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Abstract

In this work we have addressed the task of segmentation in skeletal scintigraphy images
with deep learning models, where we research different approaches to convert convolutional
neural networks designed for classification tasks to powerful pixel wise predictors. We
explore different network architectures where two primary research paths have been followed.
Firstly, an encoder-decoder architecture which aims to extract dense features in the first part
of the network – which works as a feature encoder – and then up-sample these dense features
to restore the original image resolution and perform pixel-wise predictions. This technique
has shown great promise in other experiments of segmentation in medical images. This
general architecture has been pitted against an entirely different approach, which works with
expansions of the convolutional kernels, rather than sub-sampling through pooling layers,
known as convolutions “atrous” or dilated convolutional kernels. While the atrous approach
has been explored in different studies for the problem of semantic image segmentation
for outdoor and indoor scenes with a large amount of classes it has yet to be tried in the
medical imaging field. When compared to the encoder-decoder architecture we see that the
convolutional neural networks atrous outperform the former in almost every way. We observe
that the most promising atrous model generated a test error of 0.0659 on segmentations on
the left scapula, which is a reduction of 50.67% on the test error as compared to the most
powerful encoder-decoder model. The atrous model also managed to reduce the amount of
parameters by a factor 100 and more than halve the required training time per epoch.
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Chapter 1

Segmentation and Medical Image
Analysis

Segmentation in medical images has been an ongoing field of research for a long period of
time due to its high relevance and significance in clinical applications, which amongst other
things, serve to provide physicians with solid, quantifiable bases for their judgments with
regards to patient health and status of disease. Nuclear images in the medical field are often
blurry and hard to decipher, even for human experts who have poor interobserver agreement
when it comes to decisions based on medical imaging, where a quantifiable basis for the
decisions can help to greatly decrease this variability [2]. This fact clearly illustrates the need
for objective, reproducible and quantifiable analysis and measurements based on the data
contained in medical images, to be used as a basis for judgments taken by physicians.

This master thesis has been done in collaboration with Exini Diagnostics AB, Lund
and Progenics Pharmaceuticals Inc., New York. Exini is a medtech company which has
a long history of segmentation based products for medical images. Their initial product
focused on the heart and measures the blood perfusion in the left ventricle muscle. The
initial segmentation technique was a simple method which analyzed the uptake of each
slice in the image stack (3D-images are stored as stacks of 2D-images, also referred to as
slices) where it tried to sample after the maximum uptake to generate polar plots, which only
gave a rough estimation of the heart and was quite susceptible to noise from surrounding
organs, which would also show up in the images. The importance of accurate and stable
segmentations quickly became evident to be able to give indications of the health of the
studied patients, which lead to the implementation of more advanced segmentation techniques
such as active shape models [8, 30]. Similar techniques were, in addition to the region around
the heart, employed to perform segmentations of the blood vessels in the cortex, where direct
correlations could be seen between the size of the vessels and Alzheimer’s disease. More
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recently the focus at Exini has been on bone segmentation, and they have developed an
automated measuring index for the state of metastases in the skeletal structure known as
Bone Scan Index (BSI) [10]. BSI is derived from the ratio between the whole skeletal mass
and the mass of the metastases, which is useful for measuring the progression of patients’
metastatic disease over time. To calculate the index it is necessary to perform a whole body
segmentation on the entire skeletal structure and compare its mass to that of the metastases.
To this end it is essential to have an accurate segmentation of the entire skeletal structure
as well as the metastases themselves. Traditionally, image registration with the Morphon
method [47] has been used to perform the full body segmentations where each pixel is labeled
as either a part of the skeleton or the background. More recent research indicate that deep
learning and especially convolutional neural networks might be a better way to proceed
and succeed where traditional methods have fallen short. Future research projects for Exini
Diagnostics lies in the domain of 3D-imaging, and for such problems it is believed that
deep learning will provide a powerful way to perform accurate segmentations and perform
better than the traditional techniques today applied in 2D images. The aim of this thesis is
to validate deep learning as a method for image segmentation of medical data, and more
specifically the whole body segmentations of the skeleton utilized in the bone scan index,
previously performed with the Morphon method. The goal is to recreate the 2D segmentation
created by the Morphon method in skeletal scintigraphy images, as will be described in detail
in Chapter 5. If proven successful, the herein performed research will serve as a stepping
stone from where further experiments with data in both two and three dimensions can be
performed.

The work in this thesis primarily enhances the structures described in [31, 3, 4, 49] with
the ideas and building blocks introduced in [39, 16, 7, 17, 44], to take the models to new
heights and customized them for the specific problem domain.



Chapter 2

Machine Learning

The ideas and concepts of beings such as artificially intelligent entities and thinking machines
date back as far as to the 10th century BC, where ancient Chinese legends spoke of humanoid
automatons in passages from Lie Zi’s accounts [27]. China was however, far from the only
ancient civilization who spoke of artificial agents, a concept which also appears in the legends
of, amongst others: Jewish, Norse, Egyptian and Greek culture [14]. While the concept of
artificially constructed intelligent agents itself may be thousands of years old, the modern
field of science known as Artificial Intelligence had its birth as late as in the early 1950s with
Alan Turing, who posed the now well-recognized question: ’Can machines think?’ [43].

Since the time of Alan Turing, theoretical breakthroughs and advances in computational
resources have taken the field of artificial intelligence far from its origins. The research that
has since been conducted has led to the introduction of novel interdisciplinary research areas
which have branched out from the traditional field of artificial intelligence: one of which
goes by the name of machine learning. Machine learning has its roots in artificial intelligence
together with pattern recognition and computational learning theory and is today considered to
be an interdisciplinary field between computer science and mathematical statistics. Machine
learning, as described by Arthur L. Samuel, can be said to be the art of giving computers the
ability to perform certain tasks without explicitly being programmed to do so [33]. A key
difference between artificial intelligence and machine learning is that in the latter, the learning
is operational rather than cognition based. This means that, when conducting research in
machine learning the goal is not necessarily the construction of artificial, intelligent agents
but may instead be more localized tasks such as pattern recognition, classification, clustering,
segmentation etc. A formal definition of the modern field of machine learning can be given
by quoting Tom M. Mitchell [26]:



4 Machine Learning

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E.

The history of machine learning, from its birth in the early 1950s to today has been, as
with most scientific areas, a bumpy road. Many machine learning algorithms depend on
access to large quantities of data to be an attractive option to conventional methods, or to
even work at all. Historically this has been one of the major hurdles for machine learning
models, but the explosion of data in recent years together with theoretical breakthroughs and
a significant increase in the computational ability available to researchers have made machine
learning alternatives preferable to traditional approaches for a wide range of problems. As
the accessibility to and speed of the Internet have increased, the possibility to acquire data
has improved enormously over the last few years. The world’s total capacity to store data
was in 1986 limited to 2.6 exabytes (one exabyte equals 1018 bytes), while in 2007 it was
estimated to have increase to as much as 295 exabytes. We see no end to this exponential
increase in data in the near future, as more and more types of applications are connected to
the Internet, able to generate and process even more data. In 2013, the digital universe (the
total amount of data generated or copied annually) was calculated to be 4.4 zetabytes (one
zetabyte is equal to 1021 bytes). During the next decade the digital universe is predicted to
increase by 40% every year to a point where we have a digital universe of 44 zetabytes by
2020 [12]. As the size of the available datasets continue to increase, so will the possibilities
and challenges for machine learning algorithms and data scientists continue to evolve.

Today machine learning is applied to such a wide range of problems and comes in so
many different shapes and forms that the algorithms and the tasks they attempt to solve have
grown fundamentally different from each other, which has lead to a division of the field
into three sub-areas: supervised learning, unsupervised learning and reinforcement learning.
While the different areas are fundamentally different from each other, it is important to note
that some machine learning algorithms – inter alia neural networks which will be covered
extensively in this thesis – are relatively similar in shape and can be adapted to each of the
different problems with just minor changes. It is only supervised learning that has been
employed in the work in this thesis, but the other fields are also briefly covered to give the
reader a broader understanding of machine learning and its applications.

2.1 Supervised Learning

Supervised learning is by far the most common form of machine learning with applications
in fields ranging from image analysis to natural language processing to speech recognition
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and many others, and is also the type of learning which has been employed in the work which
has resulted this report. The task one often wishes to complete when performing supervised
learning is to infer general ideas from limited, labeled, data samples and generalize the
drawn conclusions to novel problem instances. This is one of the key concepts of machine
learning, where it often is uninteresting to performing operations on and see trends in the
local data. Take the fitting a line to a curve for instance. There are many ways to do this,
where interpolation with a polynomial of a given degree is one of the simplest options
available. See Figure 2.1 for an example of two different polynomial fits to a dataset of
2-dimensional data points.

Fig. 2.1 Curves constructed by polynomials of different orders fitted with least squares to a
sample of randomly generated data points. The red curve shows a polynomial of the 10th
order whilst the green curve shows a polynomial of the 2nd order. The true function is
8x−10x2+x3 normalized between zero and one, plotted as the blue line. The functions have
been fitted to data generated from this function with added Gaussian noise, visualized as
orange dots.
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Figure 2.1 shows that the higher order polynomial performs a closer fit on the data points
than the lower order polynomial. However, if the data contains noise, which all but every
real-world problem suffers from, it is possible that the lower order polynomial actually fits the
true generative function better than its higher order alternative. When working on machine
learning problems the goal is never to get a good fit on the points that we can currently see,
but rather to estimate the true generative function. In other words, we wish to construct a
curve that will be able to approximate new data points as closely as possible. To the aim of a
deeper discussion in this topic we introduce a few fundamental concepts:

• E: the error function, i.e. the measure of how much our approximated model differs
from the true one

• Ein: the error on the points we use to construct our approximated function, i.e. the error
on the points in our data sample

• Eout : the error on the points outside our known data, i.e. points that lie outside of our
known data sample

The error function E can be anything from the mean squared error to complex domain
specific functions. This function is referred to as the loss function or sometimes the objective
function. The formulation of the objective function is one of the most important parts of
constructing as successful machine learning model, which will be discussed in further detail
in future sections. Figure 2.2 illustrates the difference between different models and their
respective Ein and Eout . While it is clear that the higher order polynomial in Figure 2.2 has
an Ein = 0, if one imagines that a new point would be added to the dataset it appears more
likely that the lower order polynomial will in fact perform significantly better. Thus, its Eout

is lower, which is all one truly cares about in this circumstance.
Figure 2.2b displays a problem commonly known as overfitting, which is one of the

greatest challenges to overcome in machine learning. It is easy to accidentally push the
algorithm too far when chasing better performance, but when the error drops on the dataset
used for training/constructing the model, the error might in fact increase on the unseen
samples. When the data is two-dimensional like the one we have seen in Figures 2.1 and
2.2 it is trivial to see when this phenomenon occurs. However, when the data is of a
dimensionality in the order of thousands – or simply 4 or 5 – it is almost impossible to
visualize the data in the same way which lead researchers to use other means to detect
and take measures against overfitting. For an in depth description of overfitting and its
countermeasures, see [1].
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Fig. 2.2 Illustration of curve fitting with polynomials of different orders. Figure 2.2a shows a
fit of a 3rd order polynomial to the data points as the red curve plotted with the true function,
shown as the green curve. Figure 2.2b sows a fit of a 9th order polynomial to the data points
as the red curve plotted with the true function, shown as the green curve [37].

Figure 2.2a, 3rd order polynomial. Figure 2.2b, 9th order polynomial.

A more formal definition of supervised learning is given as the art of inferring general
functions from labeled data, and as has been previously mentioned, it is the availability of
large scale datasets that has helped popularize machine learning. Today, there is a plethora
of public datasets of different types, many of which are related to international challenges
where teams from all over the world can compete with their algorithms to achieve as good a
performance as possible. The aim of such competitions are usually to motivate researchers to
focus on and improve a specific research topic or, if hosted by a company, to provide said
company with a machine learning solution it currently lacks either the competence or the
resources to construct internally. Of the fields mentioned in the beginning of this section,
it is in the domain of image analysis that this thesis has been performed. Thus, most of the
subsequent discussion and examples will concern image analysis in one way or another but
please note that much of the discussion holds for other domains as well.

One form of supervised learning is classification: the prediction of a class label given
a class instance. In image analysis, a public dataset that has been employed frequently
in academic research is the MNIST dataset of handwritten digits [48]. The goal of the
competition connected to the dataset is to construct a model that is able to tell, or classify,
which number the handwritten image is meant to symbolize. This task have been used as
a benchmarking tool for decades due to its simplicity: there are only 10 classes (numbers
0-9), the images are black and white and thus only consist of a single channel, the images are
small and easily processed and there are lots of them. As can be seen in Figure 2.3 however,
all numbers are far from easily discernible even to the human eye which makes this a suitable
task for machine learning algorithms.
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Fig. 2.3 Extract of characters taken from the MNIST database [18].

This dataset has historically been used to benchmark various classification models. These
models look at thousands of images and try to predict the corresponding labels. Depending
on whether the guess/prediction was right or wrong the models’ parameters are updated
correspondingly. We will go further into this process in the section which discusses the
update method known as “Gradient Descent”. The lowest recorded error rate Eout for the
MNIST database of handwritten digits is 0.23% [6], which is an extremely good performance
and a near perfect score. The machine learning community has since moved on to harder
tasks, and one of the largest image analysis competitions currently worked on by scientists
and engineers form all over the world – the current Olympic games of machine learning
for image analysis tasks if one wills – is the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) on the ImageNet database, where tasks include object localization,
object detection, object detection from video, scene classification and scene parsing of
millions of images and 1000 different classes [32].
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2.2 Unsupervised Learning

Contrary to supervised learning, unsupervised learning attempts to learn from unlabeled data.
One of the most famous unsupervised learning algorithms is K-means clustering [23], which
– as its name implies – is a clustering algorithm that divides the data into K different groups,
which is applied to unlabeled data. See Figure 2.4a for an example of a given, unlabeled,
dataset. If the task is to divide the data into three different groups then the resulting distinction
made by the K-means algorithm is shown in Figure 2.4b.

Fig. 2.4 A case study of the unsupervised K-means algorithms where an unlabeled dataset
is divided into three clusters. The left figure, Figure 2.4a, shows the unlabeled data and the
right figure, Figure 2.4b, shows the corresponding clustering [29].

Figure 2.4a, the unlabeled data Figure 2.4b, the resulting labeling

Compared to supervised learning the applications of unsupervised learning are very
limited, mostly due to the fact that as of the writing of this thesis the machine learning
community has failed to construct unsupervised models that are as efficient as those which
work with labeled data. The great benefit of unsupervised learning however, which might
come to be its saving grace in the future, is just that: it is unsupervised. Today there are
large datasets that come without any labels and the construction of labels if often a costly
enterprise, often requiring human experts to manually describe the data. In e.g. medical
image segmentation this is an extremely tedious task that takes a very long time for human
experts to complete. Significant breakthroughs in the field of unsupervised learning would
have immense implications in wide range of fields. It is also closer to the way humans and
animals learn from the world [21] which means it could be a step in the right direction of one
of the original goals of Artificial Intelligence: the construction of a super-intelligent agent.
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2.3 Reinforcement Learning

Reinforcement learning can be viewed as the step in between supervised and unsupervised
learning and is sometimes referred to as semi-supervised learning. The tasks where rein-
forcement learning is applied are usually fundamentally different from the two previously
mentioned areas of machine learning. Reinforcement learning is inspired by behaviorist
psychology where an agent learns from its interaction with its surroundings as it tries to
maximize a cumulative reward function. Reinforcement learning has been very successful
in training agents to play different games on a superhuman level where a classical example
is Tesauro’s temporal difference approach to teaching an artificial neural network to play
backgammon through reinforcement learning [41]. This network, in its simplest form, only
looks at a binary representation of the current state of the board which serves as input to the
first layer of the network. These binary inputs are then filtered through the artificial neural
network which outputs a single value between zero and one. This value is interpreted as the
probability of victory given the current state of the game. The network then looks at every
possible alteration to the current state of the game (given that it is the networks turn to play)
and picks the choice which maximizes its output value (i.e. the chance of victory). After a
move is made, the parameters in the network are updated according to the backpropagation
procedure – see Section 3.2 – but instead of a comparison of the prediction and the ground
truth for each instance as is commonly done in supervised learning, a comparison is made
between the current output of the network and the output in the previous time step. An
exception is when the game is over, at which point the network either receives a large positive
value if it was victorious or a large negative value otherwise. This process is performed
over and over for thousands of iterations until the network has learned to perform well. This
learning procedure has proven to be more successful than attempts to utilize pure supervised
learning, where the network for each state of the board is given a correct choice to make
which corresponds to choices made by human experts. Networks trained with the rein-
forcement learning approach eventually not only outperformed their supervised competitors,
but also human masters. See Figure 2.5 for an illustration of such a network. The main
difference between reinforcement learning and supervised learning is that the target of the
backpropagation algorithm is a comparison between different states of the network rather
than with a ground truth label. This means that the update procedure for the weights is de
facto identical to a supervised learning problem, and the only difference is how the labels are
constructed. For this reason, reinforcement learning can also be argued to exist as a sub-field
of supervised learning. It can however, be useful to make the distinction between the two
since the nature of problems they are applied to and the philosophy behind the algorithms are
so different.
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Fig. 2.5 A graphical illustration of an artificial neural network [22] constructed for the
purpose of learning to efficiently play backgammon through reinforcement learning. A
binary version of the current state of the board at a given point in time is fed to the 198 input
neurons of the network. These inputs are then filtered through the network to generate a final
output from a single artificial neuron, which is interpreted as the conditional probability of
victory given the current state of the board. The output of the network is compared to the
output in the previous time step to generate an error function which is used to update the
internal weights of the model, see Section 3.1 for a more detailed explanation of the inner
workings of artificial neural networks.

Another domain where reinforcement learning has proven to be useful is to find optimal
maneuvers in controlled Markovian domains through the introduction of the Q-learning
algorithm [45]. Reinforcement learning will not be covered to any further extent in this
thesis but the interested reader is referred to the book on the subject by Richard Sutton,
Reinforcement Learning: An introduction [38].





Chapter 3

Deep Learning

Seen from the outside, deep learning is simply an incredible family of techniques which
has widened the horizon of possibilities in both academia the industry. For a scientist or
an engineer however, the main shift in paradigm introduced with deep learning stems from
feature extraction and the way they are processed by the models. Traditionally, engineers had
to go through the tedious and time consuming process of finding hand-craft features, which
would be fed into a shallow model which performs the machine learning task (e.g. some form
of classification). This is an expensive process which often requires high domain specific
knowledge, where not only the search for relevant feature candidates is a problem but also
the selection of which features actually contribute to the model performance. Deep learning
however, provides a way to automatically extract relevant features from the data during
training which has lead to a complete shift in focus, where scientists now focus on model
construction and optimization rather than feature engineering. The subsequent sections in
this chapter covers some of the most important aspects of artificial neural networks and deep
learning.

3.1 Artificial Neural Networks

Like in so many other areas of science and fields of engineering, machine learning was born
and raised from ideas inspired by nature and the animal biology. To give answer to Alan
Turing’s question "Can machines think?" and towards the ultimate goal of the construction
of a super-intelligent agent, the attention of the scientists in the first half of the 20th century
went to the structure and inner workings of the animal brain. The organizational structure of
the neural network in a biological brain is of a complexity that is beyond the reach of both
our ability to perform satisfactory measurements and our ability to model such structures in
silico. However, careful examination of the different constituents in the biological axons and
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their inter-axon communication have lead researchers to formulate a more organized version
of the biological neural networks to create artificial equivalents, see Figure 3.1.

Fig. 3.1 A conceptual graph of a fully connected artificial neural network [19]. Each white
ball represents a perceptron which processes its input, commonly a weighted sum over
the output of all the data points in the previous layer, through a non-linear, differentiable
activation function. The activation function in this kind of shallow neural networks is usually
some form of sigmoidal function which transforms the input into a scalar between 0 and 1
or -1 and 1, which depicts the level at which the neuron fires. If the perceptron is an output
neuron (which activation function almost exclusively outputs a value between 0 and 1) the
output of the non-linear activation function can be interpreted as e.g. class probabilities in a
classification problem. By intertwining many such perceptrons, an artificial neural network is
created. This example demonstrates a fully connected feed forward artificial neural network
with one input layer, two hidden layers and one output layer. It is common practice to have
either one or two hidden layers in this kind of shallow network.

The core principle is that a large number of smaller entities, while by themselves unable
to model complex functions nor understand high-level patterns, work together in a bottom-up
approach to map complicated, non-linear functions and perform high-level tasks. Just like
in biology, each of these entities – usually referred to as artificial neurons or perceptrons
– receive an input based on the outputs of its neighboring perceptrons, and based on those
values’ determine its output signal. In biology, the neurons either fire with full force or not
at all, i.e. they are binary. The artificial neurons pass their input value through a non-linear
activation function which quite commonly approximates the delta function seen in nature by a
smoother version in the interval zero to one, see Section 3.4.3 for a more detailed explanation
of the activation functions used in artificial neural networks. When a multitude of such
perceptrons collaborate to perform high level tasks, they form a multilayer perceptron/an
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artificial neural network. The network described in this section is a shallow and fully
connected artificial neural network. It is shallow since it only contains very few hidden layers
and it is fully connected since each artificial neuron in a layer is connected to all neurons
in the preceding layer and in the succeeding layer. In Section 3.4 we will discuss ways to
further enhance the structure to better adapt it to our needs and move into the domain of deep
learning.

3.2 Backpropagation

Backpropagation is the core methodology which has made artificial neural networks into the
powerful machine learning model it is today. Backpropagation is a clever way to utilize the
chain rule to propagate partial derivatives back through the network in such a way that no
overlapping calculations need to be performed. The procedure is used in conjunction with
an optimization method which decides how to properly update the parameters of the model
based on the gradients calculated with backpropagation. The backpropagation algorithm
is so fundamental to their success and so characteristic of artificial neural networks that
some argue that a better name for the networks would be differentiable neural networks.
The backpropagation algorithm is best demonstrated by example, for which reason we shall
construct the simplest artificial neural network imaginable following the notation in [46], see
Figure 3.2.

Fig. 3.2 An artificial neural network is defined as two or more perceptrons (or artificial
neurons) that work together to approximate a function. Thus, the simplest possible artificial
neural network consists of only two perceptrons [46]. This figure shows an example of such
a network, where the input x is multiplied with the weight/parameter w1 – which output is
denoted as P1 – and fed through a sigmoidal activation function to create the first neuron. The
output from the activation function is multiplied with the weight w2 and the output – denoted
P2 – is once again fed through a sigmoidal function to create the second artificial neuron.
The output of the multilayer perceptron z is compared to the true label d in error function E.
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In machine learning it is common practice to view the input as stationary and the
parameters as the factor with which we can alter the performance of the model. For the toy
example seen in Figure 3.2 this means that we have to calculate the partial derivatives of
the error function E with respect to the weights w1 and w2. Before we are able to calculate
these gradients there are two functions that have to be defined: the error function E and the
activation function S. For simplicity we define the error function E as the mean squared error

E =
1
2
(d− z)2, (3.1)

where d denotes the true label and z the output of the network, i.e. its prediction. The
activation function is also defined for its mathematical convenience. In nature, neurons either
fire or they do not, i.e. they use a heaviside function which gives an output of one if its input
exceeds a given threshold, otherwise zero. Such a function can not be incorporated directly
into our artificial equivalent since it is not differentiable. Instead, what is used in an ANN is
a smoothed version of the heaviside function commonly referred to as a sigmoidal function

S(α) =
1

1+ e−α
, (3.2)

where α is the input value given to the artificial neuron which employs the sigmoidal function
as its non-linear activation function. Given this set of functions we can find the gradient of the
error with respect to the weights. Since our example is made up of two weights, the gradient
with respect to the parameters is defined as▽wE = ( ∂E

∂w1
, ∂E

∂w2
). The gradients are found by

the application of the chain rule propagated backwards through the network, which makes
it natural to start with the calculation of w2 rather than w1 since it is closer to the output of
the network. To find ∂E

∂w2
, we first have to calculate ∂E

∂ z since z is the only variable which has

a direct dependence on E. Expansion with the chain rule gives ∂E
∂w2

= ∂E
∂ z

∂ z
∂w2

. To find the
partial derivative of z with respect to w2 we also have to consider P2, for which reason we
further expand the gradient with the chain rule ∂ z

∂w2
= ∂ z

∂P2

∂P2
∂w2

. When put together the partial

derivative of the error function E with respect to the weight w2 is ∂E
∂w2

= ∂E
∂ z

∂ z
∂P2

∂P2
∂w2

. This is
all we need to calculate the gradient, and the partial derivative of E with respect to w1 can be
found in an similar fashion. The partial derivative of the error function with respect to the
weights w2 and w1 are

∂E
∂w2

=
∂E
∂ z

∂ z
∂P2

∂P2

∂w2
, (3.3)

∂E
∂w1

=
∂E
∂ z

∂ z
∂P2

∂P2

∂y
∂y
∂P1

∂P1

∂w1
. (3.4)
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Now that we know which partial derivatives we need to find in order to calculate the
gradient, all that is left is to solve the equations. In our example, to find the gradient with
respect to w2 we calculate ∂E

∂ z = ∂

∂ z(−
1
2(d− z)2) = d− z and ∂P2

∂w2
= ∂

∂w2
(yw2) = y. It is also

necessary to calculate ∂ z
∂P2

but this is a bit trickier since we have the additional dependence
on α in the sigmoidal activation function. To find the derivative we calculate its partial
derivative with respect to α and get

∂S
∂α

=
∂

∂α
(1+ e−α)−1 =−(1+ e−α)−2e−α(−1) =

e−α

1+ e−α

1
1+ e−α

=

=
e−α +1−1

1+ e−α

1
1+ e−α

=
1+ e−α

1+ e−α

1
1+ e−α

= (1− 1
1+ e−α

)
1

1+ e−α
=

= (1−S)S. (3.5)

From equation (3.5) we see that the derivative of the function with respect to its input is
simply the function times one minus the function itself, which means that it is extremely easy
to differentiate and one of the reasons for which it has been used so frequently in artificial
neural networks. When applied to our example, we get that ∂ z

∂P2
= (1− z)z and when put

together we get ∂E
∂w2

= (d− z)(1− z)zy and analogously ∂E
∂w1

= (d− z)(1− z)zw2(1− y)yx.
The final formulation consists only of known values or values which have been calculated in
previous steps of the backpropagation algorithm. When all gradients have been calculated
with the backpropagation procedure, the optimization technique which backpropagation is
used in conjunction with will decide how to best process said gradients to maximize the
performance of the model.

3.3 Gradient Descent

Like most forms of deep learning, the optimization techniques used in this work is based on
a gradient based optimization method known as gradient descent. Optimization techniques
are in general employed to either maximize or minimize an approximated function f (x)
by alterations in x. It is common praxis to work on minimization tasks – i.e. minimize
the error generated by the approximated function as compared to the true function – and
thus reformulate maximization tasks to minimization by a change in sign such that the
minimization is performed on − f (x). The function we wish to minimize is the one we
referred to as the objective function in Section 2.1.

The derivative of the function f (x) gives the rate of change for the function at point
x which gives an indication of how the function itself might change given a small change
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in input like so: f (x+η) ≈ f (x)+η f ′(x). Since gradient descent only depends on the
first order gradient it is categorized as a first order optimization algorithm. The aim of the
algorithm is to take the model from a bad position (a hill in minimization tasks) in the search
space to as good a location as possible, i.e. a local optima (a valley in minimization tasks),
see Figure 3.3 for a visualization of how a gradient descent-based algorithm might navigate
a 3-dimensional landscape given different initial positions. At any given point in space,
there are often more than one possible direction in which steps will lead to a decrease in the
objective function, but the crux is to find the one which decreases the error the most. Given
that the objective function f (a) is defined and differentiable in the neighborhood of the point
a, the function improves the most when a step η is taken in the direction of the negative
gradient such that at+1 is calculated as

at+1 = at−η▽t f (at). (3.6)

If equation (3.6) is true given stable conditions (i.e. η is small enough), it follows that
f (at+1) ≤ f (att), which means that we have taken a minimization step and therefore im-
proved the objective function (and hopefully also the performance of the model) by following
the negative gradient. The gradient descent algorithm simply performs an iterative, first order
optimization process given an initial position θ0 in the parameter space and then updates the
weights to decrease the loss function based on the training data x, which means that θt+1 is
defined as

θt+1 = θt−ηt▽θ f (x;θt), t ≥ 0. (3.7)

The step size η is also referred to as the learning rate of the model, and is often thought
of as the most important hyper-parameter for gradient descent-based optimization techniques
and it is crucial that the learning rate is set correctly. Make it too low and the algorithm will
take too long to converge, make it too large and you might walk over local minima located
too close to your current position in which case the algorithm might never converge at all or
miss optimal paths. Choosing a proper learning rate is a science in itself, and it is common
to use an adaptive learning rate, where η is updated over time as the algorithm gets closer
and closer to convergence. The gradient descent algorithm can be thought of as a blind baby
making its way down a hill backwards by feeling the change in the ground around it, where
the learning rate is the pace in which the baby crawls.
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Fig. 3.3 An example of a gradient descent optimization process with two different starting
points in a 3-dimensional landscape [28]. The starting points are located on a hill with steep
slopes, where the different starting points lead to two different local optima based on the
gradients in their respective neighborhoods. The different positions in the search space after
different iterations of the gradient descent algorithm are marked with X’s, and the lines
are the paths taken between the positions which are derived from the gradient at each such
location.

3.3.1 Stochastic Gradient Descent

While the pure version of the gradient descent optimization technique as described in Section
3.3 sounds good in theory, it is in many machine learning problems not practical to work di-
rectly with the gradient based on all the available data since this would require the evaluation
of the model on every single instance in the entire dataset at each point in time. Particularly
when one moves into the domain of big data where we have access to hundreds of thousands
of high-dimensional data points, which is often the case for deep learning problems, the time
and computational expense is way above what is reasonable in many practical applications.
In practice, what is done instead is that the gradient is estimated by the extraction of a
small random sub-set of the entire dataset. Since this only gives an estimate of the gradient,
this technique has been named stochastic gradient descent (SGD). See Algorithm 1 for an
overview of the update procedure connected to the stochastic gradient descent optimization
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technique for a standard machine learning task.

Algorithm 1: Stochastic gradient descent update procedure at training iteration k [15]

Require: Objective function L.
Require: Learning rate ηk.
Require: Initial parameter θ .
while stopping criteria not met do

Sample a minibatch of m samples from the training set {x0, ...,xm},
with corresponding targets/labels yi.
Compute gradient estimate: ĝ←+ 1

m▽θ ∑i L( f (xi;θt−1),yi).
Apply update: θt ← θt−1−ηkĝ.

end
While algorithm 1 illustrates the standard version of the stochastic gradient descent

procedure it is common to use various augmentations/alterations to the standard procedure to
increase convergence rate and to tackle common difficulties in the search space (e.g. saddle
points). It is common to add a momentum to the update rule which adds a dependence to
the gradients of previous iterations, sometimes based on the Nesterov accelerated gradient
update rule when iterating through the parameters and gradients [15].

3.3.2 Adam

While it is common to refer to the standard version of the stochastic gradient descent opti-
mization algorithm in academic settings and while it does have practical applications, there
exist a wide range of updated and highly specialized stochastic optimization techniques
which outperforms the procedure described in Section 3.3.1, both in terms of convergence
time and final error rate. One such technique is called Adam [20] and has been frequently
used in contemporary neural network-based research and has proven to be a robust and
fast way of navigating the parameter space. Adam consistently outperforms many of its
competitors and works in such a way that is calculates individual adaptive learning rates
based on the first and second moment of the gradient and is an extensions/combination of
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two other popular optimization techniques: AdaGrad and RMSProp.

Algorithm 2: Adam: a stochastic optimization technique

Require: η : Stepsize.
Require: β1, β2 ∈ [0,1): Exponential decay rates for the moment estimates.
Require: f (θ): Stochastic objective function with parameters θ .
Require: θ0: Initial parameter vector.
m0← 0 (Initialize 1st moment vector).
v0← 0 (Initialize 2nd moment vector).
t← 0 (Initialize timestep).
while θt not converged do

t← t +1.
gt ←▽θ ft(θt−1) (Get gradients w.r.t. the stochastic objective at timestep t).
mt ← β1 ·mt−1 +(1−β1) ·gt (Update biased first momentum estimate).
vt ← β2 · vt−1 +(1−β2) ·g2

t (Update biased second raw momentum estimate).
m̂t ← mt/(1−β t

1) (Compute the bias-corrected first moment estimate).
v̂t ← vt/(1−β t

2) (Compute the bias-corrected second raw moment estimate).
θt ← θt−1−η · m̂t/(

√
v̂t + ε).

end

3.4 Convolutional Neural Networks

As the original architecture of artificial neural networks seen in Section 3.1 drew inspiration
from the synaptic connections and axons in the biological brain, so have the more recently
developed convolutional neural networks (CNN) drawn inspiration from nature and the
constituents of the mammalian brain. More specifically, the connectivity of the artificial
neurons are constructed in a fashion similar to the organizational structure of the animal
visual cortex. The CNN networks are ad hoc structures that have been highly optimized for
the explicit assumption that the input data is image-based, be it a standard 2D image, 3D
volumes or a steady stream of temporal images. This allows for an extremely optimized
architecture that has managed to greatly reduce the memory requirements and computational
cost of inference and training both, and which is able to efficiently capitalize on the spatial
relationships between neighboring data points in images.

Traditional fully connected artificial neural networks have proven unsuitable for image
processing tasks due to the extremely high dimensionality associated with images of even
the most moderate of sizes. For example, imagine a black and white image – i.e. with only
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a single channel – with a resolution of 32× 32. When gaged by the human eye, such an
image appears very small. Should it be processed by a fully connected ANN however, the
amount of parameters in the first layer only would be 32×32× k where k is the number of
neurons in the first layer. Each neuron in the input layer in such a network would require
32×32 = 1024 parameters. While this number may seem relatively manageable, it scales
poorly and the number of parameters will rapidly diverge when the image resolution increases.
Most competitions in the image analysis field provide images with a spatial resolution of
around 512×512. For such a problem, where it is normal to work with RGB images, each
artificial neuron in the input layer would need 512×512×3 = 786432 parameters. Imagine
the modest case of 100 input neurons in such a network. The number of parameters in the
first layer of the network would number 78643200. This is an extraordinary amount of
parameters and an extremely inefficient way to process images, and this phenomenon is
known as the curse of dimensionality. Through clever processing, shared weights, a smart
architecture and by the utilization of the spatial correlations between neighboring data points
in images, we shall see that convolutional neural networks make it possible to reduce the
number of weights to a mere fraction of what is needed for the traditional ANNs while at the
same time taking the possibilities of computerized image analysis to soaring heights.

Convolutional neural networks drop the fully connected layers from the main body of
their architecture, and in their stead introduce a mixture of convolutional and pooling layers.
These two components are usually stacked in an appropriate fashion to extract relevant
features from the images whilst reducing the spatial resolution of said images. The output
of the convolutional and pooling part of the network is thereafter flattened into a feature
vector and fed into a more conventional fully connected ANN which then produces the final
predictive output. See Figure 3.4 for an example of the layout of a typical convolutional
neural network [11]. The subsequent sections of this chapter will give a in-depth explanation
of the most important components that together form a convolutional neural network.

3.4.1 Convolutional Layers

The convolutional layers are, as the name suggests, the core building block of convolutional
neural networks. It is also the constituent that performs the heavy computational lifting in
deep convolutional neural networks (DCNNs). What is referred to as a convolutional layer
is in fact simply a set of convolutional filters, also referred to as kernels. Each kernel only
processes a small part of its input tensor at each given point in space, e.g. 3×3 pixels/voxels,
where the spatial size of this window is defined as the kernels receptive field. The kernel
has as many weights as there are elements in its receptive field. The convolutional operation
performed by the kernels calculates the dot product between its weights and the elements
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Fig. 3.4 An example image of an architecture of a convolutional neural network used for
classification [11]. The herein shown architecture is named LeNet, and was one of the
first truly successful convolutional architectures. Today, LeNet is often used as an example
network for educational purposes or as a solid starting point for further research. The LeNet
architecture consists of two convolution-pooling pairs followed by a fully connected structure
with one hidden layer and one output layer which outputs the final class predictions. Note
that what is shown in the image are the output volumes or feature maps produced by the
different operations within the network when image(s) are propagated through the network.

within its receptive field, which includes all the pixels/voxels in the entire depth of the input
tensor within the given spatial range. For example, if the input image is colored and thus
made up of three different channels, one for each RGB value, then a kernel with a receptive
field of 5×5 sees 5×5×3 data points at each given point in space, which also corresponds
to the number of trainable parameters of each kernel. Each dot product produces a single
output scalar and by convolving the filter over the input tensor we produce an output tensor –
or feature map – with the same spatial resolution as the input tensor. Different techniques
exist to deal with the edge case of when the kernel looks at the edges of the input tensor,
where adding rows and columns of zeros around the image – referred to as zero padding – is a
way to maintain the spatial resolution of the image after the convolution without performing
any alteration of the data within the image. A different approach is to only let the filter look
at valid pixels/voxels, i.e. lose information kept in the pixels at the borders of the images.
This also results in an output tensor with a slightly lowered spatial size. It is uncommon
for problems to have sensitive or relevant data in the edges of the images which means
that in practice, the border-pixels are of little significance the choice of how to deal with
them is arbitrary. This is of course a choice that could bear significance for certain rare
problem instances in which case it might be beneficial to study domain specific solutions.
Should the convolutional layer include more than one such kernel – which is the case in most
examples of convolutional neural networks – the resulting feature maps are concatenated in
the dimension where the channels live to form a D+1 tensor where D denotes the spatial
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dimensionality of the data. Said tensor is then fed as the input to the subsequent layer, which
outputs the tensors that are fed into the succeeding layer et cetera.

3.4.2 Pooling Layers

In between convolutional layers the modus operandi is to insert pooling layers which serve a
dual purpose. Firstly to perform a reduction of the spatial resolution of the data to ease the
computational cost, lower the number of parameters and thereby combat overfitting. Secondly,
give the network a more abstract representation of the data to reduce the importance of the
exact locations of the object in the input image and to allow the network to better understand
and learn data on a higher abstraction level, which has proven to be extremely useful for
many different tasks. While there is a plethora of different pooling operations, the most
common form of pooling is max-pooling. A max-pooling layer looks at a window of the
values in its defined receptive field and chooses the largest of those values as its output.
The window is then moved s steps in a convolutional fashion, where s is the defined stride.
Most commonly both the receptive field and stride is set to 2, which results in a reduction
in the spatial resolution by a factor 4 for 2-dimensional data. Notice that this procedure
is performed on all feature maps on the input tensor independently which means that the
depth of the input tensor is unchanged after the pooling operation. Another common pooling
operation is average pooling, where the average value is calculated from the values in the
receptive field instead of just choosing the largest value.

3.4.3 Rectified Linear Unit

As discussed in Section 3.2, in traditional artificial neural networks such as the one described
in Figure 3.1, the activation functions are usually some kind of logsitic sigmoid, see e.g.
equation (3.2). This function outputs a smooth s-shaped curve in the interval between zero
and one, see Figure 3.5. As already noted in Section 3.2, the logistic sigmoid has been chosen
due to its mathematical convenience – it is very easy to differentiate – and since its output
can be interpreted as the probability or importance of the given input data it is suitable for
use in a wide range of tasks. The logistic sigmoid and other similar functions work very well
in shallow networks or as the output of deeper networks, but are very problematic when the
functions are performed again and again on the same data in a deeper structure. When the
function is performed repeatedly, which happens when the data is propagated through the
network, the values – and their gradients – will quickly go to zero and we loose the ability to
train the network. This phenomenon is known as the vanishing gradient problem, see Figure
3.5.
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Fig. 3.5 An illustration of the vanishing properties of the sigmoidal functions when applied
repeatedly [9]. We see a drastic decay in the values of the function as its power increases.

The vanishing gradient problem has historically been one of the main hurdles that
researchers had to overcome to make deep artificial neural networks into a viable option. The
introduction of the rectified linear unit (ReLU)

S(α) = max(α,0) (3.8)

as a replacement for the sigmoidal functions allow the data to pass through even extremely
deep networks without the occurrence of the vanishing gradient problem due to its linear
nature.

It is essential for the backpropagation algorithm that the network is differentiable, and
thus requires there should be some form of non-linearity present. The rectified linear unit is
an extremely simple function, but its non-linearity and linear relationship to a large portion
of the input data makes it very apt for use in deep learning based techniques which employ
very deep networks. The standard ReLU function, illustrated in Figure 3.6, has since its
introduction been extended by a whole family of related activation functions, each with their
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individual specialty. We will explore some of these options in chapter 6 when presenting the
models developed in the context of this master thesis.

Fig. 3.6 The Rectified Linear Unit (ReLU) activation function [19] commonly used in deep
neural network models. The mathematical formulation of the function can be seen in equation
(3.8). Accordingly, the value of the function is zero when the X-axis (which depicts the
range of input values) is less than zero the unperturbed input value when it is larger than zero.
Notice that the function is not differentiable in the origo. This is a special case that can be
solved in different ways depending on the problem at hand and the researchers preference.
The derivative of the function is simply zero for inputs smaller than zero and one for inputs
on the positive side of the X-axis.

3.4.4 Dropout

Another reason due to which researchers struggled to increase the depth of artificial neural
networks for a long time was that they were extremely prone to overfitting. When the
number of parameters increase (which is a natural consequence of increasing the depth of a
network) so does the risk of overfitting, which meant that researchers had trouble increasing
the depth of their networks for decades even though the theoretical advantages of deeper
structures in artificial neural networks were evident from an early stage. Together with the
ReLU activation function, the dropout regularization technique might be the most important
breakthrough that has let the scientific community to move from shallower networks into
the domain of deep learning. Like the rectified linear unit, the dropout technique is very
simple. The technique only entails that for each layer where dropout is applied, each artificial
neuron is excluded from the network for the duration of the current training iteration with
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a probability p, which is a hyperparameter defined by the researcher. This means that the
neurons cannot rely on the fact that other neurons will be present at each given point in time
and thereby have to learn the actual pattern in the data and not learn non-existent patterns
caused by neighboring artificial neurons with strong activations. Dropout can be seen as a
way to train many different versions of the same network at the same time, which means that
overfitting will be significantly reduced at the cost of longer convergence times.





Chapter 4

Related Work

As mentioned in Section 3, before the era of deep learning and automatic feature extraction,
most machine learning algorithms – in the domain of supervised learning – heavily relied
on efficient, hand-crafted features coupled with a flat/shallow classifier to perform their
respective tasks. Models that showed great promise in the field of semantic segmentation in
the past decades have inter alia been Boosting [35], [42], Random Forests [34] and Support
Vector Machines [13]. The focus was primarily on feature engineering rather than model
design. With the automatic feature extraction that comes with deep learning models the shift
in focus has instead moved on from finding relevant features to elaborate model engineering
resulting in large and complex models. This master thesis is based primarily on the work of
four major research articles published in the context of image processing and deep learning:
the U-net model for semantic segmentation of biomedical data [31], the GoogLeNet model
introducing the inception module [39], the ResNet model introducing the residual learning
building block for extremely deep convolutional networks [16] and finally the introduction
of convolutional layers atrous for semantic image segmentation in deep convolutional neural
networks [4].

4.1 The VGG Architecture

Simonyan & Zisserman [36] at the Visual Geometry Group (VGG) at Oxford University
illustrated the correlation between the depth of convolutional neural networks and their
performance. Their networks achieved the first place in the localization task in the ImageNet
challenge 2014 and got second place in the classification task at the same competition (where
Szegedy et al. won with their GoogLeNet model [39]). The architecture in [36] exclusively
utilizes convolutions with a receptive field of 3x3, where experiments with networks of
varying depths are performed. Simonyan & Zisserman found that the networks which had the
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deepest architecture – i.e. the highest amount of layers – achieved the best performance. Their
deepest model had 19 trainable layers, therefore denoted VGG19, and was the model which
achieved the best performance. As usual when improving a certain technique in optimization,
the authors found that an increase in depth eventually gave diminishing returns on the model
performance. It is therefore the second deepest model constructed in [36] which has seen
most use in practice, since it performs almost as well as VGG19 but is a smaller model with
less parameters and is thus easier to manage. See Table 4.1 for an illustration of the VGG16
architecture.

Simonyan & Zisserman also showed that it is often preferable to apply convolutions with
a small receptive field. Instead of the usage of a convolutional filter with a receptive field
of 7× 7 it is possible to use three stacked filters with a receptive field of 3× 3. In such a
structure the first layer does of course have a receptive field of 3×3, but while the second
layer has a receptive field of 3× 3, it has an effective receptive field of 5× 5 due to the
nature of the convolutional operation. The third and deepest layer has an effective receptive
field of 7×7. By utilizing three convolutional layers with a smaller receptive field we not
only make use of three non-linear activation functions which is good for the discriminative
ability of the model, but we also reduce the amount of parameters in the model. With the
assumption that both the number of input channels and output channels of three stacked
convolutional layers with a receptive field of 3×3 is set to a constant C, the structure consists
of 3(32C)2 = 27C2 weights. A single convolutional layer with a receptive field of 7× 7
would require 72C2 = 49C2 weights.

4.2 U-net

The most remarkable achievements made by convolutional neural networks in recent years
have been in classification, where convolutional and pooling layers have been stacked and
glued together in different constellations, usually followed by a number of fully connected
layers to make the architectures as efficient as possible and with as high a generalization
ability as possible. The advances in network design have lead to a significant reduction in
the error rates on notable image analysis tasks such as the ILSVRC classification challenge
where significant improvements have been made on an annual basis the in last few years
[36, 39, 16]. These classification networks were initially also used for semantic segmentation
tasks, where the approach was to use the output of the fully connected layers to predict
the class of each pixel based on its own corresponding value and surrounding region in
the input image and thus produce a map of predictions corresponding to a semantically
segmented mask. However, the groundbreaking results of [24] showed that it is in fact
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Table 4.1 An illustration of the layers used in the VGG16 model [36]. Each layer shows
the receptive field of the convolutional layers as well as the number of filters used in each
layer, which are increased with a factor two after each pooling operation. The max-pooling
layers use a stride of two. The final layers are fully connected, where the number of artificial
neurons are illustrated for each layer. The last, fully connected, part of the network is often
removed when adapting the network for segmentation tasks, as introduced in [24]. The final
layer use a softmax activation function to generate the final prediction.

Conv3x3-64
Conv3x3-64
Max-Pooling
Conv3x3-128
Conv3x3-128
Max-Pooling
Conv3x3-256
Conv3x3-256
Conv3x3-256
Max-Pooling
Conv3x3-512
Conv3x3-512
Conv3x3-512
Max-Pooling
Conv3x3-512
Conv3x3-512
Conv3x3-512
Max-Pooling
FC-4096
FC-4096
FC-1000
Softmax

beneficial to remove the computationally expensive fully connected layers altogether and
construct what is commonly referred to as a ’Fully Convolutional Network’ (FCN). The
fully convolutional networks make use of the same architectures as their classification-based
cousins, but by dropping the fully connected layers only keep about 10% of the original
number of parameters.

Following the branch of research initiated by [24], the aptly named U-net model [31]
consists only of convolutional and pooling layers, i.e. no fully connected layers and the
model has been fine-tuned for applications in the medical field, which generally suffers from
a lack of data due to the high acquisition and labeling cost. The U-net model comprises of
primarily two parts: (1) a feature extraction part which collects densely extracted features of
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different resolutions and (2), a part which performs up-sampling to the original resolution and
performs a segmentation based on the features from (1), see Figure 4.1 for a conceptual view
of the U-net model and Figure 6.3 for an overview of the layers used in the implementation
made for this thesis.

Fig. 4.1 A conceptual overview of the U-net model [31]. The blue arrows depict a convo-
lutional operation with a 3× 3 kernel, the gray arrows depict a copy and crop of feature
maps, the red arrows a max pooling operation, the green arrows a transpose convolutional
operation with a 2×2 kernel which doubles the spatial resolution and the teal arrows depict
a convolutional operation with a 1×1 sized kernel with a softmax activation function which
generates the final output.

The feature extraction network follows the same architecture as the VGG16 network
where convolutional and max pooling layers are stacked after each other in such a way that
the number of feature maps is increased when we have a decrease in the spatial resolution
and an increased network depth. The deepest layer does thus produce feature maps with a
spatial resolution which is reduced by a factor 32 as compared to the input resolution. To
convert these feature maps into a meaningful segmentation which maintains the original
spatial resolution the VGG16 architecture is mirrored, with the output of the first network as
input and so called transpose convolutions as replacements for the max pooling layers. These
transpose convolutions – also called fractionally strided convolutions – increases the spatial
resolution by a factor two by swapping the forward and backward passes of the convolutional
operation. This architecture leads to a final output mask with the same resolution as the
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input image. The final layer is a convolutional layer with a 1×1 kernel that uses a softmax
activation function to reduce the 64 feature maps from the previous layer to K final feature
maps which also serves as the final prediction/segmentation for the K classes present in
the data. To further help this structure find a satisfactory prediction, the feature maps from
the steps in the down-sampling part of the network that has the same spatial resolution as
the corresponding part in the up-sampling network are concatenated to extract as much
information as possible from each image, see Figure 4.1. This final trick helps the network to
converge to a good local optima even with for very limited datasets.

4.3 GoogLeNet

Most convolutional architectures, for segmentation and classification both, follows the same
pattern of linearly stacked convolutional and pooling layers. The performance of a network
has often been considered to be directly dependent on its depth and researchers have pushed
the number of stacked layers to its limit to create deeper and deeper networks. Compare e.g.
the AlexNet [21] published in 2012 using 8 layers – which at the time was state-of-the-art in
multiple image analysis categories – with the networks published by the VGG just two years
later which showed a significant increase in performance with their VGG16 and VGG19
networks. The GoogLeNet architecture however, was the first to branch out and leave the
standard architectures behind. Instead of stacking convolutional and pooling layers in the
traditional sense to increase the depth of the networks, the authors in [39] worked to increase
the width of the network by the introduction of the inception module, see Figure 4.2. Instead
of using the standard dense convolutional layers the idea is to split up the calculations into
different sub-layers with kernels of varying size. The architecture was inspired by the strong
mathematical arguments for the utilization of sparse matrix operations for image processing,
whilst being able to utilize the extremely optimized software and hardware which today
exist for dense matrix operations (which renders a sparse architecture far too inefficient for
most practical applications). The inception module is the result of an attempt to simulate
sparse operations with dense building blocks, and the result was a network which contained
less parameters than its predecessors while it increased the state-of-the-art performance for
multiple image analysis tasks. The herein described inception module is today referred to as
InceptionV1. The architecture has been further experimented with and as of this writing the
latest version is the InceptionV3 module [40].



34 Related Work

Fig. 4.2 The inception module as introduced in [39]. Convolutions with kernels of size 1x1,
3×3 and 5×5 are performed in parallel where the resulting feature maps are concatenated
to form the input to the next layer. A max pooling layer is also added to keep the beneficial
effects of such layers as observed in previous convolutional architectures. The pooling
layer does however have a stride of one which results in feature maps with the same spatial
resolution as the input. Also note that additional convolutional layers with 1×1 kernels with
a single feature map as output is included in the module. These are present to drastically
reduce the number of parameters needed to perform the convolutional operations with larger
kernels. Should these be omitted the number of parameters and consequently the training
time and computational cost would quickly explode for deeper networks.

4.4 ResNet

The chase for deeper networks did not stop with VGG19 or GoogLeNet however. The authors
of [16] experimented with even deeper architectures and further increased the state-of-the art
on the ILSVRC-2015 challenge with an ensemble of convolutional networks consisting of as
many as hundreds of layers each. [16] found in their initial experiments that when deeper
networks start to converge, a process called degradation occurs, which means that when they
start to converge, the accuracy gets saturated and then drastically drops. This phenomenon
has been concluded to be unrelated to overfitting and is thus a new obstacle to overcome
when one utilizes extremely deep architectures with 30 or more layers. Unconstrained, this
means that the deeper networks yields a lower performance compared to their shallower
counterparts. To address the degradation problem, [16] introduced the so-called residual
building block, see Figure 4.3.
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Fig. 4.3 Let H(x) denote the underlying desired mapping given the input variable x. Instead
of optimizing for H(x) directly, we let the weighted layers fit the another mapping: F(x) :=
H(x)− x. We then recast the mapping to the residual form of: F(x)+ x. The hypothesis in
[16] was that this is an easier formulation of the optimization problem which will lead to a
more stable training of extremely deep convolutional neural networks.

The residual building block achieved its purpose in that it mitigates the degradation
process and allowed He et al. [16] to construct extremely deep networks that outperformed
the shallower networks of the past. Their submission to the ILSVRC-2015 consisted of
network with an increase in depth by a factor 8 as compared to the VGG networks. While
the depth of the networks employed in the research connected to this thesis is not of the same
scale as in [16], the residual building block as been incorporated to increase stability and
performance. Should the networks benefit from the addition of the residual building block it
will serve to validate their use in shallower versions of deep neural networks.

4.5 Atrous Convolutions

As has been previously mentioned, the main hurdle to overcome when one adapts classifica-
tion network architectures to semantic segmentation is to combat the decrease in resolution
that comes with the pooling operations. The pooling layers play a crucial role in object
detection and registration and is vital for location invariance. In addition to these benefits,
they also increase the receptive field of the kernels in the deeper parts of the network which
is essential for understanding the input, which makes them indispensable. This is true for
classification and segmentation tasks both, even though they result in a drastically reduced
spatial resolution. In semantic segmentation one wishes to perform pixel wise predictions,
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often in the original image resolution, which makes the pooling operations a major problem.
The U-net architecture overcomes this challenge by the addition of a second decoder network
which up-samples the features extracted from the first part of the network to produce an output
mask in the original spatial resolution. While this is has been shown to be a reliable technique
that has significantly improved the state-of-the-art, the design results in large networks which
are computationally expensive. The architecture introduced in [3] and further optimized in
[4] instead employs a technique called dilated convolutions – or convolutions atrous which
translates to “with holes in” from French – which allows the construction of networks which
retain the spatial resolution of the feature maps as the images are propagated through the
network. The principal idea of the approach is to introduce holes in spatial dimensions of
convolutional kernels to significantly increase the receptive field of the filters and maintain
the spatial resolution of the feature maps while keeping the effective kernel size unchanged.
Table 4.2 shows an example of a normal convolutional kernel with a receptive field of size
3×3 where the dilation rate is equal to 1. Table 4.3 illustrates the same convolutional filter
with a dilation rate of two.

Table 4.2 An example of a 3× 3 convolutional kernel with a dilation rate of one. Notice
that the values in the kernel are set arbitrarily for illustrative purposes and bear no particular
significance.

9 5 6
8 7 3
1 8 4

Table 4.3 The same convolutional kernel as described in table 4.2 but with a dilation rate of
two, where each element from table 4.2 is highlighted. This means that the receptive field of
the kernel is increased and only every other element in the input map is convolved with a
non-zero element in the kernel, which is true for each spatial dimension. The sparsity of the
filter is thus increased with a factor two for each spatial dimension of the input data.

0 0 0 0 0 0 0
0 9 0 5 0 6 0
0 0 0 0 0 0 0
0 8 0 7 0 3 0
0 0 0 0 0 0 0
0 1 0 8 0 4 0
0 0 0 0 0 0 0

The authors in [3, 4] use a mix of dilated networks and max-pooling operations in the
VGG16 architecture to find a balance between performance and efficiency in their very
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deep neural network architectures. Since the resolution of the images are kept as they are
filtered through the network, this network design puts an additional load on the memory
usage during training and inference. Large networks such as VGG16 are hard to train with
purely full resolution images. It is possible however, to employ a smaller, “fully dilated
network” for a large number of segmentation tasks that do not require such a large network
as VGG16. In such smaller networks it is possible to completely skip the down-sampling
steps commonly performed through max-pooling and maintain the original spatial resolution
of the input images, as also done independently in [49]. This architecture has been included
in the experiments as an alternative to the U-net based models, and we shall see that they
produce competitive results while drastically reduce the complexity of the models.





Chapter 5

Experimental Setup

This chapter will cover the experimental setup used in the different scientific experiments
conducted in the context of this thesis. The implementation details will be covered as well as
the computational platform which has been employed for the training of the convolutional
neural networks. Finally, a description of the data used in training and testing will be given.

5.1 Implementation Details

At the time of the writing of this thesis, one of the most popular deep learning libraries is
the open source Keras library for Python [5]. Keras is a high-level wrapper library around
either the TensorFlow or Theano libraries which are also based on the Python programming
language. Keras is an easy to use option compared to many of its lower level competitors
and was constructed to reduce time between scientific ideas and actual implementation. In
the research conducted in the context of this thesis Keras has been used with TensorFlow as
the back end library.

5.2 Computational Platform

Today, deep neural networks are almost exclusively trained on graphical processing units
(GPUs) instead of the more traditional approach where training is performed on one or more
CPUs. A GPU has extremely optimized parallelization capabilities, and since the nature of
neural networks makes them well suited for parallelized training, modern GPUs can decrease
training times significantly.

Due to a number of different reasons, performing the training of the DCNN models on
local machines has been shown to be an inefficient strategy. For one, the size of the models
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are of a scale that makes them hard to fit on all but the most powerful of GPUs. Secondly,
when a training session is active on the local GPU the entire machine is locked down due
to the large computational resource needed for the training which effectively locks all other
activity on the machine.

Initial experiments were conducted on the GPU on a local machine, but when it became
evident that the solution was unsatisfactory we moved to a cloud based solution where
Amazon Web Services (AWS) was utilized. AWS is a highly customizable platform that
supports training of DNNs through a smorgasbord of different libraries. In the context
of this thesis we have used p2 xlarge instances for training which come equipped with
powerful Nvidia Tesla K80 GPUs. In addition to presenting a solution to the aforementioned
issues, the cloud based solution also provides the opportunity to run multiple experiments
simultaneously on different server instances which has significantly increased the progress
speed of the research through e.g. hyperparameter optimization.

5.3 Data Description

The data used in the herein described experiments consist of 2345 skeletal scintigraphy
images used for training and 298 additional images used for testing. Each image comes with
a corresponding ground truth segmentation where 14 different body parts and the background
are distinguished by labels in the range of 0 to 14, see Figure 5.1 for an example of a bone
scan and its corresponding ground truth segmentation. The labels used as the ground truth
when training the convolutional neural networks have been constructed by image registration
using the Morphon method via the commercially available Exini boneBSI software.

The images have been down-sampled to half of the original resolution to speed up the
scientific process. The models constructed in this thesis are therefore not necessarily usable
in a practical context but should be viewed as prototypes for possible real-world applications,
a proof of concept. In order to properly evaluate the models the training data has been split
into a training set and a validation set. After the split we have the following number of
images in the different sub-sets:

• Training set: 1759 images

• Validation set: 586 images

• Test set: 298 images

The training set and validation set has been used frequently during training to construct
and evaluate the different models, whereas the test set has only been used at the end of the
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Fig. 5.1 The leftmost image shows an example image chosen from the 2345 scintigraphy
images. The rightmost image shows the corresponding ground truth labels for 14 different
body parts and the background. The example image has the dimensions 326×123×1 while
the mask has 320×112×1. This difference is due to the fact that the networks output masks
which are slightly smaller than its inputs. This discrepancy was removed in the later models
but the resolution of the images was retained to keep the continuity of the experiments and to
be able to compare the different models as fairly as possible. The labels have been cut off to
only include the upper arms and legs such that their lower equivalents have been removed.
The decision to remove certain body parts was made since they have little relevance to the
experiments and to keep the number of classes moderately small.

work to evaluate the models. No additional alterations have been made to the models post test
set evaluation. This means that the models have been trained on the training set and evaluated
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on the validation set during the research process. The validation set is an estimation of the
true error and has been used as a base for hyperparameter selection and used to compare
different model architectures. The performance gained on the test set is a closer estimation
of the true performance since no model engineering has been done on the dataset.



Chapter 6

Method

This chapter covers the structure of and describes the philosophy behind the architectures
used in the herein performed experiments. There are primarily two architectures that have
been investigated in the context of this project: the U-net structure introduced in [31] which
has shown remarkable performance in medical applications given only very little training
data, and the convolutional neural networks atrous introduced in [3] and further improved in
[4]. The U-net structures have been further extended with ideas introduced in [39] and [16]
to further increase performance and reduce training time. The atrous approach provides an
interesting architecture that is works on fundamentally different principles than those behind
U-net design.

While the raw labels contain 15 different classes (including the background), the segmen-
tation of all 15 classes at once was found to be a problem which is significantly harder than
the segmentation of just one class at a time in a one versus all scenario. The latter problem
has therefore been the main focus of this thesis, even though attempts to perform multi-class
– or semantic – segmentation have been performed. In all of the subsequent discussion,
the problem at hand is the one versus all segmentation problem where class zero has been
extracted from the labels and are depicted with ones while the rest of the image consists of
zeros, see Figure 6.1 for an example of such a label. Class zero depicts the patients’ left
scapula.

6.1 U-net

The full U-net model is by far the heaviest model constructed in the herein performed
experiments, with approximately 34 million trainable parameters. The U-net architecture has
been replicated exactly as depicted in [31] with two alterations: (1) batch normalization has
been introduced after each convolutional operation and (2) dropout has been added to the
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Fig. 6.1 A random sample from the validation set which shows class zero – the patients left
scapula – v.s. the background. The scapula is deemed to be in the middle range when it comes
to the complexity of the problem due to its size and shape, as compared to the other body
parts. Results gained on this class can not transferred directly to other classes/body parts but
provides a good way to compare the different algorithms and gives a rough indication of the
quality of the segmentation of the other classes.

deepest part of the network as well as after each concatenation step in the decoder network,
see Figure 6.3 for a conceptual graph of the implemented version of the U-net model. Batch
normalization [17] is a technique introduced to prevent internal covariate shift as the data
is filtered through a network, and the technique has been shown to reduce training time,
prevent overfitting and increase performance in DCNNs. Batch normalization is today an
easily implemented and commonly used technique to perform an overall enhancement to
deep neural networks and to make them more robust.

For segmentation tasks it is common to use some form of cross entropy as the loss
function when training the neural networks. In the problem described in this thesis however,
these functions provided a segmentation which was significantly inferior to other tested
functions. The problem contains two classes, where the background is extremely dominant
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Table 6.1 An illustration of the some of the hyperparameters and other relevant information
used in the training of the U-net based models. From left to right the different columns in the
table illustrate the model used, the utilized optimizer, the learning rate, the loss function, the
batch size, the number millions of parameters used in the model, the number of seconds it
took to complete each epoch and the number of epochs used during training. Do note that
while the same number of epochs have been used for training in both the standard U-net
and the URI-net, and while URI-net has a higher training time per epoch it did converge
significantly faster than the standard U-net. Should early stopping be used, the URI-net
would have a net-training time which is lower than the U-net even if each epoch takes more
time to complete. Apart from the learning rate, the standard hyperparameters used in the
Keras deep learning library have been used for the Adam optimizer.

Model Opt. LR Loss Batch Params S/Epoch Epochs
U-net Adam 1

8 ∗10−5 -log(Dice) 16 34 512 200
URI-net Adam 1

16 ∗10−5 -log(Dice) 16 21 726 200

and makes up about 99.50% of the images. It is believed that if one weights the classes to
even out this unbalance, the cross entropy function would perform better. However, instead
of exploring this option we have employed a version of the Sørensen–Dice coefficient, also
referred to as dice score or dice coefficient

D(X ,Y ) =−log
2|X ∩Y |
|X |+ |Y |

=−log
2∑i xiyi

∑i xi +∑i yi
, (6.1)

as the loss function for the convolutional networks. Notice that the negative natural logarithm
have been taken of the index and used as a loss function rather than the raw coefficient.

In equation (6.1) X denotes the generated predictions and Y the corresponding ground
truth labels. Notice that during the training phase, while Y is a binary matrix, X contains the
predicted beliefs at each pixel which can be any value between zero and one. This applies to
all models presented and discussed in the subsequent chapters. The nature of the function is
such that the predictions will be driven to its edges, either zero or one, to generate as high
a dice score as possible. Through empirical experiments we have observed that this loss
function is suitable for such a task as described in this thesis and works very well even when
the classes are heavily unbalanced. See Table 6.1 for an overview of the hyperparameters
and settings used when training the U-net model.
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6.2 URI-Net

While the U-net model provides a solid baseline for both architecture design and segmentation
performance it is too heavy a model and does not perform well enough to be completely
satisfactory. The large amount of parameters make it prone to overfitting and lead to a high
computational cost during training. By the introduction of a number of alterations to the
original architecture we hope to achieve a significant reduction in model complexity, an
increase in performance and a decreased training time. The alterations are primarily inspired
by the work in [44] and [25].

The first alteration is the introduction of the inception module [39], as described in
Section 4.3. Instead of two convolutional layers with the same number of feature maps
in each step in the U-net “staircase”, each step has one inception module followed by on
of two options: either a convolutional layer with a stride of two used for down-sampling
if in the encoder network or a transpose convolutional layer used for up-sampling in the
decoder network. The convolutional layers with stride replace the max-pooling layers and
thus, the only max-pooling operations in the entire network are those found in the inception
modules which has a stride of one. The second major alteration is the introduction of residual
connections [16] instead of the normal skip connections used in [31]. Contrary to the original
design o the building block, only one convolutional layers is used in the residual building
block in the skip connections rather than two, as in [16]. These two major alterations to
the original U-net architecture have significantly changed the structure of the model, where
the resulting architecture has been named the URI-net due to its design which is based on
the U-net model, the residual building block and the inception module. In addition to these
major changes, the activation function after each of the convolutional operations have been
changed to the exponential linear unit (ELU) [7] instead of the standard rectified linear unit
as described in Section 3.4.3. The ELU activation function is a smoothed version of the
rectified linear unit as can be seen in Figure 6.2. The principle behind the ELU function is
that it pushes the mean activation value closer to zero by the inclusion of negative values.
In theory the switch in activation function from ReLU to ELU will speed up learning and
increase the performance of the models. All the aforementioned alterations to the standard
U-net model resulted in a substantial decrease in the number of parameters used in the model.
See Table 6.1 for a list of the hyperparemeters and settings used in the URI-model as well as
a comparison to the standard U-net structure.

The raw labels, as described in section 5.3, contain 15 classes. While models have been
trained to perform a semantic segmentation of all 15 classes at once, the technique which
yielded the highest accuracy was to construct 15 different networks which were trained
independently on each class. Figure 6.5 shows an illustration of the final model with 15
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Fig. 6.2 A comparison of the exponential linear unit and a family of rectified linear unit
activation functions [7]. The ELU function is drawn with a blue line while the standard
ReLU is drawn with a dark purple color.

smaller nets as constituents which perform a complete segmentation of the entire image with
15 different classes. Each network consists of approximately 20 million parameters, which
means that the complete models is made up of about 300 million parameters. This ensemble
model which is able to perform multi-class segmentations on the entire body has been named
the multi-class URI-net, or mcURI-net. This experiment has only been carried out with the
URI-net since it showed the greatest promise before the test performance was revealed and
the time constraints of the project prevented the production of additional such networks.

6.3 Atrous Convolutions

In a separate branch of research we have looked at convolutional neural network that employ
dilations in the convolutional filters. While the U-net architecture splits the model into
an encoder and a decoder part, the dilated convolutional networks maintain a simpler and
more lightweight architecture and instead perform alterations to the convolutional kernels.
The dilated filters allow the removal of pooling operations in the network while retaining
the increase in receptive field that would have come naturally with e.g. max-pooling. The
experiments conducted with dilated convolutions have largely been inspired by [3, 4], where
they still use some max-pooling layers to make a trade-off between accuracy and efficiency.
When the pooling operations are cut from the model the images are propagated throughout
the network in their original spatial resolution which can be extremely memory heavy for
deeper networks. The trade off is necessary since the problem the authors of [3, 4] have
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taken on is extremely difficult and only the largest of models can achieve satisfactory results.
The herein described problem is believed to be significantly easier, and thus we do not
have to make the same trade off. Instead we can employ what we refer to as fully dilated
networks, that only include an increased dilation rate as the network depth increase and
no decrease in the spatial resolution what so ever, similarly to the experiments conducted
in [49]. The architectures that have been studied follow the theme of the VGG nets [36]
where the number of feature maps increase with the depth of the network.. Experiments have
been carried out with different architectures, see Table 6.2 for an overview of the different
network architectures employed in the described experiments. As with the VGG networks,
architectures with different depths have been examined. To be able to easily distinguish and
hold a discussion around the different networks they have been named “FDN-N”, where
FDN stands for “fully dilated network” and N for the number of convolutional layers used in
the network.

The main differences from the standard VGG architecture is that the FDN networks have
significantly less feature maps and instead of performing sub-sampling of the data in the
max-pooling layers, their stride is set to 1 and the convolutional layers after each max-pooling
layer has increased their dilation rate with a factor two. I.e. after the first max-pooling layer
the dilation rate is set to two and after the second max-pooling layer the dilation rate is set to
four etc. All networks described in Table 6.2 have used a learning rate of 4×10−5 with the
Adam optimizer where all additional hyperparameters have been set to the standard values as
specified in the Keras deep learning library. The negative logarithm of the dice score seen in
equation (6.1) has one again been used as the loss function during training. Each network has
been trained for 100 epochs each, which has been observed to provide a sufficient number of
iterations for the networks to converge.

In addition to the different architectures, experiments have also been carried out with
different activation functions and with the introduction of batch normalization. Experiments
of this nature has been carried out on FDN-11 due to its good trade-off between accuracy
and training time as well as on FDN-16 to measure their impact on deeper/heavier networks.
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Table 6.2 A compilation of the different architectures used in the experiments which include
the convolutional neural networks atrous. Each column shows the layer by layer architecture
associated with each network. The receptive field is given for each convolutional layer as
well as the number of resulting feature maps, e.g. Conv3×3-64 indicates that the layer has
64 filters with a receptive field of 3×3 and thus produces 64 feature maps. In addition to the
architecture of the networks, the number of parameters for each model and the training time
for each epoch in seconds is given in the second to last and last row correspondingly.

FDN-5 FDN-11 FDN-13 FDN-16
Conv3×3-64 Conv3×3-8 Conv3×3-8 Conv3×3-8
Conv3×3-64 Conv3×3-8 Conv3×3-8 Conv3×3-8
Max-Pooling Max-Pooling Max-Pooling Max-Pooling
Conv3×3-128 Conv3×3-16 Conv3×3-16 Conv3×3-16
Conv3×3-128 Conv3×3-16 Conv3×3-16 Conv3×3-16
Max-Pooling Max-Pooling Max-Pooling Max-Pooling
Conv1×1-1 Conv3×3-32 Conv3×3-32 Conv3×3-32

Conv3×3-32 Conv3×3-32 Conv3×3-32
Max-Pooling Conv3×3-32 Conv3×3-32
Conv3×3-64 Max-Pooling Max-Pooling
Conv3×3-64 Conv3×3-64 Conv3×3-64
Max-Pooling Conv3×3-64 Conv3×3-64
Conv3×3-128 Conv3×3-64 Conv3×3-64
Conv3×3-128 Max-Pooling Max-Pooling
Max-Pooling Conv3×3-128 Conv3×3-128
Conv1×1-1 Conv3×3-128 Conv3×3-128

Conv3×3-128 Conv3×3-128
Max-Pooling Max-Pooling
Conv1×1-1 Conv3×3-256

Conv3×3-256
Conv3×3-256
Max-Pooling
Conv1×1-1

259,137.0. 295,033.0 488,793.0 1,964,249.0
129 208 314 1034
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Fig. 6.3 Visualization of the U-net model which has been employed in this thesis. Notice that
in addition to the standard U-net structure, batch normalization and dropout layers have been
added to correspondingly make the model more robust and decrease overfitting.
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Fig. 6.4 A graphical illustration of the modified U-net structure named URI-net. The main
modifications that distinguish the model from the standard U-net architecture is the replace-
ment of the standard convolutional layers with inception modules [39] and the introduction
of residual blocks [16] instead of standard skip connections. Other modifications are the use
of ELU [7] instead of ReLU, convolution with a stride of two instead of sub-sampling by
max-pooling and a general decrease in the number of feature maps.
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Fig. 6.5 15 different URI-nets have been merged to create a model which is able to perform a
segmentation on whole input images where each individual class is identified, located and
given a pixel wise segmentation. The model is made up of 15 different networks which
have been trained on one of each of the 15 different classes. Each network contains about
20 million parameters which adds up to a total of circa 300 million parameters for the
entire, multi-class URI-net model. The constituent networks perform their segmentations
independently and their resulting prediction maps are concatenated in a row ∗ column ∗N
volume where N represents the number of classes which is 15 in this case. The index of
the network which has given the highest predictive value for a certain pixel is chosen as
that pixel’s class, i.e. an argmax operation is performed on the output volume of the 15
different networks to perform the final segmentation. The multi class model is denoted as a
mcURI-net.
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Results

Table 7.1 shows a summary of the performance of all models produced in the context of this
thesis on the training set, validation set and test set on the one versus all problem where the
left scapula has been distinguished from the rest of the images.

Table 7.1 A comparison of the different produced models. A family of convolutional neural
networks atrous is compared to the U-net based models as well as a dilation-less version of
the FDN-11 network denoted DLN-11 (dilation-less network). The standard settings for the
dilated networks is to use the ReLU activation function and no batch normalization. Some
networks have been trained with ELU and some with batch normalization, in which cases
an e or a b have been added to the model name. The first column shows the final validation
loss for the different models, while the second, third and fourth columns show the training,
validation and test error correspondingly where each row consists of one model. The best
value achieved in the different data sets has been highlighted. FDN-16eb achieved the highest
training dice score, FDN-16e the highest validation score and FDN-13 the best test score.

Network Validation loss Training Dice Validation Dice Test Dice
DLN-11 0.1672 0.8661 0.8466 0.8212
FDN-5 0.3026 0.7421 0.7417 0.5572
FDN-11 0.0566 0.9472 0.9459 0.9219
FDN-11e 0.0520 0.9523 0.9528 0.6039
FDN-11be 0.0559 0.9648 0.9501 0.9220
FDN-13 0.0490 0.9570 0.9526 0.9341
FDN-16 0.0466 0.9682 0.9546 0.9105
FDN-16e 0.0438 0.9842 0.9572 0.9286
FDN-16be 0.0533 0.9938 0.9481 0.9203
U-Net 0.0933 0.9523 0.9110 0.8591
URI-Net 0.0516 0.9881 0.9498 0.8289



54 Results

Table 7.2 shows the performance of the mcURI-net on the training set, validation set and
test set, where each class/body part has been segmented individually by different URI-nets.
The table also illustrates the mean values and standard deviations of the scores generated on
the different data sets. Figure 7.1 illustrates an example segmentation made from a randomly
selected image in the validation set, and Figure 7.2 shows a segmentation of a randomly
selected image from the test set. Like in Figure 7.1, the full body segmentation in Figure 7.2
has been produced with the mcURI-net, where each class has been segmented independently
by different URI-nets. Finally, three different segmentations performed on samples from the
test set by the FDN-13 model can be found in Figure 7.3.

In addition to the experiments carried out on a single of the 15 available classes, attempts
to perform a semantic segmentation on all classes at once with a single network have been
carried out. Figure 7.4 gives qualitative results from a few different network configurations
of the multi class segmentation performed with the URI-net and the standard U-net on the
validation set.

Table 7.2 The performance of the URI-net model on the 15 different classes for the different
data sets. Each row depicts a class, where the first column shows the class name and the
second, third and fourth columns the corresponding training score, validation score and test
score. The last two rows show the mean dice score for each data set as well as the standard
deviation of the dice scores in each set.

Class Training Dice Validation Dice Test Dice
Left Scapula 0.9881 0.9498 0.8289
Right Scapula 0.9833 0.9511 0.8106
Left Humerus 0.9795 0.9390 0.7963
Right Humerus 0.9810 0.9423 0.8038
Left Costae 0.9899 0.9706 0.8824
Right Femur 0.9801 0.9444 0.6979
Cranium 0.9869 0.9818 0.8238
Cervical Vertebrae 0.9738 0.9311 0.7468
Lumbar Vertebrae 0.9799 0.9461 0.8110
Pelvis 0.9752 0.9568 0.7793
Background 0.9889 0.9883 0.9430
Right Costae 0.9820 0.9659 0.8738
Thoracic Vertebrae 0.9770 0.9567 0.8498
Left Femur 0.9596 0.9382 0.6710
Sacrum 0.9722 0.9138 0.7066
Mean score 0.9798 0.9517 0.8016
Standard Deviation 0.0075 0.0187 0.0711
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Fig. 7.1 An example segmentation with mcURI-net on a randomly selected image from
the validation set. The leftmost image shows the ground truth, i.e. the labels which have
been produced by traditional image registration using morhpons. The image in the middle is
the resulting prediction as produced by the mcURI-net where the mean dice score for the
validation set was 0.9517. The rightmost image shows the input image and and an overlay of
the corresponding predictions as constructed by the mcURI-net. The color of each pixel does
of course indicate its class.
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Fig. 7.2 A full body segmentation produced by the mcURI-net on a randomly selected image
from the test set. The labels in the test set have different values relative the training and
validation sets. This bears no significance on the model performance since each class is
treated individually, but the coloring of the test set looks slightly different when plotted as
compared to the other sets.
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Fig. 7.3 Each row shows a segmentation-label pair made with the best performing model on
the test, i.e. the FDN-13 model, where the left column contains the segmentations generated
by the model and the right column the corresponding label seen as the ground truth. Each
example image has been drawn randomly from the test set. The mean dice score on the entire
test set is 0.9341, as can be seen in Table 7.1.
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Fig. 7.4 Experiments performed with multi-class segmentation using only a single convolu-
tional neural network on a randomly selected image from the validation set. The leftmost
image shows an attempt with the standard U-net model to segment all classes at once. The
three images in the center illustrates different attempts to perform a semantic segmentation
of all 15 classes with different configurations of the URI-net. The rightmost image shows the
ground truth labels of the image for reference.



Chapter 8

Discussion

This chapter will first hold separate discussions of the different branches of research con-
ducted in this thesis with regards to the results presented in Chapter 7. Thereafter a general
discussion will be made where final conclusions will be drawn as well as thoughts on possible
extensions and future work will be given.

8.1 U-net

As can be seen in Table 7.1, the URI-net model performed much better than the standard
U-net model on both the training set and validation set. The mean dice scores increased by
about four percentage points in both the training set and validation set, where the training
and validation scores were 0.99 and 0.95 respectively as compared to the dice scores of 0.95
and 0.91 achieved with the standard U-net model. In addition to an increased performance,
URI-net also reduced the amount of parameters by 43% from the standard U-net model, from
about 34 million to roughly 20 million parameters, which reduces the model complexity
as well as training time and in theory should make it less susceptible to overfitting. These
facts did indicate that the URI-net would perform better than the U-net on the test set as
well, which proved a faulty assumption since the URI-model only managed to achieve a
mean dice score of about 0.83 on the test set while the standard U-net model achieved a
mean dice score of approximately 0.86. Both scores are significantly worse than the scores
achieved in both the training set and the validation set and destroyed the intuition of which
of the two models would perform the best out of sample. In lieu it appears that the URI-net
model has managed to overfit the training data to a larger extent than the U-net model, in
spite of the large number of “tricks” employed in the model to reduce such an occurrence
as well as the considerable amount of dropout used throughout the model. This fact is also
evident from the example segmentations presented in Chapter 7. Figure 7.1 illustrates an
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almost flawless segmentation on an example from the validation set while Figure 7.2 shows
a less than ideal segmentation of a randomly selected image from the test set segmented
with the same model. This indicates that the mcURI-net model has overfitted the training
samples. It is hard to tell which parts of the URI-net caused the decreased performance since
the individual alterations have not been examined individually. While it would be interesting
to identify the effect of each individual alteration incorporated in the URI-net as compared to
the original U-net structure, this would be too costly to conduct in the context of this work.
Instead, we have settled for the conclusion that the URI-net model can be a powerful model
in some segmentation tasks [44] but can easily fit the training samples too well, which results
in poor generalization capabilities. The same argument can be made for the standard U-net
model, for while Ronneberger et al. [31] achieved impressive results on various data sets,
but the model failed to generalize well in the herein described problem domain despite the
addition of dropout in numerous locations in the network.

Since the URI-net was believed to be the best constructed model – based on the achieved
results in the training set and validation set – it was used to perform fully-body segmentations
in the mcURI-net ensemble model. The result can be seen in Table 7.2. The results
corresponds well to the quality of those obtained from the experiments performed on the
left scapula. The mean dice score over all classes in the training set was 0.9798 and the
corresponding standard deviation was 0.0075, which is an extremely good score. Since the
labels used as ground truth during the training phase are automatically generated by image
registration using morphons, an overlap measure of approximately 0.98 might in fact be
too good a score, where the CNN is learning to act like a morphon rather than to learn the
actual actual structure of and patterns in the data. Such a high training score might also be an
indication of overfitting, which we see clear trends of in the validation set, and especially in
the test set. The dice score is reduced by about three percentage points from the training set
to the validation set and by another 15 percentage points from the validation set to the test
set. We also see that the results become less uniform in the test set as compared to the other
sets since the standard deviation is increased by a factor 10 between the training set and the
test set.

While the main focus of this thesis has been a one class segmentation where a single
class has been distinguished from the background, experiments have also been made with
multi-class semantic segmentation where some example results can be seen in Figure 7.4. As
the figure clearly illustrates, the task has been all but successful. Interestingly, the standard
U-net model managed to achieve a higher performance than the URI-net model, even though
the latter achieved a higher dice score on the same set (the validation set) on the one versus
all problem. It is not known why the models failed to perform multi-class segmentations
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since this is not the line of research which has been the main focus of this project. Possibly,
the poor results might be due to the relatively small size of the multi-class models. The
mcURI-net for example is of a magnitude which is 15 times larger than the models which
attempt multi-class segmentation. Perhaps deeper architectures would fare better than the
ones examined for this project. Another significant factor is believed to be the loss function.
The performance gained from a transition from the standard cross-entropy function to our
dice score was very significant, so it is possible that a reformulation of the loss function
would make the multi-class models work as well. Another simpler explanation is that the
hyperparameters are simply tuned incorrectly for multi-class segmentation. For example, the
learning rate might be set to a value which has shown to be suitable for segmentations of a
single class, but ill fitted for work on many classes at once.

8.2 Atrous Convolutions

Contrary to the experiments with the U-net based models, those made with the dilated
convolutional neural networks have been very successful. The addition of the scheme of
dilation rates alone in the FDN-11 network decreased the out of sample error by 56.32%,
see a comparison between the mean dice score on the test set for DLN-11 and FDN-11 in
Table 7.1 where the only difference between the two networks is that DLN-11 lacks the
dilation scheme applied in the FDN networks. Evidently, the increased receptive field of the
deeper convolutional kernels that comes with an increased dilation rate is essential for the
model to understand the data and perform accurate segmentations. The main disadvantage
of the dilated networks is the heavy memory requirements. Since the spatial resolution is
maintained as the image is propagated through the network – which was the hole point
with the dilated kernel approach – it significantly increases the memory requirements. This
is a potential problem for data sets with images of a larger resolution or data of higher
dimensionality.

An observation of the training and validation scores indicate that the deeper the network,
the better the performance of the model. The overall best training score was with the
FDN-16be model which achieved an in sample error of 0.0062. Clevert et al. [7] found no
improvement with the introduction of batch normalization in their models when ELU was
applied, which also corresponds well to the results obtained in this work, see Table 7.1. While
FDN-16be achieved the highest global mean dice score in the training set, it was its sister
model, FDN-16e, which achieved the highest validation score and also outperformed the
FDN-16be network in the test set. Batch normalization is as already discussed a normalization
technique to prevent internal covariate drift within the models, and is an effective technique
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for decreasing training time while increasing the performance of the models. The exponential
linear unit however does already perform a sort of normalization, since it forces the mean
activation closer to zero. In other words, as is in line with the theoretical argumentation,
batch normalization has been found to be redundant or even detrimental to the out of sample
performance when the activation function used in the network is the exponential linear unit.
Furthermore, Clevert et al. [7] also argue that the ELU function can serve as a form of
regularizer and can in some cases remove the need entirely for dropout in convolutional
neural networks. These arguments also correspond well to our experiments, where FDN-
16e shows a higher validation score as well as a higher test score compared to the basic
FDN-16 model which employs the standard ReLU activation function. However, an internal
comparison within the different data sets for FDN-16e shows that FDN-16e still suffers from
a significant amount of overfitting and thus might benefit from the addition of dropout. Do
notice that no regularization techniques apart form the ELU function have been incorporated
in any of the dilated models.

Interestingly, it is FDN-13 – the second largest model which is also the model which has
been experimented with the least – that achieved the highest performance in the test set of
all the models constructed for this thesis, and is thus crowned as the best model of all the
trained networks. As already mentioned, we see a clear correlation between the depth and
size of the models and their performance, where deeper and larger models generally perform
better than their shallower counterparts. Compare the performances of the FDN-5, FDN-11,
FDN-13, and the FDN-16 networks on the different data sets in Table 7.1, where FDN-11e is
the only outlier with an exceptionally bad dice score in the test set. It is unknown what lead
to this poor generalizing capability, but some hypothetical reasons could be extremely bad
random initialization or that such a shallow network becomes too sensitive to variations in
the data when trained with the ELU activation function. While the performance increases
with the depth of the networks, it is important to remember that with an increased complexity
there is an increased risk of overfitting. This is also represented in the results in the family
of FDN-16 networks where FDN-16 and FDN-16e both achieved a higher dice score in the
training set and validation set than FDN-13, but appears to have been overfitting the training
data to the point where they performed worse than FDN-13 on the test data. See Figure 8.1
for an additional, more graphical, illustration of the performance of the different models on
the different data sets. It is believed that the addition of dropout in the heavier networks
might increase their out of sample performance, but by how much is not clear since it is
difficult to have a good intuition when it comes to the generalizing abilities of deep neural
networks [50].
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Fig. 8.1 This figure gives a graphical overview of the performances of the different models
on the three different data sets: training set, validation set and test set. The X-axis shows
the different produced models where the Y-axis shows the corresponding dice score. The
training set is illustrated as blue dots, the validation set as orange dots and the test set as
green dots. We see a clear trend in the the training and validation sets for the dilated networks
where the dice score increases with the depth. The test score however peaks at FDN-13 and
then decreases with the FDN-16 networks due to overfitting. For some models the training
set and validation set have almost identical values, see e.g. FDN-5, FDN-11e, FDN-16e and
FDN-16be.

8.3 Conclusion

When the dilated models are put against the U-net based architecture we have observed that
the dilated networks outperform the U-net models in almost every way. First of all, they
achieved a significantly better dice score on the out of sample data, where FDN-13 reduced
the test error by 50.67% as compared to the standard U-net and 59.57% relative the URI-net.
Secondly, they are significantly easier to implement. This is mostly due to the authors of
[3, 4] who added their dilated implementation in the open source library TensorFlow, which
has been used as the back end library for the duration of this thesis, but also due to the fact
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that the architectures are conceptually simpler. Thirdly, the dilated networks do generally
require less training time than the U-net models. The exception is the FDN-16 family of
networks which required a training time which was slightly longer than the U-net models.

Future work with the dilated networks include the addition of regularization, especially
in the more complex models such as FDN-16. While we have established that the depth
of the network is relevant for its performance, there is still a large number of established
architectures which remain untested in this problem domain. Chen et al. [3, 4] experiment
with different sampling techniques and introduce the Atrous Spatial Pyramid Pooling (ASPP)
where the image is processed through different channels with different dilation rates and found
that it had a positive impact on the model performance. Such an architecture would indeed be
interesting to study, as well as entirely novel architectures using a dilation scheme. Perhaps
it is possible to incorporate structures such as the inception module and the residual building
block in dilated networks as well. Perhaps an ensemble of networks with configurations of
the aforementioned components can be used to take the segmentation performance to new
heights. In addition to these experiments as well as tweaking other hyperparameters, the next
big step is to work on multi class segmentation. If one network would be able to properly
segment all 15 classes at once it would significantly decrease the time required for both
training and inference. Another line of research which has not been discussed in this thesis is
the addition of fully connected Conditional Random Fields (CRF) as post-processing tools
used on the output of the convolutional neural networks [3, 4]. This might a useful addition
to multi-class segmentations, where the CRF can help make the segmentation more exact
and remove noise.

All in all we can conclude that deep convolutional neural networks is good enough a
technique for use in medical image analysis, at least as a powerful segmentation tool. Some of
the networks achieved a negligible in-sample error and has thus been successfully trained to
act like a Morhpon segmentation-by-registration algorithm. We also see that some networks
perform really well in the out of sample data, such as FDN-13, which shows a remarkable
generalizing capability. Such a network might in fact be superior to the traditional image
registration technique used as ground truth, since the latter is incapable of performing exact
segmentation but instead provide a rougher estimation. Even if the DNNs is found to perform
worse than the morphon after qualitative evaluation of experts, it is likely that they would
outperform their predecessor given accurate labels constructed by human experts. The work
done in this thesis gives a strong foundation for further research for image segmentation with
convolutional neural networks on nuclear medical data .
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