
AUTOMATED ENTRY SYSTEM

USING MULTI-OBJECT

TRACKING

ADAM JALKEMO, EMIL WESTENIUS

Master’s thesis
2017:E33

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
E
N

T
R

U
M

S
C

IE
N

T
IA

R
U

M
M

A
T
H

E
M

A
T
IC

A
R

U
M

LUND UNIVERSITY, FACULTY OF ENGINEERING

MASTER’S THESIS

Automated Entry System using
Multi-Object Tracking

Authors:
Adam JALKEMO
Emil WESTENIUS

Supervisor, ASSA ABLOY:
Roger DREYER

Supervisors, LTH:
Håkan ARDÖ

Martin AHRNBOM

Examiner:
Mikael NILSSON

Lund University
Faculty of Engineering

Centre for Mathematical Sciences
Mathematics

June 12, 2017

iii

Abstract

In this thesis we employ computer vision methods in order to extend and improve
the functionality of automatic doors. This thesis is based around the implementation
of a door entrance system which uses information from detected pedestrians to make
qualified decisions regarding door activation. This can lead to a reduced amount of
unnecessary openings which will reduce the energy consumption of buildings. It
will also increase comfort for pedestrians passing through the door. A corner stone
in the proposed system is multi-object tracking for which different methods are con-
sidered and evaluated. To provide input for the tracker a range of different detection
methods are evaluated and used in the system. In order to tune and test this system
a dataset consisting of realistic scenarios was collected and annotated. Results in the
thesis show that we can estimate the walking direction of pedestrians well while the
estimated speed is quite inaccurate. We also show that because of the good direction
estimate one can employ static increases in prediction time to improve performance.
Our tests show that YOLO, a modern object detector, is best at detecting pedestri-
ans. We found that a tracker of relatively low complexity, Hungarian algorithm with
Kalman filtering, receives both high scores and is quite robust to noise. It is con-
cluded that this type of method can both extend and improve the automatic entry
systems used today.

Keywords: Multi-Object tracking, Pedestrian tracking, Pedestrian detection

v

Acknowledgements
This thesis would not have been possible without the guidance we have received
from our supervisors Håkan and Martin. Your factual knowledge helped us greatly
when taking on this challenging task.

We would like to thank ASSA ABLOY for allowing us to experiment with different
entrance systems and providing a great environment for this work.

Finally, a special thanks to Roger for all the encouragement, support and area exper-
tise.

vii

Contents

Abstract iii

Acknowledgements v

1 Background 1

2 Problem Formulation 3
2.1 Overview . 3
2.2 Limitations . 4

3 Theory 5
3.1 Pedestrian Detection . 5

3.1.1 Aggregated Channel Features Based Detector (ACF) 5
3.1.2 Deformable Parts Model Based Detector (DPM) 6
3.1.3 Convolutional Neural Networks (CNN) 7

Defining the Loss . 9
Convolutions . 9
Backpropagation . 9
Overfitting . 9
Pooling Layers . 10
From Object Classification to Object Detection 10

3.2 Moving Object Detection . 11
3.2.1 Background Subtraction . 11
3.2.2 Optical Flow . 12

3.3 Object Tracking . 13
3.3.1 Introduction . 13
3.3.2 Maximum a Posteriori . 14
3.3.3 Recursive Bayesian Estimation 14

Single-Object Bayes Filter . 14
The Kalman Filter . 15

3.3.4 Hungarian Algorithm with Kalman Extension 17
Tracking Adaptation . 18
Kalman Filter Extension . 19
Pruning . 20

3.3.5 Graph Representation of the Association Problem 20
Algorithm Overview . 21
Track Generation . 22
Causal Adaptation . 23

3.3.6 Multi-Object Recursive Bayesian Estimation 23
Multi-Object Bayes Filter . 23
Probability Hypothesis Density Filter 24
Gaussian-Mixture Probability Hypothesis Density Filter 25
State Extraction . 27

viii

Managing the Components - Merging and Pruning 28

4 Methodology and Implementation 31
4.1 System Setup . 31
4.2 Software . 31
4.3 Camera Setup . 32

4.3.1 Camera Setup . 32
4.4 Pedestrian Detection . 33

4.4.1 Deformable Parts Model Based Detector 33
4.4.2 Aggregated Channel Features Based Detector 34
4.4.3 Convolutional Neural Network - YOLO 34

4.5 Moving Object Detection . 34
4.6 Object Tracking . 35

4.6.1 Hungarian Algorithm . 35
4.6.2 Graph Partitioning Algorithm 35
4.6.3 Probability Hypothesis Density Filter 35

4.7 Door Controller . 35
4.7.1 Activation Trigger . 36

4.8 Datasets . 37
4.8.1 Dataset Construction . 37
4.8.2 Annotation . 38

Open Time Annotation . 38
Box Annotation . 38

4.9 Evaluation . 38
Evaluation Metrics . 39

5 Results 41
5.1 Pedestrian Detection . 41
5.2 Moving Object Detection . 43
5.3 Pedestrian Tracking . 44
5.4 System Performance . 45

6 Discussion 49
6.1 Detector Evaluation . 49
6.2 Tracker Evaluation . 49
6.3 System Evaluation . 50

6.3.1 Tracker Comparison . 51
6.3.2 Velocity Estimates . 51

6.4 Conclusions . 52

7 Future Work 53

A Histogram of Oriented Gradients (HOG) 55

B Results for Ground Truth Detections 57

C Results for Moving Object Detection 59

Bibliography 61

1

Chapter 1

Background

Automatic doors are a modern convenience designed to increase comfort for users
while allowing a large flow of pedestrians. The sensors used today are often based
on microwave and infrared technology. The general approach is to measure devi-
ations in output signal of the sensor to register if an object has entered a zone of
interest. The sensors are good at detecting both movement and presence of moving
and stationary objects. The physical constraints on the sensors used today results
in limited activation zones for the controller to use when determining if the door
should open. It is also very difficult to calculate the size, direction, speed and exact
position of an object. Classifying objects, e.g. bicycles or cars, is very challenging
with these sensors. It is therefore also hard to ignore some objects.

The system used today opens the door for pedestrians moving past the door, animals
leashed outside shops and other inanimate objects moving in front of the sensor. If
the sensor is too sensitive these types of openings become very frequent. This some-
times forces the tuning of the activation sensor to be very restricted which can lead to
pedestrians having to reduce their velocity or even stop before passing through the
door. Also, when a door opens, the power usage for the building normally increases
due to increased workload for the AC/heating equipment.

The work on which this thesis is based was performed in cooperation with ASSA
ABLOY Entrance Systems, AAES, which is a division within ASSA ABLOY AB.
AAES is focused on development, production and sales of entrance solutions and
has identified computer vision technology as an interesting research area to extend
the solutions used today. Cameras can be used to extract other information than the
sensors used today. By classifying an object and predicting its trajectory from a se-
quence of images the door control system might be able to make a more qualified
decision.

3

Chapter 2

Problem Formulation

The purpose of this thesis is to extend and improve today’s automatic entrance so-
lutions. While today’s activation sensors provide a limited range of data, a camera
based system could detect pedestrians and extract large amounts of data from a
video sequence. In order to achieve this the system is required to track more than
one object which is known as multi-object tracking. As this is central to this prob-
lem an evaluation of which tracking algorithms are suitable for usage in an entrance
system together with a camera is performed. It is investigated how an automatic
entrance system can be extended by including object trajectories extracted from the
tracking algorithms. Also, which type of camera and how many cameras are neces-
sary for an efficient entrance system?

2.1 Overview

This thesis will approach the problem by constructing a baseline system and evalu-
ating the different components. An initial assumption is that the tracker system will
use detected pedestrians as inputs. Our proposed system contains components for
object detection, object tracking and door control.

The object detection component is used to provide the position and possibly the ve-
locity of detected objects. Multiple options will be considered and evaluated based
on performance of the complete system.

As designing and implementing a complete entrance system is a big challenge, the
focus of this paper is on the performance of different tracking algorithms. The track-
ing component will process detections from different frames and provide a robust-
ness against missed and false detections. The output of the tracking component is
the object trajectories which includes direction and speed.

The purpose of the door control component is to interpret the output from the track-
ing component and decide if the door should open or not.

4 Chapter 2. Problem Formulation

2.2 Limitations

The system is designed to act as an activation sensor i.e. security sensors for reducing
the risk of crushing hazards are handled separately. This work is also limited to
using a binary output signal i.e. the possible output states are; open door, closed
door. This simplifies the controller and is the current standard used today.

Many tracking algorithms are designed to track objects with distinct identities, this
is not a focus of this thesis.

5

Chapter 3

Theory

This chapter begins with presenting theories for pedestrian detection followed by
theories for moving object detection. Pedestrian detection algorithms are focused on
single frame data and moving object detection uses multiple frames to find move-
ment in a video sequence. These categories are not necessarily mutually exclusive
and can possibly be combined for increased performance.

The final section of this chapter contains theories concerning object tracking which
includes association of detections in different frames and filtering.

3.1 Pedestrian Detection

Pedestrian detections is a specialized subfield of object detection which currently
is motivated by the automotive, surveillance and security industries. The Caltech
Dataset [1] is a popular benchmark and like for many detection benchmarks, neu-
ral networks are currently generating the best results1. Currently, Fused DNN [2]
has the highest reported score. There are, however, many pedestrian detection algo-
rithms available which are less computationally demanding such as those based on
deformable parts model (DPM) [3] and aggregated channel features (ACF) [4].

3.1.1 Aggregated Channel Features Based Detector (ACF)

Aggregated channel features [4] are features suited for pedestrian detection. The
detection framework in the original implementation is trained on image patches of
size 128 by 64 using 10 feature channels. Features are extracted and Adaboost [5] is
used to train 2048 depth-two decision trees. In this thesis the detector using these
features is referenced as the ACF detector.

The channels used in the original implementation is

• Normalized gradient magnitude.

• 6 channel Histogram of Oriented Gradients, see appendix A.

• The image in LUV color space.

The 10 channels are down-sampled by 4x and then smoothed before fed to the deci-
sion trees.

1Common Objects in Context, Detections leaderboard, (2016), Accessed 05-06-17, http://
mscoco.org/dataset/#detections-leaderboard

6 Chapter 3. Theory

FIGURE 3.1: A scale pyramid is a set of versions of the same image in
different resolutions. [6]

The object detection is performed using a sliding window at multiple scales. Addi-
tional methods to speed up computations in the ACF framework is to only calculate
the features at sparse scales and approximate them at most scales. In the original im-
plementation the computations are done once per octave (once per half image scale)
and approximated for seven scales in between using the closest calculated features
available using scaling power laws found in the original paper.

3.1.2 Deformable Parts Model Based Detector (DPM)

The deformable parts model approach is essentially a classifier which uses the same
HOG features with the extra dimension of viewing a human as a set of different
parts [3]. These parts are trained to be characteristic parts and for upright humans
they are often chest, feet, head and shoulders.

Each section of the image is scored based on how much it resembles a body part and
where it is located with regards to the body. The filter of the full body, root filter, is
applied high up in the scale pyramid, see fig. 3.1, while the part filters are applied
lower in the pyramid i.e. on a higher resolution. After a score has been calculated
for each filter individually, one can combine the scores with regards to the root filter
for the final score in order to classify objects, see fig. 3.2.

In order to train this classifier one typically uses a Latent Support Vector Machine
[7]. This means that included in the standard Support Vector Machine are unknown,
Latent, variables which are the location of the parts with regards to the root filter.
These parts are not learned by observing their location in images, as the root filter is,
but instead learned without any annotations for their position. These are the latent
variables. The location of the part filters is used in fig. 3.2 to score the response of
a filter with regards to the root filter. This allows the classifier to more reliably find
pedestrians in poses which are different from the pose of the root filter.

3.1. Pedestrian Detection 7

FIGURE 3.2: DPM classification pipeline where each filters is swept
over different images in the scale pyramid and added together to a
final detection score. The part filter response is also weighted with

the deformation cost. [8]

3.1.3 Convolutional Neural Networks (CNN)

The state of the art classifiers and detectors today are based on Convolutional Neural
Networks (CNN) which is a variant of Artificial Neural Networks (ANN) suitable
for images. A classifier determines the class of an image (or other data) while a
detector can provide the class of multiple objects in an image with localization infor-
mation added. In comparison with DPM (sec. 3.1.2) and ACF (sec. 3.1.1) the features
are found by training instead of using predefined features such as HOG (Appendix.
A). Therefore the model and training of the network determines the quality of fea-
tures and performance.

An ANN is typically composed of a number of artificial neurons. The name neuron
is inspired by the neurons in the biological brain. Neurons can be connected to other
neurons and the connection usually is associated with a weight and direction. The
neurons are commonly grouped in layers. In a feed forward network there are no
connections between the nodes within each layer and no connection from a later
layer to a previous.

8 Chapter 3. Theory

FIGURE 3.3: Artificial Neural Network [9]. Example of fully con-
nected layers in a feed forward network. Note that there are no con-
nections between the neurons in each layer. Each neuron propagates

to each neuron in the next layer.

A typical example is the fully connected design, see fig. 3.3. Neurons commonly
take input from other neurons, multiplies each input with a weight and sums them
up. A bias is added to the the sum and an activation function is applied, see fig. 3.4.
Example of an non-linear activation function is the Rectified Linear Unit function,
ReLU, which simply changes all negative values to zero.

FIGURE 3.4: Artificial neuron [10] with labels from its biological coun-
terpart. The inputs xi from other neurons is multiplied with weights
wi and then summed. A bias b is added to the sum and an activation

function f is applied.

For images, the input to the Neural Networks commonly is the pixel values in the
image. The input is converted to an output for classification or regression through
a combination of linear and nonlinear operations. The parameters used to calculate
the output are found by training the network, commonly using stochastic gradi-
ent descent which is an adaptation of gradient descent. Stochastic gradient descent
divides the data set into subsets (mini-batches), evaluates the gradient over each
mini-batch and performs parameter update after each iteration.

3.1. Pedestrian Detection 9

Defining the Loss

When training the network a loss function is used to determine the error as a scalar
value. This metric should then decrease as the training proceeds. The last activation
function commonly used in classification where classes are mutually exclusive is the
softmax activation function given by

σ(x)j =
exj

∑K
k=1 e

xk
for j = 1, ...,K,

where σ(x) is the softmax activation function, K is the number of classes and x is
the K-dimensional input. The softmax function normalizes the sum of the inputs to
unity by assuming the inputs to be log probabilities. Cross entropy loss L(x,p) is
often used to reduce the vector valued output of the softmax activation to a scalar
loss. Cross entropy loss is given by

L(x,p) = −
∑

i

pi loge(σ(x)i),

where p is the K-dimensional ground truth vector.

Neural networks can also be trained for regression i.e. training the network to pre-
dict a continuous value. This can be used for e.g. predicting an objects height and
width. Euclidean L1 or L2 distance can then be used as a loss function.

Convolutions

When working with color images the input to the network is three dimensional;
image width, height and the different colors. While the input could be flattened
to a vector there is a lot of spatial information to gain by keeping the shape and
using convolutions to perform the calculations of the neuron. This is the reason for
the name Convolutional neural network. To limit the amount of parameters and
therefore limit the amount of memory and data required to train the network. It is
today most common to use convolutions where the images are convolved multiple
times with different trainable kernels.

Backpropagation

When training the network each layer should be updated in a way which minimizes
the loss function. Backpropagation (backward propagation of errors) is commonly
used for this purpose. The gradient of the loss function is calculated, and the nega-
tive (decreasing) direction of the gradient is used to update the layer previous to the
softmax activation layer using the chain rule. This procedure is then repeated for all
layers in the network by propagating the error and making use of the chain rule.

Overfitting

Overfitting is a common problem when faced with models of many parameters. See
fig. 3.5 for an example of overfitting. To mitigate overfitting one either reduces the

10 Chapter 3. Theory

FIGURE 3.5: Example of overfitting [13]. The squiggly (green) line
does not generalize well and therefore fails to fit to the curved (black)
line. Instead it overfits to some individual samples which should be
considered outliers. The loss on the training set will be low since all
points are correctly classified but if new points are introduced, the
more generalized curved (black) line would classify the set more ac-

curately.

number of parameters, adds more training data or applies regularization. Regular-
ization can be performed by combining the loss function with a fraction of the Eu-
clidean L2-norm which limits the size of the weights suppressing the risk of the net-
work learning only single features. Other methods are dropout [11] and batch nor-
malization [12]. Data augmentation, i.e distorting, rotating, mirroring and adding
noise to the images, can also help to mitigate overfitting.

Pooling Layers

It is common to down-sample features flowing between the layers by the use of
pooling layers where max- or average-pooling is often used. The features are then
divided into blocks (commonly 2 by 2) and then down-sampled to the maximum
value of the region (maxpool) or the average value (average pooling). This is done
separately for each depth dimension. Pooling reduces the amount of parameters and
calculations necessary, provides some spatial invariance and helps prevent overfit-
ting. Maxpool is most frequently used but it is not uncommon to see networks with
average pooling in the last part of the network [14] [15].

From Object Classification to Object Detection

Using a CNN to classify a single image as a single class is useful but we are faced
with the problem of detecting multiple objects of one class (pedestrians) with pos-
sible overlap between objects. A solution is to classify each image patch of suitable
dimension and this can be done at different image scales to account for the different
scale of the objects, see fig. 3.1. The bounding boxes are then processed to account
for multiple detections in one area.

Another approach of multi-object detection is to let the neural network also do the
prediction of where objects are by itself. A number of different approaches exist
e.g. Fast-RCNN [16], Faster-RCNN [17] and YOLO [18]. They all have in common

3.2. Moving Object Detection 11

FIGURE 3.6: Example of background subtraction [20]

that they predict both object classes and bounding boxes for the objects by using
regression.

In the newest implementation of YOLO [19], You Only Look Once, the network pre-
dicts possible location and size of a large predetermined number of objects, the con-
fidence of the objects actually being objects and the class of the objects. By thresh-
olding the confidence of the predictions, the bounding boxes which most likely de-
scribes objects are returned.

3.2 Moving Object Detection

Pedestrian detection is needed mainly when the objective is to only open doors for
humans. Only if this requirement is relaxed can more general methods be used to
approximate the movements of objects. Pedestrian detection methods make use of
temporal data i.e. from past times and are therefore able to extract other information
than the detectors described in sec. 3.1. Background subtraction and optical flow are
two useful tools described in this section.

3.2.1 Background Subtraction

If the background of a number of images is constant it is possible to segment fore-
ground from background by calculating the difference between the background im-
age and the current image. However, due to varying lighting conditions and gen-
eral changes in the scene the assumption of constant background generally does not
hold. By allowing for smaller updates in the background image one can adapt to
changes in lighting. If the background is represented as a Gaussian mixture model
(GMM) it is possible to define appropriate pixel values and variances for the back-
ground in a varying scene [21]. When shadows are present they might be classified
as foreground. This is problematic when trying to determine the position of an ob-
ject since the shadow also depends on the position of the light source(s). As shadows
only change the illumination of the background it possible to also segment shadows.
An example of background subtraction is shown in fig. 3.6

Background subtraction assumes that lightning conditions do not change too fast. If
a foreground objects share the color of the background it might not be completely
segmented. If one tries to distinguish separate objects by using connected compo-
nents on the output some extra post processing is useful to make sure that the bodies

12 Chapter 3. Theory

FIGURE 3.7: Example of the extracted optical flow. The arrows repre-
sents the pixel velocity amplified by 10.

are fully connected, e.g. that the head and body components are not separated due
to noise. Since objects are not classified they might come in any shape or form, this
means that nearby adjacent objects might be grouped as one. This can be confusing
in the next stage when tracking the objects.

3.2.2 Optical Flow

By comparing two adjacent frames in time it is often trivial for humans to determine
motion in the image, i.e. the optical flow. Computers are also, under certain circum-
stances, able to approximate the flow of pixels in a set of consecutive images. This
is intuitively useful since motion is necessary for an object to reach the door and the
optical flow of the pixels which make up the object should therefore be computed.
The position and velocity of the pixels can then be extracted in contrast to the detec-
tors described in sec. 3.1 which only provide position. An example of optical flow
can be seen in fig. 3.7.

If the intensity of a pixel located at (x, y) at time t is given by I(x, y, t) and the pixel
is displaced to (x+∆x, y+∆y) at time t+∆t one can define the brightness constancy
constraint

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t).

Using Taylor expansion the intensity is

I(x, y, t) ≈ I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t,

assuming the pixel displacement is small. Simplification yields

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0.

Dividing with ∆t yields

∂I

∂x

∆x

∆t
+
∂I

∂y

∆y

∆t
+
∂I

∂t

∆t

∆t
= 0.

3.3. Object Tracking 13

one can express it using the velocity components Vx and Vy of the pixel with the
intensity I(x, y, t)

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0.

By assuming that the pixels in the local neighborhood of (x, y) has a small approx-
imately constant displacement, one can use the Lucas-Kanade method [22] to solve
this equation of two unknowns. The equation system is then on the form

Av = b, (3.1)

with

A =

Ix(x1, y1, t1) Iy(x1, y1, t1)
Ix(x2, y2, t2) Iy(x2, y2, t2)

...
...

Ix(xn, yn, tn) Iy(xn, yn, tn)

 , v =

[
Vx
Vy

]
, b =

−It(x1, y1, t1)
−It(x2, y2, t2)

...
−It(xn, yn, tn)

 , (3.2)

where n is the number of pixels in the local window used for calculations. The sys-
tem of equations in eq. 3.1 is usually overdetermined and can be solved by using
least squares, which then gives the solution for velocity of the pixel (x, y). The as-
sumption of small displacement holds if appropriate scale is chosen and therefore
scale pyramids are used.

3.3 Object Tracking

3.3.1 Introduction

Tracking in image analysis is a general term used to describe when an algorithm
follows a certain object in a video. There are multiple ways of performing tracking
and a subclass of tracking algorithms is the Tracking-by-detection algorithms which
we primarily used in this work. This means that the algorithms use information
from detected objects in each frame and associates, connects, the detections. This
association can be used to extract speed and direction of moving objects as well as
making the system more robust to missed detections and noise. The position and
velocity of tracked objects, targets, are described by what is referred to as the target
state. It is often necessary to estimate the state as noise is present and some states
can be hidden, i.e. not measureable, e.g. velocity.

There are multiple ways of associating detections and in this section three methods
are presented. In order for the system to have a real-time application only causal
methods or causal adaptations of methods are considered. These are methods which
does not use any future information.

In this work a Kalman based tracker with data association performed by the Hun-
garian algorithm, see sec. 3.3.4, was used as an initial tracker. The association in a
Hungarian algorithm is only performed between sets of detections in consecutive
frames and predictions are performed using a Kalman filter.

A natural extension of this approach is to consider a larger temporal window, i.e.
using more frames in the calculation, and thus yielding more complex association

14 Chapter 3. Theory

results. This problem can be formulated as a graph and partitioned into trajectories
e.g. with binary integer optimization, see sec. 3.3.5.

Probability hypothesis density (PHD), see sec. 3.3.6, is the third approach to per-
form the tracking considered in this work. PHD has similarities with Kalman fil-
tering. However, an explicit data association is not performed but instead posterior
probabilities are used to weigh which detections should be associated.

3.3.2 Maximum a Posteriori

Using Bayesian statistics, i.e. the theory which says that we can infer the probability
of a measured state as a probability based on what has happened before. This is
formulated in Bayes rule

P (A|B) =
P (B|A) · P (A)

P (B)
. (3.3)

Where A and B are event outcomes, we call P (A) and P (B) the prior probabilities
while P (A|B) and P (B|A) are called the posterior probabilities.

To view this as a data association problem one can think of the posterior being the
probability that a detection belongs to an identified object, track, given the detections
already associated to the track. The adaptation of this can take many forms. Consid-
ered for this work was frameworks which base themselves on the idea of connecting
a new detection to old detections/filters by finding the Maximum a Posteriori, MAP.

3.3.3 Recursive Bayesian Estimation

Recursive Bayesian estimation, or Bayes filter, can be used to recursively approxi-
mate a probability distribution by using measurements over time. The algorithm
uses two steps, prediction and innovation, to predict the next state from previous
estimations and to correct internal state from the new measurement. This section
will begin with the single-object tracking theory and will lead to the more widely
used Kalman filter.

Single-Object Bayes Filter

It is assumed that the system state x is a Markov process where the next state is only
dependent on the previous state. The measurements z are the observed states of a
hidden Markov model. If the state of the system at time k − 1 is denoted xk−1, the
next state is given by the Markov transition

xk = tk(xk−1, vk−1),

where vk−1 denotes process noise. The probability of the system being in state xk
conditioned on the previous state xk−1 can be expressed using the Markov transition
density

fk|k−1(xk|xk−1). (3.4)

3.3. Object Tracking 15

The observations zk at time k of the system will have a noise component wk

zk = hk(xk, wk).

Meaning that the measurements might contain some errors due to noise. This can
also be expressed by the likelihood function

gk(zk, xk), (3.5)

which provides the probability of measuring zk if the target is in state xk.

The filtering (or posterior) density is expressed as

πk(xk|z1:k) (3.6)

and can be used to extract current state information from the measurements up to
time k. Predicting the current state from past measurements is possible by using the
transition density eq. 3.4 and previous filtering density:

πk|k−1(xk|z1:k−1) =

∫
fk|k−1(xk|xk−1)πk−1(xk−1|z1:k−1)dxk−1. (3.7)

When a new measurement then arrives, the filtering density can be expressed using
the likelihood function eq. 3.5:

πk(xk|z1:k) =
gk(zk|xk)πk|k−1(xk|z1:k−1)∫
gk(zk|x)πk|k−1(x|z1:k−1)dx

. (3.8)

Eq. 3.7 and eq. 3.8 describes the recursive propagation of the posterior using an
initial density π0 [23].

When we are tracking a pedestrian we want to estimate its state e.g. position and
velocity to make a qualified prediction and this is what eq. 3.4 provides. The true
state is unknown but by measuring the position of pedestrians, e.g. the pixel position
from the detector output, and using a transition model which couples the position
and velocity, we can use eq. 3.6 to estimate the state. The detector might output mul-
tiple detections even when following a single object and that is where the prediction
step in eq. 3.7 is of importance since it provides information about which detection
is most likely.

The Kalman Filter

In the linear Gaussian case a closed form solution of the Bayes filter is the Kalman
filter [24]. This filter assumes that we can describe our state transformations and
observations as a linear system and also that the noise is an independent Gaussian
distribution with zero mean. This allows for fast computations hence it has a large
applicability. If the dynamics of the system is described by

xk = Fk−1xk−1 + vk−1,

zk = Hkxk + wk,

16 Chapter 3. Theory

where Fk−1 is the transition matrix and Hk the observation matrix. vk−1 and wk
are independent zero-mean Gaussian noise variables with covariances described by
the matrices Qk−1 and Rk. The transition density eq. 3.9 (cf. eq. 3.4) and measure-
ment likelihood eq. 3.10 (cf. eq. 3.5) are calculated from Gaussian densities with the
notation N (·;m,P) with m the mean and P the covariance of the distribution.

fk|k−1(xk|xk−1) = N (xk;Fk−1xk1 , Qk−1) (3.9)

gk(zk, xk) = N (zk;Hkxk, Rk) (3.10)

For motion with constant velocity in two dimensions the state x is given by

x =

px
py
vx
vy

 , (3.11)

where px and py denotes the x, y positions and vx and vy denotes the velocity in the
x, y directions.

The transition matrix F for the constant velocity is then given by

F =

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 (3.12)

and the observability matrix

H =

[
1 0 0 0
0 1 0 0

]
(3.13)

if only the position states are observable. In the case of observability of all states, H
takes the form of the four by four identity matrix.

By describing the posterior using a Gaussian distribution the posterior density at
time k − 1 is

πk−1(xk−1|z1:k−1) = N (xk−1;mk−1, Pk−1),

with the state xk−1, mean mk−1 and covariance Pk−1. The predicted probability
density eq. 3.7 for time k is then also described with the Gaussian distribution

πk|k−1(xk|z1:k−1) = N (xk;mk|k−1, Pk|k−1),

with the predicted mean and covariance given by

mk|k−1 = Fk−1xk−1,

Pk|k−1 = Qk−1 + Fk−1Pk−1F
T
k−1.

When new measurements zk are availabile at time k the posterior density eq. 3.8 is
also a Gaussian distribution,

πk(xk|z1:k) = N (xk;mk, Pk),

3.3. Object Tracking 17

with,
mk = mk|k−1 +Kke, (3.14)

Pk = (I −KkHk)Pk|k−1. (3.15)

Where the innovation e, Kalman gain Kk and innovation covariance Sk are given by

e = zk −Hkxk|k−1, (3.16)

Kk = Pk|k−1H
T
k S
−1
k ,

Sk = Rk +HkPk|k−1H
T
k .

When faced with non-linear systems, approximations of the system can be formed,
e.g. by linearization. Existing techniques are the extended and the unscented Kalman
filters [24].

To adapt the Kalman filter to pedestrian tracking, the pixel positions of the available
detections are used as measurements z. An association algorithm e.g. nearest neigh-
bor, uses the predicted state (position) xk|k−1 = Hk|k−1xk−1 to associate one of the
new detections with the current target. The innovation (error), eq. 3.16, is then cal-
culated and used to update the target state. The target covariance is determined by
the measurement and process noise covariance matrices Rk and Qk, and these can
be tuned to favor new measurements over current model state, or vice versa. If the
system is assumed linear and time invariant the covariance Kalman gain, Kk, will
converge to a steady state.

3.3.4 Hungarian Algorithm with Kalman Extension

When using the theory presented in sec. 3.3.2 one can find out how well a previ-
ous detection fits a new detection and use this information to track objects. When
there are multiple objects the objective is instead to find the best possible associ-
ations between previous detections and new detections. This is analogous to the
classical problem of a few workers with different salaries and skills completing a set
of tasks. Mathematicians often introduce the subject of optimization with this prob-
lem. Assuming that there are n workers and an equal amount of tasks one can start
by testing every possible combination of workers and calculate how well the overall
work is performed. Solving this problem is O(n!), this can be observed in fig. 3.8.

(A) Assignment option 1 (B) Assignment option 2

FIGURE 3.8: Two steps in viewing all possible assignments of three
nodes to three other nodes. The red link is locked and in fig 3.8a and
3.8b the options for the other two links are displayed. The rest of
the combinations can be found by moving the red link between all

possible combinations.

18 Chapter 3. Theory

This will be a large problem to solve when the two sets grow in size. A better al-
gorithm to solve this problem is the Kuhn-Munkres algorithm or, as it is sometimes
called, the Hungarian algorithm [25]. This algorithm reduces the time complexity to
polynomial time O(n4) and has later been modified to run in O(n3) [26].

The actual implementation is easiest to understand when using a matrix to represent
the different costs of using a worker for a particular job. This yields a cost matrix as
in tbl. 3.1.

TABLE 3.1: Cost matrix for three workers getting assigned to three
tasks with cij being the cost for the assignment.

t1 t2 t3
w1 c11 c12 c13
w2 c21 c22 c23
w3 c31 c32 c33

To find the optimal assignment one uses the following steps on the matrix in tbl. 3.1
[25]:

1. Subtract the smallest entry in each row from all entries in that row.

2. Subtract the smallest entry in each column from all entries in that column.

3. Draw lines through the rows and columns so that each zero is covered while
using the least amount of vertical and horizontal lines possible.

4. Evaluate whether the algorithm is finished: If the minimum amount of lines
used is the same as the amount of tasks and workers, in this case n = 3, one
can optimally assign each worker to a task which corresponds to a zero entry.
If the minimum amount of lines is less than n the algorithm is not complete.

5. Find the smallest entry not covered by any line, subtract this number from each
uncovered row and add it to each covered column. Return to step 3.

The addition and subtraction from each column/row will not change the optimal
solution and the algorithm is constructed to find zeros in each column/row. Each
iteration of the algorithm will yield a reduced cost matrix with at least one zero in
each column. The logic behind using the least amount of lines to cover the zeros is
that if one uses less than the amount of rows and columns there can be a situation
where the order of assignment affects the outcome. To avoid this the algorithm it-
erates until the minimum amount of lines required is equal to the amount of rows.
This ensures that each row can be assigned regardless of other assignments.

Tracking Adaptation

In order to utilize this algorithm for tracking the workers and tasks in the previ-
ous segment is replaced by detections in different frames. The cost of assigning one
detection to another is in this thesis calculated using the distance between two detec-
tions. Solving the algorithm for each frame with the new detections getting assigned
to the previous will then provide the best matching depending on their respective
positions.

3.3. Object Tracking 19

There are however a few downsides, it cannot be guaranteed that each pedestrian
will be detected in each frame due to occlusion and detector noise. Since the al-
gorithm demands that each detection is assigned to another detection regardless of
distance, if no other option is available. This uncovers another problem, the algo-
rithm demands equal amounts of detection in every frame, if there are more in any
one frame there will be detections with no assignment.

To proficiently use the Hungarian algorithm there needs to be a possibility of new
people entering and people exiting the video sequence. We will start to solve this by
naming each detection in an earlier image a track. A new detection can be assigned
to an old track, or it can initialize a new track. There is a possibility for a track not
to be assigned any detection. This is achieved by adding dummy detections and
dummy tracks. The dummy detections represents a track not receiving any new
node and a dummy track represents a node starting a new track. Assuming that
there are two existing (t1 and t2) tracks and three new detections (d1, d2 and d3), the
dummy nodes (Dt1 and Dt2) can be found in the rightmost columns and the dummy
tracks (Td1, Td2 and Td3) can be found in the bottom rows in tbl. 3.2.

TABLE 3.2: Cost matrix for three detections getting assigned to two
tracks with cij being the cost for the assignment, Cua is the cost for a
track to be unassigned and Cnt is the cost of a detection spawning a

new track.

d1 d2 d3 Dt1 Dt2
t1 c11 c12 c13 Cua inf
t2 c21 c22 c23 inf Cua

Td1 Cnt inf inf 0 0
Td2 inf Cnt inf 0 0
Td3 inf inf Cnt 0 0

When the algorithm is finished the result will be that all tracks, detections, dummy
tracks and dummy detections will be assigned. The case when a dummy track is
assigned to a dummy node yields no action. Otherwise either a detection starts a
new track or is assigned to an existing one and a track either receives a new detection
or it does not.

Kalman Filter Extension

It can be beneficial to let tracks continue to live on even when they receive no new
detections. This can be used to lower the effect of occlusion, missed and noisy de-
tections. In order to achieve this, Kalman filtering is used. As described in sec. 3.3.3
a Kalman filter can be used as an estimator for both position and velocity where we
update the filter with the measurements assigned to the specific track. With correct
tuning, this filter can approximate the continued movement of a pedestrian. If a
track’s predicted position is used there will be a better chance of finding the correct
matches when the Hungarian algorithm is applied, see fig. 3.9.

20 Chapter 3. Theory

FIGURE 3.9: The detections in two time steps and the predictions
from the Kalman filter in t2. We can see that it is much easier to match
the detection in t2 to the prediction in t2 than matching the detection

in t2 and the detection in t1.

Pruning

If a track stops being assigned new detections it is likely that there is no pedestrian
which matches the track. The removal of these tracks is called pruning and is done
by considering when a filter last was matched to a detection and how many detec-
tions it has been matched to in a set amount of frames. This is a tuning parameter
which is connected to the robustness of the detector and how the Kalman filters are
tuned.

3.3.5 Graph Representation of the Association Problem

When extending the idea of the Hungarian method to allow for an increased tem-
poral length there needs to be a framework in place to associate detections from
multiple frames. Graph theory can be used for this. The graph is created as a set
of nodes, detections, with edges between each node which is a measure of the prob-
ability that the two detections are of the same object. Depending on the method,
one can use hard constraints to limit the possible connections. Two commonly used
constraints are that two simultaneous detections or two detections which does not
match with regards to position and velocity cannot be the detections of the same
object. By associating disjoint edge paths, i.e. paths which does not share any nodes,
in the graph with trajectories of objects one can now partition the graph to track ob-
jects movement. Nevatia et al. pioneered this method and solved this problem as a
min-cost flow optimization problem [27].

There are two leading methods today which are based on graph theory for multi
object tracking. The GMMCP-tracker developed by Dehghan, Assari and Shah [28]
is based on using each frame as a cluster of objects and selecting one node from each
cluster to form an optimal short track (tracklet). The tracklets will then be connected
to longer tracks by using the same algorithm again. The closely related paper Track-
ing Multiple People Online and in Real Time by Ristani and Tomasi [29] is used as basis
in this thesis. They also solve the problem in stages by finding tracklets which they
later connect to larger tracks. The algorithm defines a few conditions which enables
the algorithm to use graph partitioning for tracking. A sliding temporal window is
also used which allows the algorithm to observe a subset of the information from a
full video sequence. This allows the algorithm to be used in almost real-time speed.

3.3. Object Tracking 21

Both algorithms presented have promising attributes but neither of the algorithms
are causal and both focus on the global, in time, association problem. This means
that they are developed to follow pedestrians and keep unique identities for each
pedestrian over a long video sequence. In this thesis there is little use for a global
solution and instead a local solution to extract position and velocity of a pedestrian is
more useful. Even if both mentioned algorithms can be executed fast they cannot be
used in their current state in this project. As stated before we chose the algorithm by
Ristani and Tomasi as a basis for this work because of the sliding temporal window.
The window feature makes the algorithm promising for conversion into a causal
algorithm which find local optimal solutions.

Algorithm Overview

The actual implementation of the graph solution consists of the following steps:

1. Create a graph and assign egdes between the correct nodes.

2. Calculate the weights corresponding to each edge i.e. find how likely it is that
two detections belong to the same object.

3. Set up conditions to ensure that the solution will provide useful information
for track generation.

4. Solve the graph partitioning problem.

5. Use the solution to create tracklets and tracks.

The different weights can be calculated in many different ways and in this thesis
they are calculated based on the distance, d, between the centers of the bounding
boxes and a tuning parameter, α,

w = 1− d

α
.

This weight, w, can become negative which together with 3.19 keeps tracklets from
containing detection from multiple people. This becomes more prominent when the
weight uses information of velocity, bounding box size and color histogram. A way
to partition the graph is to solve the Binary Integer problem in eq. 3.17 and the
constraints in eq. 3.18 and eq. 3.19 ensures that the solution is non trivial.

argmax
X

∑

(u,v)∈E
wu,vxu,v (3.17)

subjected to the constraints

xu,v ∈ 0, 1 ∀(u, v) ∈ E (3.18)

xu,v + xu,w ≤ 1 + xv,w ∀(u, v)(u, z)(v, z) ∈ E (3.19)

X is the set of all the binary variables xu,v which decide whether an edge is "active" or
not. u, v are two nodes in the graph, wu,v is the weight assigned to the edge and xu,v
is the parameter which is either 0 or 1 depending on if the edge is "active" or not. At
a glance one might be inclined to think that the optimal solution is to set all xu,v = 1
for which wu,v are positive and 0 when they are negative, however the constraint in

22 Chapter 3. Theory

eq. 3.19 prevents this. The constraint states that if detection u is connected to v and
v is in turn connected to z, then u must also be connected to z. The sum of their
independent weights is what will determine if two or three nodes will be connected
or not.

Another constraint which is placed on the system is that each node can only be con-
nected to a maximum of one node in the previous frame and one node in the next
frame. This ensures that the result only contains disjoint edge paths.

After each iteration, the oldest layer is thrown away and a new one added. We can
then use the previous solution as a starting point to solve the algorithm faster.

Track Generation

The graph partitioning will provide a set of edges which connect detections between
a set of frames. These edges are then translated into tracklets with 2-3 detections.
These tracklets provide both a direction and an estimated speed of the object.

One can then assign these tracklets to tracks for a more stable direction and speed
estimate. It is also much easier to see that two tracklets, separated with multiple
time frames belong together, see fig 3.10.

FIGURE 3.10: Using tracklets it is easier to match two objects with
occluded detection to their correct new detections.

When assigning tracklets to tracks there are multiple approaches. One can try to
match each new tracklet to an old track. If the tracklet does not share any part with
an existing track or tracklet it will form the start of a new track. One can also link
tracklets with the Hungarian method in sec. 3.3.4. These more simplistic ways of
constructing tracks have a few flaws. They are unable to handle missing detections
or occlusions. Another issue is that if this problem is solved in each time step there
could be ambiguities in the tracks, i.e. two tracklets which contain some of the same
nodes are assigned to different tracks. A way to solve this is to only assign tracklets
to tracks after a full tracklet length in time. This would mean that no ambiguities
will arise and there will be no issue of how to arrange the layers in the graph.

When waiting for a full tracklet before assigning to tracks there will be better di-
rection and speed estimation which can be used in the same general outline of the

3.3. Object Tracking 23

above algorithm. This means that a new graph can be created with tracklets as nodes
instead of detections and velocity as an added parameter. This can be repeated in
order to achieve global tracks of peoples movement [29].

Causal Adaptation

In order to associate tracklets the algorithm becomes non-causal since it uses in-
formation from the entire sliding temporal window in order to associate tracklets
optimally. This means that in order to find an optimal association one needs to de-
lay the output at least the selected length of time of the temporal window, which
in Ristani and Tomasi’s [29] implementation is too long to be considered real-time
viable. This leaves two options, either redo the association with each new frame or
hold the output long enough for a good velocity estimate to be made. In both cases
the temporal window is reduced to a length which allows for real-time application.

There are pros and cons with each method. If the association is done with each
new frame there is little information to be extracted from new detections and the
higher order associations will not provide any new information. Ambiguities in
track generation can also occur if there are missed detections and a tracklet is created
with different containing nodes in consecutive frames. This means that a node can
in one frame be assigned to a tracklet and in another frame be assigned to a different
tracklet.

If however the output is held until at least an entire tracklet can be created there
cannot be any ambiguities and the tracklets can be associated to already created
tracks in a more robust way. This introduces the clear drawback of having a delayed
output.

3.3.6 Multi-Object Recursive Bayesian Estimation

An alternative to the explicit data association performed in both sec. 3.3.4 and sec.
3.3.5 is using Bayesian probability for the association as well. This section begins
with an introduction to multi-object recursive estimation as opposed to the previ-
ously described single-object recursion described in sec. 3.3.3. This is followed by a
special case of the multi-object Bayes filter, the Probability Hypothesis Density Filter
and its Gaussian Mixture adaptation. The Gaussian Mixture PHD filter can be seen
as a generalization of the Kalman filter in sec. 3.3.3 to multiple objects. This section
is, in large, a summary of the work by Vo et al. [30].

Multi-Object Bayes Filter

The number of observations in a multi-object system may vary due to the number of
targets currently being tracked. There is also the possibility of a target not generating
a measurement (i.e. a pedestrian not detected) and the possibility of false detections.

Let xk,i ∈ X denote the state of the i:th target at time k where X is the possible
states and zk,i ∈ Z denote the i:th measurement at time k where Z is the possible
measurements. One can represent the states and observations at time k as finite sets:

Xk = {xk,1, ..., xkN(k)
} ∈ F(X)

24 Chapter 3. Theory

Zk = {zk,1, ..., zkM(k)
} ∈ F(Z)

where N(k) and M(k) denoted size of the sets Xk and Zk at time k. F(X) and F(Z)
denotes the possible collections of finite subsets of X and Z .

The states and observations from different time steps might have different cardinal-
ity (size of the set), also, the ordering is not fixed. This means that comparing the sets
from different time steps cannot be done in a trivial manner e.g. Euclidean distance.

The solution for this is to use random finite sets (RFS) [31]. A random finite set is a
random variable which takes values of unordered finite sets, where the number of
sets (cardinality) and their values are random according to some distribution.

The Random Finite Set theory enables the Bayesian filtering approach to be used.
The advantage of this is that all information from previous measurements are taken
into account in the posterior density without the need for explicit data association.

With the use of RFSs the multi-object Bayes recursion is given by

πk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|X)πk−1(X|Z1:k−1)µ(dX), (3.20)

πk(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)πk|k−1(X|Z1:k−1)µ(dX)

, (3.21)

where µ is an appropriate measure of F (X), since standard Euclidean distances can
not be used. For information about µ the reader is referred to chapter 2.2.2 in Random
finite sets in multi-object filtering [23]. The above prediction and update step should
be compared with eq. 3.7 and eq. 3.8, fk is the Markov transition density from eq.
3.4 and gk is the likelihood function from eq. 3.5.

One disadvantage of multi-object Bayes recursion (eq. 3.20 and eq. 3.21) is that it
is infeasible for many objects. This is due to all the possible combinations of mea-
surements Z1:k−1. A solution for this is to only propagate the first moment (mean)
of the posterior, the intensity distribution. The intensity contains information about
the expected number of targets in the region.

For a RFS X in X the first moment measure (or intensity measure) V for any B ∈ X
is

V (B) = E[|X ∩B|].
In some cases V(B) can be expressed as

V (B) =

∫

B
v(x)dx

and then v : X → [0,∞] denotes the intensity function. The intensity function de-
scribes the density of the targets over the state space and can therefore be used to
find the expected number of pedestrian in a region by integration.

Probability Hypothesis Density Filter

To enable tracking of multiple objects, approximations to eq. 3.20 and eq. 3.21
are necessary. Probability Hypothesis Density (PHD) Filter achieves this by only

3.3. Object Tracking 25

propagating the first moment of the posterior distribution, or the posterior intensity.
Meaning that the new measurements are only associated with the approximation of
the posterior distribution, reducing the computational complexity [32].

The following assumptions are made about the measurements:

• The measurements originating from targets are independent of each other.

• The targets move independently of each other.

• Birth targets (i.e. new objects originating) are modelled as a Poisson distributed
RFS which is independent of the surviving target RFS. This is referred to as the
birth RFS.

• The clutter is modeled as a Poisson distributed RFS which is independent of
the measurements generated from the targets.

• The predicted multi-object RFS is also modelled as a Poisson distribution and
so is the posterior RFS.

Note that these assumptions do not generally hold for pedestrians thus possibly
affecting the performance of the filter. The PHD recursion is then described by

vk|k−1(xk) =

∫
pS,k(xk−1)fk|k−1(xk|xk−1)vk−1(xk−1)dxk−1 + γk(xk), (3.22)

vk(xk) = (1− PD,k(xk))vk|k−1(xk) +
∑

z∈Zk

pD,k(xk)gk(z|xk)vk|k−1(xk)
κk(z) + 〈pD,kgk(z|·), vk|k−1〉

, (3.23)

where vk|k−1(xk) denotes the predicted intensity (cf. eq. 3.20) and vk(xk) denotes
the updated posterior intensity (cf. eq. 3.21). 〈·, ·〉 denotes scalar product. PD,k(x)
denotes the detection probability, PS,k the survival probability and κk a clutter coef-
ficient. These parameters should be tuned to match the targets interaction with the
detector. γk is the birth distribution and can be used to model where new objects are
most likely to be born, or chosen uniform depending on circumstance.

Gaussian-Mixture Probability Hypothesis Density Filter

Like the Kalman filter, a closed form solution to the GM-PHD filter is possible if the
following conditions are assumed

• The target propagates according to eq. 3.9 and eq. 3.10.

• The survival probability PS and detection probability PD are state indepen-
dent, in practice these are constants tuned to work with the detector.

• The birth RFS intensity can be represented using Gaussian mixtures,

γk(x) =

Jγ,k∑

i=1

w
(i)
γ,kN (x;m

(i)
γ,k, P

(i)
γ,k) (3.24)

26 Chapter 3. Theory

where Jγ,k is the amount of Gaussian mixtures components used to represent
the birth distribution, w(i)

γ,k the initial birth weight, m(i)
γ,k the initial state and

P
(i)
γ,k the initial covariance. In practice the distribution can be tuned to fit where

pedestrians are likely to enter the frame but also chosen fairly uniform by using
high covariance.

If the updated (posterior) intensity is represented as a Gaussian Mixture,

vk−1(x) =

Jk−1∑

i=1

w
(i)
k−1N (x;m

(i)
k−1, P

(i)
k−1),

with Jk−1 the number of Gaussian mixture components then the predicted intensity
at time k is also a Gaussian Mixture

vk|k−1(x) = vS,k|k−1(x) + γk(x).

Where the birth distribution γk(x) is given by eq. 3.24 and the survival distribution
vS,k|k−1(x) is given by

vS,k|k−1(x) = pS

Jk−1∑

j=1

w
(j)
k−1N (x;m

(j)
S,k|k−1, P

(j)
S,k|k−1).

The state prediction of the predicted targets is given by

m
(j)
S,k|k−1 = Fk−1m

(j)
k−1. (3.25)

The error covariance matrix for the predicted target is given by

P
(j)
S,k|k−1 = Qk−1 + Fk−1P

(j)
k−1F

T
k−1. (3.26)

Compare prediction eq. 3.25, eq. 3.26 with eq. 3.14 and eq. 3.15, which are identical
update steps.

Assuming the listed assumptions hold then the predicted intensity is now a Gaus-
sian mixture and can be represented on the form

vk|k−1(x) =

Jk|k−1∑

i=1

w
(i)
k|k−1N (x;m

(i)
k|k−1, P

(i)
k|k−1).

The update step is then also a Gaussian mixture, given by

vk(x) = (1− pD)vk|k−1(x) +
∑

z∈Zk
vD,k(x; z),

with the first term representing the distribution of previous targets (with a decreased
weight) and the second term the old targets (or rather target distribution) associated

3.3. Object Tracking 27

with new measurements.

vD,k(x; z) =

Jk|k−1∑

j=1

w
(j)
k (z)N (x;m

(j)
k|k−1(z), P

(j)
k|k)

is a also a Gaussian Mixture where each new measurement is essentially providing
PD in total weight. The weight wk(z) is spread out so that the most probable asso-
ciation gets more weight according to a normal distribution (assuming the clutter
coefficient κk is small)

w
(j)
k (z) =

pD,kw
(j)
k|k−1q

(j)
k (z)

κk(z) + pD,k
∑Jk|k−1

l=1 w
(l)
k|k−1q

(l)
k (z)

.

The probability of an association between an old target (or rather Gaussian mixture
component) and a new measurement is now determined using the same update for-
mulas as for the Kalman filter (sec. 3.3.3) and rewritten here for completion with
regards to indices

q
(j)
k (z) = N (z;Hkm

(j)
k|k−1, Rk +HkP

(j)
k|k−1H

T
k),

m
(j)
k|k(z) = m

(j)
k|k−1 +K

(j)
k (z −Hkm

(j)
k|k−1),

P
(j)
k|k = (I −K(j)

k Hk)P
(j)
k|k−1,

K
(j)
k|k = P

(j)
k|k−1H

T
k (HkP

(j)
k|k−1H

T
k +Rk)

−1.

The derivation of the closed form solution of the Gaussian Mixture PHD filter can
be found in Random finite sets in multi-object filtering [23].

State Extraction

Integrating over the intensity function gives the number of targets, n, currently
tracked. There will be a small positive bias due to the birth RFS which is initialized
with small weights and kept with probability (1−PD) if no observation is matched.
When representing the intensity function as a Gaussian Mixture one can extract the n
components with largest weight and consider them as targets. In The Gaussian Mix-
ture Probability Hypothesis Density Filter [30], the authors recommends extracting all
Gaussian mixture components with a weight larger than 0.5 since it is likely to be a
real target. If more than one target is in one location the weight will be larger propor-
tionally to the amount of targets and the component should be extracted more than
once. This is generally easier than integrating over all the Gaussian components in
the the intensity function.

28 Chapter 3. Theory

FIGURE 3.11: Illustration of merge and death events, with new de-
tections marked X. At t1 two targets (a,b) are tracked. At t2 the two
targets still exist but with a decayed weight wt2 = wt1(1−PD). Addi-
tionally, two new detections are found (c,d). The top detection (c) is
very close to the prediction of the old target (a) so a new component
(a,c) with a high weight is created and merged with the old target due
to the similarity between the states. The bottom detection (d) is how-
ever far away from the old target (b) which subsequently dies at time
t3 as a result of a truncated weight. Similar processes are repeated in

t3.

Managing the Components - Merging and Pruning

Since each new measurement is associated with each old target a lot of new Gaussian
mixture components are created. If one does not manage the components by remov-
ing unnecessary ones and merging components with similar states the number of
components will approach infinity.

The associations with low probability are assigned a low weight. If the weight is
below a truncation threshold it should be deleted. See fig. 3.11 for both a merge and
a death event. Next the distance between each state should be determined. If the
distance between the states is lower than a distance threshold they are merged. The
distance d is calculated by

d = (m
(i)
k −m

(j)
k)T (P

(i)
k)−1(m(i)

k −m
(j)
k),

where the index j denotes the component with largest weight in the current set and
i the index of the component to be compared to. Merged components are removed
from the current set and a new index j is selected by finding the largest remaining
component. The merged weight, state and covariance matrix are calculated accord-
ing to

w̃k =
∑

i∈L
wk,

m̃k =
1

w̃k

∑

i∈L
w

(i)
k m

(i)
k ,

3.3. Object Tracking 29

P̃k =
1

w̃k

∑

i∈L
w

(i)
k (P

(i)
k + (m̃k −m(i)

k))(m̃k −m(i)
k)T ,

where L is the set of all weights within the distance threshold. It is also possible to
specify a maximum capacity i.e. the maximum number of components kept. This is
done by keeping the components with the highest weight.

31

Chapter 4

Methodology and Implementation

4.1 System Setup

The system setup consists of an object detector, a tracking algorithm and a door con-
troller as can be seen in fig 4.1. There are other components used when performing
tests which are explained later in the report.

FIGURE 4.1: Main pipeline for image processing and door control.
The project is focused around the components in "Main system" with

added components for tests and evaluation.

4.2 Software

• Python – The project is primarily implemented in the programming language
Python as many robust image analysis and mathematical toolboxes are avail-
able.

• Swig – Software development tool to wrap c/c++ code for usage in Python
[33].

• OpenCV – Open source computer vision library available for both c/c++ and
Python [34].

• Gurobi – An optimization tool for Linear and Quadratic programming along
with Mixed Integer programming and constrained versions of each optimiza-
tion type [35]. In this project Gurobi is used for the algorithm in sec. 3.3.5.

32 Chapter 4. Methodology and Implementation

4.3 Camera Setup

4.3.1 Camera Setup

In order evaluate our complete system in different situations it was necessary to
record our own dataset. This was done using an Axis M3046-V network camera.

We decided to mount a camera centered above the door with an angle that exposes
as much of the pedestrians as possible, see fig. 4.2. Depending on the height of the
camera mount we are then able to see pedestrians further away. Because of this a
tall door is better for a larger field of view and therefore yields more time to reliably
track the pedestrians.

FIGURE 4.2: The chosen camera placement with depicted observable
and unobservable areas due to camera selection and placement. Note

that the camera is mounted at an angle.

Mounting the camera close to the door has the advantage that the camera mount is
more agnostic to the surrounding environment. Cables can be shorter and the power
supply can be the same as for the automatic door. There are however advantages of
mounting the camera away from the door. Assuming there is a ceiling to mount the
camera in, one would get a top view of the pedestrians from which the positions and
velocity could be easier to estimate. Assuming there is a wall perpendicular to the
door one could mount the camera there and get a good estimate of the y-position,
which could be useful in a corridor setting.

The selection between using a mono or stereo vision setup was not obvious. Stereo
vision cameras has the advantage of seeing depth which would give valuable 3D-
information. It does however come with extra cost and possible complexity so there-
fore we decided to limit ourselves to mono vision cameras. The reasoning is that if
the camera is mounted at an angle which provides enough top-view the position in
the room coordinates should be available in the image, see fig. 4.3.

4.4. Pedestrian Detection 33

FIGURE 4.3: The 2D image projection of the 3D world. In this work
only the x- and y- coordinates are of interest. The hypothesis is that a
persons position and velocity can be estimated form a set of consecu-

tive images.

Multiple cameras can also be utilized to cover both the unobservable areas in fig. 4.2
and help find a good estimation of the correct velocity as presented in fig. 4.3. In
this project we decided to use one camera with a very wide lens in order to reduce
complexity introduced by image stitching and camera calibration.

The velocity of a pedestrian is calculated from a video sequence in the unit pix-
els/second. This velocity is in the image coordinate space rather than the room
coordinates, see fig. 4.3.

The camera used has a vertical field of view of 72◦ and a horizontal field of view of
128◦. Increasing the field of view allowed the system to track a pedestrian further
away and minimizes dead zones. A disadvantage is however that the image is rather
warped in the edges of the image.

When pedestrians are under the camera it gives a top view of them. While this pro-
vides a better position estimate it does have the disadvantage of making detections
harder since less of the human features are visible. This can in future work be miti-
gated by using detectors specifically for this purpose in these areas.

4.4 Pedestrian Detection

In this section we will present how the theories presented in sec. 3.1 are imple-
mented. Although minor attempts were made to train our own detectors, pretrained
detectors performed better and were therefore used in the implementation.

4.4.1 Deformable Parts Model Based Detector

The Deformable Parts Model based detector implementation in OpenCV was used.
It is a shallow learning algorithm designed to handle the different poses of a pedes-
trian. The detector was trained on the INRIA data set [36]. A way to increase perfor-
mance is to feed the detector the same image in different angles.

As this algorithm is only available in the C/C++ version of OpenCV it was imple-
mented with a Swig wrapper to work in Python.

34 Chapter 4. Methodology and Implementation

4.4.2 Aggregated Channel Features Based Detector

An ACF based detector implementation trained on the INRIA dataset [36] can be
found in the author P. Dollar’s MATLAB toolbox 1. The C++ implementation of the
ACF framework that we used can be found here 2. The default threshold of 50 was
lowered to 20 to increase the recall, see sec. 4.9, of the detector. A way to increase
performance is to feed the detector the same image in different angles.

4.4.3 Convolutional Neural Network - YOLO

Source code for YOLO is available together with the open source neural network
framework Darknet 3. Networks trained on MS COCO [37] and VOC Pascal 2007+2012
[38][39] are available as both full-size models and smaller faster models with the
name Tiny YOLO. To run the detectors on our dataset we took advantage of the
Amazon Elastic Compute Cloud since a high-end GPU is required to run the de-
tector at reasonable speeds. The detections are saved to textfiles and later read by
Python for evaluation. Only objects classified as persons where used.

4.5 Moving Object Detection

Another approach to track objects and estimate velocities is to make use of back-
ground subtraction and optical flow as described in sec. 3.2.1 and sec. 3.2.2. Since
both methods use temporal information they provide an interesting comparison to
using an object detector. Especially optical flow methods have the advantage that ve-
locity can be extracted and therefore provide additional information for the tracker.

First, a foreground mask is extracted using background subtraction. Feature points
are randomly assigned to foreground pixels and tracked backwards in time using
the Lucas-Kanade [22] optical flow algorithm in OpenCV. The number of feature
points used is chosen proportional to the mass of foreground pixels.

Clustering using the algorithm Density-Based Spatial Clustering of Applications
with Noise, DBSCAN [40], is then performed on both the position and velocity of the
feature points. The implementation of DBSCAN in scikit-learn [41] is used. Clusters
with few points are discarded, effectively filtering outliers. The mean position and
velocity of the points in each cluster is then calculated and used as an input to the
Hungarian-Kalman tracker.

1P. Dollar, Piotr’s Image & Video Matlab Toolbox, (2016), GitHub repository, https://github.
com/pdollar/toolbox

2Andrea Pennisi, The Fastest Pedestrian Detector in the West, (2017), GitHub repository, https:
//github.com/apennisi/fastestpedestriandetectorinthewest

3J. Redmon, Darknet, (2017), GitHub repository, https://github.com/pjreddie/darknet

4.6. Object Tracking 35

4.6 Object Tracking

4.6.1 Hungarian Algorithm

The tracker was implemented in Python with the Munkres implementation in pypi
as the Hungarian solver. To use the calculated associations a Kalman filter was
implemented after the standard Kalman equations described in sec. 3.3.3 and the
weights were generated by calculating the L2-norm for the distance between dif-
ferent bounding box midpoints. The tuning of the tracker includes tuning of the
Kalman filter, the pruning rules, the weight generation, the costs for tracks not re-
ceiving new detections and the cost of spawning a new track.

4.6.2 Graph Partitioning Algorithm

The implementation of this algorithm was done in Python, and was based on the
work of Ristani and Tomasi [29]. The graph framework consisting of nodes, edges
and iteration methods used is a software package for python called Networkx [42].
As stated in sec. 3.3.5, the optimization is done with the Gurobi module, see sec.
4.2. Tuning of this tracker included tuning of the weights used, track generation and
velocity estimation method.

4.6.3 Probability Hypothesis Density Filter

The PHD filter was implemented in Python. The reference implementation by Dan
Stowell 4 inspired by the pseudo code from The Gaussian Mixture Probability Hypothe-
sis Density Filter [30] was modified to fit our needs. The center of the bounding boxes
are used as position measurements. The tuning of this tracker includes tuning of the
filters, birth and clutter distributions, detection and survival probabilities.

4.7 Door Controller

In order to determine if the door should open, the output from the tracker has to
be processed. The component responsible for this is the door controller. It is de-
signed as an activation trigger with regards to the current position and velocity of
the tracked targets. The component in this work uses the predicted future position
together with a set of binary rules to trigger an activation.

In order for the entrance system to perform its task well the controller should:

• Predict an object trajectory and open accordingly.

• Identify and ignore traffic not intending to pass through the door.

• Identify slow moving objects close to the door for which a future position is
hard to predict and act accordingly.

• Handle multiple moving objects.

4D. Stowell, GM-PHD filter implementation in Python, (2013), GitHub repository, https://
github.com/danstowell/gmphd

36 Chapter 4. Methodology and Implementation

The controller is implemented in Python as the last component which should com-
municate with a door.

How far in time the pedestrian trajectory should be predicted depends on the time it
takes for the door to open, in our experiments we have assumed it takes two seconds
unless stated otherwise. In the optimal case the target is tracked before the door has
to open. When the predicted position and velocity is within a defined interval the
controller opens the door, see sec. 4.7.1.

In order to predict position we assume movement with constant velocity and the
controller can then employ linear extrapolation from the position and velocity.

4.7.1 Activation Trigger

The controller triggers an open signal when the predicted pedestrian position is be-
yond the door but within the door frame when entering, see fig. 4.4. This is designed
to ignore cross-traffic (see fig. 4.6) and open for pedestrians heading for the the door.

If an object moves very close to the door and stops e.g. when entering the camera
view from the side and only generating velocity parallel to the door, the activation
method described above will not open the door. This was observed in preliminary
tests and in order to improve the controller, a proximity zone was assigned to the
door, see fig. 4.4. Within the proximity zone pedestrians with low velocity will
trigger a door activation as they are assumed to be heading through the door.

FIGURE 4.4: Top view of door with tracker and controller output.
If the predicted position of a pedestrian is past the door and inside
the door frame when crossing the door, the door should open. The
pedestrian to the left is not predicted to end up within the door frame
and therefore the door will not open. The pedestrian on the right is

predicted to walk through the door which therefore should open.

4.8. Datasets 37

4.8 Datasets

4.8.1 Dataset Construction

In order to evaluate the performance of the different trackers a custom data set was
required. This dataset was divided into categories depending on the type of move-
ment:

• SM - Straight movement towards the door, see fig. 4.5

• SA - Straight movement from an angle, see fig. 4.5

• CT - Cross traffic i.e. not heading for the door but instead walking past it, see
fig. 4.6

• TU - Pedestrians not heading for the door, turning, then entering the door, see
fig. 4.6

FIGURE 4.5: Approach directions when the pedestrians are following
a straight path. The trajectory in the middle is labeled SM and the

other trajectories are labeled SA.

FIGURE 4.6: Cross-traffic is defined as motion approximately parallel
to the door and perpendicular to the door opening. It is used to de-
scribe a situation where the pedestrian walks past the door with no
intent of entry. The "Sharp turn" action of a pedestrian is difficult to

predict due to its similarity with cross-traffic

The first categories, SM and SA, are aimed at capturing predictive behavior with
pedestrians moving at different velocities. The CT category was used to see how
well the system can identify pedestrians which are not headed for the door. When
pedestrians turn towards the door there is little time to find a good velocity estimate,

38 Chapter 4. Methodology and Implementation

this is captured in the TU category. Some of the videos feature occlusions which is
normal in the dynamic environment in front of a door.

The data set consists of 84 annotated clips distributed over the categories above. 32
extra clips were annotated specifically for training i.e. tuning of the trackers, detec-
tors and controller.

4.8.2 Annotation

Two kinds of annotations were necessary; bounding box annotation and open time
annotation. Both annotations are aimed to be used to evaluate the systems perfor-
mance.

Open Time Annotation

The open time annotation consists of determining the shape of the region of interest
in front of the door and in determining when in the video sequence the door should
be open. A pedestrian can make one of two types of entries, a predictable or an
unpredictable. A straight entry is a good example of a predictable entry. This type is
annotated so that an open signal should be sent a fixed time interval before the entry
is made. This fixed time is set to two seconds and is evaluated in later sections, see
fig. 4.7. An example of an unpredictable entry is a sharp turn, see fig. 4.6. The
annotation in this case is done so that as soon as there is movement towards the
door it should open, see fig. 4.7.

Box Annotation

The ground truth annotation is done with the help of OpenCV and an annotation
script in Python.

The user first suggests a person and the KCF-tracker in OpenCV is used in an at-
tempt to follow the person through the video sequence. This is done so that the user
does not have to manually annotate each frame. The tracker is not very stable and
has trouble with drifting and changing the size of the bounding box. As a conse-
quence the user will have to re-do the bounding box when needed. This can lead to
induced velocities for objects and unreliable bounding box features. The most reli-
able features extracted from ground truth is the bounding box center which is used
by all trackers.

4.9 Evaluation

This thesis is focused on the tracking performance which therefor is the primary
evaluation point. The normal way of measuring a trackers performance is to mea-
sure how well it can keep the identity of pedestrians in a video sequence, this re-
quires a well annotated data set with exact identities and bounding boxes for each
person. That kind of data set is available in the public space but not with the angle
and behavior which are relevant for this work. In order to remove the need to an-
notate a data set with exact bounding boxes and person identity the scoring in this

4.9. Evaluation 39

FIGURE 4.7: Entries are divided into unpredictable and predictable.
Unpredictable is when the pedestrian turn towards the door unex-
pectedly. Predictable is when a pedestrian can be assumed to pass
through the door and the open time annotation is set to a predeter-

mined time before entry.

work is instead based on how well the entire system can open a door. This is done
with the open time annotation in sec. 4.8.2.

Evaluation Metrics

The dataset is annotated with each frame having a true state, open (Positive, P) or
closed (Negative, N). The implemented system provides an output signal, open or
closed, which is compared to the ground truth of the dataset. The output signal is
labeled true if it is correct and false if it is wrong. The possible labels for an output
are True Positive (TP), False Negative (FP), True Negative (TN) or False Negative
(FN).

The different metrics used to evaluate the performance are listed below.

The Recall - The fraction of the frames labeled open, P, which was correctly classified,
TP. Defined as

Recall =
TP

TP + FN
=
TP

P

The Precision - The fraction of the total amount of times the system output an open
signal, TP + FP, and it was correct, TP. Defined as

Precision =
TP

TP + FP

The F1 Score - This score is a good way to combine the precision and recall since both
often should be optimized. The F1 score is the harmonic mean of the precision and
recall. It is defined as

F = 2 · Precision · Recall
Precision + Recall

40 Chapter 4. Methodology and Implementation

The Accuracy - This is the fraction of correct predictions, TP + TN, divided by the
total amount of predictions, P + N. Defined as

Accuracy =
TP + TN

TP + TN + FP + FN
=
TP + TN

P +N

The True Negative Rate, TNR - The fraction of the frames labeled closed, N, which was
correctly classified, TN. Defined as

TNR =
TN

TN + FP
=
TN

N

41

Chapter 5

Results

5.1 Pedestrian Detection

The detector that stands out the most is the YOLO detector trained on the MS COCO
dataset. By inspecting the videos it is clear that there are very few situations for
which the detector fails to find the pedestrians. In fig. 5.1a we can see the perfor-
mance of both versions of the YOLO detector. The YOLO detector trained on Pascal
VOC 2007 and 2012 datasets performed slightly worse and failed to detect the pedes-
trians in many frames. It specifically struggled with pedestrians located under the
camera, see fig. 5.2. The Tiny-YOLO detector trained on Pascal VOC 2007 and 2012
datasets had problems with both detection and localization of objects i.e. there was
a lot of variation in bounding box size which confused the trackers. The Tiny-YOLO
version trained on the COCO dataset performed similarly the YOLO version trained
on the VOC dataset.

(A) Detection performance of the
YOLO detector trained on the MS
COCO dataset in red and the VOC
version in yellow (dashed). The
performance between the two are
similar with YOLO-COCO provid-
ing slightly more accurate bounding

boxes.

(B) Detection performance of the
ACF detector in red and DPM in
yellow (dashed). The pedestrian in
the front is not detected by either
whereas the pedestrian in the back is

detected by both.

FIGURE 5.1: A subimage with the detections from both YOLO detec-
tors, the ACF and DPM based detectors.

42 Chapter 5. Results

The ACF and DPM based detectors had very similar performances but both where
outperformed by the YOLO detectors (excluding the Tiny-YOLO detector trained on
VOC). For upright pedestrians the detectors performed well but they struggled with
pedestrians far from the image center with an angle in perceived pose, see fig. 5.1b.
This issue was partly remedied by performing detections on different rotations of
the image as described in sec. 4.4.1 and sec. 4.4.2. For pedestrians below the camera
the detectors did not perform well, see fig. 5.3.

FIGURE 5.2: Detection performance of the YOLO detector trained on
the COCO dataset in red and trained on the VOC dataset in yellow.
YOLO-COCO finds both pedestrians but YOLO-VOC only finds the
left pedestrian. The detected pedestrians are well localized for both

detectors.

FIGURE 5.3: Detection performance of ACF in red and DPM in yellow
(dashed). ACF fails to find both pedestrians. DPM detects the left

pedestrian but the bounding box is not well localized.

The performance of the system using different input is presented in tbl. 5.1. The
system uses the Hungarian-Kalman tracker and is evaluated on the test set.

The DPM and ACF based detectors run at approximately 10 fps when detecting
in a single angle. YOLO runs at approximately 0.1 fps on a MacBook Pro 2012.
However, the YOLO detector is optimized to run on GPU where 20 fps was attained
on Amazon EC2 (Nvidia K80 12 GiB) instance. The Tiny-YOLO version attained an
fps of 0.5 fps on a MacBook Pro 2012 and 70 fps on the Amazon EC2.

5.2. Moving Object Detection 43

TABLE 5.1: Table with the performance of the system using the
Hungarian-Kalman tracker with input from the different detectors.
The prediction time is two seconds and the table is sorted by the F1

score.

Detector Accuracy TNR Recall Precision F1↓
Ground Truth 0.840 0.972 0.537 0.894 0.671
YOLO (COCO) 0.832 0.964 0.530 0.865 0.657
YOLO (VOC) 0.816 0.963 0.478 0.850 0.612
Tiny-YOLO (COCO) 0.808 0.965 0.448 0.848 0.587
Tiny-YOLO (VOC) 0.792 0.979 0.361 0.883 0.513
DPM based 0.764 0.931 0.380 0.707 0.495
ACF based 0.764 0.951 0.335 0.748 0.463

5.2 Moving Object Detection

Clustering reduces the noise in the optical flow vectors and the mean vectors of a
cluster gives a responsive output, see fig. 5.4. This was used as an input to the
Hungarian-Kalman tracker and required a lot less filtering compared to other track-
ers in this work.

FIGURE 5.4: Results from motion detection. The blue vectors are opti-
cal flow vectors. The red vector is the result of clustering the vectors.
Note that the pedestrian on the right does not have as many vectors
assigned to him. This is because the mask from the background sub-

traction failed to find larger parts of his body.

This approach can only distinguish between objects if they are spatially separated or
if they are heading in different directions. This was obvious from studies of videos
where pedestrians are walking side by side. Quantitative results of using moving
object detection are shown in tbl. 5.2.

44 Chapter 5. Results

TABLE 5.2: Table with the performance of the system using the
Hungarian-Kalman tracker with input from the moving object detec-

tor. The prediction time is two seconds.

Detector Accuracy TNR Recall Precision F1↓
Moving Object based 0.860 0.984 0.575 0.938 0.713
Ground Truth 0.840 0.972 0.537 0.894 0.671

5.3 Pedestrian Tracking

Visual examples of the results from applying tracking algorithms to the detection
output is illustrated in fig. 5.5. The filters are sometimes slow to estimate the target’s
initial velocity as well as when a target changes direction. As mentioned in sec. 4.3.1
the measured velocity is in image coordinate space. This resulted in objects far from
the image center getting inaccurate velocity estimates.

From manual inspection we could not determine if the increased complexity in the
GM-PHD tracker as compared to the Hungarian-Kalman tracker improved tracking
performance. More results are presented in sec. 5.4. The tracker with input from the
moving object detector performs much better during turns and have better velocity
estimations.

The graph based tracker discussed in sec. 3.3.5 was not used in the final tests. Im-
plementation problems and the required causal adaptations reduced the tracker’s
performance to the point where it could no longer be considered.

FIGURE 5.5: Output position and two second prediction from the
trackers. GM-PHD in red and Hungarian-Kalman in green (dashed)
using the ground truth detection data as inputs. The blue (dotted) line
is the output from the Hungarian-Kalman tracker using the moving
object detector as input. Note the fast response of the tracker associ-

ated with the blue (dotted) arrow.

5.4. System Performance 45

5.4 System Performance

As expected the ground truth has the best performance but YOLO trained on MS
COCO follows closely. Results of controlling the door using the different tracking
algorithms can be found in tbl. 5.3. The YOLO detector trained on MS COCO was se-
lected as a good detector for the evaluation. As described in sec. 4.8.2 all annotation
is based around a two second opening time. Different prediction times were tested
to account for the inaccurate velocity estimates. Results from using the ground truth
detections are shown in appendix B.

The recall, precision and F1 score for the Hungarian-Kalman tracker using the YOLO-
COCO detections is shown in fig. 5.6. In this figure we can see that the optimal pre-
diction time is around eight seconds. The same tests for the moving object detector
show six seconds to be the optimal prediction time. These prediction times are used
to evaluate the different categories individually.

Manual inspection of the videos for both two and eight seconds prediction time
show that the system is slow to open for pedestrians. The issue is larger when two
seconds prediction time is used. There is also an issue of the system not keeping the
door open when the pedestrians exits the frame through the door.

Performance of the Hungarian-Kalman tracker with input from the moving object
detector is found in tbl. C.1. Note that the F1 score is relatively high and stable for
different prediction times as compared to the results in tbl. 5.3.

TABLE 5.3: The performance of the different trackers with input from
YOLO-COCO for complete test set with P.t denoting prediction time.

The table is sorted by the F1 score.

Tracker P.t (s) Accuracy TNR Recall Precision F1↓
GM-PHD filter 8 0.890 0.959 0.732 0.886 0.802
Hungarian-Kalman 8 0.878 0.920 0.783 0.810 0.796
Hungarian-Kalman 6 0.884 0.942 0.749 0.850 0.796
GM-PHD filter 10 0.884 0.945 0.745 0.855 0.796
GM-PHD filter 6 0.888 0.971 0.699 0.913 0.792
Hungarian-Kalman 10 0.868 0.898 0.800 0.773 0.786
Hungarian-Kalman 4 0.876 0.958 0.687 0.877 0.771
GM-PHD filter 4 0.876 0.985 0.627 0.948 0.755
Hungarian-Kalman 2 0.832 0.964 0.530 0.865 0.657
GM-PHD filter 2 0.834 0.991 0.473 0.958 0.634

46 Chapter 5. Results

FIGURE 5.6: The recall, precision and F1 score plotted for different
prediction times. The tracker used is the Hungarian-Kalman tracker

and YOLO-COCO detections are used as input.

The performance of the trackers using detections from YOLO-COCO for different
categories are presented in tbl. 5.4 to 5.7. The tables are sorted by the F1 score when
applicable. As stated in sec 4.9, the F1 score is a good indicator of a balanced recall
and precision. Results for the same categories using the moving object detector are
shown in tbl. C.2 - C.5.

When observing the "straight movement towards the door" category we can see that
the trackers using YOLO-COCO detections performed better than the tracker using
the moving object detector, see tbl. 5.4 and C.3.

The score for the "sharp turn" category using the moving object detections is very
impressive when comparing tbl. C.2 to tbl. 5.6.

In tbl. 5.7 we can see that since the TNR metric is very high both trackers can disre-
gard cross-traffic efficiently.

TABLE 5.4: The performance of the different trackers with input from
YOLO-COCO for the straight entry (SM) category with P.t denoting

prediction time. The table is sorted by the F1 score.

Tracker P.t (s) TNR Accuracy Recall Precision F1↓
GM-PHD 8 0.900 0.931 0.844 0.870 0.857
Hungarian-Kalman 8 0.885 0.883 0.888 0.807 0.845
Hungarian-Kalman 2 0.844 0.973 0.609 0.926 0.735
GM-PHD 2 0.838 0.998 0.547 0.993 0.705

5.4. System Performance 47

TABLE 5.5: The performance of the different trackers with input from
YOLO-COCO for the straight movement from an angle (SA) category
with P.t denoting prediction time. The table is sorted by the F1 score.

Tracker P.t (s) TNR Accuracy Recall Precision F1↓
Hungarian-Kalman 8 0.826 0.891 0.747 0.849 0.795
GM-PHD 8 0.836 0.962 0.683 0.936 0.790
Hungarian-Kalman 2 0.720 0.917 0.479 0.825 0.606
GM-PHD 2 0.728 0.980 0.420 0.946 0.582

TABLE 5.6: The performance of the different trackers with input from
YOLO-COCO for the sharp turn (TU) category with P.t denoting pre-

diction time. The table is sorted by the F1 score.

Tracker P.t (s) TNR Accuracy Recall Precision F1↓
GM-PHD 8 0.901 0.985 0.596 0.914 0.722
Hungarian-Kalman 8 0.884 0.958 0.617 0.800 0.697
Hungarian-Kalman 2 0.875 0.981 0.487 0.875 0.626
GM-PHD 2 0.878 0.993 0.455 0.950 0.616

TABLE 5.7: The performance of the different trackers with input from
YOLO-COCO for the cross-traffic (CT) category with P.t denoting pre-

diction time. Some metrics are not applicable and are labeled n/a.

Tracker P.t (s) TNR Accuracy Recall Precision F1
Hungarian-Kalman 8 0.965 0.965 n/a 0.000 n/a
GM-PHD 8 0.969 0.969 n/a 0.000 n/a
Hungarian-Kalman 2 0.989 0.989 n/a 0.000 n/a
GM-PHD 2 0.991 0.991 n/a 0.000 n/a

49

Chapter 6

Discussion

6.1 Detector Evaluation

The pedestrian detector that performed best when looking at the F1 score was the
YOLO detector trained on the MS COCO dataset. From both qualitative and quan-
titative perspective it was a superior detector, see tbl. 5.1. It was hard to find a
reasonable situation in which it did not find the pedestrians. Furthermore, the lo-
calization was even better than the ground truth developed in this work. However,
this ground truth does have detections for every frame and the detections have very
stable center points. This probably explains why the ground truth still has better
accuracy, recall and F1 score than YOLO using a two second prediction.

Moving object detection performs best of all detectors, see tbl. 5.1 and tbl. 5.2. It
has the highest accuracy, recall and F1 score. By inspecting the system it seems that
the velocity estimation is more responsive than when using the pedestrian detectors.
This is a very interesting result especially since the method was not initially consid-
ered but added during the project for its special characteristics. It is again worth to
note that this method does not classify objects as pedestrians.

For the ACF and DPM based detectors a major factor in the low recall listed in tbl.
5.1 is that they do not detect pedestrians close to the camera. This is because both
detectors are trained for detecting upright pedestrians and do not generalize well to
the top view of a pedestrian. This is consistent with our results. If a larger dataset
for top view pedestrians was to be created a new detector could be trained for this
particular purpose. This is likely the best cause of action if either of these detectors
are to be used in a production scenario. These should then also be trained on ro-
tated images and datasets collected from the same viewing angle but many different
environments. The advantage of these detectors is that they are quite fast and of
fairly low complexity and we do not think our results are representative of their full
potential.

6.2 Tracker Evaluation

The sometimes slow velocity estimation when pedestrians change direction, see fig.
5.5, is a result of the tuning of the trackers. There is a balance between the filters
ability to handle noise and their responsiveness. By adding velocity as a measurable
input we were able to tune the filters to be more responsive without increasing the
impact of noise.

50 Chapter 6. Discussion

The inaccurate velocity estimates when the target is far from the camera center is
a result of the image coordinates not corresponding well to the world coordinates.
This comes as no surprise and was discussed in sec. 4.3.1. However, the impact of
this was far greater than expected. We estimate that the predicted velocity in this
work is only between 25-75% of the real velocity. These results are further discussed
in sec. 6.3. The direction of the velocity estimates were stable for all trackers evalu-
ated. Again, as a result of the tuning.

When inspecting the trackers using the YOLO-COCO detector we were not able
to distinguish any crucial performance differences. However, there were differ-
ences when adding velocity as a measurement by using the moving object detector.
This resulted in a significantly increased responsiveness with regards to direction
changes. The speed estimation did not see the same improvement.

There was no indication that the more complex GM-PHD tracker performed better
than the Hungarian-Kalman one with regards to tracking individual pedestrians.
This could indicate that a less complex solution is adequate for the stated problem.
However, it could also show that our tests did not fully capture the full complexity
of the problem.

The graph based tracker did not reach the same performance as the other trackers.
The initial tracklet generation was implemented successfully and tracked movement
well on a public data set. When extending the algorithm to associate tracklets into
tracks, the complexity of the implementation caused the tracker to associate detec-
tions incorrectly. We think that this is partly because of the causal adaptation, i.e.
reducing the temporal window. The purpose of the initial algorithm and its struc-
ture, i.e. linking larger and larger tracklets, was lost. Also, the core of the original
algorithm is to perform global data association, as discussed in sec. 3.3.5, in which
handling occlusions and keeping track of pedestrians walking side-by-side is essen-
tial. These problems are less relevant in this work and the increased complexity adds
little to its goal. We think that the failed implementation of this theory in this work
does not conclude that it is not applicable for this type of problem.

6.3 System Evaluation

As discussed in sec. 5.4 the system activates the door too late and closes it too early.
Both problems affect the recall score. The slow responsiveness to open the door is
probably linked to the fact that the estimated speed is too low leading to the pre-
diction being inaccurate. We can see, in tbl. 5.3, that doing a four, six, eight or ten
second prediction increases performance significantly with regards to recall at the
cost of reduced precision. In fig. 5.6 we can see that the optimal prediction time for
the trackers using the YOLO-COCO input is around eight seconds. This seems to
correspond quite well to the qualitative results which show the predicted velocity to
be 25-75% smaller than the true velocity. We can also conclude that the direction esti-
mation is quite good even though the speed estimation is very bad. This also shows
that the system will benefit from a static increase in prediction time to compensate
for the bad speed estimate.

The other part of the problem, closing to early, can be observed when stepping
through each sequence manually for the different system setups. It was found that
many frames were classified incorrectly towards the end of the video sequence. This

6.3. System Evaluation 51

is also verified in the results shown in tbl. 5.3 where a longer prediction time still
results in a recall far from one. This is most likely related to the fact that the detector
cannot properly detect pedestrians directly underneath the camera. Even when us-
ing the ground truth annotations with 8 seconds prediction time the system drops a
few frames at the end, on the "straight movement" category, since the bounding box
annotations and the open time annotations does not match entirely, see tbl. B.3.

The recall metric can be improved by a few actions; using a better annotated dataset,
using a better over head detector or by keeping the door open for a fixed time after
it has been opened. The last option is how most automatic door systems functions
today.

In hindsight we believe that an additional scoring metric is to measure when the first
open signal is sent and compare to the ground truth. This would allow us to observe
a more specific behavior in the system.

6.3.1 Tracker Comparison

We can see in tbl. 5.3 that the Hungarian-Kalman and GM-PHD trackers have a
similar performance using the detections from the YOLO-COCO detector. These
results are taken from an average between all categories of video sequences. Since
the performance is so similar it can be suspected that the difference stems from the
tuning of the trackers.

When breaking down the different categories for the two trackers we cannot find
any significant performance differences. The Hungarian-Kalman tracker usually has
a higher recall while the GM-PHD has a higher precision. The resulting F1 score is
very similar. This further shows that the added complexity of the GM-PHD tracker
does not increase performance in a significant way.

Finally we can see that both trackers have good direction estimates since both handle
cross-traffic exceptionally well, see tbl. 5.7. One video sequence is responsible for
most of the misclassified frames. In this sequence a pedestrian walks extremely close
to the door and camera distortions along with detector noise predicts the wrong
state.

6.3.2 Velocity Estimates

As previously discussed the low recall in some tests was considered to be due to
the inaccurate velocity estimates. The center of the bounding box does not move
with constant velocity even when the pedestrian does in real world coordinates. We
suggest that this is in large part due to the pixel-velocity estimates and one could
therefore try to model movement along the ground plane. The feet of the pedestrians
could be located and from there one could extract the real world position. This
could be possible since the feet should be visible as long as the pedestrians are not
standing under the camera. The camera distortions for our wide-angled camera is
however quite severe in the edges and modeling a plane for this camera setup will
be challenging. The center of the bounding box does not always correspond to the
same part of the body as the view of the pedestrian changes. This most likely also
affects the velocity estimates. It is possible that using multiple cameras with less
distortion would reduce this problem.

52 Chapter 6. Discussion

We can see in tbl. 5.5 and B.4 that the recall in the "straight movement from an angle"
case is quite low. After investigating this we found that the recall is reduced by the
score from the high velocity video sequences in this category. This shows yet again
that the camera can observe little movement in the sides of the image which leads
to velocity estimates which do not represent a pedestrian’s running movement. It is
also a hard task to open the door two seconds before the pedestrian enters since the
pedestrian is only partly visible when the door is supposed to be opened. The error
is amplified by the high velocity a running pedestrian can achieve, which could be
remedied by using a faster door.

Aside from the presented problems with camera distortions and coordinate planes
there is a problem when a pedestrian changes velocity. This means that the trackers
are slow to react to turns and changes in speed. They also have difficulties with
finding the correct speed of newly tracked pedestrians. This is partly remedied with
the added velocity information from the moving object detector. We can see this
very clearly when comparing the "sharp turn" category in tbl. 5.6 and tbl. C.2.

6.4 Conclusions

Our results indicate that the automatic door solutions used today can benefit from
the usage of computer vision. A major advantage of our system compared to current
systems is the ability to handle cross-traffic in a robust manner. The processing costs
for all pedestrian detectors is very high, especially for the YOLO detector which
outperforms both the ACF and DPM based detectors. In order to run the algorithm
in real time, a high-end GPU is required. Considering that at least one camera on
each side of the door is required the processing cost will be further increased. This
is a large disadvantage of the system implemented in this work. The results in this
work does not conclude that the ACF and DPM based detectors cannot be used for
this application. However, they would both need to be trained specifically for this
purpose. Moving object detection is a faster method than pedestrian classification
detection methods. It does not provide any classification but can possibly be used
together with other methods. All evaluated detection methods have higher pro-
cessing costs than sensors used today. By evaluation we found the less complex
Hungarian-Kalman tracker to be the most prominent for this application due to the
ease of tuning. We do believe that with the usage of this system, one can decrease
the amount of false openings and increase the comfort for its users. The increased
comfort comes from the system having the ability to open a door earlier when a
pedestrian approaches. This affects pedestrians interactions with the door as the
door then adapts to the pedestrian, as opposed to the pedestrian slowing down to
wait for the door.

53

Chapter 7

Future Work

Distortions in the camera used affected our velocity estimates considerably. It would
be interesting to design a system with multiple cameras with smaller viewing angle
to avoid these distortions. Mapping the real ground plane to the observed image,
even with distortions, could provide better velocity estimations.

The relative low computation cost of the ACF and DPM based detectors compared
to the YOLO detectors means that multiple instances of the detectors can be oper-
ated at the same time. A possible system would use ACF or DPM based detectors
trained for pedestrians in a certain viewing angle. This would allow the system to
be computationally fast with a high detection accuracy.

Under the assumption that a pedestrian reacts to the position of the door and how
fast it is moving one can model the interaction as a system. This system would use
the approaching pedestrian as a measurement and the door position as a control
signal. This would mean that one can use control theory to improve performance of
the system by e.g. reducing the width the door needs to open.

Another interesting approach is to train the different tuning parameters from data
gathered by the system itself. If the complete system would be able to determine if a
pedestrian has passed or not it can evaluate its own behavior. By this we mean that
we can find e.g. the optimal prediction time and the optimal time to keep a door open
after an open signal is received. One could also train the system to react differently
depending on the surrounding of the door e.g. typical pedestrian flow depending on
time of day. Another benefit is that the system can adapt to the camera distortion.

55

Appendix A

Histogram of Oriented Gradients
(HOG)

When using different types of computer vision algorithms a corner stone is the type
of features one can extract from the image in question. A feature is a piece of in-
formation about an image or data sequence which is used in a computation. The
detection of humans often require a lot of different features since humans come in
many sizes, shapes, wearing different clothes and are seen in different lighting. A
popular set of features is the Histogram of Oriented Gradients which, as shown by
Dalal and Triggs [36], can be gainfully used in pedestrian detection [1] [3]. One rea-
son for why HOG is a good feature extractor is because it uses edge information
i.e. areas with high frequency content. This is interesting since it is often edges in a
image which provides the necessary information required to understand what one
is looking at.

The first step in calculating the HOG is finding the pointwise derivatives in both
horizontal and vertical directions. Different variations such as the usage of different
derivative approximations, e.g. Sobel mask, or smoothing the image can also be done
in this step. The image is then divided into cells where each pixel within the cells
will add a function of the amplitude of its gradient into a histogram channel. This
yields cells with a histogram of the amount of pixels which point in the different
directions.

The cells then need to be normalized to account for differences throughout the im-
age. This is done by creating overlapping blocks of cells and normalizing over them
by the use of e.g. the L1- or L2-norm. The final descriptor is the result after this
normalization, see fig. A.1 for an example image.

FIGURE A.1: An example image of a HOG descriptor with input im-
age [43].

57

Appendix B

Results for Ground Truth
Detections

TABLE B.1: The performance of the different trackers with input from
the ground truth for the complete test set with P.t denoting prediction

time. The table is sorted by the F1 score.

Tracker P.t (s) Accuracy TNR Recall Precision F1↓
Hungarian-Kalman 8 0.889 0.933 0.787 0.836 0.811
Hungarian-Kalman 6 0.890 0.951 0.752 0.869 0.806
Hungarian-Kalman 10 0.883 0.920 0.799 0.813 0.806
GM-PHD filter 8 0.885 0.951 0.733 0.867 0.794
GM-PHD filter 10 0.882 0.941 0.746 0.846 0.793
GM-PHD filter 6 0.884 0.962 0.705 0.891 0.787
Hungarian-Kalman 4 0.883 0.965 0.694 0.897 0.782
GM-PHD filter 4 0.873 0.973 0.643 0.911 0.754
Hungarian-Kalman 2 0.840 0.972 0.537 0.894 0.671
GM-PHD filter 2 0.832 0.976 0.500 0.899 0.643

TABLE B.2: The performance of the different trackers with input from
the ground truth for the Sharp turn (TU) category with P.t denoting

prediction time. The table is sorted by the F1 score.

Tracker P.t (s) TNR Accuracy Recall Precision F1↓
Hungarian-Kalman 8 0.900 0.976 0.623 0.875 0.728
GM-PHD 8 0.892 0.976 0.584 0.869 0.699
Hungarian-Kalman 2 0.874 0.983 0.478 0.885 0.621
GM-PHD 2 0.869 0.980 0.464 0.862 0.604

TABLE B.3: The performance of the different trackers with input from
the ground truth for the Straight entry (SM) category with P.t denot-

ing prediction time. The table is sorted by the F1 score.

Tracker P.t (s) TNR Accuracy Recall Precision F1↓
Hungarian-Kalman 8 0.892 0.865 0.942 0.793 0.861
GM-PHD 8 0.894 0.914 0.858 0.845 0.852
Hungarian-Kalman 2 0.861 0.972 0.659 0.929 0.771
GM-PHD 2 0.845 0.981 0.597 0.946 0.732

58 Appendix B. Results for Ground Truth Detections

TABLE B.4: The performance of the different trackers with input from
the ground truth for the Straight movement from an angle (SA) cate-
gory with P.t denoting prediction time. The table is sorted by the F1

score.

Tracker P.t (s) TNR Accuracy Recall Precision F1↓
Hungarian-Kalman 8 0.836 0.938 0.711 0.904 0.796
GM-PHD 8 0.826 0.948 0.677 0.915 0.778
Hungarian-Kalman 2 0.728 0.951 0.456 0.884 0.601
GM-PHD 2 0.722 0.958 0.434 0.895 0.585

TABLE B.5: The performance of the different trackers with input from
the ground truth for the Cross-traffic (CT) category with P.t denoting
prediction time. Some metrics are not applicable and are labeled n/a.

Tracker P.t (s) TNR Accuracy Recall Precision F1
Hungarian-Kalman 8 0.976 0.976 n/a 0.000 n/a
GM-PHD 8 0.980 0.980 n/a 0.000 n/a
Hungarian-Kalman 2 0.986 0.986 n/a 0.000 n/a
GM-PHD 2 0.984 0.984 n/a 0.000 n/a

59

Appendix C

Results for Moving Object
Detection

TABLE C.1: The performance of the different trackers with input from
the moving object detections for the complete test set with P.t denot-

ing prediction time. The table is sorted by the F1 score.

Tracker P.t (s) Accuracy TNR Recall Precision F1↓
Hungarian-Kalman w. vel. 6 0.894 0.936 0.795 0.845 0.819
Hungarian-Kalman w. vel. 4 0.896 0.967 0.735 0.905 0.811
Hungarian-Kalman w. vel. 8 0.880 0.909 0.814 0.795 0.804
Hungarian-Kalman w. vel. 10 0.866 0.886 0.821 0.759 0.788
Hungarian-Kalman w. vel. 2 0.860 0.984 0.575 0.938 0.713

TABLE C.2: The performance of the different trackers with input from
the moving object detections for the Sharp turn (TU) category with P.t

denoting prediction time. The table is sorted by the F1 score.

Tracker P.t (s) TNR Accuracy Recall Precision F1↓
Hungarian-Kalman w. vel. 6 0.942 0.976 0.820 0.902 0.859
Hungarian-Kalman w. vel. 2 0.905 0.986 0.610 0.924 0.735

TABLE C.3: The performance of the different trackers with input from
the moving object detections for the Straight entry (SM) category with

P.t denoting prediction time. The table is sorted by the F1 score.

Tracker P.t (s) TNR Accuracy Recall Precision F1↓
Hungarian-Kalman w. vel. 6 0.870 0.890 0.833 0.807 0.820
Hungarian-Kalman w. vel. 2 0.856 0.983 0.624 0.952 0.754

TABLE C.4: The performance of the different trackers with input from
the moving object detections for the Straight movement from an angle
(SA) category with P.t denoting prediction time. The table is sorted by

the F1 score.

Tracker P.t (s) TNR Accuracy Recall Precision F1↓
Hungarian-Kalman w. vel. 6 0.856 0.937 0.758 0.907 0.826
Hungarian-Kalman w. vel. 2 0.773 0.976 0.525 0.948 0.676

60 Appendix C. Results for Moving Object Detection

TABLE C.5: The performance of the different trackers with input from
the moving object detections for the Cross-traffic (CT) category with
P.t denoting prediction time. Some metrics are not applicable and are

labeled n/a.

Tracker P.t (s) TNR Accuracy Recall Precision F1
Hungarian-Kalman w. vel. 6 0.960 0.960 n/a 0.000 n/a
Hungarian-Kalman w. vel. 2 0.990 0.990 n/a 0.000 n/a

61

Bibliography

[1] P. Dollár et al. “Pedestrian Detection: A Benchmark”. In: CVPR. 2009.

[2] X. Du et al. “Fused DNN: A Deep Neural Network Fusion Approach to Fast
and Robust Pedestrian Detection”. In: 2017 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV). 2017, pp. 953–961. DOI: 10.1109/WACV.
2017.111.

[3] P. Felzenszwalb, D. McAllester, and D. Ramanan. “A discriminatively trained,
multiscale, deformable part model”. In: 2008 IEEE Conference on Computer Vi-
sion and Pattern Recognition. 2008, pp. 1–8. DOI: 10 . 1109 / CVPR . 2008 .
4587597.

[4] P. Dollár et al. “Fast Feature Pyramids for Object Detection”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 36.8 (2014), pp. 1532–1545.
ISSN: 0162-8828. DOI: 10.1109/TPAMI.2014.2300479.

[5] Yoav Freund and Robert E. Schapire. A Decision-Theoretic Generalization of on-
Line Learning and an Application to Boosting. 1997.

[6] Scalepyramid. [Online; accessed June 5, 2017]. 2016. URL: http://iipimage.
sourceforge.net/documentation/images/.

[7] Chun-Nam John Yu and Thorsten Joachims. “Learning Structural SVMs with
Latent Variables”. In: Proceedings of the 26th Annual International Conference on
Machine Learning. ICML ’09. Montreal, Quebec, Canada: ACM, 2009, pp. 1169–
1176. ISBN: 978-1-60558-516-1. DOI: 10.1145/1553374.1553523. URL: http:
//doi.acm.org/10.1145/1553374.1553523.

[8] Pedro Felzenszwalb. dpmpic. [Online; accessed June 6, 2017]. 2016. URL: http:
//deliveryimages.acm.org/10.1145/2500000/2494532/figs/f2.
jpg.

[9] Andrej Karpathy. 3-layer neural network. [Online; accessed May 24, 2017]. 2017.
URL: http://cs231n.github.io/assets/nn1/neural_net2.jpeg.

[10] Andrej Karpathy. Artificial neuron. [Online; accessed May 24, 2017]. 2017. URL:
http://cs231n.github.io/assets/nn1/neuron_model.jpeg.

[11] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine Learning Research 15 (2014), pp. 1929–
1958. URL: http://jmlr.org/papers/v15/srivastava14a.html.

[12] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: Proceedings of
the 32nd International Conference on Machine Learning. Ed. by Francis Bach and
David Blei. Vol. 37. Proceedings of Machine Learning Research. Lille, France:
PMLR, 2015, pp. 448–456. URL: http://proceedings.mlr.press/v37/
ioffe15.html.

62 BIBLIOGRAPHY

[13] Ignacio Icke. Overfitting. [Online; accessed May 24, 2017]. 2008. URL: https:
//en.wikipedia.org/wiki/Overfitting#/media/File:Overfitting.
svg.

[14] K. He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–
778. DOI: 10.1109/CVPR.2016.90.

[15] C. Szegedy et al. “Going deeper with convolutions”. In: 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 1–9. DOI: 10.
1109/CVPR.2015.7298594.

[16] R. Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on Computer
Vision (ICCV). 2015, pp. 1440–1448. DOI: 10.1109/ICCV.2015.169.

[17] S. Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence 39.6 (2017), pp. 1137–1149. ISSN: 0162-8828. DOI: 10.1109/TPAMI.
2016.2577031.

[18] J. Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 779–788. DOI: 10.1109/CVPR.2016.91.

[19] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In:
CoRR abs/1612.08242 (2016). URL: http://arxiv.org/abs/1612.08242.

[20] OpenCV. Background subtraction using MOG2. [Online; accessed May 24, 2017].
2017. URL: http://docs.opencv.org/trunk/resmog2.jpg.

[21] Z. Zivkovic. “Improved adaptive Gaussian mixture model for background
subtraction”. In: Proceedings of the 17th International Conference on Pattern Recog-
nition, 2004. ICPR 2004. Vol. 2. 2004, 28–31 Vol.2. DOI: 10.1109/ICPR.2004.
1333992.

[22] Bruce D. Lucas and Takeo Kanade. “An Iterative Image Registration Technique
with an Application to Stereo Vision”. In: Proceedings of the 7th International
Joint Conference on Artificial Intelligence - Volume 2. IJCAI’81. Vancouver, BC,
Canada: Morgan Kaufmann Publishers Inc., 1981, pp. 674–679. URL: http:
//dl.acm.org/citation.cfm?id=1623264.1623280.

[23] Ba Tuong Vo. Random finite sets in multi-object filtering. Citeseer, 2008.

[24] Simo Srkk. Bayesian Filtering and Smoothing. New York, NY, USA: Cambridge
University Press, 2013. ISBN: 1107619289, 9781107619289.

[25] H. W. Kuhn and Bryn Yaw. “The Hungarian method for the assignment prob-
lem”. In: Naval Res. Logist. Quart (1955), pp. 83–97.

[26] Jack Edmonds and Richard M. Karp. “Theoretical Improvements in Algorith-
mic Efficiency for Network Flow Problems”. In: J. ACM 19.2 (Apr. 1972), pp. 248–
264. ISSN: 0004-5411. DOI: 10.1145/321694.321699. URL: http://doi.
acm.org/10.1145/321694.321699.

[27] Li Zhang, Yuan Li, and R. Nevatia. “Global data association for multi-object
tracking using network flows”. In: 2008 IEEE Conference on Computer Vision
and Pattern Recognition. 2008, pp. 1–8. DOI: 10.1109/CVPR.2008.4587584.

[28] A. Dehghan, S. M. Assari, and M. Shah. “GMMCP tracker: Globally optimal
Generalized Maximum Multi Clique problem for multiple object tracking”. In:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 4091–4099. DOI: 10.1109/CVPR.2015.7299036.

BIBLIOGRAPHY 63

[29] Ergys Ristani and Carlo Tomasi. “Tracking Multiple People Online and in Real
Time”. In: Asian Conference on Computer Vision. Springer. 2014, pp. 444–459.

[30] B. N. Vo and W. K. Ma. “The Gaussian Mixture Probability Hypothesis Density
Filter”. In: IEEE Transactions on Signal Processing 54.11 (2006), pp. 4091–4104.
ISSN: 1053-587X. DOI: 10.1109/TSP.2006.881190.

[31] Ronald Mahler. “Random set theory for target tracking and identification”. In:
Multisensor Data Fusion. CRC press, 2001.

[32] R. P. S. Mahler. “Multitarget Bayes filtering via first-order multitarget mo-
ments”. In: IEEE Transactions on Aerospace and Electronic Systems 39.4 (2003),
pp. 1152–1178. ISSN: 0018-9251. DOI: 10.1109/TAES.2003.1261119.

[33] David M. Beazley. “SWIG: An Easy to Use Tool for Integrating Scripting Lan-
guages with C and C++”. In: Proceedings of the 4th Conference on USENIX Tcl/Tk
Workshop, 1996 - Volume 4. TCLTK’96. Monterey, California: USENIX Associ-
ation, 1996, pp. 15–15. URL: http://dl.acm.org/citation.cfm?id=
1267498.1267513.

[34] G. Bradski. “OpenCv”. In: Dr. Dobb’s Journal of Software Tools (2000).

[35] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2016. URL: http:
//www.gurobi.com.

[36] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detec-
tion”. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 1. 2005, 886–893 vol. 1. DOI: 10.1109/CVPR.
2005.177.

[37] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: CoRR
abs/1405.0312 (2014). URL: http://arxiv.org/abs/1405.0312.

[38] M. Everingham et al. The PASCAL Visual Object Classes Challenge 2007 (VOC2007)
Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html.

[39] M. Everingham et al. The PASCAL Visual Object Classes Challenge 2012 (VOC2012)
Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

[40] Martin Ester et al. “A density-based algorithm for discovering clusters in large
spatial databases with noise”. In: AAAI Press, 1996, pp. 226–231.

[41] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[42] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring network
structure, dynamics, and function using NetworkX”. In: Proceedings of the 7th
Python in Science Conference (SciPy2008). Pasadena, CA USA, Aug. 2008, pp. 11–
15.

[43] Stefan van der Walt. Hogpicture. [Online; accessed May 29, 2017]. 2016. URL:
http://sharky93.github.io/docs/gallery/auto_examples/
plot_hog.html.

Master’s Theses in Mathematical Sciences 2017:E33

ISSN 1404-6342

LUTFMA-3324-2017

Mathematics

Centre for Mathematical Sciences

Lund University

Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

