes can be found in Appendix A.

The data was already split in two parts, a training data set and an evaluation data
set. The training data consists of 5822 data points with the target feature included.
In the training data there are 348 instances of class 1, which is roughly one six-
teenth of the data, making the data set quite imbalanced. The training data is split
into a training set consisting of 75% (4366 observation) of the original data, and a
validation set consisting of the remaining 25% (1456 data points). The models are
trained on the training set and their prediction performance on the validation set
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are measured using ROC and AUC. The training data is split randomly into the two
subsets and the same subsets are used for training and validating every model.

The evaluation set consist of 4000 data points where the target feature is left out.
The target features associated with the validation set are found in a separate data
set. In this data set there are 238 instances of class 1. Comparing the prediction to
the true target results provides a hit rate on how well the models perform.

3.2 Modelling
All implementation has been done in R (R Core Team, 2016). The train-function,
found in the caret-package (from Jed Wing et al., 2016), has been used for training
all the models except the naïve Bayes. The training has been done using 10-folded
cross validation repeated 5 times. The models are tuned over different parameters,
see below, and the model with the best parameters for each method is chosen by
using AUC as performance metric.

3.2.1 Training the models and tuning the parameters

This section explains how the different methods were trained and over which param-
eters they were tuned.

Training and tuning the generalized linear model

The generalized linear model is optimized by maximum likelihood using Fisher’s
scoring to find the optimal coefficients for all the features. There are no parameters
chosen by the user and no tuning is required.

Training and tuning naïve Bayes

The naïve Bayes is trained by calculating the class probabilities. There are no pa-
rameters chosen by the user and no tuning is required.

Training and tuning k-NN

To find the optimal k, the train-function is set to tune over k = 1, 3, 5, ..., 69.

Training and tuning decision tree

The decision tree is trained by finding the optimal splits using the Gini-index. No
parameters are chosen by the user, and no tuning is required.
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Training and tuning the random forest

The random forest is tuned over how many features are randomly chosen for the
splits in each tree m. The chosen interval is m = 1, ..., 50, therefore including the
recommended value m =

p
p ⇡ 9 from Section 2.6.2.

Training and tuning support vector machines

Three different SVMs are trained using three different kernel functions: linear, radial
basis and polynomial kernel functions. The parameter intervals are arbitrarily chosen
with consideration to typical values as well as keeping a manageable computational
time.

Using the linear kernel function, the only tunable parameter is the cost function C,
which is set to be C = 10

n for n = �20, ..., 5. The interval chosen for the linear
kernel is wider than for the other kernels due to its shorter computational time.

The radial basis kernel is tuned over � = dim(trainingset) ·2m for m = �5, ..., 5 and
the cost parameter C = 10

n for n = �5, ..., 5.

The polynomial kernel is tuned over the degree parameter d = 2, ..., 8 and cost
parameter C = 10

n for n = �5, ..., 5. The scaling parameter a = 1 is held constant
in all versions of the model.

Training and tuning the neural net

The neural nets are trained with 1 hidden layer, with a range from 10 to 120 nodes
and a stepping size of 10.

3.2.2 Validation

The best models are being validated on the validation data set by generating the
ROC-curves to compare the AUC and selecting the recommended threshold, as shown
in the ROC curves. The curves are generated by the pROC-package (Robin et al.,
2011). The models are then retrained using all the 5822 data training points and the
final models are applied to the untouched evaluation data set consisting of 4000 data
points. Comparing the predicted result with the true result generates a hit rate for
each of the models.

The models for the plots are trained on the training data set and used for predicting
the classes of the validation data set. When computing the hit rate the models have
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been retrained with the best tuned parameters and set to predict the classes of the
evaluation data set, given the selected threshold for each model.

3.3 Results
The results in this section are generated using the insurance data without any alter-
ations.

Figure 3.1: Generalized linear model:
ROC-curve for the generalized linear model on
unaltered data.

Figure 3.2: Naïve Bayes:
ROC-curve for Naïve Bayes on unaltered data.

26



CHAPTER 3. INSURANCE 3.3. RESULTS

Figure 3.3: k-Nearest Neighbors:
ROC-curve for k-nearest neighbors on unaltered
data.

Figure 3.4: Decision tree:
ROC-curve for the decision tree on unaltered
data.

Figure 3.5: Random forest:
ROC-curve for the random forest on unaltered
data.
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Figure 3.6: SVM with linear kernel:
ROC-curve for the support vector machine with
linear kernel function on unaltered data.

Figure 3.7: SVM with polynomial kernel:
ROC-curve for the support vector machine with
polynomial kernel function on unaltered data.

Figure 3.8: SVM with radial kernel:
ROC-curve for the support vector machine with
radial kernel function on unaltered data.
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Figure 3.9: Neural network:
ROC-curve for the neural network on unaltered
data.
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Figure 3.10: Plot of hit rate and amount of hits when increasing the amount of data
points chosen. The red line is Generalized linear model, the green line is Random
forest, the blue line is Decision tree and the black line is Neural network.
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AUC Hit rate
GLM 0.7308 149/1353=0.110

Naïve Bayes 0.6813 151/1626=0.093
k-nearest neighbors 0.6994 176/1908=0.092

Decision tree 0.7279 160/1617=0.099
Random forest 0.7493 120/1012=0.119

SVM - linear kernel 0.6751 238/4000=0.060
SVM - polynomial kernel 0.6437 236/3994=0.059

SVM - radial kernel 0.4827 238/4000=0.060
Neural network 0.7324 168/1761=0.096

Table 3.1: AUC and hit rate results for the different methods.

3.4 Analysis
Looking at the AUC for the different methods, we see that they all show similar
performance with an AUC around 0.7, see the left column in Table 3.1. The excep-
tion is the support vector machine with radial kernel function that seem to predict
worse than random guessing. The other two support vector machines perform bet-
ter but are still performing worse than the other methods. This suggests that the
chosen kernel functions are not ideal to use on the data set at hand. The machine
learning method that shows the best suggested performance is the random forest
with an AUC of 0.7493 followed by the neural network (0.7324) and the decision tree
(0.7279). The generalized linear model performs surprisingly well with an AUC of
0.7308.

Comparing the hit rates in Table 3.1, the random forest performs best with a hit
rate of 11.9%, closely followed by the generalized linear model with a hit rate of 11%.
The neural network and the decision tree do not seem to perform as well on the new
data with a hit rate just under 10%. The support vector machines perform poorly
on the new data with a hit rate of 6.0%, 5.9% and 6.0% respectively, which was to
be expected given their AUC.
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Rebalancing the training data

4.1 Theory
SMOTE stands for Synthetic Minority Over-sampling Technique. SMOTE is an over
sampling and under sampling method created by Chawla et al. (2011). Over sampling
and under sampling is used when the data set is not symmetric and the target class is
of minority. A data set is symmetric for when there are equally amount of data points
corresponding to both classes in a binary classification problem. When the data set is
not symmetric there is a majority class and a minority class. The method combines
under sampling of the majority class with an over sampling technique, using a k-NN
method, for the minority class. The under sampling part will randomly select data
points of the majority class and remove them from the data set. The over sampling
part uses the k-nearest minority class neighbors of a minority class data point to
create new data points on the lines joining the neighbors to the original point. The
new point is placed at a random distance on the line. If oversampling by 200% is
used then the two nearest neighbors are used to create new points for all minority
class data points, which will result in 300% as many minority class data points as
before. (Chawla et al., 2011)

4.2 Modelling
To examine the effects of the imbalance of the target feature we rebalance the
data with the SMOTE. Using the SMOTE -function provided by the DMwR-package
(Torgo, 2010), three new data sets are generated from the original data set. In the
new data sets the desired class, class 1, make up 30%, 50% and 70%, respectively.
These data sets are referred to as 30% SMOTE, 50% SMOTE and 70% SMOTE.
The generated data sets all contain 2620 data points. All models were applied to the
new data sets and tuned over the same parameters as in Section 3.2.1.
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4.3 Results
The results in this section are generated using the three data sets generated by the
SMOTE in Section 4.2. When training the final models for hit rate, the whole data
set is taken into account and rebalanced using the SMOTE. The ROC-curves for
every method is presented below, and a complete list of their respective AUC-values
is presented in Table 4.1.

Figure 4.1: Generalized linear model:
ROC-curves and corresponding AUC for the
generalized linear model on unaltered data
(black), 30% SMOTE data (red), 50% SMOTE
data (green) and 70% SMOTE data (blue).

Figure 4.2: Naïve Bayes:
ROC-curves and corresponding AUC for naïve
Bayes on unaltered data (black), 30% SMOTE
data (red), 50% SMOTE data (green) and 70%
SMOTE data (blue).
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Figure 4.3: k-Nearest Neighbors:
ROC-curves and corresponding AUC for k-
nearest neighbors on unaltered data (black),
30% SMOTE data (red), 50% SMOTE data
(green) and 70% SMOTE data (blue).

Figure 4.4: Decision tree:
ROC-curves and corresponding AUC for the
decision tree on unaltered data (black), 30%
SMOTE data (red), 50% SMOTE data (green)
and 70% SMOTE data (blue).

Figure 4.5: Random forest:
ROC-curves and corresponding AUC for the
random forest on unaltered data (black), 30%
SMOTE data (red), 50% SMOTE data (green)
and 70% SMOTE data (blue).

33



4.3. RESULTS CHAPTER 4. REBALANCING THE TRAINING DATA

Figure 4.6: SVM with linear kernel:
ROC-curves and corresponding AUC for the
support vector machine with linear kernel func-
tion on unaltered data (black), 30% SMOTE
data (red), 50% SMOTE data (green) and 70%
SMOTE data (blue).

Figure 4.7: SVM with polynomial kernel:
ROC-curves and corresponding AUC for the
support vector machine with polynomial ker-
nel function on unaltered data (black), 30%
SMOTE data (red), 50% SMOTE data (green)
and 70% SMOTE data (blue).

Figure 4.8: SVM with radial kernel:
ROC-curves and corresponding AUC for the
support vector machine with radial kernel func-
tion on unaltered data (black), 30% SMOTE
data (red), 50% SMOTE data (green) and 70%
SMOTE data (blue).
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Figure 4.9: Neural network:
ROC-curves and corresponding AUC for the
neural network with on unaltered data (black),
30% SMOTE data (red), 50% SMOTE data
(green) and 70% SMOTE data (blue).

AUC
Normal SMOTE
data 30% 50% 70%

GLM 0.7308 0.7258 0.7382 0.7184
Naïve Bayes 0.6813 0.6819 0.6701 0.6805

k-nearest neighbors 0.6994 0.6052 0.6600 0.6936
Decision tree 0.7279 0.6309 0.6265 0.6835

Random forest 0.7493 0.7246 0.7398 0.7307
SVM - linear kernel 0.6751 0.7360 0.7494 0.7254

SVM - polynomial kernel 0.6437 0.6351 0.6504 0.7031
SVM - radial kernel 0.4827 0.5242 0.5350 0.5236

Neural network 00000.73240000 00000.70200000 00000.74250000 00000.71000000

Table 4.1: AUC result for the different methods with the different data sets.
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Hits/Points over threshold (PoT) = Hit rate
Normal SMOTE
data 30% 50% 70%

GLM 149/1353 = 0.110 178/2045 = 0.087 164/1809 = 0.091 161/1795 = 0.090

Naïve Bayes 151/1626 = 0.093 162/1891 = 0.086 135/1520 = 0.089 157/1910 = 0.082

k-nearest neighbors 176/1908 = 0.092 125/1423 = 0.088 160/1893 = 0.085 30/285 = 0.105

Decision tree 160/1617 = 0.099 109/937 = 0.116 109/937 = 0.116 172/2020 = 0.085

Random forest 120/1012 = 0.119 97/717 = 0.135 64/406 = 0.158 46/224 = 0.205

SVM - linear kernel 238/4000 = 0.060 147/1392 = 0.106 168/1915 = 0.088 45/277 = 0.162

SVM - polynomial kernel 236/3994 = 0.059 117/1211 = 0.097 238/4000 = 0.060 101/862 = 0.117

SVM - radial kernel 238/4000 = 0.060 224/3716 = 0.060 227/3772 = 0.060 9/45 = 0.2

Neural network 168/1761 = 0.096 129/1399 = 0.092 130/1265 = 0.102 125/1284 = 0.097

Table 4.2: Hit rates for the best thresholds for the different methods with the different
data sets.

4.4 Analysis
When using SMOTE on the data, we see changes in the results. Most noticeable is
the performance of the SVM with linear kernel. When there is an equal amount of
zeros and ones in the target class, the AUC is 0.7494, which is as good as for the
random forest for the unaltered data. The 30% and 70% SMOTE data show similar
improvement in performance for the SVM with linear kernel. The SVM with poly-
nomial kernel shows an increased performance on the 70% SMOTE data set but not
for the 30% and the 50% SMOTE data. For the simpler methods, generalized linear
model, naïve Bayes and k-NN, the rebalanced data shows no real improvement from
the unaltered data set. The same goes for the random forest. However the decision
tree seems to perform worse on the rebalanced data than the original.

On most of the models, the hit rates for the best threshold of the models score higher
on the rebalanced data sets. For a majority of the models, the highest scored hit rate
is achieved when trained on the 70% SMOTE data set. The improved hit rates are
most apparent for the support vector machines whose hit rates for the 70% SMOTE
are several percentage points above the other three data sets. For this data set the
SVM with radial kernel score the second highest hit rate of 20%, only outperformed
by the random forest on the same data set which scores a hit rate of 20.5%. Most
noticeable is that the random forest score the highest hit rate for every data set,
regardless of how imbalanced the data might be. With the exception of the support
vector machines, the different methods seem to handle the skewness in the original
data rather well. The generalized linear model and neural network also gets higher
AUC for 50% SMOTE. The other models perform the same or worse.
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Chapter 5

Feature reduction

5.1 Modelling
When creating these models, the amount of data can be a problem as well. Since
this data set only contains 5822 data points, one can say that this is too few to make
predictions based on 85 features. Some of the input features may also be unnecessary
or contribute to adding noise to the predictions. To examine these potential effects
we reduce the number of input features used for making the predictions. From the
generalized linear model (GLM) we can retrieve the input parameters that has the
highest certainty, i.e. the lowest p-value. In this way 15 input features were selected
for each data set (the original set and the three rebalanced sets), and all models were
trained on the selected subset of input features. The 15 features chosen for the 4 data
sets can be found in Appendix B. The models are tuned over the same parameters
as in Section 3.2.1 with the exception of the random forest, where the parameter is
set over the interval m = 1, ..., 15 since the parameter has to be less than or equal to
the number of input parameters.

37



5.2. RESULTS CHAPTER 5. FEATURE REDUCTION

5.2 Results
The results in this section are generated using the original data with reduced input
features as well as the SMOTE data with reduced input features. The ROC-curves
for every method is presented below, and a complete list of their respective AUC-
values is presented in Table 5.1.

Figure 5.1: Generalized linear model:
ROC-curves and corresponding AUC for the
generalized linear model on unaltered data
(black), 30% SMOTE data (red), 50% SMOTE
data (green) and 70% SMOTE data (blue).

Figure 5.2: Naïve Bayes:
ROC-curves and corresponding AUC for naïve
Bayes on unaltered data (black), 30% SMOTE
data (red), 50% SMOTE data (green) and 70%
SMOTE data (blue).
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Figure 5.3: k-Nearest Neighbors:
ROC-curves and corresponding AUC for k-
nearest neighbors on unaltered data (black),
30% SMOTE data (red), 50% SMOTE data
(green) and 70% SMOTE data (blue).

Figure 5.4: Decision tree:
ROC-curves and corresponding AUC for the
decision tree on unaltered data (black), 30%
SMOTE data (red), 50% SMOTE data (green)
and 70% SMOTE data (blue).

Figure 5.5: Random forest:
ROC-curves and corresponding AUC for the
random forest on unaltered data (black), 30%
SMOTE data (red), 50% SMOTE data (green)
and 70% SMOTE data (blue).
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Figure 5.6: SVM with linear kernel:
ROC-curves and corresponding AUC for the
support vector machine with linear kernel func-
tion on unaltered data (black), 30% SMOTE
data (red), 50% SMOTE data (green) and 70%
SMOTE data (blue).

Figure 5.7: SVM with polynomial kernel:
ROC-curves and corresponding AUC for the
support vector machine with polyomial ker-
nel function on unaltered data (black), 30%
SMOTE data (red), 50% SMOTE data (green)
and 70% SMOTE data (blue).

Figure 5.8: SVM with radial kernel:
ROC-curves and corresponding AUC for the
support vector machine with radial kernel func-
tion on unaltered data (black), 30% SMOTE
data (red), 50% SMOTE data (green) and 70%
SMOTE data (blue).
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Figure 5.9: Neural network:
ROC-curves and corresponding AUC for the
neural network on unaltered data (black), 30%
SMOTE data (red), 50% SMOTE data (green)
and 70% SMOTE data (blue).

AUC
Normal SMOTE
data 30% 50% 70%

GLM 0.7382 0.7568 0.7167 0.6533

Naïve Bayes 0.7135 0.7220 0.6534 0.6487

k-nearest neighbors 0.7060 0.6232 0.6439 0.5921

Decision tree 0.7241 0.7063 0.6921 0.6002

Random forest 0.7529 0.7428 0.7081 0.6674

SVM - linear kernel 0.6516 0.7417 0.7177 0.5999

SVM - polynomial kernel 0.6392 0.6995 0.6661 0.5900

SVM - radial kernel 0.5110 0.5839 0.5812 0.5602

Neural network 00000.72630000 00000.70830000 00000.63510000 00000.58920000

Table 5.1: AUC result for the different methods with the different data sets with
reduced number of features.
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Hits/PoT=Hit rate
Normal SMOTE
data 30% 50% 70%

the generalized linear model 154/1327 = 0.116 127/1080 = 0.117 143/1307 = 0.109 158/1616 = 0.098

Naïve Bayes 176/1805 = 0.098 148/1653 = 0.090 182/2197 = 0.083 142/1685 = 0.084

k-nearest neighbors 158/1486 = 0.106 129/1385 = 0.093 110/1246 = 0.088 136/1643 = 0.083

Decision tree 160/1617 = 0.099 160/1617 = 0.099 158/1533 = 0.103 104/916 = 0.114

Random forest 152/1392 = 0.109 150/1385 = 0.108 161/1737 = 0.093 115/1208 = 0.095

SVM - linear kernel 238/4000 = 0.060 205/2846 = 0.072 172/2020 = 0.085 65/618 = 0.105

SVM - polynomial kernel 4/11 = 0.364 126/1382 = 0.091 116/1160 = 0.1 40/384 = 0.104

SVM - radial kernel 220/3790 = 0.060 23/149 = 0.154 23/194 = 0.085 31/258 = 0.120

Neural network 162/1764 = 0.092 119/1249 = 0.095 128/1494 = 0.086 107/1198 = 0.089

Table 5.2: Hit rates for the best thresholds for the different methods with the different
data sets with reduced number of features.

5.3 Analysis
Reducing the number of input features from 85 to 15 did not seem to improve the
prediction performance noticeably for any of the models. Looking at the AUC values
in Table 5.1, the models get similar performance as when training on all the avail-
able input features. Combining the reduced number of features and the SMOTE, the
models in most cases get a lower AUC value than before. Looking at the hit rates
in Table 5.2, the results coincide with the AUC values. For the normal data set the
simpler models show a slight improvement in both AUC values and hit rate scores
but perform worse on the SMOTE data sets. Even though there was not a significant
improvement in performance, there was an improvement in computational time for
the more time consuming methods, especially the neural net.

The p-value is different for the different data sets. There are only two features that
are in the top 15 in all four data sets, and these are number 4, average age of people
living in the customers zip code area, and number 59, contributions to fire policies.
Kendall’s tau of the two features are 0.519 and the Spearman’s rho is 0.581. Figure
5.10 show the histogram for the two variables plotted against each other.
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(a) (b)

(c) (d)

Figure 5.10: This figure contains plots of feature 4: average age of people living in
the customers zip code area, and feature 59: customers contributions to fire policies.
(a) represents the 3D-histogram for instances over feature 4 and 59. (b) represents
the same as (a) viewed in the direction of the z-axis. (c) represents the 3D-histogram
for the logarithm of instances plus one over feature 4 and 59. (d) represents the same
as (c) viewed in the direction of the z-axis.
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Chapter 6

Credit

6.1 Data
The data used in this chapter was provided by Yeh and Lien (2009) for data mining
research on predicting probability of credit defaults and contains information about
customers and their credit history. It was obtained through the web page of Lichman
(2013). The data consists of 30 000 data points with 24 features, including the binary
response variable (Yes = 1, No = 0) default payment.

Figure 6.1: Range and frequency of the credit limit of the customers.

45



6.2. MODELLING CHAPTER 6. CREDIT

The range of credit lies between 10 000 and 1 000 000 NT dollars and is presented
in Figure 6.1. A specification for all the features are found in Appendix C.

The data is split into three parts: a training set consisting of 60% (18 000 data
points) of the original data, a validation set consisting of 20% (6000 data points) of
the original data, and an evaluation set consisting of the remaining 20% (6000 data
points) of the original data. The evaluation data set is considered unknown and
not used for any training. Instead it is used to give an idea of how well the trained
models perform by producing a hit rate.

There is some imbalance in the credit data set as the target class makes up less than
a quarter of the data points. The 50% SMOTE approach is applied to the training
data set, resulting in 24 228 data points where 50% are of the target class.

6.2 Modelling
The modelling is done in the same way as in Chapter 3. The SMOTE 50% is also
used to create a small insight in how the machine learning methods work for another
data set. Since there are only 25 features and 30 000 data points there will not be
any feature reduction. Due to the low performance compared to computational time
of the support vector machines in earlier chapters, these methods are excluded from
this chapter for time saving purposes. The methods are tuned and trained in the
same way as in Section 3.2.1 over the following grids: for k-NN k = 1, 3, 5, . . . , 201;
for random forest m = 1, 2, 3, . . . , 20; for neural network there is 1 hidden layer with
a range of 5 to 250 nodes and a stepping size of 5.

6.3 Results
The results in this section are generated using unaltered data set and the 50%
SMOTE data set. When training the final models for the hit rate, the whole data
set is taken into account and rebalanced using the SMOTE. The ROC-curves for
every method is presented below and a complete list of their respective AUC-values
is presented in Table 6.1.
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Figure 6.2: Generalized linear model:
ROC-curves and corresponding AUC for the
generalized linear model on unaltered data
(black) and 50% SMOTE data (green).

Figure 6.3: Naïve Bayes:
ROC-curves and corresponding AUC for naïve
Bayes on unaltered data (black) and 50%
SMOTE data (green).

Figure 6.4: k-Nearest Neighbors:
ROC-curves and corresponding AUC for k-
nearest neighbors on unaltered data (black) and
50% SMOTE data (green).
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Figure 6.5: Decision tree:
ROC-curves and corresponding AUC for the de-
cison tree on unaltered data (black) and 50%
SMOTE data (green).

Figure 6.6: Random forest:
ROC-curves and corresponding AUC for the
random forest on unaltered data (black) and
50% SMOTE data (green).

Figure 6.7: Neural network:
ROC-curves and corresponding AUC for the
neural network on unaltered data (black) and
50% SMOTE data (green).
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AUC
Unaltered data 50% SMOTE

GLM 0.7260 0.7262

Naïve Bayes 0.7382 0.7277

k-nearest neighbors 0.7616 0.6281

Decision tree 0.6513 0.7109

Random forest 0.7725 0.7506

Neural network 0.7694 0.7186

Table 6.1: AUC result for the different methods with the different
data sets.

Hits/PoT=Hit rate
Unaltered data 50% SMOTE

GLM 698/1421 = 0.491 193/266 = 0.726

Naïve Bayes 738/1547 = 0.477 509/893 = 0.570

k-nearest neighbors 750/1700 = 0.441 494/1318 = 0.375

Decision tree 615/1082 = 0.568 486/743 = 0.654

Random forest 788/1737 = 0.454 542/897 = 0.604

Neural network 801/1782 = 0.449 543/907 = 0.599

Table 6.2: Hit rates for the best thresholds for the different methods
with the different data sets.
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6.4 Analysis
It can be seen in Table 6.1 that the the methods trained on the unaltered data are
often the best versions. It is only for the GLM and the decision tree that the SMOTE
version outperforms the unaltered version according to their AUC. Most noticeable
is the difference between the two versions of k-NN. The table also shows that the
best models are the random forest and after that the neural network, both with the
unaltered data. However, in Table 6.2 we see that it is the opposite for hit rates
at the best threshold. The models that train on SMOTE data show the best hit
rates. The winning model is the GLM followed by the decision tree, both with the
rebalanced data.
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Chapter 7

Discussion

7.1 Summary analysis

The method that shows the best overall performance is the random forest that score
among the top AUCs for every data set. Trying the method on new data, the random
forest scores the highest hit rates for the original and the rebalanced data sets and
among the top three for the reduced data sets. The more advanced methods, such as
the neural net and the support vector machines, do not perform as well as expected
on the data set at hand. Especially the support vector machines are performing
below expectations. This suggests that the three different kernel functions chosen
are not good choices for this particular data set. As for the neural net, the result
may be due to the difficulties of choosing the grid for the net. In this report neural
nets with only one hidden layer has been taken into consideration, and that layer
only consisted of numbers that could be divided by 5, up to 120 for the insurance
data and 50 for the credit data. A larger net with multiple layers may generate a
more accurate model but finding the optimal net for the particular data will be very
computationally expensive. The generalized linear model performs surprisingly well
on this data set, suggesting that there actually is some noticeable linearity in the
data set.

7.2 Discussion

We used the generalized linear model as a standard statistical example of how the
classification would be modelled. When comparing this model to the machine learn-
ing models, we see that it outperforms some but is inferior to some. When looking at
the AUC of the different models we see that we would have chosen the random forest
for unaltered data or the SVM-linear kernel for 50% SMOTE as the best model to
predict new customers. When comparing the hit rates of these models to the GLM,
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the random forest performs better but the SVM does not. When using the best
threshold to measure hit rate, these would not be the best models. We instead get
the best results for random forest and SVM radial for 70% SMOTE and the models
we chose would perform much worse. Our data set is very skewed and converges to
a hit rate of 0.0595 for all 4000 data points. Therefore the hit rates differ a lot de-
pending on how many samples are chosen. If we classify correctly the probability of
choosing a correct point decreases more than it increases when misclassifying. This
can be seen in Figure 4.1. The SVM-radial only chose 45 points and therefore the hit
rate is very high when nine of those were correct. When looking at the random forest
for the 70% SMOTE, 224 points are chosen and the 20.5 % hit rate is achieved. This
is a much better result since we chose 5 times as many points and even got a slightly
better hit rate. When going left in Table 3 the random forest models increase the
chosen number of data points and the hit rate decreases but it is still above all the
other model’s hit rates. The conclusion here is that the random forest for unaltered
data outperforms all the models choosing a lower amount of data points than 300
points. When comparing the models that chooses a higher amount of data points,
the GLM and the SVM with linear kernel for 30% SMOTE would be the best per-
forming models, but it is hard to compare with the models choosing lower amount
of data points since the hit rate is lower, as expected for a larger set of points. This
can be seen in Figure 4.1.

The previous discussion regards our best chosen threshold according to the true
positive-false positive relationship. The case that our best model would have the
best threshold that matches the problem we are trying to solve is highly unlikely.
The random forest for unaltered data chooses 1012 points, if the problem was to
choose 1012 points it would perform well but that might not be the case. Instead
when choosing the model, it is best to make the decision based on how many points
the problem needs. The best thresholds are not always at these points and it could be
valuable to analyze the ROC curves. If the ROC curve is very steep in the beginning,
it will perform well on a small amount of points and if it has a best threshold very
high in the curve this could be the best model to chose if many points are needed.
If the problem does not have any requirements, then the pure AUC number would
be the best performance measure.

When constructing the machine learning models, we have applied a straight forward
grid search to find the parameters. This is a rather crude and inefficient approach,
especially for the more complex models whose parameters in theory have no real
boundaries. It is likely that an approach using optimization techniques to retrieve
the model parameters would not only be more efficient but also generate more accu-
rate models. Since the choice of kernel function for the support vector machines is of
utmost importance, it is likely that a different kernel function would be a better fit
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for the data set than the three we have tried in this report. The difficulty of finding
the best model parameters is especially clear for the neural network as it is extremely
hard to analyze how the method operates in its nodes. Here we have chosen to cre-
ate neural nets with only one hidden layer and a sparse number of nodes, and they
perform in line with the other models. There is no certainty that a more complex net
with multiple hidden layers would improve the performance, but is likely since we
have only tried a small fragment of all possible net combinations. There is currently
a lot of research being done on neural networks, and we see a lot of potential for the
method to outperform other methods within the field of customer relations and risk
management.

Further improvements can be achieved by preprocessing the data by rebalancing
the ratio of the target class which we here have done using the SMOTE. For our
predictions this mainly improved the performance for the support vector machines,
especially with the linear kernel function. The other models show similar (or worse)
performance on the SMOTE data which suggests that they handle the skewed data
well. Even though the SMOTE did not improve our results substantially, it is a
valuable tool to use for data more skewed than ours. Reducing the dimensionality
of the input is an additional way of improving the efficiency of the model training
as well as the performance of the model. Here we used the 15 features that were
most important according to the generalized linear model. Once again we did not see
any particular improvement the original data set and neither on the SMOTE data
sets. Using another reduction approach, such as principal component analysis which
selects the features that contribute with the highest variance, may be a better choice.
The reduction can also be done by first applying unsupervised learning methods to
identify clusters within the data and apply supervised learning techniques on to these
clusters.

The credit data set showed that the trend is that the models picking a low number
of data points get the highest hit rates. Since this data set is also slightly skewed
this is expected, just as we saw for the insurance data. The random forest and the
neural network get the highest AUCs but they choose many points according to the
best threshold and therefore get much lower hit rate. Therefore the GLM gets the
best results. The SMOTE versions also gets much better hit rates than the unal-
tered ones even though they all have worse AUC values, which would cause problems
when applying this on a real problem. The k-NN SMOTE version performs much
worse than for the unaltered data, which is probably because SMOTE oversampling
is based on k-NN and that these new points are just helping to overfit the model to
the training set.

As for all applications of data mining, efficient computational time is of high priority.
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Even though this report has not explicitly taken computational time into account, it
has had a big part in the process of generating the model. As with most models, there
is a balance between the performance of the model and how much computational
time you can afford. We see in our results that the less complex methods, such as
naïve Bayes and k-nearest neighbors, show similar performance as the more complex
methods, such as neural nets and support vector machines, but their computational
time is significantly shorter. The computational time for our best performing method,
random forest, is slightly higher than the simplest methods but not even comparable
to the more complex ones. With respect to the overall performance over all the
different data sets, the random forests computational time is very small and this
consolidates its position as the most suitable method for this type data and problem.
The neural network and the support vector machines show promising results, which
suggest that wider net or a different kernel function may perform better, they are too
computationally expensive to recommend based on the results in this report alone.
In a broader financial perspective, the less complicated methods has the advantage
of being easy to interpret, which may be important in order to explain the process
to clients or for juridical restrictions which imposes transparency. In the extension,
machine learning methods can be applied to risk valuation and other fields that have
much more strict regulatory requirements.
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Chapter 8

Further work

Machine learning is applicable within many fields. There are several potential exten-
sions this report can have, both deeper and wider. There is much to be done within
the models we have chosen. One could focus on computational costs and how they
affect the work and how you can cut these using optimization methods.

One could go deeper into exactly how the methods classify and, for instance, use
different kernel functions for the support vector machines than we did.

One could manipulate data further than our research. By using different sampling
methods, component analysis and feature reduction. Other problems like missing
data could also be encountered, but our research does not include this problem.

More statistics to better validate the methods could be of use. Especially when trying
to model risk for regulatory purposes, one must have a way to show the regulators
that the model works.

From a insurance business perspective, it would be of great interest to not just target
the customers that are most likely to purchase an insurance, but out of these be able
to target those who are least risky. A potential way to do this is combining machine
learning methods with copulas.
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Appendix A

Insurance data

DATA DICTIONARY

Nr Name Desc r ip t i on Domain
1 MOSTYPE Customer Subtype see L0
2 MAANTHUI Number o f houses 1 � 10
3 MGEMOMV Avg s i z e household 1 � 6
4 MGEMLEEF Avg age see L1
5 MOSHOOFD Customer main type see L2
6 MGODRK Roman c a t h o l i c s e e L3
7 MGODPR Protes tant . . .
8 MGODOV Other r e l i g i o n
9 MGODGE No r e l i g i o n
10 MRELGE Married
11 MRELSA Liv ing toge the r
12 MRELOV Other r e l a t i o n
13 MFALLEEN S ing l e s
14 MFGEKIND Household without ch i l d r en
15 MFWEKIND Household with ch i l d r en
16 MOPLHOOG High l e v e l educat ion
17 MOPLMIDD Medium l e v e l educat ion
18 MOPLLAAG Lower l e v e l educat ion
19 MBERHOOG High s t a tu s
20 MBERZELF Entrepreneur
21 MBERBOER Farmer
22 MBERMIDD Middle management
23 MBERARBG Sk i l l e d l abou r e r s
24 MBERARBO Unsk i l l ed l abou r e r s
25 MSKA Soc i a l c l a s s A
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26 MSKB1 So c i a l c l a s s B1
27 MSKB2 So c i a l c l a s s B2
28 MSKC Soc i a l c l a s s C
29 MSKD Soc i a l c l a s s D
30 MHHUUR Rented house
31 MHKOOP Home owners
32 MAUT1 1 car
33 MAUT2 2 ca r s
34 MAUT0 No car
35 MZFONDS Nat iona l Health Se rv i c e
36 MZPART Private hea l th insurance
37 MINKM30 Income < 30.000
38 MINK3045 Income 30�45.000
39 MINK4575 Income 45�75.000
40 MINK7512 Income 75�122.000
41 MINK123M Income >123.000
42 MINKGEM Average income
43 MKOOPKLA Purchasing power c l a s s
44 PWAPART Contr ibut ion p r i va t e th i rd party insurance see L4
45 PWABEDR Contr ibut ion th i rd party insurance ( f i rms ) . . .
46 PWALAND Contr ibut ion th i rd party insurance ( a g r i c u l t u r e )
47 PPERSAUT Contr ibut ion car p o l i c i e s
48 PBESAUT Contr ibut ion d e l i v e r y van p o l i c i e s
49 PMOTSCO Contr ibut ion motorcyc le / s c oo t e r p o l i c i e s
50 PVRAAUT Contr ibut ion l o r r y p o l i c i e s
51 PAANHANG Contr ibut ion t r a i l e r p o l i c i e s
52 PTRACTOR Contr ibut ion t r a c t o r p o l i c i e s
53 PWERKT Contr ibut ion a g r i c u l t u r a l machines p o l i c i e s
54 PBROM Contr ibut ion moped p o l i c i e s
55 PLEVEN Contr ibut ion l i f e i n su rance s
56 PPERSONG Contr ibut ion p r i va t e acc ident in surance p o l i c i e s
57 PGEZONG Contr ibut ion fami ly a c c i d en t s in surance p o l i c i e s
58 PWAOREG Contr ibut ion d i s a b i l i t y in surance p o l i c i e s
59 PBRAND Contr ibut ion f i r e p o l i c i e s
60 PZEILPL Contr ibut ion sur fboard p o l i c i e s
61 PPLEZIER Contr ibut ion boat p o l i c i e s
62 PFIETS Contr ibut ion b i c y c l e p o l i c i e s
63 PINBOED Contr ibut ion property insurance p o l i c i e s
64 PBYSTAND Contr ibut ion s o c i a l s e c u r i t y insurance p o l i c i e s
65 AWAPART Number o f p r i va t e th i rd party insurance 1 � 12
66 AWABEDR Number o f th i rd party insurance ( f i rms ) . . .
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67 AWALAND Number o f th i rd party insurance ( a g r i c u l t u r e )
68 APERSAUT Number o f car p o l i c i e s
69 ABESAUT Number o f d e l i v e r y van p o l i c i e s
70 AMOTSCO Number o f motorcyc le / s c oo t e r p o l i c i e s
71 AVRAAUT Number o f l o r r y p o l i c i e s
72 AAANHANG Number o f t r a i l e r p o l i c i e s
73 ATRACTOR Number o f t r a c t o r p o l i c i e s
74 AWERKT Number o f a g r i c u l t u r a l machines p o l i c i e s
75 ABROM Number o f moped p o l i c i e s
76 ALEVEN Number o f l i f e i n su rance s
77 APERSONG Number o f p r i va t e acc ident insurance p o l i c i e s
78 AGEZONG Number o f fami ly a c c i d en t s in surance p o l i c i e s
79 AWAOREG Number o f d i s a b i l i t y in surance p o l i c i e s
80 ABRAND Number o f f i r e p o l i c i e s
81 AZEILPL Number o f sur fboard p o l i c i e s
82 APLEZIER Number o f boat p o l i c i e s
83 AFIETS Number o f b i c y c l e p o l i c i e s
84 AINBOED Number o f property insurance p o l i c i e s
85 ABYSTAND Number o f s o c i a l s e c u r i t y in surance p o l i c i e s
86 CARAVAN Number o f mobile home p o l i c i e s 0 � 1

L0 :

Value Label
1 High Income , expens ive ch i l d
2 Very Important P r ov i n c i a l s
3 High s t a tu s s e n i o r s
4 Af f l u en t s e n i o r apartments
5 Mixed s e n i o r s
6 Career and ch i l d c a r e
7 Dinki ’ s ( double income no k ids )
8 Middle c l a s s f am i l i e s
9 Modern , complete f am i l i e s
10 Stab le fami ly
11 Family s t a r t e r s
12 Af f l u en t young f am i l i e s
13 Young a l l American fami ly
14 Junior cosmopol i tan
15 Sen ior cosmopol i tans
16 Students in apartments
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17 Fresh masters in the c i t y
18 S ing l e youth
19 Suburban youth
20 Ethn i ca l l y d i v e r s e
21 Young urban have�nots
22 Mixed apartment dwe l l e r s
23 Young and r i s i n g
24 Young , low educated
25 Young s e n i o r s in the c i t y
26 Own home e l d e r l y
27 Sen i o r s in apartments
28 Re s i d en t i a l e l d e r l y
29 Porch l e s s s e n i o r s : no f r on t yard
30 Re l i g i ou s e l d e r l y s i n g l e s
31 Low income Catho l i c s
32 Mixed s e n i o r s
33 Lower c l a s s l a r g e f am i l i e s
34 Large family , employed ch i l d
35 V i l l a g e f am i l i e s
36 Couples with teens ’ Married with ch i ld ren ’
37 Mixed smal l town dwe l l e r s
38 Trad i t i ona l f am i l i e s
39 Large r e l i g i o u s f am i l i e s
40 Large fami ly farms
41 Mixed r u r a l s

L1 :

1 20�30 years
2 30�40 years
3 40�50 years
4 50�60 years
5 60�70 years
6 70�80 years

L2 :

1 Su c c e s s f u l hedon i s t s
2 Driven Growers
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3 Average Family
4 Career Loners
5 Liv ing we l l
6 Cru i s ing Sen i o r s
7 Ret i red and Re l i g i ou s
8 Family with grown ups
9 Conservat ive f am i l i e s
10 Farmers

L3 :

0 0%
1 1 � 10%
2 11 � 23%
3 24 � 36%
4 37 � 49%
5 50 � 62%
6 63 � 75%
7 76 � 88%
8 89 � 99%
9 100%

L4 :

0 f 0
1 f 1 � 49
2 f 50 � 99
3 f 100 � 199
4 f 200 � 499
5 f 500 � 999
6 f 1000 � 4999
7 f 5000 � 9999
8 f 10 .000 � 19 .999
9 f 20 .000 � ?
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Appendix B

Reduced features

Feature nr. p-value
47 5.886696 · 10�6

59 1.213239 · 10�2

76 3.124046 · 10�2

82 6.082598 · 10�2

57 8.859511 · 10�2

44 9.514496 · 10�2

80 9.687050 · 10�2

43 9.879094 · 10�2

22 1.000583 · 10�1

4 1.313617 · 10�1

78 1.380787 · 10�1

33 1.403834 · 10�1

32 1.540714 · 10�1

38 1.650137 · 10�1

40 1.667806 · 10�1

(a) Unaltered data.

Feature nr. p-value
4 1.952570 · 10�8

57 3.480886 · 10�7

78 1.300638 · 10�6

85 2.691749 · 10�5

47 5.169883 · 10�5

59 4.177716 · 10�4

82 5.770738 · 10�4

64 1.453220 · 10�3

55 2.794721 · 10�3

27 2.927923 · 10�3

76 3.617026 · 10�3

29 4.732140 · 10�3

6 7.521170 · 10�3

38 1.045566 · 10�2

18 1.228985 · 10�2

(b) 30% SMOTE data.

Table B.1: Top 15 features with lowest p-values using GLM. The marked feature
numbers are the ones which belong to the top 15 in every data set.
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Feature nr. p-value
85 2.533193 · 10�10

70 2.899989 · 10�9

64 2.996851 · 10�8

49 8.793468 · 10�8

4 5.493286 · 10�7

57 8.889321 · 10�6

78 3.499542 · 10�5

59 3.499542 · 10�5

65 8.374254 · 10�4

76 8.851775 · 10�4

32 9.802717 · 10�4

27 1.069206 · 10�3

68 1.431689 · 10�3

25 2.777576 · 10�3

33 2.818616 · 10�3

(a) 50% SMOTE data.

Feature nr. p-value
85 1.382454 · 10�8

4 9.867834 · 10�8

64 5.167611 · 10�7

59 1.829774 · 10�6

24 3.983315 · 10�6

29 5.245012 · 10�6

70 6.180093 · 10�6

80 6.286635 · 10�6

22 1.789698 · 10�5

65 2.010815 · 10�5

27 2.248124 · 10�5

49 3.324108 · 10�5

23 3.430147 · 10�5

44 4.979897 · 10�4

32 9.085402 · 10�4

(b) 70% SMOTE data.

Table B.2: Top 15 features with lowest p-values using GLM. The marked feature
numbers are the ones which belong to the top 15 in every data set.
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Appendix C

Credit data

This r e s ea r ch employed a binary va r i ab l e , d e f au l t payment (
Yes = 1 , No = 0) , as the re sponse va r i a b l e . This study
reviewed the l i t e r a t u r e and used the f o l l ow i n g 23
v a r i a b l e s as explanatory v a r i a b l e s :

X1 : Amount o f the g iven c r e d i t (NT do l l a r ) : i t i n c l ud e s both
the i nd i v i dua l consumer c r e d i t and h i s / her fami ly (
supplementary ) c r e d i t .

X2 : Gender (1 = male ; 2 = female ) .
X3 : Education (1 = graduate s choo l ; 2 = un i v e r s i t y ; 3 = high

schoo l ; 4 = othe r s ) .
X4 : Mar i ta l s t a tu s (1 = married ; 2 = s i n g l e ; 3 = othe r s ) .
X5 : Age ( year ) .
X6 � X11 : His tory o f past payment . We tracked the past

monthly payment r e co rd s ( from Apr i l to September , 2005) as
f o l l ow s : X6 = the repayment s t a tu s in September , 2005 ; X7
= the repayment s t a tu s in August , 2005 ; . . . ; X11 = the

repayment s t a tu s in Apri l , 2005 . The measurement s c a l e f o r
the repayment s t a tu s i s : �1 = pay duly ; 1 = payment de lay
f o r one month ; 2 = payment de lay f o r two months ; . . . ; 8
= payment de lay f o r e i gh t months ; 9 = payment de lay f o r

nine months and above .
X12�X17 : Amount o f b i l l statement (NT do l l a r ) . X12 = amount

o f b i l l statement in September , 2005 ; X13 = amount o f b i l l
statement in August , 2005 ; . . . ; X17 = amount o f b i l l

statement in Apri l , 2005 .
X18�X23 : Amount o f prev ious payment (NT do l l a r ) . X18 = amount

paid in September , 2005 ; X19 = amount paid in August ,
2005 ; . . . ; X23 = amount paid in Apri l , 2005 .
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