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Abstract

The PID controller is by far the most popular controller for process control in in-
dustry today [Åström and Murray, 2008]. The combination of its relatively simple
usage and its satisfactory results within several areas has gained its popularity [Vi-
sioli, 2006]. However, the tuning of the controller is crucial. An automatic tuning
method was developed by [Åström and Hägglund, 1984] in the mid-eighties and
auto-tuners has since then been diligently used in the process industry.

This thesis will focus on the implementation of an auto-tuner based on asym-
metric relay feedback in the modeling language Modelica. Also, creating a good
work flow and providing valuable information for the user. The auto-tuner provides
an estimated low order model together with parameters for a PID controller, based
on the AMIGO tuning rules.

After an introduction the report begins with a chapter containing a theoretical
background concerning the PID controller, tuning methods, asymmetric relay auto-
tuners and Modelica/Dymola. This is followed by an explanation of the method
used, including a step-by-step description.

The report ends with chapters dealing with results, discussions and comments
about future development. The result chapter is divided into different sections, each
dealing with one of the processes used for testing. Every section presents the exper-
imental results together with comparisons against other parameter set-ups. The last
chapter contains a discussion regarding the overall results, both in terms of usage
and performance.

The results, in terms of responses to load disturbances and step changes, were
satisfactory for all processes that were tested in the thesis, although some processes
required more preparatory work than others. As long as the process is in steady-
state when the experiment begins, the resulting PID parameters turns out to work
very good in comparison to the ones being used in the models today. Despite the
good performance there are smaller things that needs to be further developed. For
instance, a feature that is supposed to generate two plots automatically needs to be
improved.
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Terminology

In this section frequently used expressions are stated, divided into sections.

Controller
• K: Proportional gain in a PID controller.

• Ti: Integral time constant in a PID controller.

• Td : Derivative time constant in a PID controller.

Experiment
• d1,d2: Asymmetric relay levels.

• ε: The tolerance regarding the limit cycle.

• h: Hysteresis level.

• γ: A measure of the asymmetric level regarding the relay.

• ρ: Half period ratio used when calculating the normalized time constant.

• ton: The time for which the relay output is equal to its maximum.

• to f f : The time for which the relay output is equal to its minimum.

• τ: Normalized time delay.

Models
• FOTD: First Order Time Delay.

• ITD: Integrated Time Delay.

• Kp: Process gain for a FOTD model.

• kv: Process gain for an ITD model.

• L: Process time delay.

• T : Time constant.
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Signals
• e: Control error.

• u: Relay output/control signal.

• u0: Relay output when in steady-state.

• y: Process output.

• y0: Process output when in steady-state.

Specification
• IAE: integrated absolute error.

• PO: Percentage overshoot.

• RT: Rise time.

• kc: Critical/ultimate gain

• Ms: Maximum sensitivity

• tc: Critical time period.
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1
Introduction

1.1 Motivation

Modelica and the libraries within it are used by many people. People with varying
background. Since the libraries contain blocks for several different purposes it is not
always obvious how to use them. Control loops are often included when developing
models, making blocks regarding control theory required. A person with lack of
experience in this field will probably find it hard to use these blocks properly. One
way to make it easier is to make use of an auto-tuner. With such a component a
person with lack of knowledge in control theory still would be able to make use of
it.

1.2 Scientific background

This thesis is based on an amount of references. The key references are mainly
from [Berner, 2015], which is a licentiate thesis with focus on an automatic tuning
method for PID controllers. The auto-tuner should be implemented in the modeling
language Modelica, using Dymola as development environment and simulation tool.
Modelica is a powerful modeling language where components from libraries can
be used in solutions of varying kind [Modelica-association, 2014]. One can find a
briefing concerning this later in the thesis. The company Modelon is working with
this language and therefore a successful thesis resulting in a proper working method
for auto-tuning would be appreciated. Knowledge regarding Dymola and Modelica
has been obtained by attending a course and via its associated material, which was
given by the company.

1.3 Contribution to the development of knowledge

In industry today auto-tuners are already used, including relay auto-tuners [Åström
and Hägglund, 1984]. What this thesis mainly is aiming to contribute with is a
helpful tool such that the auto-tuner can be used in a simulation environment. Since
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Chapter 1. Introduction

the number of control loops can vary it is necessary to investigate if the experiment
is able to perform regardless of this fact or if there is something that needs to be
modified.

Another important goal with the tool is regarding its usability. Regardless if it is
a person with many years of experience or a person with limited it should not be any
problems to use it. This means that the graphic interface and the number of options
are critical parts as well.

1.4 Goals

There are mainly three goals of this master thesis work. These are listed below.

• Implementation: An implementation of an auto-tuner should be done in Mod-
elica based on [Berner, 2015].

• Workflow: The developed auto-tuner should make it easy for the user to work
with PID controllers in Modelica regardless of his or hers previous knowledge
in control theory.

• Evaluation: The auto-tuner should be evaluated in terms of performance
through experiments on already existing models. Furthermore, the resulting
PID parameters from the auto-tuner should be compared against other param-
eter set-ups such as the ones being used in the models today.

1.5 Delimitations

The experiment from the auto-tuner gives an estimated model of the process. Based
on that model PID parameters can be determined. How they are obtained depends
on what tuning rule one chooses to use. The auto-tuner block is restricted to one
tuning rule, i.e. AMIGO tuning [Åström and Hägglund, 2006].

Another delimitation is regarding the models that are going to be used together
with the auto-tuner. There will be no focus on developing new models since the
libraries already contains appropriate models in order to evaluate the auto-tuner.
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2
Background

The following chapter will introduce a number of topics which the thesis is built
upon. The basics on PID control and its features are presented in Section 2.1. This
is followed by 2.2 which covers the theory behind relay auto-tuners and the asym-
metric relay feedback experiment. Lastly the software that has been central in this
thesis work, Dymola and Modelica, is declared in Section 2.3.

2.1 PID control

Introduction
The by far most popular controller regarding process control in industry today is the
PID controller [Åström and Murray, 2008]. The combination of its relatively sim-
ple usage and its satisfactory results within several areas has gained its popularity
[Visioli, 2006]. This section will roughly explain the basics regarding the PID con-
troller and its structure. A PID controller consists of three different control actions.
In equation (2.1) the control signal, u(t), is expressed as the sum of those three.

u(t) = K
(

e(t)+
1
Ti

∫ t

0
e(τ)dτ +Td

de(t)
dt

)
(2.1)

1 : Ke(t) 2 :
K
Ti

∫ t

0
e(τ)dτ 3 : KTd

de(t)
dt

The first part is the proportional control action and it is simply the current con-
trol error, e(t), multiplied with a proportional gain, K. Next there is an integral
action which is computed by multiplying the integral of the control error with a
constant, K

Ti
, where Ti is the integral time. Lastly there is a derivative action which

is equal to the derivative of the control error multiplied with both the proportional
gain, K, and the derivative time constant, Td [Visioli, 2006].
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Chapter 2. Background

Depending on what type of process one wish to control, the PID controller needs
to be tuned in a proper way in order to get satisfactory performance. The three
control parameters that are available for tuning are K, Ti and Td .

Control actions
As one can expect the different control actions come with different impacts. Starting
with a pure P controller, i.e. Ti = ∞ and Td = 0, it will most likely end up having
a steady-state error being not equal to zero. An increase of K results in decrease
of the steady-state error. However, the increase will eventually make the system
behave more and more oscillative when a certain limit is reached. Another way to
get rid of the steady-state error is to make use of integral action which guarantees
that it is zero when steady-state is reached. Depending on the value of Ti the error
term will converge to zero with various speed. In terms of equation (2.1) one can
easily conclude that a decrease of Ti implies a larger impact of the integral action.
This in turn will speed up the convergence of the error. Just like the case with the
proportional gain the adjustments of Ti has its restrictions. Decreasing the integral
time too much will introduce undesirable oscillative behavior [Åström and Murray,
2008].

The derivative action can be used to damp oscillations due to large and small
values on K and Ti respectively. The damping effect increases when increasing Td .
At some point though, it reaches a maximum and further increase of Td will in-
stead result in smaller and smaller effect. A large value on the derivative time may
also introduce oscillations [Åström and Murray, 2008]. In Figure 2.1 three different
simulations illustrate how tuning of the control parameters can affect the result.

Nonlinearities in the system such as actuators of various kind may cause prob-
lems when integral action is included. It is very likely that actuators come with lim-
itations, e.g. a valve cannot be opened more than 100%. If the control error is large
the calculated control signal may exceed limitations regarding the actuator. This in
turn can put the actuator into saturation. If the calculated control signal becomes
very large, i.e. much larger than the limit, it will take some time for it to return to a
value that doesn’t cause saturation. This phenomena is called integrator windup and
it is avoided by using a method called anti-windup [Åström and Hägglund, 2006].

For high-frequency signals the derivative gain is ideally very large [Åström and
Hägglund, 2006]. For this reason measurement noise tends to be amplified. If one
consider a sinusoidal noise signal the conclusion that the impact from the amplifi-
cation grows with higher frequencies can be drawn [Visioli, 2006]. To reduce the
impact from measurement noise the derivative part can be implemented together
with a filter whose task is to limit the amplification of content with high-frequency
in the signal [Åström and Hägglund, 2006].
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2.1 PID control

Figure 2.1: Three simulations of a closed-loop system. The upper plot illustrates the
influence of K when working with a P controller. The middle plot shows the impact
of Ti when K = 1 (PI control). In the lower plot the damping effect with varying
values on Td is shown. Here K = 3 and Ti = 2 (PID control) [Åström and Hägglund,
2006].

Tuning
The tuning part is crucial for design of PID controllers. A good guidance is available
through the control specifications. Given those and since it is clear what impact the
three control actions have on the control performance, one tuning method operators
can make use of is the one called trial and error. Although it may sound easy it can
be very tricky to come up with the optimal parameters and therefore this part really
run the risk of being very time consuming. The result is understandably dependent
on the operator in terms of how skilled he or she is [Visioli, 2006].

The fact that the tuning task only consists of three parameters has resulted in
empirical techniques for direct adjustment of them. In total there are many different
methods. Three of them are presented below, where the first two are the primary
ones for this thesis.

Ziegler-Nichols method In 1942 two control engineers named John G. Ziegler
and Nathaniel B. Nichols came up with two methods for determining the parameters
for a PID controller. The methods take into account some features from process
dynamics and simple formulas are used to calculate the parameters.

One of the two methods uses process information in terms of the open-loop step
response to determine two parameters which together with an existing table gives
the controller parameters (see Table 6.2 in appendix).
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Chapter 2. Background

The other method uses the Nyquist curve of the process transfer function instead
of the step response in order to get the necessary information about the process.
Based on where the curve intersects with the negative real axis the ultimate gain
and period is determined. The controller parameters are then calculated in the same
manner as the previous method, using a given table [Ziegler and Nichols, 1942].

Although the Ziegler-Nichols methods have been actively used in industry for
over 70 years regarding the tuning issue of PID controllers, it does come with severe
drawbacks. The methods use deficient process information and the resulting closed
loop systems are not good in terms of robustness [Åström and Hägglund, 2004].

AMIGO tuning (Approximate MIGO design) In [Åström and Hägglund, 2006]
an alternative method is presented. The method is based on an open-loop step re-
sponse, and takes a constraint regarding the robustness into account. They success-
fully came up with a simple tuning rule, named AMIGO, by investigating correla-
tions between controller parameters and normalized process parameters, where the
controller parameters were obtained by applying the MIGO design. MIGO stands
for M-constrained Integral Gain Optimization and the primary goal with the design
is to end up with good load disturbance responses. In order to fulfill the goal the
main focus is to minimize the integrated control error. To guarantee robustness it
uses a constraint on the maximum sensitivity, Ms [Panagopoulos et al., 2002].

λ -tuning Another method commonly used in process industry is the so called λ -
tuning, developed in 1968 [Åström and Hägglund, 2006]. The method is a special
case of pole placement and it is related to internal model control, IMC [Rivera et al.,
1986]. By assuming a first order time delayed model, FOTD, it is possible to come
up with either PI or PID controllers. If the design parameters are chosen in a good
way the method can give appropriate results although the consequence of cancelling
a process pole implies poor load disturbance responses for lag dominated processes
[Åström and Hägglund, 2006].

2.2 Relay auto-tuners and the asymmetric relay feedback
experiment

Development perspective
Auto-tuners in general have existed for many years. In the mid-eighties an effective
way of tuning PID controllers by estimating the critical gain and the critical fre-
quency on the Nyquist curve was found by [Åström and Hägglund, 1984]. Tuning
PID controllers using the information about the critical gain and the critical time
period was introduced by Ziegler and Nichols in the early forties. They proposed
to find the critical gain through increasing the proportional gain in a simple propor-
tional controller until oscillation occured. The gain that creates the oscillation is then
called the critical gain kc and the time period for the oscillation is called the critical
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2.2 Relay auto-tuners and the asymmetric relay feedback experiment

time period tc, which also corresponds to a point in the frequency plane where the
Nyquist curve intersects the negative real axis [Ziegler and Nichols, 1942].

Another way to determine kc and tc were found by [Åström and Hägglund,
1984]. Instead of iteratively increasing the proportional gain in a PID controller
they applied a relay and the describing function. The fact that a relay in a closed
loop together with a system having a phase lag of at least π radians may create an
oscillation with time period tc is stated in [Åström and Hägglund, 1984]. The critical
gain kc could then be determined by the describing function approximation.

Since that method only gives one point on the Nyquist curve, an improvement
of that method has been provided. The idea of the improved relay auto-tuner exper-
iment is instead to find a low order model describing the process. To reach that goal
the idea is to take advantage of the normalized time delay, which is to be described
later in this text. The relay experiment is done, like in the [Åström and Hägglund,
1984] experiment, by placing a relay in the closed loop. It can be represented with a
block diagram with the relay parallel to an off-switched controller, as in Figure 2.2.
Since it is placed in a closed loop it has the advantage to stay nearby the set point.
During the experiment the switch is adjusted such that the relay is active, otherwise
it is the controller that is in charge.

Figure 2.2: Block diagram with the relay implemented in the feedback loop [Berner,
2015].

The main idea
[Åström and Hägglund, 1984] used a symmetric relay, in which the upper and lower
levels have the same magnitude regarding a given zero point u0. The method pre-
sented here uses an asymmetric relay. The advantage with the asymmetric relay is
that it provides a low order model. In [Berner et al., 2014] the two levels are defined
as d1 and d2 and they are illustrated together with a hysteresis added in Figure 2.3.
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Chapter 2. Background

y

u

-h
h

d1

d2

Figure 2.3: Asymmetric relay with hysteresis h and the amplitude levels d1 and d2.

When the experiment starts the process is assumed to be in steady-state. In other
words, that the control signal and the output are staying at a certain working point
(u,y) = (u0,y0). When in steady-state, the goal is to make the process oscillate in
a limit cycle behavior, like in [Åström and Hägglund, 1984], whereupon certain
features can be investigated. This is done by generating a control signal from the
relay, which according to [Åström and Hägglund, 1984] will make a process with a
phase lag of at least π to oscillate with a time period tc. Since it is a relay the signal
will either be uon or uo f f , nothing in between. Every time the output signal passes
through its equilibrium the control signal is switched, either from uon to uo f f or
vice versa. Since that would introduce a heavy switching behavior in environments
where noise is present a hysteresis belt with deviation h from y0 is introduced as
shown in Figure 2.3 and illustrated in Figure 2.4. With a hysteresis belt implemented
the relay will not be as sensitive to noise as it would be without it. The upper and
lower limits of the hysteresis band together works as a substitute to the working
point y0 when it comes to the switching behavior regarding the relay.

Estimated models
In [Berner, 2015] there are two types of representations describing a first order
process. The first order time delayed model (FOTD), which has the transfer function
represented as given in equation (2.2).

P(s) =
Kp

sT +1
e−Ls (2.2)

The other parametrization is the integrated time delayed model (ITD), represented
in equation (2.3).

P(s) =
kv

s
e−Ls (2.3)

Estimates of the model parameters (kv, Kp, L, T ) will be obtained from the relay
feedback experiment. In the case with the FOTD model the parameters L and T

18



2.2 Relay auto-tuners and the asymmetric relay feedback experiment

Figure 2.4: The relay experiment with a hysteresis belt with height h introduced
[Berner, 2015].

relate to each other by a normalized time delay which is given by:

τ =
L

L+T
. (2.4)

Depending on the value that τ is assigned, a first order model can either be
described as a FOTD or an ITD. From equation (2.4) one can see that T has less
impact on τ if the value is close to one and vice verse. In [Luyben, 2001] the ratio
between L and T was investigated. The curvature of the output signal was shown to
behave more as a pure integrator if the ratio was small enough, i.e. the output signal
behaved as a triangular wave. Such a wave can be interpreted as a ramp function for
small values on the ratio L

T . A series of pulses (steps) into an integrator process will
result in a series of triangular pulses, which is the reason why it can be approximated
as an ITD model, if τ is small enough. If the ratio was large the behavior looked
like a delayed pulse. To find the right model curve fitting is used, which is based on
the value of the normalized time delay.

The experiment - a walkthrough
The first step in the experiment is to figure out the sign of the process and also the
initial amplitude for the relay. The relay signal is ramped up exponentially until
one of two possible events occur. Either the maximum value of the control signal is
reached or the output signal hits one of the limits on the hysteresis belt. If the first
scenario occurs the relay output stays constant until one of the limits is crossed.
Depending on if it is the upper or lower hysteresis level that has been crossed the
sign of the process gain either is stated as positive or negative. At this point the
initial values of the relay levels d1 and d2 are determined using the current value
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Chapter 2. Background

of the relay output and an asymmetry factor γ , which is defined in equation (2.7).
Depending on the value of u0 the two relay outputs uon and uo f f can be determined
as follows:

uon = u0 + sign(Kp)d1 (2.5)
uo f f = u0− sign(Kp)d2. (2.6)

Observe from equation (2.5) and (2.6) that uon either can be the higher or the
lower level depending on the sign of Kp. The same reasoning can be applied for
uo f f . It turns out that the ratio between the maximum and the minimum value of d1
and d2 (mathematically described in equation (2.7)), referred to as asymmetric level
γ , has an impact on the estimated process gain [Berner, 2015].

γ =
max(d1,d2)

min(d1,d2)
(2.7)

A larger value on γ will decrease uncertainties on the estimated process gain. At
the same time there is a constraint on γ which has to be fulfilled:

γ ≤ ymaxdev

ymindev
. (2.8)

Where ymaxdev and ymindev are the maximum and minimum deviations from the
working point y0 respectively. Those values represents levels which the output sig-
nal should lie in between. Since the requirement stated in equation (2.8) has to be
met an arbitrary value on γ cannot be chosen.

In order to make the oscillation of the output signal stay in a preferable distance
from the working point (ymindev ≤ y ≤ ymaxdev) the relay amplitudes have to be ad-
justed. It is necessary that the oscillation stays above the hysteresis level. If equation
(2.9) is fulfilled

min(d1,d2) | Kp |≥ µh, (2.9)

for some value of µ > 1, it can be guaranteed that the oscillations stays above the
hysteresis level. Furthermore, it has been shown in [Berner, 2015] that small values
on µ give less accurate estimation on the normalized time delay than larger values
on µ . Since τ is an important parameter in the experiment it would not be desirable
to accumulate an error in that variable.

The experiment continues until the process output signal reaches a limit cycle.
Mathematically a limit cycle is defined as

x(t + t0) = x(t), for some t0 > 0. (2.10)
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2.2 Relay auto-tuners and the asymmetric relay feedback experiment

If two consecutive periods are sufficiently equal one can consider that the output
signal has reached a limit cycle. To check whether they are approximately equal a
tolerance level is introduced, specified by the parameter ε . The tolerance is typically
very small and can be stated mathematically as:

∣∣∣ tp− t∗p
t∗p

∣∣∣≤ ε, (2.11)

where tp and t∗p is two consecutive period times. The tolerance ε is a user-defined
parameter. A bad choice may accumulate error on the experimental result. This
uncertainty has been investigated in [Berner, 2015]. The most crucial parameter in
the FOTD model is the process gain Kp. It was shown that smaller values on ε gave
smaller uncertainties in the experimental process gain. But there is a drawback with
decreasing the tolerance to much since it will increase the experimental time. This
means there is a trade-off one have to deal with regarding the two parameters. When
simulating a process the experiment time is often not as crucial as it is in industry.
However, the other parameter τ has been shown to stay almost independent for
different values on ε . The default value was therefore choosen to 0.01, also listed in
appendix, Table 6.8.

When the experiment has converged it is possible to gather data to analyze how
long the relay has been on and how long it has been off. The variables regarding
those times are ton and to f f (Figure 2.5). They are necessary for later parameter
calculations when dealing with different models. Another parameter that is available
in the experiment is the integral of the output, i.e.

Iy =
∫ t+tp

t
(y(τ)− y0)dτ, (2.12)

where tp has the duration tp = ton+ to f f [Berner et al., 2016b]. An illustration of
the integral is shown in Figure 2.5. The output of the relay can be calculated in the
same way. Since u is a square wave (see Figure 2.5), the integral calculation can be
simplified as

Iu =
∫ t+tp

t
(u(τ)−u0)dτ = (uon−u0)ton +(uo f f −u0)to f f (2.13)

The parameters in equation (2.2) and (2.3), i.e. kv or Kp, L and T (FOTD), may
be calculated through the results from the experiment. As mentioned earlier the
value of τ decides what model is to be chosen. Since τ is unknown it has to be
estimated. How to estimate it is shown in [Berner, 2015]. The half-period ratio, ρ ,
is used for that purpose. It is defined as

21



Chapter 2. Background

Figure 2.5: Illustration of the integral of the process output Iy. Here the red curve
is the process output and the shaded area highlights the integral over one period of
time [Berner et al., 2016a].

ρ =
max(ton, to f f )

min(ton, to f f )
, (2.14)

which was shown in [Berner, 2015] to have an impact on τ through

τ(ρ,γ) =
γ−ρ

(γ−1)(0.35ρ +0.65)
. (2.15)

Since τ is estimated it will come with an error. However the estimated value
is good enough to use for the calculations. If one wishes to read more on how to
estimate τ , see [Berner, 2015].

Model choice
Earlier in this chapter it was discussed how the value of τ decided what model to
choose [Luyben, 2001]. The unknown parameters in the models are determined in
different ways. A large value (close to 1) on τ was said to indicate that an FOTD
model is the best choice whereas an ITD model is the proper choice for small val-
ues of τ . In [Berner, 2015] the parameters for an FOTD model are given by the
following equations:

Kp =
Iy

Iu
=

∫ t+tp
t y(τ)− y0 dτ

(uon−u0)ton +(uo f f −u0)to f f
, (2.16)
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T =
ton

ln( h/|Kp|−d2+eL/T (d1+d2)
d1−h/|Kp| )

, (2.17)

L = T
τ

1− τ
, (2.18)

and for an ITD model they are given by:

kv =
2Iy

to f f ton((uo f f −u0)+(uon−u0))
+

2h
ton(uon−u0)

, (2.19)

L =
(uon−u0)ton−2h/kv

(uon−u0)− (uo f f −u0)
. (2.20)

Observe the benefit with an asymmetric relay by looking at the derivation of
Kp in equation (2.16). That derivation would not be possible for a symmetric relay,
since it will always be zero. However, the integral Iu can be zero for an asymmetric
relay as well. That requires that the ratio uon/uo f f is equal to the ratio −to f f /ton.
This implies that ρ and γ are equal according to their definition in equation (2.7)
and (2.14). If ρ and γ are equal equation (2.15) would be zero, meaning that the
process is of integrator type. In this case equation (2.19) and (2.20) should be used
[Berner et al., 2016b].

To view the detailed derivations regarding the model parameters in equation
(2.2) and (2.3) one can study [Berner, 2015]. The resulting values from equation
(2.16), (2.17), (2.18) or from (2.19) and (2.20) can be used to tune the parameters
in the controller using any preferable method. AMIGO tuning is the method that
is to be used in this thesis, which relates its choice of PID parameters to the given
parameters in equation 2.2 and 2.3. Another choice could have been λ -tuning for
instance. In [Åström and Hägglund, 1984] kc and tc was given by the experiment,
in that case a possible tuning method could be Ziegler and Nichols.

2.3 Modelica and Dymola

Modelica is an object-oriented modeling language that can either be programed
using components from already existing Modelica libraries, or be coded in a text
editor. It allows the user to integrate systems from many different territories, which
makes the language useful for engineers from several areas [Modelica-association,
2014].

Dymola is a simulation and modeling tool developed to support the Modelica
language. Modelica is powerful mainly because of its compatibility to integrate
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modeling, analysis, simulation and results evaluation. Since it has open libraries
users can easily create and develop own components or make use of existing com-
ponents that may be of interest for a particular purpose.

This thesis work mainly uses Modelica to create a model for auto-tuning pur-
pose. The resulting model will hopefully be a beneficial tool while working with
tuning of PID controllers for different kinds of processes.

Model definition
A model is a type of a class in Modelica. When declaring a model there is a cer-
tain structure describing the necessary parts. To begin with all the variables and
parameters that are to be used in the model should be declared. There is a concrete
difference between the meaning of a parameter and a variable. A variable is allowed
to change during a simulation whereas a parameter must be constant.

Next there is a part called equation. Here all the necessary equations regarding
the model are stated. There are differences from Java, C or other programming
languages when working with the equation part in Modelica. In Modelica it does
not matter which side of the equality sign one puts the expression, i.e. the left hand
side is not reserved to be the "assuming side". When defining an equation it is not
defined which variable it is to be solved for. Lastly the order of the rows is irrelevant
since everything is executed concurrently [Modelica-association, 2014].

As an alternative to the equation part one can introduce an algorithm section,
which just like an equation part relates variables. Depending on your model the al-
gorithm section can either replace the equation completely or complement it. The
way to work within this section is more like standard programming, both consider-
ing the sign and the row order. The latter entails that it is more convenient to use an
algorithm if the purpose is to write a sequential working code. An algorithm sec-
tion separates inputs from outputs, which is a big difference in comparison to the
equation part [Modelica-association, 2014].

Events in Modelica
In general, people who work with Modelica does not think in terms of sequential
execution. Instead, one creates the model and then includes necessary equations for
solving the problem, with no respect to the order. Having that in mind the structure
of the auto-tuner will be special since it will work sequentially right through. Con-
sidering Section 2.2, the different parts in the experiment comes with dependencies
regarding earlier results. A suitable approach is to refer to the different experiment
parts as states.

A transition from one state to another can be considered as a discrete behavior.
In Modelica this is something that creates a discontinuity in the solution. Modelica
treats such a behavior as an event. An event is generated via a conditional expres-
sion that is fulfilled when the total condition is triggered, e.g. when the process
output crosses the upper hysteresis level while the relay output is equal to its higher
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value. The condition can embrace all kinds of variable types, integer, boolean etc.
If it is specific times that triggers the condition, i.e. if a variable containing a real
value is compared with the built-in time variable, the event is called a "time event".
Condition types of various kind appear in the work with the auto-tuner.

In Modelica events are treated with statements such as if- and when-statements.
The main difference is that when-statements only are active when the event is trig-
gered, compared to the if-statement that is active as long as the conditional expres-
sion is true [Modelica-association, 2014].

Linearization tool
Modelica LinearSystems 2 is a library that includes packages with a bunch of meth-
ods associated to linear analysis. This is for instance useful in cases when the model
is non-linear in order to make a linearization.

In order for the linearization to be pleasant the process needs to be in steady-
state. Because of the linearization one should be aware of that the model only is
valid around the selected point.

The linearization tool will later be used in order to find a reference model. To-
gether with that model one is able to find a controller that is comparable to the
controller obtained by the auto-tuner.
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In this chapter the implementation of the relay auto-tuner in Modelica is considered.
Also the workflow regarding the block is discussed. Several assumptions are being
made along the way and they are primarily based on [Berner, 2015]. In case of
exception the current reference is stated.

The first thing to consider is what information the relay block should exchange
with the rest of the world. In Modelica this is called interface or boundary condition.
Since the equations in Chapter 2 need information about the process output, y, it is
reasonable to use this as an input to the block. The second signal used as an input
is the set point, ys. In this way it is possible for the user to try the experiment for
different steady-state levels. The signal generated by the auto-tuner, u, is defined to
be an output.

A relay block has been constructed mostly through the "Modelica text" environ-
ment, but also through the diagram view in Dymola. The two inputs and the output
discussed above are defined to be of the type real. The auto-tuner uses information
provided by the process and utilizes this to do the mathematical calculations given
in Chapter 2. In Figure 3.1 one can see what the resulting block looks like in the
diagram view in Dymola.

Figure 3.1: The auto-tuner block with two inputs and one output. The inputs to the
block are the process output, y, and the set point ys. The output is the output signal
generated by the auto-tuner, u.

The structure of the implementation is categorized into different states by rea-
son of the experiment structure. Depending on what state is active the output from
the auto-tuner is different. For simplicity an enumeration is used in order to define
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suitable states for the experiment. Another way to define the states could be by in-
troducing an integer variable. Since the number of states is known beforehand an
enumeration easily can be used. One advantage with enumerations in comparison
to an integer variable is the fact that it is possible to make it more readable and
understandable.

This chapter will cover what type of actions that is being exerted in the
different states. Mainly there are six different states, as follows: Initiation,
ExponentialGrowth, RelayOut put_ON, RelayOut put_OFF , Go steady state and
Comparison, illustrated in Figure 3.2. The second and third state differ from the
others since the experiment will be switching between those two for some time,
whereas the other states only will be active once. When starting the experiment
it enters the first state, Initiation. It will not change state until the process output
reaches a steady-state. This is necessary since the experiment requires steady-state
to be able to achieve good results. When reached steady-state next state can be
activated, more particularly the state is changed to ExponentialGrowth. The output
is increased exponentially until certain events occur upon which the sign of the
process gain and initial relay amplitudes can be determined, as stated in Chapter 2.
The upcoming two states, RelayOut put_ON and RelayOut put_OFF , are alternated
a non-fixed number of times during the experiment. The number of switches can
vary for different experiments and processes. It will continue to jump between these
two until convergence occurs. The next state is GoSteadyState, which is used in
purpose of reaching steady-state again. The last state named Comparisons handles
a comparison between the estimated model and the actual process. An illustrative
overview of the different states can be studied in Figure 3.2.

Transitions between states are treated with when-statements in Modelica since
it only has to be updated once when it is time to change state. Regarding the applied
control signal u this needs to be set continuously throughout the experiment. In this
case if-statements are used.

3.1 How to reach steady-state and check whether it is
reached

Before the main part of the experiment starts, i.e. before ExponentialGrowth is
active, the process output has to be in steady-state. For some processes this may
take more time than it does for others. In a mathematical point of view, steady-state
requires no variations at all. Practically it is approximated to be satisfied when there
are only small variations. Small oscillations around a steady point can have different
meanings for various processes. For some processes it can signify that steady-state
has been reached while for others it cannot. Therefore this has to be handled with
caution, otherwise the whole experiment might present bad results. According to
[Berner, 2015], the experiment will not give satisfactory results if the process is not
in steady-state when it is started. Of course this is not a problem if the process is in
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Init

ExponentialGrowth

On Off

GoSteadyState

Comparison

Terminate

Steady− state?

Switch?

Converged?

Steady− state?

Done?

Figure 3.2: The relay may be in six different states. It starts by generating a constant
or controlled signal. Then it continues in to exponential growth and from here there
are two possibilities depending on which hysteresis level being crossed. The process
is then alternated between the next two states (On/Off). When convergence is a fact,
a control action makes the process output reach steady-state again whereupon the
comparison can be made.
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Input signal
Constant
Controlled

Duration
Fixed
Unfixed

Table 3.1: Describes the two main options concerning the steady-state issue.

steady-state initially. For instance, when dealing with a tank whose level should be
controlled, it is necessary to bring the level to a desirable point beforehand.

Now when it is clear that steady-state is a prerequisite for the experiment, the
next issue is regarding the knowledge of being in steady-state. Something needs to
inform the auto-tuner that steady-state has been reached. One way to solve this is
by guessing the time it might take. For instance one may believe that 30 seconds is
enough. This method might work in some cases but in general it is very uncertain.
A method more reliable would be to study the derivative of the process output. A
small value indicates that the output is more or less constant.

The two methods mentioned above have been implemented in the auto-tuner
making it possible for the user to decide what setting to use. Both methods are
regarding the problem of knowing when steady-state is reached. In addition to this
one can choose from two different ways of reaching the desired level. Either by
applying a constant input or by using a PI controller (Constant or Controlled input
in Table 3.1). The controller and the constant input that is used to reach steady-state
uses the same output as the relay. This means that they are only active during the
initiation. Another alternative would be to include a controller in the loop and let
the relay work with the stabilized system. However, that is not the method that is
used in this thesis.

Regardless of the choice for reaching steady-state one will need to come up with
suitable values on the constant input or PI parameters. To determine those the user
has to apply trial and error, where pre-existing knowledge of the process together
with its complexity has an impact. In some cases Ziegler and Nichols tuning rules
can be used with good results when deciding the PI parameters. To sum things up
the user has the opportunity to choose from four different modes, see Table 3.1.

In Figure 3.3 one can have a look on a screen shot of the parameter window
of the auto-tuner block. The choices are available through a drop-down list under
the tab called initialization. As earlier mentioned the user can either choose a fixed
time, tss, which determines when the program should go further and change state.
The process output is then assumed to be in steady-state after this time. This setting
requires some additional support from the user in order to set the fixed time to a
reasonable value. This can be done by doing pre-simulations and study the steady-
state behavior. This would of course not be possible in the industry. In that case
an operator would instead have to wait for the process to reach steady-state and
then push on the experiment start button. However, since the auto-tuner is used in a
simulation environment this is not a problem and the method is therefore available
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Figure 3.3: Initialization of the auto-tuner. it is divided into two separate groups,
Controller and Settings. The Controller part treats the stabilizing controller if
"Controlled input" is chosen. Under Settings it is possible to change what
mode to use in order to reach steady-state etc. In appendix their default values are
listed in Table 6.8

as an option.
The other alternative available from the drop-down list is the one based on the

derivative. If the derivative is below a certain tolerance, implemented as tol, during
a number of consecutive time steps the process is considered to be in steady-state.
By default the test is executed each tenth of a second. For simplicity the derivative
has been implemented as an approximation

dy
dt
≈ ∆y

∆t
, (3.1)

where ∆t represents a small time step. Since it is possible to choose a small value
on the time step it is not a disadvantage to choose this approximation. However, the
method do come with some drawbacks regarding the accuracy. Since a curvature
can consist of a number of extreme points it is important to make sure that the
derivative is less than the chosen tolerance for a fair amount of time. Furthermore,
problems may arise if the process consists of a long time delay, if the process has
slow dynamics etc. It is possible for the user to choose how many times in a row the
derivative check should be successful, observations from tests have shown that this
clearly has an impact on the resulting performance.

3.2 Start-up

When steady-state is reached, an event is triggered making the state change from
Initiation to ExponentialGrowth, see state diagram in Figure 3.2. The purpose of
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the ExponentialGrowth state is to find the sign of the process gain and to decide
the initial amplitudes of the relay. These are separately determined using two differ-
ent functions. The first function uses the simulation time as input to exponentially
increase the output signal from the relay. This is done until a certain event occurs.
The event is triggered when the process output crosses one of the hysteresis lev-
els, illustrated in Figure 3.5. The event is handled with a "when-statement" since it
only needs to enter and update the state once. According to equation (2.5) and (2.6)
the crossed level decides how the relay amplitudes should be designed. This is im-
plemented in a second function named RelayAmplitudes. This function returns the
initial asymmetric relay amplitudes (d1 and d2), the output signal of the relay (uon
and uo f f ) and the sign of the process gain. In order to avoid that the computed out-
put exceeds or is below the allowed limits a saturation check is done. It is required
that

umin < u < umax, (3.2)

is satisfied to achieve desirable results. Values on umin and umax are set by the user
through the auto-tuner parameter window illustrated in Figure 3.4. In the group
called Experiment parameters one can also decide the asymmetric level γ , the hys-
teresis level h etc. Through observations a good value on h might be set a factor
100 less than the maximum value. When working in a simulation environment there
is normally no noise to take into consideration, therefore it may work fine without
a hysteresis as well. Without it however, processes with fast dynamics could have
a negative impact on the result. To mimic the standard implementation found in
[Berner, 2015], it is included in the implementation.

Figure 3.4: Experiment parameters that the user is able to change. In appendix their
default values are listen in Table 6.8

Depending on if it is the upper or lower hysteresis level that is being crossed
it is possible to determine the sign of the process gain. At the same time instant
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the initial amplitudes regarding the relay are determined through equation (2.5) and
(2.6). It has been implemented in such a way that d1 always is γ times larger than
d2. The determined results are then used to set the output signal in the actual state.

With the sign of the process gain and the initial relay amplitudes given, the
experiment moves on. By taking a look at the state diagram in Figure 3.2 one can
see that there are two different alternative ways to go from ExponentialGrowth,
either it is RelayOut put_ON or RelayOut put_OFF . It is the sign of the process
gain that decides what the next state becomes. According to equation (2.5) and
(2.6) a positive sign indicates that ON is the upper level and OFF is the lower level.
The experiment then alternates between RelayOut put_ON and RelayOut put_OFF .
The triggering occurs when the process output passes one of the hysteresis levels.
For instance, if the sign is positive and the process output crosses the upper level
(coming from below) the state should change to RelayOut put_OFF .

Figure 3.5: Illustration of the start-up in the experiment. The blue curve represents
the output from the auto-tuner and the red the process output. The control signal
increases exponentially to begin with. When the process output passes through the
hysteresis band the relay amplitudes are set. In this case uon is the upper level and
uo f f is the lower since the process output goes in positive direction.

3.3 Adjustment of the relay amplitudes

To get a more gentle oscillation on the process output the amplitudes are adjusted.
This is done until the oscillation aligns within a desired amplitude interval. The
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interval limits are set by ymindev and ymaxdev and the values 2h and 12h respectively
are used, as in [Berner, 2015]. As long as equation (2.8) is satisfied other suitable
limits can be chosen.

The adjustments of the amplitudes are done with an algorithm which takes the
process output during one time period into account. Depending on what value the
largest deviation from y0 assumes, the relay amplitudes are either increased, de-
creased or their values are retained. This procedure is done until the largest devia-
tion during one time period ends up within the desired limits. To prevent the signal
from decreasing to much, a lower limit on how much it can be scaled during each
iteration is set.

Figure 3.6: Illustration of the adjustment of the relay amplitudes in order to align
within the preferable region. The region is set to be ymindev (green line) and ymaxdev
(magenta line). By default ymaxdev = 12h and ymindev = 2h.

As mentioned above the algorithm regarding the adjustments uses the largest
deviation from y0 during a time period. To be able to come up with this value the
process output has to be compared with its previous value continuously throughout
one period. The problem is solved by using an own type called Comparator con-
structed in C and appurtenant functions. In total there are four functions regarding
Comparator. Firstly there is one named createComparator() which is called by
the constructor in Modelica. When the constructor is called memory concerning
one instance of Comparator is allocated and the internal variables are set to zero.
Correspondingly, the memory allocated by that instance has to be deallocated. This
is done by the function deleteComparator(void∗ type) which is called by the
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destructor in Modelica.
In the equation part (Modelica text mode) the function updateAndGetMax(void∗

type,double y) is called continuously. It simply compares the current value on
the process output, y, with an internally stored value representing the current max-
imum value. If the input y is larger than the stored value, the latter is updated and
returned. Otherwise the stored value is returned.

Due to the fact that the adjustment algorithm uses values from separate time
periods the stored max value needs to be reset right before it begins another loop.
This is done by calling on the function reset(void∗ type). Without the reset
function the maximum deviation would not be matched correctly to the different
periods. According to Figure 3.6 the process output in the beginning is much larger
than in the end. If the stored max value is not reset in this case, the consequence is
that the wrong value will be used in the algorithm.

3.4 Convergence check

If equation (2.11) is satisfied, the oscillation of the process output is assumed to
have reached a limit cycle, i.e. two consecutive periods are sufficiently equal. To
examine whether this is the case, two consecutive periods need to be calculated. On
top of that an acceptable limit, i.e a tolerance, regarding the difference between the
periods needs to be considered. In [Berner, 2015] the tolerance level is examined
and it is shown that an appropriate choice on ε is 0.01. This choice is confirmed by
studying the error in τ and process gain respectively. It proves that a smaller value
on the tolerance does not improve the accuracy but instead increases the experiment
time. Using a larger value on the tolerance decreases the experiment time but at the
same time the resulting process gain is not as good as with ε equal to 0.01. Based
on this, ε is defined to be 0.01 by default.

When measuring a time period the first thing one has to deal with is when to
begin the measurement. In Modelica this is kind of tricky since parameter values
are not accessible during a simulation in the same way as they are in Matlab for in-
stance. There is no such memory feature. To solve this problem an appropriate way
to go is to make use of the relay output and its switching behavior. The relay output
is switched every time the process output crosses one of the hysteresis levels. The
easiest way to see this is to take a look at Figure 2.4 in Chapter 2. When the relay
(blue curve) is set to its lower level and the process output (red curve) crosses the
lower hysteresis level the relay output is changed from low to high. In connection
with this event the current time is stored in a vector with two slots, one intended for
the start time and one for the end time regarding one period. The time is available
through a global variable. Two separate vectors are used to store times, one is re-
garding switches from low to high and the other is the opposite case. The purpose
of having two instead of one is to be able to compare two consecutive periods every
half period. This feature may decrease the duration of the experiment. In Figure 3.7
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an example is shown where one can see how the time periods change with time.
In the end the difference between the two consecutive time periods is so small that
convergence is assumed.

Figure 3.7: Illustrates the time period measurements used for the convergence check
during an experiment. tp and t∗p are period times of two consecutive periods. When
they are sufficiently equal, convergence is assumed. Just before 30 seconds this
happens, see the green curve.

3.5 Measuring and derivation of ton, to f f , Iu and Iy

When the process output has reached a limit cycle, i.e. when equation (2.10) and
(2.11) are satisfied, convergence is assumed. At the same time some values are
stored for further calculations. As mentioned in the previous section it is not possible
to access complete data concerning variables in Modelica. For that reason the same
idea as above is used when measuring ton and to f f . Times connected to specific
relay switches, e.g. low to high, are used to store start and end times regarding ton
and to f f . In order to minimize the duration time for the experiment the calculation
of the respective times are done continuously, even though they come to use first at
convergence.

Consider the situation shown in Figure 2.4, where the times ton and to f f are
specified. To begin with the relay output is changed from low to high. At this mo-
ment the current time is stored and used to describe two things. Firstly it represents
the start time for a new measurement of ton, secondly it represents the end time for
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to f f . When the relay after some time returns from high to low the current time once
again is stored and used for updating times regarding the calculation of ton and to f f .
In Figure 3.8 one can see the calculations of ton and to f f respectively. In the end of
the simulation they are held constant.

Observe that the relays ON state not necessarily is equivalent with having the
relay output set to its upper level. The appearance depends on the sign of the process
gain, as stated in equation (2.5) and (2.6).

In addition to the times discussed above two integrals are calculated, based on
equation (2.12) and (2.13). Due to the same reasoning concerning the total duration
time the calculation is done continuously throughout the experiment, until conver-
gence occurs. Dealing with equation (2.12) and the fact that convergence may occur
every half period it is required to have two separate integral calculations for the out-
put, one being lagged by a half period with respect to the other. To calculate the
integrals in Modelica one can take advantage of the built-in function der(). The
usage is shown in equation (3.3).

der(Iy) = y, (3.3)

Where Iy is the integral of the process output y [Modelica-association, 2014].
Modelica will give you two things depending on what variable that is known, the
function solves the problem differently for different cases. Consider Iy to be known,
then y is derived by taking the derivative of Iy. On the other hand, when y is known,
Modelica solves the problem by taking the integral of y. In the experiment y is
known and therefore the latter version is applied.

At the same instant as a new period is started the integral value must be reinitial-
ized to be 0. In connection with this event the calculated value is stored in another
variable just to make sure it is not overwritten. In Figure 3.9 one can see how the
two integrals develop over time. Notice how they are forced to zero.

Equation (2.13) states how to calculate the integral of the relay output, i.e. Iu.
Since the on and off times for the relay is being calculated in this section as stated
above and the adjustment of uon and uo f f were done previously in Section 3.2, the
calculation of Iu is straightforward according to equation (2.13).

3.6 Calculation of parameters

To calculate the parameters for both the estimated model and the PID controller
the results from Section 3.5 are needed. In the code there is a flag which informs
whether the experiment has converged or not. When convergence is achieved a func-
tion call is made. This function uses previously calculated variables to determine ρ

and τ , according to equation (2.14) and (2.15). Depending on the estimate of τ , ei-
ther parameters of a FOTD or ITD model are computed from equation (2.16), (2.17),
(2.18) or (2.19), (2.20) respectively. In conclusion, the model parameters computed
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Figure 3.8: Illustrates the continuous measurements of ton and to f f during an exper-
iment. Their values are stored when convergence is achieved.

in the step above are used as inputs when determining the final PID parameters
using the AMIGO tuning rule.

3.7 Workflow

One of the main goals with this project is to create a comfortable workflow for the
user. This can be done by looking into and optimize specific parts. For instance the
handling of information is taken into consideration. The way to present the results
from the experiment can differ. Another aspect is what type of settings that is nec-
essary from a user perspective. Should it be possible to use the auto-tuner in some
type of advanced or normal mode etc.

Comparison between the estimated process and the real
One relevant question to answer after the experiment is how well the estimated
model imitates the actual process. This is done by using the relay once again and
switching its output. The signal from the relay is coupled to both the process and
the estimated model, according to Figure 3.10. Lastly there is a comparison of the
two outputs, resulting in a plot looking like the one in Figure 3.11. By observing
the comparison one can draw conclusions concerning the accuracy of the estimated
model. Since the PID parameters are based on the estimated model a bad estimation
clearly would have a negative impact on the resulting parameters. In other words,
if the user notice bad control performance when using the resulting PID parameters
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Figure 3.9: Shows the two integrals regarding the output. Notice both how they are
forced to zero and that the red curve is lagged with respect to the blue. Observe the
blue curve and its value just before it is reset to zero the last time. That value is very
close to what the red curve were just before it was reset the last time. This indicates
convergence. Depending on when convergence occurs one of the integrals is used
for further calculation.

from the experiment he or she can check whether it is a problem with the estimated
model or not.

Relay Process

Model

y u y

ŷ

Figure 3.10: Comparison between the estimated model and the real model in a block
diagram view. Here u represents the relay output, y is the process output and ŷ is the
output generated by the estimated low-order model.
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Figure 3.11: Comparison between the estimated model and the real model.

Generating a text file
As mentioned above the estimated model and its parameters are crucial parts of
the experiment. Therefore, this information is written to a text file placed in the
workspace together with additional results that may be useful for the user to look
at. This is done automatically just before the simulation is terminated. The estimated
model parameters of interest are T (FOTD), L and Kp or kv. In addition to those the
calculated PID parameters are also presented in the file. The name of the text file is
”in f o_ f ile” by default. An example of a generated text file is shown in Figure 3.12.
To start with the PID parameters are presented. This is followed by a simple figure
of the model block and its parameters.
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Figure 3.12: When the experiment is terminated an information file is generated
containing controller and model parameters.

Information from the message window
Another presentation of the crucial parameters, from the experiment, is given
through the message window. Dependent on the initiation, a quantity of parameters
are displayed in the window. There are two ways to initiate how much information
one wishes to see in the window. These are respectively normal mode or advanced
mode. The default mode is normal. It simply displays PID parameters and the esti-
mated model parameters. Choosing the advanced track instead gives more informa-
tion about the experiment. It still provides the same information as normal mode but
the number of displayed experiment parameters is extended. For instance one gets
information about the experimental time and the value on τ . An example is shown
in Figure 3.13.

If one wishes to run more than one auto-tuner during a certain simulation each
result is displayed in the window. For each instance created they are separated with
its unique name.
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3.7 Workflow

Figure 3.13: When the experiment is terminated information is shown in the mes-
sage window in Dymola.

Documentation
In order to present information about the auto-tuner a HTML documentation has
been done. This is accessible when the block is selected. It is a description of the
model and the parameters within. Changeable parameters as shown in Figures 3.3
and 3.4 are also described.
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4
Experiments and Results

The following section contains several tests with the purpose of evaluating how
well the auto-tuner works together with processes of different kind, with various
complexity. Mainly four models were chosen. The first one was taken from the
large batch in [Åström and Hägglund, 2006] containing 134 common processes
from industry. It is a linear model and it was used to verify the performance of the
auto-tuner in an early stage.

Furthermore, three non linear processes were chosen. Two from a thermody-
namics library and one from an aerodynamics library. Processes with various prop-
erties concerning stability, dynamics and number of control loops were chosen to
see what the auto-tuner could handle.

To compare the results different methods have been used. To measure how well
the generated PID parameters work when a constant load disturbance is applied, the
integrated absolute error, IAE, is used.

IAE =
∫

∞

0
|e(τ)|dτ. (4.1)

To analyze the behaviour during step changes a combination of the overshoot
in percentage and rise time is investigated. They are related to the bandwidth. A
system with large bandwidth proves to have a faster response than a system with a
small.

The percentage overshoot is defined as:

PO =
ymax,peak

ystep
, (4.2)

where ymax,peak is the peak value of the step response and ystep is the step size. Both
variables are presented as deviations from the start value. The rise time of a step
change is defined as:

RT = t0.9ystep − t0.1ystep , (4.3)
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4.1 Linear process

where t0.9ystep and t0.1ystep are time points at which the process output has reached a
level corresponding to 90% and 10% of the total step change.

To generate a reference model Modelica LinearSystems2 is used. The resulting
model is then used to compute the maximum sensitivity, Ms, which is defined as:

Ms = max
0≤ω≤∞

1
1+P(iω)C(iω)

. (4.4)

It is the transfer function between the process output load disturbance and the out-
put. It describes how sensitive the closed loop system is for errors in the model.
The inverse of Ms gives the minimal distance between the Nyquist curve and the
critical -1 point at the x-axis. Meaning that if Ms is large the distance is small and
the process is consequently more sensitive. By definition Ms can not be smaller than
1 since the complementary sensitivity function is

T = 1−S =
P(s)C(s)

1+P(s)C(s)
, (4.5)

which also is called the closed loop system. As one can see in equation (4.5) the
sum of S and T must always be equal to 1 [Åström and Hägglund, 2006].

To compare the results generated by the auto-tuner a function, pidtune(), from
Matlabs control system toolbox is used. The toolbox refers to [Åström and Häg-
glund, 2006]. It derives PID parameters for the reference model based on a phase
margin larger than 60 degrees. The reference model used is generated by Modelica
LinearSystems 2.

For one of the processes found below Skogestad’s half rule were used for a
later comparison with already existing tuning techniques for PID controllers. That
rule is used in purpose of reducing the order of the transfer function, generated
by Modelica LinearSystems2. Usually a high order model is given and to use the
AMIGO tuning method a low order model is required. If one wish to know more
about Skogestad’s half rule, read for instance [Skogestad, 2003].

4.1 Linear process

About the process The process stated in equation (4.6) was retrieved from a test
batch, presented in [Åström and Hägglund, 2006], containing 134 common pro-
cesses regarding process control.

P1(s) =
1

(0.7s+1)2 e−s (4.6)

A representative view of the experiment is shown in Figure 4.1, taken from the
diagram view in Dymola. The experiment starts up in non steady-state.
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Chapter 4. Experiments and Results

Figure 4.1: Test on a linear process.

Setup Before starting the simulation some parameters in the auto-tuner are ad-
justed, although the default values in Table 6.8 are used for almost all. The param-
eters that were changed for this experiment are listed in Table 4.1. It would work
with a controlled input as well in this case. The value on der_check and u_const
was chosen empirically.

Initialization
Parameter Choice
init_mode Constant input
ss_mode "Unfixed" (derivative check)
der_check 70
u_const 1

Table 4.1: Modified parameters for the linear process.

Experimental result In Figure 4.2 the whole experiment flow is presented in terms
of the output from the relay and process, starting with the initialization and end-
ing after convergence has occured. Observe the different parts, i.e. the exponential
ramping of the relay output, the adjustments of the amplitudes and how the process
output ends up in a nice oscillation.

From the plots in Figure 4.2 one can notice that the process reaches steady-
state after approximately 5 seconds. The experiment does not start until 15 seconds
though. This implies that it would be possible to decrease the number of deriva-
tive checks necessary before beginning the experiment, i.e. decreasing der_check
in Table 4.1.

Furthermore, in Figure 4.3 the comparison between the estimated model and the
actual process is showed. Both Figures 4.2 and 4.3 are generated by a script called
"Plot".
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4.1 Linear process

Figure 4.2: The relay experiment. The red curve is the process output and the blue
curve is the the relay output.

Figure 4.3: Comparison between the estimated model and the real process. The red
curve represents the output from the estimated model and the blue curve represents
the output from the real process.
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Chapter 4. Experiments and Results

Figure 4.4: Comparisons between different PID parameters. Both regarding an ini-
tial step and a constant load disturbance occurring after 18 seconds. In the upper plot
the process output is compared whereas the control signal is shown in the lower.

When the simulation is done a message window pops up in Dymola. Results are
displayed under the tab "simulation". Advanced mode was chosen initially which
means that some extra results are presented. In Table 4.2 the experiment results re-
garding the linear process are listed together with data concerning the performance
when using different parameter set-ups. The set-ups used in the comparison comes
from both Matlab and the AMIGO tuning rules. Since the mathematical model was
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4.2 Non linear processes

known it was straightforward to use the function pidtune(). By the same reason-
ing the AMIGO tuning rules were applied together with the given second order
system. A comparison on how the different parameter set-ups handles an initial step
and a constant load disturbance is shown in Figure 4.4.

Comparisons with various PID parameters
Method K Ti Td RT PO
Matlab 1.045 1.68 0.42 1.14 s 21.80 %
Auto-tuner 0.69 1.49 0.51 1.87 s 3.65 %
SOTD AMIGO 0.58 1.17 0.68 1.93 s 11.66 %

Experimental results
Method IAE Ms Parameter Value
Matlab 1.61 1.92 Model type FOTD
Auto-tuner 2.21 1.49 Kp 0.999
SOTD AMIGO 2.33 1.38 T 1.40

L 1.31
Converged 42.48 s
τ 0.48

Table 4.2: A summary on results regarding the linear process. The upper part
presents different PID parameters and performance data in terms of rise time etc. In
the lower part results regarding the experiment is listed.

4.2 Non linear processes

The processes in the following section are non linear. In order to have a reference
model for these examples the already existing library in Dymola, LinearSystems2,
is used, which derives a linear model at a certain time point.

First thermodynamic process
About the process This test is on a thermodynamic process. The main purpose
is to control the steam temperature by injecting water into a mixed volume. The
controller task is to regulate the valve so that the steam temperature becomes the
desired. By opening the valve, more water from the source is injected to the mix.
Since it is a valve it cannot be opened more than 100% or closed more than 0%.
Therefore the limits for the valve are specified by 1 and 0 respectively. In Figure
4.5 one can see what the process looks like in Dymola. In the upper right corner the
controller has been replaced by the auto-tuner, which is connected to the measured
steam temperature and the set point.
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Chapter 4. Experiments and Results

Figure 4.5: The model steam temperature control with the auto-tuner inserted in the
loop.

Setup Like in the first experiment, parameters in the auto-tuner block are set be-
fore the experiment starts. In Table 4.3 one can see the parameters that were adjusted
in this case. Recall the characteristics for a valve and notice the limits on the control
signal, i.e. the values on uMin and uMax.

To perform the experiment equation (3.2) is required to be satisfied. Since uMin
is equal to 0, an offset needs to be added to the control signal. To gain the steady-
state level a constant input is applied and a derivative check examines whether
the signal has reached steady-state or not. One can expect that the process reaches
steady-state after a certain time, i.e. it is stable, since the process deals with mixing
water in order to achieve a certain temperature.

Experiment parameters
Parameter Value
uMax 1
uMin 0

Initialization
Parameter Value
init_mode Constant input
ss_mode "Unfixed" (derivative check)
der_check 30
u_const 0.6

Stabilizing Controller
k -1
Ti 1

Table 4.3: Setup steam temperature control.

Experimental result The relay experiment is shown in Figure 4.6 where the oscil-
lation of the process output is in the upper part and the relay output is in the lower.
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4.2 Non linear processes

In the figure one can see that the process output goes in the opposite direction com-
pared to the direction of the relay output, indicating that the process has negative
gain.

Figure 4.7 shows a comparison on the estimated model against the real process
in terms of the output. In this case the output from the estimated model differs a
bit from the real process. However, it turns out that the computed PID parameters
result in satisfactory control behaviour regardless of the moderate model.

In Figures 4.8 and 4.9, one can see comparisons on the control performance
when five different parameter set-ups are being used. Both in terms of a step change
and a constant load disturbance. Because τ assumed the value 0.1 in this experiment,
i.e. the limit that decides whether the estimated model should be a FOTD or ITD,
two simulations were made with the auto-tuner. In the first case a FOTD model was
estimated whereas an ITD model was estimated in the second. The two set-ups are
compared against the set-up being used in the model today and set-ups derived by
the control system toolbox in Matlab and Skogestad’s half rule respectively.

In Table 4.4 data regarding the performance using the different parameter set-
ups are listed together with model specific information generated by the experiment.

Comparisons with various PID parameters
Method K Ti Td RT PO
Current −1 1 − 2.19 s 0 %
Auto-tuner (FOTD) −0.51 0.23 0.028 1.87 s 0.14 %
Auto-tuner (ITD) −0.62 0.39 0.024 1.87 s 0.09 %
Matlab −0.09 0.63 0.089 1.88 s 0.37 %
Skogestad −0.61 0.26 0.022 1.87 s 0.12 %

Experimental results
Method IAE Ms Parameter Value
Current 0.28 1.65 Model type FOTD
Auto-tuner (FOTD) 0.14 1.4 Kp -8.07
Auto-tuner (ITD) 0.18 1.26 T 0.49
Matlab 2.084 1 L 0.055
Skogestad 0.12 1.43 Converged 22.75 s

τ 0.10

Table 4.4: A summary on results regarding the Steam Temperature Control model.
The upper part presents different PID parameters and performance data in terms of
rise time etc. In the lower part results from the experiment are listed.
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Figure 4.6: The relay experiment. In the upper plot the process output is shown in
red. In the bottom plot the relay output is shown in blue.
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4.2 Non linear processes

Figure 4.7: Comparison between the estimated model and the real process. The red
line represents the estimated model and the blue line represents the real model.

Figure 4.8: Shows the control signal when the different parameter set-ups are being
used. The constant load disturbance appears after 30 seconds.
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Figure 4.9: Comparisons on the process output when different parameter set-ups are
used. In the upper plot responses to a step change is shown whereas the response to
a constant load disturbance is shown in the lower.
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4.2 Non linear processes

Second thermodynamic process
About the process In this model there are two variables one wishes to control,
namely the pressure and level in the drum. In this experiment the focus is on the
latter parameter, i.e. the level. It is controlled by regulating the valve, which in turn
controls the amount of water being transferred into the drum from the water source.
Again, one has to be aware of limitations when using a valve, i.e. it cannot be opened
more than 100% or closed more than 0%.

In Figure 4.10 one can see what the process looks in Dymola. The controller
has been replaced with the auto-tuner in the upper left half of the model. The valve
being controlled is called "feedValve" and the water source is shown to the left. This
model is unstable.

Figure 4.10: The model Natural Circulation Boiler with the auto-tuner inserted in
the loop.

Setup In Table 4.5 one can see which parameters that were adjusted before starting
the simulation. Unlike the cases with the previous processes it was necessary to set
the boolean "force_conv" to true in this case. The reason for this is further discussed
in Section 5.1. Since the controlled actuator once again is a valve, limits regarding
the control signal needs to be adjusted to 1 and 0 respectively. Another parameter
that differs from previous experiments is "init_mode". Since the process is unstable
the controlled input is chosen.

Experimental result The relay experiment is shown in Figure 4.11, where the
process output and its oscillation can be seen in the upper plot and the relay output

53



Chapter 4. Experiments and Results

Experiment parameters
Parameter Value
uMax 1
uMin 0
force_conv true

Initialization
Parameter Value
init_mode Controlled input
ss_mode "Unfixed" (derivative check)
der_check 30

Stabilizing Controller
k 2
Ti 50

Table 4.5: Setup for Natural Circulation Boiler.

in the lower. Notice how the process output changes direction directly when the
relay output switches, i.e. the process has very fast dynamics. The black dashed lines
represents the hysteresis levels. The green line represents the lower limit concerning
the process output and it is clear that there is a problem in this case. The process
output will never end up in the desirable area. This will be discussed further in
Chapter 5.

The estimated model is compared with the real process in Figure 4.12. The
result is quite good but do notice how the model output gradually moves upwards.
The reason for this is treated in the Chapter 5. The resulting control performance is
not affected by this phenomena.

In Figures 4.13 and 4.15 the control performance is shown for different param-
eter set-ups. Both in terms of a step change in set-point and a constant load dis-
turbance. There are two plots showing the load disturbance response. One of them
is just a scaled version of the first one. This is because the response when using
the parameters generated by the auto-tuner was so much smaller in comparison to
the response when the pre-defined parameters were used. In Figure 4.14 the control
signal during the disturbance is shown.

When using the linearized model from Dymola and Matlab in order to obtain
PID parameters the results were not satisfactory. The result showed a large steady-
state error and there was no response to the load disturbance. This is why only two
curves are compared in this case.

In Table 4.6 data regarding the performance using the different parameter set-
ups are listed together with model specific information generated by the experiment.
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4.2 Non linear processes

Figure 4.11: The relay experiment. In the upper plot the process output is shown.
Notice how it changes direction in the very same moment as it crosses the hysteresis
limit. Consequently it cannot reach the level representing the minimal deviation
from y0, y_mindev. In the bottom plot the relay output is shown.
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Figure 4.12: Comparison between the estimated model and the real process. The red
curve represents the estimated model and the blue curve represents the real model.

Comparisons with various PID parameters
Method K Ti Td Rise time Overshoot
Current 1 25 - 13.27 s 34.74 %
Auto-tuner 73.51 0.89 0.055 3.21 s 3.48 %
Matlab 504 6.73 ·106 1.68 ·106 - -

Experimental results
Method IAE Ms Parameter Value
Current 1.14 3.63 Model type ITD
Auto-tuner 0.00067 1.016 Kv 0.055
Matlab - 1.65 L 0.11

Converged 220.268 s
τ 0.0147006

Table 4.6: A summary on results for the Natural Circulation Boiler. The upper part
presents different PID parameters and performance data in terms of rise time etc. In
the lower part results from the experiment are listed.
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4.2 Non linear processes

Figure 4.13: Shows the response to a set-point change when different parameter
set-ups are used.

Figure 4.14: Shows the control signal during a constant load disturbance when dif-
ferent parameter set-ups are used. The disturbance appears after 400 seconds.

57



Chapter 4. Experiments and Results

Figure 4.15: Shows the response to a constant load disturbance when different pa-
rameter set-ups are used. The plot in the bottom is a scaled version of the upper.
Notice how small the response is when using the parameters generated by the auto-
tuner.
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Aircraft dynamic process
About the process This is a model which describes the dynamics of an aircraft. It
contains several components such as an aircraft, an atmosphere which defines the
atmospheric conditions, an autopilot controller which controls roll, yaw and vertical
velocity, a world component which defines the orientation of the coordinate system
as well as the gravity. There is also an initialization component which initiates the
aircraft, one component for including different quantities like mass, size etc. That
together describes the aircraft. Lastly there is a ground component which specifies
ground conditions. This example mainly focus on maneuvers in the air and there-
fore the aircraft is initialized when being there. Another thing to notice is that the
orientation of the coordinate system is defined such that a negative input from the
vertical velocity controller results in an increased altitude.

Figure 4.16 illustrates what the model looks like in Dymola, with all the compo-
nents described above represented. The component that is connected to the aircraft
with yellow connections is the autopilot controller. If one enters that component, i.e.
goes down one level, a model of three control loops is shown. This is demonstrated
in Figure 4.17. Due to the fact that there are multiple control loops in terms of roll,
yaw and velocity, this is an interesting challenge for the auto-tuner.

Figure 4.16: Overview of the model from the top level.
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Figure 4.17: Control system regarding the autopilot (starts from left side). Controls
roll angle, yaw angle and vertical velocity.

Setup For this experiment three different initiations are needed, one for each con-
trol loop. In Tables 4.7, 4.8 and 4.9 parameters that were adjusted before simulating
the experiments are shown. Characteristics for each actuator decides the limits on
the control signal, i.e. the values on uMin and uMax. They are different for all three
cases.

Since the systems are unstable a controlled input for each experiment is needed
to reach the steady-state level. The parameters for the initiation controllers were
given through the trial and error method. Together with that method the experimen-
tal start time was obtained through observations.
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Experiment parameters
Parameter Value
uMax 10
uMin -25

Initialization
Settings

Parameter Choice
init_mode Controlled input
ss_mode "Fixed" (time check)
t_ss 25

Stabilizing Controller
u_init 0
K -0.3
Ti 0.8

Table 4.7: Setup for the vertical velocity experiment.

Experiment parameters
Parameter Value
uMax 25
uMin -25

Initialization
Settings

Parameter Choice
init_mode Controlled input
ss_mode "Fixed" (time check)
t_ss 140

Stabilizing Controller
u_init 0
K -0.8
Ti 3

Table 4.8: Setup for the roll experiment.

Experiment parameters
Parameter Value
uMax 30
uMin -30

Initialization
Settings

Parameter Choice
init_mode Controlled input
ss_mode "Fixed" (time check)
t_ss 120

Stabilizing Controller
u_init 0
K -0.5
Ti 2

Table 4.9: Setup for the yaw experiment.
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Experiment result The results are categorized into three parts, one for each con-
trol loop. The PID parameters were obtained in two ways. Firstly by replacing one
of the existing controllers with the auto-tuner, then by replacing all three at the
same time. In the latter case three experiments ran in parallel during the simulation,
generating three different parameter set-ups.

Figures describing the relay experiments concerning each control loop are
shown in Figures 4.18, 4.23 and 4.28. Observe that the process output goes in the
opposite direction in comparison to the direction of the relay output in all three
cases. This indicates that the processes have negative gains. For the roll angle the
adjustment of the relay amplitudes were forced to be interrupted due to fast dynam-
ics.

Figures 4.19, 4.24 and 4.29 show how the estimated models follow the process
outputs for the different cases. Since they all are ITD models they are quite similar
to each other.

The other figures show comparisons regarding control performance for differ-
ent parameter set-ups. Two of the set-ups are results from the auto-tuner. They are
named "Auto-tuner (single)" and "Auto-tuner (multiple)" respectively, where multi-
ple means that three auto-tuners ran in parallel during the simulation. Furthermore,
the set-ups currently being used by Modelon are called "Current" and the ones ob-
tained by the control system toolbox in Matlab are called "Matlab".

Vertical velocity Results regarding the relay experiment, comparison test, load
disturbance response, step response, reference following, control signal and mea-
surement values for equation (4.1), (4.2), (4.3) and (4.4) for the vertical velocity are
shown in Figures 4.18, 4.19, 4.20, 4.21, 4.22 and Table 4.10.
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Figure 4.18: The relay experiment for the vertical velocity. In the upper plot the
process output is shown in red. In the lower the relay output is shown in blue.
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Figure 4.19: Comparison between the estimated model and the real process. The red
curve represents the estimated model and the blue curve represents the real model.

Comparisons with various PID parameters
Method K Ti Td RT PO
Current −0.3 0.8 0.3 0.45 s 17.8 %
Auto-tuner(one) −0.44 1.30 0.081 0.34 s 19.5 %
Auto-tuner(all) −0.44 1.31 0.082 0.342 s 19.5 %
Matlab −2.25 ·10−5 1.25 ·103 303.43 - -

Experimental results
Method IAE Ms Parameter Value
Current 3.58 1.12 Model type FOTD
Auto-tuner(one) 2.32 1.32 Kv -6.26
Auto-tuner(all) 2.98 1.32 L 0.16
Matlab - 1.0084 Converged 27.63 s

τ 0

Table 4.10: A summary on the results regarding the vertical velocity control. Firstly
data on the different PID parameters and certain info such as overshoot etc. are
listed, then specific info about the estimated model is presented.
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Figure 4.20: Shows the response to a constant load disturbance and a step change
when different parameter set-ups are used. Notice that there is almost no difference
on the results when one or three auto-tuners are used.
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Figure 4.21: Shows the reference following when different parameter set-ups are
used. As one can see, they are all following the set point well.

Figure 4.22: Shows the control signal when different parameter set-ups are used.
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Roll Results regarding the relay experiment, comparison test, load disturbance
response, step response, reference following and measurement values for equation
(4.1), (4.2), (4.3) and (4.4) for the roll are shown in Figures 4.23, 4.24, 4.25, 4.26,
4.27 and Table 4.11.

Figure 4.23: The relay experiment for the roll angle. In the upper plot the process
output is shown in red. In the lower the relay output is shown in blue.
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Figure 4.24: Comparison between the estimated model and the real process. The red
curve represents the estimated model and the blue curve represents the real model.

Comparisons with various PID parameters
Method K Ti Td Rise time Overshoot
Current −0.8 3 0.8 2.24 s 12 %
Auto-tuner(one) −159.61 0.024 0.0015 0.035 s 64 %
Auto-tuner(all) −147.13 0.027 0.0017 0.035 s 59.4 %
Matlab −3.86 2.89 0.029 0.52s 6.6 %

Experimental results
Method IAE Ms Parameter Value
Current 8.66 1.19 Model type FOTD
Auto-tuner(one) 0.00018 1.11 Kv -0.93
Auto-tuner(all) 0.00022 1.079 L 0.0030
Matlab 1.42 1 Converged 141.86 s

τ 0

Table 4.11: A summary on the results regarding the roll angle. Firstly data on the
different PID parameters and certain info such as overshoot etc. are listed, then
specific info about the estimated model is presented.
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Figure 4.25: Shows the response to a constant load disturbance when different pa-
rameter set-ups are used. The plot in the bottom is a scaled version of the upper.
Notice how small the response is when using the parameters generated by the auto-
tuner. In this case the results are slightly better when only one auto-tuner is used.
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Figure 4.26: Shows the response to a step change and reference following when
different parameter set-ups are used. The number of auto-tuners does not affect the
results in this case. It might be hard to see the red and the dotted line. The reason
for that is that they are located on the top of each other, behind the blue line.
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Figure 4.27: Shows the control signal when different parameter set-ups are used.

Yaw Results regarding the relay experiment, comparison test, load disturbance
response, step response, reference following, control signal and measurement values
for equation (4.1), (4.2), (4.3) and (4.4) for the yaw are shown in Figures 4.28, 4.29,
4.30, 4.31, 4.32 and Table 4.12.
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Figure 4.28: The relay experiment for the yaw angle. In the upper plot the process
output is shown in red. In the lower the relay output is shown in blue.
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Figure 4.29: Comparison between the estimated model and the real process. The red
curve represents the estimated model and the blue curve represents the real model.

Comparisons with various PID parameters
Method K Ti Td RT PO
Current −0.5 2 0.2 4.93 s 32.8 %
Auto-tuner(one) −54.066 0.10 0.0063 0.04 s 37.6 %
Auto-tuner(all) −68.40 0.088 0.0055 0.039 s 38.2 %
Matlab −0.45 26.79 0 14.25 s 16%

Experimental results
Method IAE Ms Parameter Value
Current 7.21 1.22 Model type ITD
Auto-tuner(one) 0.0019 1.26 Kv -0.66
Auto-tuner(all) 0.0013 1.33 L 0.013
Matlab 61.15 1.006 Converged 122 s

τ 0.013

Table 4.12: A summary on the results regarding the yaw angle. Firstly, data on the
different PID parameters and certain info such as overshoot etc. are listed, then
specific info about the estimated model is presented.
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Figure 4.30: Shows the response to a constant load disturbance when different pa-
rameter set-ups are used. The plot in the bottom is a scaled version of the upper.
Notice how small the response is when using the parameters generated by the auto-
tuner. In this case the results are slightly better when all three auto-tuners is used.
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Figure 4.31: Shows the response to a step change and reference following when
different parameter set-ups are used. The number of auto-tuners does not affect the
results in this case. Notice especially how much better the set-ups generated by the
auto-tuners are in comparison to the other two. It might be hard to see the red and
the dotted line. The reason for that is that they are located on the top of each other,
behind the blue line.
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Figure 4.32: Shows the control signal when different parameter set-ups are used.
Even though the reference following were a lot better when using the results from
the auto-tuners, the control signal still looks good.
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5
Discussion and Conclusion

5.1 Introduction

Auto-tuners are a very popular tool in industry and it has existed there for many
years. It has been requested to investigate its usefulness in simulation environment
as well and now it exists as a helpful tool in the modeling language Modelica. In
comparison to industry there are some parts that differ when working with auto-
tuners in simulations. Generally, simulations have the advantage that there is no time
limits and there is not the same costs involved. Additionally, if things go wrong it
is possible to re-run the simulation without risking the process in any way. It means
that the experiment can run for a longer time without any consideration on time.
This is beneficial since a harder constraint can be put on the convergence check and
thereby allow the experiment to oscillate longer in purpose of obtaining a better
estimate of the model.

Another advantage that comes from the fact that it is possible to run the experi-
ment multiple times without affecting the process in a negative way, is that one can
use several simulations in order to find out if and when the process actually reaches
steady-state.

When working with the implemented auto-tuner it is possible to compare the
estimated model against the real process. This is another advantage with the solution
in Modelica in comparison to industry.

In this chapter restrictions and conditions on the experiment are discussed. That
includes the steady-state requirement, information about processes where the ex-
periment does not converge by itself and also about the user interface. The chapter
then continues with a part that discusses the results obtained in Chapter 4. Finally,
further developments are discussed.

5.2 Restrictions and conditions

The auto-tuner provides an estimated low order model together with control pa-
rameters for a PID controller. As one can expect the results may differ for various
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processes. In some cases it can be very pleasant whereas for some cases it will not
perform enough. For processes that was tested in this thesis the result turned out to
be satisfactory. Since only a limited number of processes have been used in this the-
sis it needs to be further tested in order to guarantee a good performance generally.

The steady-state requirement
One crucial part that has been discussed in this thesis already is the one that states
that the control signal and process output have to be in steady-state when the ex-
periment begins, i.e. (u,y) = (u0,y0). In Chapter 3 different options regarding this
problem are dealt with. It requires some knowledge about the process to apply the
auto-tuner.

The implementation contains two options for reaching steady-state. If one
chooses the alternative meaning that a constant control signal will be applied, the
result depends on the process gain. Applying this method on an unstable process
may make the result diverge. On the other hand, if the user uses the controlled input
instead, suitable control parameters are still required in order to succeed.

In our case when dealing with the steady-state issue for the different models
it was possible to make use of existent controllers and their parameters instead of
applying Ziegler and Nichols method for instance. This has of course simplified
this part significantly. Depending on the complexity of the model it might get very
tricky to come up with good values. This is a drawback we are aware of.

Processes where the experiment doesn’t converge
For some processes the experiment does not converge. In order for convergence to
occur it is necessary that the adjustment of the relay amplitudes is finished. Since the
calculation of the estimated gain uses the integral of the process output together with
the integral of the relay output, it is required that the values of the integrals are the
correct ones. If an adjustment on the relay amplitudes takes place the calculations
may not use the right integral values and consequently the computed gain would be
wrong. That is why the adjustments has to be done before convergence is examined.

The adjustments are done in order to make the oscillation stay in a preferable
region. The region is decided by ymaxdev and ymindev (as shown in Figure 3.4). During
the adjustments of the relay amplitudes many things may happen. The first scenario
is that the oscillation stays below ymindev and one of the relay amplitudes is saturated,
which implies that the process output cannot reach above the limit ymindev. As a
consequence the experiment will not converge. The limits ymindev and ymaxdev are by
default set to 2h and 12h respectively. One method to circumvent this is to decrease
ymindev to a value closer to h in the general settings. Another alternative is to force
the experiment to execute the convergence check even though the output signal is
not aligned within the preferred region. When changing ymindev and ymaxdev it is
important that equation (2.8) is satisfied.
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Critical processes with a risk of facing the problem discussed in the previous
paragraph are those with low order, significantly fast dynamics and/or with a phase
lag less than π at high frequencies. This can for instance be a first order model
without any time delay as well as a pure integrator model. The fast dynamics makes
the process output change its direction at the very same moment as it reaches the
hysteresis level. This is why the oscillation never aligns within the preferable re-
gion. In [Luyben, 2001] it was shown how the output of such a process behaves
during relay control. The ratio L

T gives information about the shape of the curva-
ture. For a first order process, without any delay, the ratio is 0 (in fact small) and
therefore a triangular behavior is expected according to [Luyben, 2001]. Some first
order processes with a time constant 0.01, 0.1, 1, 10 and 100 has been investigated.
Principally they all present the same behavior as in Figure 5.1. The one in Figure
5.1 has the time constant T = 10. As one may see the output signal never reaches
above the ymindev-level.

Figure 5.1: Illustrates the case when the process output cannot reach the desired
level, ymindev. The blue curve is the relay output, the red is the process output.

The problem explained above was observed while working with the auto-tuner.
Two problematic processes are Natural Circulation Boiler and the part of the aircraft
example handling the yaw. A discussion regarding those can be read in Section 5.2.

User perspective
From a user perspective it might be a lot to focus on. First of all the initialization is
important if the experiment is going to provide good result. That includes decisions
about when the experiment is in steady-state as well as parameter settings. The
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latter includes constraints on the experiment and parameters used to initiate the
experiment. Some default values are set (see Table 6.8) but they may be different
depending on what process one is working with. Two parameters that often has to
be modified are uMax and uMin. They decide in what region the control signal is
allowed to be in. In Chapter 4 these parameters varied for all the experiments.

One thing that may seem strange is that, for some processes, the initialization
needs a controller to reach a steady-state level. This means that one has to come
up with controller parameters before the experiment, which is supposed to generate
good parameters, has run. The parameters used for reaching steady-state does not
need to be perfect, the only purpose is reaching steady-state. And when it does,
the experiment can begin and new parameters will be generated. The usage of a
controlled input is only needed together with processes that are unstable and where
steady-state is not reached in another way. This is definitely something that would
be wise to keep working on.

The user gets a documentation about how the auto-tuner works through an in-
formation tab in Dymola. It describes what kind of parameters that are available for
change as well as general information about the auto-tuner. After the experiment a
file is created and a window pops up with experimental result. The information is
about the estimated model, the PID parameters and some experiment parameters.

Some users might prefer another tuning rule than AMIGO. Therefore the ex-
periment presents the estimated model as well in order to give the user different
choices. Also, there is a comparison that continues after the experiment in order to
get a hint if the estimated model is good or not. Additional information would be
a bode plot and a Nyquist curve. However, those features are not included in the
implementation.

5.3 Discussion on results

Performance
The tuning rule used in this thesis has been AMIGO. Since the experiment gener-
ates an estimated model another preferable tuning rule can be chosen. Some tuning
rules are listed in Chapter 2, section "tuning". Another rule to choose might for in-
stance be λ -tuning. It relates, as well as AMIGO, the PID parameters to Kp, Kv,
L and T given from the estimated model, which makes it a good choice as well.
When selecting tuning rule one should know that different tuning rules belongs to
a certain specification. The advantage with the AMIGO rule is that it takes into ac-
count robustness by putting a constraint on the maximum sensitivity, Ms < 1.4. The
constraint is related to the model that the AMIGO rule is used on, in this case the
estimated model. If the model is a good approximation of the real process, it means
that the sensitivity is less than 1.4. However, for the processes shown in Chapter
4 the approximations were not always good. Even if that was the case the sensi-
tivity never became larger than 1.46. More than robustness the controllers proved
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to be fast. That was given through the rise time numbers. It also relates to a large
bandwidth.

The comparison between the estimated model and the real process has not al-
ways proved to be good. One should know that the estimated model is of first order
but the real process can be of much higher order. However, the PID parameters
turned out to perform well even for the less accurate models. It means that the
comparison test is not always telling the whole truth about the outcome from exper-
iment, but it may be good as a guideline. One should at least be observant in those
cases where the estimated model is far away from the process.

Another thing that makes the comparison test sometimes give strange result is
for processes where the estimated model is an ITD model. If τ is less than α the
model is estimated as an ITD. But a pure ITD model is when τ is 0. If 0 ≤ τ ≤ α

the equality

uon

uo f f
=−

to f f

ton
, (5.1)

does not hold. This means that the integral

y(t) = kv

∫ tp

0
(u(τ)−u(0))dτ (5.2)

does not becomes zero. It means that an offset is applied to the estimated model for
each period, which makes the comparison look ugly. Unfortunately that is some-
thing one can’t get rid of. The estimated PID parameters may be good anyway.

Pre-defined methods
The already existing tool in Modelica LinearSystems 2 provides a full linear analy-
sis. With that tool one can have a linear model of the process. You may therefore ask
yourself why that is not enough? Unfortunately in most cases the generated linear
model is of high order. Most tuning rules require a low order model to calculate
PID parameters. In that sense model reduction must be applied to use a preferable
tuning rule. Model reduction by balanced truncation is a way to do it. That method
use information about Hankel singular values. A small Hankel singular value indi-
cates that a state is weakly controllable/observable. Consequently it can be truncated
without creating a big impact on the input-output relation [Glad and Ljung, 2003].
Another way is to use Skogestad’s half rule to achieve a FOTD model [Skogestad,
2003]. That was done in the steam temperature control example, before it was tuned
with AMIGO rule. In that case the model turned out to be of order 3 (see appendix).
The IAE-values obtained from the auto-tuning experiment and from Modelica Lin-
earsystems 2 were about the same. For the other cases Skogestad’s half rule did
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not give desirable results. It may be due to that the other processes were unstable.
In [Skogestad, 2003] only stable processes are considered together with integrated
processes.

To reduce the unstable models given in this thesis balanced truncation can be
applied. Transfer functions for processes in Chapter 4 are listed in appendix. As
one can see they are all of high order and some of them are unstable. For those that
are unstable they need to be separated into a stable part and an unstable part before
model reduction is applied, i.e

P(s) = Pstable(s)+Punstable(s). (5.3)

After model reduction is performed on the stable part one adds them both to-
gether. Due to the fact that some processes in appendix contain more than one un-
stable pole they can’t be reduced to a lower order than number of unstable poles,
since the unstable poles contain a lot of energy.

Figure 5.2: Balanced truncation on yaw.

With that reason a tuner from control system toolbox in Matlab was chosen
instead. It worked for all of the processes except the Natural boiler example and the
vertical velocity, in the aircraft example.
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Experiments
In Chapter 4 some experiments were made. Overall the controllers based on the
auto-tuner turned out to perform better than the pre-tuned controller as well as the
PID tuner in Matlab.

The purpose with the first experiment was to present how the auto-tuner works
for a linear, stable system. The process was in that case of second order with time
delay. The estimated model and the real process followed each other well and the
tuning result was good compared to the other result. Based on Figure 4.4 and Table
4.2 can it be read out that the Matlab version was more aggressive while the other
two were more robust. The results were similar to those that were tuned with the
AMIGO rule. In perspective of the robustness, the generated controller was a little
bit worse. However, good results from the auto-tuner may depend on a good esti-
mated model, presented in Figure 4.3. Due to the fact that the process was linear the
estimated model would be good for other points in space as well.

In the first thermodynamic process, i.e. the steam temperature control example,
the purpose was to present how the auto-tuner worked for a non linear stable sys-
tem. In that experiment the model following, presented in Figure 4.7, was not as
good as in the first experiment. One explanation is that the real process is of much
higher order compared to the estimated model. However, the controller handled a
step change as well as a load disturbance better than the current controller and the
controller obtained from Matlab control system toolbox. Skogestad gave similar re-
sult as the auto-tuner. In fact the performance of the auto-tuner was much more
aggressive and robust compared to the current.

One thing to observe through Table 4.4 is that τ was estimated to 0.1. That
number is critical, since it is the limit (for default values of α and β ) between a
FOTD model and an ITD model. Due to that fact the alpha value was changed, in
order to compare the impact of another model estimation. However, Table 4.4 shows
that the result became similar in this case. The ITD model was little more robust and
some percentage faster.

Considering the second thermodynamic process, i.e. the natural circulation
boiler, this was an example of a non linear and unstable process. When working
with it we also concluded that the dynamics were very fast, which in turn introduced
us to a problem regarding the convergence. Observe that the process is of high order
in this case. By implementing the boolean flag that was discussed in Chapter 3 we
were able to force the experiment to check for convergence even in this situation.
Since this is not how the auto-tuner normally works it was not clear whether it had
any impact on the results or not. The resulting control behaviour presented in Fig-
ures 4.15 and 4.13 speaks for itself. When using the PID parameters generated by
the auto-tuner the response to both a step change and a constant load disturbance
is a lot more satisfactory. For instance it was necessary to change the scale in the
lower plot in Figure 4.15 in order to be able to see the impact from the disturbance.
Although the generated controller is more aggressive than the current, the control
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signal in Figure 4.14 proves that this is not a problem. Additionally the data con-
cerning rise time, overshoot and IAE in Table 4.6 also proves the auto-tuner’s good
performance.

In experiment 4, i.e. the aircraft experiment, the purpose was to investigate how
well the auto-tuner worked in a multivariable system. Additionally it is an inter-
esting example since the area of aerodynamics is not an area where auto-tuners
traditionally are being used. When working with the system the auto-tuner experi-
ment was made on one loop at the time in comparison with all running in parallel.
Overall it turned out that the values for roll and yaw differed in the two experi-
ments, while the vertical velocity almost remained unchanged. This indicates pos-
sible cross-couplings in the system. Relative gain array (RGA) is a good measure
for interactions in a system [Glad and Ljung, 2003]. If the system is represented on
the form  yroll

yvelocity
yyaw

= P

uvelocity
uyaw
uroll ,

 (5.4)

where P is the transfer matrix, the RGA is possible to calculate. Under static condi-
tions the RGA-matrix of the system, at the linearized point, is given by:

RGA =

0 0.6362 0.3638
1 0 0
0 0.3638 0.6362

 , (5.5)

where

u1 = uvelocity u2 = uyaw u3 = uroll

y1 = yroll y2 = yvelocity y3 = yyaw.

By observing equation (5.5) one can see that there is a cross-coupling between
yaw and roll while the vertical velocity is independent, based on static properties.
However, even if the system contained interactions the auto-tuner generated good
result in both cases when dealing with a constant load disturbance. In the step re-
sponse case they both gave a fast response, but a large overshoot. For another tuning
that may be different. It is possible that the overshoot is a result of a too large step
change. However, the result was good when the purpose was to reference follow a
ramp change.

Another interesting thing to observe are how bad the estimated models follow
the true models in Figures 4.19 and 4.29. A suggestion is to estimate higher order
models, for instance SOTD models (Second Order Time Delay). That would prob-
ably give a better model following, but not necessarily better control performance.
It could have caused another result of the large overshoot and there aggressive-
ness. A large overshoot may cause problems. Therefore restrictions on fast set point
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changes are necessary in this case since aggressive controllers are aggressive will
cause problems if noise were added. Aggressive controllers are generally noise sen-
sitive and are therefore not preferable in that sense. Therefore it matters in what type
of environment the parameters are used in. In this case it is in a noise free simulation
environment.

An interesting thing that was not presented in the result part was how the con-
troller, obtained from the experiment, handled a larger set-point change. In that
case, the result was not very satisfactory for roll. A larger set-point change caused
an oscillating behavior as Figure 5.3 shows. It may be since the estimated model
is only valid in a region around the stationary point, where the experiment is per-
formed. A step change that goes outside of that region makes the model invalid and
though also the controller that is based on the model. However, when the goal was
to track a ramp the result was more satisfactory as one can see in the result. One can
imagine that a large step change is a heavy stress on a process. A more common
thing in reality would be a ramp as illustrated in the result part.

Figure 5.3: Shows how a large set-point change affects the results when working
with the roll angle (aircraft model).
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5.4 Further development

Although the auto-tuner performs good in more or less every test it is advisable to
continue the development with it over time.

As stated previously the models we have used for evaluating the auto-tuner has
been borrowed from already existing Modelica libraries. Hence, conclusions regard-
ing the difficulties when using the auto-tuner while developing a new model cannot
be drawn. For instance, our idea of making use of Ziegler and Nichols method in
order to reach steady-state before the experiment is started has not been tested prop-
erly. One thing to investigate is whether it is possible or not to let the user start the
simulation and then decide when to start the experiment manually. Ideally, the user
should not need to think about this issue at all.

One feature that was mentioned in Section 4.1 was regarding a script function
that generated Figure 4.2 and 4.3. The function does not always work since it is
dependent on that the relay and process output both are aligned at the same level,
more or less. When working with the steam temperature control process the function
did not work very well since the set point for the process output was just over 600
while the relay output were between 1 and 0. In order to make this function helpful
regardless of what process is being used, one has to come up with a solution to this.

Regarding systems with several control loops it might be a good idea to inves-
tigate it more. During the thesis it was tested on only one process. When testing
it on several processes drawbacks might turn up. For instance, a systematic work
procedure when dealing with systems of this type, would be wise.

For processes of higher order the comparison between the estimated model and
the real model is pretty bad. For such processes it might be a good idea to esti-
mate a higher order model, for instance a SOTD model. In order to perform it a
modification of the implementation is needed in the part concerning Calculation
of parameters, described in Chapter 3. A method for this purpose is described in
[Berner, 2015].

86



Bibliography

Åström, K. J. and T. Hägglund (1984). Automatic Tuning of Simple Regulators with
Specifications on Phase and Amplitude Margins. Automatica, p. 645, SwePub,
EBSCOhost, viewed 9 February 2017.

Åström, K. J. and T. Hägglund (2004). Revisiting the Ziegler–Nichols step response
method for PID control. Journal Of Process Control, 14, pp. 635-650, Sci-
enceDirect, EBSCOhost, viewed 23 March 2017.

Åström, K. J. and T. Hägglund (2006). Advanced PID Control. pp. 64-69, 73, 76-78,
159-163, 186-189, 225-241. ISA - The Instrumentation, Systems and Automa-
tion Society.

Åström, K. J. and R. Murray (2008). Feedback Systems : An Introduction For Sci-
entists And Engineers. n.p.: Princeton, N.J. : Princeton University Press, cop.
2008, pp. 23-24, 110-124, 155-189, Library catalogue (Lovisa), EBSCOhost,
viewed 8 February 2017.

Berner, J. (2015). Automatic Tuning of PID Controllers based on Asymmetric Relay
Feedback’. Licentiate Thesis, SwePub, EBSCOhost, viewed 8 February 2017.

Berner, J., K. J. Åström, and T. Hägglund (2014). Towards a New Generation of
Relay Autotuners. Paper presented at 19th IFAC World Congress, 2014, Cape
Town, South Africa, viewed 8 February 2017.

Berner, J., K. J. Åström, and T. Hägglund (2016a). Asymmetric relay autotuning
– Practical features for industrial use. Control Engineering Practice, 54, pp.
231-245, ScienceDirect, EBSCOhost, viewed 10 April 2017.

Berner, J., K. J. Åström, and T. Hägglund (2016b). Improved relay autotuning using
normalized time delay. 2016 American Control Conference (ACC), p. 1869,
Publisher Provided Full Text Searching File, EBSCOhost, viewed 10 February
2017.

Glad, T. and L. Ljung (2003). Reglerteori : Flervariabla Och Olinjära Metoder.
n.p.: Lund : Studentlitteratur, 2003 (Lund : Studentlitteratur), Library catalogue
(Lovisa), EBSCOhost, viewed 25 April 2017.

87



Bibliography

Luyben, W. L. (2001). Getting More Information from Relay-Feedback Tests. In-
dustrial & Engineering Chemistry Research, 40, 20, pp. 4391-4402, Science
Citation Index, EBSCOhost, viewed 8 February 2017.

Modelica-association (2014). A Unified Object-Oriented Language for Systems
Modeling. Language Specification Version 3.3 Revision 1, viewed 23 February
2017.

Panagopoulos, H., K. J. Åström, and T. Hägglund (2002). Design of PID controllers
based on constrained optimisation. IEE Proceedings - Control Theory and Ap-
plications, 149:1, pp. 32–40., viewed 3 April 2017.

Rivera, E. D., M. Morari, and S. Skogestad (1986). Internal model control 4. PID
controller design. Ind. Eng. Chem. Proc. Des. Dev., 25, pp. 252-262, viewed 4
April 2017.

Skogestad, S. (2003). Simple analytic rules for model reduction and PID con-
troller tuning. Journal of Process Control, vol. 13, pp. 291-309. Available from:
10.1016/S0959-1524(02)00062-8. 25 April 2017.

Visioli, A. (2006). Practical PID Control. [Electronic Resource], n.p.: London :
Springer-Verlag London Limited, 2006., pp. 1-18, Library catalogue (Lovisa),
EBSCOhost, viewed 8 February 2017.

Ziegler, J. and N. B. Nichols (1942). Optimum Settings for Automatic Controllers.
trans.ASME 64:1,viewed 9 February 2017.

88



6
Appendix

6.1 Amigo tuning rule

Model PI parameters PID parameters

K =
0.2L+0.45T

KpL

K =
0.15
Kp

+(0.35− LT
(L+T )2 )

T
KpL

FOTD Ti =
0.4L+0.8T

L+0.1T
L

Ti = 0.35L+
13LT 2

T 2 +12LT +L2

Td =
0.5LT

0.3L+T

K =
0.35
kvL

K =
0.45
kvL

ITD Ti = 8L
Ti = 13.4L

Td = 0.5L

Table 6.1: Tuning table AMIGO [Åström and Hägglund, 2006]

89



Chapter 6. Appendix

6.2 Ziegler and Nichols

Workflow
• Increase the proportional gain in a simple proportional controller until oscil-

lation occurs.

• The gain that creates the oscillation is then called the critical gain kc and the
time period on the oscillation is called the critical time period tc.

• The parameters in the controller are then given by table 6.2.

Parameter/Controller P PI PID

K 0.5Kc 0.45Kc 0.6Kc

Ti ∞
tc

1.2
tc
2

Td 0 0
tc
2

Table 6.2: Tuning table Ziegler and Nichols, [Ziegler and Nichols, 1942].

6.3 Transfer functions

In the following section transfer functions of the experimental processes are stated.
Since many of them are of high order they are expressed as two polynomials, A(s)
and B(s), i.e.

P(s) = K
B(s)
A(s)

(6.1)

The denominator is the A polynomial and the numerator is the B polynomial and K
is the process gain. Furthermore each polynomial are factorized, i.e.

B(s) = B0B1 · · ·Bn = (s+b0)(s+b1) · · ·(s+bn), (6.2)
A(s) = A0A1 · · ·Am = (s+a0)(s+a1) · · ·(s+am), (6.3)

where m is the order of the denominator and n is the order of the numerator.
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Steam Temperature Control
The parameters in equation 6.1 and 6.3 for the steam temperature control example
are given through Table 6.3. Observe that the transfer function is a linear approxi-
mation, only valid around the linearized point.

Parameter Value ai Value b j Value
K -298.63 a0 6762 b0 4454

a1 11.19
a2 1

Table 6.3: Steam temperature control

Natural Circulation Boiler
The parameters in equation 6.1 and 6.3 for the Natural Circulation Boiler example
are given through Table 6.4. Observe that the transfer function is a linear approxi-
mation, only valid around the linearized point.

Parameter Value ai Value b j Value
K 0.017052 a0 -6.313 ·105 b0 -1.31 ·105

a1 130.7 b1 130.5
a2 6.176 b2 6.214
a3 4.417 b3 0.804
a4 4.108 b4 0.642
a5 1.693 b5 -0.2194
a6 0.7938 b6 -7.897 ·10−6

a7 0.7017 b7 1.4090 + 0.2995i
a8 0.1774 b8 1.4090 - 0.2995i
a9 1.806 ·10−8 b9 4.3165 + 0.5078i
a10 0.6710 + 17.9318i b10 4.3165 - 0.5078i
a11 0.6710 - 17.9318i

Table 6.4: Natural Circulation Boiler

Flight Manuver
The parameters in equation 6.1 and 6.3 for the vertical velocity, yaw and roll are
given through Tables 6.5, 6.6 and 6.7. Observe that the transfer functions are a
linear approximation, only valid around the linearized point.
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Parameter Value ai Value b j Value
K 1.2219 a0 0.00751 b0...1 0

a1 1.523·10−8 b2 -31.57
a2 10−5· (0.0437 + 0.1482i) b3 3.12
a3 10−5· (0.0437 - 0.1482i) b4 0.08
a4 3.4920 + 2.1368i
a5 3.4920 - 2.1368i

Table 6.5: Vertical Velocity

Parameter Value ai Value b j Value
K -45.135 a0 6515 b0 6519

a1...6 1000 b1 1005
a7 225.6 b2 990.2
a8 51.99 b3 205.7
a9 1.165 b4 0.6757
a10 -0.01937 b5 -2.706 ·10−8

a11 1.946 ·10−7 b6 9.9550 + 0.1949i
a12 85.0500 + 34.7922i b7 9.9550 + 0.1949i
a13 85.0500 - 34.7922i b8 1004

b9 1000
b10 87.4 + 37.11i
b11 87.4 - 37.11i

Table 6.6: Yaw

Parameter Value ai Value b j Value
K -291.64 a0 321.1 b0...5 999.9

a1...6 1000 b6 1.23
a7 1.497 b7 0.1327 + 0.2983i
a8 -0.003252 b8 0.1327 - 0.2983i
a9 0.0187 + 0.3036i b9 50.4 + 14.79i
a10 0.0187 - 0.3036i b10 50.4 - 14.79i
a11 50.6500 + 14.7844i
a12 50.6500 - 14.7844i

Table 6.7: Roll
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6.4 Default values

General Initialization
Parameter Default value Parameter Default value
Experiment parameters Init Controller
running_mode Normal steadyStateInit false
alpha 0.1 uInit 0
beta 0.6 k 2
uMax 10 Ti 50
uMin -uMax Settings
h 0.1 tol 0.001
y_maxdev 12h init_mode Constant input
y_mindev 2h ss_mode Unfixed
γ 2 der_check 30
γ 2 u_const 0
ε 0.01 t_ss 70
force_conv false
nbr_switch_force 7

Table 6.8: Default values
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