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Abstract

This thesis considers the problem of improving the performance of observed time
di�erence of arrival (OTDOA) based positioning for Narrowband Internet of Things
(NB-IoT). A new iterative low-complexity algorithm based on expectation max-
imization successive interference cancellation (EM-SIC) is presented. The algo-
rithm tackles the near-far problem by using an iterative SIC, where for each re-
ceived signal a frequency o�set compensation and channel estimation is performed.
A low receiver sampling rate of 1.92 MHz is assumed and the time of arrival (TOA)
estimates are re�ned by interpolation of correlation results to a higher sampling
rate. At the �nal stage of the algorithm, the problem of multipath fading is
addressed using an iterative �rst-path detector. It is shown that the proposes
EM-SIC algorithm greatly increases positioning performance compared to conven-
tional methods and the estimated TOA variance almost attains the Cramér-Rao
lower bound.
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Popular Science Summary

The internet of things (IoT) is the infrastructure that enables the connectivity of
smart devices to the internet. It has been estimated that around 100 billion devices
will be connected by 2025 and this fast growth is expected to revolutionize many
industries, such as healthcare, transportation, and agriculture. As of today, many
everyday items are already being connected in smart home applications. Due to
the wide range of applications, there are many di�erent emerging standards for
enabling the IoT. Narrowband IoT (NB-IoT) is a cellular technology that will
allow connectivity for devices in remote areas while allowing for very long battery
lifetimes, which is critical in some applications.

In the next release of NB-IoT, a new feature has been added that will allow
positioning of devices by allowing them to receive signals from several cell towers
simultaneously. Examples of applications of this feature are �eet management,
network capacity planning, and navigation services. The used positioning tech-
nique is known as observed time di�erence of arrival (OTDOA), because the device
measures the arrival time of several transmitted reference signals. By using the
di�erence between the observed arrival times, the position of the device can be
estimated. However, this technique has several limitations which makes it di�-
cult to obtain good position accuracy. Since NB-IoT is technique that focuses
on low-end devices, there has been a trade o� where system capacity has been
sacri�ced in order to achieve low complexity. Therefore it is especially challenging
to implement OTDOA-based positioning in NB-IoT. For example, the bandwidth
of the reference signals is very small, which makes it di�cult to locate them in
time. Furthermore, the large distances covered by NB-IoT cell towers causes the
received signal powers to be very weak. Smart techniques are therefore necessary
in order to correctly locate an NB-IoT device.

In this thesis, a low-complexity OTDOA-based positioning algorithm that
strives to overcome the challenges of NB-IoT networks has been implemented.
The algorithm improves the positioning accuracy by cancelling interfering signals
from neighbouring cell towers, estimating the frequency o�set of each received sig-
nal and converting the results to a higher sampling frequency. Such methods have
been used on their own in other cellular technologies, whereas in the algorithm
proposed in this thesis, they are combined and applied to the speci�c scenario of
positioning for NB-IoT. It is shown that the new algorithm increases positioning
performance signi�cantly compared to conventional methods. In particular, the
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probability that a given user equipment can be localized is greatly increased, as
well as the accuracy of the estimated position. Furthermore, an analysis of the
computational complexity of the algorithm shows that it can be realistically im-
plemented in user equipment hardware and software. However, the performance
increases are not as great in urban environments where signals can scatter on
buildings and other large objects, and this is an area of development for future
work.
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Chapter1
Introduction

This thesis investigates the challenges of implementing observed time di�erence
of arrival (OTDOA) based positioning for Narrowband Internet of Things (NB-
IoT), which will be integrated as a part of the 3rd Generation Partnership Project
(3GPP) Long Term Evolution (LTE) release 14. ARM Cordio-N IP for NB-IoT
will provide the wide area and low power connectivity required for low-end IoT
devices. It consists of RF and baseband hardware, together with software layers
1, 2 and 3 [1]. This thesis has been carried out in order to develop a novel low-
complexity algorithm for time of arrival estimation that will be implemented in
layer 1 hardware and software. The algorithm is evaluated under di�erent radio
environments and its positioning performance is compared to standard techniques.

The outline of this thesis is as follows:

Chapter 2 gives an introduction to the subject and presents relevant background in-
formation

Chapter 3 explains the speci�cs of OTDOA-based positioning for NB-IoT according to
3GPP standardizations and covers some of the associated challenges, as well
as related previous work

Chapter 4 presents the novel algorithm along with a brief analysis of its computational
complexity

Chapter 5 presents results from numerical simulations where the performance of the
new algorithm is evaluated

Chapter 6 draws the conclusions from the simulation results and outlines future work
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Chapter2
Background

2.1 The Internet of Things

The Internet of Things (IoT) is a loosely de�ned term referring to the network of
smart object, sensors and everyday items that can gather and exchange data with
each other and with the cloud. Some applications of the IoT are smart homes,
smart cities, smart grids, healthcare, automotive, manufacturing, logistics and
supply chain management [2]. It has been estimated that around 100 billion IoT
devices, corresponding to an economic impact of $11 trillion, will be connected by
2025 [3].

There are several available and emerging communication standards for en-
abling the IoT. Depending on the application, they can be based on either near
�eld communications (NFC), personal area networks (PAN), such as Bluetooth
and ZigBee, local area networks (LAN), for example Wi-Fi, or wide area net-
works (WAN). The last category consists of both unlicensed low powered WAN
(LPWAN), such as LoRa and SigFox, and cellular technologies. Among cellular
technologies that operate on licenced spectrum are GSM, WCDMA, LTE and up-
coming 5G standards. However, these have primarily been developed for voice and
high-throughput data services, which make them un�t for many IoT applications
that do not require high data throughput, but other aspects such as low device
costs, long battery life, deep indoor coverage and large capacity can be critical [4].

2.2 NB-IoT

NB-IoT is an emerging cellular standard for machine-to-machine (M2M) type com-
munications that was introduced in 3GPP Release 13 [5, 6]. The purpose of the
new standard is to provide wide-area coverage for massive IoT deployments. NB-
IoT is based on existing LTE speci�cations and can therefore co-exist with current
LTE networks. Many aspects of LTE have been reused, such as the modulation
scheme, multiple access methods, channel coding, rate matching etc. NB-IoT is
designed for 180 kHz system bandwidth, which makes it possible to deploy NB-
IoT inside an existing LTE carrier by replacing one of its physical resource blocks
(PRB), a so called in-band deployment scenario. It can also be deployed in the
guard-band of an LTE carrier, or in so called standalone mode, by replacing an
existing GSM carrier.

3



4 Background

Some of the performance objectives for NB-IoT are:

• Low device costs: support for ultra-low-complexity devices, using only
one receive antenna operating at a low sampling rate.

• Low data rates: 250 kb/s physical layer peak data rate [7], which is
suitable for ultra-low-end devices.

• Extended coverage: 20 dB higher maximum coupling loss compared to
LTE [8], which allows for very large cell sizes and improved indoor coverage.

• Increased capacity: at least 52 500 user equipments (UEs) per sector will
be supported [9].

• Increased battery lifetime: up to 10 years of UE battery lifetime, as-
suming that an average of 200 bytes of data is being transmitted per day
[9].

These qualities give NB-IoT an advantage over current cellular technologies in
enabling massive deployments of low-end IoT devices. The speci�cation for NB-
IoT in 3GPP Release 13 was frozen in June 2016 [6] and the positioning features
available in LTE were not carried over to NB-IoT. However, this feature, along
with several other enhancements, is going to be introduced as a part of the new
speci�cation in 3GPP Release 14 [10]. The positioning procedure is described in
more detail in Chapter 2.

2.3 OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is a method of transmit-
ting digital symbols over several parallel data streams [11, 12]. The symbols are
modulated with an arbitrary modulation scheme and transmitted over orthogonal
subcarriers. Consider a set of complex symbols X[k], where k = 0, ..., Nsc − 1 de-
notes the subcarrier index. The baseband OFDM signal can then be represented
as

x(t) =

Nsc−1∑
k=0

X[k]ej2π∆fkt, 0 ≤ t < Tu (2.1)

where ∆f is the subcarrier spacing and Tu = 1/∆f is the symbol duration. Under
ideal conditions, this choice of symbol duration guarantees subcarrier orthogonal-
ity, since

Tu∫
0

ej2π∆fk1t
(
ej2π∆fk2t

)∗
= 0, for k1 6= k2 (2.2)

for this particular choice of Tu. However, in time-dispersive fading channels, the
orthogonality between subcarriers will be lost unless a guard interval is inserted
between the OFDM symbols. Therefore, a cyclic pre�x (CP) is implemented by
copying the last portion of each symbol with duration TCP and inserting it prior
to the symbol start, such that

x(t) = x(t+ Tu + TCP ), −TCP ≤ t < 0 (2.3)
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Figure 2.1: OFDM transmitter and receiver structures

The discrete-time version of an OFDM signal may be written in terms of the
Discrete Fourier Transform . Consider an OFDM signal sampled with sampling
frequency Fs = 1/Ts = N∆f for some positive integer N � Nsc, i.e.

x[n] =
1√
N
x(nTs) =

1√
N

Nsc−1∑
k=0

X[k]e
j2πkn
N =

1√
N

N−1∑
k=0

X ′[k]e
j2πkn
N (2.4)

where

X ′[k] =

{
X[k], k = 0, ..., Nsc − 1

0, k = Nsc, ..., N − 1
(2.5)

is a zero padded version of X[k]. Equation (2.4) says that x[n] is in fact the
inverse DFT of X ′[k]. The scaling factor 1/

√
N has been added to achieve a

unitary transform.
The fact that we can express an OFDM signal in terms of the DFT makes it

convenient to implement transceiver structures using the Fast Fourier Transform
(FFT) algorithm, which is illustrated in Figure 2.1.

The transmitted OFDM data can be visualized in terms of a time-frequency
grid, such as in Figure 2.2. In 3GPP NB-IoT, the transmitted data is mapped to
so called Resource Elements (REs), which consist of one symbol l by one subcarrier
k. A subcarrier spacing of ∆f = 15 kHz is used and each symbol is 1/14 ms long
in time1. The time domain is divided into di�erent units: seven symbols make up
one slot, two slots make up one subframe and 10 subframes make up one frame.
In other words, one subframe is corresponds to 1 ms of time data. In NB-IoT, 12
subcarriers is always used, which corresponds to a total bandwidth of 180 kHz.
The smallest unit of REs that can be allocated is one slot by 12 subcarriers and
is denoted as a Resource Block (RB) [13].

The system sampling frequency is implementation speci�c and may vary be-
tween di�erent UEs. Since low device complexity is of high importance, it is
preferred to not use a higher sampling frequency than necessary. From here on,
we will assume that the UE is using Fs = 1.92 MHz, which corresponds to an FFT
size of N = 128. However, as we will see later, the low sampling frequency will
severely impact the positioning accuracy.

1Throughout this thesis, normal CP is assumed
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Figure 2.2: OFDM time-frequency grid showing 14 symbols by 12
subcarriers. The shaded area corresponds to one RB.

2.4 Overview of Positioning Methods in Cellular Networks

There are a number of available methods for position estimation in cellular net-
works. In general, the goal is to �nd the geometric coordinates, i.e. latitude
and longitude 2, of the UE, given the location of several base stations (BSs) and
some type of measurements. There are many location based services, such as �eet
management, network capacity planning, tracking services, enhanced 911, and
navigation tools, that utilize the user position. Some services, like street naviga-
tion, require a very accurate position estimate that is di�cult to achieve without
the assistance of satellite data. However, for other services where the position
accuracy is not as critical, methods based on cellular measurements are su�cient.
These methods rely on measurements on transmitted reference signals together
with known BS locations and can be either UE-based or network-based, depend-
ing on whether the positioning estimations are carried out by the UE or the BSs.
Furthermore, a method is denoted as UE-assisted if the measurements are made
at the UE and reported to the network, which then calculates the position based
on these measurements and the known geometric locations of the detected BSs.

The most common cellular positioning methods are based on one, or a com-
bination of, the following measurements: received signal strength (RSS), angle
of arrival (AOA), time of arrival (TOA) and time di�erence of arrival (TDOA)
[14]. RSS measurements can be directly related to range measurements via a path
loss model. Similarly, TOA measurements can be related to range, given that the
UE clock is synchronized with the BSs. TDOA overcomes this requirement by
forming the di�erence between several TOA measurements, thus eliminating the

2In some applications it might be bene�cial to estimate the altitude as well, but for

most purposes a �at geography can be assumed.
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unknown signal transmit time. The observed ranges, or range di�erences, can then
be mapped to a UE position using multilateration techniques. At least three BSs
are needed for unique solution. AOA-based methods work in a similar fashion,
where measured angles are mapped to a position using multiangulation. Only two
BSs are needed to obtain a unique solution, but an antenna array is needed to
perform measurements, which makes it less useful as a UE-assisted option [15].

In 3GPP LTE, three independent positioning techniques are supported: As-
sisted Global Navigation Satellite System (A-GNSS), Enhanced Cell-ID (E-CID)
and OTDOA. It has been decided that Release 14 NB-IoT will support E-CID and
UE-assisted OTDOA-based positioning in a similar fashion as LTE by introducing
a new reference signal. TDOA will also be supported using uplink measurements,
given that it uses the same NB-IoT transmissions as in Release 13 [10]. In this
thesis, the scope is limited to OTDOA-based positioning, which is described in
more detail in the next chapter.
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Chapter3
OTDOA-Based Positioning for NB-IoT

The basic principles of OTDOA-based positioning is illustrated in Figure 3.1. Sev-
eral time synchronized BSs, in 3GPP LTE denoted as evolved Node Bs (eNodeBs),
simultaneously transmit positioning reference signals. The UE detects the trans-
mitted signals with the help of assistance data provided by a location server and
estimates the TOAs, which are proportional to the distance to each eNodeB. The
TOAs from neighbour eNodeBs are subtracted from the TOA of a reference eN-
odeB, in order to form TDOA estimates. These are then reported back to the
server, which uses the measurements to calculate the UE position by multilatera-
tion. At least three TOA estimations are necessary for a unique solution.

The positioning procedure may take place either in the control plane, which
carries the signaling tra�c, or the user plane, which carries the data tra�c. In
the control plane, the positioning attempt is initiated by the the network and
all the necessary reference signals and assistance data is transmitted over control
channels. In the user plane, all the signalling is transmitted over bearer channels,
which means that network does not distinguish it from other user data [16]. The
general positioning procedures are described in the LTE Positioning Protocol,
which has been updated to support NB-IoT in Release 14 [17].

3.1 Narrowband Positioning Reference Signal

The Narrowband Positioning Reference Signal (NPRS) is de�ned in [18]. It consists
of a Quadrature Phase Shift Keying (QPSK) modulated pseudo random sequence
that is mapped to REs in one subcarrier with Nsym = 14 OFDM symbols. The
sequence is generated as

zns,l[m] =
1√
2

(1− 2c[2m]) + j
1√
2

(1− 2c[2m+ 1]), m = 0, 1 (3.1)

where ns is the slot number, l is the OFDM symbol number within the slot and
c[m] is a length-31 Gold sequence that is initialized with the seed

cinit = 228

⌊
NID

512

⌋
+ 210

(
7(ns + 1) + l + 1

)(
2(NID mod 512) + 1

)
+ 2(NID mod 512) +NCP (3.2)

9



10 OTDOA-Based Positioning for NB-IoT

Figure 3.1: Basic principles of OTDOA-based positioning. Each eN-
odeB transmits a reference signal that will arrive with di�erent
time delays at the UE. The di�erence between the estimated
time of arrivals are then used to calculate the UE position.

at the start of each OFDM symbol and NID is the physical cell identity of the
eNodeB and NCP = 1 for normal cyclic pre�x. Gold-codes exhibit excellent cross-
correlation properties, i.e. they are highly correlated with themselves, whereas
codes with di�erent initialization seeds have low correlation. In practice, this
means that NPRS signals from di�erent cells will be quasi-orthogonal to each
other, which makes it easier for the UE to tell them apart.

The mapping of the NPRS sequence to the REs {l, k} is shown in �gure 3.2.
In general, the sequence is mapped as

Sl[k] = zns,l[m] (3.3)

where

k = 6m+ (6− l + vshift) mod 6 (3.4)

m = 0, 1 (3.5)

vshift = NID mod 6 (3.6)

The frequency-shift parameter vshift allows for up to six di�erent cells to transmit
NPRS signals on di�erent subcarriers so that they do not overlap in the frequency
domain. This is implemented in order to minimize the interference between NPRS
signals from di�erent cell towers and together with the code orthogonality it gives
the signals good hearability properties.

For in-band operation, the following symbols are allocated for NPRS trans-
mission:

l =

{
3, 5, 6, ns mod 2 = 0

1, 2, 3, 4, 5, 6, ns mod 2 = 1
(3.7)

This corresponds to a total of NNPRS = 8 symbols in the subframe being allocated
for NPRS transmission. The other symbols are reserved for LTE cell speci�c
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Figure 3.2: NPRS mapping to REs in one subframe, using a fre-
quency shift vshift = 0. The NPRS elements are denoted by
R6, the cell speci�c reference signal by R0 and they shaded
area is allocated to control channels. On the white REs, no
data is being transmitted.

reference signal and control channels. For standalone operation, this does not
need to be taken into account and therefore all the OFDM symbols can be used
for NPRS transmission, such that NNPRS = Nsym = 14.

The time domain symbols sp,l[n], where p denotes the eNodeB index, is trans-
mitted by OFDM modulation at each cell according to (2.4), which gives

sp,l[n] =
1√
N

N−1∑
k=0

S′p,l[k]e
j2πkn
N (3.8)

where S′p,l[k] is the zero padded version of Sl[k] for cell p.

3.2 Signal Model

We consider the problem where a UE located at position (x, y) receives simultane-
ously transmitted NPRS signals from p = 0, ..., P −1 eNodeBs located at positions
(xp, yp). Without loss of generality, we assume that the signals are transmitted
at time t = 0. From the provided assistance data, the number of participating
eNodeBs P is known at the UE, but since the UE clock is not necessarily syn-
chronized with the network, the NPRS transmit time is considered unknown. The
signal from cell p will be transmitted with transmit power Gp, experience a path
loss αp, and pass through a multipath fading channel with i = 0, ..., Lp − 1 paths.
If the signal from the ith path of the pth cell arrives at the UE at time τp,i, the
time of arrival in terms of samples will be

np,i = bτp,iFsc (3.9)
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where Fs = 1.92 MHz is the industry standard UE sampling frequency. The
line-of-sight (LOS) components τp,0, i.e. the �rst paths of arrival that propagate
in a straight path from the cell tower to the UE without being scattered, are
related to the UE position as τp,0 = rp/c, where c is the speed of light and rp =√

(x− xp)2 + (y − yp)2 is the distance between cell-tower p and the UE.
The symbol arriving at the UE may then be modelled as

yp,i[n+ lM ] =


0, 0 ≤ n < np,i√

Gp
αp
hlp,i[n]sp,l[n− np,i], np,i ≤ n < np,i +M

0, np,i +M ≤ n < np,i +M + M̃

(3.10)
for some unknown complex channel coe�cients hp,i[n] and where M is the symbol

length and M̃ is the size of the TOA search window. For NB-IoT systems, the
symbol length M is 137 samples including CP, except for the �rst symbols in
each slot, which are 138 samples long. The search window length M̃ de�nes the
maximum TOA that can be detected and can be modi�ed at the UE.

The path loss αp is commonly modelled with a log-distance model [12], which
in dB-scale can be written as(

αp
)

dB
=
(
αp,0

)
dB

+ 10γ log10 rp + βp (3.11)

where rp is the distance between the UE and cell tower p, αp,0 is the path loss at
the reference distance, γ is the path-loss exponent, and βp is a zero-mean Gaussian
random variable that models the slow fading of the channel. Slow fading may occur
due to shadowing, i.e. when the path between the cell tower and UE is obstructed
by some large object.

The channel characteristics depend on the physical environment and each mul-
tipath component arises when the signal is scattered on surfaces, for example
buildings in an urban environment. In OTDOA scenarios, we are only interested
in �nding the LOS component. In some scenarios, this component might be weaker
than the scattered components or not even present at all, which makes TOA esti-
mation di�cult. 3GPP channel models are de�ned by a number of channel taps
with corresponding tap delays and relative power. For example, the extended typ-
ical urban (ETU) channel is speci�ed in table 3.1. Here the �rst three paths are
weaker than the fourth, �fth, and sixth path, which will make it di�cult for the
UE to detect the LOS component. The UE movement is typically also modelled
into the channel by specifying a maximum Doppler shift. Furthermore, since the
UE is not perfectly synchronized in frequency with all cell towers, each received
signal will also experience a phase rotation caused by the residual carrier frequency
o�set (CFO) of each cell. However, this phase does not show up explicitly if it is
modelled into the channel coe�cients.

The UE will receive data during a time period corresponding to the duration
of one subframe plus the length of the TOA search window. The signal recorded
by the UE can thus be written as

y[n] =

P−1∑
p=0

Nsym−1∑
l=0

Lp−1∑
i=0

yp,i[n+ lM ] + w[n] (3.12)
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Table 3.1: ETU channel model [19]

Excess tap delay [ns] Relative power [dB]

0 -1

50 -1

120 -1

200 0

230 0

500 0

1600 -3

2300 -5

5000 -7

where w[n] is zero-mean additive white Gaussian noise (AWGN) with variance σ2,
which models the thermal noise in the receiver.

3.3 TOA Estimation

From the UE perspective, the goal is to estimate the delays np,0 of the �rst path
from each cell. Since we are only interested in the OFDM symbols carrying NPRS
data, we introduce the notation l̃(s) (0 ≤ s ≤ NNPRS − 1) for the sth symbol
containing NPRS. The UE is assumed to know this sequence a priori, since it
knows if the carriers are deployed in-band or in standalone operation through
initial acquisition. If we consider an AWGN channel without CFO, i.e. hlp,i = 0

for i 6= 0 and hlp,0 = 1 ∀p, l, and we assume that the signals from interfering cells
can be modelled as Gaussian noise, the maximum likelihood (ML) estimator of the
TOA (in terms of samples) of the pth cell is the delay that maximizes the average
of the symbol-by-symbol cross-correlation functions [20]:

n̂p,0 = arg max
n

∣∣∣NNPRS∑
s=0

Rp,l̃(s)[n]
∣∣∣ (3.13)

where the symbol-by-symbol cross-correlation functions are calculated as

Rp,l[n] =
1

M

n+M−1∑
m=n

y[m+ lM ]s∗p,l[m− n], n = 0, ..., M̃ (3.14)

In other words, the received signal is correlated with the known NPRS sequence
and the delay is found where there is a peak in the correlation. In order to make
sure that an actual peak is present in the correlation, the peak to average (PAR)
is calculated and compared with a prede�ned threshold η. Here, the PAR is given
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Figure 3.3: The NPRS autocorrelation function sampled at 1.92
MHz. The wide main-lobe arises due to oversampling.

by

PAR =

∣∣∣NNPRS−1∑
s=0

Rp,l̃(s)[n̂p,0]
∣∣∣

1
M̃

M̃∑
n=0

∣∣∣NNPRS−1∑
s=0

Rp,l̃(s)[n]
∣∣∣ (3.15)

If PAR < η, it is said that the peak is not signi�cantly larger than what can
be expected from a noise-like signal and therefore the measurement is thrown
away. The choice of η will therefore correspond to a false alarm/missed detection
probability.

This detection procedure is then repeated for all P cells. The assistance data
provides a search window for the TOAs, so that the search can be limited to delays
n ≤ M̃ . Since the NPRS signal has good correlation properties, this peak can be
detected even under poor noise conditions. Figure 3.3 shows the peak of the NPRS
autocorrelation function sampled at 1.92 MHz (N = 128). The peak has a width
of ±8 samples, which is due to the fact that the signal is oversampled (the IFFT
has been zero-padded). Finally, the TOA estimates in seconds are simply given
by

τ̂p,0 =
n̂p,0
Fs

(3.16)

The estimator in (3.13) is the simplest form of TOA estimator and can be used
as a benchmark for comparisons. However, in most realistic scenarios this esti-
mator performs poorly. The inter-cell interference will make it di�cult to detect
the peak from weak cells and the CFOs will introduce a phase shift that distorts
the correlations. Moreover, in multipath fading channels, the correlation will have
multiple peaks, which makes it di�cult to distinguish the LOS component. There-
fore, more advances estimation techniques are necessary in order to increase the
TOA accuracy, some of which will be discussed in section 3.6.
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3.4 The Navigation Solution

Since the signal transmit times are unknown, the TOAs cannot be used directly
to calculate the user position. Therefore, once the TOA estimates τ̂p,0 are known,
the TDOA estimates ∆τ̂p are calculated by subtracting the TOA of the reference
cell p = 0 from all the other detected TOAs:

∆τ̂p = τ̂p,0 − τ̂0,0, p = 1, ..., P − 1 (3.17)

The TDOAs can either be reported to the network which then calculates the UE
position by solving the OTDOA equations for (x, y):

c∆τ̂1 =
√

(x− x1)2 + (y − y1)2 −
√

(x− x0)2 + (y − y0)2

c∆τ̂2 =
√

(x− x2)2 + (y − y2)2 −
√

(x− x0)2 + (y − y0)2

...

c∆τ̂P−1 =
√

(x− xP−1)2 + (y − yP−1)2 −
√

(x− x0)2 + (y − y0)2

(3.18)

The eNodeB antenna coordinates (xp, yp) are provided by assistance data and are
assumed to be known with good precision. Geometrically, each equation in the
system (3.18) corresponds to a hyperbola and the UE position is found at their
intersection. In a good cell geometry where two hyperbolas do not intersect more
than once, there is a unique solution for P = 3 and for P > 3 it can be solved in
the least squares (LS) sense. In general, having more equations will decrease the
variance of the position error, which is why it is preferable to have more than 3
eNodeBs participating in the positioning attempt. If P < 3, there is no unique
solution and the positioning procedure fails [16].

There is no closed form solution to in (3.18), but the system can be solved
by numerical methods, for example the Gauss-Newton algorithm, which is used
throughout this thesis [21]. Di�erent methods vary in terms of complexity, sta-
bility and convergence. In this thesis, however, only UE-assisted positioning is
considered, so this topic will not be covered.

3.5 General Positioning Procedures

The LTE positioning protocol procedures can be summarized as follows [17]

1. The location server requests the UE positioning capabilities for OTDOA.

2. The UE responds with the OTDOA mode support (e.g. UE assisted), the
supported frequency bands and whether inter-frequency measurements are
supported.

3. The location server then provides the UE with assistance data, containing
the cell IDs of the of the anchor cell and reference cells, expected TOAs and
their uncertainty, the NPRS con�guration index, the number of consecutive
NPRS subframes transmitted, and other optional information.

4. The location server requests the location information from the UE with a
required maximum response time.
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5. The UE performs TOA measurements and responds with the results before
the maximum response time has expired.

The maximum response time is given by [22]

Tresponse = TNPRS(M − 1) + 160d P
M
e ms (3.19)

where TNPRS is the NPRS subframe period, which is speci�ed by higher layers,
and M is the number of positioning occasions. The maximum response time is
therefore at least 160 ms per positioning occasion.

3.6 Accuracy of OTDOA-based Positioning and Previous Work

There are several factors that in�uence the accuracy of the described method.
One of them is the measurement geometry, which depends on the relative location
of the eNodeBs and the UE. For example, if three eNodeBs are used, the best
measurement scenario is if they form an equilateral triangle with the UE in the
center [16]. If the UE is located close to the edge of the triangle formed by the
eNodeBs, the dilution of precision is increased and the position estimate variance
will increase. Note that this is a purely geometrical property that cannot be
overcome by increased measurement precision. Therefore, this problem is not of
interest from the UE point of view. Examples of other such factors that in�uence
the accuracy of the navigation solution are eNodeB synchronization errors and
errors in the eNodeB antenna coordinates (xp, yp) provided in the assistance data.

The errors that can be mitigated by the UE are related to the TOA estimation,
since errors in ∆τ̂p will be re�ected in the position estimate. As was mentioned in
section 3.3, the radio propagation environment will have a severe impact on the
TOA estimates. Furthermore, interference between cells can severely reduce the
hearability of the transmitted signals and must be solved using some interference
mitigation technique. If the UE is located very close to one cell tower, the strong
interference from this cell will make it very di�cult to hear the other cells. This is
known as the near-far problem and due to the large cell-sizes supported in NB-IoT,
this will be crucial for succesful positioning. If the the number of participating
eNodeBs and the NPRS sequences are known, the interference can be mitigated
by performing successive interference cancellation (SIC). Such an approach has
been implemented together with a CFO compensation in [23] and it was shown to
signi�cantly reduce the TOA errors, but only in an AWGN channel. In order for
the estimation to work in realistic scenarios, channel estimation (CE) must also
be done. There has been lots of research completed on OFDM channel estimation,
but many estimators are unsuitable for low-end IoT applications. Furthermore,
the problem of detecting weak LOS components in urban scenarios also needs to
be addressed. This has been done by using an adaptive threshold in [24] and by an
iterative search technique in [25]. The new proposed algorithm that is presented
in the next chapter combines a low-complexity CE with CFO compensation and
SIC together with either one of these �rst path detection methods.

Due to the time-frequency uncertainty principle, OTDOA positioning is espe-
cially di�cult for a narrowband system like NB-IoT (the NPRS signal is transmit-
ted at a bandwidth of 180 kHz). If the UE oversamples the signal at 1.92 MHz,
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Figure 3.4: Discretization of UE locations. The solid lines repre-
sent hyperbolas corresponding to ∆τ1 and the dashed lines hy-
perbolas corresponding to ∆τ2. The intersection between the
hyperbolas are possible solutions to the OTDOA equations at
1.92 MHz resolution

more accurate TOA estimation is possible, but performance is still bandwidth
limited. Yet, even at this sampling rate, the signal travels approximately 150 m
per sampling period. Consequently, the time discretization caused by sampling in
practice also discretizes the coordinates grid. In standard LTE, sampling rates up
to 30.72 MHz are used, which makes very accurate positioning possible. On the
other hand, at 1.92 MHz it is very di�cult to achieve accurate positioning, even
if all the TOAs are perfectly estimated to the nearest sample.

Figure 3.4 illustrates the coordinate discretization caused by the low sampling
rate. Three eNodeBs have been placed in an equilateral triangle with coordinates
(0,
√

3d/2), (−d/2, 0) and (d/2, 0). Using this geometry, the hyperbolas for all
combination of arrival times τ̂p,0 = 0, Ts, ..., 6Ts have been calculated and plotted.
The corresponding UE positions are found at the intersections between these hy-
perbolas and as can bee seen, this is a very rough discretization where in some
places, especially where the dilution of precision is high, the distance between
possible UE positions is over 100 m. In order to work around this problem, the
TOAs need to be estimated with sub-sample precision. Such approaches have been
implemented in [23, 26] and it has been shown to give signi�cant performance in-
creases. Therefore, in the proposed algorithm presented in the next chapter, the
sub-sample TOA estimation is combined with the other techniques in order to
further improve the positioning accuracy.
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Chapter4

Proposed EM-SIC Algorithm

In this chapter, a novel algorithm based on expectation maximization channel
estimation and successive interference cancellation (EM-SIC) is presented. The
algorithm consists of two stages that are presented below. In the �rst stage, the
TOA of the strongest path of each cell is estimated using a coherent summation
of symbol-by-symbol cross-correlations. Then a simple channel estimation for this
path is performed, such that it can be removed from the input data before moving
on to the next cell. This stage can be repeated Niter iterations before moving
to the second stage, which consists of performing sub-sample TOA estimation by
interpolating the correlation around the coarse peak estimation. This is combined

EM-SIC
Cell 0

EM-SIC
Cell 1

EM-SIC
Cell P-1

Interpolation Interpolation Interpolation

First Path 
Estimation

First Path 
Estimation

First Path 
Estimation

Navigation Solution

Figure 4.1: Block diagram description of the proposed algorithm.
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with an iterative �rst path estimation procedure in order to combat multipath
interference. A block diagram showing a simpli�ed version of the whole algorithm
is presented in Figure 4.1.

4.1 EM-SIC Strongest Path Estimation

In Figure 4.2 a more detailed version of the EM-SIC block for one cell is shown.
Using the recorded input data, the symbol-by-symbol cross-correlations are cal-
culated according to (3.14). In order to achieve a low-complexity algorithm, it is
assumed that the channel for each path is constant over one subframe due to the
low mobility of NB-IoT UEs and that each sample is shifted by a phase rotation
caused by the residual CFO εp, i.e.

hlp,i[n] = hp,ie
j2π

εp(n+lM)

N (4.1)

Moreover, channel estimation will only be performed for the strongest path, since
the low UE sampling rate makes it di�cult to resolve the di�erent multipath
components.

4.1.1 Residual CFO Estimation

If there is a residual CFO present in the signal, this needs to be corrected before
the correlations can be summed coherently. In order to simplify calculations,
we assume that the CFO is relatively small, such that the correlations can be
coherently added within one OFDM symbol. The best linear unbiased estimator
for the CFO is described in [27] and reads

ε̃p[n] =

4∑
m=1

w(m)φ(m,n) (4.2)

where

φ(m,n) =
N

2πM(NNPRS −m)

NNPRS−m−1∑
s=0

arg
{
Rp,l̃(s)[n]R∗

p,l̃(s+m)
[n]
}

l̃(s+m)− l̃(s)
(4.3)

Here the arg{·} operation returns the angle in the range [−π, π) and the combing
coe�cients w = [w(1), ..., w(4)] are calculated according to [27, eq. 16], which
yields

w = [0.4762, 0.3095, 0.1667, 0.0476] (4.4)

By correcting for the CFO, the symbol-by-symbol correlations may now be added
coherently:

Rp[n] = Rp,l̃(0)[n] +

NNPRS−1∑
s=1

e−j2πε̃p[n]
M

(
l̃(s)−l̃(0)

)
N Rp,l̃(s)[n] (4.5)
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Figure 4.2: Detailed block diagram description of the EM-SIC pro-
cess for cell p

Using the total correlation, the TOA ñp of the strongest path of the pth cell is
found where the correlation has its peak:

ñp = arg max
n

|Rp[n]| (4.6)

and the residual CFO is set to
ε̂p = ε̃[ñp] (4.7)

The TOA is stored if PAR > η, otherwise it is thrown away and the algorithm
moves on to the next cell without performing interference cancellation.

4.1.2 Channel Estimation and Interference Cancellation

With the assumption that the channel is constant over the whole subframe, the
channel coe�cient for the strongest path of the pth cell can be estimated as

ĥp =
1

MNNPRS

NNPRS−1∑
s=0

ñp+M−1∑
k=ñp

y[k + l̃(s)M ]

sp,l̃(s)[k − ñp]
e−j2π

ε̂p(k+l̃(s)M)

N (4.8)

where without loss of generality we have assumed that sp,l̃(s)[n] 6= 0, ∀n. The chan-
nel estimate is then updated with a linear minimum mean square error (LMMSE)
�lter:

h̃p =
ĥp

1 + σ̂2
p/|ĥp|2

(4.9)

where the noise variance estimate is given by

σ̂2
p =

1

MNNPRS

NNPRS−1∑
s=0

ñp+M−1∑
k=ñp

∣∣∣y[k + l̃(s)M ]− sp,l̃(s)[k − ñp]e
−j2π ε̂p(k+l̃(s)M)

N

∣∣∣2
(4.10)

Using the channel coe�cient estimate h̃p, the CFO estimate ε̂p and the TOA
estimate ñp, interference cancellation can be performed by subtracting perturbed
versions of the NPRS symbols sp,l[n] from the input data. When moving to the the
EM-SIC block for the pth cell, the NPRS signals from all other cells are subtracted
from the input data:

ỹp[k + l̃(s)M ] = y[k + l̃(s)M ]−
∑
q 6=p

h̃qsq,l̃(s)[k − ñq]e
−j2π ε̂p(k+l̃(s)M)

N (4.11)
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For the next block, the correlation in (3.14) is computed using ỹp[n] instead of
y[n], and the same goes for equations (4.8)-(4.10).

The procedure is repeated for all the P − 1 cells and then starts over again
for the �rst cell. All the previous estimates h̃p, ε̂p, and ñp are then recalculated.
Since the new estimates are based on a signal where ideally all the interference
has been removed, they are more accurate. The loop over the cells is the repeated
Niter times. A larger number of iterations will yield better accuracy at the cost
of higher computational complexity and in general 2-3 iterations can harvest the
major gains.

4.2 Resolution Re�nement Through Correlation Interpolation

At the last iteration of the EM-SIC repetitions, the resolution of each TOA es-
timate is re�ned by interpolating the correlation obtained from (4.5). Here we
consider interpolation by a factor V around a window of size W around the coarse
TOA estimates ñp. Using sinc-function based interpolation, the re�ned correla-
tions may then be written as

R̂p[n] =

ñp+W∑
m=ñp−W

Rp[m]
sinπ( nV −m)

π( nV −m)
, n = −VW, ..., V W (4.12)

For example, if we let V = 16, this will imply an interpolation from 1.92 MHz
sampling rate to 30.72 MHz. From Figure 3.3, we also know that the window size
should be at least W = 8 samples in order to capture the whole main lobe of
the peak. In order for the interpolation to work properly, the signal to noise and
interference ratio (SINR) needs to be relatively high, otherwise the noise will be
interpolated rather than the signal itself. Figure 4.3 illustrates an ideal scenario
at very high SINR where the TOA does not correspond to an integer number of
1.92 MHz samples. By interpolating to the higher sampling rate, the sub-sample
TOA can be recovered, which is done in the next step.

4.3 Iterative First Path Estimation

In order to �nd the TOA of LOS component, an iterative technique for multipath
interference mitigation described in [25] has been implemented in the �nal stage.
The purpose of this step is to detect a weak LOS component which would otherwise
be missed. In the �rst iteration we start with the original interpolated correlation
R̂p,0[n] = R̂p[n]. Then TOA for the strongest NPRS component is then estimated
as:

ñp,i = arg max
n

|R̂p,i[n]| (4.13)

This component is then subtracted from the correlation by using the ideal nor-
malized NPRS autocorrelation function R0[n] at the estimated delay. An updated
cross-correlation for the next iteration is then found as:

R̂p,i+1[n] = R̂p,i[n]− R̂p,i[ñp,i]R0[n− ñp,i] (4.14)
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Figure 4.3: Example of the resolution enhancements obtained by
interpolation of Rp[n]. Here the true delay τp does not cor-
respond to an integer multiple of the sampling period at 1.92
MHz (in this case it lies between 4 and 5 samples) and the
coarse TOA estimate will therefore result in a large rounding
error. By interpolating to 30.72 MHz, the delay can be more
accurately estimated.

In order to determine if there is another multipath component present, the PAR
is calculated:

P̂ARi =
max
n
|R̂p,i[n]|

1
M̂

M̂−1∑
n=0
|R̂p,i[n]|

(4.15)

Then, if P̂ARi > γ, for some threshold γ, the iteration continues and the TOAs
ñp,i of all the paths are stored. When there is only noise left in the correlation,
the condition will be violated and the LOS component is estimated as the path
with the smallest TOA, i.e.

ñp,0 = min
i
{ñp,i} (4.16)

This is the �nal TOA estimate that will be reported in order to use for the navi-
gation solution.

4.4 Cramér-Rao Lower Bound

According the the Cramér-Rao Lower Bound (CRLB) theorem, the variance of

any unbiased estimator θ̂ must satisfy

var(θ̂) ≥ 1

−E
[
∂2lnp(x;θ)

∂θ2

] (4.17)
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where E{·} denotes the expectation operator and p(x; θ) is the likelihood function
of the observed variable x given θ. One way to evaluate an estimator is to see how
close it can approach the CRLB. For simplicity, let us consider the the problem
of estimating the arrival time τ0,0 of the NPRS signal from one cell in an AWGN
channel without CFO, with unit transmit power, and no path loss. We can then
reuse the signal model from (3.10) with G0 = α0 = 1, hl0,i = 0 for i 6= 0 and

hl0,0 = 1 ∀l the transmit power is unity and there is no path loss. Using the
observable in (3.12) with P = 1, the CRLB can be explicitly calculated as [26]

var(τ̂0,0) ≥ σ2

8π2∆f2
NNPRS−1∑

s=0

Nsc−1∑
k=0

k2|Sl̃(s)[k]|2
= σ2

CRLB (4.18)

Since the NPRS signal is a QPSK modulated gold sequence, |Sl[k]| = 1 where
there is an NPRS symbol and 0 otherwise. Therefore the bound only depends on
the subcarrier spacing and the distance between the occupied subcarriers and the
center frequency. Since only 12 subcarriers are used in NB-IoT, this sets a much
higher CRLB than for wideband signals. In section 5.6, the performance of the EM-
SIC algorithm is compared to this bound under various simulation environments.
Of course it is much more di�cult to attain the CRLB with interference from other
cells, CFO and time varying multipath fading present, but as far as the author is
concerned, there is no explicit expression for the CRLB in these cases. Therefore,
the bound in (4.18) will serve as a reference variance in comparisons.

4.5 Computational Complexity

The computational complexity of the proposed algorithm can be analysed by
counting the number of operations carried out by each block in the algorithm. In
this analysis, we will limit the scope to counting the number of complex multipli-
cations, divisions and evaluation of trigonometric functions, such as sin{·}, cos{·}
and arg{·}. Note that one complex multiplication corresponds to four real multi-
plications.

The �rst correlation block requires the computation of Rp,l̃(s)[n] for s =

0, ..., NNPRS − 1 and n = 0, ..., M̃ , i.e. for a total of M̃NNPRS samples. Using
the explicit formula given in (3.14), this would require M complex multiplications
per sample, where M = 137 or 138 is the symbol length in samples. However,
since the cross-correlation may be written in terms of a convolution, it can be
calculated more e�ciently, for example using the overlap-save method [28]. This
method breaks down the sequences into smaller overlapping sequences and calcu-
lates the linear convolution via several FFT and IFFT operations. With an FFT
size of N = 2ν for some integer ν, the number of complex multiplications per
sample reduces to

N log2 2N

N −M + 1
≈ 2ν

2ν −M
(4.19)

Using this expression, we can �nd a value of N that minimizes the computational
e�ort for each correlation. The same method can be applied to the interpolation
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Algorithm 1 Proposed EM-SIC algorithm

1: ỹ0[n]← y[n]
2: for niter ← 1 to Niter do

3: for p← 0 to P − 1 do

4: calculate Rp,l̃(s)[n], ∀s . Correlator block

5: calculate ε̂p, Rp[n], ñp . CFO block
6: if PAR > η then
7: calculate ĥp, ỹp+1[n] . Channel estimation block
8: else

9: ỹp+1[n]← ỹp[n]
10: end if

11: if niter = Niter then

12: calculate R̂p[n] . Interpolation block
13: R̂p,0[n]← R̂p[n]
14: ñp,0 ← arg max| R̂p,0[n]|
15: while P̂AR > γ do . First path estimation block
16: calculate R̂p,i+1[n]
17: ñp,i ← arg max |R̂p,i[n]|
18: i← i+ 1
19: end while

20: ñp,0 ← min
i
{ñp,i}

21: end if

22: end for

23: end for

24: return {ñp,0}

block, since (4.12) can also be interpreted as a convolution with a sinc-�lter, but
now the sequence input length is 2W + 1 = 17. The number of complex mul-
tiplications per sample for the two blocks using di�erent FFT sizes is shown in
Table 4.1. It can be seen that the correlation block achieves minimum complexity
for N = 1024 and therefore this is the best choice of N (not considering other
implementation aspects). The complexity for the interpolation block is not of as
much concern, since the interpolation will be performed for less samples and will
not be executed as often.

In Table 4.2, the number of operations carried out by each block has been
calculated approximately. A TOA search window of M̃ = 192 samples (0.1 ms)
has been assumed, but in most scenarios this is probably larger than necessary. The
calculations show that most of the computational burden lies within the correlation
and CFO estimation blocks. The complexity depends asymptotically upon M̃
and can therefore be lowered by choosing a smaller search window. The channel
estimation block is not as burdensome and its complexity depends only upon
the symbol length M and the number of NPRS symbols NNPRS, which are both
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Table 4.1: The number of complex multiplications per sample re-
quired by the overlap-save algorithm for di�erent FFT sizes N

N Correlation Interpolation

8 19.20 9.60

9 13.62 10.33

10 12.68 11.17

11 12.85 12.09

12 13.45 13.05

constant. The interpolation and �rst path estimation blocks are the least complex
blocks, although their complexity can be modi�ed by changing the interpolation
factor V and the interpolation window W .

The total complexity of the whole algorithm can to some extent be regarded
as random, since it is dependent on the received signal. In general, the complex-
ity increases with the number of cells P and the number of iterations Niter. The
positioning accuracy generally also increases with P , but this is not of concern to
the UE, since the number of participating eNodeBs is determined by the network.
However, the number of iterations Niter should be chosen as small as possible,
while still achieving good TOA accuracy. Nevertheless, some blocks of the algo-
rithm may never be executed if PAR thresholds are not met. In Algorithm 1,
the outline of the whole algorithm is shown, and here we see that the channel
estimation block will only be executed for cells where the correlation exceeds the
PAR threshold. Similarly, the �rst path estimation block will keep iterating un-
til the �rst path is found. The total complexity of the algorithm must therefore
be evaluated statistically for di�erent input signals. A "worst case" in terms of
complexity (which is usually the best case in terms of accuracy), can be evaluated
using the numbers in Table 4.2. If we assume P = 6 and Niter = 2, and we as-
sume that the channel estimation block is executed for all cells in both iterations,
the total amount of complex multiplications, divisions and trigonometric evalua-
tions become approximately 594 000, 308 000 and 358 000 respectively. This is
reasonable to execute within the response time, for both hardware and software
implementations. For example, assuming that the algorithm is running at a 100
MHz hardware implementation executing one operation per clock cycle, the total
computational burden would be 10 ms, which is well within the response time
requirement of 160 ms.

Several bu�ers are needed in order to store the estimated parameters in each
iteration, but most of the memory consumption will be used to store the received
signal and the 3-6 reference signals, which have a length up to complex 1920
samples. Assuming a 16-bit �xed point implementation, this requires memory
bu�ers in the order of 10s of kilobytes. The bu�ers of other operations, such as
the FFT/IFFT, should also be considered.

The scope of this thesis does not include implementation aspects and further
analysis of the complexity and memory consumption for a given implementation
framework is left as future work.
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Table 4.2: The approximate number of complex multiplications,
divisions, and trigonometric function evaluations required by
each block in the proposed algorithm for M̃ = 192, M = 137,
NNPRS = 8, V = 16, W = 8, and FFT size N = 1024 for
the overlap-add method, as well as the asymptotic complexity
of each block. A rough estimate of the total complexity of the
algorithm is given, assuming that the correlation, CFO estima-
tion and channel estimation blocks are executed P ×Niter = 12
times, and the interpolation and �rst path estimation blocks
P = 6 times.

Block Mult. Div. Trig. Asympt.

Correlation 19 500 - - O(M̃)

CFO Est. 26 100 24 600 27 600 O(M̃)

Channel Est. 3 800 1 100 2 200 O(1)

Interpolation 1400 - - O(VW )

First Path Est. 200 (per iter.) - - O( ˜VW )

Total 594 000 308 000 358 000
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Chapter5

Numerical Simulations

5.1 Simulation Parameters

An OTDOA simulator for NB-IoT was implemented in Matlab with the purpose of
demonstrating the performance increase gained by the proposed algorithm using
Monte Carlo simulations. The simulator places cell sites with a speci�c inter-site
distance in a hexagonal grid, such as in Figure 5.1. UEs are then dropped with a
uniform geometric distribution inside one of the cells, in this case the one with cell
ID 8. The propagation channels from each cell tower to each UE are simulated and
such that unique received signals are created. The TOAs are then estimated using
di�erent methods: the standard estimate in (3.13), SIC without frequency o�set
compensation (FOC), SIC with FOC, SIC with FOC and interpolation, and �nally
using the complete proposed algorithm with SIC, FOC, interpolation and �rst-
path estimation. This corresponds to activating and deactivating di�erent parts
of the block diagrams in Figure 4.1 and 4.2. The performance of the di�erent
methods are evaluated by calculating the TOA errors τp,0 − τ̂p,0 and the error√

(x− x̂)2 + (y − ŷ)2 of the corresponding positioning result.

When evaluating the positioning errors, we also need to consider that not
all positioning attempts are successful. For example, if the PAR threshold of a
certain cell is not exceeded, the TOA for that cell will not be estimated. Since TOA
estimates from at least three cells is necessary for obtaining a position estimate,
some UEs will therefore not be located. Furthermore, if the position error exceeds
500 m, the estimate is not considered, since the network is assumed to have some
a priori knowledge of the approximate UE location. For example, by using the cell
ID, the network knows in which cell the UE is located, so if the OTDOA solution
converges outside this cell, we know that the measurements cannot be trusted.
Using these criteria, we de�ne the localizability as the percentage of UEs that have
been successfully located. This can also be interpreted as the probability of being
able to successfully assign a position to a given UE.

Furthermore, the probability of detection Pd was simulated for di�erent meth-
ods. Pd is here de�ned as correctly identifying the received NPRS signal from a
cell within ±1 samples at 1.92 MHz. For this type of simulation, we do not have
to consider interpolation, since it will have no impact on this probability. The
results are presented in section 5.2.

The TOA errors are presented in terms of its empirical probability distribution

29
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Table 5.1: Parameters used in numerical simulations

Parameter Value

Number of eNodeBs P 6

Number of UEs 5000 uniformly dropped

Inter-site distance d 1 732 m

Operation mode In-band

Carrier frequency 900 MHz

Channel model AWGN, ETU

Channel Doppler frequency 3 Hz

eNodeB-antenna 1

UE-antenna 1

Consecutive NPRS subframes 1

NPRS muting false

UE-sampling frequency Fs 1.92 MHz

Thermal noise density 250 dB below transmit power

Shadowing standard deviation 8 dB

Inter-cell shadowing correlation 0.5

Path loss model (rp in km)
(
αp

)
dB

= 120.9 + 37.6 log10 rp
CFO Uniformly drawn in ±500 Hz

Number of iterations Niter 2

PAR threshold η 3

First path PAR threshold γ 3

TOA search window M̃ 192 samples

Interpolation factor V 16

Interpolation window W 8

function (PDF) in section 5.3 and the positioning results in terms of its empirical
cumulative distribution function in section 5.4. As it was established �rst-path
estimation block did not a�ect the results in AWGN and ETU channels, the bene-
�ts of this block was analysed with a simulation using a speci�c two-path channel
model in section 5.5. Finally, a simulation of the TOA variance compared to
the CRLB is presented in section 5.6. Unless otherwise speci�ed, the simulation
parameters in Table 5.1 are used [29].



Numerical Simulations 31
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Figure 5.1: The cell grid used in the numerical simulations. The
black dots indicate cell tower sites and each sector has been
given a unique cell ID. In the simulations, UEs are dropped
uniformly in the sector with cell ID 8.

5.2 Probability of detection

The probability of detection Pd was simulated in both AWGN and ETU channels
for di�erent noise powers. The transmit powers Gp of each cell tower were �xed
and the noise power N0 was varied between 250 and 150 dB below the transmit
power (note that the SINR of each received signal is random, since it depends on
the distance to each cell and the log-normal shadowing). The results are shown
in Figure 5.2 and 5.3. From the results we see that using SIC and FOC increases
the probability of detection in low-noise scenarios, both in the AWGN and ETU
channels. However, the bene�ts are not as big in ETU as for AWGN.



32 Numerical Simulations

-250 -200 -150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.2: Probability of detection Pd for di�erent noise power to
transmit power ratios N0/G in AWGN channel.
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Figure 5.3: Probability of detection Pd for di�erent noise power to
transmit power ratios N0/G in ETU channel.
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5.3 TOA Errors

The TOA errors were simulated in both AWGN and ETU channels using the
di�erent techniques. The results are shown in Figure 5.4 and 5.5. Here we see that
the SIC, FOC and interpolation each reduces the variance of the TOA estimates.
In AWGN, the interpolation gives an especially large variance reduction. However,
in ETU the bene�ts for each block are not as big, and the overall TOA variance
is much greater than in AWGN for each method. In general, the TOA estimates
are slightly biased, which is due to a simulation bug, but the bias cancels when
the TDOAs are formed.
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Figure 5.4: Empirical PDF of the TOA errors in the AWGN channel.
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Figure 5.5: Empirical PDF of the TOA errors in the ETU channel.

5.4 Positioning Errors

The positioning errors were simulated in both AWGN and ETU channels for the
di�erent methods. The results are shown in Figure 5.6 and 5.7, together with Table
5.2 and 5.3. The proposed algorithm greatly increases the positioning accuracy as
well as the localizability ratio in AWGN channel. For ETU the accuracy is only
modestly increased, but the bene�ts are signi�cant in terms of localizability.

In Figure 5.8, the geographic distribution of the estimated UE positions within
the sector from the AWGN simulation is shown. Note that the UEs were dropped
uniformly within the sector, so for a 100 % localization ratio, we would expect
to see a uniform distribution. More simulation results investigating the impact
of the number of cells P , the inter-site distance (between cell towers) d, the PAR
threshold η and the number of SIC iterations Niter are shown in Figures 5.9-5.14.



Numerical Simulations 35

0 100 200 300 400 500

Horizontal error [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Figure 5.6: Empirical CDF of the horizontal positioning errors in
AWGN channel.
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Figure 5.7: Empirical CDF of the horizontal positioning errors in
ETU channel.
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Table 5.2: Positioning results in AWGN

Method 95th percentile [m] Localization ratio

Standard 342 0.67

SIC 184 0.88

SIC and FOC 97 0.97

SIC, FOC and Interpol 61 0.97

Table 5.3: Positioning results in ETU

Method 95th percentile [m] Localization ratio

Standard 435 0.56

SIC 406 0.76

SIC and FOC 411 0.85

SIC, FOC and Interpol 409 0.86
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(b) SIC, FOC and Interpol

Figure 5.8: Distribution of estimated UE positions in one cell for sim-
ulation in AWGN channel using two di�erent estimation tech-
niques.
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Figure 5.9: Positioning errors and localization ratios for di�erent
number of participating eNodeBs P in AWGN channel, using
the standard TOA estimate.
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Figure 5.10: Positioning errors and localization ratios for di�erent
number of participating eNodeBs P in AWGN channel, using
the proposed algorithm with SIC, FOC and interpolation.
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Figure 5.11: Positioning errors and localization ratios for di�erent
inter-site distances d (in meters) in AWGN channel using the
standard TOA estimate.
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Figure 5.12: Positioning errors and localization ratios for di�erent
inter-site distances d (in meters) in AWGN channel using the
proposed algorithm with SIC, FOC and interpolation.



Numerical Simulations 39

0 100 200 300 400 500

Horizontal error [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Figure 5.13: Positioning errors and localization ratios in AWGN
using the proposed algorithm with SIC, FOC and interpolation
with di�erent PAR thresholds η.
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Figure 5.14: Positioning errors and localization ratios using the pro-
posed algorithm with SIC, FOC and interpolation for di�erent
number of SIC iterations Niter. As can be seen, the algorithm
converges within 2-3 iterations.
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5.5 Two-path Channel Simulations

Since the �rst-path/multipath detection block did not improve performance in
the ETU channel, a simulation of TOA and positioning errors was carried out in
a customized two-path channel with path delays 0 and 10 µs and corresponding
average path gains of 0 and -3 dB. The results are shown in Figure 5.15 and 5.16,
where it can be seen that the MPD leads to a signi�cant performance gain in the
case that the multiple path components are far away from each other, such that the
peaks of each path component can be detected correctly without interfering each
other, which however, is not the case for ETU channel. Therefore, a somewhat
more advanced algorithm is needed to cope with the ETU channel for the �rst
path detection, which is left as future work.
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Figure 5.15: Empirical PDF of the TOA errors in the tested two-
path channel.
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Figure 5.16: Empirical CDF of the horizontal positioning errors in
the tested two-path channel.

5.6 CRLB for TOA Estimation

The TOA variance was simulated for di�erent SNRs and compared to the CRLB.
In this simulation, the number of cells was reduced to 3 and the CFO drawn
between ±750 Hz to highlight the gain of the FOC. The transmit powers were
set to unity and the path loss was ignored, i.e. G0 = α0 = 1, so that the SNR
could be could be calculated at the receiver for each NPRS signal. The results are
shown in Figure 5.17, where it can bee seen that the proposed algorithm with all
three blocks almost attains the CRLB for intermediate SNRs. For high SNRs the
standard deviation becomes saturated, which is due to the limited interpolation
factor.
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Figure 5.17: Standard deviation of the TOA estimates in AWGN
compared to the CRLB for di�erent SNR.
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From the numerical simulations, it can be seen that the proposed algorithm in-
creases positioning performance under all circumstances. From Figure 5.2 and 5.3,
it is clear that probability of correctly identifying the TOA of a received NPRS
signal is doubled in AWGN and nearly doubled in ETU. Here both the SIC and
FOC blocks makes a signi�cant di�erence, especially in low-noise scenarios. The
improvements in the probability of detection is also crucial, since determining the
UE position requires the detection of at least three cells.

The TOA errors in Figure 5.4 shows that among the detected TOAs, the
interpolation makes the biggest di�erence in terms of variance reduction. The
�gure also shows that the estimates are slightly biased, but this does not a�ect the
positioning results, since the bias will cancel when the di�erences between TOAs
are formed. Figure 5.5 shows that the bene�ts of interpolation are not as great
in ETU channel, which is expected, since the delay between di�erent multipath
components are smaller than the sampling frequency. Therefore, the correlation
peak that is being interpolated is in fact a non-coherent addition of several peaks,
shifted by a sub-sample delay. In general, the low sampling frequency makes it
very di�cult to mitigate multipath interference, and this is the main reason for
the poor TOA error performance of the proposed algorithm. The purpose of the
�rst-path estimation block is to solve this problem, but due to the low sampling
rate, it cannot distinguish the di�erent paths for ETU. This is an issue that needs
to be addressed in future work in order to improve performance in urban fading
channels. However, the �rst-path detection is not useless, since it can decrease the
TOA error variance in multipath channels with path delays signi�cantly longer
than the sampling period, such as in Figure 5.15. This shows that when the two-
paths can be resolved after interpolation, the �rst-path detection works properly.

The AWGN positioning errors in Figure 5.6 and Table 5.2 highlights the large
performance increase that the proposed algorithm yields. The 95th percentile
of the position errors are decreased from 342 m to 61 m and the percentage of
localized UEs is increased from 67 % to 97 %. This shows that without the presence
of multipath fading, the SIC, FOC and interpolation stages all yield a signi�cant
performance increase. While the interpolation decreases the error of localized UEs,
the SIC and FOC also increase the localization percentage signi�cantly. This
is illustrated in �gure 5.8a, where the distribution of estimated UE positions is
shown. Using the standard method, almost none of the UEs close to the cell tower
in the left corner of the hexagon are localized. This is expected, since the near-far
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problem is most severe when a UE is very close to a cell tower. However, when using
the proposed algorithm, this problem is mitigated by interference cancellation,
such that the weaker cell towers can be detected and the UEs can be localized,
which is clearly seen in Figure 5.8b.

In ETU, the increase in positioning accuracy is not nearly as large, which is
seen in Figure 5.7, for reasons that have already been mentioned. Nevertheless,
from Table 5.3 we see that the percentage of localized UEs is increased just as much
as in AWGN and that this gain primarily comes from SIC. This also illustrates
the problem of comparing positioning errors for two methods where the sample
sizes are di�erent. For the two-path channel results in Figure 5.16, the results are
similar, but the �rst-path detection is able to further decrease the position errors
somewhat.

Figures 5.9-5.10 illustrates the very signi�cant impact that the number of
participating cells P has on localization and positioning performance and how the
proposed algorithm takes care of this problem. Using the standard method, the
number of participating cells is critical for the probability of being able to localize.
Using only three cells, which is not an unrealistic scenario, only 18 % of UEs were
localized, and this increases to 54 % when increasing to 4 cells. The proposed
algorithm seems to be indi�erent to this parameter, since the results are almost
identical, independently of the choice of P . This is a very nice property, especially
in rural scenarios where not many cells are available. Similarly, Figures 5.11-5.12
shows that the positioning errors seems to increase with the inter-site distance d
for the standard method, whereas the proposed algorithm shows results that are
independent of this parameter. Since NB-IoT is expected to be deployed with very
large cell sizes, this is a nice property to have.

The results from Figure 5.13 shows that the performance of the proposed
algorithm is not highly dependent of how the PAR-threshold η is set, but η = 3
or 4 is probably reasonable. The problem of choosing a good threshold can be
described as a trade-o� between sensitivity and speci�city. A lower threshold
will yield more false alarms, whereas a higher threshold results in more missed
detections. Moreover, Figure 5.14 shows that 2-3 EM-SIC iterations is enough
to maximize performance, as further iterations do not increase performance. The
choice of Niter should also take the computational complexity into account.

Finally, the results of the CRLB simulation in Figure 5.6 can be addressed by
concluding that the proposed algorithm comes very close to achieving the lower
bound, much closer than the standard method. For very low SNRs, the TOA
variance becomes very large, since the NPRS signals are completely buried in noise
and a longer signal would be necessary to improve the results. For intermediate
SNRs, the bound is almost attained for the proposed method, and as the SNR
increases, the variance is bounded by the low sampling rate and the interpolation
factor. The variance for high SNRs could thus be further reduced by increasing
the interpolation factor V , but since such low-noise scenarios are not realistic, this
is not of much concern.

One important conclusion from the CRLB simulation is that since the proposed
algorithm almost attains the CLRB, then at least in AWGN scenarios, performance
cannot be increased much more than what has been done here. The performance
is fundamentally limited by the small bandwidth of the NB-IoT NPRS signal and
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this limit cannot be worked around by the UE. However, the bound can be lowered
by transmitting several consecutive NPRS subframes and the proposed algorithm
can easily be extended to consider such scenarios.

In summary, the following can be said about the proposed EM-SIC algorithm:

• In AWGN channel, the positioning performance is signi�cantly increased,
both in terms of accuracy and localizability. The impact of the near-far
problem is reduced.

• In ETU channel, the gains are mainly in terms of localizability. The same
can be said about other multipath fading channels with short path delays.

• The �rst-path detection does not give any bene�ts, unless the channel path
delays are longer than the UE sampling period.

• The algorithm shows tolerance towards non-ideal positioning conditions,
such as a small number of participating cells and large inter-site distances.
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