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Popular summary

Since the discovery of x-rays they have allowed us to see inside objects without
the need to destroy, cut or damage them. This has been useful in many ways,
foremost in the field of medicine where you can take images of the skeleton or
other parts without the need of surgery. This works on the principle that x-rays
penetrate objects more easily than visible light and it can penetrate deeper in
skin for example. Denser objects are still harder to penetrate however, such as
bone, and this leaves a shadow as fewer x-rays penetrate it. This also limits
the technique in a way because it only allows you to see objects that are very
dense compared to the surroundings, a bone surrounded by tissue for example.
As such, it is not possible to see, say a tendon surrounded by tissue as they
absorb about equal amounts of x-rays. This is where the technique of phase-
contrast imaging comes in. It does not rely on how much x-rays the object
absorbs, instead it relies on the difference in refractive index. As an example,
say you have a piece of glass in water, both the glass and the water absorb about
the same amount of x-rays so the glass would be hard to distinguish. But the
refractive index of water compared to that of glass is quite different and taking
phase-contrast images you would clearly be able to see the difference. This
means that this technique has many useful applications but the problem is that
it requires the source of the x-rays to be incredibly small, a few micrometers,
and at the same time you need a lot of x-rays. This means that you either have
to go to a synchrotron, which is very expensive and not always available, or use
a microfocus x-ray tube that produces less x-rays.

In recent years a new type of particle accelerator has begun to catch the inter-
est of a lot of researchers, called laser wakefield acceleration (LWFA). This uses
a plasma to accelerate particles, usually electrons, over a very short distance.
As a comparison, the linear accelerator at the MAX IV Laboratory accelerates
electrons over 300 m, LWFA can reach the same energy over a distance of about
9 cm. The electrons emit x-rays when accelerated and this generates a very
small x-ray source and was determined during this thesis to be 2.5 micrometers,
which makes it suitable for phase-contrast imaging.

By rotating the object, taking images at different angles, one can reconstruct
the full object in 3D even though the images are only 2D. Combining this
with phase-contrast imaging makes it possible to create 3D images of small
objects with little absorption. These 3D models can then be analyzed, such
as cutting through different parts, rotating them, looking on the inside etc
and this is demonstrated using a small fly in this thesis. Developing LWFA
x-ray sources further could one day allow for phase-contrast imaging of for
example blood vessels or tendons at medical facilities with very short exposure
times compared to microfocus x-ray tubes. It would allow imaging of different
low absorbing samples that usually require a synchrotron at much smaller and
cheaper facilities.



Abstract

X-ray phase-contrast imaging is a powerful technique that allows great resolving
power for low absorbing samples such as biological tissue. This method relies
on measuring the phase shift induced by the sample instead of the absorption
traditional radiography relies on. This phase shift is measured as an intensity
modulation at the detector and by using various algorithms one can obtain
information about the sample. This technique can be combined with standard
tomography to get a full 3 dimensional reconstruction of the sample.

Phase-contrast imaging requires a large transversal coherence, requiring a
very small x-ray source size, limiting the choice of source to either microfocus
x-ray tubes or a synchrotron facility. Microfocus x-ray tubes have very small
source sizes but very limited flux, resulting in long exposure times while the
beam time at a synchrotron facility is very expensive and limited. Laser based
plasma acceleration could prove to be an alternative source for this purpose
and this thesis dwell on this possibility, the source size is very small and the
brilliance can be compared with that of a synchrotron. The generated x-ray
pulses are also very short, on the femtosecond scale, reducing the exposure time
needed for a well resolved image, resulting in faster data acquisition and holds
promise for time resolved imaging. During the work presented in this thesis
a source size measurement was conducted, showing a source size less than 2.5
microns, well suited for phase-contrast imaging. Experiments were carried out
using low-absorbing samples such as mylar wires and a few different biological
samples in the form of insects. The acquired phase-contrast images were used
to calculate the projected thickness and by doing a tomography scan a full 3D
reconstruction was created. In conclusion, this thesis shows laser based plasma
accelerators to be a good source for phase-contrast imaging in low absorbing
materials. Further, it proved to be able to resolve very small details, on the
order of tens of microns and could possibly be improved further.
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Chapter 1

Introduction

Conventional x-ray imaging relies on the absorption of x-rays. For low-absorbing
samples, that would be very small or thin samples for example, or a sample
surrounded by another material with roughly the same absorption, this yields
images of very low contrast. Phase-contrast imaging (PCI) gives a greater con-
trast in these cases as it relies on the phase change induced in the light field
by a sample. This turns in to an intensity modulation that i measurable and is
very sensitive to a change in refractive index, having the tendency to highlight
edges of different materials. From these phase-contrast images, the phase of
the light can be calculated and with this, the projected thickness. This can be
used to do tomography, as this requires projection images, to obtain information
on the sample in 3 dimensions. PCI requires a large coherence length [1], and
this corresponds to a small source size, less than 25µm. This technique thus
requires beam time at a synchrotron that is expensive and not always available,
or microfocus x-ray tubes with very limited flux, calling for extended exposure
times [1]. Another type of particle accelerator that generates an x-ray source
small enough to do PCI is a laser wakefield accelerator.

The interest in laser wakefield acceleration (LWFA) has increased in recent
years as the performance of lasers have improved and is currently a topic of
continues research. In these accelerators a high power laser beam is focused
onto a gas target where the strong electrical field in the laser creates a plasma.
The laser pulse then displaces electrons within this plasma, creating a ”bubble”
with no electrons. This results in very strong electric fields inside the plasma as
there are local charge distributions. These regions, or bubbles, will propagate
behind the laser close to the speed of light and inside them some electrons will
be accelerated. The advantages of LWFA over conventional particle accelerators
is the relative compactness of the system, consisting of a high powered laser, a
vacuum chamber and a gas cell. The strong accelerating gradients inside the
laser-generated plasma can reach up to 1 TV/m [2], compared to that of a
conventional radio frequency accelerator structures that is limited by electrical
breakdown at 100 MV/m. This reduces the acceleration distance significantly
and the current record stands at an energy of 4.2 GeV over a distance of 9
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Introduction

cm [3], compared to the linear accelerator at MAX IV, Lund, that reaches an
energy of 3.7 GeV over a distance of 300 m [4]. Both LWFA and synchrotrons
rely on the generation of x-rays from oscillating relativistic electrons, generating
high intensity and well-directed x-ray beams. In a synchrotron this is done in
insertion devices such as wigglers or undulators that consist of arrays of magnets
of alternating polarity. After the electrons have been accelerated they are forced
to oscillate due to these magnetic fields and thereby generate x-rays. In LWFA
the electrons also oscillate and these oscillation are due to the focusing force of
the plasma bubble, forcing any electrons of-axis to oscillate. As this is a natural
part of the process in LWFA there is no need for external magnetic fields. The
generated X-ray pulses from LWFA can have a brilliance comparable to third-
generation synchrotrons [5] and are very short, on the order of femtoseconds
[6].

The experimental setup to do propagation based phase-contrast imaging,
also known as in-line phase-contrast imaging is very appealing as it requires
no optical elements and is solely based on the free space propagation of the
x-rays, making the technique easily implemented. The study of using LWFA for
this purpose recently begun [1] - [7], and shows promising results. This thesis
strives to show the possibility to generate fully 3D rendered volumes of low
absorbing samples with µm resolution using a combination of phase-contrast
imaging and tomography with x-rays generated by LWFA. Tomography works
on the principle that, given projection images of a sample at different angles,
one can reconstruct cross-sectional planes of the same sample. To view such
a cross-sectional otherwise would mean cutting the sample in half, which may
not always be preferable. The projection images are taken over 180 degrees
using x-rays and as the absorption is connected to the material and geometry
of the sample, this gives information about the objects structure. Using phase
contrast imaging instead allow for imaging of low-absorbing samples and then,
by calculating the projected thickness, one obtains information of the samples
structure and this allows for a tomographic reconstruction.

To improve the contrast of the x-ray images, one would like to take the
average of several shots at each angle. Due to laser pointing fluctuations, i.e.
the focus of the laser moves slightly from shot-to-shot, the x-ray source will also
move. This in turn means that the x-ray image will move so when taking the
average the images will not be perfectly aligned. To do the full tomographic
scan also takes some time and during this period the laser focus will have time
to drift in a general direction. This will look like the object in the x-ray images
are being moved so the reconstruction might be incorrect. To correct for this,
one needs a way to align the images before taking the average and this can be
done by using a reference object that is stationary and in the same plane as the
sample. By aligning the images to this reference object they are also aligned
with respect to the sample, thus correcting for laser pointing fluctuations and
laser pointing drift.
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Introduction

The main goals of this thesis are:

• Measure the x-ray source size in the gas cell.

• Device a way to account for laser pointing fluctuations.

• Find a suitable phase retrieval algorithm and create phase-contrast images
of a suitable sample.

• Create a tomographic reconstruction from the phase-contrast imaging and
analyze the result.

• Create a 3D rendered image of the tomographic images.

3
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Chapter 2

Theory

In this chapter, most of the theory needed to perform the experiments and an-
alyze the results is presented. It gives a short introduction to laser wakefield
acceleration, giving an understanding of the process and some of the charac-
teristics of the generated x-rays. As diffraction is a big part of this thesis,
the necessary theory is presented here along with a derivation of the phase-
retrieval algorithm used. The theory of tomography is also included here, this
is not strictly necessary as this was performed using pre-made algorithms. One
should however have a basic understanding of the process and by applying this
knowledge one can come to better conclusions analyzing the results.

2.1 Laser Wakefield Acceleration

This section is intended to be a brief introduction to laser wakefield acceleration.
The PhD thesis ”Controlled trapping in laser wakefield accelerators” by Martin
Hansson [2] has been of great use in writing this section. This is not the main
focus of this thesis but it does however require some basic knowledge to be able
to understand some of the results.

When an atom is subjected to an external electric field the electrons bind-
ing potential undergoes a perturbation. A high electric field can decrease the
binding potential enough to let bound electrons tunnel through it, as visualized
in figure 2.1. If the electric field is very strong (as in the focus of a high power
laser) the potential barrier becomes very low, allowing for electrons with binding
energy above this threshold to escape its parent atom and if it is strong enough
it can fully ionize the atom.

A gas can thus be ionized in this manner, using a high power laser to lower
the binding potential and ionize the atoms, separating ions and electrons. This
results in a region that, in total, has the same charge as the atoms before the
ionization and is said to be quasi-neutral as there can be local charge distri-
butions that are not neutral, this state of matter is generally referred to as a
plasma.

5



Theory Laser Wakefield Acceleration

Figure 2.1: The Coulomb potential of the atom is shown in blue and is modified
by an external electric field and the resulting total potential is shown in red.
When this potential moves below the threshold, i.e the binding energy of the
electron the atom is ionized [2].

The propagation of light in a plasma is described by Maxwell’s equation for
a plane, monochromatic electromagnetic wave and can be written as

~k × ~E = ω ~B

i~k × ~B = µ0
~j − iωµ0ε0

. (2.1)

where ~k is the wave vector, ~E the electric field, ~B the magnetic flux density and
ω the angular frequency of the electromagnetic wave. µ0, ε0 are the permeability
and permittivity in vacuum, respectively. The current density, ~j, at low light
intensities is approximately

~j =
inee

2

ωme

~E (2.2)

where ne is the electron number density, e the elementary charge and me the
electron rest mass.

It can be shown that for a light wave to be able to propagate through a
plasma there exists a critical density

nc =
ω2meε0
e2

(2.3)

above which it can no longer propagate[2]. A plasma above this density is
therefor called an overdense plasma, and below it is called underdense.

In the ionized gas, i.e. the plasma, the ions can be considered stationary
during the relevant time-frame in relation to the electrons as they are much
heavier and move on a different timescale, making calculations and simulations
easier.

When an electron interacts with an electromagnetic wave it will be the sub-
ject to the Lorentz force, which is

me
∂~v

∂t
= −e( ~E + ~v × ~B) ≈ −e ~E (2.4)

6
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Figure 2.2: An image from a 3D particle-in-cell simulation of LWFA using the
code CALDER-Circ. The laser pulse is shown in red, propagating from left to
right, with the first plasma bubble trailing it. The gray-scale shows the electron
density and the blue line shows the longitudinal electric field across the line
y = 0 across the wakes. These wakes will move with almost the same speed as
the laser pulse and keep trailing it [2].

where ~v is the electron velocity. This will induce an oscillatory motion to the
electrons. This oscillation will not be completely symmetric as the amplitude of
the electric field varies over the electron path, therefore the momentum gained
in one direction will not be equal to that gained during the opposite direction
of the oscillation and the electron will tend to drift towards regions of lower
amplitude in the electric field. This is the background for what is called the
Ponderomotive force and it looks like a short, focused laser pulse ”pushes” the
electrons out to the sides of the beam path. Due to restoring forces however,
the electrons that have been pushed out will start accelerating back towards the
low density region. Here, they will overshoot and continue past the optical axis
and in towards a high density region again, and so it repeats. This oscillatory
motion in the plasma is referred to as a plasma wave.

When the intensity of the laser pulse is sufficiently high the ponderomotive
force will be strong enough to push out most of the electrons, leaving a void
behind it. This is usually referred to as a plasma bubble or blow-out regime[2]
and this creates strong gradients that can be used to accelerate electrons. Figure
2.2 shows an image from a 3D simulation, showing the electron density in grey
and the laser pulse in red.

For an electron to be accelerated it has to somehow be injected into the
plasma bubble as this is where the strong gradient exist. This can occur au-
tomatically if the plasma wave becomes too large in amplitude, the wave will
then break as it loses coherence. During this process some electrons may be
injected into the bubble and, if the wave does not break completely and retains
some wave-like structure without being deformed too much, the electrons can
accelerate. This process is referred to as self-trapping, but there are many other
methods to inject electrons into the plasma bubble, usually with better control
over the process. One example of this is to decrease the phase velocity of the
plasma wave, forcing it to break. This can be achieved with some gas density

7
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Figure 2.3: When non-relativistic particles undergo acceleration the shape of the
electromagnetic radiation becomes that of a donut (left). Relativistic particles
under acceleration radiate in the shape of a cone (right), directed perpendicular
to the acceleration with an opening angle of 2Ψ ≈ 2

γ . β is the ratio of the

particles speed in relation the the speed of light, β = v/c [8].

modulation along the propagation axis [2].
The plasma bubble also exerts a focusing force on the electrons and due to

the symmetry, an electron that sits on a central line in the bubble will remain
roughly at this position as the focusing forces are about equal. In most cases
however, the electrons are slightly of axis, forcing them to oscillate about the
central axis instead and like any charged particle they will emit radiation as
they undergo acceleration which is in many ways similar to a wiggler [6].

2.1.1 X-ray generation

When a charged particle is accelerated it emits radiation. The shape of the
electromagnetic radiation is that of a dipole at non-relativistic speeds and is
rotational symmetric, creating a 3-dimensional ”donut” shape as shown in figure
2.3. When the particle speed increases and approaches the speed of light, c, the
shape changes due to relativistic effects and becomes a narrow cone as shown
in figure 2.3 with an opening angle of 2/γ, where γ is the Lorentz factor [8].

This cone shaped radiation comes from the relativistic effect of time dilation.
Consider a particle moving at a speed v that emits light perpendicular to its
path. The emitted light will travel a distance c∆t0 during the time ∆t0, in
the frame of the particle. As the path of the electron and the emitted light is
perpendicular, no Lorentz contraction applies, so the perpendicular distance is
the same in the electrons frame of reference as in the laboratory frame. The total
light path in the laboratory frame is much longer however. As the speed of light
is the same in both frames of reference the time intervals must be different. The
light path length measured in the laboratory frame is thus, due to Pythagoras’
theorem [9]

(c∆t)2 = (c∆t0)2 + (v∆t)2. (2.5)

8
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Figure 2.4: A particle following the sinusoidal path will emit radiation (depicted
as blue cones) when it accelerates. As the largest acceleration is where the
oscillations amplitude is largest, most of the radiation will be directed forward.

This implies that the direction of the light and particle path will approach
each other as v approaches c. The angle between the emitted light and the path
of the electron is

Ψ ≈ sin Ψ =
∆t0
∆t

(2.6)

Solving for ∆t we have

∆t2 =
(c∆t0)2 + (v∆t)2

c2
= ∆t20 +

v2

c2
∆t2 (2.7)

∆t =
∆t0√
1− v2

c2

= γ∆t0 (2.8)

where γ is the Lorentz factor, also called the relativistic factor. Inserting this
again in equation 2.6, we have that the angle between the electron path and the
light radiated is

Ψ ≈ 1

γ
. (2.9)

This means that due to the oscillatory motion of the electrons inside the
plasma bubble, the radiated light is highly directed [6], this is illustrated in
figure 2.4.

Due to the small scale of the system the apparent source is also very small.
As the electrons oscillate they will produce a source size of a few micrometers
and the wavelength of the oscillations is about 100 µm. The electron bunch
is also very short and this results in very short pulse duration of the produced
x-rays. Its peak brightness has also been reported to be comparable to that of
third generation light sources, making the compactness of the system appealing
[6].

Further, it can be shown that the emitted spectrum is synchrotron-like and
is described by [6]

d2I

dωdΩ
' Nβ

3e2

2π3ε0c3
γ2z0ζ

2

1 + γ2z0θ
2

[
γ2z0θ

2

1 + γz0θ2
K2

1/3(ζ) +K2
2/3(ζ)

]
(2.10)
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Figure 2.5: Normalized energy spectrum for critical energies 1 (blue), 2 (orange)
and 3 (yellow) keV calculated by the use of equation 2.13

where

ζ =
E

2Ec
(1 + γ2z0θ

2)3/2 (2.11)

Ec =
3

2
~γ3z0ω2

βrβ/c. (2.12)

Here Ec is the critical energy of the spectrum, ωβ = 2π/
√

2γ, γz0 is the
initial relativistic factor and rβ describes the maximum amplitude of the electron
oscillation. This can be simplified if one only looks at the radiation close to the
optical axis, putting θ = 0 then gives

d2I

(dωdΩ)θ=0
∝ γ2z0ξ2K2

2/3(ξ/2). (2.13)

Here ξ = E/Ec, Kn is the modified Bessel function of order n, Nβ the number
of electron oscillations, θ the observation angle relative the propagation axis, z,
and γz0 is the initial Lorentz factor. Figure 2.5 shows the spectrum defined by
equation 2.13 for different critical energies. A higher critical energy means that
more high-energy photons are generated.

2.2 X-ray Propagation

This section is dedicated to the theory of diffraction. The method for source
size determination used in this thesis is based solely on diffraction, hence it is
an important topic in this thesis. There will also be a need to simulate some
phase-contrast images before deciding on experimental parameters. Thus the
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Figure 2.6: Showing the different vectors and distances used along with the 3
different coordinate systems (xs, ys), (x, y) and (xd, yd) for the source, aperture
and detector respectively. The perpendicular distance between these coorinate
systems are r1, r2 and r. ~n is the unit normal to the aperture coordinate system

theory of diffraction and x-ray propagation is needed. This theory is general and
applies to radiation of all wavelengths, but this thesis focuses on x-rays and as
such, any wavelengths used are assumed to be in this range. The most general
description is given by Kirchhoffs diffraction integrals which is presented in the
following sections. These can, under the correct assumptions, be simplified to
Fresnel diffraction which is explained later on.

2.2.1 Kirchhoff Diffraction

The solution to the wave equation at a point P can be formulated using Kirch-
hoff’s diffraction formula. For a monochromatic point source at P0 with a wave
field UP0 with amplitude a it states that the wave field at P is [10]

UP =
a

4π

∫
S

e−2πikr

r
· UP0

[
(
1

r
+ 2πik) cos(θrP )− (

1

rP0

+ 2πik) cos(θrP0
)
]
dS =

=
a

4π

∫
S

e−2πikr

r
· e
−2πikrP0

rP0

[
(
1

r
+ 2πik) cos(θrP )− (

1

rP0

+ 2πik) cos(θrP0
)
]
dS.

(2.14)

Here, θrP and θrP0
are the angles between the surface normal of the aperture

to the vectors ~r and ~rP0
with |~r| = r and | ~rP0

| = rP0
illustrated in figure 2.6.

k is the wavenumber k = 1/λ. The integration is done over the surface S of a
sphere originating at P with radius rP0

. Assuming that the distances are much

11
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larger than the wavelength (which is usually the case) we can omit the terms
1
rP0

, 1r and are left with

UP =
ai

2λ

∫
e−2πikr

r
· e
−2πkrP0

rP0

(
cos(θrP )− cos(θrP0

)
)

dS. (2.15)

This equation assumes propagation in free space and, without the presence
of an object to perturb the wavefield, no diffraction of interest will be present.

One can introduce a transmission function, q(x, y) that represents the effect
an object would have on the incident wave function. For example, an infinite
perfect slit (that only varies in x) would be represented by q(x) = |x| < w/2
being unity inside this interval and 0 outside, where w is the width of the slit.
Note that this transmission function is allowed to be complex, accounting for any
phase change introduced by the object due to a change in refractive index. This
transmission function would then be multiplied with equation 2.15, resulting in

UP =
ai

2λ

∫
e−2πikr

r
· e
−2πkrP0

rP0

(
cos(θrP )− cos(θrP0

)
)
q(x, y)dS. (2.16)

Here it is assumed that the direction of propagation is z. This is well known
and has been derived many times before, see for example ”Diffraction physics”
by J.M Cowley [10].

2.2.2 Fresnel Diffraction

If we assume that the distances r, rP0
are much greater than the size of the

aperture (the so-called small angle approximation) then, the aperture can be
considered orthogonal to the direction of propagation and the cosine terms be-
come approximately 1 and −1, resulting in

UP =
ai

λ

∫∫
e−2πik(r+rP0

)

r · rP0

· q(x, y)dxdy. (2.17)

If we assume that the aperture lies in the coordinate system of (x, y, z), the
source in (xs, ys, zs) and an arbitrary point after propagation is described by
(xd, yd, zd). We have that

r2P0
= r22 + (x− xd)2 + (y − yd)2 ≈ r2 +

(x− xd)2 + (y − yd)2

2r2

where r2 is the perpendicular distance between the aperture and the detector
plane. This is what is generally called the Fresnel approximation.

The wave at a distance r2 is then given by

UP =
ia

r2λ
e−2πikr2

∫∫
e
−2πi[(x−xd)

2+(y−yd)
2]

r2λ q(x, y)dxdy. (2.18)

This is known as Fresnel diffraction and was derived following ”Diffraction
physics” by J.M Cowley [10], a more in-depth derivation can be found there.

12
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An effect of the diffraction is that the intensity is strongly modulated at
edges, producing fringes, with the largest fringe closest to the edge. This is true
even if the object is transparent, as it is the superposition of the perturbed wave
and unperturbed wave that produces the intensity modulation. That means that
as long as there is a difference in refractive index, this effect will be present.
This is generally referred to as edge enhancement as this intensity modulation
is strong at the boundary of a change in refractive index, making edges more
visible [11]. Using this intensity modulation one can calculate backwards to
find the wave functions phase (phase retrieval) and thereby calculate the spatial
distribution of the refractive index in the object. The edge enhancement is in
itself useful however in the case that edges are of interest and can be combined
with absorption images for improved contrast.

2.2.3 Source Size Determination

The wave field a distance r from the source located at (xs, ys) that is disturbed
by an object located at (x, y) a distance r1 with a finite transmission function
can be written as [12], [13]

U(xd, yd) = U0(xd, yd)(1 + g(xd, yd)). (2.19)

where g(xd, yd) contains the terms that represents the disturbances imparted
by the object and U0(xd, yd) is the unperturbed wave field. This can be seen as
a superposition of the original wave field and the perturbed one.

Using equation 2.16, the equation for Kirchhoff diffraction and rewriting it
[12]

g(xd, yd) = − i

2λ
e
−i2πs
λ

∫∫
A

e
i2π(s1+s2)

λ · 1

s2s1

(
r2
s2

+
r1
s1

)
(2.20)

and by making the paraxial approximation again the integral can be rewritten
to [12], [13]

g(xd, yd) =

∫∫
M

iλr2
exp

(
iπ/λ

[
− (xd − xs)2

r1 + r2
− (yd − ys)2

r1 + r2

+
(x− xs)2

r1
+

(y − ys)2

r1
+

(x− xd)2

r2
+

(y − yd)2

r2

])
· q(x, y)dxdy

(2.21)

where M = r1+r2
r1

is the magnification. If we assume the point source to be
located at (xs, ys) = (0, 0) and introduce r = r1 + r2 we have

g(xd, yd) =

∫∫
M

iλr2
exp

(
iπ/λ

[
− x2d

r
− y2d

r

+
x2

r1
+
y2

r1
+

(x− xd)2

r2
+

(y − yd)2

r2

])
· q(x, y)dxdy.

(2.22)
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Assuming that the aperture only varies in x we can integrate over y.

∫ ∞
−∞

exp

(
iπ/λ

[
− y2d

r
+
y2

r1
+

(y − yd)2

r2

])
dy =√

λr1r2
ir
· exp

(
iπ

λ

[
y2d(

1

r2
+

1

r
)− 2yd

4r2( 1
r2

+ 1
r1

)

])
dx

(2.23)

If we stay on the optical axis and only look at the intensity at yd = 0 we can
ignore the extra phase term, we then have

g(xd) =

∫ √
r

iλr1r2
exp

(
iπ/λ

[
− x2d

r
+
x2

r1
+

(x− xd)2

r2

])
· q(x)dx. (2.24)

Rearranging this equation to

g(xd) =

∫ √
r

iλr1r2
exp

(
iπ

λr2

[
x2d
r1
r

+ x2
r

r1
− 2x · xd

])
· q(x)dx, (2.25)

then normalized intensity (with respect to E0(xd, yd)) becomes [13]

I = 1 + g + g∗ + |g|2 = 1 + |g|2 (2.26)

as g∗ = −g since <(g) = 0, and as we are only interested in the interference
pattern we can subtract the reference field and are left with |g|2, i.e

I(xd) =

∣∣∣∣√ r

iλr1r2

∫
exp

(−iπ
λr2

(2xxd −
r

r1
x2 − r1

r
x2d)
)
· q(x)dx

∣∣∣∣2. (2.27)

This same equation can be found in the article by I. N. Tilikin et al. [14]
and the following derivation is guided by this report. The simplest aperture
for a source size measurement is probably that of a wire as there is no issue of
alignment. A wire is very thin at the edges compared to its center and will be
more transparent here, this can be taken into account using Beer-Lamberts law
that describes the intensity after passing through a homogeneous object as

I = I0e
−µ·l (2.28)

where µ is the linear attenuation coefficient, I0 the incident intensity and l the
distance traveled through the material. For a wire, the propagation distance is
2
√
R2 − x2 which can easily be shown using Pythagoras theorem, where R is

the radius of the wire.
The attenuation coefficient is dependent on the wavelength of the radiation

so unless the beam is monochromatic this has to be taken into account. We
then have the intensity after a wire of radius R as
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Figure 2.7: A point source would give a very sharp shadow and due to an
extended source size, each point can be thought of as a point source, interfering
with the others, giving rise to a diffraction pattern. The linear approximation
of the slope k, shown in red, of the diffraction pattern is r1

d·r2 and thus depends
on the source size [14].

I = I0e
−µ(λ)·2

√
R2−x2

(2.29)

where µ is the linear attenuation coefficient of the material.

The x-ray detector’s quantum efficiency also needs to be taken into account.
The quantum efficiency tells how many of the photons of a certain energy that
hit the detector is actually detected. Therefore we multiply the intensity with
the quantum efficiency.

This wavelength dependency adds another dimension to the problem. By
taking into account both the quantum efficiency of the detector and the atten-
uation one can take the weighted average as

Ī(xd) =

∫
I(xd, λ)w(λ)Q(λ)dλ∫

w(λ)dλ
(2.30)

where w(λ) are the weights determined by the spectrum in 2.13 and Q(λ) is the
quantum efficiency. This takes into account the shape of the energy spectrum.

Equation 2.27 refers to a point source, but if the source is extended the
diffraction pattern will be smeared as each point in the source gives the same
pattern as the others, but it is shifted by xs

r2
r1

[14], where xs is the transverse
coordinate for the source, see figure 2.7. If we assume the source to have a
Gaussian distribution as
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B(xs) =
e
−x2s
2σ2

σ
√

2π
(2.31)

we have that, for a source size d (FWHM), the standard deviation of B(xs) is
σ = d

2
√
2 ln 2

.

This means that the intensity needs to be integrated over all the points in
the source, each shifted by xs

r2
r1

. Thus, we have [14]

Is(xd) =

∫
B(xs)Ī(xd + xs

r2
r1

)dxs (2.32)

and equation 2.32 will, for a given source size, give the corresponding diffraction
pattern from an object described by q(x). By simulating this for many different
source sizes and fitting the experimental data one can then determine the source
size with a simple measurement that only requires an aperture that varies in x,
such as a slit, edge or a wire.

2.3 Phase Contrast

The concept of phase-contrast imaging was realized for the first by Frits Zernike
in 1953. This was an important improvement to the techniques at the time
as it removed the necessity to use chemical agents in biological microscopy
and greatly enhancing the contrast, especially in biological samples which have
very little absorption. This, along with the development of the phase-contrast
microscope did, in the end, earn him a Nobel prize [15].

The basic idea of phase-contrast imaging is to use the information contained
in the phase of the light as it has interacted with an object. The refractive index,
n = 1 − δ + iβ, where δ represents the change in phase and β the absorption,
is the desired quantity. Conventional radiography uses the absorption which is
easily detected in the intensity, but for phase-contrast imaging the change in
phase the electromagnetic wave undergoes is not directly measurable. Instead
one measures the intensity modulation created by the phase change and from
this, the phase can be calculated. This process is generally referred to as phase
retrieval and once this is calculated, the objects projected thickness may also
be obtained.

When a tomographic reconstruction is desired one needs a connection be-
tween the detected intensity and the thickness of the sample. This is directly
given by an absorption image as the intensity decreases for thicker objects in
accordance with Beer-Lambert’s law. It is however less prominent when the
sample absorbs very little in comparison to the surrounding material. Phase-
contrast imaging on the other hand is more sensitive to a change in the refractive
index, as will be shown later, and can therefore give much better contrast for
these samples. This makes the technique very useful for thin samples as they
have very little absorption, and also biological samples as the difference in ab-
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sorption between an area of interest and its surroundings can be very small, for
example a tumor surrounded by healthy tissue.

To use phase-contrast images for tomography one needs to have a connection
between the detected intensity and the thickness of the sample and this is less
straightforward than in the case of absorption tomography. Unfortunately, the
technique developed by Zernike is not well suited for X-ray imaging as it relies
heavily on optics. There are however a number of other techniques developed
for this regime [16]. To mention a few of these, there are grating based (Tal-
bot interferometer), crystal interferometer, prism interferometer, analyzer-based
imaging, and propagation based imaging [17]. All of these methods, except one,
use some sort of optics, be it a grating or a crystal. Propagation based, also
known as in-line phase-contrast imaging, uses no optical elements and from an
experimental point of view this is by far the simplest technique. The drawback
of this method however is that it is harder to retrieve the phase from the inten-
sity images compared to other methods and the phase retrieval algorithms are
thus more complex [18].

2.3.1 In-line Phase Contrast

For the remainder of this thesis, the method focused on will be in-line phase
contrast, also known as propagation based phase contrast.

This method requires a way to obtain the phase, so called phase retrieval,
and there are several ways to do this. They are all similar in the sense that they
all give a relation between measured intensity and phase. The most obvious
and straight-forward way to do this is to take two intensity measurements. The
first measurement is taken with the detector very close to the sample. In this
region the detected intensity will mainly give information about the absorption
as the phase variations have not yet had time to develop enough to give rise to
an intensity modulation. Then, a second intensity measurement is taken with
the detector further away. This measurement will be dominated by the intensity
modulation due to the change in phase, and since the absorption is known from
the first measurement, this gives full knowledge of the phase. It is however
difficult and inconvenient to take two measurements under the same conditions
and if one makes some assumption of the sample this can be avoided [18].

In the work by A.Burvall et al. [18] an overview and comparison is given
between different phase retrieval methods that use only a single measurement.
Figure 2.1 gives an overview for different methods available and the difference
between them. Figure 2.8 shows a flow chart on how to choose a phase-retrieval
method based on the results gathered by A.Burvall et al [18]. Following this pro-
cedure for the experimental setup, see section 3.2, one comes to the conclusion
that either the Single material or the modified Bronnikov should be used for this
setup (see section 3). Both perform similarly [18] but the modified Bronnikov
is somewhat more cumbersome to implement as there exists a correction factor
α that is found using a semi-empirical approach, comparing simulations and
experiment [19]. The Single material algorithm is more straight forward and as
such, the choice comes down to the use of Paganinis Single Material algorithm.
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Method µ ≈ 0 µ ∝ δ a2

r2λ
>> 1 SVP Born Rytov

Bronnikov X X
Modified Bronnikov X X
Phase-att. duality X X X

Single material X X
Two materials X X

Fourier (Born)
a
b

X
X

X

Fourier (Rytov)
a
b

X
X

X

Table 2.1: A quick overview and comparison of different phase retrieval meth-
ods. Bronnikov assumes that the absorption in the sample is very low, phase-
attentuation duality assumes that the absorption µ and the decrement in re-
fractive index δ is known. The same is true for the Single material method. All
methods except Fourier methods assume the Fresnel number to be much larger
than 1. Two methods assume the slowly varying phase approximation (SVP),
i.e. phase-attenuation duality and Two materials. The Fourier methods come in
two flavors, one that uses the Born approximation and one that uses the Rytov
approximation [18].

2.3.2 Single material Phase Retrieval

As with many things, this starts at the simple statement that energy must be
conserved, which translates to the divergence of the Poynting vector, ~S, being
zero [20].

∇ · ~S(~r) = 0 (2.33)

In the case of a coherent wave this may be written as [20]

∇ · (I(~r)∇φ(~r)) = 0 (2.34)

where I is the intensity and φ the phase of the wave. By making the paraxial
approximation we arrive at [21]

∇⊥ · (I(~r⊥, z)∇⊥φ(~r⊥, z)) = −2π

λ

∂

∂z
I(~r⊥, z). (2.35)

where k = 2π/λ is the wave number, ∇⊥ and r⊥ is the gradient operator and
position vector in the plane of (x, y) and z denotes the optical axis. This was
shown by Teauge [1983], Rytov et al. [1989] and is called the Transport of
Intensity equation (TIE). This describes the change in intensity as a paraxial
monochromatic wave propagates. Note that due to the paraxial approximation,
we assume a point source and a magnification, M , close to 1.

The object of interest is assumed to be of a single known material and is
thus also assumed to follow Beer-Lambert’s law of absorption, equation 2.28,
with l = T (~r⊥) that corresponds to the projected thickness.
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Figure 2.8: This flowchart is based on the results in “Phase retrieval in x-ray
phase-contrast imaging suitable for tomography by A.Burvall et al. [18] and
allows for a quick way to choose your method of phase retrieval once you know
your sample and experimental setup.

Further, if the object is thin enough it follows that the phase of the wavefront
when it leaves the objects surface is proportional to the projected thickness
T (~r⊥) and the phase-change factor of the index of refraction δ [21].

φ(~r⊥, z = 0) = −2π

λ
δT (~r⊥) (2.36)

By substituting these two equations (2.28, 2.36) into the transport of inten-
sity equation, 2.35 we arrive at

δ∇⊥ · (Iine−µT (~r⊥)∇⊥T (~r⊥)) =
∂

∂z
Iine

−µT (~r⊥) (2.37)

where we have the relation

µ =
4π

λ
β = 2kβ.

By making use of

δ∇⊥ · (e−µT (~r⊥)∇⊥T (~r⊥)) = − δ
µ
∇2
⊥e
−µT (~r⊥)

it further simplifies to

− δ

µ
Iin∇2

⊥e
−µT (~r⊥) =

∂

∂z
I(~r⊥, z = 0). (2.38)

Approximating the right hand side of this equation using a finite difference,
i.e

∂

∂z
I(~r⊥, z = 0) ≈ I(~r⊥, z = r2)− Iine−µT (~r⊥)

r2
(2.39)

where r2 is the object-detector distance. We then have

− δ

µ
Iin∇2

⊥e
−µT (~r⊥) =

I(~r⊥, z = r2)− Iine−µT (~r⊥)

r2
. (2.40)
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Rearranging this to(
r2δ

µ
∇2
⊥ + 1

)
Iine

−µT (~r⊥) = I(~r⊥, z = r2) (2.41)

and rewriting equation 2.41 with the Fourier integrals

Iine
−µT (~r⊥) =

Iin
2π

∫∫
F(e−µT (~r⊥))ei

~k⊥·~r⊥d~k⊥

I(~r⊥, z = r2) =
1

2π

∫∫
F(I(~r⊥, z = r2))ei

~k⊥·~r⊥d~k⊥

we have

F(e−µT (~r⊥)) = µ
F(I(~r⊥, z = r2))/Iin

r2δ|~k⊥|2 + µ
. (2.42)

Here, ~k⊥ is the spatial frequency vector, ~k = (u, v), so that |~k⊥| = u2 + v2.
Taking the inverse Fourier transformation along with the natural logarithm we
finally end up with an expression for the projected thickness

T (~r⊥) = − 1

µ
ln

(
F−1

(
µ
F(I(~r⊥, z = r2))/Iin

r2δ|~k⊥|2 + µ

))
. (2.43)

This corresponds to the projected thickness observed when illuminated by
a point source. This was originally derived by Paganin [21] and the derivation
above follows the original very closely. Using equation 2.43 the projected thick-
ness of a sample can be calculated from the phase contrast images and these
can be used to do a tomographic reconstruction.

Looking at the denominator one may suspect that it will also act as a 1-st
order low-pass filter in the frequency domain in the form of

Iout/Iin =
1

|~k⊥|2α+ 1
(2.44)

where K would be the gain and α the inverse cut-of frequency, causing images
to be slightly blurred and loosing some if the finer details.

Since the source is not a point source however, one needs to take into account
the magnification M . Paganin et al. mentions one way of doing this [21] but
this thesis takes a different approach.

To fully calculate 2.43 one needs to first transfer the spatial coordinates into
spatial frequencies, ~k⊥. If the number of pixels for the detector is nx, ny and
size of each pixel is dx, dy. Then the number of pixels per unit length (u.l) is

Fsx = 1
dx

Fsy = 1
dy
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and the number of possible cycles per u.l is
dFx = Fsx

nx

dFy =
Fsy
ny

where dFx ·dFy is the inverse of the detector area. This means that the smallest
spatial frequency (that is detectable) has a wavelength that is as long as the
detector, (as a long wavelength corresponds to a low frequency). Note that
the wavelength in this case refers to a periodic intensity modulation on the
detector. This means that in the spatial frequency grid we want the size of each
grid point, i.e. dFx, dFy, to be of a size that allow us to detect as low frequencies
as possible. The highest spatial frequency on the other hand would correspond
to the shortest wavelength detectable. The smallest one would be a wavelength
that covers 2 pixels (otherwise one can not know that it has repeated itself).
This means that the highest spatial frequency one can detect is

Fsx
2

=
1

2dx

which one might recognize as Nyquist’s sampling theorem.
Thus, the spatial frequency grid would be

{Fsx2 , Fsx2 + dFx, ...,
Fsx
2 + (nx − 1) · dFx}

{Fsy2 ,
Fsy
2 + dFy, ...,

Fsy
2 + (ny − 1) · dFy}.

The spatial frequencies of interest are those in the object-plane however and
since some magnification is present, this is not the same at the detector-plane.
By dividing the pixel size by the magnification, M , this would correspond to
the spatial frequencies in the object plane, resulting in a spatial frequency grid
of

~kx = {−M ·Fsx2 , −M ·Fsx2 + dFx, ...,
M ·Fsx

2 + (nx − 1) · dFx}

~ky = {−M ·Fsy2 ,
−M ·Fsy

2 + dFy, ...,
M ·Fsy

2 + (ny − 1) · dFy}.

2.4 Tomography

The following section is dedicated to deriving the Radon transform along with its
inverse and is closely following the derivation in T.M.Buzug, ”Two-Dimensional
Fourier-Based Reconstruction Methods” [22]. The Radon transform creates a
series of projections over 180 degrees of an object and the inverse Radon trans-
form does the opposite. It reconstructs the object from a series of projection
images taken over 180 degrees. As the intention is to calculate the projected
thickness from the phase contrast images, the inverse radon transform can be
done on this set of images, taken over 180 degrees and reconstruct the object.
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Figure 2.9: An illustration of the 2D Radon transform, pγ(ξ). It relates the line
integrals parallel to the line L, which in turn is described by the angle γ defined
by the angle between ξ and x. The object is described by the function f(x, y).

2.4.1 Radon Transformation

Lets first define the projection integral as

p(s) =

∫ s

0

µ(η)dη. (2.45)

Here, µ is the linear attenuation coefficient, η is a line that all x-rays are
parallel to. Figure 2.9 shows how the coordinate system is set up. Parallel X-
rays are incident on the object f(x, y) along the line L, that is parallel to η. The
angle between the projection plane (ξ, η) and the object plane (x, y) is γ and
this can be changed by either rotating the source around the object or rotating
the object. The relation between the two coordinate systems is therefore

ξ = x · cos γ + y · sin γ = ~rT · ~nξ (2.46)

η = −x · sin γ + y · cos γ = ~rT · ~nη (2.47)

where ~nη, ~nξ are the unit vectors in (η, ξ), ~r = (x, y)T and (·)T denotes the
transpose.

Expressing µ, the linear attenuation coefficient in equation 2.45, we have

f(x, y) = µ(ξ(x, y), η(x, y) = µ((~rT · ~nξ), (~rT · ~nη)). (2.48)
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The projection integral only takes the projection along a single line, as there
are multiple x-rays the full projection is given by the convolution

f ∗ δ(~L) =

∫
R2

f(~r)δ(~r − ~L)d~r. (2.49)

Here the convolution is denoted by by ∗ and δ is the Dirac function. Sub-
stituting L for ξ and using the fact that ~r = x cos γ + y sin γ we have

f ∗ δ(~L) =

∫∫
f(x, y)δ(x cos γ + y sin γ − ξ)dxdy = pγ(ξ) (2.50)

where pγ(ξ) is called the Radon transform and projects a function onto ξ over
the angles γ. This transformation produces an image of sinusoidal patterns
and is therefore also referred to as a sinogram. Note that this only contains
information for a plane in (x, y,M) with z = M .

2.4.2 Inverse Radon Transformation

The Radon transform, equation 2.50, produces a set of projection images of an
object but in X-ray imaging it is usually the other way around. One already has
the projection images and wishes to know about the spatial distribution of the
attenuation values of an object. That means that the Inverse Radon Transform
is more interesting.

An important theorem makes the inverse Radon transform possible, the
Fourier slice theorem, also called Central slice theorem and can be stated as
”The Fourier transform of a parallel projection of an object f(x, y) obtained at
angle γ equals a line in a 2D Fourier transform of f(x, y) taken at the same
angle [23].

The Fourier transform of the projection data pγ(ξ) is

Pγ(q) =

∫ ∞
−∞

pγ(ξ)e−2πiqξdξ (2.51)

and the Fourier transform of the original function f(x, y) is

F (u, v) = F(f(x, y)). (2.52)

Here, a change of coordinates is needed as the projection data is in polar
coordinates and the goal is to find f(x, y). The Fourier transform does not
change the nature of the coordinate system and the change can be carried out.
Thus, changing from the frequency space of projections to the frequency space
of the object we have a change of coordinates as

u = q cos γ
v = q sin γ

. (2.53)

Thus, we have

F (u, v) = F (q cos γ, q sin γ) = F (q, γ) (2.54)
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Figure 2.10: The equidistantly spaced values of q in the polar configuration
(left), obtained from the projection data, needs to be interpolated as they only
coincide with the Cartesian u, v on the axis (right). The grid density also
changes, making interpolation errors more prominent at higher frequencies [22].

and thanks to the Fourier slice theorem we know that F (q, γ) = Pγ(q), therefore
we have

F (u, v) = Pγ(q) (2.55)

where we have

Pγ(q) =

∫ ∞
−∞

pγ(ξ)e−2πiqξdξ =

∫ ∞
−∞

(∫
µ(ξ, η)dη

)
e−2πiqξdξ. (2.56)

So if the sinograms/projection data is known, i.e pγ(ξ), one simply has to
take the 1-dimensional Fourier transform of this, then take the 2-dimensional
inverse Fourier transform to obtain f(x, y).

Despite the seemingly simple reconstruction formula there are other difficul-
ties. The projection data, the data that is measured, lies in a polar coordinate
system. One can think of it as a grid of concentric circles with increasing radii.
This polar coordinate system needs to be ”regridded” as the 2 dimensional
Fourier transform lies in a square grid of u, v and needs appropriate interpola-
tion. Figure 2.10 shows an illustration of this and the grid points only exactly
coincide on the cartesian axis u, v in the frequency plane. As the grid density
also changes, becoming sparser for higher frequencies, the interpolation error
increases here, making it very sensitive to noise and at the same time resolving
details in the image with lower accuracy.

There are several methods to deal with this problem, such as the linogram
method, but this will not be covered in this thesis, see for example ”computed
tomography” by T.T Buzug [22] for more details.

2.4.3 Filtered backprojection

Instead of the direct inversion method mentioned above, the method used in
most applications is the filtered backprojection.
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Starting with the inverse Fourier transform of F (u, v) we have

f(x, y) =

∫∫
F (u, v)e2πi(xu+yv)dudv. (2.57)

Expressing this in the polar coordinates of q, γ with the relation in equation
2.53 and with the Jacobian

J =
∂u
∂q

∂v
∂q

∂u
∂γ

∂v
∂γ

= q(cos2 γ + sin2 γ) = q (2.58)

we have

f(x, y) =

∫ 2π

0

∫ ∞
0

F (q cos γ, q sin γ)e2πiq(x cos γ,y sin γ)qdqdγ. (2.59)

This integral can be split in the γ variable as

f(x, y) =

∫ π

0

∫ ∞
0

F (q cos γ, q sin γ)e2πiq(x cos γ,y sin γ)qdqdγ

+

∫ 2π

π

∫ ∞
0

F (q cos γ, q sin γ)e2πiq(x cos γ,y sin γ)qdqdγ

(2.60)

and by changing the outer integration limits once again through the introduction
of the phase shift of π to

f(x, y) =

∫ π

0

∫ ∞
0

F (q cos γ, q sin γ)e2πiq(x cos γ,y sin γ)qdqdγ

+

∫ π

0

∫ ∞
0

F (q cos γ + π, q sin γ + π)e2πiq(x cos γ+π,y sin γ+π)qdqdγ.

(2.61)

Due to the symmetric properties of the Fourier transform we have the rela-
tions of the real and imaginary parts as

<(F (q, γ)) = <(F (−q, γ + π)) = <(F (−q, γ)) = <(F (q, γ + π))

=(F (q, γ)) = =(F (−q, γ + π)) = −=(F (−q, γ)) = −=(F (q, γ + π)).
(2.62)

Using this symmetry we can substitute the phase shift of π by changing signs
on q, nullifying the sign change in F (q, γ) by changing integration boundaries
to

f(x, y) =

∫ π

0

∫ ∞
0

F (q cos γ, q sin γ)e2πiq(x cos γ,y sin γ)qdqdγ

+

∫ π

0

∫ 0

−∞
F (q cos γ, q sin γ)e2πiq(x cos γ,y sin γ)qd(−q)dγ.

(2.63)
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(a) (b)

(c) (d)

Figure 2.11: Illustration of the difference between filtered (c) and unfiltered
(d) backprojection of a Shepp-Logan phantom (a). The sinogram used for re-
construction is also depicted in (b). The projections where simulated using
MATLAB’s standard functions for 179 angles with 1 degree increments on the
256× 256 image in a).

and rewriting this as a single term

f(x, y) =

∫ π

0

∫ ∞
−∞

F (q cos γ, q sin γ)e2πiq(x cos γ,y sin γ)|q|dqdγ (2.64)

and according to equation 2.55, together with the fact that ξ = x cos γ+y sin γ,
we have

f(x, y) =

∫ π

0

∫ ∞
−∞

Pγ(q)e2πiqξ|q|dqdγ =

∫ π

0

hγ(ξ)dγ (2.65)

where hγ(ξ) is the filtered projection, derived following [22]. Studying equation
2.65 reveals that it acts as a linear high-pass filter (ramp filter) for the pro-
jection data as it is weighted with q. Removing this factor, i.e |q|, one would
end up with pγ(ξ), the first form of the projection inversion derived. Equation
2.65 is the filtered backprojection and figure 2.11 shows the difference between
unfiltered and filtered backprojection. These images were simulated using MAT-
LAB and the built in Shepp-Logan phantom, which is a standard test image for
tomography, meant to simulate a human head with regions of interest.
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Chapter 3

Methodology

This section describes setup used for the source size measurement and the phase
contrast imaging, some components more important to the experiments are
explained more in detail. The general setup is the same in both cases and
very similar to a standard LWFA experiment, with the difference of an x-ray
CCD being present along with a sample holder. This section also describes the
implementation of the algorithms used for various calculations, such as source
size simulation, x-ray propagation simulation, projected thickness calculation,
tomographic reconstruction and image alignment.

3.1 Lund Multi-TW Laser

The Lund multi-TW laser system is based on the chirped pulse (CPA) tech-
nique and figure 3.1 shows a schematic view of the setup. The gain medium in
the system is titanium-doped sapphire and is pumped using frequency-doubled
Nd:YAG lasers to a wavelength of 532 nm. The oscillator is based on Kerr lens
mode-locking, resulting in an 80 MHz pulse train with a pulse duration of less
than 30 fs. A Pockels cell pulse-picker reduces the repetition rate to 10 Hz before
the first amplification stage. The multipass pre-amplifier increases the energy
from 5 nJ to a few µJ. A grating-based stretcher then chirpes the pulse with a
stretching ratio of 9 ps per nm bandwidth and the pulse duration is extended
to about 450 ps. The pulses are then switched into an optical resonator using
a Pockels cell, this is the regenerative amplifier. After 10-15 round trips in the
resonator the pulse energy increases to a few mJ and the pulse is switched out
again. The beam is expanded to a diameter of 8 mm and sent to a 5-pass am-
plifier where the energy increases to 400 mJ and pulses are temporally cleaned
by two separate Pockels cells. Here the beam is split into two parts going to
different experimental setups and the beam of interest is left with an energy of
150 mJ. The remainder is cleaned in a spatial filter, expanded to a diameter
of 16 mm and amplified again in a 6-pass amplifier. This amplifier is pumped
by 5 Nd:YAG lasers, resulting in a pulse energy of about 1.5-1.8 J. Finally, the
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Figure 3.1: A schematic representation of the laser system [2].

beam enters a compression stage after being expanded to 60-65 mm and the
result is a pulse duration down to 35 fs. The compression uses an acousto-optic
programmable dispersive filter to compensate for higher-order spectral phase
variations. From here on the beam propagates in vacuum to prevent filamenta-
tion and other nonlinear effects [2]. This system is evolving continuously, these
parameters may very well change over time and this refers to the general setup
used in the experiments done in this thesis.

3.2 Experimental Setup

Figure 3.2: Dispersed elec-
tron beam for 20 consecutive
shots recorded on a scintillat-
ing screen.

As mentioned in the introduction, one advan-
tage with in-line phase contrast compared to
other techniques, such as grating based phase
contrast, is that the setup is very simple. Figure
3.3 shows a schematic view of the experimental
setup used for the tomography scans and fig-
ure 3.4 shows a photograph of the setup. The
laser pulse enters a gas cell manufactured in alu-
minum where electrons are accelerated via wake-
field acceleration. They enter a dispersive bend-
ing magnet and are detected by a CCD behind
a scintillating screen while the x-ray beam con-
tinues toward the sample mounted in the sam-
ple holder. The figure is not according to scale
and the x-ray CCD is further from the sample
holder, at least 1.8 m. This setup or, very sim-
ilar setups were used for all experiments. The
main difference would be when measurements
of the source size was carried out, the tungsten
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Figure 3.3: A simplified schematic representation of the experimental setup
showing the most relevant components. The laser pulse enters the chamber
from the right and is focused at the entrance of the gas cell. In the gas cell
the electrons are accelerated and generate x-rays. The electrons and the x-rays
co-propagate until the bending magnet, where the electrons are dispersed onto a
scintillating screen. The x-rays continue to the sample, mounted in the sample
holder. The sample holder is attached to two motorized translation stages,
with a direction of motion perpendicular to each other. The x-rays are finally
detected by the CCD that is positioned 1.8 or 2.8 m from the sample.

wires were mounted on translation stages between the gas cell and the bend-
ing magnet instead. The vacuum chamber operates at a pressure of roughly
2.5 · 10−4 mbar.

The electron energy was continuously monitored during all experiments and
figure 3.2 shows the dispersed electron beam for 20 consecutive shots. The
electron beam is dispersed by a bending magnet onto a scintillating screen, this
means that higher energy electrons are bent less, corresponding to the left side
of figure 3.2 while lower energy electrons correspond the right side. The exact
electron energy values are not presented as this requires some calibration which
was not done.

Gas Target

The gas cell is made of aluminum with a drilled hole, creating a cylindrical
cavity with a length of 6 mm. Before each experiment this hole is covered with
some aluminum tape, a few hundreds of micrometer thick in total. Instead of
having a pre-made hole in the foil for the laser pulse to pass through, a new hole
is drilled using the laser at low energies in each experiment. This ensures that
the laser is aligned to the hole and the size of the hole is the appropriate size to
get the best gas density gradient. At the back of the gas cell a thin copper plate
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Figure 3.4: A photograph of the experimental setup.

is also added to the aluminum tape to prevent the drilled hole from growing too
large. The focus of the laser is set at the cells entrance so the beam size is quite
large at the gas cell exit and if it would drill a hole at that size it would degrade
the gas pressure, the copper plate prevents this. The gas used is a mixture of
helium and nitrogen, with a ratio of 1 % nitrogen at a pressure of roughly 0.3
bar, corresponding to an electron density of about 1.4 ·1019 cm-3, and is fed into
the cell from below.

X-Ray CCD

The x-ray detector used is an Andor iKon-L SO 936, a deep-depletion, back-
illuminated CCD (BR-DD sensor) and 4-stage peltier cooling. Table 3.1 shows a
specifications summary of the CCD and figure 3.5 shows the quantum efficiency
curves. Both table 3.1 and 3.5 are taken from the specification sheet from Andor,
available at their webpage.

The CCD is protected by a 250 µm thick beryllium window and another
such window is attached to the vacuum chamber where the x-rays exit. The
CCD is not mounted on the chamber so there is a small section between the
chamber and the CCD where the X-rays have to propagate in air (59 mm). The
chip is cooled to -600C and is kept in vacuum. The transmission for a 500 µm
thick beryllium window and 59 mm of air is shown in figure 3.6 and these values
are included in all simulations.
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Figure 3.5: Quantum efficiency curve for the Andor iKon-L SO 936 in the energy
range 10− 5 · 104 eV generated from data provided by Andor.

Active pixels 2048 × 2048
Sensor size 27.6 × 27.6 mm

Pixel size (W × H) 13.5 × 13.5 µm
Active area pixel well depth 100,000 e−

Maximum readout rate 5MHz
Read noise 2.9 e−

Maximum cooling -100 oC
Frame rate 0.95 fps

Table 3.1: Specifications summary for Andor iKon-L SO 936, the x-ray CCD
found in Andor’s user manual.

3.3 Source Size Determination

To determine the source size, a grid of tungsten wires were placed in a manu-
factured mount in the form of a aluminum plate with a rectangular slit. This
was to make sure there were more wires available during the experimental run
if one would be miss-aligned, destroyed, damaged or badly manufactured.

The mount was then mounted on two translation stages to allow for align-
ment in the horizontal and vertical plane. It was positioned 1.6 cm from the
source and 1.8 m from the detector, resulting in a magnification of M = 181.
The idea was to place the wire as close to the source as possible without breaking
it as this would increase the effect of the source size. This was also the reason as
to why the choice of material was tungsten as it has a very high melting point.

Two different types of wires were used, both tungsten, but one with a diam-
eter of 25 µm and one of 50 µm.
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Figure 3.6: The transmission of 500 µm Beryllium (orange) and 59 mm of air
(blue) calculated at ”x-ray interactions with matter” [24].

3.3.1 Simulation

In order to determine the source size, a simulation is needed of the expected
diffraction pattern for different source sizes. The experimental data is then
fitted to this simulation, determining the size of the source.

The equation used to calculate the intensity in the detector plane when
illuminating a wire is equation 2.32 [14]. A 3-dimensional grid is created to
hold the coordinate systems of the detector xd, the object x and the source xs.

The X-ray spectrum is calculated from equation 2.13 for a critical energy of
3 keV and sampled to obtain the relevant wavelengths, the calculation of 2.32
is then looped over two variables. The outer loop are for different source sizes
and the inner loop are for different wavelengths.

The quantum efficiency is given by tabulated values from figure 3.5 and
the calculated intensity is multiplied by these values for each corresponding
wavelength. The same procedure follows for the transmission of x-rays through
beryllium and air, with values calculated from ”x-ray interactions with matter”
[24]. This is done for each wavelength and the result is, after integrating two
variables, a vector for each wavelength that is concatenated to form a matrix.
This matrix then has the intensity as a function of xd in one dimension and
wavelengths in the other. This dimension is multiplied by the weights from
the normalized wavelength spectrum and then integrated with respect to the
wavelengths. The final result is thus a weighted average of the intensity over
the detectors coordinate system xd.

As the integration has to be done over three variable, x, xs and the wave-
length, λ, it was done numerically using MATLAB’s built-in trapz function that
approximates the integral using the trapezoidal method. This method divides
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the area into trapezoids, computes these area and sums the result. For N + 1
equidistant grid points the approximation is [25]∫ b

a

f(x)dx ≈ b− a
2N

N∑
n=1

(f(xn) + f(xn+1)). (3.1)

This is the most accurate second-ordered method and it usually performs
very well, with fast convergence when the solution is periodic as the error tends
to cancel out [26].

Figure 3.7 and 3.8 show a test simulation for a wire thicknesses of 10 µm and
50 µm. The source-object distances are 1 cm and 1 mm respectively, object-
detector distances are 3 m and 0.5m respectively, and it is simulated for source
sizes ranging from 1 to 2.2 µm in steps of 0.4 µm. The transmission function
is also shown, mainly to illustrate that a wire will transmit more at its edges
and the transmission function becoming more parabolic in nature, especially
if the wire is thinner. For a 50 µm thick tungsten wire with x-rays ranging
from 1 keV to 10 keV the transmission is not significant, but there is a small
effect, as can be seen from the transmission function in the left graph of figure
3.8. The computational domain only includes half the wire to save time and
space as the other half will be symmetric. Another reason for this is that the
trapezoidal method does not converge is there’s too few grid points (or rather,
the spacing between them is too large) and by taking advantage of this symmetry
the computation becomes more stable. Having the wire very close to the source
increases the effect of the source size, separating the different lines more, making
for an easier fit with experimental data. This is not feasible, as the source is
inside the gas cell where there is no room for a wire. The effect is demonstrated
when comparing figure 3.7 and 3.8. As a conclusion, placing the wire as close
as possible to the source without destroying it would yield the best source size
resolution, which based on these simulations, is expected to be on the order of
1 µm.
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Figure 3.7: Simulation for a 10 µm thick tungsten wire with a source-object
distance of r1 = 0.001 m and object-detector distance r2 = 0.5 m. Top left
shows the transmission function of the wire for different wavelengths. Note that
this only shows half the wire, due to the symmetry only this side is calculated.
Top right shows the result from the weighted integration with respect to the
spectrum for different source sizes. Bottom left shows the unweighted average
and the bottom right shows a few of the wavelengths (numbers in nm) for the
different source sizes (indicated by differently dashed lines) before weighting or
averaging.

3.4 Propagation and Phase-contrast Simulation

A script was written to simulate the propagation of x-rays, with the purpose to
find the best experimental parameters to resolve objects of different sizes.

An object is defined by its transmission function q(x, y) [27]. In this simu-
lation there are two objects, a cylinder and a sphere defined by the thicknesses

tsphere = 2<(
√
r21 − (x− x1)2 − (y − y1)2)

tcyl = 2<(
√
r22 − (x− x2)2)

(3.2)

with radius r1, r2 and a position of (x1, y1), (x2, y2) relative the origin.
Using the thickness in the expression of the transmission function, we have

q(x, y) = e−k(tsphere(x,y)+tcyl(x,y))(β+iδ). (3.3)

Calculating the Fresnel diffraction using equation 2.18, that equation can be
rewritten in the form of a convolution and Fourier transforming this results in
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Figure 3.8: Simulation for a 50 µm thick tungsten wire with a source-object
distance of r1 = 0.01 m and object-detector distance r2 = 3 m. Left figure
shows the transmission function, for a 50 µm thick wire it is significantly less,
compared to a 10 µm wire but zooming in shows that is should still be taken
into consideration. This simulation is close to the actual setup except that the
detector is positioned at r2 = 1.8. The lines for different source sizes are very
close and it might be hard to fit experimental data to sub-micrometer accuracy
but an accuracy of about 1 µ is reasonable to expect.

a multiplication [27]. This is to make use of the Fast Fourier Transform (FFT)
and the equation used is then

U = F−1
(
F
(
U0q(x, y)

)
F
(

1

izλ
e

1k
2z (x

2+y2)

))
(3.4)

where U0 is the constant, unperturbed wave field.

After this, some speckle noise is added to the image and it is blurred with
a Gaussian filter. The noise is calculated as I = I0(1 + n) where I0 is the
clean image and n is a uniformly distributed random variable, see MATLAB’s
reference page for more information. The blurring is to simulate the blurring
due to the extended source size and to an extent, the point spread function
of the CCD [27]. The point spread function generally describes the response
on an optical system to a point object or point source. In this case there are
no optics but a photon incident on the detector might give an output signal
that spreads out over several pixels, which is referred to as the point spread
function here [27]. This has not been measured however and a blurring radius
was chosen to simulate only the source size and a small additional blurring. The
size was decided so that the radius of the Gaussian filter is on the order of d r2r1 ,
as mentioned in section 3.4 to simulate the blurring from the source size, then
increasing it slightly to 1.1d r2r1 .

The image is also scaled a factor M to take into account the magnification
and as the detector also has a finite area, the image is cropped if it is too large
to fit on the detector.

35



Methodology Propagation and Phase-contrast Simulation

Figure 3.9: Figure showing the results of simulating Fresnel diffraction and
calculating the projected thickness. It shows the clean image, i.e. just the
intensity at z = r2, the fringes are very closely spaced and barely distinguishable,
adding noise and blurring makes it clearer and the edge enhancement effect
is noticeable. The re-sampled image is scaled by a factor M = 20 due to
the magnification and re-sampled to the pixel size of the detector, simulating
a detected phase-contrast image. The bottom left image shows the defined
thickness of the simulated object and the bottom right shows the calculated
projected thickness using the single material phase-retrieval algorithm on the
re-sampled image. Values are in mm.
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Figure 3.10: Decreasing the magnification to M = 3.5 results in the objects
taking up a lesser area of the detector, making the re-sampling more prominent,
therefore also degrading the results of the projected thickness. Values are in
mm.
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Figure 3.11: Removing the
noise and blurring improves the
result from the single material
phase-retrieval algorithm as the
projected thickness (bottom) is
closer to that of the true thick-
ness (top). Values are in meters.

The detectors pixel size is also finite and
thus the whole image needs to be re-sampled
to the pixel size of the detector, taking the
simulation pixels that fit in one pixel of the
detector and averaging these.

The polychromaticity of the source is also
simulated, integrating the image over the X-
ray spectrum with wavelength dependant in-
dex of refraction.

The setup also has two beryllium windows
the x-rays need to pass through, the transmis-
sions of these (figure 3.6) are also taken into
account and the x-rays also propagate a small
distance in air which is taken into account in
the same way. These transmissions were cal-
culated at ”x-ray interactions with matter”
[24] and interpolated to fit the desired spec-
trum.

The algorithm described in section 2.6.2-
2.6.3, Paganins algorithm for single material
phase-retrieval, can be used to calculate the
projected thickness of the experimental x-ray
images as well as the simulated ones.

Figure 3.9 shows the acquired images from
the simulation for a sphere and a cylinder of
mylar of radius 100 and 200 µm, respectively.
The objects are at a distance of r1 = 0.1 m
from the source, that has a size of 3.5 µm.
The detector is 2 m from the object and the
magnification is thus M = 21. The simulation grid points have a size of 0.4 µm
and the simulation grid has 9 ·106 grid points in a square. These grid points are
then averaged into larger grid points corresponding to the cameras pixel size,
which is referred to as ”re-sampling” here.

The image titled ”clean” shows the Fresnel diffraction at z = r2, the images
titled ”noise” and ”blurred+noise” shows the effect of adding noise and blurring
the image. Since the simulation pixels are smaller than the detectors pixels the
re-sampled image have lower resolution. At this distance the re-sampling does
not make a big difference as the objects cover a big area on the detector and
remains well resolved. The image titled ”thickness” shows the objects thickness,
i.e equation 3.2. The bottom right image, titled ”projected thickness” shows the
results of calculating the projected thickness using the single material algorithm
2.43 on the re-sampled image. The projected thickness is changed as the image is
subjected to noise and blurring, along with the loss of resolution of re-sampling.
Running the same simulation again but without noise, blurring and re-sampling
results in figure 3.11 which shows a much better result for the projected thickness
as it looks very similar to the true thickness.
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Decreasing the magnification to M = 3.5 and adjusting the position of the
objects to fit the screen while keeping their sizes results in figure 3.10. It is
obvious that the re-sampling has a bigger impact here as the objects are less
magnified and cover a much smaller amount of pixels and the results in a poor
projected thickness image.

The purpose of these simulations were to find a good distance between the
source, sample and detector. It is obvious that one wants to make use of as
many pixels as possible, but other things have to be taken into consideration
as well. The wave needs to propagate far enough for the phase to develop into
detectable intensity modulation, but the camera can’t be too far away as this
significantly reduces the flux. Having the sample close to the source results in
better magnification but it also blur the image more due to the source size.
Further, the point spread function also has an impact on the optimal distance.
In the end, the distances with the best magnification and easiest setup was used
as this seemed to have the biggest impact in the simulations.

3.5 Phase Contrast

The rotational stage was calibrated to move in 1 degree increments and mounted
behind the bending magnet, 30 cm from the source. The CCD was positioned
at two different distances, either 2.8 or 1.8 m from the source.

The samples were mounted on a dosing needle attached to the rotational
stage. This was then aligned to have an axis of rotation as central as possible
with respect to the beam using an alignment laser and by looking at the shadow
on the CCD.

Having the CCD further away increases the magnification and the objects
cover a larger area of the detector, improving the resolution. There is a trade-of
however, as the flux decreases due to the divergence of the X-ray beam. To
improve the contrast of the images, they had to be averaged, so several images
were taken at each angle, and when the CCD is further away more images had
to be averaged.

The samples used were a fishing line, 100 µm in diameter, an unspecified fly
that was found in the authors kitchen lamp (shown in figure 3.12), a bee head
kindly donated by Elisa Rigosi from the Biology Department at Lund University
and another smaller fly.

3.5.1 Numerical Implementation

The implementation of the phase-retrieval algorithm, i.e equation 2.43, was done
in MATLAB.

First, the raw images need to be treated. The image, I, is calculated as

I =
I0 − Id
If − Id

(3.5)
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where Id is a dark image, i.e an image with nothing but the background noise.
If is the so-called flat image, an image with X-rays but no object and I0 is
the raw x-ray image, i.e the phase-contrast image. As the X-ray beam have an
inhomogeneous intensity distribution there will be a gradient over the image
and this will be accounted for when dividing by the flat field.

Figure 3.12: Photograph of one
of the samples used, a fly found
in a kitchen lamp. As the
magnification for the setup was
slightly too large only the neck,
head and part of the upper body
were imaged.

Equation 2.43 assumes a monochromatic
source and one has to average over the wave-
lengths in the X-ray spectrum, if it is a poly-
chromatic source [1]. The spectrum was as-
sumed to have a critical energy of 3 keV,
calculated using equation 2.13. Using calcu-
lated values for the refractive index [24] and
interpolating these into wavelengths that fit
the chosen spectrum one can find the aver-
age refractive index of the sample. In the
case of insects the material was assumed to
be chitin, C8H13NO5, a polymer very com-
mon in nature that is a main component in
exoskeletons. The exact composition of the
fishing line was not known but is assumed
to be mainly mylar, C10H8O4, a widely used
polyester.

The quantum efficiency of the detector is
also taken into account in the same manner,
interpolating to find values that fit the desired spectrum and multiplying the
intensity to get the detected intensity.

As there are quite a few images this is done in a looping script that reads
images with numbered file names, processes them and calculates the projected
thickness and writes them as gray scale images with the correct numbering.

3.6 Alignment

The process of averaging the images is not a simple matter of just adding them
together. As there is some laser pointing fluctuations, i.e the focus of the laser
jumps around a bit inside the gas cell from shot-to-shot, the X-ray source will
also move from shot to shot. As the source moves, the image on the detector
will move, thus, resulting in unaligned images.

The solution to this was to introduce a reference object that is stationary
and in the same plane as the object. Here, a tungsten wire was used as it creates
a sharp shadow and is easier to align and whenever the sample moves due to
the laser pointing fluctuation the reference point will move by the same amount.
Thus by aligning by the reference point it will also be aligned with respect to
the object.

A script was written to align these images. Doing this automatically was
problematic due to the noise and to improve this, the images are first filtered
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Figure 3.13: The sum of all cropped images before (a1, b1) and after alignment
(a2,b2) after using an edge-detection algorithm. The reference objects was a
straight 50 µm tungsten wire (a) and an ”L-shaped” tungsten wire (b) of the
same thickness. The latter geometry was used as the alignment script performs
better with a reference object that has the same ”amount” of edge in both the
vertical and horizontal plane.

using a Gaussian filter. The image are then cropped to show only the reference
object. Then an edge detection algorithm was used, this was a built in function
in MATLAB that uses the Sobels method that finds edges using the Sobel
approximation to the derivative, see MATLABs reference page for more details
on the edge function.

Choosing one image to be fixed, all other images are aligned to this one.
This was usually just a shot with high flux so the shadow was as sharp as
possible. After the image is cropped, filtered and only the edge is visible, the
normalized cross-correlation between the reference image and the current image
is calculated. Finding the maximum in this matrix and subtracting the size of
the image gives the translation difference in pixels. The uncropped image is
then translated by the same amount of pixels and averaged. Figure 3.13 shows
a typical result of this process, showing the sum of all images that are aligned,
and the sum of the unaligned images.

As it takes a few hours to take all the shots, the pointing of the laser has
time to drift quite a bit. This can be seen in figure 3.13 as well but this effect
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(a) (b)

Figure 3.14: Comparison between the unsymmetrical image (a) and the sym-
metrical (b) after centering it. Image (a) was created by summing an image
taken at 0 degrees and 180 degrees of a fly. A dashed line in the centre is used
to manually align the centre of the image by cropping it, resulting in image
(b). The choice of colorscale is just to aid in this process and is of no other
importance in this context.

is corrected by the same procedure so it did not pose an additional problem.

A problem was discovered when using a reference object that has more edge
along one direction than another. The script tended to weight the fitting and
preferred to fit in one direction instead of both. One solution was to crop
the image more to reduce the amount of edge in one direction but this leaves
fewer pixels to fit against. The result was that the script was not flawless and
some images had to be realigned afterwards. This could probably be solved by
weighting the cross-correlation matrix but instead a different reference object
was used, a tungsten wire bent in an ”L” shape that worked better, this is shown
in figure 3.13. With this reference object no manual alignment was required and
all images were directly aligned by the automated script.

3.7 Tomography

The tomography was done using the images showing the projected thickness,
calculated using 2.43, taken at different angles. The method used was a parallel
beam geometry, i.e. the process described in section 2.6.3 with a ramp-filter.
The process is also called filtered backprojection as mentioned before, as it
includes a linear high-pass filter.
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Figure 3.15: A sinogram of a fly, 36 pixels down from the top over 180 angles
with 1 degree increment. The intensity from shot to shot varies and this is very
visible here as there are multiple vertical streaks. The choice of name also makes
itself obvious as there is a clear sinusoidal pattern in the image.

3.7.1 Numerical Implementation

The tomography was done by an automated script that reads the calculated
projected thickness images in numerical order, sorted by the angle of the object.
Using a 1 degree increment, this results in 180 images but the last image is not
necessary as it is the same image as the first one but flipped vertically. These
images were instead used to determine the center of rotation however. Adding
the first and last image together to find the centre of symmetry in the combined
image also gives the centre of rotation. All images are then cropped to have
this dimension and a centralized rotation with respect to the image. Figure 3.14
shows the result of this process for a fly sample.

The next step is to create the sinograms, i.e pγ(ξ) and this can be done
by simply stacking all the images, that would be a matrix with the dimensions
Nx×Ny ×Nangles, where Nx, Ny are the image size and Nangles the number of
angles. Reshaping this matrix to a Nx×Nangles×Ny, this can be thought of as
a stack of Ny images with dimensions Nx×Nangles and these are the sinograms.
Figure 3.15 shows a typical sinogram obtained by this method. The vertical lines
across the image originate from the shot-to-shot intensity variations. During this
experiment 5 shots were taken at each angle (corresponding to the x-axis in the
image) and despite averaging they are still very visible.

Once all the sinograms have been calculated and are readily available the re-
construction can begin. This is done using MATLAB’s built in function ”iradon”
that calculates the inverse radon transform with a Ram-Lak filter. This is the
same as equation 2.65 and acts as a high pass ramp-filter. It takes as input a
matrix where the columns are the parallel beam projection data and the rows
correspond to the angles of which the projection was taken, i.e the sinograms.
One also needs to specify the angle increment and this is taken as a second
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input. This calculates f(x, y) or µ(x, y), i.e the distribution of the linear atten-
uation in a cross-section of the sample and as such this needs to be done for all
sinograms to get the full reconstruction. This results in Ny images which are
saved into a TIF stack for convenience.
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Chapter 4

Results

This section shows the results gathered during experiments and calculations. It
contains the calculated projected thickness images, phase-contrast images, the
result of the source size measurement, calculated tomography images and 3D
rendering of the samples.

4.1 Source Size Determination

Figures 4.1 and 4.2 shows the results of the code to determine the source size,
discussed in section 3.1.1 together with the experimental data. Two tungsten
wires were used, one with a diameter of 25 µm and one with 50 µm. The data
was averaged in the direction of the wire to increase the signal to noise ratio after
subtracting the flat field. The data was also smoothed using locally weighted
scatterplot smoothing (LOWESS) to allow for easier fitting, see MATLABs
reference page for more information on this method. A first fit is made by
minimizing the RMS value and positioning the experimental data at that curve’s
midpoint. After the initial guess, manual fitting is allowed by a small slider in
the graphics window that allow translation of the experimental data. These
results suggest a vertical source size of 2.5 µm and a horizontal source size of
3.5 - 3.7 µm. This method is accurate to within 20 % [14], resulting in a final
vertical size of approximately 3.6±0.72 µm and a horizontal size of 2.5±0.5 µm.
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Figure 4.1: Result of fitting the experimental data (dotted line) to the simulated
data for source sizes ranging from 0.5 to 10 µm. The experimental data was
taken using a 25 µm (a) and a 50 µm (b) thick tungsten wire mounted in the
horizontal direction, giving a measurement of the vertical source size with a best
fit for a source size of about 2.5 µm. In (a) source sizes above 8 µm were not
simulated
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Figure 4.2: Result of fitting the experimental data (dotted line) to the simulated
data for source sizes ranging from 0.5 to 10 µm. The experimental data was
taken using a 25 µm (a) and a 50 µm (b) thick tungsten wire mounted in the
vertical direction, giving a measurement of the horizontal source size with a best
fit for a source size of about 3.4 µm. In (a) source sizes above 8 µm were not
simulated
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(a) (b)

Figure 4.3: The raw phase-contrast image of a knotted, 100 µm fishing line (a),
mounted to a dosing needle. Calculating the projected thickness using equation
2.43 resulted in (b). The fishing line was assumed to be made of mylar.

4.2 Phase Contrast

Figure 4.3 shows the raw phase-contrast image of a knotted fishing line with a
thickness of 100 µm along with the calculated projected thickness image using
equation 2.43. These images were not aligned before being averaged as there
was no reference object present and, to increase the signal-to-noise ratio, 5 shots
were taken at each rotation. The result is still relatively good, but the effect will
not be noticeable as there’s a lack of finer detail in this sample. Figure 4.4 shows
the raw phase-contrast and projected thickness image of a 100 µm thick fishing
line with a double knot. These images were averaged over 10 shots to offset the
reduction in flux as the CCD was moved back to increase the magnification. The
laser pointing fluctuation and the laser drift were not corrected in these images
either. Looking at figure 4.4 a) there is a clear effect of edge enhancement that
comes from the abrupt change in refractive index as discussed in section 2.3.

Figure 4.5 shows the result of the calculated projected thickness algorithm for
the fly specimen compared to the raw phase-contrast image used to calculate the
projected thickness. This image has been aligned and averaged over 5 images.
The material was assumed to be chitin, C8H13NO5 and values for the refractive
index for the spectrum shown in figure 2.5 with a critical energy of 3 keV was
obtained from ”x-ray interactions with matter” [24]. Some of the finer details
are lost when calculating the projected thickness, such as small hairs.

Validation of the algorithm used to calculate the projected thickness was
done by summing the image in figure 4.3 along the direction of the 100 µm
fishing line and calculating the projected thickness. This is compared to the
analytic normalized projected, figure 4.6 and the overall resemblance is good.

Figure 4.7 shows the projected thickness image of a bee head together with
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(a) (b)

Figure 4.4: The raw phase-contrast image of a 100 µm thick fishing line with a
reef knot (a), mounted to a dosing needle. Calculating the projected thickness
using equation 2.43 resulted in (b). The fishing line was assumed to be made of
mylar. The projected thickness image shows a gradient across the wire, hinting
at a cylindrical shape, information that is not clearly visible in the raw phase-
contrast image. Figure a) also shows some edge enhancement as there is a bright
fringe around the edge.

the raw aligned and averaged phase-contrast image. The sample was rather
fresh and as the chamber was pumped, the low pressure caused damage to the
head, making it useless for tomography as some parts were moving during the
rotation. It was attached using a drop of wax that can be seen at the top of the
images.

Another sample was also used, a smaller fly that is shown in figure 4.8
along with its projected thickness image aligned and averaged over 5 shots.
Unfortunately, this specimen was destroyed as there was a triggering error and
the gas injection failed. This allowed the laser to propagate unperturbed all the
way to the fly, hitting it with close to full intensity and destroying it. Despite
this, enough shots were taken to calculate the projected thickness for one angle.

4.3 Tomography

The tomography was done using a parallel beam geometry, using the inverse
Radon transform built in MATLAB with linear interpolation and a Ram-Lak
filter.

Figure 4.9 shows the tomographic reconstruction of the knotted fishing line.
The slice reconstructed is located in the middle of the knot. These images were
taken at 5 degree increments and the result of this can be clearly seen as it has
notable artifacts streaking across the image. Using smaller increments would
reduce this effect.

Figure 4.10 shows the result from the tomographic reconstruction of a bee
head. During this run there was some problem with the flux which became
rather low at times. The sample also moved during the process and one of the
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(a) (b)

Figure 4.5: Comparison between a projected thickness image of a fly (b) with
the raw, aligned and averaged phase-contrast image (a). The contrast between
the background and the middle part of the leg is much better compared to the
raw phase-contrast image. However, finer details are lost, such as small hairs
on the leg.

tendrils moved out of the frame. These things combined resulted in a rather
poor reconstruction.

Figure 4.11 shows the results of a tomographic reconstruction of a fly at
different cross-sections with increasing height ranging from (a) to (d). The raw
phase-contrast images used to calculate the projected thickness for this sample
were taken over 180 degrees with 1 degree increment and averaged over 5 shots
at each angle. A circular pattern can also be seen in the background due to
the nature of the transform as only linear interpolation was used. This creates
artifacts from the interpolation error due to the regridding issue mentioned in
section 2.6.2.
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Figure 4.6: A comparison of the analytic normalized projected thickness of
a 100 µm mylar wire (black dashed line), the raw phase-contrast data (blue
dot-dashed line) and the calculated projected thickness (purple solid line) from
figure 4.3. The calculated projected thickness is close to the analytic but fails
slightly at the edge.

(a) (b)

Figure 4.7: Projected thickness image of a bee head b) along with the aligned
and averaged raw x-ray phase-contrast image a). The reference object has been
cropped out in b) for better colormap scaling.
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(a) (b)

Figure 4.8: Projected thickness image of a smaller fly (right) along with aligned
and averaged raw phase-contrast images (left).

Figure 4.9: Tomographic image of the fishing line with a single knot, created
from the projected thickness images, such as figure 4.3. These projections were
taken with a 5 degree increment, resulting in a worse reconstruction compared to
the reconstruction of the fly, which had projections taken at 1 degree increments.
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Figure 4.10: Tomographic image of a bee’s head (right) reconstructed at the
location indicated by the dashed line from the projected thickness images (left).

Figure 4.11: Tomographic images of the fly shown in figure 3.12. Figure (a)
shows part of the body, the wings are too far out to be reconstructed. Figure
(b) shows the neck along with some legs and (c) shows the head. Note that
the length scale only applies to figures (a), (b) and (c). The raw phase-contrast
image (left) has a different scale.
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4.4 3D Rendering

Figure 4.12: 3D rendering of a
”reef knot” using the software
3D slicer. The knot is tied using
a 100 µm thick fishing line.

The open source software 3D slicer was used
to create a 3D volume rendering from the to-
mographic images, the software can be found
at https://www.slicer.org/. As the soft-
ware also does a volume rendering of any
noise that is present the thresholds needs to
be tweaked to remove as much noise as possi-
ble without loosing too much of the object
of interest. Figure 4.12 shows a Reef knot
and the 3D rendering was done using 800
equidistantly spaced tomographic images cre-
ated from the projected thickness images, one
of them shown in 4.4. This leads to a slightly
rougher visual representation but the process
is much quicker. Figure 4.13 shows a 3D ren-
dering of a fishing line with a knot. The 3D rendering was done using all 2048
tomographic images, one of which is shown in 4.9.

(a) (b)

Figure 4.13: These images were created by taking 5 shots at each angle in 5
degree increments from 0 to 180 degrees. A 3D rendering of a simple knot on
a 100 µm thick fishing line attached to a dosing needle is shown in (a). The
fishing line is not visible at the level of the dosing needle as this blocked most of
the intensity during the tomography. (b) shows the same figure rotated, to show
it from beneath. The hollow dosing needle is visible despite it being stainless
steel and blocking most of the x-rays. The thickness would also not be correct
as the algorithm assumes that it is made of mylar, making it thicker than it
actually is.

Figure 4.14 shows a 3D rendering of the fly in 3.12, using every 10th image
from the tomographic stack of 2048 images, compared to using all 2048. Using all
images resolves smaller details better but the process is slow and needs a decent
GPU. Figure 4.15 shows a 3D rendering of the upper part of the same fly, cross-
section of the head, the end of a leg and a section of the neck. These images were
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averaged over 5 shots for each angle and aligned using the automated script.

Figure 4.14: Figure (a) was rendered in 3D slicer using all 2048 tomographic
images while (b) only used every 10th image. Using more images allows for
better resolution, especially for smaller details, which can be seen comparing
these two images.

Figure 4.15: 3D rendering of a fly with focus on different parts. The rendering
was done for all 2048 images. (a) shows the upper part of the fly and at the
bottom of the image one may note that the rendering is not very good. This
is due to the poor tomographic reconstruction as part of the fly’s back moved
outside the frame when rotating. A close-up of the extended leg is shown in (b)
with a further zoomed image of the tip shown in (c). The small hooks at the
end of the leg can be seen here. Part of the neck was cropped out and is shown
in (d) where it can be seen that it is hollow. Figure (e) shows a cut through the
head, showing some of the inner structure inside the fly’s head, such as some
separating walls in the eyes.

At this point it would be possible to do more sophisticated investigations of
the sample, such as segmentation of different parts of interest. This has been
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excluded as it is not the focus of this thesis but there is a large module library
in 3D slicer allowing for such analysis.
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Chapter 5

Summary and Conclusions

Measurements of the source size in this thesis, show that it is about 2.5 microns
vertically and 3.6 microns horizontally, typical values observed in other reports
[1], [7], which show source sizes of 4 µm and 1.8 µm. The calculated values
are accurate to within 20 % according to [14], leading to a vertical size of
approximately 3.6± 0.72 µm and a horizontal size of 2.5± 0.5 µm. This makes
the source small enough to be suitable for phase-contrast imaging as it requires
a source size on the order of 1− 10 µm.

The source is asymmetrical which is to be expected and the larger size (hor-
izontal) is in the same direction as the polarization of the laser. This could
be explained by the fact that although the electrons oscillate about the optical
axis due to the restoring focusing forces of the plasma bubble’s walls they also
feel the electric field of the laser pulse and this could increase the oscillation
amplitude, making the effective source size larger. They would only feel the far
end of the tail in the pulse but as the amplitude of the electric field is very large
there could be a notable effect. This statement is supported by ”Laser-wakefield
acceleration of monoenergetic electron beams in the first plasma-wave period”
by S.P.D Mangles et al. [28] and figure 5.1 is from the same report, showing the
electron beam profile at different polarization angles of the laser.

This effect is reported to decrease as the laser pulse made shorter than the
plasma wavelength. A shorter laser pulse does not reach as far back in the
plasma bubble, resulting in a lower electric field where the electrons are posi-
tioned and thus, decreasing this effect. This means that this effect is probably
due to the trailing tail of the laser pulse, interacting with the electrons [28].

The implemented algorithm used for phase-retrieval and calculating the pro-
jected thickness derived by Paganin et al. [21] works as intended and results in
good images. It does not fit to the true thickness perfectly, see 4.6, and this is
probably due to the low-pass filtering nature of the algorithm. At the edges the
function is very sharp, meaning that it is made up of higher frequencies. This
can be confirmed to an extent if one takes the true thickness (dashed line in
figure 5.2), takes the Fourier transform and applies a low-pass filter. The result
is the solid line in figure 5.2 which very much resembles the situation shown in
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Figure 5.1: Variaton of the electron beam profile for varying polarization angles,
visualized be the black lines a) −20o, b),10o, c) 30o, d) 50o. The beam looks
to be of an elliptical shape and the larger half-axis follows the direction of
polarization [28].

figure 4.6, where the edges are smeared.

Figure 5.2: Comparison between the exact
projected thickness (black dashed line) and
a filtered one (orange solid line). The fil-
ter was applied in the frequency domain as
a low-pass filter, resulting in a blur at the
edges.

This also explains why a
larger pixel size blurs the image,
as shown in figure 3.10, as this
limits the highest presentable fre-
quency. Thus, it acts as a thresh-
old for higher frequencies and
blur edges in the image. With
this insight, the detector becomes
an important part of the setup.
Making use of as many pixels as
possible will be preferable along
with having a high resolution de-
tector to get the most accurate
value for the projected thickness.

The quality of the images in-
creases as there are more shots
to average over. As the current
system stands the shots have to
be taken manually, with approxi-
mately 1 shot / 2 sec, there is a limit to the amount of shots that can be taken
within a reasonable time. This repetition rate is mainly limited by the gas in-
jection at the time of writing, as the laser operates at 10 Hz. With an increased
repetition rate together with automating the process of taking shots and rotat-
ing the sample, the image quality could be greatly improved. This would also
decrease the intensity fluctuations between different angles, effectively removing
the vertical lines in the sinogram, figure 3.15, for a cleaner image.

The samples chosen were not strictly ideal for this method as they have quite
a bit of absorption, not utilizing the technique to its fullest. A very thin sample
that absorbs as little as possible to show the usefulness of phase-contrast imaging
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would be better, alternatively a material surrounded with another material, both
having similarly absorption β but different δ. These types of samples are usually
biological and the difficulty of mounting and preparing them increases as they
become smaller/thinner. With more time this is fully realizable. They also need
to be dried and processed as to not be destroyed in vacuum.

The phase retrieval algorithm used was Paganins single material algorithm,
equation 2.43 but another phase retrieval method could be used, namely the
modified Bronnikov [18]. This does however assume an absorption close to 0
and would not be a good choice for the samples studied here. If a thinner
sample was prepared, one might want to investigate further in the effects of
source size and polychromaticity for the different methods before making a
choice. Another difference between the two algorithms is that Paganin needs
knowledge of the refractive index of the sample while Bronnikov does not, which
could also influence the choice. This is still a topic of research and better
methods might appear in the future, allowing for more flexibility and requiring
less prior knowledge.

The optimal distances for phase-contrast imaging in laboratory setups is not
trivial to choose and is still a topic of research. In a paper by A.Balles et al.
[29] published in 2016 they present a way to calculate the optimal distance. For

a fixed source-detector distance, this is given by r2 = r1
σ2
p−σp
√
σ2
p+σ

2
s

σ2
s

, where

σp, σs is the standard deviation of the point spread function and the magnified
source size respectively. As the point spread function has not been measured,
this result was not usable as it is heavily dependant on σp. Some estimations
where made, but in all cases this resulted in a too low magnification for the
samples used here. This was probably due to poor estimations and it could be
worthwhile to measure the point spread function to find a more optimized po-
sition for the sample to improve the fringe contrast, making the phase-retrieval
algorithm to perform better.

The tomographic images shown in figure 4.11 indicate that this source is
usable for this application. There are still some artifacts but with a smaller
angle increment and more shots per angle this is expected to reduce significantly.

The tomographic reconstruction was done by assuming parallel beam geom-
etry but as the x-ray beam has some divergence this is not fully accurate. This
will cause a ”tilt” to the sinograms, illustrated in figure 5.3 [22]. A better option
would probably be to use a fan beam geometry that assumes a divergent beam
instead of a parallel one.

The fan beam geometry have not been discussed in this thesis as this is
slightly more complex to implement and due to time constraints a choice was
made to use a parallel beam geometry instead, motivated by the fact that the
divergence and distances were considered small enough to get a good recon-
struction using this geometry. To further improve the results, this should be
accounted for.

The experimental setup could also be rearranged to increase the flux. As it
currently stands, the CCD camera is mounted on a table outside the chamber
with a 1 m tube extending from the chamber towards it. This limits the field of
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Figure 5.3: Sinogram of a fan beam geometry (top) and a parallel geometry
(bottom). The sinogram from a fan beam projection becomes tilted [22].

view for larger magnifications and the need to seal the end of the tube requires
the x-rays to pass through a 250 µm thick beryllium window. This reduces the
flux and there is another such window mounted on the CCD camera as the chip
needs to be cooled in vacuum. Mounting the camera directly to the chamber
would allow one to remove one of the windows. The last window is still needed
as the CCD needs some protection from the laser but the thickness of it could
be reduced since it no longer has to tolerate the vacuum pressure. This would
increase the flux as the x-rays no longer have to propagate the 59 mm distance
in air and through less beryllium.

One would preferably also use a filter to block the laser and protect the
sample if something goes wrong, such as a thin aluminum foil . This was tested
in one experiment and worked well, but due to another triggering error it got hit
by the full laser power and was destroyed. Using a thicker foil could probably
handle this, or a foil that can be moved once it is damaged. The crevices in
this foil could clearly be seen and did disturb the image quality somewhat, but
it was possible to correct this with some good flat field images as long as the
images were aligned.

The energy spectrum was also under some assumptions, assuming it to be
synchrotron-like with a critical energy of 3 keV. This was based on previous
measurements carried out before the start of this thesis and has not been con-
firmed here. The outset was to verify the experiment in [1] and to examine the
reproducibility of the setup at the laser facility in Lund. From the gathered
results it is concluded that it is possible, although there are several improve-
ments that can be made. To further extend this work the temporal duration
could be added, as the x-ray pulses are of a very short nature they hold the
promise of being able to resolve motion on at least the picosecond scale. This
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poses another problem however as these systems are on a micro-scale, requiring
massive magnification and there will be a need to focus the x-rays to have an
acceptable flux on the sample, which is a difficult task. This would increase the
size of the experimental setup significantly and add optical elements, increasing
its complexity.

With further improvements to the technique of using LWFA for phase-
contrast imaging along with more compact and user friendly laser systems this
could one day lead to a reliable table-top source for on-demand phase-contrast
imaging of soft tissue materials with very short exposure times resulting in fast
data acquisition. It removes the necessity for expensive and limited beam time
at synchrotron facilities and would be much faster than currently available mi-
crofocus x-ray tubes.

To summarize, the work in this thesis shows that LWFA can be used as an
x-ray source for phase contrast imaging, having a source that is small enough,
relatively high flux and fast image acquisition. Faster repetition rates will allow
for even better contrast as more images can be averaged within a reasonable
time and as phase contrast imaging is relatively insensitive to polychromaticity,
the full spectrum can be used. The phase contrast images were aligned using
an algorithm that makes use of edge detection and the cross-correlation matrix,
resulting in pixel-accurate image alignment. Using the phase contrast image to
calculate the projected thickness of the samples resulted in images usable for
a tomographic reconstruction, which was done for thin fishing lines (100 µm
thick), a bee head and a small fly. The tomographic images were then used to
do a full 3D volume rendering of the fishing lines and the fly. To summarize
and connect to the main goals of this thesis:
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