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Abstract

Identifying and keeping track of different structural representations of func-
tionally overlapping issues is important in order to keep a well maintained is-
sue management corpus, establishing efficient and organized response ability
to develop and code software patches repairing these issues and defects. This
is normally achieved by manual, time-costly reviewing-processes by special
teams put up to this task.

In this project we implement a tool using information retrieval technology,
that intends to help these teams make better and faster qualitative assessments
by providing quantitative indications in the form of similarity scores to other
artifacts within a given dataset.

This approach is inspired by a paper with a similar goal, namely detect-
ing duplicate issue reports. That study found that 60 % of all marked dupli-
cates could be found with the corresponding implementation of this approach.
Achieving similar outcomes would contribute to improved and more effective
reviewing-processes.

We use the qualitative research method of informal interviews to define the
semantic distance metric to implement. In the evaluation we mainly use a
qualitative method to assess the accuracy of it, but verify our findings with a
quantitative method. We also investigate the scalability of the tool with quan-
titative methods.

As a result of the limited scope of this thesis work, the tool in its current
state will have limited use in a live development environment. However, we
conclude that this approach has a development potential and could bring fruit-
ful findings in the issue management and issue maintenance field if developed
further upon.

Keywords: information retrieval technology, semantic distances, issue management,
issue maintenance, traceability link retrieval
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Chapter 1

Introduction

In the software development industry much time and effort is put on overhead work around
actual software development, particularly as a company expands in magnitude. The larger
magnitude, the less effective some problems appear to be solved. One example of this
overhead work could be the management of software artifacts such as issue reports. Even
medium sized software development companies could experience a problem that means
poorer overview of issue reports and how they relate to each other, how they relate to
different customer requirements, and how they relate to actual code within a single product
or a series of products. Putting a regular clean up routine in the development process is
a common solution to this problem in the industry, by e.g. having regular manual peer
review meetings. An example of a clean-up task among records of issues, issue entries,
is by trying to merge two or more issue entries of the same issues, tests or requirements
that are either identical or practically the same, in the sense that it could be merged into a
single better documented issue entry.

Normally, a software company would prefer to keep all issue entries instead of delet-
ing or changing them, since this eventually results in artifacts changed to the core until
the individual issue entry cannot be recognized from its initial state. This is important
since change-traceability is another important software engineering field [22]. This also
normally happens as a result of ever changing software artifacts such as system require-
ments or issue reports [15][18]. In order to keep themwithout obstructing the efficiency of
the system. The typical approach is instead to create new issue entries as different issues
evolves.

9



1. Introduction

To solve this layer of complexity many companies use complex relationship indications,
traceability links, between artifacts. These traceability links must be put in place by the
users that create new issue entries, and they need to keep track of existing issue entries to
detect duplicates and link them to each other. These traceability links are important to have
for software development organizations and help reduce development costs [8][9]. One
approach is to apply a system of main issue entries and sub issue entries. Specific issues
can only have one main issue-entry each in such a system, while cloned issue entries and
issue entries describing different aspects of the essentially same issue as the one described
in the main issue entry, duplicate entries, are linked to the corresponding main issue entry.

Many issue management systems also implement relations and links between different
kinds of software artifacts to indicate they describe the same functionality, just only with
different structures[2]. In the main versus sub issue entry approach just described, this
introduces an additional layer of complexity, since this new kind of link, a semantic trace-
ability link, could in practice as well be linked to a main issue entry as to a sub issue entry.
In reality this implies that the semantic link also applies on the main issue entry of the
issue entry that is part of such semantic relation link. But on the other hand, if such a
relation is defined for a main issue entry, it is not necessarily applicable on all sub issue
entries of that main issue entry.

The review process might interfere with individual traceability links between a pair of
artifacts of different kinds. The interference could simply be that a former link no longer is
relevant at all in the new context, or it could mean the traceability link should be changed to
apply for a different pair of artifacts or that it should apply formore pairs of artifacts. This is
also considered in the review process; lost and misdirected traceability links is a problem,
and the importance of maintaining and recovering traceability links is widely recognized
[21][12][13]. If processes to maintain traceability links are not executed properly, there
are higher tendencies for project overruns and failures [15][10][12].

Sometimes these two different types of artifacts, that have a traceability link between
each other, could be fundamentally different in character; one artifact in a pair could de-
scribe a product issue, while the other could be describing a test case. This introduces
complexity in the decision process of how the two different artifacts actually relate, par-
ticularly when reevaluating an existing traceability link between two artifacts being altered
in one way or another, since they could be describing two different things than initially in-
tended. The introduced difference is difficult to measure, especially with data that suffer
from over- or under- documentation. It could result in over interpretation of some details
or overlooking important details crucial for a decision, simply because they did not exist.

We believe that a systematic quantitative measurement of this distance, if ideally ac-
curate, will heavily reduce the time and effort put on these clean up processes by semi-
automating them and possibly pave the way for future automation, since the manual ap-
proach is proved to not scale[14], and prone to errors[10][11][13]. This would mean that
the process traceability link retrieval would become easier and faster to conduct result-
ing in time-effectiveness and greater recovery rate, thus making the software development
process even more cost-effective[8].
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1.1 Research Questions

With this thesis workwe aim to investigate if it is possible to have a quantitativemeasure-
ment on this difference by using a search engine as our information retrieval technology
core. The problems that are faced on the ground for the Case Company hosting this project
is over- or under- documentation of issues, thus artifacts, and sometimes lack of impor-
tant artifact meta data; the organization needs to early detect duplicate issues and identify
semantic links to other entries of the same artifact types and traceability links to entries
of different artifact types already existing regardless of being specified by the submitter
or not. Therefor this project focuses on the part of the process when new software issue
submissions are pending review into the issue tracking system.

1.1 Research Questions

The goal of this work is to investigate the possibility to track and specifically give a quan-
titative indication for two artifacts of the same characteristics, namely artifacts describing
issues in different contexts, with information retrieval technology.

Another question to discuss is whether we can take this approach further by enhancing
it to do the same things for artifacts of different characteristics, such as related test artifacts
and discuss if the tool could be developed further to capable to give the user of the tool
this same quantitative support for links between artifacts of profound difference, thus a
tendency of larger semantic distances.

To break this up into managable pieces we defined the following research questions for
this work:

RQ1 How accurate is the implemented assessment of semantic distance?

RQ2 How can the accuracy of the assessment of semantic distance be improved?

RQ3 How does the implemented approach scale for large sets of data?

1.2 Theoretical Background

Most modern tools and solutions today involve software development. While computing
technology keeps evolving into being more complex and mobile, the process of software
development gets more sophisticated and advanced; This is especially true for larger orga-
nizations with software platforms shared by a large product portfolio. Software develop-
ment processes get increasingly important as software systems become more complex[7].
Even more important, considering that software has a large impact on not only an increas-
ing number of end users, but also the society’s increasing reliance on digital systems.
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1. Introduction

 1 1 1 1 
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Figure 1.1: This figure illustrates the difference between struc-
ture and function with a simple example by considering the string
"1111"; The string "11" is structurally closer to it than "999".
Though, it is obvious that the strings’ function is to represent nu-
merical values and that, functionally speaking, the number 999 is
closer to 1111, than what 11 is.

When developing software, the process around the writing of code is as important as
the code-writing itself. There are requirement engineers that account for one of these
processes, making sure the product is specified in a certain way in order for developers,
managers and customers to be able to take conclusions and agree on how an end prod-
uct will look like. There are also teams responsible for registering issues in the code or
software solution as a whole.

From a requirement engineering perspective, there are many different kinds of software
artifacts. Two common types for a software project in its active life cycle are the require-
ment artifacts and test artifacts. These artifacts may take different forms; they could be
everything from tangible software code to abstract high level documents.

Since the structure of the two artifacts are different, we say there is a structural distance
or a syntactic distance, it becomes difficult to shape and construct a test artifact that is
meant to describe a specific function also described in a differently structured requirement
artifact. In order to somehow measure this we usually speak of the functional distance, or
the semantic distance between two artifacts[2][3], see illustrated example in figure 1.1.

If a test artifact and its requirement artifact attain large semantic distance it ultimately
implies that the test artifact is not really covering and completely testing the requirement
artifact. We say that the test coverage is low. It is of interest to keep track of a require-
ment’s test artifacts to be able to verify that the test artifacts indeed test correct functions
and qualities specified in the requirement artifacts. The project addresses the field of test
coverage issues towards requirement artifacts rather than the issue of test coverage for de-
veloped source code. Code development organizations face issues with complex and time
consuming tasks to manually verify if their test artifacts have proper test coverage for the
requirement artifacts they are meant to test.

While there are plenty of research on how to measure semantic distances between dif-
ferent artifacts, there is a narrow foundation of research on automatic measurement of this
metric. In the rise of machine learning and text mining it has become a popular tool to
solve issues like this with artificial intelligence.
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1.3 Technical Background

1.3 Technical Background

Most software development organizations today use some kind of issue tracking system
for many purposes: registering issues found internally from customers and end users but
also helping developers, testers and others in the organization to keep track of status for
registered issues are two examples [16].

Different factors are to be considered in order to evaluate and decide to what extent two
artifacts would be related. The most obvious factor is the similarity in title and description,
since most of the textual formulation of the defects is located there. Though this factor can
be useful in many cases, particularly to detect duplicates, one can note that it would not be
enough to find more complex relations and traceability links between artifacts, particularly
if they have a considerable structural difference. Investigating meta data of the artifacts
becomes important.

We use the open source search engine named Lucene in order to index defects and
their meta data to evaluate the relation between different defect-artifacts. Apache Lucene
is a modern, advanced text search engine framework designed for developers to use for
a variety of purposes of their choice they see fit. Lucene enables us to work with the
question at issue from a high-level approach since it has its own popular and well-proven
text-comparison algorithms instead of putting time and effort in reinventing them. Using
text-comparison is not a new approach in this field; in fact the tool developed for this
project is based on a tool called ImpRec, which is made for another project by Borg et al
[6].

1.4 Report Outline

The report is outlined through different chapters to facilitate the reading of the report; Each
chapter brings up different aspects and phases of the thesis project, as follows:

1. Introduction: The introduction gradually introduces the issue at hand by presenting
relevant technical information, real life issues from the field and how they have been
managed and how they are managed presently. The research questions are presented
in this chapter.

2. Related Work: This chapter brings up work by others that is critical for this the-
sis project. This chapter gives a better understanding of the nature of the software
engineering field in practice.

3. Case Description: The case description focuses on our thesis project. It describes
the case company’s infrastructure and the data structures available, how they are
created, managed and altered. This chapter will help the reader understand the prac-
tical resources and limitations we had to deal with throughout the implementation,
but also evaluation of our work.
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1. Introduction

4. Method: The method chapter makes up the most critical part of the report; we
describe our different research methods and why we use them, we describe the ap-
proach of using a search engine. We also describe how the tool is meant to be
used and how we implemented several mechanisms such as score normalization and
meta data field weighting. More over, the evaluation methods and procedures are
described in this chapter too.

5. Results: The results chapter simply presents all found results, particularly results
of accuracy and performance measurements. The reader will find many tables and
charts here.

6. Discussion: This chapter discusses and interprets the results presented in the previ-
ous chapter. The validity of the results are also discussed, and therefor error sources,
limitations and flaws in the used methods are discussed. In this chapter we also dis-
cuss how the execution of the project can be improved and developed upon too.

7. Conclusions: The conclusions chapter seals the report by drawing final answers and
conclusions to the research questions and on the project as a whole.
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Chapter 2

Related Work

This chapter introduces related work and projects of relevance for our own project, to give
a better understanding of how this project can be linked in a greater perspective and what
kind of issues and problems that this work tries to solve.

2.1 Semantic Distances

The ability to communicate a message in a way oneself imagines it to a counterpart is not
always easy. Different factors may impact this ability in different ways that can be broken
down in three categories; they could be related to the people involved, the context of the
communication but also the used tools and means of communication.

The concept of distances fundamentally explains the communication conditions be-
tween people. Bjarnason and Sharp have, in their case study [2], identified different
distance-factors similarly divided into three categories; factors could be people-related,
activity-related or artifact-related.

People have different kinds of mindsets and perspectives, thus impacting how they see
things differently; a senior software developer trying to explain a piece of code will need
to put extra effort into explaining it to a typical student compared to his colleagues. This
is because there is a cognitive distance between a student, that has poor or no programing
skills, and a senior software developer. The student does not think like a programmer and
communicating e.g. a code explanation will take effort extra effort to compensate for this
distance for the message to come across.
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2. Related Work

An example of an activity-related factor is the geographical distance, which is one very
good example, since we are talking about physical distance; to communicate a message
to people physically close to oneself, i.e. in the same room, is much easier than trying to
communicate the very same message to the very same people when they are at different
places than oneself; geographical distances between individuals and teams slow down the
communication and can cause misunderstandings.

There is also the artifact-related factors, one of which is the semantic distance. It de-
scribes how documents, source code and test cases can cause these communication gaps.
These different artifacts have different structural composition, while they still try to “com-
municate” the same “message”, only to different people. System requirement specifica-
tions can be used to communicate a function-design between software system architects
and customers, while test specifications can be used to communicate the very same func-
tion between testers and developers.

It has been shown that distances in general have an impact on a development project’s
ability to communicate and coordinate efficiently [2]. This means semantic distances im-
pact the maintainability of a project’s software artifacts, thus the development of a soft-
ware project as a whole, whether it is regarding low-level artifacts, i.e. code, or high-level
artifacts, such as software requirement specifications. The article also talks about this,
mentioning how projects with large semantic distances tend to be costly and time con-
suming, since it results in lack of communication. Very often this accumulates negatively
through the development process leading to poorly formulated software requirements when
customer and requirement engineering do not fully communicate their messages. These
misunderstandings propagate, and even evolve, through the development process chain via
testers and developers, and could even have originated as a misunderstanding between the
end-users and the customer ordering the software system. This results in a software system
that will not meet the customers’ expectations, resulting in much more wasted time and
larger cost than initially accounted for.

Moreover the importance of traceability and the recovery of traceability links is men-
tioned. Traceability links help keeping track of these structural layers in order to under-
stand how and where each artifact is related to another.

The concepts of syntactic and semantic distances are central for this thesis work since
it is defined on these terms and concepts, making Bjarnason’s work important in order to
grasp the general issues caused by such factors, but also to understand the specific case of
our work. This will help us understand how we can define and implement a quantitative
metric for this very abstract concept.
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2.2 From Bugs to Decision Support

Working with large projects in complex organizations and their information landscapes
creates issues for software developers regarding having a good overview of different soft-
ware artifacts such as the ever growing volume of defect reports managed for a software
project over the years of its life cycle. Efficient management of incoming issue reports
requires successful navigation of the information landscape.

The two work tasks involved in issue management: Issue Assignment and Change Im-
pact Analysis, are addressed in the PhD thesis by Borg[4]. Issue assignment is the early
task of allocating an issue report to a development team and is important in all large soft-
ware projects; change impact analysis is the subsequent activity of identifying how source
code changes affect the existing software artifacts, and is particularly important for safety-
critical projects.

The solution approach described by Borg seeks to support navigation among devel-
opment teams and software artifacts, based on information available in historical issue
reports, such as what kind of person that usually solves particular kinds of bugs, and what
software artifact that is prone to be impacted by specific kinds of bugs.

While humans get overloaded by growing volumes and inflows of issue reports, cloud-
ing their judgment and increasing analysis-time to make different decisions, the used tech-
niques benefit from these volumes by using them as training data for the learning model to
develop accurate decision support for software evolution. The evaluation of the proposed
tools is conducted by both replaying the historical inflow of issue reports from industry
projects, and by deploying tools in real operational settings resulting in a total of more
than 60 thousands issue reports involved in the studies. The results suggest that both auto-
mated issue assignment and automated change impact analysis might be useful to support
navigation in large software projects.

This PhD thesis work contains five publications distributed over three parts, or phases,
in the process of documenting bugs to utilizing this subsequent resource; The explanatory,
solution and utilization phase. Three of those have been central to the cemented approach;
the work of information retrieval technology[6] has been integral in forming our thesis’s
approach in its initial phase, but has also been central to the whole context of this thesis
regarding traceability links since they are the element that establishes a consensus of a
semantic relation between two linked artifacts. Understanding what makes two artifacts
semantically close helps a great deal to develop a tool that can provide quantitative value
on the semantic distance of two given artifacts.

The content of the change impact analysis work [17] was not at the same level of impor-
tance as the paper for information retrieval technology, but it provided something very im-
portant; the actual tool of this master thesis is based on the proof-of-concept tool ImpRec,
that was developed as part of that paper. It was a great help for understanding how Lucene
worked in general and how it should be implemented for indexing defects in particular.
It also relieved us from implementing the Lucene framework from scratch. Although our

17



2. Related Work

tool is based on ImpRec, it ultimately ended up having fundamentally different function-
ality and a heavily altered user interface to accommodate and serve our own functionality
and purposes, which differs from ImpRec’s original purpose and functionality. ImpRec’s
purpose was to analyze possible impact an artifact could have on other artifacts if changed,
and this was done by utilizing a traceability link network formed of given traceability links.

2.3 Detection of DuplicatedArtifacts Using
NLP

The detection of duplicated artifacts is one of many issues whenmaintaining a corpus of is-
sue reports. Runeson et al write about this in their paper on detecting duplicate reports[20].

This paper describes the impact of the most simple cause in issue management related
problems an organization often has, the problem of having duplicated defect reports. This
creates unnecessary redundancies and clutter making the defect corpus of a company dif-
ficult, and therefore costly to maintain and work with.

Automating the detection of duplicate defect reports has proved to be difficult since
issue reports are often formulated in natural language. The simple approaches used to help
detecting duplicated artifacts are based on using algorithms doing, more or less, simple
text-comparisons. Implementations based on this approach are prone to letting through a
fair share of false-negatives, i.e letting many duplicates remain undetected.

The paper describes an approach to detect such duplicates using natural language pro-
cessing (NLP) technology in which the algorithms are aware of relevant linguistic traits
of natural language, making it smarter in understanding meaning. It can classify words by
part of speech and map relations and references in texts to understand context, rather than
simply considering the actual string. This enables for more sophisticated algorithms than
simple string comparison ones.

This thesis work is related to this paper since we use a search engine implementing
algorithms typically associated with implementations targeted at solving natural language
problems.

18
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2.4 AutomatingRequirements Satisfaction
Assessment

Software system functions can be described in different ways depending on the context
in which this description is needed. The different contexts usually consist of different
software development processes in a software development process-chain, such as defin-
ing and documenting system requirements for different functions, creating tests for these
functions and also writing the function software.

A hypothetical function will be described in at least three different kinds of artifacts;
some code, a test-case (or more) and a documented requirement. While each artifact takes
different shape and form, they all describe the same function, and therefore they all have
traceability links between each other.

It may seem to be alright to keep those separated and independent of each other, but in
order to have good overview of a software project one has to be able to verify different
development process transitions, to be sure that the very same functional requirement in
the last step of the process chain can be backtracked through each process in the process
chain. The test artifact need to have minimal semantic distance to the requirement artifact
to ensure it tests the functionality intended. A non existing semantic distance in theory
means that they describe the exact same functionality.

As mentioned and described by Huffman Hayes et al [1], software development orga-
nizations periodically arrange verification processes in order to answer the question of
whether the high-level system requirement artifacts are satisfied by their low-level linked
test and code artifacts. This activity is called satisfaction assessment, and is useful because
it helps find issues with non-satisfied requirements early throughout a project’s progres-
sion, when such issues are cheap to address.

The relation of this paper to our thesis work may not be apparent, but a “system require-
ment” is a broad term, which in our case could be replaced by our own “issue report”, thus
describing satisfaction assessment in our context. This project focuses mainly on issue
artifacts, but in the broader scope of things, these issue artifacts have traceability links to
test artifacts. We do not lay our hands on test-related artifacts, though we mention them
in the case description chapter for the reason of their importance in the broad perspective.
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Chapter 3

Case Description

The Case Company at which our project was executed and whose data we utilized, during
implementation and evaluation, is an international company that develops smart phones
and tablets with a custom built Android version. The Case Company maintains a large
product portfolio and has sold a couple of tens of million smart phone units during the
fiscal year of 2015. This project has been hosted by one of the Case Company’s main
software development sites, and while being an important site in software development, it
is not the only site for the company, as the company has a couple more sites worldwide.
The Case Company’s software developers collaborate with many phone service providers
worldwide as every one of these providers release phones with their own branding and
custom firmware.

For a company like this, issue tracking is of significant importance for managing their
products efficiently. An extensive infrastructure is used to keep track of different kinds of
issues, software and hardware issues alike, and different departments and teams, that have
different disciplines and fields, collaborate via this infrastructure. This kind of infrastruc-
ture is usually referred to as an issue tracking system.

This project focuses on the part when new software issue submissions are pending reg-
istration into the issue tracking system. The problems that are faced is over- or under- doc-
umentation and sometimes lack of important meta-data; the organization needs to detect
duplicate issues early and also need to identify traceability links to other issues already
existing regardless of being specified by the submitter or not. Of course, the scenario
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Figure 3.1: Visualization of two databases that are part of the
Case Company’s software artifact infrastructure. To the left is
the issue database, central for this work. To the right is the test
database, which is good to have in mind, and could be of interest
in case a future project picks up this thesis with a broader scope,
considering its close and interesting relation to the issue database.

for these kinds of problems could be encountered as a post-submission scenario. Post-
submission scenarios means other employees and teams might be put in the contexts of
detecting duplicates or other misrepresented data that inflicts problems that need to be
resolved; the project considers some of these scenarios too.

This chapter describes how the infrastructure of the issue system works, defines and
describes the cases we are interested in and form an abstraction of the issue-system to
scale off unnecessary details for this project’s scope.

3.1 The Case Company’s Infrastructure

The Case Company’s infrastructure consists of many databases for managing different
kinds of software artifacts. For this project we chose to only study two of the company’s
many different databases to track software development artifacts related to issue report
management and test case management for their different products’ firmware and applica-
tions; an issue database and a test database, as illustrated in figure 3.1.

To form and implement the semantic distances metric, we made the choice to work with
only one of those databases; the database central for the scope of this project, is the issue-
focused database. It contains two different kinds of artifacts of relevance. Issues reported
by operators, mainly during acceptance testing, are submitted as the first kind of these
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3.2 Software Artifact Dependencies and Management

two artifact types, as customer acceptance entries; to simplify the terminology we will be
calling them external issue entries. The other, more common issue artifact type, are the
entries created and submitted by the Case Company employees themselves as they find
issues to report and are referred to as internal issue entries.

The internal issue artifacts and the external issue artifacts are not only different by name
and the context they are composed in; they are distinguishable by the meta data fields
available for each of the two. The internal issue artifacts have a larger variety of meta data
fields used internally by the Case Company, while the external operator issue artifacts have
a limited variety. Naturally there are some common meta data fields such as submission
date, description and so on.

The test database that holds test case artifacts and test logs has some relevance to this
project; even though the artifacts it contains do not have any impact on the tool nor this
specific project, the tool could be modified to apply in a larger scale and include the test
database. By understanding how they relate in the larger perspective, we think it will give
a better understanding on how the rather simplified scope is relevant to the industry.

Similarly to the issue database, the test database holds different kinds of artifacts; there
are the external operator test cases from a large set of cell service providers, or simply
operators, worldwide; and there are also internal test cases created by the company em-
ployees. These provide complementary subsets of test cases to the operator test cases,
ensuring higher coverage and concludes redundant, sometimes duplicated, test cases from
the different operators. The test database also contains test data artifacts, containing fail
status for the last runs of all the test cases and information about traceability links between
test-artifacts in the test database and issue-artifacts from the issue database.

3.2 SoftwareArtifact Dependencies andMan-
agement

The issue database consists of different types of entries, two of which are the internal issue
artifacts and external issue artifacts. The external artifacts are issue entries created when
discovered during customer acceptance tests and are often created by employees at the
operator companies.

Since the database has two types of issues, this makes the collection of external issue
entries prone for duplicates if there e.g. is a generic defect that reproduces for more than
one operator. These issues could be described differently and the documentation quality
could vary between them.
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Figure 3.2: This figure illustrates the process of external issue
submissions. An external issue originates from from customer ac-
ceptance tests and are submitted by different operators’ employees.
All submitted external issue artifacts awaits review by the Case
Company to be granted a status and proceed, or to be rejected for
various reasons.

Each external issue submitted must be reviewed by one of the appointed review-teams
at the company. When such a team evaluates a submitted entry, they will make decisions
on it, such as deciding the priority of the issue, if they decide it in fact is an actual issue in
the first place. The submission teams are responsible for searching for possible duplicates
and traceability links among existing issue artifacts that could already be describing the
very same issue. This procedure is illustrated in figure 3.2.

If the external issue entry submission is deemed an actual and unique issue, an internal
issue artifact is created, based on it. Internal issue artifact-specific meta data is added, if
available for the individual or team creating the internal issue artifact. If it is deemed not
to be an issue it is rejected and no internal issue artifact will be created of it, or it is linked
to an existing external issue if it is found to be a duplicate.

Entries of the internal issue artifact type are always submitted by employees at the com-
pany. Internal issue artifacts are not subject of review, as the case is for external issue arti-
facts. While internal issue artifacts are submitted by employees at the Case Company, their
documentation quality can vary as they can have different origins, as shown in figure 3.3:
Internal test issues can be submitted by different employees from different departments
and units; internal issue entries could be derived from reviewed external issues, originally
written by employees at the operator companies and it could be written by end users if
collected from online support-forums as an example.
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Figure 3.3: This figure illustrates the submission process of inter-
nal issues. An internal issue can originate from different sources.
All submissions of internal issue artifacts are done by company
employees on behalf of themselves, as duplicates of external issue
entries or defects reported from end users.

The internal issue entry can have many origins. If it originates as a duplicate of an
external issue, the description of it is seldom modified. However a lot of meta data that is
not represented in the same way, if at all, within an external issue artifact can be appended.

Each external issue artifact is an entry created by operators and therefore each external
issue entry is duplicated as an internal issue entry, if it is not rejected by a team that
handles and reviews incoming external issue entries. Each internal issue entry created
as a duplicate of an external issue entry is therefore linked to its duplicate external issue.
Other Internal issue entries are on the other hand created independently, and are often
created this way.

This creates a relation between the internal issue entry and the external issue entry it
was duplicated from. This is a relation that is documented within a meta data field of the
internal issue.

Other cases where internal issue entries will be submitted into the system is the obvious
one; whenever someone at the Case Company discovers an issue a report will be filed for
a responsible team to look into and eventually submit. This is also what happens when an
end-user reports an issue.

Internal issue entries themselves have an additional layer of hierarchy. An actual issue
can be described by two or more different internal issuse entries. One of these entries
needs to be identified as a master entry for the issue, as illustrated in figure 3.4.
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Figure 3.4: This illustration consists of an example set of relations
between four different issue artifacts. One can see that entry C is
in fact submitted as a result of the external issue entry Z. Internal
issue entries B and C are duplicate entries describing the same
issue first described in internal issue entry A, making that entry a
master entry. The dashed relation shows that, in some regard, the
external issue Z is also linked to the master internal issue entry A.
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Figure 3.5: Visualization of the issue database infrastructure ab-
straction where internal and external issue entries are considered
to be part of two separate databases by the tool. We always ex-
pect an external issue entry to have a traceability link, a duplicate,
among the internal issue entries.

Technically speaking, a master internal issue entry is an internal issue entry not linked
to another internal issue entry. As a result; all internal issue entries without a link to a
master internal issue entry is considered itself a master issue entry, while those who have
such a link is considered a duplicate to the master internal issue entry it is linked to.

Moreover there are database-transcending links worth mentioning. The internal issue
artifact can have a link to multiple test case entries, both internal test entries as external
test entries. There are also flags within the internal issue artifacts linked to the test lab in
the test database to keep track of issues that have been solved. Also, naturally, the test lab
has links to internal and external test case entries to be able to log them and their latest
execution results.

3.3 Project Constraints andScopeAbstrac-
tions

The issue database will be the only used infrastructure during this project and its imple-
mentation, M-Tool, thus only the data dependencies and data flowwithin the issue database
will be studied. The infrastructure will therefore be regarded in a scaled down manner.

The internal issue entries in the tool will be considered to be entries in an "internal issue
database" and the external issue entries will be regarded as part of a separate "external issue
database", as illustrated in Figure 3.5. This is also the case for how the tool will regard
these different artifacts to simplify parsing and indexation matters. The tool will expect
all external issues to have traceability links to their respective internal issues, despite the
fact that this is not the case for all external issues, since some of them are rejected in the
review process.
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3. Case Description

As briefly mentioned, when an end-user issue is submitted to the Case Company, an
analysis of it needs to be conducted to find out if the issue already is known and reported
e.g. by internal resources or operators. It is also of interest to use this data in another way;
When a new product is being evaluated internally or by an operator and an issue is found,
it is of interest to know if this issue is reported in other products too.

3.4 Uses for M-Tool at the Case Company

The Case Company could use M-Tool in a variety of contexts for different purposes.
Mostly it could be a help at the reviewing process of new issue submissions since it is
critical for the company to acquire links and in overall to map the structures and relations
of the new entry to existing artifacts.

Two of the common uses of the tool at the company that we focus on with this work
is described in scenario-form; the scenario of reviewing newly submitted external issue
artifacts, and the scenario of attempting to retrieve traceability links between external and
internal issue artifacts and also to retrieve semantic links among internal issue artifacts.

3.4.1 Scenario 1: Reviewing Submitted External Is-
sues Pending Review

A typical scenario where the tool might make itself useful at the Case Company is an all
day process at the entry review team. The team uses the new external issue artifact entry
to conduct a search among the existing entries in the relevant dataset to find similar and
relevant entries. It is of high value to early find duplicates and relations to other artifact
entries for this new external issue in order for it to be registered in a way that will be useful
for the organization as a whole, but since this normally takes time, the infrastructure suffers
from under-documentation with many missing links between artifacts.

Formally, the review exclusively happens on external issue artifacts. However developer
assigned internal issue artifacts to solve can apply this scenario to do an informal review
of their own for internal issue artifacts too.
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3.4.2 Scenario 2: TrackingArtifact Relation toOther
Artifacts

During the development of specific software components the Case Company employees
might encounter confusion when trying to get an overview of the status for a component
if they keep stumbling upon two or more different issue artifacts seemingly describing the
same issue, but have no apparent link according to the system.

This could be a sign of a widespread lack of accurate documentation between artifacts
in a specific dataset. It is of interest to be able to track the efficiency of the issue reporting
system and to be able to identify problems in it. One metric of value is to detect duplicates
and to identify possible relations between entries with no recorded relation, a semantic
link. The tool can here be useful to find duplicates and possibly link them to a master
issue.
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Chapter 4

Method

In this chapter we present our method of research and the approach of the measurement
assessment implemented. To explain the approach we first properly introduce M-Tool and
how it is intended to work from a high-level perspective before actually diving into the
technical details of the approach. The evaluationmethods are also described in this chapter.

4.1 Research Method

The procedure of this work is best described with a method three steps, or phases, as
follows:

• First an initial definition of some kind for the measurement of semantic distances
between software artifacts need to be defined and established, at least as a starting
point.

• Based on the definition in step one, we develop a tool that quantitatively decides the
semantic distance between two linked artifacts and gives some kind of indication
of degree of similarity to enable the user of the tool to do qualitative assessments.
It should also suggests or hint the user on possible links within two unlinked but
semantically non-distant pair of artifacts, even though this was not developed as an
independent mechanism.
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4. Method

• Finally we evaluate the defined measurement by evaluating the developed tool, and
decide whether it is useful and to what extent, if that is the case. We also discuss
how the measurement can be enhanced and for what purpose. This evaluation is
also done by informal interviews with our Case Company supervisor, a Senior Ver-
ification Architect, and is also backed with quantitative data collected by accuracy
measurements on preset prepared searches.

Of course these three steps are not strictly procedural, and the second implementation
step in particular is heavily iterative and closely related to the first step of defining the
measurement. The implementation step is also special in the way that much of the practical
work evolves around it and in this step we will produce the prototypes of the tool. This
step is also crucial in order to produce data and acquire knowledge in order to answer the
research questions.

The data collection methods used for this work are many; informal interviews with dif-
ferent people with knowledge of the project and dataset cases used throughout the project
were deemed crucial in order to initiate and set the project’s practical scope in order to pro-
ceed with the project to a workable stage. While the interviews were heavily conducted in
the initial phase, they arose throughout the project, often spontaneously as we felt the ex-
pertise knowledge were needed to make informed decisions. The interviews were executed
in an informal, casual and verbal-only manner.

We also performed studies of cases with qualified employees, mostly with our supervisor
at the Case Company, a Senior Verification Architect, for choosing relevant datasets, which
is important since we are to be considered as outsiders when entering the Case Company
for the first time for this thesis work. Different data for different projects, or time periods
or even portions within a subset of data could be of different qualities and characteristics.
Other examples of when the case study methods are applied were when the statistical
execution evaluation was performed to measure performance and accuracy of the tool[19].

4.2 Solution Approach: M-Tool

M-tool, the name of our implementation, is based on another tool written by Borg [17]
called Imprec. The implementation structure of the Lucene framework was adopted and
slightly modified to accommodate our own data structures and technical needs. Regarding
M-tool’s graphical user interface, while we based it Imprec’s graphical user interface, we
turned out with a very different layout and structure. The rest of M-tool is, to an large
extent rewritten, extended and re-factored.

We analyze the artifacts’ structure and their meta data in the infrastructure of the Case
Company, to map every aspect of it to individual, semantic-representing, fields in the
search engine. We also need to decide how different fields of the different types of artifacts
relate to each other. In our case this was not complicated; since we use issue artifacts, an
artifact already has different kinds of meta data describing different dimensions of an issue,
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Figure 4.1: M-Tool in its untouched initial view. The layout is di-
vided in four areas; search-options, search-results, Artifact Details
and an area with general instructions and global operation-buttons

e.g. version number, project, date etc, besides the issue itself. Since both artifact types are
similar, and both describe an issue defect, it is also easy to map these different represented
dimensions of an issue to each other; both artifacts have a meta data field representing e.g.
the software project and the software version number for which an issue was detected.

It is important to keep in mind that the semantic distance measurement in this work
has an abstract definition, since we define it on a rather high abstraction level when using
a search engine’s own methods and algorithms. Instead we can speak of the definition
in terms of how we process the artifacts through the search engine, as opposed to e.g.
mathematical formulas. Different algorithms and mechanisms of the tool can be linked to
the functionality and layout of the tool. The layout consists of a window with four main
areas and surrounded by a tool-bar at the top and a status bar at the bottom, as shown in
figure 4.1.

The different areas have different functionality in focus; the top-left area is for setting
up a search, the bottom-left area is for examining the search results, with the possibility to
perform a search by artifact for the other type of artifact than the one first used.

There is also the bottom-right area, a significantly larger area under the top right one,
used to view meta-data values for different meta data fields of an artifact. The top-right
area has short instructions of how to use the tool and two buttons to retrieve and store
new data locally or to rebuild the index of the locally stored data with new settings and
parameters.
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4.3 Using M-Tool: Preparing the Tool for
Use

If the tool is used for the first time, or if the user of the tool wants to fetch a new dataset, the
upper-right area of the user interface is the place to begin. From there we let the user make
the tool fetch the preselected dataset to read and parse them into the tools data structures;
for short this process is called a Database Refresh. This action will also automatically
build a local index for the search engine in order to be ready to execute searches.

From this corner of the user interface we also let the user manually rebuild the index for
the search engine. This is necessary when the user modifies the search engine parameters.

The database refresh action locks the tool to set up a network connection to the company
infrastructure for the issue database and queries it with a chosen dataset query. The tool
awaits the server to execute the query and to respond with the data. When the server
transmits the result the tool receives it and parses the data to store it in the application-
specific data structures.

The dataset query is actually a pair of dataset queries; one is specific to internal issue
artifacts and the second is specific to external issue artifacts.

4.4 Using M-Tool: Setting Search Parame-
ters

Depending on the scenario for the context and the use case of the tool one would want to
use search for different things, or execute a search differently.

We let the user choose between the two issue artifacts to list in the primary result list view
user interface element. The user can also conduct a search in different ways by altering the
search mode. The intended use is to search for an artifact and list it in the primary search
box, to then allow the user to search by one of the listed results to find relevant entries from
the other kind of artifact. For instance, we could want to check if a pending external issue
entry, regarding a connectivity issue, has been duplicated as an internal issue entry. We
set the tool to search by external issues and perform e.g. a free-text search on the external
issue entry’s title to find it in the tool. When found, we select it to perform a search with
it, to check if the tool can find an internal issue entry that it deems similar to it.

When searching for the external issue entry, one would want to conduct this search in a
different way, of the three different ways the tool offers; search by an entry mock up setup,
search by a free-text string and an entry matching by ID search.
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The mock up entry search mode allows the user to design an advanced search by letting
the user decide and set the values of meta data fields for the search engine to try and match
against the other entries and their corresponding values. More importantly this allows the
user to choose to leave certain meta data fields empty if they are not vital for the specific
case and need, thus making the tool ignore these fields instead of negatively impacting
potential matches’ scores simply because these same meta data fields does not match.

The free text search mode on the other hand is technically a mock up search, setting the
meta data fields for the mock up with the inputed string typed by the user. Therefor this
search mode is the less suitable if the user seeks a very specific set of results, but very
suitable to do more general searches where the indication of the scores are not important.

The entry matching method requires the user to be very specific; the user needs to put
a valid entry ID for an existing entry in the tool’s current indexed dataset, but the user can
also put a globally valid ID, meaning it exists in the Case Company’s infrastructure and
is available when the infrastructure servers are queried for it. The tool takes this entry
and searches with it as input, to find other entries similar to it. If the entry is not part of
the locally stored and indexed dataset, the tool will perform an online search by sending a
query, specifically constructed for the inputed entry ID, to the infrastructure servers. What
technically happens if the entry is found and fetched, is that the meta data fields of the entry
are used as values in a mock up setup.

The user of the tool can also choose to do an empty search, resulting in the tool listing
all entries of the set issue artifact. This is a function for general browsing of the current
stored and indexed dataset and can be useful to do a simple sweep of a newly refreshed or
indexed dataset.

4.5 Using M-Tool: Interpreting the Search
Results

When a search is done and the results are presented, there are different ways the user of
the tool can look at the result to make qualitative decisions. If anything, the first thing the
user will notice is the order of the results; the order of the results can be considered as
the tool’s rank-order of the most similar listed first. The rank-order is determined by each
search result item’s similarity score, which leads us to the other factor one can examine; a
similarity score is something the search engine determines internally, of course influenced
by the settings and parameters we as authors of the implementation have set, but also what
we allow the user to set. The similarity scores can be very general, but the user has the
possibility to view each issue artifact’s meta data fields and study the scores to understand
why a search result entry got the similarity score the way it did by looking at and comparing
the field to field scores. This whole process can then be repeated until the user is satisfied
with the overall result, as illustrated in figure 4.2.
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Figure 4.2: This figure illustrates the intended way of using M-
Tool in a systematic way.

4.6 Understanding the Search Engine

When executing a search many things happen in the background before the results are
complete and ready to be presented. The tool operates at a high level thanks to the use of
the Lucene search engine library.

A search engine is a software framework designed to index structures of data, called
documents in search terminology. A document can have different meta data fields, at-
tributes, depending on what it represents. It can then receive external search queries to try
and match with the indexed documents and returns a list of documents and their ranked
similarity score to the search terms.

If the case for this project each indexed document represents an issue artifact. The
attributes used are the issue artifacts’ meta data fields Issue ID, Title, Date, Platform,
Product, Product Variant, Project, Discipline, Component and finally Description. Some
of these attributes are produced by splitting or combining actual database meta data fields
(table-columns); this adds some complexity in understanding how different meta data are
connected and is, as we experienced, crucial to understand in order to build a helpful set
of meta data fields to utilize.

Lucene is used as the search engine core in this project tool implementation, M-Tool, in
order to index and query the artifacts. Lucene is an open source engine used to index text
and perform analyses to it in order to make it searchable. The different meta data fields
is inserted into standard Lucene string fields. Lucene is first and foremost a string-based
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search engine. It does support some other types of fields, such as numerical fields. How-
ever our tool exclusively uses string fields for indexation, even for meta-data of numerical
nature; this choice was made as a result of the fact that we noticed the existence of this
feature mid-project, when it would have cost us much time to implement.

Lucene supports the use of so called boosting for different meta data fields. By default
all fields are treated equally, but the use of boosting can be useful if particular meta data
of a Lucene document should impact the total similarity score of two documents more if
it matches with another document’s corresponding meta data field or fields.

As an illustrative example of the usefulness of the boost-feature in search engines; imag-
ine a person being in the mood to eat. This person decides he wants to eat at a certain well
known hamburger restaurant chain and uses a modern, general purpose, online search en-
gine and types “McAdams”. The search engine will most likely show nearby “McAdams”
restaurants, instead of simply showing the most popular “McAdams” restaurant that is in-
dexed by the search engine, in a far away place, just because it goes by the same name.
This is because the search engine considers other meta data, such as the users location, or
the nature, or call it category, of the search, being restaurants.

However, it is interesting what the search engine would show if this person is abroad in
a country where there is no McAdam restaurants. Some search engines would probably
show information about the McAdam company, or even yet, the closest McAdams restau-
rant anyway, even if that meant the person would need to take a flight there. If the search
engine is smart enough however, it would boost the search by the location and category
meta data fields, yielding a higher score for indexed documents that have similar values for
the location and the category meta data fields, as the search instance’s values for the same
meta data fields. A search boosted this way will instead be helpful to the hungry searcher
and show them nearby and local alternatives to McAdam restaurants.

So bringing this example back to our case, we can conclude that some meta data fields
should understandably yield different impact on the similarity score. For instance, if there
are two issue entries, for which the actual issue description is very different, despite the
fact that they are related by many other factors, the user would expect the tool to list these
in the result as being to be similar. Without boosting, the longer string of the issue de-
scription would yield a higher impact on the similarity score. This would happen when
e.g. comparing the first issue entry with a third issue entry that has a very similar issue
description as the first issue entry, even if the third issue entry does not belong to e.g. nei-
ther the same project nor the same component of the phone and software, as the first two
do.

One approach could be to set the boost for the different meta data fields to fix values.
That would be a nice overall solution if implemented for a search engine with a large
dataset that slowly grows and where the overall indexed documents’ characteristics never
drastically change in nature. In the case of this tool however, the user changes between
different, often distinct, datasets of different nature and character. There needs to be a
scheme for each dataset in order to efficiently identify valuable differences or similarities
that could be of different value for different kinds of datasets.
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When looking into a particular dataset, where a majority of the entries are similar in
some regard, different meta data fields will in reality yield a larger impact than they would
be expected to do in larger, more diverse datasets. For instance, the issue entries in the
particular dataset could all be part of the same product. This would then make the prod-
uct of the issue a less significant factor for that particular dataset, and therefor make it
appropriate to apply an accordingly smaller boost on the meta data field describing the
product.

4.7 Score Normalization

Similarity scores generated by Lucene is difficult to read andmeasure without prior knowl-
edge in how the engine works and without a greater overview of the currently indexed
dataset. By requiring from the user to know how the search engine works and have a
more detailed overview of the current dataset, we destroy the purpose of this tool since
it is meant to give that overview we are requiring; to solve this matter, the tool needs to
normalize the score over a fix range, to make the score intuitive for the users to interpret.

The tool normalizes the Lucene score to a fixed score-value range of zero to one hun-
dered, NormalizedScore ∈ [0, 100], with the advantage of being able to view the normal-
ized score as a value in percentage units. This is done by taking the current software arti-
fact, Artifact x, and compare it to itself to get the absolute similarity score AbsoluteScorex→x.
Since AbsoluteScorex→x is the highest absolute score possible among any artifact com-
parisons to Artifact x, we assume the maximum absolute score be the equivalent of the
maximum normalized score; the value of 100. This is logically straight forward too, since
a comparison with an identical artifact entry should yield the highest score possible.

When other artifacts, e.g. Artifact y, is compared to Artifact x, their absolute score
AbsoluteScorex→y will be normalized against themaximum absolute score AbsoluteScorex→x,
by the following formula:

NormalizedScorex→y = 100 ×
AbsoluteScorex→y

AbsoluteScorex→x

The individual field-to-field scores are similarly normalized too. The accumulated sum
of all field scores for a current pair of compared artifacts is used as an index to normalize
these individual scores around it, thus distributing a percentage share among all fields.

4.8 Field Weight Tuning

Initially the weights were set to arbitrary values given as a matter of personal decision.
The values were then fine-tuned based on a couple of artifacts that needed to score high
against each other, based on different meta data fields.
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When trying to make this tuning procedure less arbitrary and more systematic as pre-
scribed in Borg’s work[5], some quantitative metrics were considered; one of these quan-
titative metrics was to count all different values for each meta data field for a dataset, and
set a higher weight for a meta data field that accounts for a higher share of the total count.

This quantitative method of setting a weight was chosen since it made sense to give
a field with minimal variation within a given dataset less impact on the similarity score,
while giving higher value-variation within the same dataset a larger impact on the similar-
ity score.

A problem with this is that the concept of weighting treats all involved meta data fields
as equals; this is problematic since different meta data fields could be very different in
nature. As an example, imagine the entire product catalog at the Case Company would
be included in a dataset, so that we can take a look at all values the meta data field, e.g.
“product”, can have for all the included issue entries. The variation of the values for that
meta data field would stand small in front of the value-variation for the meta data field of
e.g “description”, that could include a proportionally large variation. In this example, and
with the given approach in general, the “description” meta data field would get tremendous
weight compared to the “product” meta data field, which would make the tool give the
“description” meta data field such importance, that all other meta data field values would
practically not be considered to decide the similarity score.

To solve this dilemma there needed to be an element of manual tuning without the arbi-
trary decisions; This was solved by qualitatively producing six different datasets collabo-
rating intensively with senior employees at the Case Company providing the data. The first
four datasets where produced first in order to, as far as possible, eliminate biased results
for the later evaluation-procedure.

Basically the meta data field weights were set up according to the quantitative method
based on value-variations and were then adjusted to fit expected reference artifacts for
internal issues listed with external issues, but also duplicates among internal issues and
duplicates among external issues. The last two datasets were constructed when the project
reached amoremature phase to primarily evaluate two of these tuning’s efficiency, but also
to have a wider array of datasets to do a more absolute measuring of the tool’s accuracy
in the final phase, based on master entries.

4.9 Dataset Setup

To be able to setup datasets that are helpful when refining the implementation we need to
mainly consider a variation of two factors: Size of the dataset and characteristics of the
issue description.
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In order to do that we defined a total of six datasets, summarized in table 4.1. Where
as of our case, four of them were defined first when the tool reached a stage of structural
maturity, meaning the tool’s purpose was established and mainly set. The four datasets
were then used to tune and try to find optimal metrics and factors to guide us in setting
indexation parameters, namely the boost settings.

The last two datasets were defined when the tool became mature in function and began
entering a stage were evaluation of it appeared to be of relevance. Concretely speaking
this occurred for us when we decided that there were no more optimization with the set
structures to improve accuracy, as subjectively perceived.

Datasets four and six are strictly small subsets of internal issue entries with an external
issue entry link, and their linked external issue entries included.

The six datasets are defined as follows:

1. Dataset 1 consisted of a large set of data from a specific product and time-period
with all kind of software issues related to the project, from simple applications to
hardware-related software.

2. Dataset 2 is a subset of Dataset 1, but is limited to specific software components of
different nature. Eight of those components are of a high-level nature and relate to a
phone’s basic applications such as the contacts and messaging applications. These
high-level components makes up for 70 % of the dataset while the rest of the dataset
consists of two other software components related to code that handles connectivity
hardware such as NFC and Bluetooth.

3. Dataset 3 is also a subset of dataset 1, but distinct from dataset 2. Dataset 3 is almost
the same size of dataset 2 and only consists of internal issue entries of four hardware
related software components.

4. Dataset 4 is a subset of Dataset 3, but only includes internal issues that are not master
entries and that have an external issue link, i.e. the internal issue entries stems from
external submission from operators. Dataset 4was designed to test score and ranking
accuracy for duplicated entries and score and ranking accuracy for internal issues
linked with external issues.

5. Dataset 5 has much characteristics in common with those of dataset 2, in terms of
the composition of the software component types it includes. Though the included
entries applies for a different product, making the two datasets unrelated.

6. Dataset 6 is designed for evaluating duplicated entries and accuracy for internal is-
sues linked to external issues and therefore only includes a limited amount of entries,
as for dataset 4, but sets of entries for a different product.
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Dataset Internal Issues Master Records External Issues
[Count] [Count] ([%]) [Count]

1 5 468 4 495 (83%) 681
2 761 669 (88%) 120
3 832 715 (86%) 832
4 38 0 (0%) 38
5 1 763 1 520 (86%) 210
6 39 0 (0%) 39

Table 4.1: The table shows the composition of the different
datasets to give an overview of their characteristics.

4.10 Evaluating the Accuracy

To determine how accurate the tool is, we need to have some kind of a reference point.
A reference point is useful because it sets a standard of expected result for an evaluation
method. An ideal kind of reference point for the application would be expected entries in
the search results with expected similarity score and ranking based on data that the tool
does not account for. That kind of specific data does not exist, but fortunately there were
meta data that describe relations between internal issue entries to each other. An internal
issue entry could be a master entry for a specific issue, or it could be a duplicate and hence
linked to the master entry.

The tool is completely blind for master entry links between internal issues. For this we
used an internal issue connected to a master entry to find out how well the tool ranks it’s
master entry (if at all). So to measure the accuracy we exported a spreadsheet listing all
non-master internal issues entries and tested around at least two prepared search sets for
each dataset, with two to five different search set ups within each prepared search set.

There are three types of searches included within each prepared search set:

1. A search by the linked external issue entry, to find its corresponding internal issue
entry, given with a traceability link.

2. The internal issue non-master entry was used to do a search in the dataset, to find
the corresponding internal issue master entry.

3. Along the same search as the second, score and ranking data for other internal issue
non-master entries linked to the same internal issue master entry were collected.
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4.11 Evaluation of Performance and Scal-
ability

In order to determine whether the tool is scalable we decided to do performance testing
on different procedures or operations. The chosen operations are mostly straight forward;
the indexation and searching operations are central to the tool and the execution time is
obviously dependent on the amount of indexed data. But less obvious, yet important op-
erations are the local database refresh, which means the tool need to connect to a remote
server, query it twice, receive data and parse that data.

Since the connection-part of the operation is mostly arbitrary and dependent of external
factors such as the computers network connection, the server’s workload at the time of
query and so on, this metric is measured twice: a complete full refresh measure, which
is the time it takes from pressing the "Refresh Database" button until the tool has indexed
the received and parsed data; But also the time it takes to connect and send a query to the
server, and to receive the result data from the server.

The measuring was done by using a time-secure method in C#, named Stopwatch. Since
the actual time results themselves were not deemed as an important metric for the perfor-
mance and scalability, the measure hooks were not placed with great thought. Of course
common sense was applied and it was made sure that these hooks were placed consistently.

In addition, two more operations were used to measure very simple operations: listing
all indexed internal issue entries, and listing all indexed external issue entries respectively.

Each sample was measured programmatically and triggered with the action measured
itself within the user interface. Each action measurement was conducted on four datasets
different from the previously defined datasets. Each type of operation had a different min-
imum number of samples to be taken, so called sample count, as shown in table 4.2.

Tool Operation Sample Count
Entry to Entry Search 20

Listing Operation of Internal issue entries 20
Listing Operation of External issue entries 20

Indexation Operation 18
Full Refresh 12

Database Refresh Operations 12

Table 4.2: The table show each operation’s minimum sample
count on each dataset.
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4.12 Summary of Method

The method chapter of this thesis project is broad since it comprises many mechanisms
and methods for different purposes, both regarding the implementation, but also regarding
evaluation and research. To summarize this chapter to its fundamental mechanisms, there
is a couple of things we can repeat and keep in mind:

• Implementation, and therefore the definition of the semantic distance, is abstracted
in logic to be defined in terms of the search engine parameters set during imple-
mentation and allowed for the user to manipulate during run-time. One important
parameter is the search field boosting feature.

• The boosting feature needs to be set for each unique dataset used in the tool, and
therefor it is of importance that these values are set in a systematic order. We do
this by examining the nature of the dataset in question, and by examining the value-
variation for all entries of the dataset; a dataset that has no or small variation for a
specific meta-data field should not yield high impact on the similarity score upon
search as an example.

• The similarity scores are essential for the tool and its use. In order to make them
understandable, they are normalized so they can be interpreted as similarity in a
percentage value. The scores themselves also need to be evaluated for accuracy
and reliability. We do this by setting up six datasets with special characteristics in
content and size to emulate different scenarios.

• The evaluation processes of accuracy and scalability are important, and in order to
perform these, quantitative methods are preferred over qualitative methods, since
the data produced by quantitative methods tend to be less subjective than qualitative
methods. Thesemethods can be usedwith no complexities for measuring scalability.
The definition of accuracy however is ambiguous and a far more abstract concept
than scalability. This makes the quantitative measurement of accuracy more diffi-
cult, and therefor we solve this by also using qualitative methods.
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Chapter 5

Results

In this chapter we present our results; in section 5.1 we present the semantic distance
measurement metric definition we ended up with as a result of our approach method. In
section 5.2 we present our qualitative as well as the quantitative evaluation for the accuracy
of the tool implementation. In section 5.3 we finally present the performance of the tool,
thus its scalability.

5.1 Semantic Distance Measurement Met-
ric

The definition of the semantic distance measurement is mostly pre-defined as the search
engine, Lucene, abstracts this matter away. However we can still describe the definition
by the way we set the parameters and implement the tool around the search engine. The
resulted measurement metric is a relative metric, a numeric score value from 0 to 100.
The metric is a composition of sub scores of different meta data fields, e.g. issue title, the
issue description, the project it appears in and the software component the defect impacts.
The sub score for each meta data field is then weighted differently, according to deemed
importance in the context of the dataset of issue artifacts.
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If a dataset includes issues related to a limited amount of software components, then
the software component field will have a smaller weight than it would have for a dataset
with a diverse variety of software component values for its indexed issues. One can say
that the resulting metric for the semantic distance is a relative numeric value that takes in
consideration the uniqueness of the different artifacts in a dataset, in order to yield a higher
score, in case two allegedly “unique” artifacts, are similar to each other.

5.2 Accuracy

The resulting accuracy of the tool, hence the accuracy of the metric, was decided quali-
tatively by observing the ranking order and score results on each set of the search setups.
The results are presented in table 5.1 and table 5.2.

The accuracy for the tool was considered to be somewhat accurate since it indicated
external issue duplicates with great accuracy as can seen in table 5.1 marked External
Issue Duplicate. This consideration is a result of the manual qualitative observations of
both the data but also on individual comparison of the search results.

To some extent, the metric could accurately point out the master issue entries, not only
by searching on their counterpart internal issue duplicate, as shown in table 5.2, but also
by searching on an external issue entry that has links to a duplicate, as shown in table 5.1,
for the expected entry type of Master Issue Entry rows on each prepared search instance.

The metric also indicated other master entry duplicates, although it performed better
when the search starting point were from the prepared search’s internal issue instead of
the same internal issue’s linked external issue entry. This can be observed by comparing
the Other Duplicate rows of the different prepared searches in table 5.2 and table 5.1.

Overall, one can also observe that the resulting score accuracies are not consistent for
different sets of searches, nor did the tool always rank the search-results as expected or
at least consistently. One troubling finding for a few instances is that the ranking order
would be correct while the score would be unexpectedly low. This is important to point
out since one could easily conclude that "this is still somewhat a good result", but in live
environment cases where the correct result is not known this would indicate to the user
that there is no relevant entries among the results, i.e. a false negative.

This finding also occurs in the opposite manner; Relevant and irrelevant artifacts would
be in incorrect ranking order and with similarly high scores. This kind of search result
implies a false positive; i.e. it would indicate that a wrongful entry is related, or more
related, to the inputted artifact than the one who would be expected if the review would be
done manually.
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Prepared Search Expected Entry Type Rank Order Similarity Score
[Dataset].[Search №] [Duplicate|Master] [Order of Entry] [M-Score]

DS1.1 External Issue Duplicate 1 100
Master Issue Entry 81 4
Other Duplicate 23 8
Other Duplicate 2 100
Other Duplicate 56 5

DS1.2 External Issue Duplicate 1 100
Master Issue Entry 8 28
Other Duplicate 28 17
Other Duplicate 73 17

DS2.1 External Issue Duplicate 1 100
Master Issue Artifact 633 3

DS2.2 External Issue Duplicate 1 100
Master Issue Entry 111 2

DS3.1 External Issue Duplicate 1 100
Master Issue Entry 2 23
Other Duplicate 3 22

DS3.2 External Issue Duplicate 1 100
Master Issue Entry 16 15
Other Duplicate 32 10

DS4.1 External Issue Duplicate 1 100
Master Issue Entry Entry not Part of the Dataset

DS4.2 External Issue Duplicate 1 100
Master Issue Entry Entry not Part of the Dataset

DS5.1 External Issue Duplicate 1 100
Master Issue Entry 782 3

DS5.2 No Linked External Issue for This Prepared Search
DS5.3 External Issue Duplicate 1 37

Master Issue Entry 3 25
Other Duplicates 19 7

DS6.1 External Issue Duplicate 1 100
Master Issue Entry Entry not Part of the Dataset
Other Duplicate 2 56
Other Duplicate 3 56

DS6.2 External Issue Duplicate 1 100
Master Issue Entry Entry not Part of the Dataset

DS6.3 External Issue Duplicate 1 100
(DS5.3) Master Issue Entry Entry not Part of the Dataset

Other Duplicate 18 5

Table 5.1: Results for custom prepared searches, by searching
with an external issue. All expected entries are instances of the
internal issues artifact.
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Prepared Search Expected Entry Type Rank Order Similarity Score
[Dataset].[Search №] [Duplicate|Master] [Order of Entry] [M-Score]

DS1.1 Master Issue Entry 81 4
Other Duplicate 23 8
Other Duplicate 2 100
Other Duplicate 56 5

DS1.2 Master Issue Entry 8 28
Other Duplicate 23 8
Other Duplicate 68 17
Other Duplicate 73 17

DS2.1 Master Issue Entry 633 3
DS2.2 Master Issue Entry 111 2
DS3.1 Master Issue Entry 2 23

Other Duplicate 3 22
DS3.2 Master Issue Entry 16 15

Other Duplicate 32 10
DS4.1 Master Issue Entry Entry not Part of the Dataset
DS4.2 Master Issue Entry Entry not Part of the Dataset
DS5.1 Master Issue Entry 782 2
DS5.2 Master Issue Entry 6 19
DS5.3 Master Issue Entry 2 70

Other Duplicates 4 28
DS6.1 Master Issue Entry Entry not Part of the Dataset

Other Duplicate 2 64
Other Duplicate 3 64

DS6.2 Master Issue Entry Entry not Part of the Dataset
DS6.3 Master Issue Entry Entry not Part of the Dataset
(DS5.3) Other Duplicate 2 25

Table 5.2: Results for custom prepared searches, by searching
with an internal issue. Note that all expected entries are instances
of the internal issues artifact. Note how the results for master entry
duplicates is the same regardless as in table 5.1 when the similarity
score for the internal issue duplicate of the linked external issue is
100.
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5.3 Performance andScalability ofMeasure-
ment

This section shows the data points measured to present the performance and illustrate the
scalability of the tool in different aspects. The measurements were performed code-wise
by hooking the code with execution timers. While the hooks placement could shift the
measurement in different directions, the important metric is not the exact result, but the
magnitude and growth of the graph these tables form.

The following subsections first present data for operations that need to involve all in-
dexed artifacts regardless of type, such as searches, database refreshes and indexation of
those. Normally these operations are of heaviest importance. The two other subsections
present data where only one artifact type is involved in order to execute the listed opera-
tions; that data serves mainly the purpose of showing how the performance on one hand
may shift the data depending on the artifact type, but does not impact the scalability with
growing amount of data.

5.3.1 Performance forOperations InvolvingBoth In-
ternal and External Issues

Table 5.3 shows performance for actions that operate through all indexed entries, internal
issue entries and external issue entries alike. The first column presents the total amount
of entries that the listed operations need to consider and traverse through and the other
columns represents different operations’ execution time in milliseconds.

In figure 5.1 we can see the required execution time for each operation for different
amount of indexed entries. We can conclude that the tool-specific implementations and
operations scales excellently since their execution time grows by O(log(n)). Operations
related to extraction of data from remote resources is limited by the network which the tool
operates from, and do not perform as well for natural reasons. The execution complexity
of those operations seems to grow by O(n). By looking at the plot with the logarithmic
amount of entry axis in figure 5.2, it becomes clearer that they grow a little faster than
O(n).
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Total Entries Full Refresh DB Refresh Indexation Entry to Entry Search
[Entry Count] [ms] [ms] [ms] [ms]

60 9 618 10 2 985 951
600 4 148 477 1 371 927
6 145 21 382 7 348 2 949 1 497
34 326 152 179 120 494 24 625 4 151

Table 5.3: Mean values of sampled performance data for global
operations. We can clearly see indications of a scalable implemen-
tation, specially for the common operations such as searching and
indexation.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5000 10000 15000 20000 25000 30000 35000

Ex
e

cu
ti

o
n

 T
im

e
 in

 M
ill

is
e

co
n

d
s

Total amount of Entries

Performance of
External and Internal Issue Based Operations

Full Refresh

DB Parsing

Indexation

Entry to Entry
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that the tool-specific implementations and operations scales ex-
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Figure 5.3: Visualization of performance data with linear axis
for entries, cropped and zoomed in to the first thousand entries to
give a clear overview of the initially unsteady correlation between
entry-count and execution time.

5.3.2 Performance for Operations Involving Internal
Issues Only

This table shows performance for actions that only operate through all indexed internal is-
sue entries. The first column presents the total amount of the indexed internal issue entries
the operation needs to traverse through, while the other column represents the operation
relevant to these indexed internal issue entries and its execution time in milliseconds for
the different sets of entries.

Total Internal Entries List all Internal Entries
[Entry Count] [ms]

55 605
500 630
5 466 1 010
20 000 2 484

Table 5.4: Mean values of sampled performance data for opera-
tions involving internal issue entries only
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5.3.3 Performance for Operations Involving Exter-
nal Issues Only

Table 5.5 shows performance for operations that only operate through all indexed exter-
nal issue entries. The first column in it presents the total amount of indexed external issue
entries the operation needs to traverse through, while the other column represents the oper-
ation relevant to these indexed external issue entries and it’s execution time in milliseconds
for the different sets of entries.

Total external issue Entries List all external issue Entries
[Entry Count] [ms]

5 608
100 608
679 962

14 326 2 050

Table 5.5: Mean values of sampled performance data for opera-
tions involving external issue entries only

5.4 Summary of Results

Since the results are divided in three aspects, we can summarize them accordingly:

• The resulted semantic distance metric is basically defined in such a way that the
similarity of two artifacts essentially depends on the dataset, in which they are in-
cluded. The diversity among the different values for the different meta data fields
has an impact on the metric.

• The resulted accuracy of the metric is ultimately acquired by measuring the results
the implementation of the metric produces. There we can observe that the accuracy
is not consistent through out the different scenarios. However the overall accuracy
result is promising for future improvements.

• The resulted scalability of the implementation is seemingly perfect, particularly in
heavy-use operations. The less scalable operations of the implementation involves
data transfers over the company’s network, yet they are more or less linearly scal-
able. Regarding the isolated, local operations; we can clearly see that the differences
between the issue artifact types do not infer on the scalability, as illustrated by the
parallel dotted lines in the comparative chart in figure 5.4.
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Chapter 6

Discussion

The main goals of this project, which set the basis of the research questions, were to imple-
ment an information retrieval tool based on a search engine to measure semantic distances
between two semantic artifacts; examine the semantic distance assessment definition of
the implemented tool; and to lastly examine the accuracy and the scalability of such a tool.
This section discusses the results of this thesis work project, particularly in regard to the
listed goals in chapter 1.1. We discuss what the results mean and how they answer the re-
search questions. Different factors’ impact on the results, such as error sources and project
limitations, will be discussed to try to give a good insight on the results’ validity. Finally
we also discuss future work and how this thesis work can be developed further.

6.1 Accuracy of the ImplementedMeasure-
ment of Semantic Distances

With the execution of the accuracy measurement, we seek to answer how accurate the
defined assessment measurement of the semantic distances is. We do this by measuring
the accuracy of the implemented tool itself to answer this research question (RQ1). The
resulting accuracy of the tool varies between the different scenarios.

For the external issue reviewing scenario, 12 out of 13 instances of external issue du-
plicate searches, almost all of them, scores 100 out of 100 in the similarity score value as
presented in table 5.1. The only such search instance not scoring the maximum similarity
score of 100 scored 37; however it is still ranked as number 1 among the results.
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For the matter of the second scenario, consisting of recovering semantic links among in-
ternal issue artifacts, the accuracy can arguably be vastly improved even if it seems promis-
ing in some cases.

It is important to discuss where and when the tool is actually accurate in one or another
regard and when and where the tool seems to give random outcomes. And of course, why
this is. We can observe and state that the tool achieves good accuracy when it comes to
duplicates between software artifacts of different kinds, i.e. the comparison of an internal
issue entry with its external issue entry counterpart, even for instances where the corre-
sponding meta data fields between two artifacts have varied values.

In less trivial cases however, this accuracy rapidly drops. This can be seen by two
indications; the expected search result scores for targeted entries and the order they rank
in a search result. Studying table 5.1 for master issues as expected entry type, we can see
that the rank can be considered good for 4 of 7 sampled cases, if we consider a ranking
below 20 as an accurate result that compensates for the more troubling similarity scores.
The results in rank and score is even more varied when looking for rankings and scores
for finding other master issue duplicates as presented in table 5.1 and table 5.2.

We did manual reviews to have a good hint of what we could expect from different score
values, but one can also study the table to imagine what kind of scores shall be consid-
ered good or bad. It is important to keep in mind that same scores in different datasets
or even subsets of these datasets could have different indications based on the quality of
documentation. In general terms a score over 56 for dataset 6 should be considered good,
as the first three ranked results in the first prepared search for that dataset, DS6.1, shows
that the highest scores is 100, 56 and 56 respectively, as shown in table 5.1. For dataset 3
this threshold is lower, at an approximate score value of 20.

6.2 Possible ApproachDevelopment to Im-
prove Accuracy

As the defined assessment implementation is limited in different aspects, one can always
improve it. There is a couple of identified factors that affects the accuracy negatively and
are good to consider in order to address the at times random accuracy.

We can answer the research question regarding how the defined assessment for the se-
mantic distance measurement and implementation of it could be improved (RQ2), by look-
ing into four mention-worthy, identified factors as they make good discussion topics:

• The disregard of different meta data’s nature when indexed in the search engine.

• Limited utilization of available, maybe more relevant, meta data at the Case Com-
pany.
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6.2 Possible Approach Development to Improve Accuracy

• The primitive approach of setting and tuning meta data field boosts in the search
engine.

• The accuracy measurement approach can also be improved, since flaws in the mea-
surement could imply accuracies higher or lower than they are in reality.

These factors will be motivated and discussed in more detail in 6.2.1 through 6.2.4. It
is worth pointing out that accuracy can be impacted by even more factors not mentioned
here since they are outside the scope of this thesis work. However some could still be
interesting as part of a future work to look at. Some of these factors are brought up in 6.4.

6.2.1 Disregard to Characteristics of Different Meta
Data Fields

The Lucene search engine’s algorithms is constructed for string indexation primarily, and
these are used for all kinds of meta data fields of the two software artifacts to simplify the
implementation of the tool.

Important numerical meta data fields of the artifacts could therefore not be used, or at
least not be utilized to give better accuracy efficiency to the solution. The problem with
using string indexation on numerical values is that numerical values could be similar, but
indicate very different, far away things.

A hypothetical meta data field storing a simple numeral will be indexed with Lucene’s
string indexation method; therefore the values 300 000 and 30 of this hypothetical meta
data field will yield a rather high similarity score in our solution while the values 999 999
and 1 000 000 will yield low scores in our solution.

Of course, as humans, we understand that the values in the latter example surely are far
closer to each other than the values in the first example, thus the yielded similarity scores
should be inverted, with a high similarity score between the numeric values of 999 999
and 1 000 000 while a low similarity score should be the result for the numeric values of
300 000 and 30.

In our solution this meant that we could not incorporate a meta data field for software
version number for the tool to consider. This meta data field could be very useful since an
issue on a product using an older software version should yield lower similarity scores than
a more or less identical entry, but with e.g. the same, or at least closer, software version.

Submission date is a meta data field we actually chose to use rather early in the project.
But since this meta data field impacted the similarity score with rather arbitrary turn-outs,
we needed to considerably down-boost that field despite it’s importance thus potential to
contribute to better similarity scores and therefore better accuracy for the tool.
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Another example of these kinds of error sources are fields that would contribute to better
andmore accurate scores if they would be set to give binary yes-or-no score impact. Score-
wise this would change the behavior of the algorithm, so it assigns maximum weight or
no weight at all on the overall score from such a field, instead of having a value based on
how similar the string is.

This could be applied on different meta data fields such as the field for project name of
the artifact. Whether an issue’s project name has a similar project name of another issue
does not tell us anything about these two different projects semantic distance to each other,
and therefore should not give a higher nor lower similarity score based on this.

6.2.2 Limited Utilization of Available Meta Data

In order to limit the project scope, a limited number of meta data fields where to be exam-
ined and considered in the implementation, and after the first stage of maturity it needed
to remain unaltered.

This meant that as the project proceeded there were some realizations made about the
initial set of meta data fields. Some fields should have been omitted and other had better
been added. As an example we came to realize that the meta data fields product and project
together always formed a codename value for the platform field, making the former two
obsolete and redundant. On the other hand we gradually came to understand the impor-
tance to consider meta data fields such as software version number of the issue artifact
entries.

Ideally it would be preferred to include as many available meta data fields as possible to
be considered and weighted by the tool’s assessment measurement, making the tool better,
thus also our definition of the semantic distance better. More meta data fields involved in
the comparisons yields more accurate quantitative metrics, which in turn gives more ac-
curate and consistent similarity scores. This is of course too large in scale for this project’s
set scope and capacity.

6.2.3 Tuning of Boosts

Boosts were configured manually for each dataset by discussing with the with the super-
visor at the Case Company, a Senior Verification Architect. Trial and error were initially
the main approach, but we came to establish a basic principle to go after; the variation of
different possible values for each meta data field within a dataset were essential to decide
the importance a meta data field should have.

We tried to automate this tuning procedure by letting the tool count each variation of
the values and assign a boost value for each field based on this count. We tried to base this
(semi-)automation approach by using established systematic framework called TuneR [5].
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However, this whole approach was abandoned when we realized there were no real good
practical implementation to come up with and put in use without the extensive and sys-
tematic research approach needed (which was out of scope for this project), particularly
because of rigid and limited set of meta data fields available for the tool;

However we would still argue that this approach would have a potential progress if
worked upon. We used these count values as quantitative guides in our manual quali-
tative decisions. While we did some low key comparisons of accuracy performance with
versus without this guide, it was not in a systematic manner, and therefore we cannot state
it resulted in better accuracy. However, the accuracy was not impacted negatively by this
and this would provide a systematic way to set boosts.

6.2.4 Accuracy Measurement Approach

To measure the accuracy systematically and quantitatively proved to be a challenge. How-
ever it was not impossible. We measured both similarity scores and rank order of the
search results in order to get a good overview of the accuracy performance. We also had
a relatively good data and information to use as key source of comparison.

This was completed with the quantitative procedure of doing manual informal reviews
with a Senior System Architect at the Case Company with intuitive knowledge about the
handled data, to consolidate and confirm the quantitative measurement.

The choices of datasets were designed to include data of two different projects, where
dataset two through four; DS2, DS3 and DS4; were subsets of dataset one, DS1 which in
turn included a diverse set of data volume with artifacts describing very different issues.
The very same approach where applied for the other project on datasets five and six, i.e.
DS5 and DS6.

Dataset four and dataset six were designed to only include a very small amount of inter-
nal issues originating as external issue duplicates, with their linked corresponding external
issues to have a better understanding on how noise would influence similarity score and
ranking of expected search results for targeted entries.

The design approach for these datasets were done in in order to have different levels of
difficulties to challenge the tool with and were designed in an early phase of the project
in order to be able to study how the tool is affected by different volume sizes and variety
of issue types. These factors proved to have smaller impact than first feared and the accu-
racy measurement did not have this kind of specific focus. Instead a rather more general
measurement approach was employed.

The accuracy measurement could however be improved in twomore ways; first we could
have implemented an extensive formal review process with more senior employees as par-
ticipants with a set of questions to ask them regarding their judgment of the tool accuracy.
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6. Discussion

We could also do a more overall accuracy measurement to focus on the use of the tool
and how the tool actually can help, or possibly set obstacles, in their normal procedures by
letting reviewing teams review a limited set of issue submissions as they usually do and
with the tool to evaluate the actual added value for the company the tool could provide.

6.3 Scalability of the Tool

In response to the research question regarding the scalability possibilities of the imple-
mentation (RQ3) we seek to answer whether the implementation and solution approach of
the tool scales with, theoretically, forever growing data volumes that needs to be indexed
and searched through.

In contrary to the discussion around the research question regarding the tool’s accuracy
(RQ1), it is not suitable to use qualitative approaches to answer this questions, and luck-
ily it is pretty straight forward to measure scalability by simply employing performance
measurement and sample these on different data volumes.

The results of this measurement can be found in figure 5.1 and it is pretty clear that
the tool itself is highly scalable. The operations for refreshing the database uses network
communication, and even though it scales less well, it still scales linearly. The chart in
figure 5.2 has a logarithmic axis for entries making it a better guide to determine how well
every kind of operation scales; the database fetching operations grows by O(n) while the
indexation operation grows by O(nlog(n)) and lastly the search grows by O(log(n)).

The separate internal issue only and the external issue only search operations scales,
as expected like the global search operation and grows by grows by O(log(n)) too. The
chart in figure 5.4 compares the two operations operating in an external issue only and an
internal issue only domain respectively, and how they grow.

One can also spot some anomalies in the graph’s very beginning. The chart in figure 5.3
exposes these. Since the value for each operation is a mean value of a set of samples taken
for each operation, these phenomena can not simply be dismissed as coincidence. However
they can easily be explained; the search engine library methods used have probably code
routines executing in constant time, causing an execution time offset large enough to make
a difference on the measurement on an indexed dataset of 60 total entries, but too small to
be visible on the measurement for the indexed dataset of 600 entries in total.

These constant offsets could also be explained, not only by how the search engine is
implemented, but also as an effect of how we placed the measurement hooks. We did not
put much effort and thought on how to place these time measurement hooks other than
using general common sense.
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6.4 Future Work

We argue that these anomalies that could be caused by this fact does not affect the over-
all conclusions since the absolute measurement values and numbers are not critical nor
important to answer the research question regarding scalability. Instead, relative values
are important here, making the criteria of consistency through the measuring methods and
the sampling procedures a critical matter; This is a criteria we fulfill. Of course, if these
results were to be used to draw new conclusions where the absolute values actually mater,
our data could be unsuited for the purpose.

6.4 Future Work

The tool need to be developed further to be more intuitive for the user, but also devel-
oped and improved on the issues discussed in the discussion chapter, particularly chapter
6.2.1. There could be developed new approaches to append the functionalities of the tool
to possibly give the user qualitative metrics too.

Future Development of Approach:
After we have tried to implement some kind of automatic boost tuning function, we believe
there could be a potential field to explore. If this could become a reality the user of the tool
may no longer need to weight the fields and evaluate the weighting and re-weight them for
each dataset. This would considerably increase the speed work flow for employees that
need to test an artifacts on different, previously not set nor weighted, datasets.

This would also probably pave the way for implementing functionality that allows the
tool to produce qualitative metrics, or even suggest different qualitative decisions and prac-
tically fully automating the whole review procedure.

Improved Qualitative Metrics:
In the first stages of this project, before it was defined, we envisioned a tool that would
compare two artifacts and give a suggestion on whether that pair of artifacts were related
and should be linked or not, as a qualitative assessment instead of a quantitative metric to
aid a human. This proved to be difficult to implement. However we still believe this would
be possible to achieve.

If this is achieved and the development is extended in this field the possibilities of au-
tomation can be endless; imagine an AI that by itself does comparisons between artifacts,
unattended, and finds possible related artifacts, artifacts with abnormal data and dupli-
cates.

The Human Factor and the Graphical User Interface:
An important consideration is also that the human users of the tool have a great effect on
its accuracy since a wrongful use of it, e.g by not understanding the tool or its function,
will have an overall negative effect on the conclusion and decision. The human factor is
also to be considered before the use of the tool, namely when artifact entries is submit-
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ted to the issue database and reviewed. Incomplete data, and inconsistently formulated
issues by many different people plays a negative role in achieving higher accuracy. Some-
times the data could be straight out wrongful because of misunderstandings or by simple
carelessness.

Another factor has also to do with the design of tool towards the user of it. The tool
provide the field-to-field similarity score presentation to help the user understand why a
certain pair of artifacts achieved a certain similarity score by the tool.

This is intended to primarily help the user user to devalue or revalue the overall score if
the tool seems to prioritize wrong traits and boost irrelevant fields. It could also help the
user understand where a boost modification can be necessary to yield accurate similarity
score. Normalization of these similarity score values were however necessary to apply in
order to have an understandable way to interpret them.

We think our current normalization approach is best suited to help the user of the tool
understand how the similarity between two given artifacts matches based on an unit of
share, say percentage unit, to understand how much each meta data field contributed to the
yielded overall similarity score.

However it could give the wrong impression in some cases: if we have a case where
the overall similarity score between two artifacts yielded a very low similarity score e.g.
a score of 3, and the only field actually impacting this score would be e.g. the title, the
field-to-field similarity score would be 100. In this case it is probably obvious what the
score implies, but in more complicated situations this could be interpreted as the titles
between the two artifacts "match 100 percent" thus potentially resulting in a misinformed
and potentially wrongful decision based of this interpretation.

An alternative normalization approach could be to normalize the field to field similarity
score around a relative distribution value instead of an absolute one, as in the current case.
Practically this would mean that the share would simply be multiplied with the overall
score, thus getting a relative distribution value where the sum of all field to field similarity
scores would equal the overall similarity score instead of 100. This approach would not
affect the tools scale up performance.

Within the frames of this thesis work’s implementation we only included the listed ele-
ments of user aid to help the user understand the tool. Small efforts were put in designing
this tool and frankly not much has changed from its previous life as the Case Digger; it
even had a fairly different purpose as a change impact analysis tool [4].

The usefulness of software tool need as good user interfaces as they need good imple-
mentation models. Future works based on this work could do everything from actually
evaluating tool’s user interface to actually redesign the user interface with the user expe-
rience perspective in focus.
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6.4 Future Work

Regretfully these small efforts put on e.g. designing a better graphical user interface
was a result of project scope trade off; also no evaluation of the graphical user interface’s
effects and how it is perceived by the targeted users were performed whatsoever for the
same reason. In a future wok maybe an evaluation can be made on the current tool and on
an designed version to compare and find out if the tool can be helpful if altered in design.
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Chapter 7

Conclusions

The aim with this thesis is to investigate if it is possible to have a quantitative measurement
on this difference by using a search engine as our information retrieval technology core.
We did define three research question to answer this, but we also defined two common
scenarios for when the implementation of the tool can be useful, since this is relevant for
the practical part of the thesis work.

The work implementation’s main problem where described in two scenarios: reviewing
external issue entries and recovering semantic links between internal issue entries we can
begin by drawing conclusions from there. The conclusions to these scenarios also answers
the research question considering the semantic distancemeasurement definition’s accuracy
and usefulness (RQ1), and are directly derived from the obtained results.

Given the results and the arguments in the discussion for the first scenario, the accu-
racy of finding external issue duplicates, we conclude that the tool is highly accurate and
therefore useful for for the first scenario for reviewing external issue entries to recover pos-
sible semantic links to existent internal issues. As for the second scenario, the accuracy
of finding semantic links between internal issues, the accuracy outcome is rather mixed.
We conclude that the tool in its current implementation is not dependable for the second
scenario, and therefor it is not wise to put all dependency of the process on the tool when
used in a live environment for the same scenario. We also conclude that the results show
it has great potential of providing benefits if the approach is refined and further improved
upon.
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7. Conclusions

Regarding the research question of how this semantic distance assessment definition
and the tool implementing it, can be developed and refined to improve the accuracy and
efficiency of it (RQ2), we made conclusions during the thesis work process rather than
from results. We conclude that there are four main factors to refine in order to improve the
accuracy and usefulness of the semantic distance assessment definition and the tool im-
plementing it; make the search engine consider the characteristics of the meta data subject
to indexation, broaden the use of the available meta data to utilize more relevant meta data
and a sophisticated variation of them, develop further an systematic and assisted method
to tune field boosts and last but not least, evaluate the accuracy measurement approach and
improve it.

Given the results of the performance tests we conclude the tool is highly scalable, thus
answering the research question on the same issue (RQ3). The only threat to that conclu-
sion in theory is the issue of network communication speeds for very large amount of data.
But even that considered, there should be no problem in practice, and if that would be the
case, we know that the tool and the semantic distance assessment definition itself is not
what affects the bottleneck; hardware does.

To sum up; we conclude the tool could be helpful if used in limited deployment at the
Case Company hosting its implementation. We can also conclude that this approach has
huge improvement potential to further increase accuracy, thus extending the use cases of
the tool and could ensure semi automated review and clean-up processes. However, in its
current state it could be confusing to use given the fact that it will need a learning curve to
use it properly and that small efforts were put to design it to be user friendly. This effort
balanced up with its current return value might be considered not worth the cost just yet.
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Regelbundna manuella granskniningar för att identifiera länkar mellan ständingt
tillkommande mjukvaruartefakter är viktigt för att hålla ordning och reducera kost-
naden för ett mjukvaruprojekt. Tidskrävande är det också; därför utreder detta arbete
hur ett verktyg kan åtgärda detta med en snabbare och effektivare granskningsprocess.

Olika mjukvaruartefakter, dokument som
beskriver mjukvarufunktioner, ser ibland väldigt
olika ut även om de behandlar samma del i mjuk-
varan. En funktion måste nämligen beskrivas på
olika sätt för olika sammanhang; vanlig naturlig
text för att kund och utvecklare ska vara överens
om funktionsutformning, programkod eller testfall
i tekniska respektive testningssammanhang.

Olika artefakter som beskriver en funktion har
en länk mellan sig eftersom de är lika i funktion
och hör ihop. Ju mindre lika två artefakter är i
detta avseende, desto större semantiskt avstånd de
sägs ha. Dessa länkar kan förloras och förändras
allteftersom mjukvaran ändrar skepnad. Om man
inte underhåller denna data så blir det problem
senare när man t.ex. upptäcker en bugg, då man
i sammanhang av programkod eller testfall sällan
förstår vad som går fel utan att hitta relevanta
artefakter.
Detta brukar hanteras genom regelbundna

granskningsmöten där artefakter som förändrats
gås igenom och man lägger till, tar bort och länkar
om mellan olika artefaktpar utifrån frågan om de
beskriver samma funktion. Granskningarna, som
utförs manuellt, är tidskrävande och kostsamma.

Vi har med vårt arbete utvecklat ett verk-
tyg som använder en sökmotor för att indexera
två olika men besläktade defektartefakttyper. Vi
definierar ett sorts mått för semantiska avstånd
och matar in en defektartefakt i verktyget för
att få förslag på alla andra artefakter som är se-
mantiskt nära. Verktyget analyserar olika sorters
länkar och defektdata för att skapa ett hel-
hetsmått. Träffsäkerheten evalueras genom att
testa verktyget med förberedda sökningar som
facit.

 

64% ? 

Tool 

Verktyget sätter ett mått på semantiska avstånd.

Våra resultat visar att för vissa syften blir verk-
tyget väldigt träffsäkert, medan det i bästa fall blir
måttlig träffsäkerhet för flera andra syften. Vi har
kommit fram till att detta osäkra och blandade re-
sultat beror på den begränsade defintionen i vad
för sorts defektdata man tar hänsyn till. Oavsett
detta, snabbar verktyget upp granskningen, och i
bästa fall, särskilt ifall det utvecklas vidare, kan
det hitta fler komplexa och användbara länkar.
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