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ABSTRACT 

In past years, the demand for an indirect extraction of respiration and the interest 

in a joint study of respiratory and cardiac systems represented the driving forces 

for the development of Electrocardiogram Derived Respiration (EDR) 

algorithms. The main advantage of them consists in deriving a sufficiently 

reliable surrogate respiratory signal by only exploiting the normal 

electrocardiogram (ECG) equipment, without requiring the common devices 

used to record respiration, which are cumbersome and expensive, besides to 

possibly interfere with natural breathing. However, the validity of EDR 

methods has been mainly demonstrated on healthy subjects and in certain 

clinical applications. At the present time, the possibility to extract non-

invasively the respiratory signal during arrhythmia, by applying an EDR 

method, has never been explored on a sufficiently large dataset and with a 

systematic study. Atrial Fibrillation (AF) represents the most common 

arrhythmia, characterized by a fast and irregular beating with an increasing 

incidence that is especially prominent in the developed world. 

Therefore, this master thesis aims to verify the feasibility of extracting the 

respiratory rate from ECG during Atrial Fibrillation (AF).  Four EDR methods 

are implemented and evaluated, by selecting only among the techniques based 

on respiration-induced variations in beat-to-beat morphology, since the 

abnormal heart rhythm in AF does not lend itself to be used for deriving 

respiration. The different techniques are tested on a dataset of 49 patients, 

containing a two non-orthogonal leads ECG recording and a simultaneous belt 

respiratory signal for each of them. The recordings are of about ten minutes 

long and were acquired in rest phase.  

A code workflow has been designed to handle the characteristics of the signals 

and reliably estimate the respiratory rate from the surrogate respiratory signal 

and from the reference signal. Since the fibrillation activity may mask the 
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respiratory information contained in the beat morphology, an important stage 

of the workflow is represented by the subtraction of the fibrillation signal from 

the QRS interval. The actual benefit of this step is tested by comparing the 

methods performances by selectively allowing or not its performing. The 

estimation accuracy of each method is assessed by comparing the respiratory 

rate estimates from EDR signal and reference signal in terms of mean absolute 

and relative intrasubject error, percentage of the record duration where an 

estimate is given from both signals and RMS error computed on the entire 

dataset.    

The results do not point out any improvement in the performances of the 

methods after removing the f-waves from the QRS complex. This do not ensure 

that different results may be observed by applying another technique, since the 

method applied in this thesis suffers of sensitivity to noise that should be further 

investigated. From the comparison of the results of the methods, it turned out 

that the methods that extract respiratory information independently from the 

two leads outperformed the other ones, which combine this information from 

both leads and derive only one rotation angle series. The method based on QRS 

slopes and R waves angles estimated the respiratory frequency of the subjects 

in the dataset more accurately than did the other tested methods, achieving a 

mean intrasubject error μ=0.0227±0.0217 (8.45% ± 8.83 %). In general, all the 

tested methods achieved estimation errors higher with respect to previous 

studies on healthy subjects, but still comparable as order of magnitude.  This 

indicates that further studies on the extraction of electrocardiography derived 

respiration in patients with atrial fibrillation are justified. 
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INTRODUCTION 

1.1 MOTIVATION 

Technology advancement in signal processing aims to enhance the capability to 

extract medical information from the recording of body signals. The research, 

in particular, strives to improve robustness and accuracy of the medical devices 

as well as to reduce costs and bothers for the patients. The thesis moves in this 

direction, center in on the possibility to extract respiratory information from 

electrocardiogram (ECG) in case of atrial fibrillation (AF). Respiration is 

usually recorded by techniques that make use of devices that are bulky, 

expensive and may interfere with natural breathing. Therefore, the main 

advantage would be to derive synchronous signals from the heart and the lung 

activities without the use of any additional device, but only exploiting the ECG 

equipment commonly used to diagnose and monitor many cardiac dysfunctions. 

1.1.1 Clinical issues   

This simultaneous observation is generally required in clinical applications such 

as ambulatory monitoring, stress testing and sleep studies [1], where the use of 

cumbersome devices to detect respiration is unmanageable. In everyday life, the 

influence of voluntary activities like eating or speaking is more pronounced on 

respiration compared to that on the heart, so affecting the determination of 

respiratory oscillations with the traditional techniques. In sleep studies, instead, 

involuntary movements, or other activities, like snoring, could be sources of 

artefacts and unreliable measures of respiration. Moreover, the bothers to the 

patient deriving from the addition of more sensors and a new device are often 

the cause of interference with the natural activities of the organs under 

investigation. Nevertheless, the contemporaneous monitoring of respiration, 

when the first concern lies with the heart, is often needful and it is even 

exploited to understand the clinical significance of certain cardiac arrhythmias 
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with reference to respiration [2]. Another reason to demand for reliable 

measures of respiration without the use of bulky devices is the synchronisation 

and the compensation of MRI scans in chest and thorax sequences [3]. Yet 

another application deals with post-operative care: the recording of both cardiac 

and respiratory functions in post-operative patients is important to monitor how 

analgesics depress respiration [4].  

The trace of respiration is important for apnoea’s studies, like in [5] and [6], 

where a good tracking of the breathing cycles is required. Furthermore, looking 

for the respiratory rate has a big relevance, because it remains the first and often 

the most sensitive marker of acute respiratory dysfunction [7]. During out-of-

hospital emergency care it is also a sensitive indicator, among others, of critical 

illness defined as severe sepsis, delivery of mechanical ventilation, or death 

during hospitalization [8]. The respiratory rate is also very relevant in sports 

training, since it is used to determine the point when the exercise shifts from 

aerobic to anaerobic, together with other parameters [9].  

Therefore, the relevant clinical reasons and research studies above mentioned 

represent the main motivation on which the thesis is based and would like to 

make a contribution.   

1.1.2 Current respiratory monitoring devices 

Nowadays the existing methods for the acquisition and the analysis of the 

respiratory patterns can be divided in two categories: direct and indirect 

measures. Respiration can be directly monitored by measuring the flow, 

pressure, temperature or chemical composition of the air transported into and 

out of the lungs for example with spirometers, nasal thermocouples or with 

carbon dioxide sensors. It is indirectly measured through thoracic volume 

changes with transthoracic inductance or impedance plethysmographs, strain 
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gauge measurements of thoracic circumference, pneumatic respiration 

transducers and whole-body plethysmographs [2]. 

However, these techniques require the use of bulky, expensive or uncomfortable 

devices. Moreover, some equipment can interfere with natural breathing or 

being unsuitable and unmanageable in certain critical applications. For these 

reasons, different methods have been developed to obtain indirectly respiratory 

information taking advantage of other devices. The ECG-Derived Respiratory 

information (EDR) is one of those and it is extracted by exploiting ECG-

artefacts given by respiratory activity. This signal varies in amplitude 

corresponding to the different phases of respiration, thus it enables the 

estimation of the respiratory rate and the temporal pattern of respiration [10]. 

Different methods have been elaborated based on the rotation of the heart’s 

electrical axis and changes in beat morphology caused by chest movement and 

variations in thorax impedance during the respiratory cycle [2]. Others mostly 

deal with Heart Rate (HR) series and still others derive the respiratory signal by 

using both beat morphology and HR information [1]. However, the latter two 

groups are not suitable for the estimation of the respiratory frequency when the 

heart rate is affected by a dysfunction of the sinus atrial (SA) node. The most 

important methods based on morphology variations are extensively described 

in Chapter 3.  

1.1.3 EDR in Atrial Fibrillation 

Since the use of methods for indirect extraction of respiratory information from 

ECG is still particularly attractive to pursue [1], the research focuses on the 

development of accurate and reliable EDR-algorithm in every clinical situation.  

Atrial fibrillation is the most common arrhythmia of clinical significance and it 

is associated with increased morbidity, especially stroke and heart failure, as 

well as increased mortality [11]. In 2014 the statistical work of Chugh et al. [11] 

provided evidence of progressive increases in overall burden, incidence, 
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prevalence of atrial fibrillation and AF-associated mortality between 1990–

2010. They estimated globally 33,5 million of individuals with AF in 2010.  

Most recent studies, carried out in European perspective, have confirmed that 

the prevalence of AF in the general adult population is more than double that 

reported just one decade earlier, ranging from 1.9% in Italy, Iceland, and 

England to 2.3% in Germany and 2.9% in Sweden [12]. The major incidence, 

consequently, determines growing health care costs with an increasing number 

of hospitalizations, emergency room visits and burden of outpatient visits for 

AF. 

To the best of our knowledge, at the present time, only a few studies (as [13] 

and [14]) have dealt with EDR-methods in AF. They are mainly clinical studies 

based on a small database and not supported by a complete, meticulous, and 

detailed analysis of the existing methods. 

For these reasons, the thesis explores the applicability of EDR-methods in AF, 

adducing an engineering point of view to possibly achieve advancements in the 

reliable extraction of synchronous signals from the heart and the lung activities 

without the use of any additional device. The results could produce many 

advantages in medical research, like studies on cardiac arrhythmia, as well as 

in economical aspects and in medical care.  

Moreover, a robust EDR-algorithm does not require supplementary transducers 

or hardware modification, thus the normal equipment for ECG recording can be 

exploited. Its adoption could rapidly spread and further encourage the 

simultaneous monitoring of respiration in cardiac care without devoting more 

resources, since the electrocardiogram is the standard tool for having a macro 

description of the cardiac activity since long all around the world. 



12 
 

1.2 AIM 

The thesis aims to verify the feasibility of extracting respiratory information 

from ECG in case of AF. Different methods are tested on a database with real 

data in order to understand which is the most reliable and robust. The purpose 

is to derive an algorithm which is trustworthy to be applied on diagnosed cases 

of atrial fibrillation, thus dealing with the characteristics of real ECG with 

different signal qualities.   

1.3 OBJECTIVES  

Given a dataset with simultaneous recordings of two-leads ECG and respiratory 

signals of 57 patients in atrial fibrillation, the first objective is to perform the 

most suitable pre-processing in order to improve the quality of the signals. Two 

major issues are addressed in it: the baseline wander removal and the AF 

artefacts cancellation through the estimate of the TQ-based fibrillation signal.  

Starting from the literature of the EDR-algorithms used so far, the study of the 

state of the art mainly focused on techniques that exploit beat-to-beat 

morphologic variations, given the characteristics of an ECG in AF.  Among 

these, the most recent works have been analysed more accurately and the most 

suitable ones for the problem of this thesis have been selected for 

implementation, adaptation to the database and testing. The methods of Bailon 

et al. [1], Caggiano et al. [15], Mason et al. [16] and Lázaro et al. [17] turned 

out to fulfil the requirements, since they efficiently extract respiration by 

considering different features in ECG which should be unrelated with AF. Their 

performance comparison is carried out with and without preliminary 

cancellation of AF artefacts in order to figure out if a real advantage subsists in 

performing a specific pre-processing step for this case. 
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1.4 THESIS OUTLINE 

After the introduction of the first chapter, Chapter 2 leads up to the anatomy of 

the heart and its physiology with a particular attention to the atrial fibrillation 

condition. Moreover, it stresses the relationship between the respiratory and the 

cardiac systems clarifying the respiratory-induced morphology modulation of 

the heart beats, which is a key point in this thesis.  

Chapter 3 presents the examined database and describes the types of signals 

included in it: the electrocardiogram and the belt respiratory signal. 

Chapter 4 is an overview of the most important EDR algorithms with focus on 

the ones exploiting beat-to-beat morphological variations in ECG. This section 

is a general background, helpful to the reader to perceive the area where the 

thesis is positioned. 

Chapter 5 describes in details the workflow, that has been designed to attain the 

goal of the thesis. The used algorithms are gathered and explained in relation to 

their functions: 

- the pre-processing of the signals deals with the primary requirement of 

increasing the quality of the raw signals; 

- the beat analysis handles the presence of abnormal and noisy beats in 

the ECG; 

- the EDR algorithms section represents the core of the thesis, describing 

the implemented methods to extract the respiratory signal from the 

ECG; 

- the post-processing of the EDR signal considers the procedures to 

exclude misleading samples and obtain an evenly sampled signal from 

a beat-to-beat series;  

- the final step elucidates how the respiratory rate is estimated along the 

time for both the EDR signal and the reference respiratory signal.  
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In case of ECG signals during AF, an important stage before applying the EDR 

algorithm could be the handling of the AF artefacts in the beat morphology. 

Their removal is an important issue in this thesis. Thus, the workflow is carried 

out with and without this step, in order to understand if their presence in the 

ECG influences the EDR signal estimate and a prior subtraction is required.  

Chapter 6 presents the techniques used to assess the accuracy of estimation, 

taking into account the correspondence between the estimated respiration rates 

from the EDR and the respiration rate from the ground truth.  

Chapter 7 exhibits all the results of different methods and parameters settings. 

A discussion on this data is takes place in Chapter 8 and it is followed by a 

general conclusion, where the carried work is summarised.    
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Chapter 2. MEDICAL BACKGROUND 

In the following chapter a general description of the anatomy and physiology 

of the heart is firstly reported. Then the reader is introduced to the mechanisms 

of the cardiac conduction system and the respiratory-induced modulation of the 

cardiac activity. At last, the focus is on the pathology of AF and on how its 

characteristics impact on the estimation of the EDR signal. 

2.1 CARDIAC ANATOMY AND PHYSIOLOGY  

The heart is a muscular organ situated in the “middle mediastinum” at the center 

of the thoracic cavity behind the sternum, where it is folded by a double 

membrane sac, called pericardium, which is attached to the mediastinum and 

keeps the heart in position.  

The heart consists of two parallel pumps: a “right heart” that pumps blood 

through the lungs and a “left heart” that pumps blood through the peripheral 

organs. The two compartments have some anatomical differences mainly 

connected to their different operating districts and they are divided by a 

muscular wall, called the septum. Nevertheless, the pumping principle is the 

same and consists of a pulsatile two-chamber pump: one upper and receiving 

chamber, the atrium, and one lower and discharging chamber, the ventricle. 

Each atrium is separated from its ventricle by a passive valve, which is 

structurally designed to allow the flow only in one direction, from the atrium to 

the ventricle. One additional semilunar valve sits at the exit of each ventricle, 

allowing the emptying into the artery leaving the heart. The cardiac valves 

passively close and open in response to the pressure gradient across them 

according to the direction of the flow and help to maintain the pressure required 

to pump the blood.  
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The main function of the heart is to pump de-oxygenated blood to the lungs to 

be saturated with oxygen and then to the body to supply the cells with the 

oxygen. Thanks to the action of the autonomic nervous system (ANS), the heart 

is able to regulate the pumping rate and the pressure values in the cardiovascular 

system adapting to the body requests and compensating for external changes.  

The blood flows through the chambers of the heart following a precise pathway, 

as illustrated in Figure 1. 

 

Figure 1 –  Graphical representation of the blood flow into the chambers of the heart. The blue arrows 
represent the venous blood coming from the sistemic circulation, while the red ones indicate the 
arterial blood coming from the lungs. 

The sequence of mechanical events that defines a cardiac cycle can be assumed 

to start in the “right heart” where deoxygenated blood of the systemic 

circulation is collected from two large veins, the superior and inferior venae 
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cavae. The right atrium receives and pumps the blood through the tricuspid 

valve into the right ventricle. Once the ventricle has been filled and the 

atrioventricular valve is closed to prevent any flow backwards to the atrium, the 

blood is pumped to the pulmonary artery passing through the pulmonary valve. 

Then the blood reaches the lungs where the gas exchange happens at the level 

of the pulmonary capillaries and alveoli through the passive process of diffusion 

and under conditions of partial pressure of oxygen. After being oxygenated, the 

pulmonary venous blood comes back to the heart entering the left atrium from 

the pulmonary veins. It is then pumped into the left ventricle through the mitral 

valve and into the aorta through the aortic valve. After that the systemic 

circulation begins and in the systemic capillaries, exchange with the tissue fluid 

and cells of the body occurs; oxygen and nutrients are supplied to the cells for 

their metabolism and exchanged for carbon dioxide and waste products [18]. 

The heart is composed of three major types of cardiac muscle: atrial muscle, 

ventricular muscle, and specialized excitatory and conductive muscle fibers. 

The atrial and ventricular muscle cells have typical myofibrils that contain actin 

and myosin filaments, which slide along one another during the contraction and 

produce the force needed to pump the blood out of the heart. The presence of 

these cytoskeletal contractile proteins arranged in a lattice is what gives to 

myocardium the striated appearance under the microscope, also typical of the 

skeletal muscle. Contraction of each cell normally starts when electrical 

excitatory impulses, the action potentials, generate at a specific potential along 

its surface membrane, that is due to the different ions concentrations across it. 

As with other cell types, the bilayer membrane contains a series of ion channels 

and pumps, which allow the passage of ions from inside to outside the cells and 

vice versa. In cardiac muscle, the action potential (AP) is caused by opening of 

two types of channels: the fast sodium channels and another entirely different 

population of slow calcium channels, with a different opening and closing 
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times. The muscle fibers of the heart are made up of many muscle cells, whose 

membrane fuse with another in correspondence of dark crossing areas called 

intercalated discs (see Figure 2) in such a way that they form permeable 

“communicating” junctions, the gap junctions, that allow almost totally free 

diffusion of ions. The interconnecting nature of cardiac muscle fibers jointly 

with their latticework arrangement makes the cardiac muscle to work as a 

“syncytium”: the individual cardiac cells are so interconnected with one another 

that when one of these cells becomes excited, the action potential spreads to all 

of them throughout the latticework interconnections [19]. 

Conversely, the specialized excitatory and conductive muscle fibers have only 

feeble contraction properties since they have few contractile fibrils. They rather 

exhibit automatic rhythmical properties and their main scope is the conduction 

of AP through the heart along the cardiac conduction system. 

 

Figure 2 – Histological image of the heart’s muscle fibers. Adapted from OpenStax College. In: 
Micrograph. Regents of University of Michigan Medical School, 2012. 
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2.2 THE CARDIAC CONDUCTION SYSTEM 

In order to carry out the pumping function efficiently, an organized and 

rhythmic contraction of the heart is also required. It is accomplished through a 

precise coordination of myocardial contractions and a regular action potentials 

generation.  

In the healthy heart, the initialization of a cardiac cycle occurs in a mass of cells 

with the ability to spontaneously fire an electrical impulse that is situated in the 

upper part of the right atrium. These cells are collectively referred as “sinoatrial 

node” (SA node) and work as a natural pacemaker for the heart [20], since the 

natural and repetitive depolarization of their membrane potential is responsible 

for the normal cardiac rhythm. The key of the rhythmic activity of the 

pacemaker cells is the slow depolarization, which is completely autonomous 

and does not need any outside innervation from the autonomic nervous system 

to trigger an AP. In fact, it is due to the relative ion concentration changes in 

resting conditions that normally do not occur in other cells. However, if the 

mechanisms of the slow depolarization are independent from any innervation, 

the native discharge rate originating from SA node is conversely constantly 

modified by the activity of sympathetic and parasympathetic nerve fibers via 

the ANS. More specifically, the sympathetic system is excitatory, so it increases 

the spontaneous firing rate of the SA node and consequently the frequency of 

the ventricular contraction, whereas the parasympathetic system has a relaxing 

effect and works in the opposite direction. This neural modulation is of great 

relevance, since without it the heart would not be able to adapt its pumping rate 

to the body demands.   

The electrical signals arising in the SA node travel through the cardiac 

conduction system, whose anatomy is illustrated in Figure 3. 
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Figure 3 – Graphical representation of the atrial cardiac conduction system in the heart (white 
arrows). In particular, the yellow paths represent the electric conduction fibers for the propagation 
of the stimuli through the whole heart.  

The function of the cardiac conduction system is to transmit the electrical 

impulses generated usually by the SA node to cause contraction of the muscle 

cells in the various parts of the heart with the right timing. After SA nodal 

excitation, in the normal heart the depolarization wave front spreads causing 

first the electrical activation of both the atria. Then, the impulse is collected and 

delayed at the atrioventricular node (AV node) before it enters the ventricular 

walls. Previously, the conduction between the two nodes was thought to occur 

only through direct stimulation and conduction between normal atrial myocytes. 

This theory, however, is not able to explain why the impulses arrive to the AV 

node quicker than expected by considering the simple myocyte conduction. For 

this reason, it is now generally accepted that there are microscopically 

identifiable structures in the atrial walls working as preferential conduction 

pathways between the SA node and the AV node. In more detail, three 

“internodal pathways” have been reported: the anterior, the middle and the 
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posterior tract. In the area where the internodal pathways connect to the AV 

node, in the “floor” of the right atrium, the atrial stimuli are delayed 

approximately 0.12 s. The reason of this delay is ascribable to the heart as 

composed by two “syncytia”: the atrial syncytium that constitutes the walls of 

the two atria and the ventricular syncytium that constitutes the ventricular walls 

[19]. The atria are separated from the ventricles by fibrous tissue that surrounds 

the atrioventricular valvular openings and causes the impulse to slow down, as 

it leaves the internodal pathways and enter the AV node. The delay is of 

functional importance, since it allows the synchronous contraction of the atria 

to further fill the ventricles with blood, before the ventricular contraction 

occurs.  It also protects the ventricles from excessively fast rate response to 

atrial arrhythmias. 

The AV node is a group of specialized cardiac muscle fibers where, in normal 

condition, the conduction occurs through two different pathways: the first 

pathway, located anteriorly and in close proximity to the “His bundle”, and the 

second pathway, situated posteriorly and inferiorly to the compact node. The 

first pathway is also called “fast pathway”, since it has a faster conduction 

velocity with a longer refractory period. Conversely, the second pathway is 

commonly referred as “slow pathway” and it is characterised by a slower 

conduction velocity with a shorter refractory period. 

After AV nodal excitation, the conduction of the impulses proceeds through the 

“His bundle”, the only location that electrically connects the atria and the AV 

node/ventricles. From the bundle of His, the cardiac depolarization signal is 

transferred to the ventricles through the bundle branches and then further into 

an extensive network of specialized conduction fibers, called Purkinje fibers. 

The signal travels as great as 4 m/sec at this level from only 0.05 m/s at the AV 

node, which allows reasonably rapid conduction of the excitatory signal to the 

different parts of the heart. The distribution of the impulse to the larger 
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ventricular myocardium must be performed very quickly, to initiate a unified 

contraction of the ventricles.   

The electrical impulses travel along a specified direction through the heart at a 

given instant during the cardiac cycle, so defining a heart current flow which is 

responsible for the action potentials generation in different compartments with 

the right timing. The electric generator of the heart can be consequently 

described by a dipole and it is natural to visually portray the electric generator 

of the heart in vector form, i.e. the cardiac electrical vector. At any instant, the 

direction and the module are given respectively by the preferential direction and 

by the summation of the electrical potentials generated at that instant. This 

vector account for the electrical activity of the heart and it represents the source 

of the signal commonly registered through electrodes placed on the skin, as 

extensively explained in Chapter 3.  During most of the cycle of ventricular 

depolarization, the direction of the electrical potential (negative to positive) is 

from the base of the ventricles toward the apex [19]. This preponderant direction 

of the potential during ventricular activation is called the heart electrical axis. 

2.3 RESPIRATORY-INDUCED MODULATION OF THE CARDIAC ACTIVITY  

It is well known that, in physiological conditions, a dynamic and bidirectional 

interaction exists between the respiratory and the cardiac system [21]. The 

relationship is quite evident during exercise when both systems assist to rapidly 

supply oxygen to the body’s cells and organs, but there is also an ongoing 

interplay at rest. If the main function of the cardiac activity is to pump blood to 

all the cells of the body where the gas exchange take place, the goals of the 

respiratory activity are to provide the oxygen for the cell metabolism and release 

the waste products of it, meeting the respiratory demands of the cells. To 

accomplish those tasks continuously and adapt to the body requests, the 

respiratory act is normally under control of the ANS via the medulla oblongata 
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of the brain. During respiration, the mechanics of pulmonary ventilation make 

possible the inflow and outflow of air between the atmosphere and lungs, which 

change their volume because of their elastic structures. 

The lungs can be expanded and contracted in two ways: (1) by downward and 

upward movement of the diaphragm to lengthen or shorten the chest cavity, and 

(2) by elevation and depression of the ribs to increase and decrease the 

anteroposterior diameter of the chest cavity [19]. At inspiration, the expansion 

of the chest cavity facilitates a decrease in internal air pressure, which forces air 

from outside the thorax into the lungs.  Conversely during expiration, the 

reduction in size of the thoracic cavity increases the pressure, forcing air out of 

the lungs. In normal conditions, the expiration process is simply driven by the 

elastic recoil of the lungs.  Each breathing cycle is thus defined as composed of 

the two phases of inspiration and expiration. Respiratory rate is the number of 

breaths within a set amount of time, usually one minute. Normal respiratory 

rate, called eupnoea, ranges from 12 to 20 breaths per minute (0.2 Hz to 0.33Hz) 

in resting healthy adults. 

The respiration is known to influence the physiology of the heart in various 

ways, with effects which are essentially ascribable into two main classes: 

modulation of the heart rate (HR) and modifications of the heart electrical axis. 

Modulation of the heart rate essentially refers to oscillations in the interval 

between consecutive heart beats as well as the oscillations between consecutive 

instantaneous heart rates, i.e. heart rate variability (HRV). When heart rate 

variability is related with respiration, the phenomenon is called respiratory sinus 

arrhythmia (RSA), by which the interval between consecutive beats is shortened 

during inspiration and prolonged during expiration [22]. The magnitude of the 

oscillation is variable and changes from individual to individual. It has been 

demonstrated that RSA is a result of the functioning of SA node as cardiac 

pacemaker, whose firing rate is determined by the balance between the cardiac 



24 
 

sympathetic and vagal activities to the sinus node. The activity of the cardiac 

vagal nerve is assumed to be modulated by respiration and hence the sinus node 

activity is secondarily modulated by the respiratory rhythm. Regarding the 

genesis of RSA, both the respiratory and circulatory centers in the brainstem 

appear to be responsible [23]. 

Modifications of the heart electrical axis means the phenomenon of rotation and 

modulation of the cardiac electrical vector caused by contraction and expansion 

of the thoracic cavity during a respiratory cycle. The variations of the electrical 

vector connected with respiration arise from filling and emptying of the lungs 

and from the respiration-induced displacements of the heart [22]. The air 

flowing through the lungs leads to changes in the chest impedance distribution 

so affecting the measurements, whereas the cardiac shift is mainly due to the 

diaphragm movements since the pericardium is firmly attached to the central 

tendon of the diaphragm. During inspiration, the apex of the heart is stretched 

towards the abdomen because of the filling of the lungs, helped by the shifting 

down of the diaphragm. During expiration, the elevation of the diaphragm, for 

emptying of the lungs, compresses the apex of the heart towards the breast. 

Therefore, respiration induces a modulation of the heart electrical axis since it 

changes the angle that the electric cardiac vector makes with a reference line 

[24]. 

On the other hand, it has been observed a temporal variation in respiratory rate 

(RRV) during spontaneous breathing due to the bidirectional relationship 

between respiration and heart rate [21]. The RRV is caused by feedback 

mechanisms in much the same way that beat-to-beat heart rate fluctuations 

reflect different feedback mechanisms in cardiovascular control [25]. It has 

been demonstrated, that cardiac timing can be a significant determinant of RRV, 

altering breath-to-breath respiratory frequency.  
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2.4 ATRIAL FIBRILLATION  

Atrial fibrillation is the most common arrhythmia, a serious and abnormal 

deviation of the normal heart rhythm generally associated with a rapid and 

irregular beating. It can occur at any age, but the incidence is rare in younger 

population and it becomes extremely common in elderly, with higher rates in 

subjects over 65 years old. Moreover, regional studies have reported a general 

increasing prevalence of AF compared to the last decade, especially prominent 

in the developed world [12]. The rise in prevalence is predominantly attributed 

to ageing of the population and to increasing incidence of cardiovascular 

diseases closely linked to AF, such as hypertension, coronary artery disease, 

heart failure, valvular heart disease, obesity and sleep-apnoea syndrome. 

In contrast to normal sinus rhythm, when a single depolarization wave front 

propagates trough the atria from the SA node towards the ventricles causing 

contraction, atrial fibrillation is characterized by a disorganised depolarization 

of the atria with multiple wave fronts traveling simultaneously. The origin of 

this chaotic behaviour is ascribable to the presence of electrical discharges that 

overwhelm the regular impulses produced by the SA node. The sources of these 

disturbances are either automatic foci, often localized in the roots of one of the 

pulmonary veins, or continuing re-entry of an electrical impulse in the atria.  

Normally, regular electrical impulses from the SA node are transmitted to AV 

node where they are delayed before entering the ventricular walls, but during 

AF the irregular stimulation causes the atrial activation to be shorter than the 

refractory period of the nodal cells. Consequently, the AV node works as a 

filter, blocking some electrical stimuli and limiting the number of ventricular 

beats. Rapid and irregular ventricular beating is anyway observed.  

Moreover, the uncontrolled stimulation of the myocardium leads the atria to 

lose coordination with the ventricles, so the mechanical action turns out to be 

inefficient. Therefore, the blood flows passively through the atria into the 
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ventricles and the efficiency of ventricular pumping is considerably decreased, 

since the ventricles cannot be completely filled before each contraction. This 

condition is known to increase the risk for complications of AF, mainly stroke, 

which is likely to occur when a blood clot, arising from the blood stagnation of 

the inactive atria, is pumped out of the heart. 

Atrial fibrillation may be also classified into acute and chronic forms.  Three 

different types of clinical conditions are generally recognised: paroxysmal, 

persistent and permanent. In paroxysmal atrial fibrillation, the faulty electrical 

signals and irregular heart rate begin suddenly and then stop on their own within 

about a week. Persistent atrial fibrillation is defined by recurrent episodes of 

abnormal heart rhythm that last for more than a week; the episode may stop on 

its own or requiring a treatment. In case the treatment fails and the normal heart 

rhythm cannot be restored, the arrhythmia is referred to as permanent.  

The intention of this work is to investigate the presence of respiratory 

modulation in the electrical activity of a diseased heart, hence the main 

challenge is to bypass the influence of the cardiac disorder. In our case, it is 

highly unlikely that RSA could be observed during arrhythmia, since the action 

of the ANS on the heart rate variability is masked by the numerous and irregular 

atrial contractions. Therefore, the indirect extraction of respiratory activity can 

be pursued only counting on measures of the variation of the heart electrical 

axis, as it will be better explained later in Chapter 3. 
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Chapter 3. THE ECG AND THE RESPIRATORY SIGNAL 

3.1 THE ELECTROCARDIOGRAM (ECG) 

The electrocardiogram (ECG) is the standard, risk-free and inexpensive tool, 

which tapes the electrical activity from the heart in order to detect a wide variety 

of cardiac abnormalities. It is based on a number of electrodes on the body 

surface, which record the electrical field around the main electrical impulse 

propagation (current) in the heart. For this reason, the ECG reflects information 

from a relatively large body volume, thus making spatial resolution poor [26]. 

The ECG signal, often called just ECG, is the tracing of potential difference 

measured between two electrodes (lead), which means that a minimum of two 

electrodes must be placed on the subject. The location of electrodes influences 

the recorded signal and produces a view of the heart from different angles 

(Figure 4). Therefore, each lead includes a specific information and a type of 

noise, which are different from the others. For this reason, it is useful to have 

multiple leads, that offers a complete view of the heart.  Traditionally, the ECG 

is measured with three different lead systems1 : the three bipolar leads (I, II and 

III), the six precordial leads (V1 –V6) and the three augmented unipolar leads 

(aV1 – aV3). These leads are collectively referred to as the standard 12-leads 

ECG configuration [20]. The three bipolar leads are originally described by 

Einthoven [27] and known as Einthoven's Triangle; they are originated with 

fixed electrodes to the right arm, left arm and left leg. Together with the 

augmented limb leads they form the electrical frontal plane of the heart. The six 

precordial leads are measured by placing six electrodes directly on the chest for 

recording the potentials of the hearts electrical axis in the horizontal plane. 

                                                           
1 For more detail on ECG electrical leads refer to the book Bioelectrical signal processing 
in cardiac and neurological applications [20]. 
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Figure 4 – Spatial orientation of different leads. The arrows indicate the direction of each lead; in 
particular, the blue ones define the frontal plate of the heart, while the red ones establish the 
horizontal plane. [https://commons.wikimedia.org/wiki/File:EKG_leads.png] 

Another typical placement of electrodes on the body surface is the orthogonal 

lead configuration, where a pair of electrodes are positioned along mutually 

perpendicular lines. These orthogonal leads are also synthesized through a 

transformation of the standard 12-lead ECG (Dower Transformation) and used 

to have three leads with perpendicular axes. They are fundamental for 

producing the vectocardiogram (VCG), which is traced out by plotting the end 

point of the cardiac electrical vector in a three-dimensional space over the 

cardiac cycle. It provides a time-varying description of how the magnitude and 

direction of the dominant depolarization waveform change over time [20]. 

When a depolarization wave front is moving towards the electrode a positive-

value amplitude is observed in that lead (channel) and a negative when moving 

away. Similarly, a repolarization wave front gives a negative-value amplitude 

when moving towards the electrode and so on. So according to the heart 

conduction system explained in the Chapter 2, the ECG has a typical structure 

for the first bipolar lead shown in the Figure 5. 
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Figure 5 – A schematic representation of part of an ECG waveform, corresponding to a cardiac cycle. 
The y-axis corresponds to potential and the x-axis to time. 
[https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg] 

The P wave is caused by the propagation of the depolarization wave front during 

atrial depolarization. The QRS complex is a result of ventricular depolarization 

and the last deflection is the T wave which corresponds to ventricular 

repolarization. Atrial repolarization occurs at approximately the same time as 

the QRS complex and is therefore invisible [26].  

This typical structure of the ECG is altered by cardiac dysfunction, so different 

shapes, amplitudes and rate could be observed. In case of atrial fibrillation, the 

ECG is characterized by an irregular ventricular rhythm and a fluctuating 

baseline in the form of f-waves, which occur in place of P waves [26].  The P 

wave indicates the depolarisation of the atria, while their contraction begins 

about 25 ms after the onset of the P wave [28]. Since the non-coordinated 

depolarization wave front propagates within the atria to the SA node during the 

atrial fibrillation, as described in Chapter 2, the P wave is not registered. Thus, 

multiple wave fronts may exist simultaneously and propagate around blocked 

regions, which make an irregular transmission of the impulses to the ventricles 

[29]. These re-entry loops are shown in the ECG signal as f-waves, so, in case 

of AF, these small fluctuations cover the isoelectric line. The Figure 6 shows 

two ECGs: the one on the top in AF, while the other one in normal condition. 
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The arrows highlight the differences between them: the red one shows the f-

waves and the purple one indicates the P wave, which is missed in an ECG in 

AF.  

 

Figure 6 – Scheme of atrial fibrillation (top) and sinus rhythm (bottom). The purple arrow indicates a 
P wave, which is lost in atrial fibrillation. [https://commons.wikimedia.org/wiki/File:Afib_ecg.jpg] 

3.2 THE BELT RESPIRATORY SIGNAL 

The belt respiratory signal gives a measure of changes in chest and/or 

abdominal volume and it is also known as plethysmogram [30]. 

There are two primary methods of non-invasive chest and abdominal 

plethysmography, which are based on different kinds of sensor fixed to a long 

hook and loop strap that is placed around the chest or abdomen. Optionally, in 

some application a second respiration sensor is placed around the chest for 

helping abdominal breathing recording. So according to the integrated sensors, 

there are measurement of changes in elastic belt tension and measurement of 

changes in electrical inductance.  

3.2.1 Elastomeric plethysmography 

An elastic belt will exhibit a change in tension as the chest or abdomen expands 

or contracts. This change in tension can be easily measured and converted to a 

voltage by a variety of methods. The most common is through piezo-electric 

sensor, i.e., a crystal that directly generates a voltage when compressed or 

stretched [30]. This resistive belt has the disadvantage that all types of 
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movements, as turning of the torso, will cause spike wave distortion in the 

piezo; for this reason, it is more sensitive to movement artefacts compared with 

the others. The resistive belts have signals with lower amplitude and more noise, 

but they are cheaper and easier in use [31]. 

3.2.2 Respiratory inductance plethysmography (RIP) 

An elastic belt into which a coiled wire is sewn (to allow for expansion and 

contraction) is worn around the chest or abdomen. An alternating current (AC) 

is passed through the belt, i.e. a loop of wire, generating a magnetic field normal 

to the orientation of the loop (Faraday’s Law). The frequency of the alternating 

current is set to be more than twice the typical respiratory rate in order to 

achieve adequate sampling of the respiratory effort waveform. The act of 

breathing changes the cross-sectional area of the patient’s body creating an 

opposing current within the loop directly proportional to the change in the area 

(Lenz’s Law). This opposing current can be measured through changing in the 

frequency of the applied current and it represents an accurate representation of 

the change in cross-sectional area [30]. The signal from inductive belt always 

have a large amplitude and are rather stable in relation to movement artefacts, 

because it does not rely on belt tension [31].  

The Figure 7 shows the RIP signals extracted from two belts on the chest and 

abdomen, they are used to obtain indirectly other respiratory information as the 

respiratory rate and tidal volume, i.e. the volume inspired and expired with each 

breath [32].  

The Figure 8 represents a belt respiration signal from the database; the cycles of 

respiration (inhalation and exhalation) are clearly visible. The signal reflects the 

sinusoidal profile of the respiration.  
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Figure 7 – Drawing of dual band respiratory inductance plethysmograph with bands on torso. 
[https://commons.wikimedia.org/wiki/File:Rip_Bands.gif] 

 

Figure 8 – Reference respiration of a patient from the used database. 

3.3 DATASET 

The study is based on a dataset containing registers from 57 patients with 

persistent AF (67 ± 7years, 16 females) acquired at the Cardiology department 

of San Paolo Hospital in Milan, Italy. Patients underwent electrical 

cardioversion, according to the international guidelines (i.e. an AF episode 
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lasting longer than 7 days and requiring termination by electrical 

cardioversion). The mean duration of arrhythmia was 6±1 months.  

Before electrical cardioversion, every patient underwent physical examination, 

transthoracic and trans-esophageal echo-cardiographic evaluation. Two non-

orthogonal leads (fs = 1000Hz) and the belt respiratory signal (fs = 50 Hz) were 

obtained with a Task Force® Monitor (CNSystem; GRAZ, Austria) recording 

system. The morning before electrical cardioversion, recordings were acquired 

at rest in all patients, and during a passive orthostatic stimulus (75 degree of 

tilting) in 25 patients of the study group. 

Head-up tilt test was performed at 75°, with 10 second time necessary to move 

from 0 to 75° or to go back. Both phases lasted about 15 min. Raw data were 

exported as ASCII text files for off-line analysis. The study was approved by 

the Ethics Committee, and all patients gave their written informed consent to 

participate.  

After a first inspection of the database, a total of eight patients was excluded 

from the study for the following reasons:   

- 3 of them because of insufficient quality of the respiratory signal since 

the spectra of the respiratory signal did not exhibit a dominant peak in 

at least 50% of the total duration of the recording; 

- 2 of them because of the presence of an evident periodic modulation of 

the respiratory signal, which may refer to the Cheyne-Stokes pattern; 

- 2 of them because of the percentage of ectopic beats higher than 20% 

over the total number of beats;  

- 1 of them because the heart rate was not high enough to assure aliasing-

free estimation of the respiratory frequency. 

In conclusion, a dataset of 49 patients has been selected for this study.  
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Chapter 4. STATE OF ART: EDR ALGORITHMS 

The electrocardiogram signal includes considerable respiratory information due 

to a mutual bond between the cardiac and the pulmonary system as explained 

in Section 2.3. This relationship can be observed in changes of QRS 

morphology and heart rate, which are not considered for the intended-use of the 

ECG signal. In particular, there are three dominant effects of respiration on 

ECG: the respiratory sinus arrhythmia, the QRS morphology modulation and 

the baseline wander.  

The action of breathing results in the same kind of frequency modulation in the 

ECG spectrum. It has been shown that respiration and HR are strongly 

correlated at around 0.3 Hz [22]. This type of HRV is called respiratory sinus 

arrhythmia (RSA) and it refers to the cyclic variation in heart rate, which 

accelerates during inspiration and decelerates in expiration [33]. The Figure 9 

makes a comparison of the ECG and the arterial blood pressure (ABP) with the 

respiratory signals, which are the tidal volume (TV) and the airway of O2 

tension [34]. It is noticeable the relation between the heart rate variability and 

the respiration.  

 

Figure 9 – The picture compares different type of signals: electrocardiogram, arterial blood 
pressure, tidal volume and airway O2 tension [34]. 
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Yet another influence of the respiration on the ECG signal is the QRS 

morphology alteration due to changes in the main cardiac vector, since it is 

noticed a modulation of the RS amplitude and the slopes of the QRS complex 

over time. These modifications for each beat are discovered to be linked with 

the act of breathing [24]. It has been experimentally shown that respiratory 

induced modulation of the electrical axis is caused mainly by the motion of the 

electrodes relative to the heart, while the thoracic impedance changes contribute 

to the electrical rotation as a second order effect [22]. Appropriate positioning 

of the ECG electrodes can maximise the respiration-induced modulation; it is 

suggested that Lead II for example, shows greater modulation than lead I [35]. 

Figure 10 represents a one-lead ECG and the corresponding reference 

respiration signal from Moody et at. [2] work. The R-S amplitude of the ECG 

changes with respiration along time and it is roughly proportional to respiratory 

tidal volume [2].  

 

Figure 10 – The first signal is an ECG signal with a clear QRS amplitude variation that resemble the 
respiration (second signal) [2]. 

The last effect of respiration on ECG is a sinusoidal low frequency wander, 

which can also be caused by respiration [20] due to the motion of chest 

electrodes with respect to the heart. The amplitude of the ECG signal also varies 

by about 15 percent with respiration [36]. This can be clearly noticed in a signal 

of the studied dataset, as shown in the Figure 11, where ECG contains low 

frequency variation that visually seem to resemble the respiration.  
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Figure 11 – ECG and respiration of a patient over 40 sec. 

Different ECG – Derived Respiration (EDR) methods have been developed 

during years in order to extract respiratory information from ECG exploiting 

these alterations induced by respiration. They can be divided in three principal 

categories based on: morphological beat variations, heart rate changes and 

techniques which take advantage from both of them. Some methods are a very 

accurate during sleep studies, whereas others are proved to be robust during 

stress testing, so the choice of a particular EDR algorithm depends on the 

application.  

As mentioned the respiration modulates the heart rate, increasing during 

inspiration and decreases during expiration, and thus the EDR can be extracted 

by methods based on RSA. In particular, these techniques take into account the 

HF components in the HRV signal (above 0.15Hz) where the respiratory 

information are included. The first, who investigated this field, were Pallas-

Areny et al. [35]; they showed that the respiration results in the same kind of 

frequency modulation in the ECG spectrum as does RSA. Thus, the EDR could 

be obtained from RR interval series using singular value decomposition to track 

the most important instantaneous frequencies of the interval series [37]. The 

respiratory information can also be extracted through other methods based on 
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HR series using S-transform [38] or adaptive filters, applied to a series of RR 

intervals and the corresponding series of R wave amplitudes [39]. These 

techniques based on HR cannot be used in case of atrial fibrillation, where the 

RR intervals are irregular and so they do not contain any respiratory information 

as explained in the section 2.4. For this reason, these methods are not considered 

and described in more detail and the same is applied for those which combine 

the HR information with beat morphologic variations. Just to quote an example, 

Leanderson et al. [40] presented a method to extract respiratory frequency 

from the dominant frequency of the cross-power spectrum of the signals related 

to rotation angles and heart rate. 

For the scope of the thesis, only the methods that exploit morphological beat 

variations can be considered, since RSA cannot be observed in case of atrial 

fibrillation. The table below shows a list of the main methods based on beat-to-

beat morphological variations. 

QRS area: 1985  Moody et al. [2] 

 1994  Zhao et al. [41] 

 1996 Caggiano et al. [15] 

 1998 Travaglini et al. [24] 

 2003 De Chazal et al. [42] 

Mazzanti et al. [43] 

 2008 Park et al. [44] 

 2015 Atri et al. [5] 

   

R amplitude: 1992  Khaled et al. [45] 

 1997 Felblinger et al. [3] 

 1998 Dobrev et al. [6] 

 2001 Mason et al. [16] 



38 
 

 2003 De Chazal et al. [42] 

 2007 O'Brien et al. [46] 

   

Angles from  

VCG-loop alignment:  1985 Pinciroli et al. [47] 

 2003 Leanderson et al. [40] 

 2006 Bailon et al. [1] 

   

QRS characteristics: 2014 Làzaro et al. [17] 

   

Discrete Wavelet Transform 

and Band-pass Filtering: 2002 Yi et al. [48] 

 2009 Boyle et al. [49] 

   

PCA: 2003 Bianchi et al. [50] 

 2010 Langley et al. [10] 

 

Specifically, the beat-to-beat variations in QRS-morphology are caused by 

rotation of the electrical axis of the heart due to chest movements and changes 

in the thorax impedance distribution. The first, who studied this effect of 

respiration –induced heart displacement on ECG, was Einthoven et al. [27] and 

later Flaherty et al. [51]. Then the first EDR method based on morphologic 

variation was proposed by Wang et al. [52] in 1974. Their work shows that it 

is possible to estimate respiration from the rotation of the intrinsic components 

of the vectocardiogram (VCG) relative to the torso.  

Later in 1985 Pinciroli et al. [47] proposed an algorithm which exploits 

variation in the direction of the electrical axis. This was calculated as the least-

squares (LS) straight line which fits the projections of the VCG on the plane 
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defined by two leads. The variations of the angle between the electrical axis and 

a reference direction was defined as an EDR signal. In the same year, Moody 

et al. [2] present a simple technique to extract respiratory patterns through 

multi-leads QRS area measured over a fixed window. The technique can be 

applied with one or two leads, preferably with orthogonal leads to avoid a 

systematic but harmless error in axis direction estimation. This method based 

on beat-by-beat measurements of the mean cardiac electrical axis direction 

relative to lead axis direction has been shown to be robust and accurate, unless 

some disturbances, which are reflected only in tidal volume changes as 

obstructive apnoea. Zhao et al. [41] use a similar method applied during heart 

rate variability (HRV) studies. In addition, they figured out a more analytical 

way to determine how well the derived waveforms correspond to the recorded 

respiration signal through the comparison of their power spectra. The following 

year Caggiano et al. [15] studied the effect of variable window for the 

calculation of QRS area with two methods: independent and dependent leads. 

The QRS complex is not assumed to be symmetrical; so the Q, R, and S-waves 

are detected for each QRS complex and for each lead (Independent leads 

method) or just for one lead (Dependent leads method). Based on the cross-

correlation and coherence results, the variable QRS window, dependent leads 

method was consistently more accurate than the other tested methods. In 1998 

Travaglini et al. [24] continued the study for extracting the EDR from the angle 

changes in the cardiac vector proposed by Pinciroli et al. [28]. After the 

definition of an eight-dimension space by eigenvalue analysis of a learning set, 

each 8D QRS area vector was projected onto the main direction, which was 

considered as particularly sensitive to respiratory information, and this 

projected QRS area was used to define the EDR signal. In 2003 de Chazal et 

al. [42] produced an EDR signal from the area enclosed by the baseline 

corrected ECG signal in a window of 100ms after the R wave. In the same year 

Mazzanti et al. [43] applied the method of Travaglini et al. [24] to extract the 
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respiratory frequency and to detect the presence of apnoea. In 2008 Park et al. 

[44] considered the area enclosed by the QRS complex in a 60ms fixed window 

centred in the R-waves. They also proposed a method for the optimal lead 

selection with Hilbert transform. The latest work based on QRS area, in the best 

of our knowledge, is the study of Atri et al. [5] in 2015. The ECG-derived 

respiration signals, in this case, were acquired by summing the amplitudes in an 

R-peak-centered window of 100 ms (from 50 ms before R peak to 50 ms after 

R peak). Moreover, they proposed a new feature obtained by higher order 

spectrum analysis of HRV and EDR regarding their non-linearity and non-

Gaussianity in order to automatically detect obstructive sleep apnoea. 

In 2003 Leanderson et al. [40] proposed a method based on least squares 

estimation of the rotational angles of the heart electrical axis between successive 

VCG loops and a reference loop. It exploits the fact that the normal range of 

respiration-induced axis shift is between 2 and 12 degrees, peak-to-peak [2]. In 

other words, the three EDR signals obtained are the angles of the rotation matrix 

defined by the minimisation of a distance criterion after the spatiotemporal 

alignment of VCG loops with the reference. Moreover, this study found out that 

the orthogonal leads constitute a better basis for estimating the respiratory 

frequency than do a subset of the leads. Bailon et al. [1] extended this method 

introducing an exponentially updated reference loop and testing it on a stress 

test database.  

Among others in 1992 Khaled et al. [45] found out that a respiratory surrogate 

can be obtained by simply plotting the peak of the R waves with respect to 

baseline after filtering the ECG with an eighth-order 2.5–25Hz band-pass filter.  

Felblinger et al. [3] affined this method for a single channel of ECG during 

respiration monitoring in magnetic resonance sequences. In a similar manner 

Dobrev et al. [6] used a single lead QRS complex peak-to-peak amplitude 

method to extract the EDR in order to detect apnoea in infants. In particular, 
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after high-pass filtering with 5 Hz cut-off and then a 40 Hz low-pass filtering 

on the ECG, the EDR sample is the sum of the absolute values of the R- and the 

S-waves amplitudes (smoothed with a second order Butterworth 2 Hz cut-off 

low-pass filter). These methods based on R-wave amplitude either with respect 

to the baseline or to the S-wave amplitude from a single channel of ECG are 

also applied in the work of Mason et al. [16] in 2001. In particular, the S-wave 

was defined as the minimum value in a window of 0.1 seconds after the R-wave. 

However, the main aim of Mason et al. [16] is the definition of a method for 

quantitatively assessing respiration derivation algorithms. Finally, O'Brien et 

al. [46] used the R-wave to baseline method and then the amplitudes were 

evenly interpolated in time corresponding to the average heart rate of the given 

series. They ascertained that single ECG lead methods for estimating the 

respiratory signal are well correlated with inductance plethysmographs and that 

single lead respiratory estimates can classify epochs of sleep disordered 

respiration with approximately 82% accuracy. 

A new method for estimating the EDR signal was proposed by Lázaro et al. 

[17] in 2014. This is based on QRS slopes and R-wave angle, which reflect 

respiration–induced beat morphology variations. This work combined the 

information from several EDR signal in order to increase the robustness of 

estimation. The proposed techniques outperformed other methods in two 

different clinical tests (tilt and stress test). 

Yet another group of EDR methods based on beats morphology variation 

includes the work of Yi et al. [48] and Boyle et al. [49]. The former derived the 

EDR by reconstructing the detail signal of 9th decomposition from discrete 

wavelet transform of the ECG. The latter compared different wavelet 

decomposition methods, band pass filtering methods, and HRV based methods 

tested on a database, which covers activities of daily living and overnight 
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studies. It concluded that the best results are obtained combining a HRV method 

with a filter between 0.2 and 0.8Hz. 

The work of Bianchi et al. [50] found out a method to extract respiratory 

information through the first principal component of the centre of gravity and 

the three directions of the three-inertial axes, where their estimate axis was 

obtained through spatiotemporal alignment of successive QRS-VCG loops with 

respect to a reference loop.  Another algorithm for analysing changes in ECG 

morphology based on principal component analysis (PCA) was presented in 

2010 by Langley et al. [10]. PCA is applied to the aligned collection of beat 

features from single-lead ECG recordings (P wave, QRS complex, T wave or 

the full ECG cycle). The PCs are a linear transformation of the beats with 

transformation coefficients given by the eigenvectors, that provide the surrogate 

respiratory signal in the analysis. 
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Chapter 5. SIGNAL PROCESSING METHODS 

5.1 INTRODUCTION 

This chapter follows and explains the general structure of the workflow, which 

is shown in the block diagram Figure 12, designed to answer the main question 

of this thesis. Given a database with two leads ECG and a belt respiratory signal 

for each patient, a pre-processing step and then a beat analysis are performed to 

reduce as much as possible misleading estimates caused by conditions of poor 

signal quality. Then, a method for f-waves cancellation in QRST interval could 

possibly be included at this stage. Its contribution for improving the accuracy 

in the estimation of the respiratory frequency of the overall process can be 

evaluated, by carrying out a comparison with the same workflow without any 

cancellation of the fibrillation activity.  

Different EDR methods are applied and they are elucidated later in this chapter. 

Thereafter the output of this block, the EDR signal, is processed similarly to the 

respiratory signal to compare them in a reliable way.  For a further comparative 

relation, the dominant respiratory rate over time is estimated from both signals; 

then, by comparing with the gold standard, a statistical analysis is applied to 

determine which EDR methods turn out to be reliable for the extraction of the 

actual respiratory rate from the ECG in our case. 

The different used algorithms and processing methods have been implemented 

in MATLAB, a high-level language and interactive environment for numerical 

computation, visualisation, and programming [53].  
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Figure 12 – Block diagram of the code workflow. 

5.2 ECG PRE-PROCESSING 

The pre-processing step is an essential stage in every signal-processing 

algorithm whose scope is to extract the desired information from a signal. It is 

performed with the purpose of improving the quality of the original raw signal, 

by removing and/or attenuating those components that are considered as noise, 

depending on the main scope of the study.  

When dealing with an ECG signal, the most common noise components are 

represented by baseline wander, power-line interference and artefacts coming 

from electrodes displacement and muscular activity. The latter types of noise 

are generally the most challenging in many ECG applications, since their 
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spectral content overlaps the frequency band of the ECG and exceeds at higher 

frequencies. Examples of baseline wander, powerline interference and high 

frequency noise are shown in Figure 13 a, b and c respectively. 

 

Through the years, a wide range of different filtering techniques have been 

proposed to deal with ECG noise. However, in most cases their applicability 

strongly depends on the application and should be tested against the distortion 

of the desired information. After previous verification, the pre-processing 

methods that turned out to suit properly to the case of this thesis are performed 

and they are described in the following sections.   

Figure 13 – Examples of signal noises that are treated in the pre-processing step: a) baseline 
wander, b) powerline interference and c) high frequency noise. 

(a) 

(c) 

(b) 
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5.2.1 Baseline wander  

Baseline wander is an extraneous, low-frequency activity in the ECG whose 

removal is required in order to minimize changes in beat morphology, which do 

not have cardiac origin. In fact, it may commonly result from a variety of noise 

sources including perspiration, respiration, body movements, and poor 

electrode contact [20]. In case of an ECG with atrial fibrillation, yet another 

source of minor fluctuations in the baseline is represented by f-waves. The most 

common technique for dealing with the baseline wander removal is the cubic 

spline method2, which is also applied as pre-processing step for EDR algorithm 

in other works as in [1]. However, the presence of f-waves makes infeasible its 

application in the case study, because of the poor accuracy in the determination 

of representative samples (“knots”) within the isoelectric line.  

Therefore, instead of performing polynomial fitting, a linear, time-invariant, 

high-pass filtering with cut-off frequency at 0.5 Hz is applied to the signals in 

the database. The cut-off frequency has been selected according to the 

frequency content of the baseline wander, which is usually in the range below 

0.5 Hz, and according to the lowest frequency component of the ECG spectrum 

so that the signal remains undistorted [20].  

A forward-backward IIR filtering is employed to meet the magnitude 

requirements more easily by using a much lower filter order, which turns out to 

be doubled by filtering in both directions, in addition to the zero-phase transfer 

function. However, when dealing with high ECG sampling rate, like in our case 

1000 Hz, the only use of the forward-backward filtering to remove baseline 

wander should be avoided, due to the risk of instability of the filter. For this 

reason, a “sampling rate alteration” stage, described in [20], is added to perform 

the filtering of the baseline wander on a signal sampled at a much lower rate 

                                                           
2 For more information regarding the cubic spline technique for attenuation of the 
baseline in a ECG lead, the authors refer to the book [20].  
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than the original ECG. An example of the outcome of such filtering procedure 

is shown in Figure 14. Therefore, the baseline wander removal consists of three 

steps, as shown in Figure 15: 

• decimation of the original signal to a lower sampling rate, in this case 

100 Hz, better suited to filtering in order to remove high-frequency 

content of the signal, 

• forward-backward low-pass filtering (5th-order Butterworth filter) to 

estimate the baseline wander, 

• interpolation of the processed signal back to its original sampling rate.  

 

 

Figure 14 – Example of an ECG before and after baseline removal  

Figure 15 – Block diagram of the used baseline removal method. Adapted from [20] 
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5.2.2 High frequency noise and power-line interference 

The high frequency noise, which may be caused by different sources such as 

electrode motion and muscle activity, are attenuated in this work through a 

fourth order Butterworth low-pass filter. The cut-off frequency is set at 40 Hz 

in order to keep only the information contained in the frequency band of the 

QRS complex, which spans from few hertz to 40Hz [20], and discard all the 

other components which may mask the desired respiratory information.  

After filtering in the forward direction, the filtered sequence is then reversed 

and run back through the filter using the filtfilt function in MATLAB. The 

forward-backward filtering makes possible the use of IIR filter, since the overall 

result is filtering with a zero-phase transfer function that remedies the non-linear 

phase response of the IIR filter [20].  

Although the low-pass filtering at 40Hz, the ECG signal may still contain an 

attenuated powerline interference, characterized by 50 or 60 Hz sinusoidal noise 

that must be removed.  Several techniques were presented to remove this kind 

of noise, ranging from straightforward linear, band-stop filtering to more 

advanced techniques which handle variations in powerline frequency and 

suppress the influence of transients manifested by the occurrence of QRS 

complexes [20]. In this thesis, a forward-backward IIR filtering is applied by 

using a fourth-order Butterworth stop-band filter at 50 Hz. It has been visually 

verified that the stop-band filter is not introducing ringing artifacts at both sides 

of the QRS complex. The Figure 16 and Figure 17 show an example of ECG 

signal in the database and the correspondent FFT before and after the removal 

of the powerline interference. 
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5.3 BEAT ANALYSIS  

For each subject the information about time locations of heartbeats, referred as 

fiducial point in this thesis, and beats classification have been extracted through 

the LundECG Signal Processing Toolbox for MATLAB, developed by the 

Biomedical Signal Processing research group at Lund University.  

After that, an analysis of the beats in the ECG signal is required in order to 

remove or substitute those QRS complexes with a strange morphology and 

select those with a predominant morphology before applying any EDR method. 

In this context, two different categories of beats are considered noteworthy: 

beats with abnormal morphology and noisy beats.  Some examples of these 

beats in the analysed database are shown in Figure 18, Figure 19, Figure 21 and 

Figure 22.  

Figure 16 - The first plot shows the entire ECG before the filtering (red) and after it (black).  A short 
segment is zoomed in the second plot for better visualisation. 

Figure 17 - The spectrum of the ECG shown in the Figure 16 is represented before and after filtering. 
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The first category includes those QRS complex whose morphology is either 

clearly affected by an unusual conduction of the electrical impulse through the 

heart, i.e. ectopic beats, or altered by artifacts of exogenous origin, such as 

sudden body movements or electrode motion. They are signal alterations that 

could not be completely removed in the pre-processing step without introducing 

any distortion of the desired information and so they are treated in this phase.  

 

The second category refers to beats whose signal-to-noise ratio (SNR) remains 

poor even after pre-processing and therefore it is reasonable to exclude them 

from consideration in the EDR algorithm.  

 

Figure 18 - Example of an artifact in the ECG due to sudden body movement 

Figure 19 - Example of a premature ventricular contraction clearly visible in both leads. 



51 
 

The two categories of beats are managed in different way. The beats with 

abnormal morphology generally are common to both leads, so they are always 

discarded. As regarding noisy QRS complex, instead, they are substituted when 

occurring in just one lead and discarded when detected in both leads, since the 

SNR measurement is lead independent. 

The object here is to perform a beat analysis proper enough for the scope of the 

thesis, in order to prevent the performances from being affected by the presence 

of spurious QRS complex in the ECG signal. 

5.3.1 Detection of beats with abnormal morphology 

The algorithm used in this thesis for the detection of abnormal beats is inspired 

to the work of Martinez et al. [54] and it is based on a morphological 

characterization of each ventricular beat in atrial fibrillation ECG recordings. 

More specifically, it makes use of morphological descriptors and thresholds to 

obtain a decision rule and determine if a beat is normal or not. Differently from 

the cited work, some of the original descriptors are rejected and a new one is 

added to perform the detection on a database with two unspecified leads. It 

means that the typical morphology of the normal QRS complex for the single 

lead is unknown a-priori; therefore, it has been required to make the algorithm 

more flexible for different QRS shapes referring to normal contractions. 

As a preliminary step, the time occurrences of R-peaks tk are estimated by 

considering an interval from 100 ms before to 20 ms after the fiducial point ri. 

The direction of the R-peak (if upward or downward) is determined from the 

average beat of each lead: if the prominence of the highest positive peak in the 

QRS complex is over 150 μV, the R-peak is considered upwards and downward 

otherwise. 

Thereafter, two points around the R-peak, γQRS- and γQRS+ are established. They 

are defined as the closest points to the R-peak in which the amplitude is 30% of 

this peak amplitude, y(γQRS-) = y(γQRS+) = 0.3y(tk). 
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Finally, four descriptors to characterize the QRS morphology of the beat are 

defined, see Figure 20, as: 

• Area of the QRS complex (Atk), i.e., the sum of the pre-processed ECG 

samples between the identified boundary points: 

 𝐴𝑡𝑘 =  ∑ 𝑦(𝑖)
𝛾𝑡𝑘 𝑄𝑅𝑆− 
𝑖= 𝛾𝑡𝑘 𝑄𝑅𝑆+ . 

• Number of samples between γtkQRS+ and γtkQRS- (Dtk), i.e.: 

 Dtk  = γtkQRS+  - γtkQRS- .  

• Amplitude of the R-peak, i.e.: 𝑦(𝑡𝑘) . 

• ECG amplitude at the fiducial point, i.e.: 𝑦(𝑟𝑖) . 

 

Figure 20 - QRS complex with the descriptors used. 

To classify a ventricular beat as normal or not, its descriptors are compared with 

those corresponding to the average of its preceding 25 beats detected as normal. 

A decision scheme based on a sequence of four rules is built, such that a beat is 

classified as normal when none of the rules is satisfied in none of the two leads. 

In contrast, it is considered as abnormal when any of the rules is fulfilled in each 

of the two leads. These rules have been experimentally obtained and can be 

mathematically expressed as follows: 

γtkQRS+ γtkQRS- 
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• Rule 1: |A𝑡𝑘 −  𝐴𝑡̅̅ ̅| > 𝐶 ∗  𝜎𝐴𝑡    

• Rule 2: |D𝑡𝑘 − 𝐷̅| >  𝐶 ∗  𝜎𝐷   

• Rule 3: |y(𝑡𝑘) − 𝑦(𝑡̅̅ ̅̅ )| > 𝐶 ∗  𝜎𝑦(𝑡)   

• Rule 4: |y(𝑟𝑘) −  𝑦(𝑟)̅̅ ̅̅ ̅̅ | > 𝐶 ∗  𝜎𝑦(𝑟)   

𝐴𝑡̅̅ ̅ , 𝐷̅ , 𝑦(𝑡)̅̅ ̅̅ ̅̅  and 𝑦(𝑟)̅̅ ̅̅ ̅̅  are the descriptors averaged for the 25 normal beats 

preceding those under classification, i.e. the kth beat; 𝜎𝐴𝑡 , 𝜎𝐷, 𝜎𝑦(𝑡) and 𝜎𝑦(𝑟) 

are the standard deviations of the descriptors for the same beats and C = 7. When 

a beat turns out to have a strange morphology in just one of the two leads, a 

second check is performed in the lead when none of the rules has been satisfied, 

by applying the same decision scheme but lowering the value of C to 5 for all 

the rules. If the beat results then to be abnormal in both leads, then it is rejected 

or classified as normal otherwise.  

Obviously, this approach requires, as a starting point, the selection of 25 normal 

beats, which are considered enough to derive the physiological variance in 

terms of QRS shape among normal beats. Instead of using manual selection, the 

initialization is based here on the average of the cross-correlation values of each 

beat with all the other beats in an initial 30-beats segment of the ECG. The first 

25 beats, whose cross-correlations values are larger than a certain threshold, set 

to the median minus three standard deviation of the mean correlation values, 

are initialized as normal beats.  

5.3.2 Detection of noisy beats 

The excessive noise present in a single lead, which could not be removed in the 

pre-processing step, may mask the respiratory-induced variation in the ECG, 

especially in terms of the rotation information [1] and the morphology 

modulation. It leads to the risk of increasing the presence of outlier estimates in 

the EDR signal. Hence, a noisy beat detection is performed in each lead and if 

possible the detected ones are substituted by using an exponentially update beat 

as it is carried out in the work of Bailon et al. [1].  
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This passage follows two main steps: the characterization of the noisy beats 

with high Signal-Noise Ratio (SNR) and the replacement of them with an 

exponential average beat.  

 

Figure 21 - Example of a beat with poor SNR at low frequencies. 

 

 

Figure 22 - Example of a beat with poor SNR at high frequencies. 

The SNR is computed for each beat considering high frequency (HF) and low 

frequency (LF) noise, which are mainly due to muscle activity and remaining 

baseline wander respectively.  
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The SNRHF is defined as the ratio of the peak-to-peak amplitude in an interval, 

that spans 100 samples before and 20 samples after the QRS mark, and the root-

mean-square (RMS) value of the HF noise (using a Butterworth filter with cut-

off frequency at 20 Hz) in a HR-dependent interval. The SNRLF is defined as 

the ratio of the peak-to-peak amplitude of the exponentially update average beat 

of each class and the RMS value of the residual ECG after average beat 

subtraction and low-pass filtering (using a Butterworth filter with cut-off 

frequency at 20 Hz). 

Beats whose SNRHF or SNRLF is lower than a threshold, set at 0.7 based on a 

study on a smaller dataset, are substituted by their corresponding averaged 

beats. The exponential updated average beat used for beat substitution is 

calculated as follows: 

𝐘𝐑(𝑖 + 1) = 𝛼𝐘𝐑(𝑖) + (1 − 𝛼)𝐘(𝑖 + 1) 

where 𝑖 denotes the beats index, 𝐘𝐑(𝑖) is the exponential average beat and 𝐘 is 

the next beat to be averaged. The average (red line in Figure 23) is carried out 

on the 5 normal previous beats, as in [1], in order to keep the respiratory 

information from the lead where the beat is not noisy. The coefficient 𝛼 is the 

forgetting factor set to 0.1 as in [1] and the initialization of the exponential 

average beat is set to a zero vector.  

The formula for the exponential update average beat applied on all the beats of 

each class is the same to the one used for beat substitution with the only 

difference that, in the first case, it is used to derive a beat model. 

Note that Bailon et al. [1] applied the beat substitution on the 12-lead ECG used 

to derive the VCG, so as to keep in it the rotation information. Differently from 

the mentioned work, the beat substitution is here performed on the ECG leads 

directly given as an input to the EDR algorithms, since the dataset consists of 

two-leads ECG for each patient. 
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Figure 23 – Example of a noisy beat substitution. 

5.4 F-WAVES REMOVAL FROM THE QRST SEGMENT 

The surface ECG in atrial fibrillation is characterized by a fluctuating baseline, 

so-called f-waves, which occurs in place of the P waves. The presence of these 

f-waves could represent a source of noise for this study, given the possibility of 

introducing beat-to-beat modifications in the QRS complex unrelated with 

respiratory activity. In order to evaluate the influence of fibrillation activity on 

the EDR signal, a fibrillation signal is reconstructed from the previous TQ 

interval during the QRS segment and subtracted from each observed beat, 

adapting the method based on the extraction of a TQ-based fibrillation signal 

that is described in [29].  

Prior to the reconstruction of the fibrillation signal, the detection of the TQ-

interval, i.e.  the segment between the end of the T-wave and the onset of the 

Q-wave, is required (Figure 24).  
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Since in AF, the T wave is not always easily identifiable in presence of high 

amplitude f-waves, a fixed point for the end of the T wave is extracted from the 

average beat of each lead, excluding from the averaging those beats that have 

been rejected in the pre-processing phase. In case of TQ-segment shorter than 

65 ms (minimum length for a fibrillation cycle), the TQ-based fibrillation signal 

is set to zero and no subtraction is carried out on the following QRS complex. 

The TQ-segments, that are long enough, are bandpass filtered in the frequency 

range [1 20] Hz with a 4th order Butterworth filter, to remove any residual 

baseline trend in the segment and bring out the fibrillation activity against the 

background noise.  

Since the aim is to estimate the TQ-based fibrillation signal, which consists of 

consecutive fibrillation cycles, the information about the length, the 

morphology and the phase of a single fibrillation cycle within the TQ-segment 

need to be reliably extracted. The length of a fibrillation cycle, i.e. f-wave, is 

estimated from the autocorrelation function (ACF) of the filtered TQ interval 

by considering the time lag of the consecutive peak to the first negative peak in 

the function (     Figure 25), as performed in [55]. Conversely, when the peak is 

Figure 24 – Detection of consecutive TQ-intervals in an ECG segment. 
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negative the overall TQ-segment is discarded since no clear periodic activity is 

found. 

 

     Figure 25 – Estimation of the fibrillation cycle length from the ACF of the relative TQ-segment. 

The estimated fibrillation cycle length is verified to be neither shorter than 85 

ms nor longer than 340 ms, given the oscillation frequency range of the f-waves 

in the range 3-12 Hz. It means that cycles lengths outside this range are 

considered unreliable and discarded. 

The estimated length is used to extract the actual shape of the f-waves by 

averaging consecutive fibrillation cycles in the TQ-segment and to get rid of 

residual noise. The procedure starts from the fibrillation cycle closest to the Q-

wave and goes backwards to the end of the T-wave, so keeping track of the 

information about the cycle phase.  

The extracted fibrillation cycle prior to QRS complex is then replicated to cover 

the length of the following QRS interval. The outcome is low-pass filtered with 

a cut-off frequency of 40 Hz, to remove any high frequency component that 

may have been introduced in the replication phase due to amplitude mismatches 

between the starting and ending points of the fibrillation cycle.  

The TQ-based fibrillation signal is then subtracted from the considered QRS 

complex as shown in Figure 26. 
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Figure 26 – QRS-complex before (black line) and after (red line) subtraction of the estimated TQ-     

based fibrillation signal (dashed blue line). 

It is important to underline that the TQ-based fibrillation signal is constructed 

for each individual lead to allow for lead-independent AF properties, as in [29].  

However, one relevant difference with the mentioned work is about the 

reconstruction of the fibrillation signal, which is carried out by taking 

advantage, where possible, of the information provided by adjacent TQ 

intervals. The fibrillation cycle prior to QRST complex is then replicated during 

the QRST interval but linearly weighing from one at the onset of the interval to 

zero at the end. An identical procedure is applied to the TQ segment following 

the QRST complex but in a time-reversed fashion. For the scope of this thesis, 

the use of TQ interval following the QRS complex has turned out to be 

unnecessary, since the interest is in the reconstruction of the fibrillation signal 

only during ventricles' depolarization, i.e. the QRS interval. Therefore, the 

extracted fibrillation cycle from the following TQ-interval would not be 

relevant and low weighted for the signal reconstruction. Moreover, when T-

wave end is hard to accurately determine, especially in noisy signals, this 
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information may be even misleading and cause the introduction of artifacts in 

the QRS complex. 

5.5 EDR ALGORITHMS 

The main challenge of this thesis is to verify which EDR methods, listed in 

Chapter 4, can also be applied in case of atrial fibrillation. For this reason, the 

next step is to apply and test different EDR algorithms. As previously explained 

in Chapter 2, the focus inevitably is on the methods based on QRS complex 

morphology variations, since the characteristics of an ECG in AF do not allow 

exploiting HRV analysis for EDR extraction. Among them, the methods 

proposed more recently and with characteristics suitable to our study case are 

taken more in account. 

5.5.1 QRS slopes and R-wave angles 

In 2014 Lázaro et al. [17] proposed a new method for extracting the EDR signal 

based on QRS slopes and R-wave angle variations on two databases in tilt and 

stress test. More specifically, for each beat 𝑖 and for each lead 𝑙, the upward and 

downward slopes of the R wave and the R wave angle, defined as the smallest 

angle formed by the straight lines that define these slopes, are measured. 

To implement this method, the determination of the R-peak time instant 𝑛R 𝑙,𝑖
  

in each beat is required, starting from the position of the given fiducial point.  

The R peak is found to be the maximum or the minimum peak in the interval 

from 100 ms before to 20 ms after the fiducial point, depending if the R-wave 

is upwards or downwards. The time instants corresponding to the Q-wave and 

the S-wave are defined respectively as the extreme points of the defined 

interval, 𝑛Q 𝑙,𝑖
 and 𝑛S 𝑙,𝑖

.  
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Subsequently time instants associated with the maximum variation points of the 

ECG signal between 𝑛Q 𝑙,𝑖
 and 𝑛R 𝑙,𝑖

 instants and between 𝑛R 𝑙,𝑖
 and 𝑛S 𝑙,𝑖

 instants 

are computed as follows: 

𝑛U 𝑙,𝑖
=  max

𝑛∈[𝑛Q 𝑙,𝑖
 , 𝑛R 𝑙,𝑖

]

{|𝑙′𝑙(𝑛)|}  

𝑛D 𝑙,𝑖
=  max

𝑛∈[𝑛R 𝑙,𝑖
 , 𝑛S 𝑙,𝑖

]

{|𝑙′𝑙(𝑛)|} 

Where 𝑙′𝑙(𝑛) is the first derivative of the lead l:  

𝑙′𝑙(𝑛) =  𝑙𝑙(𝑛) − 𝑙𝑙(𝑛 − 1) 

Finally, a straight line is fitted to the ECG signal by least squares in a 8 ms-

length interval centred at 𝑛U 𝑙,𝑖
 according to Lázaro et al. [17]; the same step is 

also carried out for the 8 ms-length interval centred at 𝑛D 𝑙,𝑖
. Since 8ms 

corresponds to 8 samples in a signal sampled at 1000Hz, it has been chosen to 

create a line, which spans 4 samples before and 4 samples after the considered 

central point.  The extraction of the slope for the line that best fit (in a least-

squares sense) the ECG is possible in MATLAB through the function polyfit, 

which returns the coefficients for a polynomial of a certain degree. The 

extracted slopes for a generic beat 𝑖 are denoted 𝔗𝑈𝑆𝑙,𝑖
 and 𝔗𝐷𝑆𝑙,𝑖

; each of them 

represents a sample in the relative EDR signal, which is then composed by 

series of all the upward or downward slope values of each QRS complex.   

After the calculation of the slopes and assuming a two-dimensional Euclidean 

space coordinate system, the R wave angle can be defined by this general 

equation: 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛 (|
𝔗1 − 𝔗2

1 + 𝔗1𝔗2
|) 

Where 𝔗1 and 𝔗2 denote the slopes of the straight lines forming the angle.  The 

Figure 27 shows the relevant points on an example of QRS complex from the 
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database. The units of the horizontal axis (time) and vertical axis (voltage) were 

rescaled to match the particular case of conventional ECG tracings in clinical 

printouts, where a speed of 25mm/s and a fain of 10mm/mV are used as [17]: 

𝜙𝑅𝑙,𝑖
= 𝑎𝑟𝑐𝑡𝑎𝑛 (|

𝔗𝑈𝑆𝑙,𝑖
 −𝔗𝐷𝑆𝑙,𝑖

0.4(6.25+𝔗𝑈𝑆𝑙,𝑖
 𝔗𝐷𝑆𝑙,𝑖

)
|).  

 

Lázaro et al. [17] evaluated separately the QRS slopes and R-wave angle in 

estimating respiratory rate, but they found out that the combination of them 

reduces estimation error and increases measuring time with respect to 

considering them alone. Although the R-wave angles are computed from QRS 

slopes, their relation is non-linear, which may exploit complementary 

respiratory information to that obtained by the linear combination of QRS 

slopes [17].  

φ 

Figure 27 - Relevant points on an example of QRS complex. The thick red lines represent the two 
straight lines best suited to the QRS slopes by LS. The angle at the top of the R-peak represents the 
R-wave angle, given by the smallest angle formed by the two red lines. 
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Note that in [17] the method achieves the best results when it is applied on the 

three VCG leads, suggesting that inverse Dower transformation enhances beat 

morphological variations induced by respiration. Since the given database 

consists of two unspecified leads, it is not possible to derive the three orthogonal 

leads. However, the proposed technique was also tested on 12-leads ECG with 

good results, meaning that it is still reasonable to apply it onto the given 

database.  

5.5.2 QRS area 

Various EDR-methods based on QRS-area were proposed in past years and 

tested on healthy subjects. Some variants are implemented in this thesis with 

the purpose of testing their reliability for estimating rotations of the mean 

electrical axis related with respiration from a two non-orthogonal leads ECG 

corrupted by AF. Therefore, in all the presented methods, the projection of the 

mean electrical axis on the plane defined by these two leads is considered. The 

area of the 𝑖-th QRS complex is computed over a certain time interval in each 

lead, thus being proportional to the projection of the mean electrical axis on that 

lead [22].  

The instantaneous projection of the mean electrical axis on the plane 𝑗𝑘, defined 

by two generic leads 𝑗 and 𝑘, at time instant 𝑡𝑖, can be defined as vector 𝒎̅(𝑡𝑖) 

𝒎̅(𝑡𝑖) =  [

1
𝛿1 + 𝛿2

∫ ‖𝒎(𝑡)‖2
𝑡𝑖−𝛿1

𝑡𝑖+𝛿2
cos (𝜃𝑗𝑘(𝑡))𝑑𝑡

1
𝛿1 + 𝛿2

∫ ‖𝒎(𝑡)‖2
𝑡𝑖−𝛿1

𝑡𝑖+𝛿2
sin (𝜃𝑗𝑘(𝑡))𝑑𝑡

] =  
1

𝛿1 + 𝛿2
[

𝐴𝑗(𝑡𝑖)

𝐴𝑘(𝑡𝑖)
] 

where 𝜃𝑗𝑘(𝑡) is the angle between 𝑚(𝑡) and the reference lead 𝑗, 𝐴𝑗(𝑡𝑖) and 

𝐴𝑘(𝑡𝑖) represents the area in lead 𝑗 and 𝑘 respectively. The integration interval 

over which the mean is computed is defined by 𝛿1 and 𝛿2. ‖. ‖2 denotes the 

Euclidean distance. The term ‖𝒎(𝑡)‖2cos (𝜃𝑗𝑘(𝑡))  is representing the 
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projection of 𝑚(𝑡) on lead 𝑗 and ‖𝒎(𝑡)‖2sin (𝜃𝑗𝑘(𝑡))𝑑𝑡 is the projection lead 

𝑘.  

The angle of projection of the mean electrical axis on the 𝑗𝑘-plane with respect 

to lead 𝑗, as shown in Figure 28, can be estimated as: 

𝜃𝑗𝑘(𝑡𝑖) = arctan(𝐴𝑘(𝑡𝑖)/𝐴𝑗(𝑡𝑖)) 

Finally, the fluctuations of this angle can be used as an EDR signal.  

 

The reason for testing different methods based on QRS-area arises from the fact 

that the estimate is very sensitive to the window width, since the detection of 

the starting and ending interval's points becomes more challenging in AF with 

respect to a normal ECG due to the presence of f-waves. The values of 𝛿1 and 

𝛿2  can be chosen to comprise the whole QRS complex, using a symmetric 

window around the R-peak, or an asymmetric window in order to reduce the 

QRS morphologic variations unrelated to respiration.  

Figure 28 - Projection of the hearts mean electrical axis on the jk-plane. Modified figure from [29]. 
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The variants to the QRS-area method tested in this thesis are inspired to the 

work of Moody et al. (1985) [2], Caggiano and Reisman (1996) [15], Mazzanti 

et al. (2003) [43] and Park et al. (2008) [44]. 

Moody et al. (1985) 

The EDR signal is reconstructed by computing the area of each normal QRS 

complex in each of the two leads. In this case, the area is measured over a fixed 

window, which is determined on the average beat of each lead to match the 

interval from the PQ junction to the J-point of a normal QRS. Since the two 

leads are not orthogonal, a systematic but harmless error in axis direction 

estimation results [2]. 

Caggiano and Reisman (1996) 

The three different methods proposed in this work for computing the QRS-area 

have been implemented. As a preliminary stage, each lead is shifted vertically 

by 110% of the absolute value of the minimum of the lead. This passage gives 

an ECG that contains all positive samples, as required before applying the 

following methods. 

Fixed QRS Window, independent Leads Method 

This method computes the area under the ECG during the QRS complex in a 

fixed window width, which is independent between the two leads. Thus, fixed 

window means that the width in each lead is the same for each QRS complex in 

that lead. More specifically, for each lead the R-wave and Q-wave are detected 

on the average beat to calculate the average Q-wave to R-wave length. The 

width of the fixed window is considered to be twice this average value. Known 

the relative time instants of the Q-wave with respect to the fiducial point and 

the average window width, the area under each QRS complex within the 

window is calculated in each lead. Then, the local baseline area is computed by 
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multiplying the minimum within the window per the length of the window. The 

local baseline area is subtracted from the previous calculated area and the 

resulting area is placed to correspond in time of the fiducial point. In this way, 

the obtained samples are unequally spaced and corresponding in time to the 

samples extracted with the other EDR methods. 

Variable QRS Window, independent Leads Method 

Differently from the previous method, the QRS complex is not assumed to be 

symmetrical, so the Q, R and S-waves are detected for each QRS complex. The 

detections for one lead are performed independently from the detections in the 

other lead.  

Variable QRS Window, dependent Leads Method 

In this case, the difference with the previous methods is that the two leads are 

not considered to be independent. The less noisy lead is selected to detect the 

Q, R and S-wave. The detection for the chosen lead are then referred as the Q, 

R and S-waves of the other lead. In this way, the same samples in time are 

considered for the calculation of the area under the QRS complex in each lead.  

Mazzanti et al. (2003) 

The area of each QRS complex is computed by using an approximation through 

the trapezoidal method, instead of summing up the amplitudes in a certain 

interval of interest as in the previous methods.  

The calculation is carried out by fitting trapezoids to the ECG in an interval 

from 60 ms before to 20 ms after the R-peak, as in [1], and taking the total 

covered area. The selected time interval is considered to respond properly to the 

need of reducing the influence of f-waves in the considered QRS interval.  
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Park et al. (2008) 

At last, the implementation of this method has required to take a fixed window 

of length 60 ms centred at the R-wave for the computation of the QRS area.  

 

5.5.3 R amplitude 

The modulation of R wave amplitude due to respiration was extensively studied, 

as explained in the Chapter 4. In this thesis, the algorithm proposed in 2001 by 

Mason et al. [16] is implemented, since it exploits two methods for deriving an 

EDR signal from a single ECG channel. The amplitude of the R-peak is 

measured both with respect to the baseline and to the amplitude of the S wave. 

The EDR signal based on the measure of the R-wave amplitude with respect to 

the S wave amplitude demonstrated to obtain higher sensitivity and positive 

predictivity compared to the EDR signal based on the R-wave with respect to 

baseline [16].  

Note that the location of each QRS complex and the R wave peak in the ECG 

are determined using the given fiducial point as done before. The S-wave is 

found by searching for the minimum value (or the maximum value in case of 

downward R wave) of the ECG in a time window of 0.1 second after the R-

peak. The difference in amplitude between the R-peak and the baseline, or the 

S wave, represents a sample of the EDR signal, then generated by linking 

successive points.   

The following pictures (Figure 29 and Figure 30) show an example of the 

considered points by the R amplitude method.  
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Figure 30 - The red dots point the position of the R peak and the blue ones the position of the fiducial 
point for the calculus of the R amplitude EDR method. 

Figure 29 - The red dots point the position of the R peak and the green ones the position of the S 
wave for the calculus of the R amplitude EDR method. 
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5.5.4 VCG loop alignment 

The LS estimation of the rotation angles of the heart electrical axis based on 

successive QRS-VCG loop was proposed initially by Leanderson et al. [40] in 

2003 and it was then successively improved by Bailon et al. in 2006 [1]. The 

latter version of the algorithm is applied in this thesis and it is here explained in 

detail.  

The technique exploits the fact that successive QRS-VCG loops have similar 

morphology with a slightly different direction in space relative to a reference 

QRS-VCG during a respiratory cycle. Hence, it is possible to estimate a series 

of least-square (LS) rotation angle, which defines the EDR signal. 

The method performs minimization of a normalized distance ε between a 

reference loop (𝑁×3 matrix 𝐘𝐑, where the columns contain the X,Y,Z leads) 

and each observed loop ((𝑁 + 2∆)×3  matrix Y), with respect to rotation  (3×3 

matrix Q), amplitude scaling (scalar γ), and time synchronization (𝑁×(𝑁 + 2∆) 

matrix 𝐉𝜏), where N is the number of samples of the QRS complex analysis 

window, defined as: 

𝜖𝑚𝑖𝑛 =  min
𝛾,𝜏,𝐐

(𝜖) =  min
𝛾,𝜏,𝐐

‖𝐘𝐑 − 𝜸 𝐉𝜏𝐘𝐐‖
2
𝐹

‖𝜸 𝐉𝜏𝐘𝐐‖2
𝐹

  

The matrix  𝐉𝜏 is equal to [𝟎∆−𝜏 𝐈 𝟎∆+𝜏 ], where the parameter Δ denotes the 

number of symmetrically augmented samples which allow for time 

synchronization with τ = -Δ, …, Δ. The dimensions of the 𝟎∆−𝜏, 𝟎∆+𝜏 and 𝐈  

matrices are 𝑁×(𝑁 − ∆), 𝑁×(𝑁 + ∆) and 𝑁×𝑁 , respectively. The operator 

‖∙‖
2
𝐹

 denotes the Frobenius norm.  

The rotation matrix 𝐐 can be viewed as three successive rotations around each 

axis (lead), defined by the rotation angles 𝜙𝑋,  𝜙𝑌 and 𝜙𝑍:  
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𝐐 =  [

1 0 0
0 cos( 𝜙𝑋) sin(𝜙𝑋)

0 −sin(𝜙𝑋) cos( 𝜙𝑋)
] [

cos( 𝜙𝑌) 0 sin(𝜙𝑌)
0 1 0

−sin(𝜙𝑌) 0 cos( 𝜙𝑌)
]

× [
cos( 𝜙𝑍) sin(𝜙𝑍) 0

−sin(𝜙𝑍) cos( 𝜙𝑍) 0
0 0 1

]. 

The normalized distance ε is minimized by first finding the estimates of γ and 

𝐐 for every value of τ and then selecting that τ for which ε is minimum. For a 

fixed τ, the optimal estimator of 𝐐 is given by 𝐐 ̂𝜏 = 𝐕𝜏𝐔𝜏
𝑇 where the matrices 

𝐔𝜏 and 𝐕𝜏 contain the left and right singular vectors from the singular value 

decomposition (SVD) of 𝐙𝜏 = 𝐘𝑹
𝑻𝐉𝜏𝐘. The estimate of γ is obtained by  

𝛾̂𝜏 =  
𝑡𝑟(𝐘𝑹

𝑻𝐘𝐑)

𝑡𝑟(𝒀𝑹
𝑻 𝑱𝝉

𝑻𝐘𝐐̂τ)
 

The parameters 𝐐̂τ and 𝛾̂𝜏 are calculated for all values of τ, with 𝐐̂ resulting 

from that τ which yields the minimal error ε. Finally, the rotation angles 𝜙𝑋,  

𝜙𝑌 and 𝜙𝑍 are derived from 𝐐̂.  

For reducing the influence of exercise-induced ST changes on the estimates, the 

work of Bailon et al. [1] follows up the idea of Leanderson et al. [40] 

introducing an exponentially update reference loop defined as: 

𝐘𝐑(𝑖 + 1) = 𝛼𝐘𝐑(𝑖) + (1 − 𝛼) 𝐘(𝑖 + 1) 

Where i denotes the beat index at time instant 𝑡𝑖. The parameter α is chosen 

such that morphologic variation is tracked while adaptation to noise is avoided. 

The initial reference loop 𝐘𝐑(1) is defined as the average of the first ten loops, 

on condition that every loop has a cross-correlation coefficient with the first 

loop that exceed 0.9 in all leads. In our work, the QRS complex analysis window 

has been adapted to the given fiducial points, so it comprises 120 ms (100ms 

before and 20ms after the fiducial point) and it symmetrically augmented by 30 
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ms to allow time synchronization in steps of 1 ms.  A forgetting factor of α = 

0.8 is used in the present study. 

Note that the method requires three orthogonal leads in order to generate the 

VCG loop and it needs all these channels to create the matrices for extraction 

of the angles in contrast to the Lázaro et al. [17] methods, which are single-

channel. Therefore, the method described above is modified to adapt to the case 

of two unspecified leads ECG.  

In this case the QRS complex is projected on a plane, so the minimization of a 

normalized distance ε between a reference loop (𝑁×2 matrix 𝐘𝐑) and each 

observed loop ((𝑁 + 2∆)×2  matrix Y) with respect to rotation  (2×2 matrix 

Q), amplitude scaling (scalar γ), and time synchronization ( 𝑁×(𝑁 + 2∆) 

matrix 𝐉𝜏) is defined as above and it is applied for each beat, see Figure 31 and 

Figure 32.  

 

Figure 31 - Example of a reference beat (black) and an observed beat (green) on a single lead 
before minimization (top image) and after minimization (bottom image) of the normalized 
distance between them with respect to rotation, amplitude scaling and time synchronization. 
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This gives as result the matrix 𝐐̂, which minimizes the normalized distance ε 

and is the optimal estimator of Q for fixed τ, as explained above. The EDR 

sample is extracted as an angle of this matrix, which is strictly dependent on the 

used leads. For this reason, the new EDR signal cannot contain the whole 

respiratory information that could be extract by the heart, because the VCG is 

not used and thus a systematic error in the axis direction estimate results from 

this computationally convenient assumption [2].  

 

5.6 POST-PROCESSING OF EDR 

The raw EDR signal coming out from the EDR algorithm already exhibits the 

oscillatory waveform characteristic of a respiratory signal (  

Figure 33).  

Depending on the method, one or more EDR signals can be extracted and each 

of them is a beat-to-beat series, whose samples account for a specific QRS 

morphologic feature. Moreover, at this stage the samples of the EDR signal are 

unequally spaced, since the sampling rate is determined by the beats time 

occurrences in the ECG. Consequently, the signal is still strongly dependent on 

Figure 32 - Example of the reference loop (black) and the observed loop (red) on the plane defined by 
the two leads. 
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the beat quality of the original ECG, so it may contain outliers due to minor 

artifacts in the QRS complex and missing estimates caused by the 

abnormal/noisy beats, which have been previously rejected. Therefore, the 

output of the EDR algorithm needs to pass through some basic processing steps 

before trying to estimate the dominant frequency in the signal. Inspiring to the 

work of Lázaro et al. [17], the post-processing stage consists of: 

• Outlier rejection;  

• Linear interpolation; 

• Resampling at 4Hz; 

• Band-pass filtering;  

• Unreliable estimates removal in EDR.  

  

Figure 33 - EDR signal: series of samples from a QRS feature of each beat. 

The presence of outliers in the EDR signal may result in a disturbance for the 

estimation of the dominant frequency. For this reason, the estimates that are 

suspected to be unreliable must be discarded. The adopted outlier correction 

algorithm removes every sample outside the interval [𝑚𝑒𝑑𝑦 − 𝜂𝑦,    𝑚𝑒𝑑𝑦 +

𝜂𝑦 ] , where 𝑚𝑒𝑑𝑦  is the median of previous 𝑁_𝑠𝑎𝑚𝑝𝑙𝑒𝐸𝐷𝑅 , and 𝜂𝑦  is the 

standard deviation (STD) of those N-samples times a constant C [1].  
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The constant C is set to 5 and the 𝑁_𝑠𝑎𝑚𝑝𝑙𝑒𝐸𝐷𝑅 is chosen by considering an 

interval of 30 sec, which has demonstrated to work properly on the examined 

database. In particular, 𝑁_𝑠𝑎𝑚𝑝𝑙𝑒𝐸𝐷𝑅 is made dependent on the mean HR of 

each patient, in order to handle the sample density of the EDR signal, which 

becomes even more unstable in atrial fibrillation. Therefore, 𝑁_𝑠𝑎𝑚𝑝𝑙𝑒𝐸𝐷𝑅 

spans from 17 to 41 samples according to the minimum and maximum heart 

rate (52 beats/min – 123 beats/min) in the considered database.  

 

Figure 34 - Comparison between the original EDR (black) and the EDR samples after the outlier 
correction (red). 

The EDR signal coming out from outlier rejection, see Figure 34, presents 

missing values in correspondence of the discarded beats and detected outliers. 

Since in the next stages the signal will be resampled and filtered, there is a 

serious risk of introducing distortions in correspondence of those gaps. This 

problem has been solved by replacing the missing samples through linear 

interpolation on the existing ones, that has required to use the function interp1 

in MATLAB. The interpolation is a polynomial fitting of given samples and 

depends on the order of the polynomial. The linear interpolation is performed 

by using a straight line to interpolate the samples as show in the Figure 35. 
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Figure 35 - Section of the EDR signal after the linear interpolation (red line). The black line shows the 
original EDR signal before the outlier correction, in that way it could be observed as the outlier is 
replaced by a sample obtained from a linear interpolation. 

The EDR signal is then resampled at 4 Hz and interpolated using a cubic spline 

so as to derive an evenly sampled signal. The interpolation is carried out by 

applying the MATLAB function interp1 setting this time the third-order 

polynomial fitting. As described in [20], the interpolated EDR y(t) is computed 

for the interval [𝑡𝑖 𝑡𝑖+1 ]  by incorporating the three samples 𝑥(𝑡𝑖),  𝑥(𝑡𝑖+1) and 

𝑥(𝑡𝑖+2) into the Taylor series expanded around 𝑡𝑖, where 𝑥(𝑡𝑖) are the samples 

of successive beats located at the times 𝑡𝑖  with i=0, 1, …. 

𝑦(𝑡) = 𝑦(𝑡𝑖) + (𝑡 − 𝑡𝑖)𝑦(1)(𝑡𝑖) +
(𝑡 − 𝑡𝑖)

2

2
𝑦(2)(𝑡𝑖) +

(𝑡 − 𝑡𝑖)
3

3
𝑦(3)(𝑡𝑖) 

Where: 

𝑦(1)(𝑡𝑖)  ≈
𝑥(𝑡𝑖+1)−𝑥(𝑡𝑖) 

𝑡𝑖+1−𝑡𝑖
; 

𝑦(2)(𝑡𝑖)  ≈
6(𝑦(𝑡𝑖+1)−𝑦(𝑡𝑖)) 

∆𝑡𝑖1
2 −

2(2𝑦(1)(𝑡𝑖)+(𝑦(𝑡𝑖+2)−𝑦(𝑡𝑖)) ∆𝑡𝑖2⁄ ) 

∆𝑡𝑖1

; 

𝑦(3)(𝑡𝑖)  ≈ −
12(𝑦(𝑡𝑖+1)−𝑦(𝑡𝑖)) 

∆𝑡𝑖1
3 +

6(𝑦(1)(𝑡𝑖)+(𝑦(𝑡𝑖+2)−𝑦(𝑡𝑖)) ∆𝑡𝑖2⁄ ) 

∆𝑡𝑖1
2 . 
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The performances of the cubic spline technique are critically dependent on the 

accuracy and the distribution in time of the samples. In other words, the cubic 

spline approach has the advantage that it results in linear filtering with a time-

variable cut-off frequency, in the sense that it better tracks fast changing, due to 

more samples become available at faster heart rates. On the other hand, 

polynomial fitting performs poorly when the available samples are too far apart 

[20]. Therefore, the EDR signal, which is unevenly sampled due to the irregular 

HR in case of AF, may betray a poor quality in those segments, where the 

samples are sparser than in other areas.  

 

Figure 36 -  Segment of EDR signal where the red dots are new samples after the resampling. The 
black dots and line is the EDR after the linear interpolation. 

The interpolated EDR signal, see Figure 36, is filtered with a fourth-order 

Butterworth bandpass filter in the frequency interval from 0.075 to 1 Hz, as 

done in the work of Lázaro et al. [17]. The MATLAB function filtfilt is used for 

forward and backward filtering as in the pre-processing phase. This step is 

important to clean the signal from noise components that may mask the 

respiratory trend.   
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At this stage, the EDR signal presents values for the entire recording. However, 

some samples could be unreliable since they are obtained through interpolation 

in previous steps of the post-processing phase. The presence of long intervals 

with inconsistent samples may have negative effects on the estimation of the 

respiratory rate, due to spurious breathing cycles that may be counted. For this 

reason, the length of time intervals with unreliable samples due to outliers and 

beats classified as abnormal is determined. When the length of these time 

intervals exceeds 5 secs, the enclosed samples of the filtered EDR are discarded, 

as shown in Figure 37, since they are likely to lead to a spurious spectrum in the 

respiratory frequency estimation. 

It has been verified that consecutive EDR samples, suspected to be unreliable, 

have potentially no negative effect in the estimation of the respiratory rate if 

they cover a time interval shorter than 5 seconds. The assumption is that no 

sudden changes in respiratory frequency can be observed is such a short 

interval. On the other hand, the advantage of keeping these intervals lies in the 

possibility of extracting the respiratory rate by basing the estimate on the 

previous samples.  

Figure 37 -  The black dots are the original samples of the EDR; in which holes (missing samples 
classified as abnormal beats or noisy beats for both leads) are clearly visible. Due to the time of the 
missing samples lasting more than 5 sec., the correspondent samples of this time are removed from 
the post-processed EDR obtaining the final EDR (red line).  
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5.7 PRE-PROCESSING OF THE BELT SIGNAL 

The belt respiratory signal works in this thesis as ground truth to verify the 

consistency of the EDR signal. However, the raw signal cannot be directly 

employed but a pre-processing phase is required to remove potential artifacts. 

An example of such pre-processing stage is shown in Figure 38.  This stage 

mostly follows the post-processing phase applied on the EDR signal and setting 

differently some parameters.  It is necessary, for example, to consider a different 

number of samples for the outlier rejection algorithm, so as to calculate the 

median and the standard deviation over the same time interval used for the EDR 

signal, i.e. 30 seconds. Since the respiratory signal is evenly sampled at 50Hz, 

the 𝑁_𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑒𝑠𝑝 parameter is set to 1500 samples. Considering a time interval 

of 30 seconds, the outlier detection is carried out considering not less than the 

previous 4 breathing cycles, since the slowest respiratory frequency for the 

exanimated database is 9 breaths/minute. The factor C which multiplies the 

standard deviation is set to 7, in order to include parts of the signal with a larger 

variance and reliably exclude potential artifacts in the signal. 

 

Figure 38 – The black line is the original respiration signal, while the red line shows the signal without 
the samples considered as outliers.  
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The next step is the linear interpolation to handle missing values in the 

respiratory signal after rejection of the outliers. The resampling at 4Hz is 

performed by considering the same time instants previously used for the 

resampling of the EDR signal, so achieving the time synchronisation of the two 

signals. In that way, the first samples of the respiratory signal are rejected to 

carry out the comparison by starting at the time instant of the first heartbeat, 

where the first EDR sample is extracted. For both steps, the interp1 MATLAB 

function is used. 

A fourth-order Butterworth bandpass filter is also applied to the respiratory 

signal in order to keep the frequencies in the range between the 0.075Hz and 1 

Hz, as performed on the EDR signal. As done previously, the MATLAB 

function filtfilt is applied to perform forward-backward filtering.   

As last stage, the cancellation of the unreliable sample intervals longer than 5 

secs is equally applied to the respiratory signal, as done in the post-processing 

for the EDR signal. 

5.8 RESPIRATORY RATE ESTIMATION ALGORITHM 

In order to assess the extracted EDR signal in the frequency domain, a 

respiratory rate estimation algorithm is implemented in the thesis. Given that 

the heart rate (HR) is usually greater than twice the respiration rate in normal 

cases, the frequency of respiratory effort can be measured well from this limited 

set of samples through the EDR signal without any risk of aliasing [2]. In case 

of atrial fibrillation, the estimation is more challenging because of the irregular 

heart rate, but the frequency ratio between HR and respiration frequency rate is 

still valid on average for the patients in the analysed database. In Figure 39, it is 

possible to see this relationship between the HR (orange columns) and RR (blue 

dots) for all the signals in the database. For more details, refer to the Table 8 in 

the appendix A. 
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Figure 39 - Comparison Heart Rate and Respiratory rate. 

The estimation of the respiratory rate can be performed using either non-

parametric or parametric methods. In the non-parametric approach, the 

respiratory frequency is estimated from the location of the largest peak in the 

respiratory frequency band of the power spectrum of the multichannel EDR 

signal, by using the Fourier transform if the signal is evenly sampled or the 

Lomb’s method if the signal is unevenly sampled. Parametric methods, such as 

AR modelling, automatically decompose the spectral components and, 

consequently, estimate the respiratory frequency. Yet another technique is 

based on signal modelling for identifying and quantifying the spectral 

component related to respiration [22]. 

The method to estimate the respiratory rate used in this thesis is the one 

proposed by Lázaro et al. [17], since it demonstrated to be reliable and robust 

in different conditions and because it is designed to combine the information 

coming from different EDR.  
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The algorithm can be divided into 3 phases (see Figure 40): 

- The power spectrum (PS) estimation  

The PS estimation is performed by using the Welch periodogram. For the j-th 

signal and the k-th running interval of Ts-s length, the power spectrum 𝑆𝑗,𝑘(𝑓) 

is generated by an average of PS obtained performing the Welch periodogram 

on subintervals of Tm-s length (Tm < Ts) with an overlap of Tm/2 s, after a power 

normalization in [0,1] Hz. A spectrum is generated every 𝑡𝑠 secs. The parameter 

values in this work are: 𝑇𝑠 = 40 𝑠, 𝑇𝑚 = 12 𝑠 and 𝑡𝑠 = 5 𝑠.  

 

Figure 41 -  The six plots are the normalized power spectral density of the subintervals Tm in the first 
interval Ts. 

Figure 40 – Block diagram of respiratory rate estimation algorithm. 
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Figure 42 -  Average power spectrum of the spectra presented in the Figure 41, which is considered 
the spectrum for the interval Ts. 

 
Figure 43 - The top picture plots the EDR signal, where the first Ts time interval (between the green 
lines) is enhanced. Along this interval the Welch periodogram is performed on subinterval of length 
Tm with overlap of Tm/2. The pictures (a) and (b) show the first and the second Tm intervals (between 
the red lines).   

(a) (b) 
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Figure 41, Figure 42 and Figure 43 show an example for a PS estimation over a 

TS interval. 

 

- The peak-conditioned average 

First, the location of the largest peak 𝑓𝑃
𝐼(𝑗, 𝑘) is detected for each power spectra 

𝑆𝑗,𝑘(𝑓). Then a reference interval 𝛺𝑅(𝑘), where respiratory rate is estimated to 

be, is defined as: 

𝛺𝑅(𝑘) = [𝑓𝑅(𝑘 − 1) − 𝛿,      𝑓𝑅(𝑘 − 1) + 𝛿 ] 

Where 𝑓𝑅(𝑘 − 1) is a respiratory frequency reference obtained from previous 

(𝑘 − 1) steps. Parameter δ was set to 0.08 in order to allow moderate changes 

in respiratory rate. Note in Figure 44 as 𝑓𝑃
𝐼𝐼(𝑗, 𝑘) is chosen as the nearest peak to 

𝑓𝑅(𝑘 − 1), among all peaks larger than 85% of 𝑓𝑃
𝐼(𝑗, 𝑘) inside 𝛺𝑅(𝑘). 

Figure 44 -  The plot shows the selection of 𝑓𝑃
𝐼(𝑗, 𝑘) and 𝑓𝑃

𝐼𝐼(𝑗, 𝑘) for an example of power spectra 

density 𝑆𝑗,𝑘(𝑓) and for a given 𝑓𝑅(𝑘 − 1) . The highest peak 𝑓𝑃
𝐼(𝑗, 𝑘)  (black square) is discarded 

because it is outside the 𝛺𝑅(𝑘), thus another peak (black diamond) higher than 85% of the highest 

peak and in the interval is selected as 𝑓𝑃
𝐼𝐼(𝑗, 𝑘). 

Subsequently, Ls spectra 𝑆𝑗,𝑘(𝑓) are “peak-conditioned” averaged according to: 

𝑆𝑘̅(𝑓) = ∑ ∑ 𝜒𝑗,𝑘−𝑙
𝐴 𝜒𝑗,𝑘−𝑙

𝐵 𝑆𝑗,𝑘−𝑙(𝑓)

𝑗

𝐿𝑠−1

𝑙=0

 

𝛺𝑅(𝑘) 
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where Ls is set to 5 as in Lázaro et al. [17]. 

 𝜒𝐴 and 𝜒𝐵 are the two criteria used to average only peaked spectra. In other 

word, 𝜒𝐴 lets those spectra whose peakness is greater than a fixed value take 

part in the average according to: 

𝜒𝑗,𝑘−𝑙
𝐴 = {

1,               𝑃𝑗,𝑘 ≥ 𝜉

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Parameter ξ was set to 0.60 after an optimization phase on the studied dataset. 

In the estimation of the respiratory frequency from the reference signal the 

parameter ξ has been raised to 0.75, since the respiratory spectra are peakier 

than the EDR spectra [1].  

On the other hand, 𝜒𝐵  lets those spectra whose peakness is greater than the 

others of different EDR signals for the same time instant take part in the average 

according to: 

𝜒𝑗,𝑘−𝑙
𝐵 = {

1,        𝑃𝑗,𝑘 ≥ max
𝑗

{𝑃𝑗,𝑘} − 𝜆

0,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Parameter λ was set to 0.07 because that value was observed to achieve a good 

compromise for peak spectrum acceptance/rejection. 𝑃𝑗,𝑘  is defined by the 

percentage of power around 𝑓𝑃
𝐼𝐼(𝑗, 𝑘) with respect to the total power in 𝛺𝑅(𝑘): 

𝑃𝑗,𝑘 =
∫ 𝑆𝑗,𝑘(𝑓)𝑑𝑓

𝑚𝑖𝑛{𝑓𝑃
𝐼𝐼(𝑗,𝑘)+0.4𝛿,   𝑓𝑅(𝑘−1)+𝛿 }

𝑚𝑖𝑛{𝑓𝑃
𝐼𝐼(𝑗,𝑘)−0.4𝛿,    𝑓𝑅(𝑘−1)−𝛿 }

∫ 𝑆𝑗,𝑘(𝑓)𝑑𝑓
𝑓𝑅(𝑘−1)+𝛿

𝑓𝑅(𝑘−1)−𝛿

. 

Given the average spectra 𝑆𝑘̅(𝑓), the algorithm searches the largest peak 𝑓𝑃
𝐼𝑎(𝑘) 

into it and subsequently 𝑓𝑃
𝐼𝐼𝑎(𝑘) is defined as before. Finally, the reference 

frequency 𝑓𝑅(𝑘) is updated as: 

𝑓𝑅(𝑘) = 𝛽𝑓𝑅(𝑘 − 1) + (1 − 𝛽)𝑓𝑝(𝑘) 
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β denotes the forgetting factor which is set to 0.9 since in rest-phase no fast 

changes in the respiratory frequency are expected. 𝑓𝑝(𝑘) is instead defined as 

𝑓𝑝(𝑘) = {
𝑓𝑃

𝐼𝐼𝑎(𝑘),       ∃𝑓𝑃
𝐼𝐼𝑎(𝑘)

𝑓𝑃
𝐼𝑎(𝑘),    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

- The respiratory rate estimation  

The estimated respiration rate 𝑓(𝑘) is defined as: 

𝑓(𝑘) = 𝛼𝑓(𝑘 − 1) + (1 − 𝛼)𝑓𝑝(𝑘) 

𝛼 = {
𝛼2,            ∃𝑓𝑃

𝐼𝐼𝑎(𝑘)

𝛼1,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where 𝛼2 ≤  𝛼1  providing more memory when 𝑓𝑃
𝐼𝐼𝑎(𝑘)  cannot be set. 

Parameters 𝛼1 and 𝛼2  are set to 0.7 and 0.3 respectively fixing the maximum 

allowed changes in respiratory frequency inside (𝛼2 ) and outside (𝛼1). 

Note that if no spectrum takes part in the average to determine 𝑆𝑘̅(𝑓), the 

algorithm increases the reference interval by doubling the δ value and repeat the 

process from the search of 𝑓𝑃
𝐼𝐼(𝑗, 𝑘) in the individual power spectra. In the case 

that no spectrum is peaked enough after this second iteration, respiratory rate is 

not estimated at that time instant.  

At initialization time, in order to reduce the risk of spurious frequency selection, 

δ is set to 0.2 Hz and 𝑓𝑅(0) is set to 0.275 Hz, allowing the algorithm to pick 

peaks inside the normal range of spontaneous respiratory rate ([0.075 0.475] 

Hz). Occasionally, respiratory rate can be outside this band so the algorithm 

may not be initialized as proposed.  
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Chapter 6. EDR ALGORITHMS ASSESSMENT 

This chapter explains how the assessment of the EDR signals is carried out to 

measure the performances of the different tested methods.  

6.1 ASSESSMENT PARAMETERS 

In [2] and [24]  the ECG-derived respiratory waveforms are assessed visually 

by comparing them with a reference respiratory signal. However, this visual 

validation is subjective and not easily reproducible [16]. The work of Mason et 

al. [16] proposed a quantitative and objective evaluation method based on an 

approach to detection of heartbeats in the ECG. The times of the derived breaths 

are compared with the times of the corresponding reference breaths and from 

them they calculated the sensitivity and the positive predictivity of the methods.  

Later in 2006, Bailon et al. [1] proposed to evaluate the EDR algorithms 

defining an absolute and a relative error trend for each subject q at those indeces 

k that indicate the averaged spectrum 𝑆𝑘
̅̅ ̅(𝑓) from which 𝑓(𝑘) is estimated. The 

evaluation parameters proposed by Bailon et al. [1], later adopted also by 

Lázaro et al. in [17], [56] and [57], are used in the present work as follows. 

The absolute error is defined as: 

 ∆𝑓𝑞(𝑘) = |𝑓𝑞̂(𝑘) − 𝑓𝑟,𝑞̂(𝑘)| (1) 

The relative error is defined as: 

 
∆𝑓𝑞%(𝑘) =

|𝑓𝑞̂(𝑘) − 𝑓𝑟,𝑞̂(𝑘)|

𝑓𝑟,𝑞̂(𝑘)
× 100% (2) 

Where 𝑓𝑞̂(𝑘) is the estimate frequency from EDR and 𝑓𝑟,𝑞̂(𝑘) is the estimate 

frequency from the reference respiratory signal. For each subject, the mean and 

SD of the error trends characterizes the intrasubject error as follows: 
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𝜇𝑞 =
1

𝑁𝑞
∑ ∆𝑓𝑞(𝑘)

𝑁𝑞

𝑘=1

 (3) 

 

𝜎𝑞
2 =

1

𝑁𝑞 − 1
∑ (∆𝑓𝑞(𝑘) −  

1

𝑁𝑞
∑ ∆𝑓𝑞(𝑘)

𝑁𝑞

𝑘=1

)

2𝑁𝑞

𝑘=1

 (4) 

 

From the previous values, the intersubject mean of the intrasubject errors is 

defined by the pair (𝜇, 𝜎): 

 

𝜇 =
1

𝑆
∑

1

𝑁𝑞
∑ ∆𝑓𝑞(𝑘)

𝑁𝑞

𝑘=1

𝑆

𝑞=1

 (5) 

 

𝜎2 =
1

𝑆
∑

1

𝑁𝑞 − 1
∑ (∆𝑓𝑞(𝑘) −  

1

𝑁𝑞
∑ ∆𝑓𝑞(𝑘)

𝑁𝑞

𝑘=1

)

2𝑁𝑞

𝑘=1

𝑆

𝑞=1

 (6) 

where 𝑁𝑞 is the number of the averaged spectra in which respiratory frequency 

could be estimated from both the ECG and the respiratory signal and S is the 

number of subjects. The intersubject error defines quantitively how much closer 

is the frequency estimate from the EDR signal to the one from the reference 

signal by considering all the estimates of the S-subjects.  

The mean and the standard deviation for the relative error is also calculated as 

for the absolute error both over each subject and over all the dataset.  

In addition to the mentioned works, the Root Mean Square error (RMS) is also 

computed for each subject, as follows: 

 

𝑅𝑀𝑆 = √
1

𝑁𝑞
∑ (∆𝑓𝑞(𝑘))

2
𝑁𝑞

𝑘=1

 (7) 

Note that the RMS quantifies the difference between the estimated values and 

the actual values. 
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The parameter 𝑇% is computed as the average of the percentage of the total 

duration of the recording when respiratory frequency could be estimated from 

both the ECG and the respiratory signal for each subject: 

 
𝑇% =  

𝑁𝑞

𝑁𝑡𝑜𝑡𝑞

 ×100 (8) 

where 𝑁𝑡𝑜𝑡𝑞 indicates the total number of the averaged spectra 

The last two parameters 𝑅𝑀𝑆 and 𝑇% are also averaged over all the S-subjects 

in order to obtain a general value of accuracy and robustness on the given 

dataset.  

Other extracted parameters are the mean and the standard deviation of the 

estimate frequency from the EDR signal and the respiration for each patient: 

𝜇𝐸𝐷𝑅 =
1

𝑁𝑞

∑ 𝑓𝑞̂(𝑘)

𝑁𝑞

𝑘=1

 𝜎𝐸𝐷𝑅
2 =

1

𝑁𝑞 − 1
∑ (𝑓𝑞̂(𝑘) −  

1

𝑁𝑞

∑ 𝑓𝑞̂(𝑘)

𝑁𝑞

𝑘=1

)

2𝑁𝑞

𝑘=1

 (9) 

𝜇𝑟 =
1

𝑁𝑞
∑ 𝑓𝑟,𝑞̂(𝑘)

𝑁𝑞

𝑘=1

 𝜎𝑟
2 =

1

𝑁𝑞 − 1
∑ (𝑓𝑟,𝑞̂(𝑘) −  

1

𝑁𝑞
∑ 𝑓𝑟,𝑞̂(𝑘)

𝑁𝑞

𝑘=1

)

2𝑁𝑞

𝑘=1

 (10) 

These values provide information about the ranges of the respiratory frequency 

estimates from both signal for each subject, allowing a more general evaluation 

of the level of similarity.  

Note that the presented assessment parameters are computed two times for each 

method on the same subjects, in order to assess the performances with and 

without performing f-wave cancellation. To distinguish between the two 

categories of results, the superscripts " 𝑓 "  and “𝑛𝑜 𝑓 ” are introduced, which 

indicate respectively if the parameter is computed by keeping f-waves or by 

removing them from the ECG. 
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6.2 STATISTICAL TESTS 

Statistical tests are carried out to understand if the respiratory frequencies 

estimate from EDR and respiration is significantly different on a statistical point 

of view. In particular, the Lilliefors test, two-sided goodness-of-fit test, is 

performed to check, if a data population comes from a distribution in the normal 

family (null hypothesis), against the alternative that it does not come from such 

a distribution. The Lilliefors test statistic is suitable when the parameters of the 

null distribution are unknown, so they must be estimated, and it is defined as: 

 𝐷∗ = max
𝑥

|𝐹̂(𝑥) − 𝐺(𝑥)| (11) 

where 𝐹̂(𝑥) is the empirical cumulative distribution function of the sample data 

and 𝐺(𝑥)  is the cumulative distribution function of the hypothesized 

distribution with estimated parameters equal to the sample parameters. This test 

is implemented in MATLAB with the function lillietest, which returns by 

default 1 if the test rejects the null hypothesis at the 5% significance level, and 

0 otherwise. The test is separately applied on ∆𝑓𝑞
𝑓(𝑘) and on ∆𝑓𝑞

𝑛𝑜 𝑓(𝑘) of each 

subject and overall of all subjects, considering the difference with sign instead 

of the absolute value. It is also applied on the difference 𝜇𝐸𝐷𝑅
𝑓

−  𝜇𝐸𝐷𝑅
𝑛𝑜 𝑓

 on the 

entire dataset. 

Whenever the population has normal distribution, a paired t-test may be applied 

to verify if the test statistic follows a Student's t-distribution under the null 

hypothesis. The “paired” or “repeated measures” t-test is applied to control if 

the difference between two datasets comes from a normal distribution with 

mean equal to zero and unknown variance.  

Moreover, the two-sample Kolmogorov-Smirnov test is applied to verify the 

provenance of the samples from the same distribution (null hypothesis). These 

are considered continuous but are otherwise unrestricted. The two-sample K–S 

test is one of the most useful and general nonparametric methods that evaluates  
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the difference between the cumulative distribution functions of the distributions 

of the two sample data vectors over the range of x in each data set. The test 

statistic is applied through the MATLAB function kstest2, in which the statistic 

is defined as: 

 𝐷∗ = max
𝑥

|𝐹̂1(𝑥) − 𝐹̂2(𝑥)| (12) 

where 𝐹̂1(𝑥) is the proportion of 𝑥1 values less than or equal to x and 𝐹̂2(𝑥) is 

the proportion of 𝑥2 values less than or equal to x. The result is positive if the 

test rejects the null hypothesis at the 5% significance level, and 0 otherwise. 

All the mentioned statistical tests return also a p-value, which quantifies the 

idea of statistical significance of evidence, in other words the probability of 

observing the result or a more extreme one assuming that the null hypothesis is 

true. 
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Chapter 7. RESULTS 

In this chapter, the results of the different EDR methods are reported in tables 

and illustrated with plots. These are obtained after an optimization phase, where 

all parameters of the algorithms involved in the workflow have been set by 

studying the performances on a randomly selected subgroup of subjects. The 

methods are evaluated on a dataset containing 2-leads ECGs and a respiratory 

signal simultaneously recorded from 49 subjects during an event of AF in rest-

phase. The evaluation is generally carried out by measuring the similarity of the 

post-processed EDR signal to the pre-processed respiratory signal on an 

intrasubject and intersubject level. 

For each subject, the outcome of designed workflow allows a visual comparison 

of the EDR signal with the reference respiratory signal in the time domain and 

in the frequency domain. Examples extracted by applying the QRS slope and 

R-wave angle method on one of the subjects are shown in Figure 45 and Figure 

46.  

 

Figure 45 -  Comparison of one EDR signal (black line) with the reference respiratory signal (red 

line). The EDR signal is derived from the  𝔗𝐷𝑆 series of one lead by using the QRS-slopes method.  
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The mean and the standard deviation (STD) of the estimated dominant 

frequency rate  𝜇𝐸𝐷𝑅
𝑓

± 𝜎𝐸𝐷𝑅
𝑓

, 𝜇𝐸𝐷𝑅
𝑛𝑜 𝑓

± 𝜎𝐸𝐷𝑅
𝑛𝑜 𝑓

 and 𝜇𝑟  ±  𝜎𝑟  are computed for 

each patient as well the percentage of the total duration of the recording when 

respiratory frequency could be estimated from both the ECG and the respiratory 

signal (𝑇%
𝑓
 and 𝑇%

𝑛𝑜 𝑓
). 

In order to numerically evaluate the EDR signal, the RMS error, the mean and 

the standard deviation (STD) of ∆𝑓𝑞
𝑓(𝑘), ∆𝑓𝑞%

𝑓 (𝑘), ∆𝑓𝑞
𝑛𝑜 𝑓(𝑘) and ∆𝑓𝑞%

𝑛𝑜 𝑓(𝑘) 

are computed, so providing the absolute and the relative intrasubject error for 

each subject.  

The implemented EDR methods are tested on the entire dataset and the results 

are shown through Bland-Altman plots, which is a method of data plotting used 

in evaluating the agreement among a method with a gold standard, as it is 

intended in this work. Each of the 𝑛 subjects is represented on the graph by 

Figure 46. Time frequency map of the respiratory signal, where the different colours in the map 
indicates the PSD at any frequency (y-axis) and time instant (x-axis). The dashed and the solid black 
lines represent the extracted dominant frequency rate respectively from the respiratory signal and 
from the EDR signals (QRS slopes and R-wave angle method) over time.  
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assigning the average of the two mean estimated respiratory frequency from the 

EDR (𝜇𝐸𝐷𝑅 ) method and from the reference respiratory signal (𝜇𝑟 ) as the 

abscissa (x-axis) value, while the difference between these two values as the 

ordinate (y-axis) value. This plot allows identification of any systematic 

difference between the results or possible outliers. The mean difference is the 

estimated bias, whereas the SD of the differences measures the random 

fluctuations around this mean. In particular, the 95% limits of agreement for 

each comparison (average difference ± 1.96 standard deviation of the 

difference) is used instead of the SD, which is called LoA and accounts for how 

far apart measurements by 2 methods were more likely to be for most 

individuals. If the differences within mean ± 1.96 SD are not clinically 

important, the two methods may be used interchangeably [58]. 

The performances of each method are also displayed by using Box and Whisker 

plots depicting the mean RMS values for each subject in groups according to 

the method through their quartiles. They also include lines extending vertically 

from the boxes (whiskers) indicating variability outside the upper and lower 

quartiles and individual points as outliers. Boxplots are non-parametric; i.e. they 

display variation in samples of a statistical population without making any 

assumptions of the underlying statistical distribution. However, they are very 

useful for comparing distributions between several groups or sets of data. 

The method evaluation is also carried out by computing the intersubject mean 

of the means and the standard deviations of ∆𝑓𝑞
𝑓(𝑘), ∆𝑓𝑞%

𝑓 (𝑘), ∆𝑓𝑞
𝑛𝑜 𝑓(𝑘) and 

∆𝑓𝑞%
𝑛𝑜 𝑓(𝑘) for all the subjects. The mean percentage of the record durations of 

the dataset where an estimate is given from both signals is also calculated. At 

last, the Kolmogorov-Smirnov test is applied to evaluate if a significant 

statistical difference subsists between results with and without cancellation of 

f-waves, basing on the similarity of  𝜇𝐸𝐷𝑅
𝑓

 and 𝜇𝐸𝐷𝑅
𝑛𝑜 𝑓

  for all the subjects. 

https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Limits_of_agreement
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The results of all the tested EDR methods are reported in the following sections, 

so that each section (from Section 7.1 to Section 7.4) refers to one method tested 

on all the subjects of the dataset. For each method, a comparison of the 

performances with and without the removal of the f-waves from the ECG is 

carried out by reporting the relative Bland-Altman plots. The inter-subject mean 

on all means and SDs of the absolute and relative errors computed on each 

subject and the percentage of frequency estimates on the total length of the 

signal are shown in a table. Section 7.5 shows in parallel the results from all the 

tested EDR methods on the entire dataset, with and without removal of the f-

waves.  

7.1 QRS SLOPES AND R-WAVE ANGLES 

The following figures show the results for the QRS slopes and R-wave angles 

method, explained in the Section 5.5.1, with and without applying the f-waves 

removal algorithm. The Bland-Altman plots (Figure 47 and Figure 48), which 

consider the mean estimated respiratory frequency, display that the LoAs and 

the mean difference between 𝜇𝐸𝐷𝑅
𝑛𝑜 𝑓

 and 𝜇𝑟
  is almost equal to the mean 

difference between  𝜇𝐸𝐷𝑅
 𝑓

 and 𝜇𝑟
 . 

 

Figure 47 - Bland-Altman plot of QRS slopes and R-wave angles without applying the f-wave removal 
algorithm. 
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Figure 48 - Bland-Altman plot of QRS slopes and R-wave angles applying the f-wave removal 
algorithm. 

However, the observations without removing the f-waves seem to be clustered 

around the horizontal line closer than adding this step, meaning that the results 

are more accurate in the first case. This is proved by the Box and Whisker plot 

in Figure 55, where the RMS errors, as calculated in (7),  are 0.0320 ± 0.0271 

Hz (mean and SD) when keeping the f-waves in the QRS interval and 0.0345 ± 

0.0287 Hz (mean and SD) when removing them. 

The statistical analysis proves that the difference between the EDR respiratory 

rates and the reference respiratory rates for each patient do not come from a 

distribution in the normal family for the majority of the patients.  

The two-sample Kolmogorov-Smirnov test is then applied on  𝜇𝐸𝐷𝑅
𝑓

 and 𝜇𝐸𝐷𝑅
𝑛𝑜 𝑓

 

extracted from the entire dataset. It returns that there is no statistical evidence 

against the hypothesis that these two populations of data originate from the 

same distribution. 

 
∆𝒇𝒒(𝒌)  

(Mean and SD) [Hz] 

∆𝒇𝒒%(𝒌)  

(Mean and SD) [%] 

Time 
measuring 
mean [%] 

with f-waves 0.0227 +/- 0.0217 8.4489 +/- 8.8259 91.23% 

without f-waves 0.0241 +/- 0.0240 9.0013 +/- 9.8603 91.21% 
Table 1.  
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The Table 1 compares the mean absolute and the relative intersubject errors, as 

calculated in (5) and (6), and shows the time measuring mean (%) on the 

recordings, as calculated in (8). 

7.2 QRS AREA 

The second typology of EDR algorithms that have been implemented in this 

work refer the methods based on QRS area as explained in the Section 5.5.2.  

The Table 2 shows that the method based on a fixed QRS window considering 

the two leads independently outperforms the others. Thus, the technique is 

selected for the comparison with other EDR methods and the results are also 

extracted by applying the f-waves removal stage.  

 

The Bland-Altman plots (Figure 49 and Figure 50) for the selected QRS area 

method shows a better alignment of the data along the mean with less outliers 

after the removal of the f-waves. Moreover, the LoAs and the mean the 

 
∆𝒇𝒒(𝒌)  

(Mean and SD) [Hz] 

∆𝒇𝒒%(𝒌)  

(Mean and SD) [%] 

Time 
measuring 
mean [%] 

Moody et al. [2] 0.0557 +/- 0.0425 21.2751 +/- 17.5902 85.44 

Fixed QRS window, 
independent Leads 
method [15] 

0.0385 +/- 0.0311 14.3286 +/- 12.4901 88.01 

Variable QRS 
window, 
independent Leads 
method [15] 

0.0497 +/- 0.0384 18.5201 +/- 15.6750 86.72 

Variable QRS 
window, 
dependent Leads 
method [15] 

0.0412 +/- 0.0334 15.8648 +/- 13.8838 87.12 

Mazzanti et al. [43] 0.0621 +/- 0.0442 23.7768 +/- 18.3057 85.41 

Park et al. [44] 0.0537 +/- 0.0414 20.6166 +/- 17.2553 85.62 

Table 2. 
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difference are lower between 𝜇𝐸𝐷𝑅
𝑛𝑜 𝑓

  and 𝜇𝑟, with respect to 𝜇𝐸𝐷𝑅
𝑓

 and 𝜇𝑟 . These 

results are confirmed by the Box and Whisker plot in Figure 55, since the RMS 

errors, as calculated in (7), are 0.0504 ± 0.0352 Hz (mean and STD) and 0.0481 

± 0.0294 Hz (mean and SD) before and after F-waves removal respectively. 

 

Figure 49 - Bland-Altman plot of QRS area without applying the f-wave removal algorithm. 

 

Figure 50 - Bland-Altman plot of QRS area applying the f-wave removal algorithm. 
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The statistical analysis proves that the difference between the EDR respiratory 

rates and the reference respiratory rates for each patient do not come from a 

distribution in the normal family for the majority of the patients.  

The two-sample Kolmogorov-Smirnov test is then applied on  𝜇𝐸𝐷𝑅
𝑓

 and 𝜇𝐸𝐷𝑅
𝑛𝑜 𝑓

 

extracted from the entire dataset. It returns that there is no statistical evidence 

against the hypothesis that these two populations of data originate from the 

same distribution. 

 
∆𝒇𝒒(𝒌)  

 (Mean and SD) [Hz] 

∆𝒇𝒒%(𝒌)  

 (Mean and SD) [%] 

Time 
measuring 
mean [%] 

with f-waves 0.0385 +/- 0.0311 14.3286 +/- 12.4901 88.01% 

without f-waves 0.0359 +/- 0.0313 13.4456 +/- 12.5386 88.83%  
Table 3.   

The Table 3 compares the mean absolute and the relative intersubject error, as 

calculated in (5) and (6), and shows the time measuring mean (%) on the 

recordings, as calculated in (8).  It can be observed that the error slightly 

decreases and the percentage of estimation increases applying the f-waves 

removal algorithm. 

7.3 R AMPLITUDE 

Analogously as before, the following plots show the results of R amplitude 

technique, explained in the Section 5.5.3, comparing between before and after 

removal of f-waves. In the former ( Figure 51), the points, which represent the 

patients, are less clustered around the horizontal line than in Figure 52, meaning 

that the removal of the f-waves from the QRS complex makes improvements to 

the base method. This is confirmed also by the decreasing of the bias in the 

Bland-Altman plot. However, the LoA limits are affected by the presence of an 

outlier, which turns out to be a critical case for all the methods.  

The Box and Whisker plot in Figure 55 displays the distribution of the RMS 

error in both cases, as calculated in (7), where it is visible a difference between 
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them. In particular, the mean and the SD before and after performing f-waves 

removal are 0.0351 ± 0.0245 Hz and 0.0334 ± 0.0262 Hz respectively. 

 
Figure 51 – Bland-Altman plot of R amplitude without applying the f- wave removal algorithm. 

 
Figure 52 – Bland-Altman plot of R amplitude applying the f-wave removal algorithm. 

The statistical analysis proves that even in this case the difference between the 

EDR respiratory rates and the reference respiratory rates for each patient do not 

come from a distribution in the normal family for the majority of the patients.  
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The two-sample Kolmogorov-Smirnov test applied on  𝜇𝐸𝐷𝑅
𝑓

 and 𝜇𝐸𝐷𝑅
𝑛𝑜 𝑓

 ,from 

the entire dataset, returns that there is no statistical evidence against the 

hypothesis that these two populations of data originate from the same 

distribution. 

 
∆𝒇𝒒(𝒌)  

 (Mean and SD) [Hz] 

∆𝒇𝒒%(𝒌)  

 (Mean and SD) [%] 

Time 
measuring 
mean [%] 

with f-waves 0.0244 +/- 0.0248 9.4073 +/- 10.2806 91.21% 

without f-waves 0.0236 +/- 0.0231 9.2207 +/- 9.5416 91.15% 
Table 4. 

The Table 4 compares the mean absolute and the relative intersubject error, as 

calculated in (5) and (6), and shows the time measuring mean (%) on the 

recordings, as calculated in (8). It is possible to notice that a decreasing in the 

errors does not lead to an improvement of the percentage of the measured time. 

7.4 VCG LOOP ALIGNMENT 

In this section, the results for the VCG-loop alignment method as proposed by 

Bailon et al. [1] and explained in the Section 5.5.4, are shown through the 

following plots (Figure 53 and Figure 54). Due to the variability of the signal 

quality in the dataset, it was not possible to run the EDR algorithm with the 

same parameters over the entire dataset, since for some subjects it was required 

to set a lower threshold as minimum correlation value between the transformed 

and reference loop during the definition of the reference loop. Therefore, the 

threshold is reduced from 0.9 to 0.55 only for these subjects, so as to avoid 

deteriorations of the performances over the entire database. It has been 

considered more reasonable to adopt an optimized threshold for most of the 

subjects in the dataset and to handle differently the characteristics of this 

subgroup of signals. The ECG signals of these subjects exhibit residual noise in 

one of the leads, that is likely to lower the maximum achievable correlation 

value among consecutive beats. Adding the f-waves removal stage to the 
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workflow, a decay of the performances is observed. Indeed, the differences 

between respiratory and EDR rates are more spread out between higher LoAs 

than not removing the f-waves from the QRS complex. 

 

Figure 53 - Bland-Altman plot of VCG alignment the f-wave removal algorithm. 

 

Figure 54 - Bland-Altman plot of VCG alignment applying the f-wave removal algorithm. 

The decay of performances is also shown by the Box and Whisker plot Figure 

55, where the mean and the SD before and after removing the f-waves from the 
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ECG, calculated in (7), are 0.0524 ± 0.0437 Hz and 0.0669 ± 0.0574 Hz 

respectively. 

However, the two-sample Kolmogorov-Smirnov test applied on  𝜇𝐸𝐷𝑅
𝑓

 and 

𝜇𝐸𝐷𝑅
𝑛𝑜 𝑓

  from all the subjects returns that there is no statistical evidence against 

the hypothesis that these two populations of data originate from the same 

distribution even in this case. 

 
∆𝒇𝒒(𝒌)  

 (Mean and SD) [Hz] 

∆𝒇𝒒%(𝒌)  

 (Mean and SD) [%] 

Time 
measuring 
mean [%] 

with f-waves 0.0401 +/- 0.0328 15.0385 +/- 12.6971 87.42% 

without f-waves 0.0540 +/- 0.0370 19.3036 +/- 13.7946 86.32% 
Table 5.   

The Table 5 compares the mean absolute and the relative intersubject errors, 

as calculated in (5) and (6), and shows the time measuring mean (%) on the 

recordings, as calculated in (8). By performing the removal of the f-waves, it 

can be observed that the errors become larger and the mean measuring time 

decreases. 

7.5 COMPARISON AMONG EDR METHODS 

The comparison among the tested EDR methods is shown in the Table 6, which 

present the mean intersubject absolute error (Hz) and the mean intersubject 

relative error (%) with the percentage of the frequency estimating time over the 

entire length of the signal, as calculated in (5), (6) and (8). These results are 

extracted from all the 49 subjects in the dataset.  
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Table 6 - Comparison of the methods in terms of mean intrasubject error and time measuring mean 
on the entire dataset. 

The Box and Whisker plot in Figure 55 displays the distribution of the RMS 

errors for each method. The plot allows also a comparison between estimation 

errors with and without removing the f-waves from the QRS interval for each 

method. In particular, the mean and the SD of these results are shown in the 

Table 7. 

 

Table 7. Comparison of the methods in term of mean and SD of the RMS error on the entire dataset 

Time measuring 

(%) Mean

Mean SD Mean SD

with F 0.0385 0.0311 14.33 12.49 88.01%

without F 0.0359 0.0313 13.45 12.54 88.83%

with F 0.0244 0.0248 9.41 10.28 91.21%

without F 0.0236 0.0231 9.22 9.54 91.15%

with F 0.0401 0.0328 15.04 12.70 87.42%

without F 0.0540 0.0370 19.30 0.04 86.32%

with F 0.0227 0.0217 8.45 8.83 91.23%

without F 0.0241 0.0240 9.00 9.86 91.21%

VCGalign

QRSslopes-angle

Methods over 49 patients

Intrasubject  

ABOSOLUTE ERROR (Hz)

Intrasubject  

RELATIVE ERROR (%)

QRSarea

Ramplitude

Mean SD

with F 0.0504 0.0352

without F 0.0481 0.0294

with F 0.0351 0.0245

without F 0.0334 0.0262

with F 0.0524 0.0437

without F 0.0669 0.0574

with F 0.032 0.0271

without F 0.0345 0.0287

Methods RMS

QRSarea

Ramplitude

VCGalign

QRSslopes     R angle
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Figure 55 – Comparison of the estimation errors among the different methods with and without 
applying the f-waves removal algorithm. 

Figure 56 shows an example of a subject where the tested methods have 

achieved different performances. The analysis of the performance variability of 

each method on different subjects and among the methods on the entire dataset 

represents an important part of this work. Indeed, a further study has been 

conducted with the aim to investigate deeper this issue on the analysed dataset.  

As will be explained in Discussion section, the residual noise affecting the QRS 

complex could be a crucial factor for EDR methods performances. Figure 57 

shows an example where the QRS slopes and R angles method fails because of 

background noise for the first lead. In this case, the time instants associated with 

the maximum variation points of the ECG signal are not reliable for the 

extraction of respiratory information due to an alteration of the QRS complex.  
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Another loss of accuracy in the results could be ascribed to the leads 

configuration. For instance, Figure 58 presents an example of ECG on which all 

the tested methods perform poorly, even though the noise level does not seem 

to be critical for this case. For these subjects, the results improve when the EDR 

method is applied on only one of the two leads and independently from applying 

the removal of f-waves, as it is shown in Figure 59.  

 

(c) (d) 

(a) (b) 

Figure 56. Frequency maps of the respiratory signal and estimated respiratory rates reference 
signal and EDR signals obtained from the different methods on one patient: (a) QRS slopes and R 
wave angles, (b) R amplitude, (c) QRS area and (d) VCG alignment. The dashed and the solid black 
lines represent the extracted dominant frequency rate respectively from the respiratory signal and 
from the EDR signals over time.   
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Figure 57. Noisy ECG where the QRS-slopes and R-wave angles method fails for a problem in the 
extraction of the features, which is visible in the first lead in comparison with the second one. 

 

Figure 58. ECG of a patient where all the tested methods performed poorly. The relative respiratory 
frequency map and estimated respiratory rates from EDR signals and reference signals are shown in 
Figure 59 . 
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Figure 59 – Comparison of the results by applying the QRS slopes and R angles on both leads (a) and 
only the first lead (b). The plots are frequency maps, where the different colours indicate the PSD at 
any frequency and time instant. The dashed line and the solid line represent respectively the 
respiratory rate extracted from the reference signal and the respiratory rate extracted from the EDR 
signals over time. 

(a) 

(b) 
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Chapter 8. DISCUSSION 

The aim of this thesis is to verify the feasibility of extracting respiration in case 

of AF exploiting beat-to-beat morphologic variations in the ECG. Different 

EDR methods have been tested on a dataset of 49 patients in AF and their 

performances are evaluated through comparison with the simultaneously 

recorded respiratory signals. The study of these performances with respect to 

previous works on patients with AF cannot be completely pursued, because 

either they are based on a small subgroup of patients or they do not provide a 

comparable assessment of the performances.  

The results show that the method based on QRS slopes and R waves angles 

estimated the respiratory frequency of the subjects in the dataset more 

accurately than did the other tested methods, achieving a mean intrasubject 

error 𝜇 = 0.0227 ± 0.0217 (8.45% ±  8.83 %). The same method reported 

an estimation error in [17], 𝜇 = 0.0046 ± 0.0304 (0.52% ±  8.99 %), of an 

order of magnitude lower compared to the one obtained in this work, whereas 

the estimation error reported in [1] by applying QRS-VCG loop alignment 

method , 𝜇 = 0.022 ± 0.016 (5.9% ±  4 %), was lower but in the same order 

of magnitude.  

The main reason is that the recordings of the database used in [1] and [17] were 

from healthy subjects, although in a highly noise environment like stress testing, 

while from patients with AF in this work. In general, all the tested methods 

performed poorer with respect to previous studies on healthy subjects due to the 

different characteristics of AF recordings, which make the methods’ 

performances to deteriorate and motivated this work.  

An aspect to consider in the decay of the method’s accuracy is the actual 

respiratory frequency, whose pattern is much more unpredictable for a patient 

during an atrial fibrillation event with respect to a healthy subject. The 

respiratory frequency is expected to be higher in patients with atrial fibrillation, 
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but the unimodal pattern, typical of healthy subjects in resting conditions, can 

be lost in subjects with a cardiac dysfunction in the same conditions, mainly 

due to the subjective state of anxiety. The intrinsic variability in the 

characteristics of the pathology among different subjects and the subjective 

unpredictable influence on respiration may also explain the variance in the 

performances of the EDR methods on a large dataset. 

The uncontrolled firing rate of the atrial cells makes unfeasible to exploit HRV 

to extract respiration, so the QRS-morphologic variations in consecutive beats 

represents the alternative way to pursue the scope.  However, there is no 

evidence against the fact that the QRS-complex may also suffer of atrial 

fibrillation-induced morphologic variations, mainly due to the presence of 

underlying f-waves in the signal. The fibrillatory activity is generally evident in 

the isoelectric segment, but much less during the QRST interval, so the 

influence of the chaotic atrial activity on the signal recorded remains unknown 

during ventricular contractions. This issue motivates the evaluation of the 

methods’ performances in parallel with and without considering a method for 

the cancellation of f-waves from the QRS complex. Moreover, the fibrillation 

activity generally determines the appearance of a fluctuating baseline in the 

ECG, which has a spectral content wider than normal, so it is more difficult to 

remove completely without distorting the desired information. 

However, the subtraction of f-waves from the QRS complex did not produce 

any clear improvement of the performances, but rather led to a slight 

deterioration of results in terms of mean intrasubject error 𝜇 = 0.0241 ±

0.0240 (9.00% ±  9.86 %) for the method based on QRS slopes and R waves 

angles. The same consideration applies also to QRS area and R amplitude 

methods, even though in these cases a slight decrease is observed in the mean 

intrasubject errors, which pass from 𝜇 = 0.0385 ± 0.0311 (14.33% ±

 12.49 %) to 𝜇 = 0.0359 ± 0.0313 (13.45% ±  12.54 %)  for QRS area 

method and from 𝜇 = 0.0244 ± 0.0248 (9.41% ±  10.28 %)  to 𝜇 =
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0.0236 ± 0.0231 (9.22% ±  9.54 %) for R amplitude method respectively. 

As regarding the QRS loop alignment method, f-wave cancellation is instead 

associated to a decay of performances with a mean intrasubject error 𝜇 =

0.0540 ± 0.0370 (19.30% ±  13.79 %) , which raises from 𝜇 = 0.0401 ±

0.0328 (15.04% ±  12.70 %) obtained without cancellation of f-waves.  This 

suggests that this method is the most sensitive to morphologic variations 

introduced in the QRS complex by the f-wave subtraction technique applied in 

this thesis. Looking at the results on single patients, it has been observed that 

the worsening of the performances is mainly due to noisy conditions, when a 

reliable estimation of f-waves in the signal becomes more challenging. 

Nevertheless, the Kolmogorov-Smirnov test applied on the estimated mean 

frequency rates  𝜇𝐸𝐷𝑅
𝑓

 and 𝜇𝐸𝐷𝑅
𝑛𝑜 𝑓

, separately for all the tested methods, 

confirmed that there is also no statistical evidence of a change in the 

performances by performing the f-wave subtraction from the QRS complex.  

The reason for that is difficult to determine because of the underlying 

mechanisms of the pathology, which are known to unpredictably affect the 

normal functioning of the heart conduction system. How AF affects the beat-

to-beat morphologic variations in the ECG may be more difficult to ascertain 

than just considering the fibrillation trend immediately prior to each single 

ventricular contraction. However, by applying the f-waves subtraction method 

as in this work, it has been observed that the disturbing effect of the fibrillation 

activity depends on the length of the fibrillation cycle, which is generally longer 

or comparable with the QRS interval length. This means that, in practice, the 

impact of the fibrillation activity on the single QRS-morphology is mostly 

limited to just one f-wave (two at maximum for very rapid f-waves) rather than 

to a series of them. Consequently, the reliability of  estimation of the fibrillation 

cycle with its morphology and phase, represents a crucial factor, due to the risk 

of distorting the desired information in the ECG signal. In this context, it must 
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be reported that the adopted TQ-based fibrillation signal method presented in 

some cases sensitivity to the noise in the isoelectric interval, which could be the 

cause of worsening of the results for some patients. Therefore, it may be also 

advisable to test the neutrality of the EDR methods performances to the f-wave 

removal from the QRS complex by applying another technique or making the 

technique used here more robust to noise. 

The comparison of the results reported in Section 7.5 of all the four tested 

methods provide other points to discuss. Table 6 clearly shows that the EDR 

methods which extract EDR signals independently for the two leads, i.e. those 

based on QRS slopes and R-wave angle and based on R-wave amplitude, 

outperformed the other two methods which combine information from both 

leads, i.e. methods based on QRS area and QRS-loop alignment, in terms of 

RMS error on the dataset. 

This means that combining information from two different leads to extract a 

single EDR signal does not necessarily provides better results, but at the 

contrary poorer performances, like in this case, can also be observed. The reason 

for that is very likely to be related with the configuration of the leads used to 

extract the ECG signal, on which the EDR method is applied. In this work, two 

unspecified leads are used to extract respiration, which can be even diversified 

between different subjects included in the dataset. This implies that the 

respiratory effects clearly noticeable in one lead may happen to be masked by 

combining this information with those from a lead, where the respiratory 

induced variations are either covered by noise or are much less evident (an 

example is shown in Figure 58 and Figure 59 Results section).  It is known, after 

all, that the ECG respiratory-induced modulations cannot be equally observed 

in all the leads, since each of them singularly offer just a partial view of the 

heart.  In general, using more leads is advantageous, since, by considering a 

more complete picture of the heart, it increases the probability of observing 
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respiration-induced ECG variations. However, the selection of a subgroup of 

optimal leads depending on the EDR method is a common procedure when 

testing EDR algorithms. The work of Lázaro et al. [17] states, for example, that 

there are preferential leads to use for EDR algorithms and, in particular, that the 

area covered by the posterior leads is the one less suited for EDR, since 

respiration induced changes at those ECG leads results in lower performance 

for the QRS area slopes and R wave angle method. Other examples of optimal 

leads selection referring to EDR methods based on QRS area can also be found 

in [2], [15] and [43]. In [2] it is also argued that the use of the leads that are not 

orthogonal is plausible, but it could result in a systematic error in heart axis 

direction estimation, so affecting the results by a loss of information, which 

need to be considered in a comparison to other EDR methods. 

As regarding VCG-loop alignment, instead, the validity of this method has been 

only tested in literature on the three orthogonal leads, by extracting three angle 

series, which are then used to estimate the respiratory rate. Consequently, the 

method used in this work has been adapted to the case with two unspecified 

leads, so extracting a single angle series. Moreover, in [17] it is remarked that 

VCG-loop alignment method with the inverse Dower transformation 

outperforms the same techniques with 12-ECG, suggesting that three 

orthogonal leads enhance beat morphological variation induced by respiration. 

This can explain the fact that the VCG-loop alignment method does not give 

good results as well as the QRS slope and R-wave angle method, which is not 

strictly related with the use of three orthogonal leads. This may explain the 

higher estimation error compared to other methods.  

Another aspect which arises from the analysis of the results is the sensitivity to 

noise, which influence the EDR estimation differently for the different methods. 

QRS slopes and R wave angles and R amplitude series seem to be more robust 

to noise and artefacts, that may still be present in the QRS complex, compared 
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to the other methods. The reason for that may refer to the QRS-morphology 

characteristics that these methods exploit to derive the respiratory information. 

These are extracted from time instants with a sufficiently high SNR, like those 

associated with the maximum variation points in QRS complex or with the R 

wave peak. This may suggest that, in presence of noisy conditions and during 

cardiac dysfunctions, the entire morphology of the beat is not reliable to provide 

respiratory information from the whole QRS interval, but rather a shorter 

interval around the R-peak needs to be selected. If true, this would penalize the 

methods that consider the whole QRS interval and extract one angle series by 

joining the information of both leads. It follows that, if one of the two leads 

present an insufficient SNR, as shown in one example in Figure 57 in Results 

section, the outcoming EDR signal will be affected. This observation is in 

agreement with the results of Lázaro et al. [17], which affirms that QRS slopes 

and R wave angles are more robust than VCG method in those situations when 

there is so much noise in one of the leads. After all, each one of EDR signals 

obtained by QRS slopes and R-wave angle are based on one lead, so only those 

EDR signals based on that noisy lead are affected and their contribution to the 

respiratory rate estimate can be attenuated by the peaked–conditioned PS 

average. In this context, the substitution of noisy beats may also play a role in 

the accuracy of EDR estimation. In this work, the beats with a low SNR in one 

of the leads are substituted directly in the leads, on which the EDR method is 

then applied, instead of doing it in the 12 leads-ECG used to derive the VCG, 

as performed in [1]. That is thought to keep the respiratory information from 

the lead in which the beat morphology is not noisy, but at the same time may 

cause a distortion of the desired information that is arduous to quantify when 

dealing with two-unspecified leads. After all, the derivation of the minimum 

SNR level for an ECG lead, which guarantees the possibility of reliably extract 

the EDR signal from it would help for a better understanding of the results. 

However, the derivation of such a level is all but an easy task, since it involves 
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the ECG signal quality assessment during an arrhythmia, an area that has 

attracted a lot of research interest and where there is still much to be searched 

out. 
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Chapter 9. CONCLUSION 

9.1 OVERVIEW AND CONCLUSIONS 

Among the biological signals, the ECG signal is one of the most widely 

recorded and it contains useful information regarding cardiovascular activity 

and other adjacent systems. One of these is the respiratory system, which, due 

to its bidirectional interaction with the cardiac system, affects the ECG signal 

in different ways. Exploiting this relation, many algorithms have been 

implemented to obtain a surrogate respiratory signal from the ECG, with the 

main scope of replacing the common used cumbersome devices in those clinical 

applications where their use is unmanageable.  

This work investigates the possibility of reliably extracting an EDR signal even 

from patients with atrial fibrillation, since the validity of EDR algorithms has 

been proved on healthy subjects and no studies have focused systematically on 

this specific matter so far. The aim is pursued by selecting for the scope the 

EDR algorithms based beat-to-beat morphological variations, by starting from 

the assumption that the heart rate modulation induced by respiration is lost in 

AF, because of the rapid and irregular beating which characterizes the 

pathology. 

Four EDR methods are selected for implementation and adapted to be applied 

on a dataset containing two unspecified leads ECG and a simultaneously 

recorded belt respiratory signal for each patient affected by permanent atrial 

fibrillation. The recordings were of about ten minutes long, acquired in rest 

phase and the subjects were supposed to breathe spontaneously.  

From an initial database of 57 patients, eight of them were excluded because of 

insufficient quality of the respiratory signal, high number of ectopic beats and 

the heart rate too low to assure aliasing-free estimation of the respiratory 

frequency. 
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All the EDR methods have required a pre-processing of the ECG. The pre-

processing consists of a filtering stage and beats analysis. The filtering stage is 

applied to remove baseline wander, powerline interference and high frequency 

noise, so as to enhance the respiratory information. The beats analysis is 

applied, instead, for the rejection of beats with an abnormal morphology in both 

leads and the rejection or substitutions of noisy beats, depending on respectively 

if the occur in both leads or in just one of them. Then, an algorithm for 

subtraction of f-waves from the QRS interval selectively applied and the results 

of the methods are evaluated with and without performing this stage in order to 

determine any difference in terms of estimation accuracy. 

Afterwards, the outcome EDR signal passes through a post-processing phase, 

which mostly resembles the pre-processing of the respiratory signal and consists 

of an outlier correction stage, resampling at 4 Hz and band-pass filtering, in 

order to make the characteristics of the signals suitable for the respiratory rate 

estimation algorithm. 

The performances of the EDR methods are then evaluated by comparing the 

respiratory rate extracted from the surrogate respiratory signal with the 

respiratory rate computed on the reference signal. The assessment is carried out 

looking at the mean absolute and relative intrasubject error and RMS error on 

the entire dataset. The eventual benefit of performing f-waves removal in QRS 

complex is studied by comparing the estimation errors and verifying significant 

statistical differences between estimated mean respiratory rates by applying the 

same EDR method, when activating or deactivating the execution of this stage.  

The mean intrasubject errors and the Kolmogorov-Smirnov test suggest that 

there is no clear improvement in estimation accuracy for all the tested EDR by 

subtracting the fibrillation activity from the morphology of the beats, by 

applying the technique as in this thesis. 

The VCG loop alignment method shows, at contrary, a significant decay of the 

performances in terms of mean intrasubject error passing from 𝜇 = 0.0401 ±
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0.0328 (15.04% ±  12.70 %) , without f-waves removal, to 0.0540 ±

0.0370 (19.30% ± 13.79%), after f-waves removal. It reveals the sensitivity 

of this method to changes in QRS morphology due to f-wave subtraction, which 

may be not completely reliable when the technique is applied in noisy 

conditions. 

The QRS slopes and R wave angle method achieved the lowest estimation error 

on the dataset 𝜇 = 0.0227 ± 0.0217 (8.45% ±  8.83 %) , which, although 

higher, is still comparable as order of magnitude with previous studies on 

healthy subjects. 

In general, the methods that extract respiratory information independently from 

the two leads outperformed the others combining this information in a unique 

rotation angle series. This confirms that sensitivity of the methods to lead 

configuration and to noisy conditions are important issues that need to be 

addressed in research studies in this area.  

In conclusion, this study indicates that it is reasonable pursuing the extraction 

of an EDR signal in patients with atrial fibrillation. By focusing the efforts in 

this field, higher estimation accuracy of the EDR methods can be attained. The 

method of Lázaro has demonstrated to be the most promising one for this 

application, while the f-waves subtraction from QRS interval performed in this 

work has not produced a clear advantage to the EDR methods performances. 

9.2 FUTURE WORK 

This study presents an initial attempt to test the reliability of EDR methods in 

order to extract respiration in patients with atrial fibrillation. The results suggest 

that further studies are justified in order to improve the robustness and the 

accuracy of the techniques in such conditions. Suggestions about possible future 

developments of this work follow. 
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The designed code workflow could be still improved in some stages. The pre-

processing and the beat analysis are fundamental steps whose modification 

could lead to an effective increment of the accuracy in the results. Every change 

has to be though to suit the specific characteristics of the ECG in atrial 

fibrillation. Particular attention must be paid to the exclusion of abnormal beats 

and the substitution of the noisy ones. The technique applied in this work to 

perform f-waves subtraction from the QRS complex has not proved to clearly 

enhance the respiratory information against the fibrillation activity. However, 

the method has demonstrated to work well only in presence of distinct f-waves 

and to suffer the presence of overlapping noise in the TQ segment. Thus, other 

techniques with a greater robustness to noise should be tested for better 

understanding the extent of the influence of f-waves in masking the respiratory 

modulation in the QRS morphology. 

Moreover, it would be also interesting to test the EDR methods on a different 

database with three orthogonal leads or the 12-leads ECG. The availability of a 

complete description of the heart would make possible a detailed analysis of the 

results in relation to the leads configuration. The tested methods have 

demonstrated in previous studies to work better especially on the VCG, since it 

enhances the ECG respiratory modulation induced by respiration. In this way, 

even the comparison of the performances of the different methods during AF 

would be more meaningful and may lead to new findings. The sensitivity to 

noise is another aspect that should be investigated deeper, since it has been 

observed that the quality of the signals is affecting the performance accuracy. 

Moreover, the reliability of the EDR signal could be investigated also in the 

context of clinical studies. It may be interesting to compare, for example, the 

performances during rest phase and tilt test in order to understand if the 

activation of the autonomic nervous system, in the second case, influences the 

respiratory rate estimations.  
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The evidence of these problems could be a starting point for future studies that 

have as their ultimate goal the development of an accurate and robust EDR 

algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 
 

APPENDIX 

A. DATASET 

Table 8 - Mean of the 
Heart Rate and mean ± 
standard deviation of 
the respiratory 
frequency rate for each 
subject in the database. 
The last column presents 
the percentage of 
estimate for the 
respiratory frequency 
rate, which is obtained 
by applying the 
algorithm proposed in 
the section 5.8 in order 
to compare reliably the 
respiratory and the EDR 
respiratory rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 67.6271 1.1271 0.1594 0.0282 89.78%

2 52.4407 0.8740 0.2746 0.0094 98.64%

3 82.7926 1.3799 0.2620 0.0574 65.89%

4 62.2562 1.0376 0.2753 0.0166 86.60%

5 79.7184 1.3286 0.2722 0.0715 68.81%

6 77.9895 1.2998 0.1734 0.0378 86.29%

7 91.3979 1.5233 0.3739 0.0281 65.45%

8 78.4925 1.3082 0.2936 0.0428 94.55%

9 72.9353 1.2156 0.2570 0.0139 100.00%

10 92.6997 1.5450 0.3753 0.0331 94.93%

11 69.2329 1.1539 0.2080 0.0144 100.00%

12 71.1013 1.1850 0.2034 0.0207 97.09%

13 97.3747 1.6229 0.2897 0.0197 78.95%

14 109.8799 1.8313 0.4875 0.0186 100.00%

15 84.0755 1.4013 0.2663 0.0224 100.00%

16 80.2201 1.3370 0.3790 0.0070 100.00%

17 85.4697 1.4245 0.3846 0.0316 88.28%

18 67.4408 1.1240 0.2252 0.0259 97.27%

19 85.2640 1.4211 0.2855 0.0129 100.00%

20 63.3829 1.0564 0.3014 0.0314 89.57%

21 79.5887 1.3265 0.3614 0.0311 84.25%

22 88.0387 1.4673 0.3743 0.0209 89.68%

23 88.0515 1.4675 0.2526 0.0144 100.00%

24 79.5393 1.3257 0.3474 0.0188 99.32%

25 77.9600 1.2993 0.3269 0.0221 98.28%

26 92.5943 1.5432 0.1586 0.0345 96.28%

27 116.7071 1.9451 0.3215 0.0227 94.07%

28 118.7084 1.9785 0.2283 0.0498 77.12%

29 89.6762 1.4946 0.3574 0.0465 78.62%

30 74.5295 1.2422 0.3124 0.0239 85.34%

31 82.5521 1.3759 0.3387 0.0299 82.01%

32 93.2235 1.5537 0.2800 0.0200 98.00%

33 86.2888 1.4381 0.3393 0.0313 87.43%

34 110.1384 1.8356 0.4322 0.0325 95.70%

35 83.0049 1.3834 0.2925 0.0192 100.00%

36 60.8465 1.0141 0.1968 0.0436 83.19%

37 81.5520 1.3592 0.2453 0.0325 89.11%

38 72.4573 1.2076 0.3470 0.0209 94.20%

39 80.6165 1.3436 0.3175 0.0209 92.14%

40 123.1744 2.0529 0.3378 0.0148 100.00%

41 86.2448 1.4374 0.4024 0.0200 99.49%

42 88.6083 1.4768 0.2549 0.0287 69.37%

43 90.8650 1.5144 0.2205 0.0361 97.86%

44 78.0766 1.3013 0.2052 0.0289 98.36%

45 88.4998 1.4750 0.2581 0.0176 95.05%

46 56.4088 0.9401 0.2761 0.0338 88.97%

47 63.5894 1.0598 0.2458 0.0181 98.21%

48 57.9336 0.9656 0.1988 0.0258 96.04%

49 59.2919 0.9882 0.2891 0.0211 100.00%

Patient
Heart Rate 

(beat/min)

Mean Respiratory 

frequency rate

% Estimation of Respiratory 

frequency rate

SD Respiratory 

frequency rate
Heart Rate (Hz)
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