
Faculty of engineering, LTH

Centre for mathematical sciences

Master Thesis

Fingerprint Matching using Small
Sensors

Rikard Drugge
tpi11rdr@student.lu.se

Supervisor

Magnus Oskarsson

magnuso@maths.lth.se

Examiner

Anders Heyden

anders.heyden@math.lth.se

April 2017

Abstract

Fingerprint software is widely used in applications such as smartphones. There has to
be some overlap between two fingerprint samples in order for them to be considered as
belonging to the same finger. Determining if this overlap exists is normally not a problem
if a fingerprint sensor is big enough to capture a sample from the whole finger at once.
However, if the sensor is small it might capture samples from different parts of the same
finger such that there is no overlap. To find a predictor one needs a training set but
constructing the set using small sensors lead to a highly noisy set. This project examines
some methods to filter the noise. None of the filtering methods provided a conclusive
improvement on all datasets compared to the already implemented method. The most
promising methods, however, includes a substitution of the SVM algorithm with S3VM
and either to use no filtering, random downsampling of the majority class or a recursive
filter.

Keywords. Fingerprint, small sensor, noise, filter, SVM, S3VM , SMOTE, ADASYN.

Acknowledgements

I would like to thank the R&D team at Precise Biometrics for providing the foundation
for an interesting project. Special thanks to Karl Netzell for exceptional guidance and
insightful comments. Thanks also to Rutger Petersson for taking me on board and to
Magnus Oskarsson for supervising the project.

Contents

1 Introduction 4
1.1 Fingerprint systems . 5
1.2 Fingerprint characteristics . 7
1.3 Template matching . 7
1.4 System errors . 9
1.5 A brief introduction to machine learning 10
1.6 Problem formulation . 10

2 Theory 12
2.1 The matching module . 12
2.2 Matching module errors . 13
2.3 Machine learning . 15

2.3.1 Predictor errors . 16
2.3.2 Overfitting . 16
2.3.3 Crossvalidation . 17

2.4 Algorithms . 18
2.4.1 Linear predictors . 18
2.4.2 Support Vector Machine (SVM) 19
2.4.3 Semi-Supervised Support Vector Machine (S3VM) 20
2.4.4 Parameter selection . 22

2.5 Dataset characteristics . 23
2.5.1 Noise . 23

3 Datasets and tools 24
3.1 The dataset structure . 24
3.2 The datasets . 25

3.2.1 Dataset SA . 25
3.2.2 Dataset SB . 25
3.2.3 Dataset SC . 25
3.2.4 Match information . 26
3.2.5 Memory limitations . 26

3.3 Tools . 27
3.3.1 Matlab/Octave . 27
3.3.2 LIBLINEAR . 27
3.3.3 SVMLIN . 28
3.3.4 FLANN . 28

1

CONTENTS 2

4 The original algorithm 29
4.1 Introduction . 29
4.2 The training algorithm AP . 30

4.2.1 The inner training algorithm ÂP 31

5 The new algorithm 33
5.1 Introduction . 33
5.2 The training algorithm AN . 33

5.2.1 The inner training algorithm ÂN 34
5.3 The selection function µN . 34
5.4 The filter functions ρ . 34

5.4.1 ADASYN . 35
5.4.2 SMOTE . 37
5.4.3 Grey data . 37
5.4.4 Mark below . 37
5.4.5 Random downsampling . 38
5.4.6 Recursive . 38
5.4.7 Voting filter . 38

5.5 Feature transformation . 40

6 Results 42
6.1 Evaluation procedure . 42

6.1.1 The baseline . 43
6.1.2 Parameters for the ρ and µN functions 43
6.1.3 Initial subset . 44

6.2 Algorithmic performance using β̂0
N = βP 44

6.3 Algorithmic performance using β̂0
N = βR 46

6.3.1 Convergence . 46
6.4 Overfitting . 47
6.5 Feature transform - Centroid method . 48

7 Conclusions 49
7.1 Future work . 49

7.1.1 Feature transformation . 49
7.1.2 Robust SVM . 50

8 Appendix 51
8.1 The original training structure . 51

8.1.1 Functions . 51
8.2 The new training structure . 53

8.2.1 Functions . 53
8.2.2 An example . 55

CONTENTS 3

Symbols, terms and functions

Table 1 contains a summary of the symbols, terms and functions that are used in this
report.

Symbol/Term/Function Meaning
R The set of real numbers.
Rn The set of n-dimensional vectors over R.
N The set of natural numbers.
T Enrollment template.
I Verification template.
F Feature vector.
T Multitemplate.
I Set of verification templates.
F Multifeature.
X Domain set.
Y Label set.
LD,f True error.
AL(S) Linear training algorithm SVM or S3VM working on dataset S.
AP (S) Original training algorithm working on dataset S.
AN(S) New training algorithm working on dataset S.
λP Predictor returned by the original training algorithm AP (S)
λN Predictor returned by the new training algorithm AP (S)
α Feature function.
β Score function.
γ Decision function.
FAR False Accept Rate.
FRR False Reject Rate.
Sample Digital representation of a part or a full fingerprint.
Template Compact representation of sample.
Multitemplate Collection of templates.
Genuine match Match between two templates from the same finger.
Impostor match Match between two templates from two different fingers.

Table 1: Symbols, terms and functions.

Chapter 1

Introduction

Biometric recognition refers to the use of distinctive anatomical and behavioral char-
acteristics, called biometric identifiers, for recognizing individuals [1, p.2]. Examples of
anatomical characteristics are fingerprints, irises and facial features. Speech is an example
of a behavioral characteristic. This method of recognition has garnered interest during
the last century since biometric identifiers cannot be shared or misplaced. Fingerprints
are among the more popular biometric identifiers [1, p.12]. In 1893, the Home Ministry
Office, UK, accepted that no two individuals have the same fingerprints [1, p.2]. Since
then, fingerprints have been used extensively in crime investigations. Early fingerprint
analysis used a manual method of visual comparison which was tedious and slow. More
recently, with the help of computers, the process has been able to become automated. Be-
cause of this, fingerprint technology has been integrated into devices such as smartphones
and tablets to provide a method for easy system access.

Precise Biometrics AB provides fingerprint software and smart card readers for digital
authentication of identity. Their fingerprint algorithm solution has been integrated into
hundreds of millions of mobile phones and tablets worldwide. It is well suited for products
with limited processing power and memory such as payment cards, wearables, access
control systems, the Internet of Things and products with small sensors. Since the advent
of devices such as smartphones where space is a valuable commodity, it has been of interest
to shrink the size of the fingerprint sensors [1, p.89]. However, the smaller sensor size
makes it harder to accurately perform fingerprint recognition. Precise Biometrics has
developed high performing algorithm solutions specifically for use with small sensors.
There is nevertheless room for improvement. This project evaluates different methods
aimed at improving these algorithms.

This report is divided into eight chapters. Chapter 1 contains an overview of concepts of
importance to fingerprint systems. Chapter 2 then provides a more in depth look at some
of these concepts. An introduction to the datasets and tools used in this project is found
in chapter 3. How the concepts, datasets and tools are connected in Precise Biometrics’
current system is explored in chapter 4. Chapter 5 contains the details of the changes
made to the system during this project. The effects of these changes and some comments
are found in chapter 6 and 7. Chapter 8 provides information about the implementations
of the functions in chapter 4 and 5.

4

CHAPTER 1. INTRODUCTION 5

1.1 Fingerprint systems

A fingerprint system may be a verification system or an identification system [1, p.3]. A
verification system authenticates the claimed identity of a person by comparing a captured
fingerprint with a previously captured template containing fingerprint data connected to
the claimed identity. The output of a verification system is an accept or reject decision
indicating whether the system believes that the person is who he/she claims to be.

With an identification system, the person makes no prior identity claim. Instead the
entire template database is searched for a match. The output in this case is the identity
connected to a template that matched sufficiently well. The output may be empty if
no template matched well enough. An identification system can be implemented by
letting a verification system perform a one-to-many comparison against an entire template
database. The focus in this project is on the verification system.

Two processes are shown in figure 1.1: enrollment and verification. The enrollment
process registers the fingerprint information from individuals and saves it in the system
storage. The verification process is responsible for confirming the claim of identity of
the subject. The claim can be made with the help of a user name, a PIN number or
through information stored on a proximity card, depending on the type of system. As
seen in figure 1.1, the enrollment and the verification processes can be broken down into
the following modules:

• Capture: a digital representation of a fingerprint is captured using a sensor. The
captured representation is known as a sample.

• Template creation: the sample is processed to extract the essential information
contained in the fingerprint. This creates a more compact representation of the
sample, known as a template. Using the template instead of the raw sample is
often beneficial in terms of storage space and system speed.

• Matching : the matching module decides whether two templates should be consid-
ered as belonging to the same finger. This module can be broken down into three
sub-modules. The first sub-module takes a verification template (obtained from a
new sample) and an enrollment template (from the system storage) as inputs and
produces a feature set containing information about the similarity of the two tem-
plates. This feature set is used as input to the second sub-module which calculates
a similarity score. The similarity score is then compared to a predefined system
threshold in the third sub-module. The templates are deemed to represent the same
finger only if the similarity score is above the system threshold. If this is the case,
the matching module makes a match (or accept) decision. If the score is below the
threshold, the decision is non-match (or reject).

CHAPTER 1. INTRODUCTION 6

Sample Template

Template identifier

Enrollment process

Data
storage

Template
creation

Capture

Sample Template

Claimed identity

Verification process

Data
storage

Template
creation

Capture Matching
 Template

Match or non-match

Figure 1.1: Overview of the enrollment and verification processes. The enrollment process is
responsible for creating and storing the enrollment template that has been extracted from a
captured sample. In the verification process, a new sample is captured and converted into
a verification template. This template is then compared to a previously stored enrollment
template and a match/accept or non-match/reject decision is made depending on the similarity
of the two templates and the system threshold.

CHAPTER 1. INTRODUCTION 7

1.2 Fingerprint characteristics

The fingerprint system in section 1.1 and figure 1.1 utilizes a module called template
creation which extracts the essential information from a captured sample. This section
explores the kind of information that may be extracted during this stage.

A fingerprint is the reproduction of the exterior appearance of the fingertip epidermis
(the outer of the two layers that make up the skin). Figure 1.2 shows some of the
most characteristic features of a fingerprint, ridges and valleys [1, p.97]. The ridges are
the dark lines and the valleys are the bright lines. A fingerprint consists of a series of
interleaved ridges and valleys. It is common to describe ridge characteristics with three
levels of detail. Level 1 is the overall global ridge flow pattern. Level 2 (local level) are
the minutiae (small detail) points. Among Level 3 are things like pores and the local
shape of ridge edges.

The global patterns in Level 1 can be classified into three categories, loops, deltas and
whorls [1, p.98]. Examples of these can be seen in figure 1.3. Compared to the other
areas of the fingerprint which consist of mainly parallel ridges, these areas contain higher
curvature and frequent ridge terminations. The loop, delta and whorl types are typically
characterized by ∩, ∆ and O shapes respectively.

Minutiae are part of the local level (Level 2) characteristics [1, p.99]. Examples of minu-
tiae are ridges that come to an end or divide into two ridges as can be seen in figure 1.4.
These are called ridge endings and bifurcations respectively. Minutiae are the most com-
monly used characteristics in automatic fingerprint matching and it has been observed
that minutiae do not change during an individual’s lifetime.

Level 3 contains the very local characteristics [1, p.101]. These include the width, shape
and edge contour of the ridges. The ridges are dotted with sweat pores which can also
be used to identify a person assuming a sufficiently high resolution fingerprint sensor is
used.

In order for the characteristics to be used in an automatic system they have to be quanti-
fied in some way. A ridge ending minutia may for example be quantified using three num-
bers; the two planar coordinates and the directional angle of the ridge ending tip.

1.3 Template matching

The matching module compares two templates and returns a decision on whether they
match or not. The output of the first sub-module in the matching module is a feature set.
This feature set is produced by comparing the two input templates. A template is simply
put a collection of numbers (called descriptors) that are quantifications of the fingerprint
characteristics as seen in section 1.2. A possible method for measuring the similarity of
two templates is to measure the distance between their descriptors using some norm, e.g.
the Euclidean or Hamming norm.

CHAPTER 1. INTRODUCTION 8

Figure 1.2: Example of a fingerprint sample. The dark lines are the ridges. The white space
inbetween the ridges are the valleys.

Figure 1.3: Examples of loops (∩), deltas (∆) and whorls and (O) in fingerprints.

Figure 1.4: A ridge ending and a bifurcation.

CHAPTER 1. INTRODUCTION 9

Figure 1.5: The overlap between the enrollment template (red) and the verification template
(green) is non-existent due to a small sensor.

1.4 System errors

There are many reasons why the fingerprint system could make the wrong decision and
allow or deny access to the wrong person [1, p.12-14]. Problems with the sensor could
lead to errors of the types: Failure to Detect (FTD) and Failure to Capture (FTC), which
respectively refer to the sensor failing to detect the presence of a finger and failure to
capture a sample of sufficient quality. Failure to Process (FTP) occurs when the template
extraction module is unable to extract a usable template from the sample.

An information limitation error occurs for example when a verification template and
an enrollment template are from different parts of the same finger and there is very
little overlap between the two [1, p.12]. This situation is common if the sensor size is
small and unable to capture a full fingerprint in one sample. Figure 1.5 illustrates this
problem. Even though both the enrollment and the verification template come from
the same finger it is very likely that the owner of this fingerprint would be rejected
due to the lack of similarity between the two templates. To increase the possibility
of overlap between the enrollment and verification template, a method which is used
by Precise Biometrics is to let users provide a set of enrollment templates, known as
a multitemplate (figure 1.6), from each finger during the enrollment phase. With this
method, a finger is accepted if the verification template is sufficiently similar to any of
the templates in a multitemplate. Naturally, provided that the sensor is small enough
and that the templates in the multitemplate are evenly distributed over the finger, a
verification template is going to lack similarity to many, if not most, of the templates
in the multitemplate. This is true regardless of whether or not the verification template
and the multitemplate are created from the same finger.

CHAPTER 1. INTRODUCTION 10

Figure 1.6: A multitemplate is a collection of enrollment templates (red). The verification
template (green) overlaps only some of the templates in the multitemplate.

1.5 A brief introduction to machine learning

Precise Biometrics utilizes machine learning in the second and third sub-module of the
matching module to support its accept or reject decisions. In [2, p.vii, p.19] the subject
of machine learning is introduced as a method of programming computers to learn using
examples. The goal is to find meaningful, exploitable patterns among a set of examples.
Machine learning algorithms may be divided into three different groups; supervised, semi-
supervised and unsupervised [2, p.23]. The names of the three groups are connected to
the type of example sets that the different types of algorithms expect as input when
learning. Supervised learning algorithms expect the data in the training set to be paired
with a label that indicates what class the example belongs to. Unsupervised learning
does not expect the data to be labeled. Semi supervised learning is a mixture of the
supervised and unsupervised learning; the dataset can consist of a mixture of labeled and
unlabeled data.

1.6 Problem formulation

It is time to formulate the problem that is investigated in this project. The focus is on
the matching module. The second and third sub-module in the matching stage (section
1.1) uses machine learning to learn when to make an accept or reject decision. Section
1.5 described machine learning as a method for learning from a set of examples. In this
project, an example is a feature set (section 1.1). The example is connected to a label
indicating whether the feature set is produced by two templates from the same finger or
not. Section 1.4 however mentioned that, when a small sensor is involved, a verification
template is often going to lack similarity to many of the templates in a multitemplate
regardless of whether they come from the same finger or not. This means that the example

CHAPTER 1. INTRODUCTION 11

set is going to suffer from noise. The problem that is investigated in this project can be
formulated as follows: Is there a better method to remove noise from the example set
compared to the one currently in use by Precise Biometrics?

Chapter 2

Theory

This chapter explores some concepts of importance to the matching module which was
introduced in section 1.1. However, the details of the actual implementation of this
module is located in subsequent chapters. Section 2.1 introduces some notation and
functions that are useful for further discussion of the matching module. Details on how
to quantify the performance of the matching module is found in section 2.2. Section 2.3
contains a formal introduction to machine learning and some of the common concepts and
issues encountered when dealing with this subject. A main concept is the predictor. Some
training algorithms for linear predictors are explored in section 2.4. These algorithms
require a training dataset. Section 2.5 presents some common problems encountered
when constructing a training set.

2.1 The matching module

The matching module was introduced in section 1.1 and its place in the overall finger-
print system can be seen in figure 1.1. This section contains further details about this
module.

A template can be regarded as a vector in Rm containing a quantification of the character-
istics of a fingerprint sample. Examples of these characteristics were presented in section
1.2. The input to the matching module is an enrollment template, T, and a verification
template, I. The output is a binary decision on whether these two templates should be
considered as belonging to the same finger or not. It was further specified in section 1.1
that the matching module consists of three sub-modules. The first sub-module is the
feature function, α : Rm × Rm → Rn. A feature vector is acquired using α(T, I). This
feature vector contains information about the similarity of T and I and is the input to
the second sub-module.

The score function is β : Rn → R. A similarity score for a feature vector F can be
calculated using β(F). As the name implies, this function calculates a single number
that measures the similarity of two templates (the dependency of β on the two templates

12

CHAPTER 2. THEORY 13

is implicit in F). Finally, the decision function is γ : R → {0, 1}. A decision is acquired
from a similarity score S using γ(S).

The function s(T, I) is used in section 2.2 when discussing error measurements. This
function produces a similarity score from two templates and can be defined as a composite
function, s := β ◦ α : Rm × Rm → R.

The complete matching module function, m, is acquired by also including the γ function
after the similarity score calculation, m := γ ◦ β ◦ α : Rm × Rm → {0, 1}. This function
takes two templates and makes an accept or reject decision.

Finally, a function that is going to be of importance during the remainder of this project
and should be kept in mind especially when reading section 2.3 is the composition of
the similarity function and the decision function, λ := γ ◦ β : Rn → {0, 1}. This func-
tion makes a decision given a feature vector containing similarity measurements of two
templates.

2.2 Matching module errors

The similarity score that is used in the second sub-module in the matching module can
without loss of generality be assumed to lie in the interval [0, 1]. The closer a score is
to 1, the more certain is the system that the verification template and the enrollment
template comes from the same finger. A decision that the two templates do indeed come
from the same finger is called a match. The opposite decision is called a non-match. Two
types of errors can be committed at this stage, the false match and the false non-match.
The false match error occurs when the system deems templates from two different fingers
to be from the same finger. The false non-match error occurs when templates from one
finger are mistaken for being from two different fingers. False match and false non-match
are often referred to as false acceptance and false rejection. These terms are commonly
used in the commercial sector and are also used in this report. It is also common to use
the false acceptance rate (FAR) and false rejection rate (FRR), as described in detail
below, when doing performance evaluation of a fingerprint system.

With T and I as in section 2.1, the null and alternate hypothesis are [1, p.16]:

H0: I 6= T, verification template does not come from the same finger as the enrollment
template.

H1: I = T, verification template comes from the same finger as the enrollment template.

The associated decisions are as follows.

D0 : non-acceptance.

D1: acceptance.

Before the final decision in the matching module, the similarity score s(T, I) is produced.
By collecting scores from many different template comparisons, both from comparisons
from the same finger and from different fingers, one can estimate the score distribution

CHAPTER 2. THEORY 14

p(s). The genuine distribution is a conditional distribution p(s|H1) of scores generated
from template comparisons from the same finger. The impostor distribution p(s|H0) is
the score distribution given comparisons from different fingers. If the similarity score is
less than a system threshold, t, then D0 is decided, else D1. The FRR and FAR can now
be declared as

FRR = P (D0|H1) =
∫ t
0
p(s|H1)ds

FAR = P (D1|H0) =
∫ 1

t
p(s|H0)ds

The FAR and FRR are functions of the system threshold t. By changing the threshold,
the FAR and FRR also changes. From figure 2.1 it is apparent that to decrease the FAR
one can simply increase the threshold. This however has the unfortunate effect of also
increasing the FRR. If one wants to decrease the FRR however, the FAR increases. De-
pending on where a system is to be deployed, a low FAR level can be more important than
a low FRR. In that case it would be beneficial to choose a high system threshold.

By varying the system threshold, new pairs of FAR and FRR can be acquired. Plotting
each pair in a DET graph (Detection Error Tradeoff) is a convenient method of evaluating
and comparing the performance of different systems. Figure 2.2 shows examples of DET
curves for different systems. Since both the FAR and FRR ideally should be a small
as possible for a good system, a curve that is as close as possible to the bottom is
preferred.

Figure 2.1: The FAR and FRR for a given threshold. By moving the threshold it is possible to
decrease the FAR at the expense of increasing the FRR and vice versa.

CHAPTER 2. THEORY 15

Figure 2.2: DET curves for different systems. A system with a DET curve close to the bottom
is preferred. Here, the red curve indicates the worst performing system.

2.3 Machine learning

This section expands on section 1.5 with a formal introduction to machine learning.

The output of the learning or training process is a prediction rule or predictor [2, p.34].
A predictor is used to assign a label to an object. The domain set, X , is the set of
objects that can be labeled. In this project X = Rn. The label set, Y , is the set of
labels that can be assigned to the objects in X . For binary classification the label set is
usually {0, 1} or {−1, 1}. A predictor is a mapping from the domain set to the label set,
h : X → Y . The training set, S = {(x1, y1)...(xN , yN)}, is a finite set of pairs in X × Y .
A(S) denotes the predictor that is returned by algorithm A using training set S. The
perfect predictor f : X → Y labels all points in the domain set correctly, i.e yi = f(xi)
for all i. It is assumed that objects in X are distributed according to some distribution D
such that given a subset C ⊂ X , the probability distribution D assigns a number D(C)
which determines how likely it is to observe a point x ∈ C. A general dataset, S, can
be thought of as being generated by sampling xi according to the distribution D and
assigning a label with yi = f(xi).

The true error of a predictor, h, is LD,f (h) := D({x : h(x) 6= f(x)}) i.e. the probability
of randomly choosing an example x for which h(x) 6= f(x). The distribution D and
the perfect predictor, f , are unknown during the training process. These are what the

CHAPTER 2. THEORY 16

training process is trying to find.

2.3.1 Predictor errors

The goal of the training is to find a predictor h : X → Y that minimizes LD,f (h) [2, p.35].
However since D and f are unknown, an estimated error measurement instead has to be
used. Assume a dataset S on the same form as in section 2.3. Then the empirical error
is calculated as

LS(h) =
|i ∈ [m] : h(xi) 6= yi|

m
, [m] = {1, ...,m}. (2.1)

Error measurements that are used extensively in this project were introduced in section
2.2. These are the False Accept Rate (FAR) and the False Reject Rate (FRR). The
following shows how to estimate these values for a predictor, h : X → R, using a set of
discrete pairs such as S.

Let t ∈ R. Using [2, p.244] gives the definitions

True positives : a(h, t) = |i : yi = +1 ∧ sgn(h(xi)− t) = +1|
False positives : b(h, t) = |i : yi = −1 ∧ sgn(h(xi)− t) = +1|
False negatives : c(h, t) = |i : yi = +1 ∧ sgn(h(xi)− t) = −1|
True negatives : d(h, t) = |i : yi = −1 ∧ sgn(h(xi)− t) = −1|

(2.2)

FRR and FAR are calculated according to

FRR =
False negatives

True positives+ False negatives
(2.3)

and

FAR =
False positives

True negatives+ False positives
. (2.4)

The FRR and FAR of a predictor h on a dataset S are thus

FRRS(h, t) =
c(h, t)

a(h, t) + c(h, t)
(2.5)

and

FARS(h, t) =
b(h, t)

d(h, t) + b(h, t)
(2.6)

The variable t in 2.2, 2.5 and 2.6 corresponds, in this project, to the system threshold
(sections 1.1 and 2.2).

2.3.2 Overfitting

When using an estimated error measurement to measure the fitness of a predictor it is pos-
sible to encounter a problem known as overfitting [2, p.36]. This is a phenomenon where
there is a dissonance between the predictor’s estimated error and the true error.

CHAPTER 2. THEORY 17

Assume that a predictor h, has been found using the training set S with empirical error
LS(h) = 0. If h has been overfitted it is possible that LD,f (h) > LS(h). This implies that
even though the predictor may seem to be perfect, it could still be making errors when
encountering new data points if the empirical error is a poor approximation of the true
error. A predictor is said to be overfitted if the difference between LD,f (h) and LS(h) is
large [2, p.173].

2.3.3 Crossvalidation

In order to make sure a predictor has not overfitted, one should evaluate a trained predic-
tor on data that the predictor has not previously encountered during the training session.
A method for simulating new data encounters is to partition the available dataset into a
training set and a test set. The training set is used to train the predictor. The predictor
is then used on the test set where some error measure is applied to gauge the performance
of the predictor.

A method that is commonly used to evaluate a predictor’s performance is known as k-Fold
Crossvalidation [2, p.150]. In k-fold crossvalidation the dataset of size m is partitioned
into k subsets (folds) of size m/k. For each fold, the algorithm is trained on the union
of the other folds and then the error of its output is estimated using the fold. Figure
2.3 shows an example of a 3-fold crossvalidation. The final performance measure of a
predictor is some aggregate of the performance on each fold. Some common aggregation
methods are the mean or the max method. The mean method calculates the mean of the
evaluation results of all folds. The max method simply chooses the worst result among
the folds.

To obtain reliable performance estimation or comparison, a large number of estimates are
always preferred. In k-fold crossvalidation, only k estimates are obtained. A commonly
used method to increase the number of estimates is to run k-fold crossvalidation multiple
times [11]. The data is reshuffled and re-stratified before each round.

CHAPTER 2. THEORY 18

Figure 2.3: 3-fold crossvalidation. The full dataset is split into three equal parts. Two parts are
used to train a predictor and the remaining part is used to evaluate the predictor. This process
is repeated three times until each part has been used for evaluation.

2.4 Algorithms

After the introduction to predictors, h : X → Y , in section 2.3 the following sub-
sections contain the algorithms AL(S) that are utilized to find linear predictors in this
project.

2.4.1 Linear predictors

Many learning algorithms that are being widely used in practice rely on linear predictors,
partly because of the ability to train them efficiently in many cases. In addition, linear
predictors are intuitive, easy to interpret, and fit the data reasonably well in many natural
learning problems [2, p.117]. The decision boundary for binary linear predictors is a
hyperplane. Assigning a label to a new data point is the same as observing on which side
of the hyperplane the data point falls.

Let φ : R→ Y . The family of linear predictors then have the form

hw,b(x) = φ(w · x + b) (2.7)

where w,x ∈ Rn, b ∈ R [2, p.117]. Often, φ is the sign function. In this case the prediction
rule can be written more clearly as

hw,b(x) =

{
1, if w · x + b > 0

0, otherwise
(2.8)

CHAPTER 2. THEORY 19

It is sometimes convenient to introduce w′ = (b, w1, w2, ..., wn) ∈ Rn+1 and x′ = (1, x1, ..., xn) ∈
Rn+1. The decision rule can now be written in a simpler form as

hw′(x) = φ(w′ · x′) (2.9)

or

hw′(x′) =

{
1, if w′ · x′ > 0

0, otherwise
(2.10)

2.4.2 Support Vector Machine (SVM)

The basic SVM algorithm finds a predictor that belongs to the family of linear predictors
[2, p.202]. SVM searches for a separating hyperplane that not only makes sure that data
points from different classes fall on different sides of the plane but also maximizes the
margin between the plane and the closest points of each class. Larger margins should
lead to better generalization and prevent overfitting in high-dimensional attribute spaces
[10].

There are different types of SVM; Hard-SVM and Soft-SVM [2, p.202]. Hard-SVM as-
sumes that the different classes are linearly separable and returns a hyperplane with
maximum margin. However, in many scenarios the classes are not linearly separable. In
this case Soft-SVM is a better choice. Soft-SVM is a generalization of the Hard-SVM
and allows for some misclassified data points.

The procedure to find a separating hyperplane is similar in both the hard and the soft
case. A training dataset, S, of the form established in 2.3 is needed. In this case xi ∈ Rn

and yi ∈ {1,−1}. Assume that S contains L data-label pairs. Figure 2.4 shows the
Hard-SVM where the classes are linearly separable. The data points in the figure are
in R2 but the following reasoning also applies for points in Rn. As can be seen in the
figure, yi(w · xi + b) ≥ 1 holds for all data points in the set. A support vector fulfills
w · x + b = ±1. Let x+ and x− be support vectors on either side of the separating plane
i.e w ·x+ + b = 1 and w ·x−+ b = −1. Now, the margin M can be calculated using

M =
w

||w||
· (x+ − x−) =

w · x+ −w · x−
||w||

=
1− b− (−1− b)

||w||
=

2

||w||
(2.11)

So the margin is inversely proportional to ||w||. Hence, by minimizing ||w|| the margin
is maximized. The Hard-SVM can thus be formulated as the optimization problem

min
w
‖w‖2 (2.12)

subject to yi(w · xi + b) ≥ 1 i = 1, ..., L

As mentioned, the Soft-SVM is a generalization of the Hard-SVM. This generalization
allows the SVM algorithm to be used even if the classes are not linearly separable. The
extension is done by introducting slack terms, ηi ∈ R+ for every point such that if the

CHAPTER 2. THEORY 20

point is misclassified then ηi ≥ 1. The Soft-SVM formulation is

min
w,ηi

‖w‖2 + C

L∑
i

ηi (2.13)

subject to yi(w · xi + b) ≥ 1− ηi i = 1, ..., L

The parameter C is a regularization parameter that indicates the relative cost between
misclassified points and the width of the margin. With a small C, misclassified points can
easily be ignored which allows for a larger margin. A large C implies that it is important
to avoid misclassification even if this means that the margin will be smaller. If C = ∞,
the Hard-SVM is acquired since no misclassifications are allowed.

With the help of a suitable penalty function Φ(w; xi, yi) it is possible to formulate equa-
tion 2.13 in another way,

min
w

1

2
||w||2 + C

L∑
i

Φ(w; xi, yi) (2.14)

The penalty function could be either Φ1(w; xi, yi) = max(1−yiw ·xi, 0) or Φ2(w; xi, yi) =
max(1− yiw · xi, 0)2 .

2.4.3 Semi-Supervised Support Vector Machine (S3VM)

While the Soft-SVM extended the Hard-SVM, an algorithm known as S3VM extends
the Soft-SVM [10]. The ordinary SVM algorithms assume that each data point that is
used for training is labeled. S3VM only needs some of the data points to be labeled.
When working with S3VM the set of labeled data is known as the training set and the
unlabeled data is the working set. If the working set is empty the method becomes the
standard SVM algorithm. If the training set is empty, the method becomes a form of
unsupervised learning. Semi-supervised learning occurs when both the working and the
test set is non-empty. In S3VM, two constraints are added for each unlabeled point in the
training set. One constraint calculates the misclassification error as if the point belongs
to class 1 and the other as if the point belongs to class -1. The objective function then
calculates the minimum of the two possible misclassification errors. The S3VM problem
formulation is

min
w,b,η,ξ,z

‖w‖+ C

[
L∑
i=1

ni +
L+K∑
j=L+1

min(ξj, zj)

]
(2.15)

subject to yi(w · xi + b) + ηi ≥ 1 η ≥ 0 i = 1, ..., L
w · xi − b+ ξj ≥ 1 ξj ≥ 0 j = L+ 1, ..., L+K

−(w · xi − b) + zj ≥ 1 zj ≥ 0

CHAPTER 2. THEORY 21

Figure 2.4: SVM with linearly separable classes.

CHAPTER 2. THEORY 22

Figure 2.5: Example of the difference in the solutions found by SVM and the S3VM algorithms.
The black and the grey data points belong to a positive and a negative class respectively. The
ordinary SVM algorithm finds a separating boundary that maximizes the margin to the two
classes. However, by including unlabeled data (white points), the boundary is adjusted to also
maximize the margin with the respect to the unlabeled data points.

2.4.4 Parameter selection

In addition to a training set and a label set, the previously introduced algorithms depend
on the parameter C. It is common to let this parameter be C for one class and C · Cp
for the other class. These parameters affect the final weight vector and have to chosen
before the training session. In case the training set is very imbalanced, a careful choice of
parameters can be the difference between finding a good or a bad predictor. A common
method of finding suitable parameters is to perform a grid search with crossvalidation
[7]. A grid search is performed by systematically testing various pairs of C and Cp and
then simply choose the pair that yielded the best predictor. However, to avoid the risk of
finding a predictor that performs well only on the available dataset but poorly on other
datasets (i.e an overfitted predictor), crossvalidation is recommended [7]. Crossvalidation
ensures that the predictor is found using one dataset but tested on another. This should
be a better indicator of the expected performance of predictor than if the predictor was
trained and tested on the same dataset.

It is also recommended that the initial grid search is performed on a coarse grid [7]. A
finer grid search should then be performed around the point(s) of best performance in the
coarse grid. Finer and finer searches can then be added if it is deemed beneficial.

A practical method for finding good parameters is to start with a coarse grid with ex-
ponentially growing sequences of C and Cp [7]. For example C = (2−5, 2−3, ..., 215) and
Cp = (2−15, 2−13, ..., 23).

CHAPTER 2. THEORY 23

2.5 Dataset characteristics

The training set S is a window through which the learner gets partial information about
the distribution D and the labeling function, f . The larger the set is, the more likely it is
to reflect more accurately the distribution and labeling used to generate it [2, p.38]. It is
not realistic to expect that with full certainty S will suffice to direct the learner toward a
good classifier (from the point of view of D), as there is always some probability that the
sampled training data happens to be very nonrepresentative of the underlying D.

2.5.1 Noise

Since the training of a predictor depends on a training set S it is important that the
training set is constructed well. A fundamental requirement to be able to train a confident
predictor is that there is some statistical correlation between objects in the domain set
and the labels in the label set. Assume that the training set S was acquired by randomly
assigning labels to a series of objects from the domain set. Since there is no pattern
between the object and the label, a predictor that has been trained using this training
set could be expected to do no better than random label assignment.

While random labels are an extreme form of label noise, some degree of label noise is
common in certain problem areas where some objects in the domain set are mislabeled
due to various reasons [6, p.2]. Label noise can occur for reasons such as subjectivity,
data-entry error or inadequate information. Subjectivity may arise when observations
need to be ranked in some way, such as disease severity, or when the information used
to label an object is different from the information to which the learning algorithm will
have access. Further, it may not be possible to perform the tests necessary to guarantee
that a diagnosis is 100% accurate. The latter is a case of label noise due to information
inadequacy.

If the training set is known or suspected to suffer from noise it is common to try to
filter the training data before using it to train a predictor. The effect of the filter is to
remove or relabel the objects that are suspected to be due to noise. Pre-filtering often
improves the predictive accuracy [6, p.2]. However, the improvement is not a general
case, it depends on the type of noise. Assume a binary class problem with a positive and
a negative class and an object that has negative class characteristics but a positive label.
If the object resembles a negative class object due to inherent noise in the problem area,
this noise will be present in both training and test cases. Such a seemingly incorrectly
labeled object should then not be removed as it would increase the predictive accuracy.
However, if the object is actually mislabeled, the predictive accuracy increases if the
object is removed.

A danger in automatically removing instances that cannot be correctly classified is that
they might be exceptions to the general rule. A key question in improving data quality
is how to distinguish exceptions from noise.

Chapter 3

Datasets and tools

The theoretical training dataset S that is needed to find a predictor was introduced in
section 2.3. Section 3.1 describes the general structure of the realizations of S that are
used in this project. Detailed information about the three datasets that are used as a basis
for the evaluations in chapter 6 is found in section 3.2. In section 3.3 some information
about the development environment and external packages used in the implementation
of the new training algorithm is presented.

3.1 The dataset structure

A typical fingerprint sample database at Precise Biometrics is constructed using a set
of volunteers who provide multiple samples from multiple fingers. They provide both
enrollment and verification samples. In case a sensor is not large enough to cover the
whole fingerprint, the volunteers are instructed to move the finger between each sample
capture to make sure at least one sample from each part of the fingerprint has been
captured at some point.

By creating a template from each of the enrollment samples collected from a single finger,
a set of templates known as a multitemplate is formed, denoted T = {T1, ...,Tk}. A set
of verification templates is denoted I = {I1, ..., Il}. A fingerprint template database then
consists of a collection of pairs (T ,I), collected from each finger from each person. A
feature vector is acquired by using the α function introduced in section 2.1 on two tem-
plates. The set of feature vectors acquired by matching a verification template with all the
templates in a multitemplate is called a multifeature and is denoted F = α(T , I).

A training set S can now be created by repeatedly selecting a verification template and
a multitemplate from two of the fingers in the database and creating a multifeature from
these using the α function. If the verification template and the multitemplate comes from
the same finger, the feature vectors in the resulting multifeature will all be considered
genuines, otherwise they will be considered impostors. In this project, yi = 1 is the label
for genuines and impostors are yi = −1. The dataset S is a set of labeled multifeatures
S = {(F1, y1), ..., (Fk, yk)}. Let F denote a single feature vector. Since a multifeature is

24

CHAPTER 3. DATASETS AND TOOLS 25

just a set of feature vectors where all feature vectors have the same label, it is also possible
to view S as a collection of labeled single feature vectors S = {(F1, y1), ..., (Fk, yk)}.

If one views S as a set of labeled feature vectors, S is in many cases going to contain a
high degree of noise. This is because of the situation described in section 1.4; due to the
small sensor size, each genuine multifeature is going to contain feature vectors that will
resemble impostor feature vectors but they will nonetheless be labeled genuine (i.e yi = 1)
in S. The level of feature noise in S depends on how evenly distributed the templates in
the multitemplates are over the fingers. Other factors that contribute are the size of the
sensor as well as the number of templates in the multitemplates.

3.2 The datasets

The results of the changes made to the original training algorithm in this project are
evaluated on three different datasets of different sizes. These datasets are referred to as
SA, SB and SC . The following subsections present some specifics about the datasets.

3.2.1 Dataset SA

Dataset SA consists of feature vectors from Np = 50 people. Each person contributed
with samples from Nf = 6 fingers and Ne = 35 samples per finger during the enrollment
phase. They also provided Nv = 10 verification samples per finger. This gives a total
of NG = Np · Nf · Ne · Nv = 105000 genuines. When creating the impostors, no feature
vectors from different fingers from the same person were included and only the first
verification template from each finger was used. Thus the number of impostors were
NI = Np · (Np − 1) · N2

f · Ne = 3087000. The number of multifeatures are 91200; 3000
genuine and 88200 impostor multifeatures.

3.2.2 Dataset SB

The next dataset consists of feature vectors from 94 people and so called super impostors.
These are impostors that have very similar features compared to genuines so they are
easily mistaken. However, the number of samples provided per finger is variable so a
concise expression for the number of genuines and impostors in this set is not as easily
provided. The number of genuines are 223872 and impostors 11784960 spread out on
6996 genuine and 368280 impostor multifeatures.

3.2.3 Dataset SC

Dataset SC contains feature vectors from 98 people. The number of genuines are 784000
and impostors 4792200. These are spread out on 39200 genuine and 239610 impostor
multifeatures.

CHAPTER 3. DATASETS AND TOOLS 26

3.2.4 Match information

Each feature vector in the datasets has a 7-dimensional numerical vector that contains
information about the two templates that were used when creating the feature vector.
Table 3.1 describes the information in the vector. The match information can be used to
partition the dataset into training and test sets in such a way that no fingers from the
same person ends up in both the training and the test set. The match information is also
used to construct the label set Y .

Column Description
1 ID of the person who is the owner of the enrollment template.
2 ID of the finger of the person who is the owner of the enrollment template.
3 Index of the enrollment template.
4 ID of the person who is the owner of the verification template.
5 ID of the finger of the person who is the owner of the verification template.
6 Index of the verification template.
7 The match score given by a score function.

Table 3.1: Match information.

3.2.5 Memory limitations

When working on large datasets, it is necessary to consider the memory limitations of
the computer architecture in use. In Matlab/Octave the datasets are represented using
double precision floating point format, i.e 8 bytes. With datasets containing several
millions of elements, it can be impossible to load the whole dataset into memory. Table
3.2 shows the sizes of the datasets. Both the original training algorithm in chapter 4 and
the new algorithm in chapter 5 work around this issue. The evaluations in chapter 6 are
performed on a computer with 12GB RAM.

Dataset Rows Columns Elements Approx size in RAM (GB)
SA 3192000 114 363888000 3
SB 12008832 128 1537130496 12
SC 5576200 120 669144000 5

Table 3.2: Dataset sizes.

CHAPTER 3. DATASETS AND TOOLS 27

3.3 Tools

The following are the important tools used in this project.

3.3.1 Matlab/Octave

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment
and fourth-generation programming language. A proprietary programming language de-
veloped by MathWorks, MATLAB allows matrix manipulations, plotting of functions
and data, implementation of algorithms, creation of user interfaces, and interfacing
with programs written in other languages, including C, C++, C#, Java, Fortran and
Python.1

GNU Octave is software featuring a high-level programming language, primarily in-
tended for numerical computations. Octave helps in solving linear and nonlinear prob-
lems numerically, and for performing other numerical experiments using a language that
is mostly compatible with MATLAB. It may also be used as a batch-oriented language.
Since it is part of the GNU Project, it is free software under the terms of the GNU
General Public License.2

3.3.2 LIBLINEAR

LIBLINEAR is a library for large linear classification developed by the machine learning
group at National Taiwan University [3]. It is designed to efficiently handle data with
millions of instances and features and can be integrated into MATLAB/Octave.

LIBLINEAR supports two popular binary linear classifiers: logistic regression (LR) and
linear support vector machine (SVM). Given a set of instance-label pairs (xi, yi), i =
1, ..., l, xi ∈ Rn, yi ∈ {−1, 1}, both methods solve the following unconstrained optimiza-
tion problem with different penalty functions Φ(w;xi, yi),

min
w∈Rn

1

2
||w||p + C

∑
k=1

Φ(w;xi, yi) (3.1)

where C > 0 is a penalty parameter. For SVM the two common penalty functions are
max(1− yiw ·xi, 0) and max(1− yiw ·xi, 0)2. These two types are known as L1-SVM and
L2-SVM respectively. For LR the loss function is log (1 + e−yiw·xi).

1https://en.wikipedia.org/wiki/MATLAB
2https://en.wikipedia.org/wiki/GNU Octave

CHAPTER 3. DATASETS AND TOOLS 28

3.3.3 SVMLIN

SVMLIN is a software package for linear SVMs created by Vikas Sindhwani at the Depart-
ment of Computer Science at the University of Chicago [12]. SVMLIN can also utilize
unlabeled data and thus implements the S3VM algorithm introduced in section 2.4.3.
The usage is very similar to LIBLINEAR as SVMLIN also has a MEX-wrapper which
makes it available to MATLAB users.

3.3.4 FLANN

FLANN is a library developed by Marius Muja and David G. Lowe at the computer
science department at University of British Columbia [9]. The library performs fast ap-
proximate nearest neighbor searches in high dimensional spaces. This library provides
about one order of magnitude improvement in query time over the best previously avail-
able software.

Chapter 4

The original algorithm

This chapter introduces Precise Biometrics’ current training algorithm, AP (S), for the
matching module. Section 4.1 expands on the theory established in chapter 2. Section
4.2 looks at the specifics of the original training algorithm.

4.1 Introduction

The focus in this project lies on the matching module; more specifically, on the second and
third sub-modules as introduced in section 1.1. In section 2.1, these sub-modules were
formalized using the λ(F) function that makes a binary decision given a feature vector
F that contains the similarity information of two templates. The λ function should of
course be such that the correct decision is given with high probability.

Section 2.1 describes the λ function as a composite of the functions β and γ. The β
function produces a similarity score given a feature vector, while the γ function makes
a binary decision given a similarity score. These functions have previously only been
introduced in terms of domains and co-domains but will now be explored further.

The β and γ functions used by Precise Biometrics are on the forms β(F; w) = F ·w and
γ(s; t) = sgn(s−t). Thus, λ(F; w, t) = γ(β(F; w)−t) = sgn(F·w−t) which is recognized
as a linear predictor, due to section 2.4.1. Section 2.3 introduced the concept of training
data S and a training algorithm A(S) as objects needed to find a predictor. The details
of the training data that is used by Precise Biometrics was specified in section 3.1. This
chapter explores Precise Biometrics’ training algorithm, denoted AP . The details of the
functions that are used in the implementation of AP can be found in section 8.1. These
details are best understood after reading this chapter.

29

CHAPTER 4. THE ORIGINAL ALGORITHM 30

4.2 The training algorithm AP

Since λ is a linear predictor it would be natural to use one of the linear training algorithms,
AL, presented in section 2.4 on a dataset S to find a predictor. However, one immediately
encounters a few issues when using this approach. First, the datasets used in this project
and by Precise Biometrics in general are, as seen in section 3.2.5, on the scale of millions
of feature vectors. The biggest dataset that is considered in this project takes up 12 GB
when loaded into memory. With the computer setup used in this project it is unfeasible
to work directly on datasets of this magnitude.

Secondly, the predictor should generalize between fingers, meaning that it should not
work just on one specific kind of finger but on many. Therefore the performance of the
predictor on the individual feature vectors in S should not hold the same importance as
how well it does on the multifeatures. Also, as explained previously, the genuine feature
vectors in S can be expected to contain a high degree of noise due to lack of overlap
between verification templates and most templates in multitemplates.

Third, the AL algorithms both need two hyperparameters C and CP and there is no
universal rule on how to choose these parameters.

To somewhat relieve the first two issues, the first step in AP is to extract a subset U ⊂ S.
This is done by using the function

µP (F ; β) = argmax
F∈F

β(F) (4.1)

on every multifeature, Fk, in S. This function selects the highest scoring feature vector
in a multifeature where the score is calculated according to a score function β. Hence, U
contains one vector from each multifeature. Depending on the number of multifeatures in
S, the subset U can be considerably smaller. In section 3.2 the difference in size between
S and U for the datasets used in this project can be seen. In addition to reducing the
size of the dataset, µP also acts as a filter for removing some noise depending on the β
function used.

U is then used as input to an inner training algorithm, ÂP (U), the details of which

can be found in section 4.2.1. This algorithm returns the linear predictor λ̂P and the
corresponding score function β̂P . It is thus possible to select a new subset from S using
β̂P .

The AP algorithm consists of a few iterations like this were a subset is used to train
a predictor that is used to select a subset. An initial score function β̂0

P produces the
subset/predictor progression

Un = µP (S; β̂n−1P) (4.2)

λ̂nP = ÂP (Un). (4.3)

Let the sequence of score functions after K iterations be B = (β̂1
P , ..., β̂

K
P). The best

performing score function is then chosen as the final score function using

βP (B) = argmin
β∈B

FRRµP (S,β)(β, t) (4.4)

CHAPTER 4. THE ORIGINAL ALGORITHM 31

The predictor returned by AP (S) is thus the predictor λP that corresponds to βP . Figure
4.1 illustrates the training process.

4.2.1 The inner training algorithm ÂP

As described in the previous section, the input to the inner training algorithm, ÂP is
the subset U ⊂ S where S is the full dataset. The core of ÂP are calls to the algorithm
ASVM(E) for E ⊂ U . Along with a dataset, ASVM expects two hyperparameters, C and
Cp. Suitable parameters are found using the parameter selection method described in
section 2.4.4, i.e. a crossvalidated grid search. The crossvalidation is a version of 10-fold
where the subset E that is used as input to ASVM is 1/10:th the size of U . However,
instead of using U\E for performance evaluation of ASVM(E) as would be expected for
k-fold crossvalidation, U is used.

CHAPTER 4. THE ORIGINAL ALGORITHM 32

Subset selection (μ
P
)

Start

 Dataset (S)

End

Partition

Train A
L

Evaluate

Parameter selection

Dataset (E)

Predictor

Dataset (V)

Train A
L

Best parameters

Evaluate

Predictor selection

Predictor (λP)

Predictor (λP)
Performance (FRR@FAR)

 Dataset (U*)

Predictor (λP)

Predictor (λP)

Training algorithm (A
P
)

Inner training algorithm (Â
P
)

Parameter search

Performance (FRR@FAR)

 Dataset (U)

 Dataset (U)

^

^

^

Figure 4.1: The algorithm AP . A subset U is selected from a dataset S. Then, U is used in
the inner algorithm ÂP to train a predictor λ̂P . The predictor λ̂P is found by performing a
crossvalidated parameter search and then training a predictor on U with the parameters that
were found. A new subset can be selected using λ̂P . The predictor λ̂P is evaluated on the new
subset. The new subset can also be used in ÂP to perform additional training iterations.

Chapter 5

The new algorithm

This chapter introduces the new training algorithm AN(S). Section 5.1 describes the
overall strategy motivating the changes. Section 5.2 contains the details of the new
training algorithm. In section 5.3 and 5.4, the new data selection functions are presented.
Section 5.5 describes a feature manipulation method that is outside the scope of this
project but could nevertheless be interesting to consider.

5.1 Introduction

The objective of this project is to investigate if and how the original training algorithm
AP can be improved. The main strategy in the quest for improving AP is to generalize the
data selection function µP . Since µP selects only one feature vector per multifeature, there
is a possibility that valuable information is lost. The functions used in the implementation
of the new training algorithm, AN , are listed in section 8.2 along with some design
motivations.

5.2 The training algorithm AN

Similar to the original training algorithm AP , the input to the new training algorithm
AN is a set S of of the form seen in section 3.1. The subset selection in the original
training algorithm was handled by the function µP which selects a subset U from the full
dataset S. In AN , this subset selection is handled using the new function µN(S) (details
in section 5.3). Aside from µN and some changes in the implementation of AN in code,
AN and AP is similar at this stage. The major changes are in the inner training algorithm
ÂN . Figure 5.4 shows the structure of AN .

33

CHAPTER 5. THE NEW ALGORITHM 34

5.2.1 The inner training algorithm ÂN

As with the original inner training algorithm, ÂP , the input to the new training algo-
rithm, ÂN , is a subset U of the full dataset S. In AN this subset is selected using µN .
The algorithm returns the predictor λ̂N = ÂN(U). Similar to ÂP , ÂN also employs a
crossvalidated grid search method to find the hyperparameters C and Cp. However, the

subset E ⊂ U that was used as input to the AL algorithm in ÂP is first processed by
a preprocessing function ρ(E) (section 5.4). Different ρ functions need a different set of

parameters. In the implementation of ÂN , the original grid search has been extended to
also include a parameter search for the selected ρ function.

A new AL algorithm is introduced in the new training structure, the S3VM algorithm
(section 2.4.3). This method can handle a mixture of unlabeled and labeled data.

To achieve a good separation of training and test sets, the cross validation function has
been changed to employ a 50/50-split instead of the previous 90/100-split. This means
that U is partitioned into two sets, E and V , of roughly equal size. Dataset E is used to
find the predictor AL(E) and V is used in the FRR calculation.

5.3 The selection function µN

The new training data selection method µN is an extension of the original µP function.
While µP selects the highest scoring feature vector in a multifeature according to a score
function, µN allows selection of multiple of the highest scoring feature vectors from each
multifeature. How many can also depend on whether the the multifeature is a genuine
or an impostor. Three parameters are required for µN ; the number of genuines, NG, to
include in E, the number of impostors, NI , to include in E and the number of genuines
and impostors, N , to include in V .

5.4 The filter functions ρ

This section introduces the new inner training data filter methods ρ(E) for the dataset
E. These methods are classified as either additive or subtractive depending on whether
they add or or remove data points from E.

The genuines are the minority class and should therefore be upsampled in some way. It is
possible to use both the additive and the subtractive methods to upsample the genuines,
if the ρ methods are combined with a suitable µN method. By choosing a µN method that
selects many feature vectors from each genuine multifeature, for example the five highest
scoring feature vectors instead of only the single highest, a subtractive ρ method could
then be used to remove some elements from E. When using the additive ρ functions,
E should however probably contain the best genuine candidates. By using the µN that
chooses only the highest scoring feature vector in each multifeature, one acquires a small

CHAPTER 5. THE NEW ALGORITHM 35

but confident dataset. By allowing more feature vectors per multifeature, a bigger but
less confident dataset is acquired.

In the implementation of ρ (section 8.2), the subtractive methods do not actually remove
elements from E. They merely relabel feature vectors from ±1 to 0 or 2 depending on the
method of choice. The implementation of the SVM algorithm ignores feature vectors that
are labeled 0 or 2. However, S3VM uses the 0-labeled vectors as unlabeled but ignores
the 2-labeled vectors. The following subsections provide a description of the different
ρ methods investigated during this project. Table 5.1 contains a brief summary of the
methods.

Preprocessing method ρ Type
ADASYN Additive
SMOTE Additive
Grey data Subtractive
Mark below Subtractive
Random downsampling Subtractive
Recursive Subtractive
Vote Subtractive

Table 5.1: Data preprocessing methods used in this project.

5.4.1 ADASYN

Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN) generates
more data for the minority class examples that are difficult to classify using a weighted
distribution. In [5] the ADASYN algorithm is described as follows:

ADASYN

Input
Training dataset Dtr with m samples {xi, yi}, i = 1, ...,m, where xi is an instance in
the n dimensional feature space X and yi ∈ Y = {−1, 1} is the class identity label
associated with xi. Define ms and ml as the number of minority class examples
respectively. Therefore, ms ≤ ml and ms +ml = m.

Procedure
(1) Calculate the degree of class imbalance

d = ms/ml (5.1)

where d ∈ (0, 1].
(2) If d < dth then (dth is a preset threshold for the maximum tolerated degree of
class imbalance ratio):

(a) Calculate the number of synthetic data examples that need to be generated for
the minority class:

G = (ml −ms)× θ (5.2)

CHAPTER 5. THE NEW ALGORITHM 36

Where θ ∈ [0, 1] is a parameter used to specify the desired balance level after
generation of the synthetic data. θ = 1 means a fully balanced dataset is created
after the generalization process.

(b) For each example xi ∈ minorityclass, find K nearest neighbors based on the
Euclidean distance in n dimensional space, and calculate the ratio ri defined as

ri = ∆i/K, i = 1, ...,ms (5.3)

where ∆i is the number of examples in the K nearest neighbors of xi that belong
to the majority class, therefore ri ∈ [0, 1];

(c) Normalize ri according to r̂i = ri/
∑ms

i=1 so that r̂i is a density distribution
(
∑

i r̂i = 1).

(d) Calculate the number of synthetic data examples that need to be generated for
each minority example xi,

gi = r̂ ×G (5.4)

where G is the total number of synthetic data examples that need to be generated
for the minority class as defined in equation 5.2. (e) For each minority class data
example xi, generate gi synthetic data examples according to the following steps:

– Do the Loop from 1 to gi

(i) Randomly choose one minority data example, xzi from the K nearest neigh-
bors for data xi.

(ii) Generate the synthetic data example

si = xi + (xzi − xi)× λ (5.5)

where (xzi − xi) is the difference vector in n dimensional space, and λ is a
random number: λ ∈ [0, 1].

– End Loop

The key idea of the ADASYN algorithm is to use a density distribution r̂i as a criterion
to automatically decide the number of synthetic samples that need to be generated for
each minority data example. r̂i is a measurement of the distribution of weights for
different minority class examples according to their level of difficulty in learning. The
resulting dataset post ADASYN will not only provide a balanced representation of the
data distribution (according to the desired balance level defined by the θ coefficient), but
it will also force the learning algorithm to focus on those difficult to learn examples. Two
parameters are needed as input, θ and K.

CHAPTER 5. THE NEW ALGORITHM 37

5.4.2 SMOTE

Synthetic Minority Oversampling Technique (SMOTE) is a technique in which the minor-
ity class (in this project, the genuines) is oversampled [4]. Instead of creating exact copies
of existing minority class samples like in a simple upsampling approach, SMOTE inter-
polates between samples to create synthetic samples. The synthetic samples are created
by introducing a new sample along each of the lines connecting to the k nearest neighbors
of each minority class sample. One parameter, a ∈ N is needed for this algorithm. Let
the number of genuines in the training set be NG. After applying this method, the new
number of genuines will be N̂G = a ·NG.

Figure 5.1: The SMOTE algorithm. The black class is being upsampled. The five nearest
neighbors to the point X are X1 through X5. A new data point is being introduced along the
lines connecting to the neighbors.

5.4.3 Grey data

This function assigns the label 0 to all but the highest scoring vector in each multifeature.
If E contains only the highest scoring features from all multifeatures, the functions does
nothing. Since the original SVM algorithm ignores vectors labeled 0, this function should
be used together with S3VM .

5.4.4 Mark below

Mark below calculates the average score, savg of the highest scoring 10% of genuines in
E. Given a variable a ∈ R, the method then relabels data points whose score s is less
than s < a · savg. The new label is 0.

CHAPTER 5. THE NEW ALGORITHM 38

5.4.5 Random downsampling

The random down-sampling approach is among the simpler approaches to class balanc-
ing. This method randomly chooses data points to remove or reclassify. Unlike the
up-sampling methods which are applied to the minority class, this method is applied to
the majority class. There are pros and cons with this method. A predictor’s confidence
and training time is generally positively correlated with the size of the dataset; a bigger
dataset produces a more confident predictor but it takes longer to find it. The random
down-sampling method removes data points randomly from the training set. Two pa-
rameters are required as it is possible to remove points both from the genuines and the
impostors. Assume that the number of genuines and impostors in the training set is
NG and NI respectively. Given parameters a, b ∈ (0, 1] the new number of genuines and
impostors are N̂G = a ·NG and N̂I = b ·NI .

5.4.6 Recursive

In [6] it is suggested that the same algorithm can be used to train both the predictor and
a filter. This method thus finds a predictor λL using AL(E). Then, λL (or rather its score
function βL) is applied to the same set E to remove the genuines with the worst score.
The name of this method is due to it being implemented recursively, meaning that the
method allows for a filter to be found using AL(ρ(E)) when ρ is the recursive method.
The parameter needed for this function is the number of recursive calls that should be
made. This method is illustrated in figure 5.2.

5.4.7 Voting filter

The K-nearest neighbors algorithm has, since 1972, been used extensively as a filter
method [6]. The voting filter relabels a data point according to a majority vote among
its nearest nearest neighbors. If a majority of the neighbors surrounding a genuine are
impostors, the genuine is relabeled to 0. Two parameters are needed for this method; the
number of neighbors to use and how many of those neighbors that need to be impostors
in order for the data point to be relabeled.

CHAPTER 5. THE NEW ALGORITHM 39

Filter (ρ)

E

Remove

Train A
L

Predictor

 E

E*

Filter (p)

E**

Figure 5.2: The recursive filter. Dataset E is used to train a predictor. The predictor is then
used to relabel or remove the points from E that were not classified correctly, thus creating
dataset E∗. Depending on recursive depth, E∗ can be used as input to the same filter.

CHAPTER 5. THE NEW ALGORITHM 40

5.5 Feature transformation

Note: the theory suggested in this section can not currently be easily implemented due
to Precise Biometrics’ system architecture. These changes are nevertheless interesting to
consider.

None of the algorithmic changes so far have made any transformations to the feature
vectors in S. Selecting the feature vector with the highest score from each multifeature
is done under the assumption that the most characteristic information contained in the
multifeature can be fairly well represented by this single vector. This is often true if
the enrollment and the verification templates are from roughly the same parts of the
same finger so that there is a good amount of overlap. However, there is a risk that the
verification template does not overlap one single enrollment template well. In this case the
verification template may instead overlap several enrollment templates, but only partially.
Selecting only the highest scoring feature vector to represent the whole multifeature could
then be a bad representation of the multifeature characteristics.

A simple method of capturing some extra information about the multifeature that was im-
plemented during this project is to concatenate each feature vector with its corresponding
multifeature centroid.

Figure 5.3: The centroid method. The stars are centroids of two multifeatures. In this figure,
the features are in R2. Concatenating each feature with the centroid extends the features to
R4.

CHAPTER 5. THE NEW ALGORITHM 41

Subset selection (μ
P
)

Start

Dataset (S)

End

Partition

Train A
L

Evaluate

Parameter selection

Dataset (E)

Predictor

Dataset (V)

Train A
L

Best parameters

Evaluate

Predictor selection

Predictor (λP)

Predictor (λP)
Performance (FRR@FAR)

 Dataset (U*)

Predictor (λP)

Training algorithm (A
N
)

Inner training algorithm (Â
N
)

Parameter search

Performance (FRR@FAR)

 Dataset (U)

 Dataset (U)
Filter (ρ)

Subset selection (μ
N
)

Dataset (S)

Filter (ρ)

Subset selection (μ
P
)

Predictor

 V*

 Predictor (λ
P
)

 Predictor (λ
P
)

^

^

^

^

Figure 5.4: The new training algorithm AN . The input is the full dataset S. The selection
function µN is used to select a subset U which is used as input to the inner training algorithm
ÂN . During the parameter search, U is partitioned into the datasets E and V . Using a filter
function, ρ, E is filtered before training using AL. The predictor returned from AL(ρ(E)) is
evaluated on V . Once the best parameters have been found, the predictor that is returned from
ÂN is found using a filtered version of U . The predictor can be used to select a new subset from
S and once again train a predictor using ÂN . Each predictor returned by ÂN is evaluated on
a subset of S that is selected using the predictor and the original selection function µP . The
best performing predictor is chosen as the final predictor.

Chapter 6

Results

This chapter presents the effects of the changes made to the algorithm AP during this
project. Section 6.1 describes how these effects are measured. Section 6.2 - 6.5 presents
the results.

6.1 Evaluation procedure

When creating the algorithm AN , the old algorithm AP was used as a base. The changes
mainly consist of the new selection function µN (section 5.3), the preprocessing functions
ρ (section 5.4) and the additional AL algorithm S3VM . By varying the parameters of the
µN function along with different combinations of ρ functions and AL algorithms, different
versions of the AN algorithm are acquired. This chapter is dedicated to investigating the
performance of some versions of AN .

The predictors (or rather the associated score functions) returned by the different versions
are evaluated with the FRR@FAR measure (section 2.3.1). To calculate the FRR@FAR
for a predictor, a few things are required. Beyond the predictor itself one also needs to
specify the desired FAR level and provide a dataset to test the predictor on. A good
predictor should give low FRR on a low FAR level but due to the size of the datasets
in this project it is not possible to calculate a confident FRR on very low FAR levels.
The predictors in this project are thus evaluated using FRR@1/10000. Table 6.1 shows
how many falsely accepted impostors this actually implies for the different datasets SA,
SB and SC used in this project. The most confident results are therefore going to be the
ones acquired from dataset SB and the least from SA.

Dataset Impostor multifeatures False accepts at FAR=1/10000
SA 88200 8
SB 368280 36
SC 239610 23

Table 6.1: False accepts for the different datasets.

42

CHAPTER 6. RESULTS 43

The dataset that is used when calculating FRR@FAR for a predictor should be selected
with care. It is important that a predictor performs well on data points it has never
encountered before since this is the situation that the predictor will experience in the
real world. Crossvalidation is often used in order to simulate new data. However, this
technique requires multiple training sessions. Depending on the dataset S and the settings
used for AN , the search for a predictor AN(S) can take a long time, sometimes days.
The FRR@FAR values in section 6.2 are therefore calculated using the same dataset
as used for training. This method is also the preferred method by Precise Biometrics
when measuring the performance of a predictor and should be at least indicative of
the performance that would be acquired by crossvalidation. An estimate of the difference
between the performance reported by a non-crossvalidated versus a crossvalidated method
is provided in section 6.4.

6.1.1 The baseline

To investigate whether or not the changes made to AP during this project have any kind
of effect it is important to have a baseline to compare against. The goal of this project
is to examine if some dataset processing could be included in the training algorithm so
as to reliably achieve a better performing predictor. In AP , some dataset processing is
already done through µP . The ρ functions and the S3VM algorithm are however new
to this project. The baseline algorithm hence utilizes the µP function but no ρ function.
Furthermore, the AL algorithm used in the original training algorithm is SVM. These
settings are considered the baseline.

6.1.2 Parameters for the ρ and µN functions

Some of the ρ functions require one or a set of parameters to specify how to process
a dataset. Through the new parameter search method (section 5.2.1) these parameters

can be included in the crossvalidated grid search in ÂN , along with the hyperparameters
required for the AL algorithms.

While the µN parameters also can be included in the new parameter search method, the
range of suitable parameters is small; since the subset U ⊂ S that is selected from S is
loaded into RAM, U should not be too big. The inner training algorithm ÂN includes a
crossvalidation step when searching for hyperparameters. However, this ensures that the
predictor returned by the inner training algorithm ÂN(U) does not overfit on dataset U .
Depending on how well U represents the characteristics of S this could also imply that
the predictor does not overfit on S. To hopefully increase the chance that the important
characteristics in S are also in U one can include more feature vectors per multifeature
in U using the µN function.

The three parameters needed for the µN function are in this chapter denoted NG, NI and
N as introduced in section 5.3.

CHAPTER 6. RESULTS 44

6.1.3 Initial subset

The initial subset U1 ⊂ S in AN depends on an initial score function β̂0
N . Each feature

vector in the datasets used in this project is connected to a score that has been assigned
by a previous score function, βP . This is the score function given by a few iterations in the
original AP algorithm. A possible initial subset could then be selected using the scores in
the datasets. In this case, AN could be considered as a continuation of AP . However, if
AN is to be considered as a replacement for AP it is informative to also examine to what
extent AN :s performance depends on the initial score function. This is evaluated by also
performing tests using a random initial score function βR.

6.2 Algorithmic performance using β̂0
N = βP

By using β̂0
N = βP to select U1 using the µN function it can be expected that the initial

selection is already relatively good so only a few iterations in AN should be needed. The
number of iterations are set to 10. The tests are also performed using a parameter search
for the ρ functions that need it. This parameter search is, however, not extensive in
order to keep the training time down. Instead, each ρ function is supplied with a small
set of parameter candidates among which the parameter search method selects the best
suited. The results of this case are presented in table 6.2. The baseline algorithm is
highlighted with blue. The best settings found on each dataset is highlighted with green.
Since tests using dataset SC can take days to complete for some settings, some tests are
not performed on this dataset. The tests on SC were mostly performed after observing a
good result for some settings on SA or SB.

As seen in table 6.2, there are settings that perform better than the baseline settings.
There is however no setting that manages to considerably outperform the baseline for all
three datasets. The setting that seems to have the highest chance of providing a universal
improvement is to switch from ASVM to AS3VM , use a recursive filter and performing the
parameter search on the five highest scoring feature vectors in each multifeature. This
setting manages to outperform the baseline on both SA and SC while the result on SB is
somewhat improved.

Increasing N (and thereby increasing the resemblance between subset U and dataset S

when performing evaluations in ÂN) seems to provide a slight increase in performance,
at least when using ASVM . As could be expected, increasing NG from 1 to 2 or 5 without
also including some ρ function decreases the performance since this introduces noise that
is not filtered out.

CHAPTER 6. RESULTS 45

NG NI N AL ρ FRRA FRRB FRRC

1 1 1 SVM None 1.43 2.59 10.71
1 1 1 SVM ADASYN 1.43 2.94 -
1 1 1 SVM Random 1.37 2.62 10.59
1 1 1 SVM Recursive 1.47 2.76 10.87
1 1 1 SVM SMOTE 1.37 2.62 10.79

1 1 5 SVM None 1.37 2.59 10.65
1 1 5 SVM ADASYN 1.47 2.70 -
1 1 5 SVM Random 1.53 2.64 10.82
1 1 5 SVM Recursive 1.37 2.60 11.07
1 1 5 SVM SMOTE 1.27 2.66 10.75

2 1 5 SVM None 1.50 2.76 10.58

5 1 5 SVM None 1.43 3.00 10.95
5 1 5 SVM Recursive 1.33 2.86 10.79
5 1 5 SVM Mark below 1.50 2.96 -
5 1 5 SVM Vote 1.40 3.03 10.70

1 1 1 S3VM None 1.00 2.59 10.41
1 1 1 S3VM ADASYN 1.27 2.68 11.57
1 1 1 S3VM Recursive 1.17 2.54 9.83
1 1 1 S3VM Random 1.17 2.53 10.47
1 1 1 S3VM SMOTE 1.13 2.66 10.42

1 1 5 S3VM None 1.13 2.57 10.38
1 1 5 S3VM ADASYN 1.40 2.97 -
1 1 5 S3VM Random 1.47 2.49 10.50
1 1 5 S3VM Recursive 1.17 2.52 9.74
1 1 5 S3VM SMOTE 1.17 2.59 10.53

2 1 5 S3VM None 1.37 2.74 10.58
2 1 5 S3VM Grey data 1.13 2.57 10.54

3 1 5 S3VM Grey data 1.23 2.57 10.54

4 1 5 S3VM Grey data 1.23 2.57 10.54

5 1 5 S3VM None 1.47 3.16 10.83
5 1 5 S3VM Grey data 1.13 2.57 10.54
5 1 5 S3VM Mark below 1.37 2.99 10.78
5 1 5 S3VM Recursive 1.13 2.76 10.30
5 1 5 S3VM Vote 1.40 2.79 10.21

Table 6.2: FRR@1/10000 for datasets SA, SB and SC . The NG highest scoring genuines and NI

highest scoring impostors are used when training with algorithm AL. The N highest genuines
and impostors were used when evaluating the predictor returned by AL. Initial score function
β̂0N = βP . 10 iterations in AN .

CHAPTER 6. RESULTS 46

6.3 Algorithmic performance using β̂0
N = βR

If one instead selects U1 using a random initial score function, i.e β̂0
N = βR, the results

in table 6.3 are acquired. Comparing the FRR of each setting in table 6.3 with the
corresponding FRR in table 6.2 suggest that AN might be able to manage without an
initial score provided by AP since the acquired FRR values are similar to those acquired
when using β̂0

N = βP . The new training algorithm AN should therefore be able to function
as replacement for AP and not just a continuation.

Table 6.3 also reports the training times when using AN on the different datasets. For
the big and complex dataset SC , this time is several hours. During some test runs it
was observed that for SC most of this time was spent in AL. Another test using the
random downsampling ρ function was therefore performed in an effort to bring down the
training time. As table 6.3 shows, the training time is indeed reduced when using random
downsampling for all datasets while still maintaining similar FRR values compared to the
no ρ function case. If one accepts a slight FRR difference, the training time should thus
be able to be reduced.

NG NI N AL ρ FRRA FRRB FRRC TA TB TC

1 1 1 SVM None 1.53 2.64 10.70 17 133 735
1 1 1 SVM Random 1.40 2.70 10.69 11 90 92
1 1 1 S3VM None 1.07 2.62 10.46 43 237 1045
1 1 1 S3VM Random 1.23 2.53 10.49 17 73 118

Table 6.3: FRR@1/10000 for datasets SA, SB and SC . The training times TA, TB and TC are
in minutes. The NG highest scoring genuines and NI highest scoring impostors are used when
training with algorithm AL. The N highest genuines and impostors were used when evaluating
the predictor returned by AL. Initial score function β̂0N = βR. 10 iterations in AN .

6.3.1 Convergence

The interior of algorithms AP and AN both produce a sequence of score functions B =
(β1, ..., βn) as seen in section 4.2. By measuring the performance of these score functions
on the full dataset S, a sequence of FRR@FAR values is acquired. This sequence can be
used to evaluate the convergence of AN for specific settings. The sequence for dataset
SB is shown in figure 6.1. The solid line represents the FRR evolution given the initial
score function β̂0

N = βP . The dashed line instead uses β̂0
N = βR. After four iterations

the FRR values are roughly the same regardless of the initial score function used. The
settings that are used are NG = NI = N = 1 and ASVM and no ρ function.

CHAPTER 6. RESULTS 47

Figure 6.1: Convergence for dataset SB with NG = NI = N = 1, ASVM and no ρ function.
Solid line is training using the initial score function β̂0N = βP while dashed uses β̂0N = βR. 10
training iterations in AN .

6.4 Overfitting

The implementation of the new training algorithm includes an evaluation method that
measures the degree of overfitting experienced in AN(S). This method uses a 5 × 2-
crossvalidation as seen in section 2.3.3. Algorithm AN is thus evaluated ten times on
different datasets. The subset S1 ⊂ S is used to find the predictor λN returned by
AN(S1). Another subset S2 ⊂ S is then used to evaulate the performance of λN . Since
the crossvalidation method is 5× 2 the subsets S1 and S2 are (roughly) equal in size and
disjoint. The settings used for AN are the same as in section 6.3.1. Datasets SB and SC
were used for this evaluation.

For SB, the mean difference of the performance measured on S2 compared to S1 is 1.60%
using β̂0

N = βP and 1.07% using β̂0
N = βR. For SB, these numbers are 0.54% and 0.61%

respectively. Thus, AN does seem to experience some overfitting using these settings,
more so on dataset SB compared to SC .

CHAPTER 6. RESULTS 48

6.5 Feature transform - Centroid method

Section 5.5 introduced a feature transformation method which consisted of appending the
multifeature centroid to the feature vectors in the dataset. As noted, this theory can not
be easily implemented due to the surrounding architecture of Precise Biometrics’ system.
Hence, no extensive testing has been done with this method. However, the method was
tested on dataset SA with ASVM , the original selection function µP and no ρ and 10
training iterations. The centroid method achieved a FRR@1/10000 of 0.33%. This is
considerably better than the results presented for SA in section 6.2. The centroid dataset
was generated from SA through a function that could easily handle a set of SA:s size. To
generate similar datasets from SB and SC would require a modification of this function
but since the centroid method was deemed unimplementable due to the surrounding
system architecture, similar tests for SB and SC were not performed.

Chapter 7

Conclusions

None of the dataset processing techniques explored in this project is able to considerably
improve on the originally used technique on all three datasets. The ρrecursive function for
example, produces the best results among the tested ρ functions on dataset SC . The same
good performance can, however, not be seen on the other datasets using this function. It
might be the case that a more careful parameter search could make a technique perform
well on a general dataset. However, the reason for not doing an extensive ρ function
parameter search in this project was simply due to the considerable time it would take. It
could therefore be beneficial to explore methods of reducing the training times. One such
method that was explored in this project was to downsample the impostors randomly.
This reduced the training time while still maintaining a similar performance compared
to the baseline.

The downsampling method reduces the time spent in the AL algorithms. Another major
time sink observed when implementing AN was the loading of large amounts of data from
disk to memory. A time efficient algorithm implementation should thus avoid unnecessary
loadings. For precise memory control, Matlab/Octave might not be the best choice of
language.

The performance of AN does not seem to be heavily influenced by the initial subset
selection when using the baseline settings so it should be able to function as a replacement
for AP .

7.1 Future work

7.1.1 Feature transformation

The centroid method presented in section 5.5 showed promising results on dataset A.
Even though it is not possible at the moment to implement this technique due to Precise
Biometrics’ surrounding system architecture it could be interesting to investigate this
technique on bigger datasets in case it proves to be a successful technique. The centroid
technique suggest that there might be other, better ways of capturing the characteristics of

49

CHAPTER 7. CONCLUSIONS 50

a multifeature compared to simply choosing one of the feature vectors in the multifeature
according to some criteria as is done today.

7.1.2 Robust SVM

During the final stages of this project an interesting paper named Support Vector Ma-
chines Under Adversarial Label Noise was found [8]. This paper presented a robust SVM,
meaning an SVM that was built under the assumption that the labels contain noise. The
robust SVM is formulated using a modification of the ordinary SVM dual problem with
only a relatively simple modification of the kernel. It is reported to not add much com-
plexity beyond the original SVM.

Chapter 8

Appendix

The appendix contains descriptions of functions and function dependencies from the
original and the new training structure. Provided is also a usage example for the new
training structure.

8.1 The original training structure

This section contains the implementation details of the original training algorithm AP .
This algorithm is implemented using a mixture of Matlab/Octave and C functions. The

subset selection µP is implemented in C while the inner training algorithm ÂP uses
Matlab/Octave functions with the exception of AL which uses the LIBLINEAR package

(i.e C/C++). Algorithm ÂP corresponds to the function pb ml train in the list of
functions in section 8.1.1.

8.1.1 Functions

The following are short descriptions of the Matlab/Octave functions in the implemen-

tation of ÂP . These can also be found in figure 8.1 where arrows indicate function
dependencies.

pb ml train
The main function for the inner algorithm Â. Trains a predictor given a dataset.

pb ml filter features
Removes feature dimensions that have the same value for all instances in the training
set.

pb ml load features
Loads the training set from .txt files.

pb ml normalize features
Normalizes the features using the method of choice.

51

CHAPTER 8. APPENDIX 52

pb ml print model
Prints weight vector and the scale parameters of the trained predictor to a C-file for use
in the next step in the training loop.

pb ml train model
Control function for the hyper-parameter search and crossvalidation.

pb ml crossvalidate
Performs a crossvalidation over a grid of hyper-parameters given a set of hyper-parameters.

pef plot roc simple
Plots a ROC curve for a predictor.

pb ml liblinear predict Predicts labels for a dataset given a linear predictor.

pef compute frr at far
Computes FRR given a predictor, dataset and a FAR value.

pb ml liblinear train Wrapper function for the LIBLINEAR package. Trains a predic-
tor given a training set.

CHAPTER 8. APPENDIX 53

8.2 The new training structure

Nearly every function that forms the implementation of the original training algorithm
AP has been changed when designing and implementing the new training algorithm, AN
although the general structure is the same. The modifications and additions to AP were
made with two criteria in mind; speed and versatility. When working with datasets of the
magnitude seen in this project, poorly designed functions could slow down the training
time considerably. Hence, whenever possible, functions were constructed using a time
saving design. To achieve a better versatility, AP , was modified according to a plug and
play philosophy so that ρ and AL functions could easily be switched. This would also
make it easy to investigate new such functions after this project has ended.

A major new feature in the implementation ofAN is that all the code is gathered under one
main function. In the original training structure, the function pb ml train implements
ÂP . In the new training structure pb ml train corresponds to AN while the inner
training algorithm, ÂN is implemented using pb ml train model.

Collecting the entire training process under one main function makes it easier for users
to handle to training process.

8.2.1 Functions

The following are short descriptions of the important functions in the new training struc-
ture. These can also be found in figure 8.2 where arrows indicate function dependen-
cies.

pb ml train
The main function for the training algorithm AN . Trains a predictor given a dataset.

calculate scores
Assigns a score to each point in a dataset.

pb ml predict
Calculates a score for each point in a dataset.

pb ml predict linear score
MEX-wrapper for the C function pb ml predict linear score

add dataset info
Extracts information such as the number of people, fingers, enrollment templates and
verification templates.

pb ml train model
The main function for the inner training algorithm ÂN .

new original search
Initialization method for the grid search for the parameters required in the AL algo-
rithms.

CHAPTER 8. APPENDIX 54

grid search
Searches for best parameters among a given set.

pb ml crossvalidate
Crossvalidation function.

cont eval
Calculates FRR from a set of scores.

partition 50 50
Partitions a dataset into two (roughly) equally sized parts.

select subset
Selects a training and test set according to the given NG, NI and N parameters (section
5.3).

select training data
Filters the training data according to the chosen ρ function.

recursive
The recursive ρ function.

flann select
The majority vote ρ function.

SMOTE
The SMOTE ρ function.

ADASYN
The ADASYN ρ function.

random sampling
The random downsampling ρ function.

mark below
The mark below ρ function.

get model
Trains using the selected linear training algorithm AL.

compute rank
Ranks the features in each multifeature with respect to a score function.

CHAPTER 8. APPENDIX 55

8.2.2 An example

Algorithm Alias
Support Vector Machine linear svm
Semi-Supervised Support Vector Machine linear svm semi supervised
Logistic Regression linear lr

Table 8.1: Available algorithms and corresponding code alias.

The following table contains the pre-processing methods that have been implemented
during this project. Vectors in this table are row vectors. Further explanations of these
methods are referred to section 5.4.

Method Alias Parameter format Parameter range
SMOTE smote a a ∈ N+

ADASYN adasyn [a b] a ∈ N+, b ∈
Grey data delabel - -
Random downsampling random [a b] a, b ∈ (0, 1]
Recursive recursive a a ∈ N+

Mark below mark below a a ∈ R
Vote flann [a b] a, b ∈ N+, a ≥ b ∈ (0, 1]

Table 8.2: Pre-processing methods.

CHAPTER 8. APPENDIX 56

The following is a MATLAB script showing an example of how to specify options and
what type of options that can be specified in the new training environment.

1 % Folder with genuines and impostors files.

2 options.folder=’./Features/dataset_a’;

3 % Number of highest genuines and impostors to test

4 % on in each crossvalidation iteration.

5 options.test_on_max=1;

6 % Number of highest genuines to train

7 % on in each crossvalidation iteration.

8 options.training_set_genuines=1;

9 % Number of highest impostors to train

10 % on in each crossvalidation iteration.

11 options.training_set_impostors=1;

12 % Model to use during training.

13 options.modeltypes=’linear svm’;

14 % Training data selection method.

15 options.data_selectors=’flann’;

16 % Parameters to use for training data selection.

17 options.training_ops=[5 2];

18 % Number of crossvalidation iterations to use.

19 options.crossval_folds=10;

20 % Number of training iterations to run.

21 options.training_iterations=10;

22 % Number of evaluation iterations to run.

23 options.evaluation_iterations=0;

24 % FAR level to evaluate the results on.

25 options.fars=[1/10000];

26 % Level of console outputs during training.

27 options.verbosity=2;

28 % Train using the square of each feature.

29 options.use_square=1;

30 % Use the standard deviation method to find

31 % scaling parameters.

32 options.use_std=1;

33 % Block size to read into memory (approximate).

34 options.block_size_bytes=1e9;

35 % Use random initial subset selection.

36 options.initial_zero_score=0;

37 % Run test

38 [frrs,ref_frr,eval_frr,time,w,scale,discarded_cols]=pb_ml_train(options);

CHAPTER 8. APPENDIX 57

F
ig

u
re

8
.1

:
S

tr
u

ct
u

re
of

th
e

im
p
le

m
en

ta
ti

on
of
Â
P

.
T

h
e

ar
ro

w
s

sh
ow

fu
n

ct
io

n
d

ep
en

d
en

ci
es

.

CHAPTER 8. APPENDIX 58

F
ig

u
re

8.
2:

S
tr

u
ct

u
re

of
th

e
im

p
le

m
en

ta
ti

on
of
A
N

.
T

h
e

ar
ro

w
s

sh
ow

fu
n

ct
io

n
d

ep
en

d
en

ci
es

.

Bibliography

[1] Maltoni, Davide, et al. Handbook of fingerprint recognition. Springer Science & Busi-
ness Media, 2009.

[2] Shalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[3] Fan, Rong-En, et al. ”LIBLINEAR: A library for large linear classification.” Journal
of machine learning research 9.Aug (2008): 1871-1874.

[4] Chawla, Nitesh V., et al. ”SMOTE: synthetic minority over-sampling technique.”
Journal of artificial intelligence research 16 (2002): 321-357.

[5] He, Haibo, et al. ”ADASYN: Adaptive synthetic sampling approach for imbalanced
learning.” Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computa-
tional Intelligence). IEEE International Joint Conference on. IEEE, 2008.

[6] Brodley, Carla E., and Mark A. Friedl. ”Identifying mislabeled training data.” Journal
of artificial intelligence research 11 (1999): 131-167.

[7] Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. ”A practical guide to support
vector classification.” (2003): 1-16.

[8] Biggio, Battista, Blaine Nelson, and Pavel Laskov. ”Support Vector Machines Under
Adversarial Label Noise.” ACML 20 (2011): 97-112.

[9] Muja, Marius, and David G. Lowe. ”Fast approximate nearest neighbors with auto-
matic algorithm configuration.” VISAPP (1) 2.331-340 (2009): 2.

[10] Bennett, Kristin, and Ayhan Demiriz. ”Semi-supervised support vector machines.”
NIPS. Vol. 11. 1998.

[11] Refaeilzadeh, Payam, Lei Tang, and Huan Liu. ”Cross-validation.” Encyclopedia of
database systems. Springer US, 2009. 532-538.

[12] Sindhwani, Vikas, and S. Sathiya Keerthi. ”Large scale semi-supervised linear
SVMs.” Proceedings of the 29th annual international ACM SIGIR conference on Re-
search and development in information retrieval. ACM, 2006.

59

	Introduction
	Fingerprint systems
	Fingerprint characteristics
	Template matching
	System errors
	A brief introduction to machine learning
	Problem formulation

	Theory
	The matching module
	Matching module errors
	Machine learning
	Predictor errors
	Overfitting
	Crossvalidation

	Algorithms
	Linear predictors
	Support Vector Machine (SVM)
	Semi-Supervised Support Vector Machine (S3VM)
	Parameter selection

	Dataset characteristics
	Noise

	Datasets and tools
	The dataset structure
	The datasets
	Dataset SA
	Dataset SB
	Dataset SC
	Match information
	Memory limitations

	Tools
	Matlab/Octave
	LIBLINEAR
	SVMLIN
	FLANN

	The original algorithm
	Introduction
	The training algorithm AP
	The inner training algorithm A"0362AP

	The new algorithm
	Introduction
	The training algorithm AN
	The inner training algorithm A"0362AN

	The selection function N
	The filter functions
	ADASYN
	SMOTE
	Grey data
	Mark below
	Random downsampling
	Recursive
	Voting filter

	Feature transformation

	Results
	Evaluation procedure
	The baseline
	Parameters for the and N functions
	Initial subset

	Algorithmic performance using "0362N0=P
	Algorithmic performance using "0362N0=R
	Convergence

	Overfitting
	Feature transform - Centroid method

	Conclusions
	Future work
	Feature transformation
	Robust SVM

	Appendix
	The original training structure
	Functions

	The new training structure
	Functions
	An example

