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Abstract
In recent years, the BaBar, Belle and LHCb experiments have observed an excess of B →
D(∗)τν decays compared to Standard Model predictions. In this thesis, we investigate if it
is possible to explain this excess with a two Higgs doublet model using the Froggatt-Nielsen
framework. Two Higgs doublet models allow new decays at tree-level and the Froggatt-Nielsen
mechanism gives an explanation to the large mass hierarchy amongst fermions. New particles
and concepts are introduced with the Froggatt-Nielsen mechanism, there among a new type of
U(1) charge, called flavon charge, and a symmetry breaking parameter ε ≈ 0.2. We express all
Yukawa couplings, fermion masses and elements of the Cabibbo-Kobayashi-Maskawa matrix
in terms of ε and the flavon charges. By considering physical constraints, such as limits from
flavour changing neutral currents, we determine how the flavon charges for the Higgs fields and
the Standard Model fermions can be chosen while satisfying these constraints. We investigate
how the B → D(∗)τν decays depends on ε and the flavon charges, and for valid sets of flavon
charges, we check if the observed excess can be explained. We find some sets where this could
be possible and conclude that further and more detailed studies are motivated.



Populärvetenskaplig sammanfattning
Teoretiska fysiker tycker verkligen om att bygga modeller av sin omvärld för att kunna göra
förutsägelser om den. En av de mest lyckade teoretiska modellerna är standardmodellen
inom partikelfysik. Med den har fysiker lyckats förklara och förstå hur universums allra min-
sta beståndsdelar fungerar. Den har till och med vid ett flertal tillfällen lyckats att förutsäga
existensen av nya partiklar, som sedan har hittats experimentellt med stora partikelacceler-
atorer. Det mest kända exemplet är såklart Higgspartikeln som förutsades 1964 och sedan
hittades 2012.

Däremot, har det vid allt fler tillfällen hänt att experimentella resultat avviker från vad
som kan förväntas utifrån standardmodellen. Ett sådant exempel som vi ska studera närmare
är sönderfallet av den så kallade B-mesonen. Mesoner är partiklar som är uppbyggda av två
kvarkar. Kvarkar i sin tur är en typ av elementarpartiklar, de allra minsta av naturens
byggstenar. B-mesonen, liksom alla andra mesoner, är instabil vilket innebär att den måste
sönderfalla. När den sönderfaller omvandlas en av kvarkarna till en lättare kvark med hjälp
av en så kallad boson, en annan typ av elementarpartikel. Sönderfall kan ske på olika sätt,
via olika sönderfallskanaler, vilket resulterar i olika slutprodukter. Med standardmodellen
går det att räkna ut hur vanligt ett sönderfall via en specifik sönderfallskanal bör vara. För
det särskilda sönderfallet av B-mesonen som vi är intresserade av har det uppmätts en större
mängd sönderfall än vad som har förutsagts med standardmodellen.

Det här uppmätta överskottet av B-mesonsönderfallet ska vi försöka förklara genom att
bygga ut standardmodellen. Detta ska vi göra genom att använda oss av en Tvåhiggsdubblett-
modell (2HDM). I standardmodellen finns det en Higgsdubblett vilket resulterar i en Hig-
gspartikel. I en 2HDM finns det, vilket hörs på namnet, två Higgsdubbletter, vilket istället
visar sig resultera i fem Higgspartiklar. En av de här nya partiklarna skulle i teorin även den
orsaka vårt B-mesonsönderfall utöver den mängd som redan sker enligt standardmodellen.
Genom att anpassa Higgspartiklarnas kopplingar till kvarkarna skulle det här extra bidraget
kunna få förutsägelser gjorda med 2HDM att stämma överens med experimentella data.

I arbetet använder vi oss av en speciell version av 2HDM som använder sig av den så
kallade Froggatt-Nielsen-mekanismen. Den introducerar en ny typ av laddning som partiklar
kan ha, precis som att de kan ha elektrisk laddning, som heter flavonladdning. Beroende
på vilka flavonladdningar de olika partiklarna har skulle de eventuellt kunna förklara var-
för kvarkarnas massor är så pass olika. Det nya 2HDM-bidraget till B-mesonsönderfallet
skulle också påverkas av flavonladdningarna. Vi undersöker om det finns uppsättningar av
flavonladdningar för de olika partiklarna som kan återskapa både rätt massrelationer bland
kvarkarna och samtidigt förutsäga samma mängd av sönderfallet som experimenten visar. Vi
kommer i slutändan fram till att detta faktiskt verkar vara möjligt.



Abbreviations

2HDM Two Higgs Doublet Model

CKM Cabibbo-Kobayashi-Maskawa

CP Charge-Parity

FCNC Flavour Changing Neutral Currents

FN Froggatt-Nielsen

RGE Renormalisation Group Equation

SM Standard Model

VEV Vacuum Expectation Value
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1 Introduction
The Standard Model (SM) of particle physics has since it was developed during the second
half of the 20th century been very successful [1]. One quality of the SM, which is part of
its success, is that particles have been proposed on theoretical ground and then later been
found experimentally. The prime example of this is of course the Higgs particle, which was
first proposed in the early 60’s and was eventually discovered at CERN in 2012 [1]. However,
despite its many great achievements, there are some phenomena within particle physics which
cannot be explained with the SM and also some experimental data which do not agree with
predictions. One such problem is that many predictions regarding the B-meson do not agree
with experimental data. Therefore, decays of the B-meson is often used as a probe for new
physics. Another such problem is that there might be more charge-parity (CP) violation
needed than allowed by the SM.

One attempt to solve some of the problems of the SM, including B-meson physics, is to
add one extra Higgs-doublet, i.e using a two Higgs doublet model (2HDM). Such a model
results in five Higgs bosons (as opposed to the one included in the SM): two CP-even neutral
scalars (h and H), one CP-odd neutral scalar (A) and two charged scalars (H±) [2]. These
extra Higgs particles can mediate more decays at tree-level, which possibly could explain
the data that do not correspond with the SM prediction, such as various B-meson decays.
However, one possible danger which follows is that flavour changing neutral currents (FCNC)
may occur at tree-level. From experiments, these are known to be severely constrained.

One motivation to why an extra Higgs doublet might be needed is because super-symmetric
theories require two Higgs doublets. Further, new sources of CP violation would be intro-
duced. We do, however, focus on a CP-conserving version of 2HDM.

In this thesis, we investigate one type of B-meson decays more closely, namely B →
D(∗)τν. Data from BaBar, Belle and LHCb suggest higher decay rates than the SM predictions
[3–5]. The decays combined give a 3.4σ deviation from the SM prediction [3]. In particle
physics, a deviation of 5σ is considered to imply a discovery of new physics beyond the SM.
However, a deviation of 3.4σ is large enough for it to be interesting to look for explanations
in new physics. We investigate the possibility of explaining the collected data with a 2HDM.

There are a few different types of 2HDMs depending on which symmetries one chooses to
impose. Various attempts to explain the data with models of the different standard types of
2HDMs (these are explained in section 3.2) have been made, see for example [6]. We do not use
any of the four standard types, but instead use the Froggatt-Nielsen (FN) mechanism which
was first proposed by C.D. Froggatt and H.B. Nielsen in 1978 [7]. The concept was introduced
as an attempt to explain the large mass hierarchy amongst the quarks. It is also interesting
since it at the same time gives a theoretical explanation to the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, which describes how strongly different quarks mix.

In order for the FN mechanism to work, new heavy fermions must be introduced. Also,
a scalar field called flavon, with a corresponding flavon charge originating from a U(1) gauge
symmetry, must be introduced. Each of the SM fermions and the two Higgs doublets of the
2HDM all have flavon charges, which affect the couplings in decays. We investigate in what
manner these flavon charges can be chosen while still satisfying various physical constraints
which are imposed. Finally, we examine how these charges affect the couplings that enter the
B → D(∗)τν-decays. We mainly explore how the couplings are affected at order of magnitude
to find out if it is at all possible to explain the decays with this model. Both the quark-sector
and the lepton-sector are affected by the Froggatt-Nielsen mechanism, but we mainly focus
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on the quark-sector.
The report is structured as follows: First, the Standard Model Brout-Englert-Higgs mech-

anism is briefly revised in section 2. Then the general two Higgs doublet model is explained
in section 3 followed by an account of the Froggatt-Nielsen mechanism in the SM and how it
is extended to 2HDM in section 4. This is followed by an discussion about which constraints
that need to be imposed in section 5 and in section 6 we explore if there exists any sets of
flavon charges which satisfy the restrictions. After this, in section 7, the B → D(∗)τν-decays
are investigated and we will see if they may be explained with a 2HDM in the FN framework
(FN-2HDM).
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2 The Standard Model Brout-Englert-Higgs mechanism
The Brout-Englert-Higgs mechanism1 is the way which bosons and fermions of the SM acquire
mass. The mechanism is described in detail in various advanced undergraduate textbooks as
for example [1] and [8]. Here, we will only give a brief review of the essential parts.

We start with a single Higgs field Φ, which is a doublet under the SU(2)L gauge symmetry
and which we assign hypercharge +1,

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (2.1)

The Lagrangian can be expressed as

L = (∂µΦ)
†(∂µΦ)− V (Φ), (2.2)

where the first term is the kinetic term and the second is the potential

V (Φ) = µ2Φ†Φ+ λ(Φ†Φ)2. (2.3)

In order to obtain finite minima for the potential, λ has to be positive. On the other hand,
µ2 may be either positive or negative. There will be a single minimum at φ+ = φ0 = 0 if
µ2 > 0. If instead µ2 < 0, there will be an infinite set of non-zero minima fulfilling

Φ†Φ =
1

2

(
φ2
1 + φ2

2 + φ2
3 + φ2

4

)
= −µ2

2λ
=

v2

2
. (2.4)

All the minima are equally valid but we have to choose one to continue. We choose

〈Φ〉 = 1√
2

(
0

v

)
. (2.5)

Choosing one minimum as the vacuum expectation value (VEV) leads to that the symmetry
is broken, something which is called spontaneous symmetry breaking. One can find that
v ≈ 246GeV from experiments. Particles correspond to excitations of the field and can thus
be investigated by considering a perturbation around the minimum

Φ(x) =
1√
2

(
φ1(x) + iφ2(x)

v + η(x) + iφ4(x)

)
. (2.6)

If we were to write out the Lagrangian of equation (2.2) using (2.3) and (2.6), we would find
that φ1, φ2 and φ4 would be the massless Goldstone bosons for a global symmetry. Choosing
to make a gauge transformation into unitary gauge, the Goldstone bosons will be absorbed
and give the longitudinal degrees of freedoms to the physical gauge fields W± and Z0, which
sometimes is called that the Goldstone bosons get eaten by the physical fields. Finally, we
are left with

Φ(x) =
1√
2

(
0

v + h(x)

)
, (2.7)

1Most commonly only called just the Higgs mechanism but Robert Brout and François Englert together
proposed it independently from Peter Higgs and should thus be included in the name. We will, however, only
call it the Higgs mechanism for compactness. Only Englert and Higgs shared the Nobel prise in 2013 since
Brout passed way in 2011.
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fL

mF

fR

Figure 1: The process where fermions acquire mass. The fermions switch chirality upon interacting
with the Higgs VEV. The coupling strength is the fermion mass mf . All the Feynman diagrams in
this work are drawn with TikZ-Feynman [9].

where η(x) is now called h(x), which is the physical Higgs boson.
The fermion masses can be found by considering the so-called Yukawa Lagrangian.2 We

initially only consider the Yukawa Lagrangian for the first generation of fermions

−LY = Q̄Lg
d
Y ΦdR + Q̄Lg

u
Y Φ̃uR + L̄Lg

`
Y ΦeR + h.c. , (2.8)

where QL is the left-handed SU(2) quark doublet, LL is the left-handed lepton doublet and
dR, uR and eR are the right-handed singlets. gu,d,`Y are coupling constants called Yukawa
couplings. In order to give mass to the up quark, the conjugate is also introduced such that

Φ̃ = iσ2Φ
∗, (2.9)

which also is an SU(2) doublet but with hypercharge −1 and where σ2 is the second Pauli
matrix. Writing out the Yukawa Lagrangian (2.8) using the doublet (2.7) yields

−Ly =
gdY√
2
v(d̄LdR + d̄RdL) +

guY√
2
v(ūLuR + ūRuL) +

geY√
2
v(ēLeR + ēReL)

+
gdY√
2
h(d̄LdR + d̄RdL) +

guY√
2
h(ūLuR + ūRuL) +

geY√
2
h(ēLeR + ēReL).

(2.10)

The terms with two fields, i.e. those on the first line of (2.10), corresponds to the mass terms
where the constants in front of the fields are the mass. Hence, fermions gain mass when they
change chirality by interacting by a non-zero VEV, as illustrated in figure 1, where the mass
is

mF =
v√
2
gFY , (2.11)

where F is used to denote either of u, d and `. The terms with three fields, i.e. those on
the second line of equation (2.10), corresponds to interactions with the Higgs field which are
proportional to the mass mF .

This reasoning can of course also be extended to include the second and third generation of
fermions as well. For all three generations, the Lagrangian in equation (2.8) can be written in a
similar manner but letting QL, dR, uR, LL and eR be three-dimensional vectors in generation

2We assume that the neutrinos gain their mass from another mechanism and they are considered massless
in this framework.
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space instead (these are properly defined in section 3.1). Then the Yukawa couplings gFy
would instead need to be 3× 3 matrices Y F . In order to obtain the mass eigenstates for the
quarks, one would need to diagonalise Y u,d by a bi-unitary transformation using the unitary
matrices V u,d

L,R, see appendix A for details about the transformation. The quark masses are
then given by

mu,d
i =

v√
2

(
V u,d
L Y u,dV u,d†

R

)
ii
, (2.12)

where i = {1, 2, 3} corresponds to {u, c, t} for the up-sector and {d, s, b} for the down-sector.
As a result of the bi-unitary transformation, interactions between up-type quarks and down-
type quarks will include a factor V u

L V d†
L =̂V CKM which is the definition of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix [10]. This is explored more in later sections. The same
reasoning can be extended to the lepon-sector, but since the neutrinos are assumed to be
massless, the PMNS matrix does not enter.
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3 The two Higgs doublet model
In order to find answers which the SM cannot provide, it is natural to endeavour to obtain
these by modifying the SM. One of the simplest extensions to the SM which can be made
is to add one more Higgs doublet, identical to the original. This extension is called the two
Higgs doublet model and a comprehensive review of it can be found in [2]. Both the Higgs
doublets are complex SU(2) doublets which are singlets under U(1) with hypercharge +1 and
also singlets in SU(3) colour space. After adding this extra doublet, the Brout-Englert-Higgs
mechanism will work in the same way as in the SM as described in section 2 but extended to
both the doublets. The potential will become more complicated. The simplest form of the
general potential becomes with the Higgs doublet Φ1 and Φ2

V = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 − (m2

12Φ
†
1Φ2 + h.c.)

+
1

2
λ1

(
Φ†
1Φ1

)2
+

1

2
λ2

(
Φ†
2Φ2

)2
+

1

2
λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+

1

2
λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+

{
1

2
λ5

(
Φ†
1Φ2

)2
+
[
λ6

(
Φ†
1Φ1

)
+ λ7

(
Φ†
2Φ2

)](
Φ†
1Φ2

)
+ h.c.

}
,

(3.1)

where m2
11,m

2
22 and λ1−4 are real numbers and the other parameters, m2

12 and λ5−7, are com-
plex. By minimising the potential, the VEVs can be obtained. After spontaneous symmetry
breaking, we choose VEVs for each doublet such that

〈Φ1〉 =
1√
2
eiθ1

(
0

v1

)
〈Φ2〉 =

1√
2
eiθ2

(
0

v2

)
. (3.2)

The complex phases are the CP-violating parameters but since we are not including CP-
violation, we set θ1 = θ2 = 0.

All bases are equivalent, hence we are free to use whichever basis we like. This basis,
where both the Higgs doublets obtain VEVs, is called the generic basis. Another useful basis
is the one where only one of the doublets obtains a VEV, which is known as the Higgs basis.
One obtains this basis by a rotation of the generic basis with an angle β:(

H1

H2

)
=

(
cosβ sinβ

− sinβ cosβ

)(
Φ1

Φ2

)
, (3.3)

with corresponding VEVs

〈H1〉 =
1√
2

(
0

v

)
〈H2〉 =

(
0

0

)
, (3.4)

where
tanβ =

v2
v1

, v2 = v21 + v22. (3.5)

Just as in the SM, v ≈ 246GeV and by convention β ∈ [0, π/2] is chosen.
Each of the two doublets consists of four independent fields, which gives a total of eight

degrees of freedom. The doublets can be written in a number of different ways but they will
of course all render in the same physical fields in the end. One way to write them is

Φ1 =
1√
2

( √
2(G+cβ −H+sβ)

v1 + φ1 + i(G0cβ −Asβ)

)
, Φ2 =

1√
2

( √
2(G+sβ +H+cβ)

v2 + φ2 + i(G0sβ +Acβ)

)
, (3.6)
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where cβ=̂ cosβ and sβ=̂ sinβ. Three of the eight fields, G± and G0, would have been massless
Goldstone bosons but they can be gauged away. The fields φ1 and φ2 are not the physical
fields. The two CP-even physical Higgs field (the lighter h and heavier H) can be obtained
by the linear combination (

H

h

)
=

(
cosα sinα

− sinα cosα

)(
φ1

φ2

)
(3.7)

of φ1 and φ2 where α is the angle between the states. Finally, we can express the Higgs
doublets in the Higgs basis with only the physical fields by inserting equation (3.6) and (3.7)
into (3.3) and gauging away the Goldstone bosons, which yields

H1 =
1√
2

(
0

v +Hcβ−α + hsβ−α

)
, H2 =

1√
2

( √
2H+

−Hsβ−α + hcβ−α + iA

)
. (3.8)

The SM Higgs boson is identified as the linear combination HSM = Hcβ−α+hsβ−α. If either
cβ−α ≈ 1 or sβ−α ≈ 1, then H respectively h can be associated with the SM Higgs boson.

To summarise, we have by introducing one extra Higgs doublet to the SM obtained five
Higgs fields instead of one. These are: two neutral CP-even scalar fields h and H, one neutral
CP-odd scalar field A and two charged scalar fields H±.

3.1 The Yukawa sector

In the last section, we arrived at the five Higgs fields. In this section we will see how fermions
obtain masses and what new interactions are possible with the extra fields. Since the mass
differences between neutrinos and other fermions are vast, we assume that the neutrinos
obtain their mass from another mechanism and they are considered to be massless in this
framework, just as we did in the SM.

In order to get a compact notation which is easy to manage, we define the three-dimensional
vectors in generation space, where we put the left-handed flavour SU(2) doublets in one vector
each for quarks and leptons:

QL =

((
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

))T

, LL =

((
νeL

e−L

)
,

(
νµL

µ−
L

)
,

(
ντ L

τ−L

))T

. (3.9)

The right-handed singlets are put in three different vectors but without any right-handed
neutrinos since they are assumed not to be present:

UR = (uR, cR, tR)
T , DR = (dR, sR, bR)

T , ER =
(
e−R, µ

−
R, τ

−
R

)T
. (3.10)

To be able to give mass to the up-type quarks, we need the complex conjugate of Φ which is
defined the same way as in the SM, see equation (2.9).

Now, we can express the Yukawa Lagrangian in the generic basis where Y F
a is the Yukawa

coupling matrix for each sector (F = u, d, `) that couples to Higgs doublet Φa for a = 1, 2

−Lgen
Y = Q̄LY

d
1 Φ1DR + Q̄LY

u
1 Φ̃1UR + L̄LY

`
1Φ1ER

+Q̄LY
d
2 Φ2DR + Q̄LY

u
2 Φ̃2UR + L̄LY

`
2Φ2ER + h.c. .

(3.11)
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The Yukawa Lagrangian is equally valid if it is expressed in another basis. By constructing
the linear combination (

κF0
ρF0

)
=

(
cosβ sinβ

− sinβ cosβ

)(
Y F
1

Y F
2

)
(3.12)

for the Yukawa matrices, the Yukawa Lagrangian can be expressed in the Higgs basis as

−LHiggs
Y = Q̄Lκ

d
0H1DR + Q̄Lκ

u
0H̃1uR + L̄Lκ

`
0H1LR

+Q̄Lρ
d
0H2DR + Q̄Lρ

u
0H̃2UR + L̄Lρ

`
0H2LR + h.c. .

(3.13)

In its current form, in equation (3.13), the Yukawa Lagrangian is expressed in the fermion’s
weak eigenstates, but to generate the fermion masses it needs to be written in the mass
eigenstates. This can be done by a bi-unitary transform of κF0 with the unitary matrices V F

L

and V F
R just as in the SM:

κF = V F
L κF0 V

F †
R , (3.14)

ρF = V F
L ρF0 V

F †
R . (3.15)

The matrices κF are now diagonal and its elements correspond to the fermion masses:

mF
i = MF

ii =
v√
2
κFii , (3.16)

where MF are the mass matrices and i = {1, 2, 3} are the generation indices which map in
the same way as introduced in section 2 with the extension {e, µ, τ} for the lepton-sector.
However, the same transformation does generally not diagonalise two different matrices and
thus ρF will not be diagonal in general. If this is the case, then the non-zero off-diagonal
elements will cause FCNC which need to be constrained, something we will investigate closer
later. For everything to be consistent, also the weak currents need to be transformed by the
same matrices, i.e. they need to be rewritten in the mass eigenstates. In an attempt to keep
the expressions as clean as possible we redefine the notation

V F
L,RFL,R → FL,R, F̄L,RV

F †
L,R → F̄L,R. (3.17)

Before we attack the Lagrangian in equation (3.13) in full detail, we explore what happens
for a simplified field Hi = (Ai, Bi)

T in the down-sector. First, we expand QL and define
DL and UL in corresponding way as DR and UL in (3.10), i.e. DL = (dL, sL, bL)

T and
UL = (UL, cL, tL)

T , which yields

−Ld = D̄L(κ
d
0B1 + ρd0B2)DR + ŪL(κ

d
0A1 + ρd0A2)DR + h.c. . (3.18)

The next step is to insert identity matrices V u,d
L,RV

u,d†
L,R such that all weak eigenstates transforms

into mass eigenstates, such as

−Ld = D̄LV
d†
L V d

L (κ
d
0B1 + ρd0B2)V

d†
R V d

RDR + ŪLV
u†
L V u

L V d†
L V d

L (κ
d
0A1 + ρd0A2)V

d†
R V d

RDR + h.c.

→ D̄L(κ
dB1 + ρdB2)DR + ŪLV

u
L V d†

L (κdA1 + ρdA2)DR + h.c. , (3.19)

where we use equation (3.17) to obtain the second line. All the inserted matrices were used
to transform the weak eigenstates into the mass eigenstates except for the remnant V u

L V d†
L ,

from which we define
V CKM =̂V u

L V d†
L , (3.20)
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which we recognise from section 2 as the CKM matrix.
If we now attack the complete Yukawa Lagrangian (3.13) in the same manner but with

the actual Higgs fields (3.8), and we use the projection operators PR/L = (1±γ5)/2, we finally
obtain

−LY =
1√
2
D̄
[
κdcβ−α −

(
ρdPR + ρd†PL

)
sβ−α

]
DH

+
1√
2
D̄
[
κdsβ−α +

(
ρdPR + ρd†PL

)
cβ−α

]
Dh+

i√
2
D̄
[
ρdPR − ρd†PL

]
DA

+
1√
2
Ū
[
κucβ−α −

(
ρuPR + ρu†PL

)
sβ−α

]
UH

+
1√
2
Ū
[
κusβ−α +

(
ρuPR + ρu†PL

)
cβ−α

]
Uh− i√

2
Ū
[
ρuPR − ρu†PL

]
UA

+
1√
2
L̄
[
κ`cβ−α −

(
ρ`PR + ρ`†PL

)
sβ−α

]
LH

+
1√
2
L̄
[
κ`sβ−α +

(
ρ`PR + ρ`†PL

)
cβ−α

]
Lh+

i√
2
L̄
[
ρ`PR − ρ`†PL

]
LA

+
(
Ū
[
V CKMρdPR − ρu†V CKMPL

]
DH+ + ν̄ρ`PRLH

+ + h.c.
)
.

(3.21)

Note that since we have assumed massless neutrinos there is no mixing amongst them and
their weak states and mass states are the same and thus we do not get the PMNS matrix.

3.2 Different types of 2HDMs

From the Yukawa Lagrangian in equation (3.21), it is evident that FCNC will arise at tree-
level if ρF is not diagonal. These could be a problem if they are larger than experiments
allow. There exists a few different approaches to avoid too large FCNC. One way is to use
the Glashow-Weinberg criterion [11]. The criterion is that if particles from one fermion-sector
(up, down and lepton) only couple to one of the Higgs doublets, then the FCNC at tree-level
vanish. This can be achieved by imposing a Z2-symmetry, i.e. that the potential in equation
(3.1) and the Lagrangian in equation (3.9) are invariant under transformations Φ1 → −Φ1,
Φ2 → Φ2, QL → QL, LL → LL and FR → ±FR. For this to hold for the potential, then
λ6 = λ7 = m12 = 0. However, if m12 6= 0, the symmetry will still be recovered for large Φ
which is called that the Z2-symmetry is softly broken.

The Z2 symmetry must as mentioned, also be conserved for the Yukawa Lagrangian. By
convention, one most often chooses the up-type quarks to couple to Φ2 and thus UR → +UR.
That leaves four possible combinations of how the down-type quarks and leptons couple and
this results in that ρF are proportional to κF . Since these Z2-symmetry types of 2HDMs are
not the focus of this thesis, this will not be shown here but it can be read about in [12]. The
four types are summarised in table 1.

It is also possible to use generic models where fermions from the different sectors all may
couple to both Φ1 and Φ2. The most common general model is the so-called type III. 3 A
2HDM where the so-called Froggatt-Nielsen mechanism is imposed is one example of a type
III model and it is the approach we use. Type III models allow FCNC at tree-level, which

3Type Y is sometimes also called type III which should not be confused with the generic type III.

9
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Table 1: The four standard types of 2HDMs with Z2-symmetry. For each type, it is stated which
doublet fermions of each sector couples to and if FR are odd (-1) or even (+1) under Z2-transformation
when Φ1 is chosen to be odd and Φ2 even. The table also shows how ρF depend on κF .

Type U D L ρu ρd ρ`

I Φ2/+ Φ2/+ Φ2/+ κu cotβ κd cotβ κ` cotβ

II Φ2/+ Φ1/− Φ1/− κu cotβ −κd tanβ −κ` tanβ

Y Φ2/+ Φ1/− Φ2/+ κu cotβ −κd tanβ κ` cotβ

X Φ2/+ Φ2/+ Φ1/− κu cotβ κd cotβ −κ` tanβ

means that the off-diagonal elements of ρF must be constrained. When constraining ρF , it is
convenient to quantise the elements with dimensionless parameters. One way to do this is to
use the Cheng-Sher ansatz [13]. This ansatz parametrises the elements of ρF according to

ρFij = λF
ij

√
2mF

i m
F
j

v2
, (3.22)

where mF
i and mF

j are the masses of the of fermion i and j in sector F . The original
proposition by Cheng and Sher was that λij are dimensionless coefficients of O(1) for all
fermion-sectors. However, in later years experiments have put more severe constraints on the
off-diagonal elements in the down sector such that λd

i 6=j . 0.1 [14]. This limitation of λij

suppress the off-diagonal elements of ρF such that the FCNC become small enough.

10



E. Andersson The Froggatt-Nielsen mechanism

4 The Froggatt-Nielsen mechanism
The Froggatt-Nielsen mechanism was first proposed by C.D. Froggatt and H.B. Nielsen in 1978
and was an attempt to explain the large mass ratios between fermions [7]. The mechanism is
based on the assumption that it would be natural if all couplings are of order one. In order to
achieve this, a new property, flavon charge, is introduced in such a way that the mass ratios
between fermions depends on the difference of the flavon charges. If this can be achieved with
small flavon charge differences, it can be considered to be natural. If large differences are
required one has simply moved the problem of unnaturalness from the fermion masses to the
flavon charges. In this section, we first explain how the FN mechanism works in the SM and
then we describe how it is extended to fit within the 2HDM.

4.1 The Froggatt-Nielsen mechanism in the Standard Model

The FN mechanism works through new concepts which are introduced beyond the SM. First
a new scalar field S, a so-called flavon, which is a SM singlet with no weak hypercharge, is
introduced. An U(1) symmetry, flavon symmetry, with its associated flavon charge follows
and it is defined that S has the flavon charge -1. This symmetry also affects the SM particles,
which means that all of them obtain flavon charge. In a similar manner as for the Higgs
mechanism, the flavour symmetry can be spontaneously broken, which gives the flavon a
non-zero VEV 〈S〉.

Further, Froggatt and Nielsen assumed the existence of a set of heavy fermions, which we
call Froggatt-Nielsen fermions. These are all assumed to have masses at the same energy scale
MFN which makes the SM fermions to appear massless in comparison. All the SM fermions
have their corresponding sets of FN fermions with the same quantum number except mass
and flavon charge.4 The FN fermions acquire their mass through interactions with some
unidentified Higgs scalar Ĥ that has zero flavon charge. Just as in the SM Higgs mechanism,
the FN fermions switch chirality when interacting with the non-zero VEV of Ĥ. The FN
fermions can only interact with SM fermions through couplings to either the flavon or the SM
Higgs doublet according to the diagram in figure 2.

Φ, S

f

FFN

Figure 2: Vertex between a SM fermion and a FN fermion. They can interact either via the Higgs
doublet or the flavon.

A crucial point of the FN mechanism is that left-handed fermions and their right-handed
counterparts can have different flavon charges. When a FN fermion interacts with Ĥ, it
changes chirality and when it interacts with the flavon, it changes both chirality and flavon

4This means that FN fermions could be incorporated in some super-symmetric theories which is one reason
to why the FN mechanism is interesting to investigate.
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charge. Since S has flavon charge -1, the outgoing FN fermion will have one unit lower flavon
charge than the incoming. Hence, the process that gives mass to a FN fermion and conserves
its chirality must be a FN fermion interacting with both Ĥ and S, as shown in figure 3.

Ĥ S

FFN
R FFN

L FFN
R

′

Figure 3: An incoming right-handed FN fermion first switches chirality via Ĥ and then again via S
which also lower its flavon charge by one unit.

For energies much smaller that MFN , we can from this diagram (figure 3) define a sym-
metry breaking parameter ε

ε=̂
〈S〉
MFN

, (4.1)

which will enter diagrams later. For a SM fermion that has different flavon charge for the
left-handed and right-handed versions we can, by using the processes of figures 2 and 3,
construct a diagram which gives mass to the SM fermion and conserves the flavon charge as
is illustrated in figure 4.

fL,i

Ĥ S Ĥ S

fR,j

FFN
R FFN

L FFN
R

′

Φ

Figure 4: The Froggatt-Nielsen mechanism. An extended version of the Higgs mechanism where a
left-handed SM fermion switches chirality after interaction with the Higgs field. In order to conserve
flavon charge, this happens via a chain of FN fermions interacting with Ĥ and S.

The diagram in figure 4 can for an incoming left-handed fermion fL,i and outgoing right-
handed fermion fR,j be expressed as the effective operator

f̄R,jY
F
ij ΦSMfL,i, Y F

ij = gFijε
nij , (4.2)

where nij is the number of times the process of figure 3 is repeated and gFij are random
complex numbers of order 1 [7].

In order to determine nij , suppose that an incoming left-handed quark qi,L has flavon
charge c + bi and that an outgoing right-handed quark qj,R has flavon charge c − aj where
c, bi, aj ∈ N. The mechanism needs to conserve the flavon charge, hence, nij must depend
on the flavon charge difference between qi,L and qj,R. However, since the Higgs field does not
specifically have zero flavon charge, it also affects nij . The dependence on the Higgs field is
different for the down- and up-sector since it is the complex conjugate of the Higgs doublet
which couples to the up-sector and the non-conjugate that couples to the down-sector. This

12
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means that the flavon charge of the Higgs doublet enters with opposite signs. Additionally,
due to that the left-handed quarks of the same generation are in the same SU(2) doublet,
they will have the same flavon charge while the right-handed may have different. If we assign
the Higgs doublet flavon charge R then, to conserve the flavon charge, nij must be

nij = |c+ bqi − (c− adj )−R| = |bqi + adj −R|, (4.3)

for the down-sector and

nij = |c+ bqi − (c− auj ) +R| = |bqi + auj +R|, (4.4)

for the up-sector. The absolute signs are included because nij is the number of iterations,
which cannot be negative. The same thing can be done for the lepton-sector. We assign
charge d+ b`i for left-handed leptons and d− a`j for right-handed which gives

nij = |d+ b`i − (d− a`j)−R| = |b`i + a`j −R|. (4.5)

From equation (4.2)-(4.5), we can now formulate the Yukawa matrices as

Y u
ij = guijε

|bqi+auj −R|,

Y d
ij = gdijε

|bqi+adj+R|,

Y `
ij = g`ijε

|b`i+a`j+R|.

(4.6)

4.2 The Froggatt-Nielsen mechanism extended to 2HDM

It does not take much modification to extend the Froggatt-Nielsen mechanism to work for a
2HDM. In this framework, the FN fermions can couple to both the Higgs doublets Φ1 and Φ2

which are assigned flavon charges R1 and R2 respectively. Thus the Yukawa matrices can be
parametrised as

(Y u
1,2)ij ∼ ε|b

q
i+auj +R1,2|,

(Y d
1,2)ij ∼ ε|b

q
i+adj−R1,2|,

(Y `
1,2)ij ∼ ε|b

`
i+a`j−R1,2|,

(4.7)

where ∼ is used to denote the dependence of orders in epsilon without regarding the coeffi-
cients of O(1) [15]. Throughout this work, we only investigate how the coupling depends on
leading order of magnitude in ε. As a consequence, the Yukawa matrices are considered and
dealt with as they were real.

The value of ε may be determined such that the FN mechanism reproduces the CKM
matrix. The numerical absolute value representation of the CKM matrix is [10]

V CKM =

0.974 0.225 0.004

0.225 0.974 0.041

0.009 0.040 0.999

 . (4.8)

As we work with orders in ε, we want to find the value of ε which allows for (4.8) to be
expressed as integer exponents of ε, up to factors of O(1). We note that this is the case for
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ε ≈ 0.2, which yields

V CKM ∼

ε0 ε1 ε3

ε1 ε0 ε2

ε3 ε2 ε0

 . (4.9)

We can also express the Yukawa matrices as κF0 and ρF0 by considering the linear combi-
nation in equation (3.12) which gives them in the Higgs basis. Since we are only interested
in orders in ε, we also want to express tanβ as a power of ε and thus we define tanβ = ε−η

where η ∈ N. The value of tanβ is preferably large [6]. For large values of tanβ we can then
approximate sinβ ∼ 1 and cosβ ∼ εη. Finally, by performing the rotation of equation (3.12),
κF0 and ρF0 can be expressed as

(κF0 )ij ∼ εη+|bq,`i +aFj ±R1| + ε|b
q,`
i +aFj ±R2| ∼ max

{
εη+|bq,`i +aFj ±R1|, ε|b

q,`
i +aFj ±R2|

}
,

(ρF0 )ij ∼ ε|b
q,`
i +aFj ±R1| + εη+|bq,`i +aFj ±R2| ∼ max

{
ε|b

q,`
i +aFj ±R1|, εη+|bq,`i +aFj ±R2|

}
,

(4.10)

where only leading order in epsilon are considered in the last step and thus also the signs are
neglected. Again, plus R1,2 is for the up-sector and minus for the down- and lepton-sector.
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5 Constraining the flavon charges
After the introduction of the Froggatt-Nielsen mechanism in the last section, we have now
gained 17 degrees of freedom with the flavon charges. To review, we have: the three bq1,2,3, the
three b`1,2,3, the nine aF1,2,3 and the two R1,2. The only constraints inflicted on them as yet,
are that they are all integers and the differences between them should be small. We will in
this section investigate which constraints which need to be imposed due to physical reasons.

5.1 Speculation about naturalness

The main point of the Froggatt-Nielsen mechanism is to explain the large mass differences
between the fermions in a natural way. Froggatt and Nielsen speculate in their article that
it is most natural if the flavon charges fulfil the requirements that bqi ≥ 0 and au,dj ≥ 1 and
that they are ordered such that bqi ≥ bqi+1 and au,dj ≥ au,dj+1 [7]. Further, Dery and Nir argue
in [15] that it is most natural with small differences between the flavon charges, just as we
have discussed before. If the differences between the flavon charges is large, we have merely
moved the problem of the large mass hierarchy amongst the fermion masses to the flavon
charges. The most natural way to obtain small differences should arguably be to have small
flavon charges to begin with.

Considering these arguments, we adopt a first limitation that the flavon charges must
be contained within the integer intervals: bqi ∈ [0, 5], au,dj ∈ [1, 5] and Ra ∈ [−5, 5]. These
intervals are referred to as the natural intervals. We do not restrict ourself as much regarding
the leptons; our main focus lies on the quark-sector. Froggatt and Nielsen did not speculate
about the leptons, but we extend the criterion of ordered flavon charges also to the lepton-
sector, such that b`i ≥ b`i+1 and a`j ≥ a`j+1. However, we do not impose any more fixed limits
on the lepton-sector as for now but we will keep in mind that they probably ought to be
similar to the limits on the quark-sector.

5.2 Recovering the CKM matrix

An important property which limits possible charge combinations severely is that the experi-
mentally known CKM matrix must be reproduced. We saw earlier that the CKM matrix can
to leading order in ε ≈ 0.2 be expressed as in equation (4.9). In order to find how the CKM
matrix depends on the flavon charges, one must construct the unitary matrices V u

L and V d
L

from equation (3.20). The main principles of diagonalisation by bi-unitary transformations
are covered in appendix A. It is the same derivation for V u

L and V d
L and therefore we drop

the index for now. Throughout this work, we have disregarded the coefficients of order one,
but we include them here for the sake of completeness. Since VL is unitary, we can to leading
order in ε write it as

VL =

 1 c12ε
n12 c13ε

n13

c21ε
n21 1 c23ε

n23

c31ε
n31 c32ε

n32 1

 ,

{
cij = −c∗ji
nij = nji

. (5.1)

Next, we need to consider H = κ0κ
†
0. Here we reach a complication compared to Froggatt

and Nielsen in [7]. Due to that they only use one Higgs doublet, their corresponding κ0 matrix
is ordered such that κ0, i1 ≤ κ0, i2 ≤ κ0, i3 and κ0, 1j ≤ κ0, 2j ≤ κ0, 3j since the flavon charges
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are ordered.5 In our case, however, when we use two Higgs doublets, it is not guaranteed
that the elements in κ0 are ordered since it is generated from equation (4.10). Hence, we
introduce as a requirement that a set of flavon charges must yield an ordered κ0 to be valid.
We require this for us to keep the analysis as simple as possible and to be able to follow the
same procedure as Froggatt and Nielsen in [7].

Now when we know that κ0 is ordered, we also know that H is ordered. However, it is not
possible to know in general which flavon charges that contribute to the leading order. Thus
we express κ0 to leading order in the more general form

κ0 =

g11ε
x11 g12ε

x12 g13ε
x13

g21ε
x21 g22ε

x22 g23ε
x23

g31ε
x31 g32ε

x32 g33ε
x33

 , (5.2)

where gij are complex coefficients of O(1) and xij are the resulting exponents ordered such
that xi1 ≥ xi2 ≥ xi3 and x1j ≥ x2j ≥ x3j for i, j = 1, 2, 3. Constructing the matrix H = κ0κ

†
0

and carrying out the multiplication result in that H to leading order in ε can be expressed as

H ≈ gi3g
∗
j3ε

xi3+xj3=̂hijε
xi3+xj3 , (5.3)

where the coefficients have been redefined to another complex coefficient of order 1. H is of
course Hermitian which means that hij = h∗ji and it is diagonalised by VLHV †

L = D2. The
off-diagonal elements of D2 need of course to be zero to leading order. By carrying out the
diagonalisation, the diagonal elements of D2 become

D2
11 ≈ h11ε

x13+x13

D2
22 ≈ h22ε

x23+x23

D2
33 ≈ h33ε

x33+x33

, (5.4)

which follows from the ordering of xij . The leading order of the off-diagonal elements D2
23,32

and D2
13,31 requires one more term:{

D2
23 ≈ h23ε

x23+x33 + h33c23ε
x33+x33+n23

!
= 0

D2
32 ≈ h32ε

x23+x33 + h33c
∗
23ε

x33+x33+n23
!
= 0

⇒

 c23 = −h23
h33

n23 = x23 − x33

, (5.5)

{
D2

13 ≈ h13ε
x13+x33 + h33c13ε

x33+x33+n13
!
= 0

D2
31 ≈ h31ε

x13+x33 + h33c
∗
13ε

x33+x33+n13
!
= 0

⇒

 c13 = −h13
h33

n13 = x13 − x33

. (5.6)

For D2
12,21, one needs to regard a few more terms to obtain the leading order:

D2
13 ≈ h12ε

x13+x23 + h13c
∗
23ε

x13+x33+n23 + h32c13ε
x23+x33+n13 + h22c12ε

x23+x23+n12

+ h33c
∗
23c13ε

x33+x33+n23+n13 + h23c
∗
23c12ε

x23+x33+n23+n12 !
= 0

D2
31 ≈ h21ε

x13+x23 + h31c23ε
x13+x33+n23 + h23c

∗
13ε

x23+x33+n13 + h22c
∗
12ε

x23+x23+n12

+ h33c
∗
13c23ε

x33+x33+n13+n23 + h32c
∗
12c23ε

x23+x33+n21+n23 !
= 0

, (5.7)

5Froggatt and Nielsen have ordered the flavon charges in the other way but here that has been changed to
correspond with our notation.
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which gives  c12 = −h33h12 − h13h32
h23h32 − h33h22

n12 = x13 − x23

. (5.8)

A similar derivation has been done before by Book in [16]. Now, we can conclude that the
left transformation matrix behaves like

VL ∼

 1 εx13−x23 εx13−x33

εx13−x23 1 εx23−x33

εx13−x33 εx23−x33 1

 , (5.9)

where we once again disregard the coefficients. From here, it is straightforward to multiply
V u
L and V d†

L to leading order. If the product is identical to the CKM matrix in (4.9) for a
set of flavon charges, then the set is considered to be a good set regarding this limit. From
considering the CKM matrix we have obtained three constraints.

5.3 Recovering the mass spectrum

Since κF is proportional to the mass matrix MF , see equation (3.16), its elements obviously
need to be determined uniquely. Using the current-quark masses and lepton masses [10]
summarised in table 2 and that ε ≈ 0.2 yield the following approximations of κF :

κu ∼

ε7

ε3

ε0

 , κd ∼

ε6

ε4

ε2

 , κ` ∼

ε8

ε5

ε3

 . (5.10)

The empty elements represents zeroes. This is the same power of ε approximation as used
in [15], but other papers, such as [17], use slightly different values. This depends on that
somewhat different values and approximation have been used.

Table 2: The current-quark masses and lepton masses [10].

Up-sector Down-sector Lepton-sector
mu = 2.2MeV md = 4.7MeV me = 0.51MeV
mc = 1.27GeV ms = 96MeV mµ = 106MeV
mt = 173GeV mb = 4.66GeV mτ = 1.78GeV

To find how the elements of the mass matrices depend on the flavon charges, we need to
find the connection between the diagonal elements of the undiagonalised κF0 and the elements
of the diagonalised κF . Since we in section 5.2 introduced the requirement that κF0 are
ordered, it is possible to follow the steps of Froggatt and Nielsen. They showed that the
diagonal elements of κF0 are proportional to the elements of κF . Thus, applying the same
notation as in equation (5.2), we can conclude that we have obtained nine new constraints

xu11 = 7

xu22 = 3

xu33 = 0

,


xd11 = 6

xd22 = 4

xd33 = 2

,


x`11 = 8

x`22 = 5

x`33 = 2

. (5.11)
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5.4 Limits on flavour changing neutral currents

We have so far applied the constraints that a set of flavon charges needs to generate the
correct mass matrix and the correct CKM matrix. Now we also impose constraints on ρF . As
discussed in section 3, non-zero off-diagonal elements of ρF results in FCNC. From experiments
it is known that these are severely constrained, which can be included in the model by
using the Cheng-Sher ansatz where ρF are parametrised as in equation (3.22). However, the
experimental constraints have mostly been found for the down-sector where they are even more
severe, rendering coefficients λd

i 6=j . 0.1 [14]. The up- and lepton-sector, on the other hand,
have barely been constrained at all experimentally [18]. Hence, we only apply the Cheng-Sher
ansatz for the down-sector. Since we are working with orders in ε, we approximate the limit
to be λd

i 6=j . ε. By using equation (3.22) and the constraint above, the corresponding limits
in the off-diagonal values of ρd in terms of powers of ε can be found to be

ρd12,21 . ε6 ≈ 6.4 · 10−5, ρd13,31 . ε5 ≈ 3.2 · 10−4, ρd23,32 . ε4 ≈ 1.6 · 10−3. (5.12)

5.5 Bounds on tan β

The last constraint which we impose is on tanβ. In [12], it is shown that the value tanβ
needs to be larger than 1 and smaller than ∼ 50 at mH± ≈ 500GeV in order to satisfy
conditions for all four standard types of 2HDMs. We will return to the mass of the charged
Higgs boson later. Also in [6], the largest value used for tanβ is 50. Hence, it seems as
a reasonable interval to adopt, even though none of the standard types are used. For the
parametrisation tanβ = ε−η, the possible values of η which correspond to tanβ ∈ [1, 50] are
η ∈ {0, 1, 2} ⇔ tanβ ∈ {1, 5, 25}.
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6 Search for valid sets of flavon charges
Now when all the constraints have been established, sets of flavon charges which satisfy them
all can be searched for. This was done by writing a simple Java program. For a set of flavon
charges, κF and ρF were constructed according to equation (4.10) and from these, the CKM
matrix was calculated via equation (5.9). The calculations were only performed to leading
order in ε. The program then checked whether the constraints discussed in sections 5.2, 5.3
and 5.4 were satisfied or not. As a summary of the constraints, each set of flavon charges
must satisfy the following to be valid:

• The exponents of κF0 must be ordered as xFi1 ≥ xFi2 ≥ xFi3 and xF1j ≥ xF2j ≥ xF3j for
i, j = 1, 2, 3.

• The mass matrices must be recovered correctly according to equation (5.10).

• The CKM matrix must be recovered correctly according to equation (4.9).

• The off-diagonal elements of ρd must be constrained due to FCNC according to equation
(5.12).

All sets of combinations of flavon charges that can be constructed from the natural intervals –
which fulfil the requirements of being ordered discussed in section 5.1 – were checked whether
they satisfied the above constraints or not. This was done for the values of η considered in
section 5.5, i.e. η = 0, 1, 2. Since tanβ ∈ [1, 50] is not a strictly determined interval, values
just outside the interval may occur. Thus the neighbouring values η = −1 and η = 3 were also
tested. If all requirements were met for a set of flavon charges (including a specific η) it was
considered a valid set. The program also determined which flavon charges that contributed
to leading order, i.e. if xFij = η + |bq,`i + aFj ± R1| or xFij = |bq,`i + aFj ± R2| for κF and
correspondingly for ρF .

Since we do not have as severe constraints on the lepton-sector, it was dealt with separately.
The only parameters that connect the quark-sector with the lepton-sector are the flavon
charges of the Higgs fields R1 and R2. Thus, only values on R1 and R2 which are part of
valid sets of flavon charges for the quark sectors were used in the search for acceptable sets
of lepton flavon charges.

The study was divided into two cases depending on the relation between R1 and R2. First,
valid sets of flavon charges were searched for in the case when R1 ≥ R2. No combinations of
charges chosen from the natural intervals satisfied all the requirements for any of the values of
η. In order to find any valid combinations, the least motivated constraint – that the charges
need to be chosen from the natural interval – was discarded. For the expanded intervals
bqi ∈ [0, 7], au,dj ∈ [−6, 5] and Ra ∈ [−10, 10] instead 30 valid combinations were found for η = 2
and the same 30 combinations for η = 3. These are presented in appendix B. The matrix κu

has the same flavon charge dependence κu ∼ ε|b
q
i+auj +R2| for each of the 30 combinations with

both values of η. The same is true for κd ∼ ε|b
q
i+adj+R2| and ρu ∼ εη+|bqi+auj +R2|. Numerically,

κu and κd are obviously the same as in (5.10) since that was a requirement. For the two
different η, ρu becomes for all combinations

η = 2 : ρu ∼

ε9 ε6 ε5

ε8 ε5 ε4

ε6 ε3 ε2

 , η = 3 : ρu ∼

ε10 ε7 ε6

ε9 ε6 ε5

ε7 ε4 ε3

 . (6.1)
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However, all the elements of ρd do not have the same flavon charge dependence, neither within
one specific matrix, nor for the different sets. Two examples of valid sets for the different η
are presented in table 3.

Table 3: Two examples of valid sets of quark and Higgs field flavon charges for the case R1 ≥ R2.

η (bq1, b
q
2, b

q
3) (au1 , a

u
2 , a

u
3) (ad1, a

d
2, a

d
3) (R1, R2)

2 (6, 5, 3) (5, 2, 1) (−4,−5,−5) (10,−4)

3 (4, 3, 1) (5, 2, 1) (0,−1,−1) (9,−2)

The obtained ρd for the example with η = 2 is

ρd ∼

ε8(R1, R2) ε7(R2) ε7(R2)

ε7(R2) ε6(R2) ε6(R2)

ε5(R2) ε4(R2) ε4(R2)

 , (6.2)

and for the example with η = 3

ρd ∼

ε5(R1) ε6(R1) ε6(R1)

ε6(R1) ε7(R1, R2) ε7(R1, R2)

ε6(R2) ε5(R2) ε5(R2)

 . (6.3)

(R1,2) denotes if the leading order is obtained from the R1 or R2 contribution or both. It
is interesting to note that the five elements ρd13, ρ

d
22, ρ

d
23,32 and ρd33 all depend on at least R2,

which gives the same numerical values (but differs by one unit for η = 2 and η = 3) for
all combinations while it may vary for the other elements. For the example with η = 2,
κF and ρF show an approximate type I relation. Even though these valid sets are chosen
from outside the natural interval, that does not make them uninteresting to investigate by
themselves. However, it will turn out that none of them can explain the B-meson decays we
are interested in.

In the other case, when R2 > R1 was considered, five valid sets from the natural intervals
were found: one for η = 2 and four for η = 3. The set for η = 2 and one example of the sets
for η = 3 are presented in table 4. The three remaining sets can be found in appendix B.

Table 4: Two examples of valid sets of quark and Higgs field flavon charges for the case R2 > R1.

η (bq1, b
q
2, b

q
3) (au1 , a

u
2 , a

u
3) (ad1, a

d
2, a

d
3) (R1, R2)

2 (3, 2, 0) (5, 2, 1) (2, 1, 1) (−3,−1)

3 (3, 2, 0) (5, 2, 1) (2, 1, 1) (−3,−1)

We will see that these two sets are going to be interesting when the B-meson decays are
considered. The generated matrices for the set with η = 2 are
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κu ∼

ε7(R1, R2)

ε3(R1, R2)

ε0(R2)

 , κd ∼

ε6(R2)

ε4(R2)

ε2(R2)

 , (6.4)

ρu ∼

ε5(R1) ε2(R1) ε1(R1)

ε4(R1) ε1(R1) ε0(R1)

ε2(R1) ε1(R1) ε2(R1, R2)

 , ρd ∼

ε8(R1, R2) ε7(R1, R2) ε7(R1, R2)

ε7(R1, R2) ε6(R1, R2) ε6(R1, R2)

ε5(R1, R2) ε4(R1, R2) ε4(R1, R2)

 ,

and for η = 3

κu ∼

ε7(R2)

ε3(R2)

ε0(R2)

 , κd ∼

ε6(R2)

ε4(R2)

ε2(R2)

 ,

ρu ∼

ε5(R1) ε2(R1) ε1(R1)

ε4(R1) ε1(R1) ε0(R1)

ε2(R1) ε1(R1) ε2(R1)

 , ρd ∼

ε8(R1) ε7(R1) ε7(R1)

ε7(R1) ε6(R1) ε6(R1)

ε5(R1) ε4(R1) ε4(R1)

 .

(6.5)

The two sets generate identical matrices, although they get the contribution to leading order
differently. Both the up- and down-sector gain mass from Φ2 for the example with η = 3,
while the up-sector in the example with η = 2 gains mass both from Φ1 and Φ2. When η = 2,
this can be explained with that the difference between R1 and R2 is equal to η. When η = 3,
the difference is smaller and the leading order gets contribution only from one of the Higgs
fields. Arguably, the set with η = 2 can be considered more preferable since that corresponds
to tanβ = 25 which lies inside the discussed interval as opposed to η = 3 which corresponds
to tanβ = 125 which is far outside the interval. The fact that only valid sets were found for
η = 2, 3 agrees well with the statement that tanβ preferably is large.

Since the main focus of this work lies on the quark-sector and the since the lepton-sector
is not as constrained as the quark-sector, we also loosen the natural interval for lepton flavon
charges. R1 = −3 and R2 = −1 were used to match the found sets of quark flavon charges.
For b`i ∈ [0, 5], a`j ∈ [−7, 6], 44 valid sets were found. These are valid and yield the same
matrices both for η = 2 and η = 3. The only difference is once again which Higgs flavon
charge that gives contribution to the leading order. Two different examples will be presented.
The first one has what could be considered natural flavon charge differences, while the second
has larger differences, see table 5.

Table 5: Two examples of valid sets of lepton flavon charges for R1 = −3 and R2 = −1.

η (b`1, b
`
2, b

`
3) (a`1, a

`
2, a

`
3)

2, 3 (4, 2, 1) (3, 2, 1)

2, 3 (2, 2, 2) (5, 2,−6)

21



E. Andersson Search for valid sets of flavon charges

The first set gives the matrices

κ` ∼

ε8

ε5

ε3

 , ρ` ∼

ε10 ε9 ε8

ε8 ε7 ε6

ε7 ε6 ε5

 , (6.6)

and the second set gives

κ` ∼

ε8

ε5

ε3

 , ρ` ∼

ε10 ε7 ε1

ε10 ε7 ε1

ε10 ε7 ε1

 . (6.7)

The first example would be preferable since it has smaller differences between the flavon
charges, but it will turn out that only the second example can be used when explaining the
B → D(∗)τν decays.
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7 The B → D(∗)τν decays
Various decays of B-mesons are interesting when it comes to signs of new physics. Data
from many of them do not agree with predictions from the SM. Here we investigate the
semi-leptonic decays where the neutral B-meson decays into either the positive or negative
D-meson (it can either be the pseudoscalar version (D) or the vector version (D∗), where
either of them is denoted D(∗) ), a tau lepton and a tau neutrino, i.e. B̄0 → D(∗)+τ−ν̄τ and
B0 → D(∗)−τ+ντ , see figure 5. We use the notation B → D(∗)τν which include all these
decays. In this section, we investigate if these decays may be explained by the FN-2HDM.

b̄ c̄

d d

ντ

τ+

W+

B0 D(∗)−

Figure 5: The B0 → D(∗)−τ+ντ decays mediated by W+ in the SM. Corresponding decays of B̄0 are
mediated by W−.

When investigating these decays, it is convenient to work with the ratios between the
branching ratios

R(D(∗)) =
B(B → D(∗)τν)

B(B → D(∗)lν)
, (7.1)

where l = e, µ. The advantage with using the ratios R(D(∗)), instead of using only the
branching ratios B(B → D(∗)τν), is that the form factors cancel. These decays have been
seen in a few different experiments and results from BaBar [3], Belle [4] and LHCb [5], together
with SM predictions [3], are summarised in table 6.

The results from BaBar corresponds to a deviation from the SM predictions by 2.2σ and
2.7σ for R(D) and R(D∗) respectively. These two can be combined into a total 3.4σ deviation
from the SM prediction [3]. This shows a clear excess of the tauonic decays compared to SM

Table 6: Values on the ratios R(D) and R(D∗) from BaBar [3], Belle [4] and LHCb [5]. The first error
is statistical and the second is systematic. The SM predictions are also from [3].

R(D) R(D∗)

BaBar 0.440± 0.058± 0.042 0.332± 0.024± 0.018

Belle 0.375± 0.064± 0.026 0.293± 0.038± 0.015

LHCb - 0.336± 0.027± 0.030

SM 0.297± 0.017 0.252± 0.003
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predictions, even though it would require a 5σ deviation to be considered a discovery of new
physics.

In order to explain the excess of B → D(∗)τν, one most often prefers to use a model
which allows additional decay channels at tree-level to obtain a large enough effect. Thus
various types of 2HDMs are often used since they have this quality, which can be seen in the
last line of the Yukawa Lagrangian in equation (3.21). The charged Higgs particles H± can
mediate the decay in a similar way as W± in the SM, as illustrated in figure 6. 2HDM does
also offer an explanation to why only excess in B → D(∗)τν decays have been seen and never
B → D(∗)eν nor B → D(∗)µν. This is because the charged Higgs particles coupling strengths
to fermions are proportional to the fermion mass and the mass of the tau lepton is much
larger than the masses for the electron and muon.

The 2HDM type II was during long time the preferred model since it is used in super-
symmetric models and it does not allow FCNC at tree-level. However, Crivellin et al. showed
that 2HDM type II is not able to describe both R(D) and R(D∗) simultaneously [6]. They
instead favoured to use a generic 2HDM of type III. We will in the following section present
the set-up of their model and then translate it into the FN framework.

b c

d̄ d̄

ν̄τ

τ−

H−

B̄0 D(∗)+

Figure 6: The extra decay channel for the B̄0-meson in a 2HDM. H± takes the place of W± in the
SM.

7.1 B → D(∗)τν in a generic 2HDM type III and FN-2HDM

An alternative way of expressing the Yukawa Lagrangian compared to equation (3.11) is to
use the so-called holomorphic coupling matrices Y F and non-holomorphic couplings εF [6].
For the quark-sector, it becomes 6

LY = −Q̄LY
uΦ̃uUR − Q̄Lε

uΦ̃dUR − Q̄LY
dΦdDR − Q̄Lε

dΦuDR + h.c. . (7.2)

The Lagrangian is constructed in such a way that in the limit where the non-holomorphic
corrections εu,d → 0, the 2HDM of type II is recovered. This set-up is used in [6] since a type
II model is required in the Minimal Supersymmetric Standard Model.

The Lagrangian in equation (7.2) can be treated in the same way as in section 3.1 and,
hence, be expressed in the mass eigenstates and the physical fields. In [6], the authors conclude

6Beware of the somewhat confusing notation. This εF is not the same as the symmetry breaking parameter
ε in equation (4.1).
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that tanβ needs to be large and then arrive at the relevant couplings between fermions and
Higgs bosons

i
(
ΓLRH±
ufdi

PR + ΓRLH±
ufdi

PL

)
, (7.3)

with7

ΓLRH±
ufdi

=

3∑
j=1

sinβ V CKM
fj

(√
2mdi

v cosβ
δji − εdji tanβ

)
, (7.4)

ΓRLH±
ufdi

=
3∑

j=1

cosβ

(√
2muf

v sinβ
δjf − εu∗jf tanβ

)
V CKM
ji , (7.5)

where ΓRLH±
qf qi

= ΓLRH±∗
qiqf

. The notation LR and RL has to do with the chirality of the
particles. The total coupling in equation (7.3) contains contributions both from when the
initial particle is left-handed and the final right-handed

(
ΓLRH±
ufdi

)
and the other way around(

ΓRLH±
ufdi

)
.

The lepton-sector can be treated in a similar way which yields the same relation between
the couplings but with8

ΓLRH±
νf `i

=
3∑

j=1

sinβ

(√
2m`i

v cosβ
δji − ε`ji tanβ

)
. (7.6)

Since the Lagrangian in equations (7.2) and (3.21) are equivalent to each other, we can
express the couplings in terms of ρF by comparing the last line of equation (3.21) with
equations (7.4)-(7.6). We also note that

√
2mFi
v δji = κFji. The relations are thus

ΓLRH±
ufdi

= tanβ
3∑

j=1

V CKM
fj

(
κdji − εdji sinβ

)
= −

(
V CKMρd

)
fi
, (7.7)

ΓRLH±
ufdi

=
3∑

j=1

(
cotβκujf − εu∗jf sinβ

)
V CKM
ji =

(
ρu†V CKM

)
fi
, (7.8)

ΓLRH±
νf `i

= tanβ

3∑
j=1

(
κ`ji − ε`ji sinβ

)
= −

(
ρ`
)
fi
. (7.9)

By using the parametrisation of tanβ in terms of η from the end of section 4.2, the relation
between εF , κF and ρF can be expressed within the FN framework as

εd ∼ κd + εηρd,

εu ∼ εηκu − ρu,

ε` ∼ κ` + εηρ`.

(7.10)

7Note that in [6] the convention v ≈ 174GeV is used but we use the convention v ≈ 246 GeV throughout
the work.

8Here the PMNS matrix is omitted due to the same reasons as in section 3.1.
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In order to calculate the ratios R(D) and R(D∗), one uses the two Wilson coefficients
Ccb
R and Ccb

L [6]. In the calculations, one normalises Ccb
R and Ccb

L against the SM coefficient
Ccb
SM = 4GFV

CKM
cb /

√
2. These coefficients are in general given by

C
ufdi,`j
R(L) = − 1

m2
H±

Γ
LR(RL)H±

ufdi
ΓLRH±∗
ν`j

, (7.11)

where 1/m2
H± comes from the Higgs propagator. Inserting the couplings from equations

(7.4)-(7.6) gives

C
ufdi,`j
R = −tan2 β

m2
H±

V CKM
fi κdii − sinβ

3∑
j=1

V CKM
fj εdji

(κ`jj − sinβ

3∑
k=1

ε`∗kj

)
, (7.12)

respectively

C
ufdi,`j
L = −tanβ

m2
H±

cotβκuffV
CKM
fi − sinβ

3∑
j=1

εu∗jfV
CKM
ji

(κ`jj − sinβ

3∑
k=1

ε`∗kj

)
. (7.13)

For the B → D(∗)τν decays specifically, uf = c, di = b and `j = τ . Now, we can compare the
decays’ Wilson coefficients for 2HDM type III and for FN-2HDM. Applying equations (7.10)
and (4.9) to equation (7.12) and (7.13) and remembering that the κF are diagonal yield the
Wilson coefficients in the FN framework:

Ccb,τ
R = −tan2 β

m2
H±

V CKM
23 κd33 − sinβ

3∑
j=1

V CKM
2j εdj3

(κ`33 − sinβ

3∑
k=1

ε`∗3j

)

∼ − 1

m2
H±

(
ε1ρd13 + ε0ρd23 + ε2ρd33

)(
ρ`13 + ρ`23 + ρ`33

)
,

(7.14)

Ccb,τ
L =− tanβ

m2
H±

cotβκu22V
CKM
23 − sinβ

3∑
j=1

εu∗j2V
CKM
j3

(κ`33 − sinβ

3∑
k=1

ε`∗k3

)

∼ 1

m2
H±

(
ε3ρu12 + ε2ρu22 + ε0ρu32

) (
ρ`13 + ρ`23 + ρ`33

)
.

(7.15)

Note, however, that they are given at the scale of the mass of the charged Higgs boson mH±

but they enter the calculations R(D) and R(D∗) at the scale of the B-meson. Hence, one
would need to perform Renormalisation Group Equation (RGE) evolution on them to obtain
the Wilson coefficients at the right scale. This is however beyond the scope of this thesis.
Instead of calculating the ratios directly, we compare with pre-existing calculations. The
authors of [6,18] reason that it is only εd33 that can contribute significantly to Ccb,τ

R since both
εd13 and εd23 are heavily constrained by FCNC. Further, they similarly reason that only εu32 has
a sizeable contribution to Ccb,τ

L since both εu12 and εu22 are suppressed by the CKM matrix.
Regarding the contributions from the leptons, they assume that the non-holomorphic

coupling ε` is negligible and thus only κ`33 contributes. Additionally, they show that Ccb
R cannot

explain R(D) and R(D∗) simultaneously on its own which is possible for Ccb
L . Thus, the only
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Figure 7: Regions in the complex plane for εu32 where correct values of R(D) (blue) and R(D∗) (yellow)
are obtained within 1σ deviation for mH± = 500GeV and tanβ = 50. The plot is taken from [6].

free parameter that can be adjusted to explain both R(D) and R(D∗) is εu32. Considering
these simplifications, Ccb

L can be reduced to

Ccb
L ≈ tanβ

m2
H±

εu32κ
`
33. (7.16)

Comparing equation (7.16) and the last line of (7.15), we can conclude that εu32 corresponds
to (ε3ρu12 + ε2ρu22 + ε0ρu32) and similarly does tanβκ`33 corresponds to (ρ`13 + ρ`23 + ρ`33).

7.2 Comparison to data

In order to determine if any of the obtained sets of flavon charges from section 6 could explain
the B → D(∗)τν decays, we must first investigate εu32 closer. Since we have only been working
with orders of magnitude, and hence only have real matrices, we can only compare elements
of ρu with real values of εu32. Figure 7 shows a plot over the regions in the complex plane
for εu32 where correct values of R(D) and R(D∗) are obtained within 1σ for a charged Higgs
mass m2

H± = 500GeV and tanβ = 50. From figure 7 one can read off that the only real
value that satisfies both R(D) and R(D∗) is εu32 ≈ −0.65. However, this is with tanβ = 50
while we either have tanβ = ε−2 = 25 or tanβ = ε−3 = 125. Considering that the Wilson
coefficient Ccb

L needs to have its specific value, and remembering the simplified version Ccb
L

in equation (7.16), we can conclude that εu32 must scale inversely proportional against other
values of tanβ. Hence, εu32 ≈ −1.3 ∼ ε0 for η = 2 and εu32 ≈ −0.26 ∼ ε1 for η = 3. Therefore,
the leading term of (ε3ρu12 + ε2ρu22 + ε0ρu32) must be at least either ε0 or ε1 depending on η.
Given the two ρu matrices in equations (6.4) and (6.5), ε0ρu32 is the leading term for both
cases. For both the examples, ρu32 ∼ ε1, which means that it is only in the example with
η = 3 that the element is large enough. Further, we note that none of the sets with R1 ≥ R2

in table 8 in appendix B yield ρu32-elements that are sufficiently large.
If we shortly also consider the other Wilson coefficient Ccb

R in equation (7.14), we see that
no matter which ρd matrix we consider from section 6, the leading term in (ε1ρd13 + ε0ρd23 +
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ε2ρd33) is at least ∼ ε6. This means that Ccb
R is negligible compared to Ccb

L and does not
contribute to R(D) and R(D(∗)), just as assumed in [6].

Shifting the attention to the lepton-sector and comparing with the simplified version of
Ccb
L , it is evident that the leading term of (ρ`13 + ρ`23 + ρ`33) needs to be approximately equal

to tanβκ`33. For η = 2 this gives that ε−2
√
2mτ/v ∼ ε1 and for η = 3 ε−3

√
2mτ/v ∼ ε0. The

second example of lepton flavon charges in section 6 (equation (6.7)) satisfies the requirement
for η = 2.9 However, none of the 44 sets generates matrices that satisfies the requirement for
η = 3.

Hence, for the two cases η = 2 and η = 3, either ρu32 or tanβκ`33 is one order in ε too high to
fit with the results in [6]. Nonetheless, considering the precision in the approximations used, it
is too early to discard the model for not being able to explain the decays. Approximations have
been made for the parametrisation of the quark masses and the elements of the CKM matrix
and the exact coefficients have been neglected. Further, the charged Higgs mass is unknown,
mH± = 500GeV is only an assumed value. Therefore, the uncertainty can be assumed to be
at least one order in ε. Thus, it could still be possible to explain the B → D(∗)τν decays with
the model but that would require a more detailed study.

9Two other of the 44 sets also generates the same matrices.
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8 Conclusion and outlook
In this thesis, a 2HDM in the FN framework has been used to try to explain the B → D(∗)τν
decays. This work can be considered to consists of two parts. The first part was to constrain
the model in order to find sets of physically valid flavon charges and the second part was to
consider how the B → D(∗)τν decays are affected by the FN mechanism and see if the valid
sets of flavon charges can explain the excess of B → D(∗)τν decays.

The main point with the FN mechanism is to explain the seemingly unnaturally large
fermion mass ratios in a natural way. Thus, we required that the flavon charges and the
difference between them ought to be small; otherwise the problem of unnaturalness would
just have transferred to the flavon charges instead of fermion masses. Further, we found
nine constraints which ensured that the flavon charges gave the correct fermion masses and
three constraints that gave the correct CKM matrix. Additionally, we imposed limits on the
off-diagonal elements of ρd to avoid larger FCNC than observed. A fairly large number of
sets of flavon charges that satisfied the constraints were found. Out of these, two preferred
candidates with small charge differences were selected for further study.

In the second part, we found that the B → D(∗)τν decays are mainly affected by ρu32 and
the leading term of (ρ`13+ρ`23+ρ`33) for the two preferred sets. In order to explain the excess,
ρu32 ∼ ε0 for η = 2 and ρu32 ∼ ε1 for η = 3. Similarly, the leading term of (ρ`13 + ρ`23 + ρ`33)
must satisfy ∼ ε1 for η = 2 and ∼ ε0 for η = 3. Using the second set of lepton flavon charges
in table 5, we saw that either ρu32 or the leading term of (ρ`13+ ρ`23+ ρ`33) is one order in ε too
high for both η = 2 and η = 3. However, since all the calculations only were carried out to
leading order and since exact coefficients were omitted, the uncertainty is at least one order of
magnitude. Hence, our main conclusion is that a 2HDM in the FN framework could possibly
explain the excess of B → D(∗)τν decays and it motivates to study this model further in
greater detail.

The study could be expanded in a few different areas. Within the Froggatt-Nielsen frame-
work, one extension is to find the complex coefficients which have been omitted. Another
extension is to investigate other symmetry groups. We have only been working with Frog-
gatt’s and Nielsen’s original model with an U(1) symmetry. However, the model could be
extended to a U(1) × . . . × U(1) symmetry with N ∈ N U(1) symmetries. This means that
the model would include N flavons and N symmetry breaking parameters ε1,...,N .

Further, it could be interesting to perform the RGE evolution of the Wilson coefficients.
Then it would be possible to calculate the ratios R(D) and R(D(∗)) directly for the model
instead of just comparing the couplings with existing calculations. There are also other
experimental constraints that could be considered. Radiative B-meson decays such as b → sγ
and b → dγ, radiative lepton decays such as µ → eγ, τ → eγ and τ → µγ and electric
dipole moments could all be considered and would constrain other elements than the ones
constrained by the FCNC. Also another tauonic B-meson decay, B → τν, could be interesting
to include.

Finally, one could take a closer look at the implications of this model. For the found sets
of flavon charges which comply with the B-meson decays, the element ρu23 = ε0 is large. This
would result in sizeable FCNC. Some decays where the ρu23 element enters are the top quark
decays into the charm quark via one of the neutral Higgs, t → cφ (φ = h,H,A).
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A Bi-unitary transformation
The mass matrices are diagonalised into the mass eigenstates by bi-unitary transforma-
tions [19]. A general complex square n × n matrix M can be diagonalised by the bi-unitary
transformation

U1MU †
2 = D, (A.1)

where U1 and U2 are unitary matrices and D is diagonal. Multiplying equation (A.5) by its
Hermitian conjugate from the right respectively from the left yields

U1MM †U †
1 = D2, (A.2)

U2M
†MU †

2 = D2. (A.3)

Now, U1 and U2 can be found by defining MM † = H and M †M = H̃ and considering equation
(A.2) and (A.3) as normal diagonalisations of H and H̃. U1 can be determined by solving
the eigenvalue equation

Hxj = λjxj , (A.4)

for eigenvalues λj and eigenvectors xj and then construct U1 such that the columns are
the eigenvectors x1, . . . xn [20]. U2 can of course be obtained by solving the corresponding
eigenvector equation for H̃.

There is also the possibility to find U2 by solving equation (A.5) instead as it in some
cases might be simpler. In order to find U2 this way one must determine the inverse of D2,
since

U2 = D−1U1M. (A.5)

The diagonal matrix D is constructed with the eigenvalues λj as its elements D = diag(λ1, . . . λn).
Hence, the inverse of D is D−1 = diag(1/λ1, . . . 1/λn) [20].
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B Valid sets of flavon charges

The five valid sets of flavon charges chosen from bqi ∈ [0, 5], au,dj ∈ [1, 5] and Ra ∈ [−5, 5]
in the case R2 > R1 are presented in table 7. For flavon charges chosen from the intervals
au,dj ∈ [−6, 5] and Ra ∈ [−10, 10] in the case R1 ≥ R2, 30 different valid sets were found, see
table 8. All these 30 sets are valid both for η = 2 and η = 3.

Table 7: Valid sets of quark and Higgs field flavon charges for the case R2 > R1.

η (bq1, b
q
2, b

q
3) (au1 , a

u
2 , a

u
3) (ad1, a

d
2, a

d
3) (R1, R2)

2 (3, 2, 0) (5, 2, 1) (2, 1, 1) (−3,−1)

3

(3, 2, 0) (5, 2, 1) (2, 1, 1) (−4,−1)

(3, 2, 0) (5, 2, 1) (2, 1, 1) (−3,−1)

(4, 2, 0) (5, 2, 1) (2, 1, 1) (−5,−1)

(4, 2, 0) (5, 3, 1) (2, 1, 1) (−5,−1)
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Table 8: Valid sets of quark and Higgs field flavon charges for the case R1 ≥ R2. All combinations are
valid for η = 2 and η = 3.

(b1, b2, b3) (au1 , a
u
2 , a

u
3) (ad1, a

d
2, a

d
3) (R1, R2)

(3, 2, 0) (5, 2, 1) (2, 1, 1) (10,−1)

(4, 3, 1) (5, 2, 1) (0,−1,−1) (9,−2)

(4, 3, 1) (5, 2, 1) (0,−1,−1) (10,−2)

(4, 3, 1) (4, 1, 0) (1, 0, 0) (10,−1)

(5, 4, 2) (5, 2, 1) (−2,−3,−3) (8,−3)

(5, 4, 2) (5, 2, 1) (−2,−3,−3) (9,−3)

(5, 4, 2) (4, 1, 0) (−1,−2,−2) (9,−2)

(5, 4, 2) (5, 2, 1) (−2,−3,−3) (10,−3)

(5, 4, 2) (4, 1, 0) (−1,−2,−2) (10,−2)

(5, 4, 2) (3, 0,−1) (0,−1,−1) (10,−1)

(6, 5, 3) (5, 2, 1) (−4,−5,−5) (7,−4)

(6, 5, 3) (5, 2, 1) (−4,−5,−5) (8,−4)

(6, 5, 3) (4, 1, 0) (−3,−4,−4) (8,−3)

(6, 5, 3) (5, 2, 1) (−4,−5,−5) (9,−4)

(6, 5, 3) (4, 1, 0) (−3,−4,−4) (9,−3)

(6, 5, 3) (3, 0,−1) (−2,−3,−3) (9,−2)

(6, 5, 3) (5, 2, 1) (−4,−5,−5) (10,−4)

(6, 5, 3) (4, 1, 0) (−3,−4,−4) (10,−3)

(6, 5, 3) (3, 0,−1) (−2,−3,−3) (10,−2)

(6, 5, 3) (2,−1,−2) (−1,−2,−2) (10,−1)

(7, 6, 4) (4, 1, 0) (−5,−6,−6) (7,−4)

(7, 6, 4) (4, 1, 0) (−5,−6,−6) (8,−4)

(7, 6, 4) (3, 0,−1) (−4,−5,−5) (8,−3)

(7, 6, 4) (4, 1, 0) (−5,−6,−6) (9,−4)

(7, 6, 4) (3, 0,−1) (−4,−5,−5) (9,−3)

(7, 6, 4) (2,−1,−2) (−3,−4,−4) (9,−2)

(7, 6, 4) (4, 1, 0) (−5,−6,−6) (10,−4)

(7, 6, 4) (3, 0,−1) (−4,−5,−5) (10,−3)

(7, 6, 4) (2,−1,−2) (−3,−4,−4) (10,−2)

(7, 6, 4) (1,−2,−3) (−2,−3,−3) (10,−1)
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