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Abstract 

Large-scale land acquisition (LSLA) can be considered as necessary investments or land 

grabbing and it is important to study their consequences. Few studies investigate agro-

ecological consequences and water use of LSLAs. Hence, this study aims to (1) identify LSLAs 

and their previous land use in Ghana, and (2) investigate the suitability of the current crops 

choice of LSLAs and compare with the previous crop choice of residents. The identification of 

LSLAs and previous land use is based on interpretation of satellite images and additional 

literature and statistics on land use and land covers of Ghana, whereas the results of agro-

ecological suitability are generated from a global agro-ecological zoning (GAEZ) model. 

Eventually 20 LSLAs was identified, however their locations were confirmed with 

different levels of certainty. The previous land use was then determined and four different land 

use classes were found: small-scale farming, multifunctional land use, commercial forestry and 

large-scale cultivation. A crop suitability index (CSI) was generated for previous and current 

crops and the results showed that the CSI had increased significantly (p < 0.05) due to the 

LSLAs. 

The identification of LSLAs and the determination of previous land use using remote 

sensing were time consuming and field observations is needed to fully assess the certainty and 

the significance of the method. The increasing CSI indicate that either current crop choice or 

management are more suitable for the areas than previous crop choice or management. 

However, a combination of agro-ecological suitability and socio-economic suitability is 

required to obtain a holistic view of the consequences of LSLAs. Nevertheless, this study 

managed to identify LSLAs with open access data and remote sensing as well as assessing the 

agro-ecological suitability of the crops of the LSLAs. 

    

Keywords: Physical Geography and Ecosystem analysis, Ghana, Land acquisition, Remote 

sensing, Agro-ecology 

         



 

 

Sammanfattning 

Storskaliga markförvärv kan ses som nödvändiga investeringar eller som fråntagandet av mark 

från fattiga och det är viktigt att studera dess konsekvenser. Denna studie utgår från Ghana, där 

få studier har genomförts som undersöker agroekologiska konsekvenser och vattenanvändning 

av storskaliga markförvärv. Syftet med studien är därför att (1) identifiera storskaliga 

markförvärv och tidigare markanvändning, och (2) undersöka lämpligheten av grödval i de 

förvärvda områdena och jämföra med grödval hos lokalbefolkningen. Identifieringen av 

storskaliga markförvärv och tidigare markanvändning bygger på tolkning av satellitbilder samt 

litteratur och statistik om markanvändning i Ghana. Grödornas agroekologiska lämplighet är 

genererad av en modell som är baserad på globala agroekologiska zoner (GAEZ). 

Totalt 20 storskaliga markförvärv kunde, med olika säkerhetsnivåer, identifieras och 

bekräftas av oberoende källor. Därefter bestämdes den tidigare markanvändningen i områdena 

och fyra olika markanvändningsklasser hittades: småskaligt jordbruk, nyttjad mark, skogsbruk 

och storskalig odling. Slutligen modellerades ett lämplighetsindex för de traditionella grödorna 

och för de nuvarande grödorna. Resultaten visade att lämpligheten hade ökat avsevärt i 

områdena som ett resultat av förändringen av grödor och förvaltningsmetoder. 

Identifieringen av de storskaliga markförvärven och bestämningen av den tidigare 

markanvändningen med hjälp av fjärranalys var tidskrävande och fältobservationer behövs för 

att fullt ut kunna bedöma säkerheten och signifikansen av metoden. Den ökande lämpligheten 

indikerar att antingen de nuvarande grödorna eller brukningsmetoderna är mer lämpliga för 

områdena än de tidigare grödorna eller brukningsmetoder. En kombination av agroekologisk 

lämplighet och socioekonomisk lämplighet krävs emellertid för att få en helhetssyn av 

konsekvenserna av storskaligt markförvärv. Icke desto mindre lyckades den här studien med att 

identifiera storskaliga markförvärv med hjälp av öppna data och fjärranalys samt att utvärdera 

grödornas agroekonomiska lämplighet i de storskaliga markförvärv. 

 

Nyckelord: Naturgeografi och ekosystemanalys, Ghana, markförvärv, satellitbilder, 

agroekologi  
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1. Introduction 

Today there are more than 45 million hectares (ha) of concluded large-scale land acquisitions 

(LSLAs) in the low- and middle- income countries around the globe (The Land Matrix Global 

Observatory 2017a), which affect the ecological and social systems of those areas. The 

investors are either individuals, companies, investment funds or state agencies and the top three 

investor countries are the USA, Malaysia and the United Kingdom (Nolte et al. 2016). 

The global food and energy crises in the 2007-2008 led to worldwide price hikes for 

important food crops such as corn (Zea mays), rice (Oryza sativa) and wheat (Triticum) 

(Demeke et al. 2008), and it is thought to be a major contributor to the on-going LSLAs 

(Zoomers 2010;  Borras Jr and Franco 2012;  Arezki et al. 2015;  Schoneveld and German 

2014). Another factor thought to have intensified the process of LSLA is the goal set by the 

European Union and the USA to increase the use of liquid biofuels in the transport sector to 

partly replace fossil fuels (Oxfam International 2008). As a consequence of the increased 

demand for biofuels, LSLAs with fields of jatropha (Jatropha curcas), an oil plant originating 

from Mexico (Pecina-Quintero et al. 2014), can be traced throughout the African continent 

south of Sahara (Hall 2011). 

LSLA is a controversial topic and is often referred as land grabbing by those who address 

the negative effects of LSLA (Borras Jr and Franco 2012), whilst other prefer to address it as 

land investments (Zoomers and Otsuki 2017;  U.S. Department of the Interior and U.S. 

Geological Survey 2006a). While the latter term emphasises investment and job opportunities 

for the residents, the term land gabbing emphasises how land is being grabbed from the poor 

(Boamah 2014a). Whether it is referred to as large-scale land acquisition, land grabbing or land 

investment, the phenomena originate from large land deals where the right to utilise the land is 

moved from the local people to the investors (The Land Matrix Global Observatory 2017c). 

To fully understand ecological and social impacts of LSLAs, it is important to investigate 

current and previous land use, ownership as well as conflicts over lands in affected areas 

(Bottazzi et al. 2016;  Johansson et al. 2016). Studies in Africa have observed that LSLA created 

new and intensified conflicts over lands between residents (Bottazzi et al. 2016;  Campion and 

Acheampong 2014). The area of interest in this study is Ghana, in western Africa, where 

approximately 235,000 ha of land have been acquired by mainly foreign investors (The Land 

Matrix Global Observatory 2017b).  

Ghanaian authorities such as the Water Resource Commission, Ghana Irrigation 

Development Agency, and the Ministry of Food and Agriculture are normally not consulted 

when deals are concluded between land owners and the investors during a land acquisition 

(Williams et al. 2012a). Hence the suitability and sustainability of the investors’ crop choices 

and water demands are often left uninspected. A recent study investigated changes in water use 

from LSLAs in Africa, by using a dynamic global vegetation model (Lund-Potsdam-Jena 

managed Land) to estimate the amount of freshwater and rainwater that crops on acquired land 

require (Johansson et al. 2016). The authors noted that there is a knowledge gap in the literature 

concerning previous land use and water demands in areas where land is acquired. This 

information is needed in order to understand how pressures on local ecosystems and freshwater 

sources change, before and after the LSLA (Johansson et al. 2016).  
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1.1 Aim and research questions 
On account of the sparse information regarding previous land use, this study aims to determine 

previous and current land use with remote sensing, in areas that are subject to LSLA in Ghana. 

Whereas several studies have been conducted on social and economic consequences of LSLA 

in Ghana, few address ecological consequences of LSLA (Williams et al. 2012b). Therefore, 

this study also aims to investigate the ecologically suitability of the previous and current crop 

choice and land management, based on a global agro-ecological zoning (GAEZ) model. The 

research questions that will be addressed in this study are the following: 

i. How can the locations of LSLAs be identified using remote sensing tools? 

ii. What were the land use prior to the land acquisitions and how can they be determined 

using remote sensing? 

iii. Is the previous crop choice of local residents or the current crop choice of LSLAs most 

agro-ecologically suitable for the area? 
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2. Background 

With approximately the same size as the United Kingdom, Ghana has attracted 41 investors 

since 2000, of which 20 is included in this study (The Land Matrix Global Observatory 2017c). 

The purpose of this background section is to unravel the why, how and what of LSLAs in 

Ghana: why are investors attracted to Ghana? How is the land acquired? And, what are the 

consequences of LSLAs in Ghana? However, first a brief introduction to the climate of Ghana 

is required and a definition of LSLA needs to be established.    

2.1 Ghana 
The Republic of Ghana is situated along the northern shore of the Gulf of Guinea, on the west 

coast of the African continent. The country shares its western borders with Côte d’Ivoire, its 

eastern borders with Togo and adjoins Burkina Faso in the north (figure 1). 

Figure 1 The agro-ecological zones in Ghana. Adapted from FAO 

(Food and Agriculture Organization of the United Nation (FAO) 2004).  

Author: Jenny Hansson 
Coordinate system: WGS 84 

Esri, HERE, DeLorme, MapmyIndia 
© OpenStreetMap. 

contributors, and the GIS user community 
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2.1.1 Climate and agro-ecological zones 
Ghana can be divided into seven different agro-ecological zones (AEZ): rainforest, deciduous 

forest, transitional zone, guinea savannah, sudan savannah and coastal savannah (figure 1). The 

AEZs are utilised for mapping potential land resources based on the climate, soil profile, 

landform, land cover and specific restrictions for land (Food and Agriculture Organization of 

the United Nation (FAO) and the Land and Water Division 1996). 

The mean annual precipitation is continuously decreasing along a transect running from 

the Rainforest in the southwest (2,200 mm/year) to the Sudan savannah in the far northeast 

corner of the country (1,000 mm/year). The coastal savannah is an exception and receives the 

least annual precipitation (800 mm/year) (Food and Agriculture Organization of the United 

Nation (FAO) and Aquastat 2005). The annual precipitation pattern can be divided into four 

different areas based on their rainy seasons. North of the transitional zone there are two different 

precipitation schemes consisting of one rainy season. The two southern precipitation schemes 

on the other hand experiences two rainy seasons annually (Ghana Meteorological Agency 

2016b). Whilst the southern area of Ghana has two rainy seasons the national mean precipitation 

falls between May and September, with the highest amount of rainfall occurring in June and 

September (figure 2).  

The average annual temperature is approximately 27.5 °C and the monthly average 

never falls beneath 25 °C (figure 2). The highest temperatures can be found in the northern parts 

of Ghana where the monthly maximum temperatures are above 30 °C throughout the year, and 

the lowest maximum temperature around 26 °C (Ghana Meteorological Agency 2016a).  

 

 
Figure 2 Monthly mean rainfall and temperature in Ghana, based on the years 1991-2015 

(Jones and Harris 2013).  

 

2.1.2 Land cover and land use 
Approximately 50% of Ghana’s population lives in cities and the urban areas around the capital 

of Accra are advancing due to a fast urbanisation (Shih et al. 2016;  Ghana Statistical Service 

2013). Yet a recent land cover classification estimated that as much as 50.2% of Ghana’s surface 

is under some kind of agricultural use (Hackman et al. 2017). Additionally, 36.5% of the land 

cover is shrublands, whereas 8.1% of the total land cover is forest (Hackman et al. 2017). The 

forested areas are sparsely scattered throughout the wet evergreen and moist evergreen AEZs 
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(figure 1) and are almost entirely forest reserves (Hackman et al. 2017). In northern Ghana, 

agricultural land has expanded at the expense of grasslands and areas of mixed vegetation with 

tree cover, mainly due to population growth and increased rainfall variability (Kleemann et al. 

2017). Another study explains the decrease in savannah grasslands as a result of increasing 

mining activities (Basommi et al. 2015). In central Ghana, closed canopy forests have decreased 

continuously since 1990, whereof two forest reserves lost 50% of their closed canopy forest 

cover between 1990-2010, mainly due to logging (Addo-Fordjour and Ankomah 2017). Local 

fuelwood collection is estimated to be responsible for 35 % of the total deforestation in Ghana 

(Amlalo and Oppong-Boadi 2015). Whether it is due to population growth, urbanisation, more 

effective forestry or mining, the land use and land cover in Ghana are constantly changing.   

 Apart from the large proportion of land used for agriculture, Ghanaians utilise land in 

multiple other ways, and approximately 20 % of rural household income is gathered form 

natural resources (Pouliot et al. 2012). Important resources are fuelwood (38 % of the energy 

supply in Ghana), bush meat, wild foods, and construction material (Energy Commission of 

Ghana 2016;  Pouliot et al. 2012;  Appiah et al. 2009). 

2.2 Definition of large-scale land acquisition 
The Land Matrix database, an independent initiative that gathers and stores information on 

LSLAs around the world, has defined several characteristics that define a LSLA (The Land 

Matrix Global Observatory 2017c). Firstly, the purpose of the deal should be either to gain 

agricultural yield or timber, carbon trading, industry, renewable energy production, 

conservation or tourism. Secondly, the land deal should cover an area of at least 200 hectares, 

and the investor has the right to use, control or own the land. Lastly, the land deal results in a 

transition from small-scale agriculture, local community use, or important ecosystem services, 

into an area of commercial use (The Land Matrix Global Observatory 2017c).  

2.3 Large-scale land acquisition in Ghana 
The LSLAs in Ghana are mainly intended for agriculture, and only 4 out of 41 listed LSLAs 

have another primary intention. Besides from agriculture, forestry is also a main purpose of 

LSLAs in Ghana (The Land Matrix Global Observatory 2017b). The most common crops 

grown are corn, oil palm (Elaeis guineensis), jatropha, soybeans (Glycine max) and rice. Rice 

is the only crop solely grown for food, unlike the other crops that are grown partly for biofuel 

production (Landis et al. 2008;  Kusin et al. 2017;  Li et al. 2014;  Zhou et al. 2016). Jatropha, 

corn, oil palm and soybeans are so called flexible crops, which mean that they can be grown for 

multiple purposes (Borras et al. 2016). Unlike corn, oil palm and soybean, jatropha is not edible, 

however, it can be used for medical purposes or animal feed after processing (Ye et al. 2009). 

Jatropha is mainly produced for the purpose of biofuel production (Acheampong and Campion 

2014;  Aha and Ayitey 2017;  Ahmed et al. 2017;  Campion and Acheampong 2014;  Hesselberg 

2008;  Kolnes n.d.), and is classified as biofuel in this study whereas corn, oil palm and soybeans 

are classified as flexible crops. 

2.3.1 Why are investors attracted to Ghana? 
The favourable climate and the political stability of Ghana are the foremost reasons why 

companies are attracted to Ghana. Other benefits are abundant water resources and the relatively 

good infrastructure (Smart Oil 2 Srl. n.d.;  Kolnes n.d.;  Levi n.d.;  Africa Atlantic 2013a;  

Formako Farms n.d.;  Mim Cashew and Agricultural Products Ltd. n.d.-b;  Compagnie Fruitière 

n.d.;  Gold Coast Fruits Ltd. n.d.). Also the Ghana Investment Promotion Centre (GIPC) 

emphasises the political stability, the good workforce and the infrastructure of Ghana as reasons 

why foreign companies should invest in Ghana (Ghana Investment Promotion Centre (GIPC) 

2017).    
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2.3.2 How is land acquired? 
It is stated in the Constitution of the Republic of Ghana that that a non-Ghanaian citizen does 

not have the right to possess any land in Ghana (Government of Ghana 1992), yet transnational 

companies manage to acquire land in Ghana. These LSLAs are enabled by the structure of the 

customary land tenure system in Ghana, where the chief of a local community and the company 

sign long term leases (Campion and Acheampong 2014;  Kuusaana and Gerber 2015;  Aha and 

Ayitey 2017). Approximately 80-90 % of the undeveloped land in rural Ghana is under 

customary land tenure, meaning that the right to use land is approved by the local communities, 

families, first settlers or clans rather than the government (Ministry of Lands and Forestry 1999;  

Kasanga and Kotey 2001). Customary land tenure is normally gained through inheritance from 

ancestors and can follow either a matrilineal or a patrilineal path (Gyasi 1994;  Kasanga and 

Kotey 2001;  Ollennu 1962).  

Even though inheritance still is the main way of gaining land, the land tenure system 

has been shown to adapt to land requests, with more frequently occurring land sales and land 

leases as a result (Gyasi 1994;  Kasanga and Kotey 2001). The land leases resulting in LSLAs 

are often signed without any consultancy of the members of the community and with little 

governance form the government (Campion and Acheampong 2014;  Kuusaana and Gerber 

2015;  Aha and Ayitey 2017). A recent study from the regions of Yeji and Ejura showed that 

93 % of the relocated farmers participating in the survey were not asked about their land being 

leased to foreign companies before the deal was signed. The farmers claimed that it was the 

chief and his council that made the decision on their own (Aha and Ayitey 2017). As a 

consequence of the land tenure insecurity and the exclusions of the community members in the 

land leases, it is suggested that the role of the chief in land deals is better controlled or changed 

in order to make the land deals proper fair and transparent (Ahmed et al. 2017). 

2.3.3 What are the consequences of large-scale land acquisition in 
Ghana? 

LSLAs might intensify already existing problems such as local food insecurity, land tenure 

insecurity and landless farmers, increased emigration of young people towards the south, and 

displacement of people from culturally and socially important places (Kidido and Kuusaana 

2014). Other consequences of LSLAs in Ghana are the displacement of farmers without proper 

compensation, and failure to bring benefits to the local people due to failures of many projects 

(Anseeuw 2013;  Kuusaana and Gerber 2015;  Aha and Ayitey 2017;  Ahmed et al. 2017).  

 Local food insecurity is often associated with land tenure insecurity where landless 

households more frequently experience food insecurity (Nyantakyi-Frimpong and Bezner Kerr 

2017). The displacement of farmers due to LSLA sometimes leave farmers with less fertile 

land, hence increasing food insecurity (Timko et al. 2014).  It has also been shown that land 

holders in areas where LSLA has occurred show less willingness to invest in their lands, which 

leads to food insecurity even among land holders (Aha and Ayitey 2017). This is seen as a 

consequence of other farmers being displaced due to LSLA which has led to land tenure 

insecurity amongst the land holders (Aha and Ayitey 2017). Land holders can also be 

constrained in how long they can leave their land in fallow when large amounts of land are 

acquired in the area (Timko et al. 2014;  Kidido and Kuusaana 2014). With less land available 

the ration between cultivated land and fallow land increases, which in turn can decrease the 

crop yield (Gaiser et al. 2011), thus affecting food security. There are also concerns among 

displaced farmers that the fertile land they once used for growing food crops now is used for 

growing jatropha intended for biofuel production (Timko et al. 2014). Planting crops for biofuel 

production instead of food crops is commonly discussed when relating LSLA to local food 

insecurity (Tomei and Helliwell 2016). However, food insecurity as a result of LSLA can also 
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be related to people being denied the access to natural resources and wild food (Laura et al. 

2011;  Pouliot et al. 2012).  

 Even though LSLA can lead to food insecurity, it can also generate employment and 

benefits such as new water wells, schools, medical clinics and road maintenance (Laura et al. 

2011;  Timko et al. 2014). As an example, one LSLA that was initiated in 2003 has employed 

more than 2,000 employees and has recently established a health care centre (Golden Exotics 

Limited (GEL) 2015). At the same time, many of the LSLA that focused on jatropha failed on 

an early basis, leaving few employments and empty promises behind (Ahmed et al. 2017;  

Boamah 2014a). Unfulfilled promise of employment and increased social infrastructure has 

been suggested to be a larger problem than the LSLA itself (Kidido and Kuusaana 2014). A 

recent review of failed jatropha projects in Ghana shows that there is not one simple reason 

behind the failures, but rather a combination of different circumstances that contribute to the 

failures of the jatropha projects. The Ghanaian state, the Land Commission, local communities, 

community chiefs, community based organisations (CBOs) and non-governmental 

organisations (NGOs), and the foreign agribusinesses all contributed to their part in the failures 

(Ahmed et al. 2017). Boamah (2014a) observed that jatropha projects that are described as land 

grabbing by CBOs and NGOs are more likely to fail and are less likely to benefit the local 

people and contribute to local development (Boamah 2014a). In Ethiopia, it has been suggested 

that a major reason behind the failure of jatropha projects is the misbelief that jatropha can be 

cultivated in large scale on marginal lands and yet produce sufficiently for the extraction of 

biofuel (Wendimu 2016).   
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3. Data and methods 

The methodology can be separated into three different substudies based on the structure of the 

research questions: (i) identifying and observing LSLAs, (ii) determining the previous land use 

and (iii) investigating the crop suitability index (CSI) of the previous and current crops (figure 

3). First a brief description of the data will be presented, followed by a section describing the 

three steps of the methodology. 
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3.1 Data and data management 
The data used in this study was derived from the Land Matric Observatory, Google Earth Pro 

and Earth Explorer and will be briefly presented in this section (The Land Matrix Global 

Observatory 2017b;  Google Inc. 2017b;  U.S. Department of the Interior and U.S. Geological 

Survey 2017). A comprehensive documentation of the data can be found in Appendix A. 

3.1.1 The Land Matrix Observatory  
The spatial data on LSLAs in Ghana were obtained from the Land matrix database, which 

covers LSLAs in the low- and middle-income countries worldwide (The Land Matrix Global 

Observatory 2017b). The Land Matrix collects data of land deals, from year 2000 and onwards, 

and the database is constantly updating the areas that have been identified as LSLAs. The 

LSLAs within the database are mainly derived from six different types of sources: (1) research 

papers and policy reports, (2) personal information, (3) field-based research projects, (4) official 

government records, (5) company sources and (6) media (The Land Matrix Global Observatory 

2017c).  

The LSLAs documented in the Land Matrix database are in different stages of the land 

acquisition process: not started, start-up phase, in production, project abandoned or of unknown 

status (The Land Matrix Global Observatory 2017c). Only LSLAs in production or with 

unknown status were examined since LSLAs that has not yet be initialised will be impossible 

to identify through remote sensing. In Ghana, there are currently 20 LSLAs in production and 

7 with unknown status, which initially were observed and analysed in this study, although some 

were removed at an early stage due to inadequate information. 

It is important to accurately identify the spatial distribution of the land acquisitions in 

order to understand the social and ecological effect in those areas (Eckert et al. 2016), however 

the spatial accuracy of the Land Matrix data is widely varied and imprecise (Messerli et al. 

2014). As a consequence, a comprehensive examination of the areas in Google Earth Pro was 

required in order to find the exact position of the LSLAs. Since the LSLAs are changing in 

extent and activity it is important to note when the data was obtained from the Land Matrix 

database. The data for this study was downloaded on the 18 January 2017 and is displayed in 

Appendix B. 

3.1.2 Google Earth Pro 
Google Earth provides the user with an opportunity to investigate a larger area without having 

to download large data sets. It further provides the user with layers and labels that together with 

the ability to search for locations and land features facilitate when searching for unknown 

locations in populated areas (Google Inc. 2017b). The built-in Street View application was also 

utilised to identify areas and to understand characteristics of the surrounding landscape. If an 

approximate location of a LSLA was known the Street View could be used to explore the area 

from a street level point of view, that is to say if street view images had been collected by 

Google. Consequently, LSLAs situated along major roads could possibly be identified from 

road signs or street level observations. Additionally, Google Earth is a software that is easy to 

access and the basic version is free of charge (Google Inc. 2017a). A free trial version of Google 

Earth Pro version 7.1.8.30.36 was utilised in this study, mainly because it enables the user to 

perform measurements and create polygons directly in the program (Google Inc. 2017b).  

3.1.3 Landsat 7 and Landsat 8 satellite data  
Initially the methodology of observing LSLAs and determining the corresponding previous land 

use was based on the utilisation of Google Earth Pro and its functions. However, it was realised 

early on that the quality of the satellite data as well as the ability to investigate historical images 

were highly limited, therefore additional satellite data was acquired. Both more recent and 

historical satellite data, recorded before the land acquisitions, were acquired from the Earth 
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Explorer, which is operated by the U.S. Department of the Interior and the U.S. Geological 

Survey (U.S. Department of the Interior and U.S. Geological Survey 2017). The Earth Explorer 

offers a variety of dataset that covers the earth and the service is free of charge (U.S. Department 

of the Interior and U.S. Geological Survey 2017). 

Satellite data from Landsat 7 and 8 were acquired from the Landsat Collection Tier 1, 

which means that the satellite data are cross-calibrated over the Landsat instruments and has 

been pre-processed to the same level (U.S. Department of the Interior and U.S. Geological 

Survey 2016b). The data is also geometrically corrected with ground control points (GCPs) and 

digital elevation models (DEMs) and the geometric accuracy of Tier 1 products have a root 

mean square error (RMSE) of < 12 meters (U.S. Department of the Interior and U.S. Geological 

Survey 2016b; Young et al. 2017). Landsat 7 satellite data is recorded over 8 bands whereas 

Landsat 8 records data over 11 different bands (table 1; U.S. Department of the Interior and 

U.S. Geological Survey 2016a). Besides from bands that cover the visible spectra the satellite 

sensors records data in the near infrared (NIR), short-waved infrared (SWIR), thermal infrared 

(TIR) and panchromatic spectra. 

 
Table 1 The spectral bands and the spatial resolution of the satellite data for Landsat 7 and Landsat 8 

(U.S. Department of the Interior and U.S. Geological Survey 2016a). 

Band Landsat 7 ETM+ Sensor Landsat 8 OLI Sensor and TIRS 

Bands 

  Spatial 

Resolution 

(m) 

Spectral 

Range 

(µm) 

 Spatial 

Resolution 

(m) 

Spectral 

Range 

(µm) 

1 Blue 30 × 30 0.44 - 0.51 Ultra blue 30 × 30 0.44 - 0.45 

2 Green 30 × 30 0.52 - 0.60 Blue 30 × 30 0.45 - 0.51 

3 Red 30 × 30 0.63 - 0.69 Green 30 × 30 0.53 - 0.59 

4 NIR 30 × 30 0.77 - 0.90 Red 30 × 30 0.64 - 0.67 

5 SWIR 1 30 × 30 1.55 - 1.75 NIR 30 × 30 0.85 - 0.88 

6 TIR 60 × 60 10.31-12.36 SWIR 1 30 × 30 1.57 - 1.65 

7 SWIR 2 30 × 30 2.06 - 2.35 SWIR 2 30 × 30 2.11 - 2.29 

8 Panchromatic 15 × 15 0.52 - 0.90 Panchromatic 15 × 15 0.50 - 0.68 

9    Cirrus 30 × 30 1.36 - 1.38 

10    TIR 1 100 × 100 10.60-11.19 

11    TIR 2 100 × 100 11.50-12.51 

   

3.2 Methods 
The purpose of the first substudy was to find a remote sensing based method to identify LSLAs. 

The second substudy involved determine the previous land use of the LSLAs identified in the 

first substudy. The third substudy then utilised the results of the first two substudies to 

investigate the change in crop suitability before and after the land acquisitions.   

3.2.1 Identifying large-scale land acquisitions with remote sensing 
The locations of LSLAs were identified in three different steps: (1) the approximate locations, 

obtained from the Land Matrix database, were positioned in Google Earth Pro and the LSLAs 

were colour coded based on their land use. (2) Company sources were then used together with 

peer-reviewed articles, NGO documents, and newspaper articles to find a more precise location 

of the land acquisition. Additional company information from different social media such as 

YouTube and Facebook greatly facilitated the identification of the location of some of the 

LSLAs. In some cases, recently released Street view imageries in Google Earth helped to 

http://www.doi.gov/
http://www.usgs.gov/
http://www.usgs.gov/
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determine the location of a company farm or factory. (3) Once the approximate locations of the 

LSLAs were modified and confirmed with independent sources, established image 

interpretation techniques were used to identify the exact locations from satellite images. 

When an unknown object is to be identified in satellite data there are several techniques 

that facilitate the interpretation process (Paine and Kiser 2012). The interpretation techniques 

used in this study are the: (i) relative size of the object related to surrounding object with a 

known size, (ii) shape of the object, (iii) shadow of the object, (iv) colour and the hue of the 

object, (v) texture of the object, (vi) visible patterns in the area, (vii) location of the object, and 

(viii) how the object is associated with other features (Paine and Kiser 2012). Some examples 

of how theses image interpretation techniques were used are displayed in figure 4 and figure 5a 

and 5b. Once the LSLAs were identified they were named following the order they appeared in 

the Land Matrix: L1, L2, Lx …L20. 

Figure 4 is a good example of the different interpretation techniques, and displays some 

features that were characteristics for oil palm plantations. Firstly, the oil palm plantations that 

were identified had a distinct pattern of paths running through the plantation. They were either 

straight paths, as displayed in figure 4, or paths that had the appearance of contour lines. 

Secondly, the shape and colour of the oil palms themselves were easy to distinguish, on account 

of their fanlike appearance and the green colour of the crown that has a blue shade to it. These 

characteristics also facilitated the distinguishing of oil palms even when they were mixed with 

other types of vegetation. Thirdly, even though the crowns are fanlike the texture of oil palm 

fields is smooth and continuous. 

 

 

Figure 5a displays a rice field that was identified as L10 on the account of a nearby 

factory that previously had be identified as the factory of L10. When the approximate location 

was identified, from the Land Matrix and additional sources, the factory could be identified 

from a picture on the company webpage. The picture displayed two large silos in association 

with the farm and these could be identified in satellite images. The silos are evident next to the 

factory building in the satellite image of figure 5b. Furthermore, the small road at the top of the 

satellite image in figure 5b connects the farm with the large rice field in figure 5a. The two 

examples of figure 4 and figure 5a and 5b demonstrate how the land use and the LSLAs could 

Figure 4 Part of the oil palm plantation of L14a. The crowns of the oil palm are easily 

distinguished as well as the paths, dividing the area into smaller patches (Google Earth 

Pro 2016j). 
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be identified using image interpretations techniques. As for Figure 5a and 5b, where more than 

one possible site could be the LSLA, finding a connection between one of the sites and 

additional information in the satellite image helped to identify the LSLA with a higher level of 

certainty.    

Once all the LSLAs were observed in Google Earth Pro and a polygon had been created 

for each LSLA, a certainty level was set to each LSLAs. The certainty levels were based on 

whether the location could be confirmed by another source than the Google Earth scenery, the 

Landsat satellite data and, on whether the initial location could be obtained from the Land 

Matrix database or not. The certainty levels ranged from high certainty to low certainty on a 

five-step scale. Some of the LSLAs could have multiple small fields in different locations or 

adjacent fields that could be observed with different levels of certainty and for that reason those 

LSLAs were divided into subareas in the analysis. 

3.2.2 Determining previous land use 

While land cover, which is the physical characteristics of the surface, often can be distinguished 

using remote sensing only, interpretation of land use requires knowledge of land utilisation in 

the area to complement the visual interpretation (Giri 2012). Since this study aims the determine 

previous land use of LSLAs, this was mainly done through visualisation of historical satellite 

images combined with information on land utilisation, however identification of previous land 

use was not always possible due to insufficient quality of the satellite images. Consequently, 

areas where previous land use could not be determined by satellite visualisation were 

supplemented with two additional methods: (1) comparison of histogram statistics of the NDVI 

from within and outside the LSLAs, and (2) literature review on land use, natural vegetation 

and LSLAs in Ghana. 

Visualisation of historical satellite images 

Historical satellite images were obtained with the Google Earth historical imagery function and 

from the Landsat 7 satellite. The initial interpretation was performed using Google Earth’s 

historical imagery, which provides an opportunity to observe changes in an area during different 

Figure 5a A satellite image of the rice field of L10 (Google Earth Pro 2013e). 

Figure 5b A satellite image of the factory buildings of L10 (Google Earth Pro 2013d) 

 

a b 
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years without having to download a satellite image for each year (Google Inc. 2017b). However, 

too coarse resolution made it difficult to determine previous land use from Google Earth and 

additional Landsat 7 satellite data were acquired and analysed in ArcMap 10.3.1 (ESRI Inc. 

2014). The interpretation of the historical satellite images then followed the same 

interpretations techniques as those mentioned in section 3.2.1, although the quality of the 

historical satellite images often was limited. Frequent cloud contamination, coarse resolution, 

insufficient quality of the satellite data or error strips caused by a failure in the Landsat 7 scan 

line corrector (SLC) contributed to difficulties in determine the previous land use (Hayes et al. 

2007). Problems with frequent cloud contamination and the failure of the SLC when working 

with Landsat 7 data covering Ghana are also recognised by Shih et al. (2016). 

Using NDVI to detect similarities in land use and land covers 

Since many of the historical satellite images in Google earth and from the Landsat Collection 

were of insufficient quality for visually determining previous land use, a quantitative approach 

was tested in order to determine the previous land use of the LSLAs. The areas bordering the 

LSLAs appeared unchanged when they were observed in a time sequence using the historical 

imageries function in Google Earth Pro (Google Inc. 2017b). This insight led to the idea to 

utilise NDVI histograms in order to detect similarities or differences, which were not fully 

visible in the satellite images. NDVI has previously been used as input in land cover 

classifications, where the spatial or temporal histogram profile of the NDVI is used to divide a 

satellite image into different land cover classes (Loyarte 2002;  Shao et al. 2016;  Loveland et 

al. 2000). NDVI is a combination of the red and the NIR bands of a satellite data scene. Even 

though green reflectance is associated with vegetation, the combination of the red and NIR 

reflection highly outperforms the reflectance of the green band when it comes to monitoring 

the density and variation in vegetation cover (Tucker 1979). The reflectance from green 

vegetation is considerably higher in the NIR wavelength compared to the reflectance in the 

visible wavelengths and increases with increasing vegetation density whereas the reflection in 

the visible red wavelength normally decreases with increase vegetation cover (Delegido et al. 

2015;  Ding et al. 2014). These reflectance characteristics of the visible red and NIR in 

vegetation makes the NDVI a good option for observing changes in vegetation density and 

condition.  

In this study the NDVI distribution of a LSLA and the NDVI distribution from its 

bordering area (defined by a one kilometre buffer zone) were derived from a historical satellite 

image from a time prior to the land acquisition. If the histogram profiles of the two NDVI 

distributions were similar, it was assumed that they had the same land cover. Since the land 

cover in the bordering area had not changed noticeably over the years, observations of the 

bordering areas in more recent satellite images would imply the previous land cover of the 

LSLA. Knowing the previous land cover, the previous land use could then be visually 

interpreted or estimated using additional information about land utilisation and land cover 

statistics. In other words, more recent and detailed satellite data were utilised to determine 

previous land use of the LSLAs by assuming (1) that the bordering areas of a LSLA have the 

same land cover at present as they had at the time before the land acquisition, and assuming (2) 

that if the NDVI histogram of a LSLA, derived from a satellite image recorded at a time before 

the land acquisition, and the NDVI histogram of the bordering area in the same satellite image 

are similar the land cover in these two areas are similar. 
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The preparation of the Landsat satellite data 

In order to remove the influence of the sun in the pixel values and enable comparison between 

multiple years and images, the digital number (DN) of the Landsat satellite data had to be 

converted to top of the atmosphere (TOA) reflectance for each band, using the equation (1) 

(U.S. Department of the Interior and U.S. Geological Survey 2016a).  

𝜌𝜆 = 

𝑀𝜌 × 𝑄𝐶𝑎𝑙 + 𝐴𝜌

𝑆𝑖𝑛(𝜃)
 

Equation 1 
Where, 

𝜌𝜆 = The TOA reflectance for the specific band 

𝑀𝜌 = The reflectance multiplicative scaling factor for the specific band 

𝑄𝐶𝑎𝑙 = The pixel value in DN 

𝐴𝜌 = The reflectance additive scaling factor for the specific band 

𝜃 = The solar elevation angle 

The information needed for the calculations can be derived from the meta data file, which is 

supplied when acquiring the satellite data, and the calculations were performed in ArcMap 

version 10.3.1 (ESRI Inc. 2014). 

 Following the conversion into reflectance values, the NDVI for each image can be 

derived from the red and the NIR bands using the equation (2) (Tucker 1979).  

 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑
 

Equation 2 
Where, 

NDVI= normalized difference vegetation index 

𝜌𝑁𝐼𝑅 = The TOA reflectance for the NIR band 

𝜌𝑅𝑒𝑑 = The TOA reflectance for the red band 

Due to the effect of the atmospheric condition on the TOA reflectance, NDVI is 

preferably calculated from the surface reflectance of the NIR and red bands of a scene (Vermote 

et al. 2002). However, information regarding the atmospheric conditions at the time when the 

satellite image is recorded is required to calculate the surface reflection. Since this study utilized 

more than 20 different Landsat scenes and no information regarding the state of the atmosphere 

was easily accessible, the TOA reflectance had to be sufficient for this study. 

 The compilation of the NDVI histogram analysis 

Once the NDVI had been calculated for a historical satellite scene, the NDVI-values of the 

LSLA and the NDVI-values of the one kilometre (km) buffer zone were separately extracted 

for a comparison analysis. Initially a ten kilometre buffer zones was used, however the number 

of cells in the buffer zone highly exceeded the number of cells within the LSLAs. Ideally, the 

area of the LSLA and the area of the buffer zone should be equal in size for an adequate 

comparison. For that reason a one kilometre buffer zone appeared more suitable and similar to 

the LSLAs in size. If the cloud cover was excessive in the satellite scene, the clouds were 

removed by assigning ‘No Data’ to those NDVI-values that were overrepresented by clouds. 

The same procedure was also performed if error stripes, caused by the failure of the Landsat 7 

SLC, were present (Hayes et al. 2007).  

The NDVI distributions of the LSLAs and their respective buffer zones were analysed 

in MATLAB R2015a (The MathWorks Inc. 2017), where the NDVI histogram from each LSLA 
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area was plotted in the same graph as the histogram from the corresponding buffer zone for a 

visual interpretation. If the two histograms are similar this indicates that the land use of the 

LSLA area and the buffer zones are similar.  

A statistical test was then performed to see if the NDVI of the LSLA and the buffer zone 

had the same median, and hence originated from the same distribution. The NDVI-values were 

not normally distributed nor were the area and buffer zone of the same sample size, thus the 

Wilcoxon rank-sum test was chosen since it is a nonparametric test which can perform with 

different sample sizes (Sprent and Smeeton 2007). The Wilcoxon rank-sum test ranks the values 

from the two sets to test whether the medians are equivalent or not. A rejection of the null 

hypothesis means that the samples have different medians, hence do not originate from the same 

distribution (Sprent and Smeeton 2007). The statistical testing of the NDVI values was 

performed to test if previous land use of LSLAs could be determined using this method. If it 

was stated that the NDVI distribution of the LSLA area and the NDVI distribution from the 

buffer zone were significantly different (p < 0.05) this would indicate that they did not have the 

same land use before the land acquisition, following the assumptions of this methodology.   

Figure 6, 7 and 8 displays the methodology for comparing histograms, beginning with 

the historical satellite image of coarse resolution and continuing with the histogram of the NDVI 

distribution within the LSLA area and in the buffer zone. The final step displays the 

investigation of the land use in more recent satellite data of better quality. 

Figure 6 The quality of this historical satellite image is too insufficient in order to visually determine 

the previous land use of L18.  For that reason, a 1 km buffer zone was created around L18 and the 

NDVI was calculated for the entire satellite image. The NDVI values of L18 and the NDVI values 

of its buffer were then extracted separately (step 1) (U.S. Department of the Interior and U.S. 

Geological Survey 2007b).  

L18 
1 km buffer 
Step 3 
 

2007 
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Figure 7 The NDVI profiles of L18 and its buffer is represented by the two histograms. Except for 

the left-sided tail of the buffer histogram they appear to be centred on the same range of NDVI 

values (0.4 – 0.5). The histogram analysis was then supplemented with a Wilcoxon rank-sum test 

in order to see if the there was a significant different between the NDVI distribution of L18 and the 

NDVI distribution of its buffer. Since no significant difference was proven (p = 0.391) it was 

assumed that L18 and its buffer had similar LULC at the time when the satellite image was recorded 

(step 2).  

Figure 8 In this, more recent (2015) satellite image, oil palms, cleared areas and forest stands are 

evident in the buffer zones. If no significant difference was proven in step 2, it was concluded that 

the LULC of L18 was oil palms, cleared areas and forest stands prior to the land acquisition (Google 

Earth Pro 2015h). 

2015 
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3.2.3 Determining the crop suitability with the Global Agro-Ecological 
Zoning Model 

The third and final research question to be addressed in this study involves investigating 

whether the current crop of the LSLA or the crop that previously was cultivated in the acquired 

area is most suitable for that specific area. Consequently, in this study the term current crop 

refers to the crops that grow on acquired land whereas the term previous crop refers to crops 

that grow in the corresponding areas prior to the land acquisitions. The GAEZ model (GAEZ 

v3.0), launched by FAO and the International Institute for Applied Systems Analysis (IIASA) 

in 2002 and updated in 2012, appeared to be a good method for studying crop suitability, hence 

the GAEZ model v3.0 was utilised for this crop suitability study (Fischer et al. 2012). 

Model description 

The GAEZ models originate from the AEZ methodology, developed by the FAO 

already in the 1970s to estimate the productivity of crops, based on their environmental 

requirement and management method. Aside from crop specific inputs, the initial AEZ 

methodology also includes soil and climate characteristics as well as other physical factors 

specific for the area (Food and Agriculture Organization of the United Nation (FAO) and the 

Land and Water Division 1996). The GAEZ model combines crop specific characteristics and 

spatial data inputs, such as soil and terrain, to generate a raster in which the crop suitability for 

a crop was assessed step by step for each grid cell (Fischer et al 2012). The crop suitability is 

calculated through five different steps where the first step assigns spatial climate characteristics 

to each grid cell. The second step adds information on land utilisation and other spatial data 

inputs (table 2) to calculate potential plant biomass and crop yield for each grid cell. In the third 

and fourth steps agro-climatic limitations and soil and terrain limitations, such as water stress 

and limited soil nutrients, are included in each grid cell to simulate possible declines in crop 

yield. In the final step, an algorithm combines the factor generated in previous steps in order to 

assign a suitability to each grid cell (Fischer et al. 2012).   

The inputs for the GAEZ model are climatic data, crop statistics, land utilization types 

and spatial data sets, including soil type, terrain, land use and land cover, protected areas, 

irrigated areas, population and livestock density and the accessibility to the local markets (table 

2). 
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Table 2 The spatial inputs of the GAEZ models are derived from multiple sources and are in different 

resolutions (Fischer et al. 2012; Tóth et al. 2012).  

Input Data Type Resolution 

Baseline climate Raster created from interpolated observed 

data. 

10 and 30 arc-minute 

Climate scenarios General circulation models (GCMs) and 

emission scenarios from the international 

panel of climate change (IPCC) were used 

to estimate agriculture productivity for 

future climate scenarios 

30 arc-minute 

Soil Soil type raster derived from a harmonised 

soil database and updated soil information. 

30 arc-second  

Elevation and 

terrain 

Digital elevation model (DEM) created 

from radar data. 

3 arc-second  

Land cover Land cover raster compiled from six 

geographic data sets. 

5 arc-minute 

Protected areas Protected areas raster derived from raster 

and polygon data over protected areas. 

30 arc-seconds 

Irrigated areas Raster created from a digital map of 

irrigated areas. 

5 arc-minute 

Population Raster created from population inventory 

(person/km2). 

30 arc-seconds 

Livestock density Raster (cattle equivalent/km2). 30 arc-seconds 

 

Given these standard inputs, the GAEZ model can generate results within five different major 

themes, in which the user can decide between different parameter and filter settings (Fischer et 

al. 2012). For this study, it is a crop suitability index (CSI) raster of approximately 10 km (5 

arc-minute latitude/longitude) resolution that is the desired result and it can be produced from 

the theme ‘Suitability and potential yield’. The model theme and subtheme as well as the 

parameter and filters that were used to generate the desirable result are presented in figure 9.  
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Figure 9 Flowchart for the GAEZ model as it was utilised in this study.   

Parameter settings 

The filter ‘Geographical area’ (Ghana) and the parameter ‘Time period’ (baseline 1961-1990) 

were held constant throughout the model runs whereas the parameters ‘crop’, ‘water supply’ 

and ‘input level’ varied between the model runs. When the 1961-1990 baseline is utilised in the 

time period setting the model generates a crop suitability index for a reference climate based on 

climatic data from the years 1961-1990 (Fischer et al. 2012).  

The model generated results for the current crops grown on acquired land, as well as 

previous crops grown in the area. The previous crops were estimated from agricultural statistics, 

where the local crop with the highest average yield (tonnes/hectare) in a district where a LSLA 

is located was chosen to represent the previous crop of that LSLA in the model (Appendix C). 

Information on the current crop, on the other hand, was derived directly from the Land Matrix 

database (The Land Matrix Global Observatory. 2017b). 

The model includes 48 different crops in the parameter settings, however not all current 

crops were represented by the model. Consequently, the crops that were not represented in the 

model had to be represented by a crop with similar ecological constrains (Appendix D). The 

crops that were not represented are teak (Tectona grandis), eucalyptus (Eucalyptus), pineapple 

(Ananas comosus), cashew (Anacardium occidentale), moringa (Moringa oleifera), mango 

(Mangifera indica) and butternut squash (Cucurbita moschata). Information on what type of 

crop that is grown on acquired land was derived from different company sources.  

The parameter of water supply indicates if areas are irrigated or rainfed (Tóth et al. 

2012). The model allows the user to choose between three different types of irrigation: gravity 

irrigation, sprinkler irrigation and drip irrigation, but if the irrigation type is unknown for the 

user it is possible to choose irrigation with no further details. If irrigation with no further details 

is chosen, the model decides on the irrigation type that is associated with the crop chosen (Tóth 

et al. 2012). Initially the current crops with confirmed irrigation were intended to be modelled 
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with the water supply parameter set to irrigation, however this setting turned out to generate 

very restricted results and only eight LSLAs could be modelled as irrigated. Consequently, even 

though some LSLAs use irrigation systems for their crops, all the current crops were also 

modelled with the water supply parameter set to rainfed. Only 0.5% (in 2005) of the traditional 

agriculture in Ghana utilizes irrigation techniques (Food and Agriculture Organization of the 

United Nation (FAO) and Aquastat 2005), for this reason the input for the modelling of previous 

crop suitability assumed rainfed water supply only. The term rainfed is used in the GAEZ model 

for areas that are not irrigated, and the term was adapted and used throughout this study.  

The GAEZ model also allows the user to choose between three levels of input 

concerning the management of the crop: low-level input, intermediate-level input and high-level 

input. When the low-level input is chosen, the model assumes that a crop is local and cultivated 

under traditional management with labour intense techniques. Additionally, no or low levels of 

nutrient or pesticides are assumed to be added under low-level input management (Tóth et al. 

2012). The low-level input was assumed to be suitable for the previous crops in this study. For 

the current crops, on the other hand, a high-level input with machineries and fertilizers were 

assumed since this appears to be the standard in many LSLAs (Golden Exotics Limited (GEL) 

2015;  AgDevCo n.d.;  Formako Farms n.d.;  Africa Atlantic 2013b;  Solar Harvest AS 

(Norway) and Solar Harvest Ltd. (Ghana) 2013). 

ArcMap 10.3.1 (ESRI Inc. 2014) was used to combine each CSI raster, representing a 

specific crop and adapted parameter settings, with each LSLA that grows the corresponding 

crop with the corresponding parameter setting. The same procedure was then done for the 

previous crops, thus resulting in the CSI of each current and previous crop, with adapted 

parameter settings (figure 10). The resulting CSI for each crop ranges from 1-8, where 8 is the 

highest possible suitability (table 3). 

When each LSLA was assigned a CSI for previous and current crop production, a 

Wilcoxon signed rank statistical test was performed in MATLAB (The MathWorks Inc. 2017), 

in order to conclude if there were any statistically change in CSI after the LSLAs. Both a left 

sided and a right sided one-tailed Wilcoxon signed rank test was performed, in order to detect 

if there were any significant (p < 0.05) change in any direction (Chapman McGrew Jr et al. 

2014). 
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Table 3 The definition of each grade in the CSI.  

 

  

Crop 

suitability 

index (CSI) 

1 2 3 4 5 6 7 8 

Definition 
Not 

suitable 

Very 

marginal 
Marginal Moderate Medium Good High 

Very 

high 

Figure 10 The flowchart describes the process of combining the CSI, generated by the GAEZ model, 

of the previous and current crops with the corresponding LSLAs. This was performed in ArcMap 

(ESRI Inc. 2014). 
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4. Results 

The first section presents the location of each LSLA and the certainty level associated with their 

observed locations. The second section presents the identified previous land use for each 

location and lastly, the third section presents the crop suitability of the previous and current 

crops.  

4.1 Identifying large-scale land acquisitions with remote sensing 
The location of the 20 LSLAs in this study could be approximated with different levels of 

certainty (figure 11). The certainty level of LSLAs is determined by whether the location of the 

LSLA was confirmed by other sources, independent of the satellite data (table 4). Such sources 

could be passing a sign addressing the LSLA farm while using Google Earth Street view 

(Google Inc. 2017b), a company video on YouTube or a picture posted on the company 

webpage showing large features that could be identified in satellite images. Other, more 

sophisticated sources could be drawings over the area on the company web page or a map in a 

research paper. High level of certainty means that the location of a LSLA was confirmed by 

multiple sources or that the location was distinct in satellite images. 

 
Table 4 The locations of the LSLAs could be observed and identified with different levels of certainty, 

which is explained in the table. The colour code of the certainty levels coheres to the colour code in 

figure 11.   

Certainty 

Level  

Explanation of the Certainty Levels Example 

 

High 

 

The exact location can be confirmed 

with an independent source and is 

evident in satellite data. 

L4 was confirmed by the study of 

Boamah and Overå (2016), and 

the location was clear in satellite 

images. 

 

The exact location can be confirmed 

with an independent source, but the 

area is not easily distinguished in 

satellite images. 

The acquired area of L8 was 

displayed in a company 

presentation (Osei-Peprah 2015), 

however, only scattered fractions 

of their operation within that area 

are evident in satellite images.   

 

The approximate area can be confirmed 

with an independent source but the 

exact location of the LSLA within that 

area is not certain in satellite images. 

The pineapple farm of L11b was 

confirmed to be situated in the 

village of Obom (Golden Exotics 

Limited (GEL) 2014), however 

there are several adjacent 

pineapple farms outside Obom.   

 
Independent sources give an indication 

of approximately where the LSLA 

could be located and a possible area 

was found in satellite images. 

The name of the village that owns 

the land leased by L2 is mentioned 

in a study, however no other 

information is available (Campion 

and Acheampong 2014).    

Low  

Only a larger approximated area could 

be confirmed by independent sources 

and the location suggested in this study 

is not confirmed. 

The village mentioned in the Land 

Matrix data was the only 

information found on L18. 
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contributors, and the GIS user community 

Figure 11 The certainty levels of the identified LSLAs, where the dark shade of green 

represents the highest level of certainty and the darker blue indicates low level of certainty.   
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4.2 Determining previous land use 
The previous land use of LSLAs and their subareas could be determined with remote sensing 

and additional literature and statistics about land use and land utilisation. Information about the 

natural vegetation cover and the GAEZ highly facilitated the interpretation of the different 

features in the satellite images, thus helping to determine previous land use. Four different land 

use classes were identified, where ‘small-scale farming’ and ‘multifunctional land use’ 

appeared to have dominated the land use prior to the land acquisitions. ‘Commercial forestry’ 

and ‘large-scale cultivation’ could also be identified (table 5). In the event that a LSLA fell 

within different GAEZs or appeared to have different land use the LSLA was divided into 

subareas, which are presented individually in table 5.  

A satellite image representing each previous land use class is displayed in figure 12 

(L1), figure 13 (L11b), figure 14 (L9) and figure 15 (L14a) together with a more recent satellite 

image recorded after the land acquisition. A brief description of the reasoning behind the 

categorising of the L1, L11b, L9 and L14a into the different previous land use classes will be 

presented in this section, whereas a complete collection of the satellite images displaying the 

previous and current land use for each LSLA is accessible in Appendix E together with a 

description of the reasoning and method behind the determination of each previous land use. 

    
Table 5 The numbers represent the different LSLAs and the GAEZ at which each LSLA falls within, 

along with the previous land use of the LSLAs are evident from the position of each LSLA in the table.   

  Global Agro-Ecological Zones 

  Guinean 

savannah 

Transition 

zone 

Deciduous 

forest 

Wet 

evergreen 

forest 

Coastal 

savannah 

P
re

v
io

u
s 

L
an

d
 U

se
 

C
la

ss
 

Small-scale 

farming 

L1, L3a, 

L3b, L6a, 

L20 

L6b, L15  L19, L13a  L12 

Multifunction

al land use 

 L5a, L5b L4, L7, 

L11b, L17 

 L2, L10, 

11a, L16 

Commercial 

Forestry 

  L9   

Large-scale 

cultivation 

  L8, L13b, 

L18 

L14a, 

L14b 
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Figure 12 The current LULC of L1 is displayed in the three upper images and the previous LULC is 

displayed in the lower image (U.S. Department of the Interior and U.S. Geological Survey 2007a;  

Google Earth Pro 2014a, 2016a, b). The previous land cover was interpreted as predominately small-

scale farming on behalf of the rectangular features in the scene, which were interpreted as agriculture 

fields. 

2007 

2014 2016 2016 
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Figure 13 L11b was classified as multifunctional land use on the behalf of the high 

abundance of roads and the vicinity to built-up areas. Moreover, the vegetation in the area 

appear less dense than other parts of the deciduous zone (Google Earth Pro 2015d;  U.S. 

Department of the Interior and U.S. Geological Survey 2002a). 

2015 

2002 
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Figure 14 The abrupt end of the forest in the satellite image from 2002 indicates that a large-scale 

clearance has occurred. Information from the company behind L9 could further confirm that the area 

had been industrial forestry prior to the LSLA (U.S. Department of the Interior and U.S. Geological 

Survey 2001c;  Google Earth Pro 2015c;  U.S. Department of the Interior and U.S. Geological Survey 

2002b;  Mim Cashew and Agricultural Products Ltd. n.d.-a). 

2015 2002 

Figure 15 Cloud disturbance was frequent in the satellite data covering L14a, yet evidence of large-

scale cultivation or management can be distinguished in the satellite data. Large dark features with 

straight boarders and corridors running through them are evident in the centre of L14a in the satellite 

image from 2002 (U.S. Department of the Interior and U.S. Geological Survey 2002b;  Google Earth 

Pro 2016f) 

2002 2016 
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The use of NDVI to detect similarities in land cover was supposed to help determine 

previous land cover in areas with poor satellite data, such as L14a. However, even though the 

NDVI histogram for the LSLA areas and their buffer zones appeared similar in several LSLAs, 

the results from the Wilcoxon rank-sum tests showed that the NDVI of the previous land cover 

in the LSLA was significantly different (p = 0.391) from the NDVI in the buffer zone in all 

LSLAs except for one, L18. Consequently, an analysis of the land use of the buffer zone in 

more recent satellite images could only be utilised for determine the previous land cover of 

L18. 

4.3 Determining the crop suitability with the Global         
Agro-Ecological Zoning Model 

The study aimed to determine whether the previous or current crop choice is the most 

ecologically suitable for that area. This is best demonstrated by figure 16, where the direction 

of change in CSI, from previous crop to current crop, is displayed for each LSLA. The results 

from the GAEZ model showed that the CSI for the current crops were significantly higher    (p 

= 0.0203) than the CSI for the previous crops, when no irrigation was assumed for the current 

crops. The CSI was also significantly higher (p = 0.0098) among the current crops compared to 

the previous crops when the current crops were assumed to be irrigated, although it is important 

to note that the current crops modelled as irrigated were considerably fewer.  

The LSLAs in Ghana are well distributed throughout the country with a higher density 

in the central parts (figure 16), yet the previous crops were represented by only two food crops, 

based on local agriculture statistics (appendix C). Besides from the two food crops, one type of 

flexible crop and one type of commercial forestry crop was also evaluated as previous crops 

(table 6). The LSLAs, on the other hand, grow both biofuel, food crops, flexible crops and 

commercial forestry crops (table 6), where the different crop types were almost equally 

common (table 7). The CSI for each previous and current crop in the LSLAs are displayed in 

table 7. 

 
Table 6 The crop types that were evaluated in the GAEZ model.  

Crop Type 
Previous 

Crop 

Current 

Crop 

Biofuel  Jatropha 

Flexible crop Oil palm Oil palm, corn, soybean 

Food crop Cassava, yam 

Butternut squash,     

cashew, rice, banan 

(Musa), pineapple, 

cacao (Theobroma 

cacao), mango 

Commercial 

forestry 
Teak Teak, eucalyptus 
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Figure 16 The change in CSI prior to and after the land acquisition. There was a significant (p < 0.05) increase in CSI with both the rainfed (a) and 

the irrigated (b) parameter settings. 

Author: Jenny Hansson 
Coordinate system: WGS 84 

 Esri, HERE, DeLorme, MapmyIndia 
© OpenStreetMap. 

contributors, and the GIS user 
community 

Esri, HERE, DeLorme, MapmyIndia 
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Author: Jenny Hansson 
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Table 7 The CSI, generated by the GAEZ model, for each previous and 

current crop of the LSLAs (the direction of change in CSI for each 

LSLA is displayed in figure 16).  

 

 

 

 

 

 

 

 

 

 

LSLA Previous Crop 

(CSI) 

Current Crop  

Rainfed (CSI) 

Current Crop 

Irrigated (CSI) 

1 Cassava (4.0) Jatropha (5.5)  

2 Cassava (4.5) Jatropha (7.5) Jatropha (7.0) 

3a  Yam (3.0) 
Corn (6.5) Corn (7.0) 

Jatropha (5.0) Jatropha (7.0) 

3b 
Cassava (3.0) 

Butternut…...         

squash (1.0) 

Butternut……  

squash (1.0) 

4  

  

Cassava (5.0) 

Jatropha (6.5) Jatropha (..-..) 

Corn (7.0) Corn (..-..) 

Soybean (7.0) Soybean (6.0) 

5a Yam (4.5) Teak (5.0)  

5b Cassava (5.0) Teak (5.0)  

6a  
Cassava (4.0) Jatropha (5.0)  

Yam (3.0) Moringa (5.0)  

6b  Yam (3.5) 
Jatropha (6.0)  

Moringa (6.0)  

8  Teak (5.5) 
Teak (5.5)  

Eucalyptus (6.0)  

10 Cassava (2.5) Rice (3.5) Rice (7.0) 

11a Cassava (3.0) Banana (3.0) Banana (5.5) 

11b  
Cassava (5.5) 

Pineapple (5.0) Pineapple (7.0) 
Yam (5.0) 

12 Cassava (3.5) Rice (4.0) Rice (7.0) 

13a Cassava (4.0) Oil palm (1.5)  

13b Oil palm (2.0) Oil palm (2.0)  

14a Oil palm (6.0) Oil palm (6.0)  

14b Oil palm (6.0) Oil palm (6.0)  

15 
Yam (4.5) 

Eucalyptus (8.0) 
 

Cassava (5.5)  

16 

  

Cassava (5.5) 

Corn (6.0)  

Cacao (5.0)  

Pineapple (5.0)  

18 Oil palm (7.0) Oil palm (7.0)  

19 Cassava  (5.0) Pineapple (5.0) Pineapple (7.0) 

20 Yam (2.5) Mango (5.5)  
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5. Discussion 

This study showed that the current crops of LSLAs are more suitable than the previous crops 

that were assumed to have been cultivated in the areas prior to the land acquisition. Moreover, 

this study demonstrated that Google Earth can be utilised as a remote sensing tool to identify 

LSLAs, and the identified locations could be confirmed with different levels of certainty by 

independent sources. However, when historical satellite images were used to determine the 

previous land use, Google Earth proved to be limited by the poor quality of the historical 

satellite images. Thus additional Landsat 7 satellite images were obtained for each LSLA. 

Despite individual Landsat 7 images for each LSLA the ability to visually interpret the previous 

land use was still limited, the previous land use could be determined for each LSLA by 

supplementing information on local land use and land utilisation. An attempt was made to 

quantitatively compare the NDVI values of the previous land use in a LSLA and the NDVI 

values of a 1 km buffer zone around the LSLA, in order to conclude if they belonged to the 

LSLA belonged to the same land use class as its surrounding before the land acquisition. 

However, this method was not very useful. Despites this, four different previous land use 

classes could be determined through remote sensing and additional information.  

5.1 Identifying large-scale land acquisitions with remote sensing 
Even though remote sensing using Google Earth was the primary tool for the identifying the 

locations of the LSLAs, the identification would not have been possible using exclusively 

remote sensing. Complemented with street view imageries, company sources, research papers 

and local media, remote sensing enabled the identification of 20 LSLAs in Ghana. 

Notwithstanding these supporting sources of information, there were many factors that 

influenced the ability to accurately observe and identify the locations of the LSLAs. This was 

demonstrated by the different levels of certainties that were assigned to the LSLAs. Factors that 

contributed to uncertainties were lack of company sources, inconsistent quality and origin of 

satellite data, misspelling of villages and places, vague information concerning the land use and 

the permanency of the LSLAs, and the appearance of similar projects in the same area.  

The certainty levels were based on how accurately the LSLAs could be identified and 

to what degree the exact location could be confirmed. All areas except for two were assigned a 

medium to high level of certainty due to independent sources confirming their location. 

Whether these sources were a published photography, a road sign in Google Street view or a 

map in a research paper they were treated similarly. Another way to categorise the certainty 

could be by the academic relevance of the independent sources, however this would highly 

neglect important sources that were used in the identification process. The LSLAs with low 

level of certainty obviously contribute to uncertainties also in the results of the determined 

previous land use and the crop suitability. It can be argued that these LSLAs should have been 

excluded from further analyses. The LSLAs determined with high levels of certainty, on the 

other hand, can contribute to increase the accuracy of the spatial information, which often is 

associated with uncertainties, on these LSLAs in the Land Matrix datasets (The Land Matrix 

Global Observatory 2017c). 

Many LSLA projects fail early in the process and the information gathered from 

company sources were not always straight forward about the permanency of the project (Ahmed 

et al. 2017). Even though most of the LSLAs were identified with high certainty, it would be of 

interest to study whether they are still in operation or not, thus bringing yet another dimension 

to the suitability of LSLAs in Ghana.     
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5.2 Determining previous land use 
The most common land use as a consequence of LSLA in Ghana were from small-scale farming 

or multifunctional land use to the cultivation of either flexible crops, food crops, biofuels or 

commercial forestry. The multifunctional land use contained traces of human utilisation, e.g. 

villages, but no obvious agricultural fields were present. Also five large-scale cultivations and 

one commercial forestry operation were found. Small-scale farming could often be decided 

from remote sensing only, whereas the other land use classes had to be supplemented with 

literature in order to estimate the previous land use. 

5.2.1 Small-scale farming 

The principal method for inferring farming activity was based on the presence or absence of 

rectangular features in the satellite images since straight and rectangular features most likely 

are human constructions (Paine and Kiser 2012), hence rectangular features of vegetation or 

bares soil were interpreted as agriculture fields. With 69.5 % of the economically active people 

in rural Ghana working with agriculture, forestry or fishery, it is likely that agriculture is a 

pronounced land use in rural Ghana (Ghana Statistical Service 2013). The high amount of 

interpreted small-scale agriculture is further supported by a recent study that classified 50.2 % 

of the land area in Ghana as either agriculture fields or orchards (Hackman et al. 2017). Even 

though small-scale farming was most frequent in this study the presence of agriculture in the 

satellite images could have been underestimated due to the fallow system, which is widely 

practice in agriculture in Ghana (Ewel 1986;  Adiku et al. 2009;  Norgrove and Hauser 2016). 

The fallow period if sometimes longer than the active period (Temudo and Santos 2017), thus 

leading to an increased risk that the fallow fields might be interpreted as grasslands instead of 

agriculture if the borders are not clear. Also, only 17% of the agricultural land is estimated to 

be covered by permanent crops and besides from fallows the other agricultural lands are utilised 

as meadows and pasture land, which further contributes to the risk of underestimating the extent 

of small-scale farming (Food and Agriculture Organization of the United Nation (FAO) 2017). 

Although the fallow system, meadows and pasture lands might contribute to difficulties in 

detecting the fields in satellite images, the LSLAs were classified as small-scale farming even 

if only a small part of the areas was covered with fields. This might have counteracted the 

possible underestimation of agriculture due to the presence of fallow fields. 

 The transition from small-scale farming to LSLA could directly affect the food security 

of the residents of the affected areas through the loss of agricultural fields and lack of proper 

compensation for the loss of crop yields (Kidido and Kuusaana 2014). If the LSLA fails to 

provide secure employments and other benefits for displaced farmers this could further decrease 

food security for the residents (Kidido and Kuusaana 2014;  Anseeuw 2013;  Ahmed et al. 

2017). On the contrary, the transition to LSLA could also generate employment and benefits 

such as new water wells, schools, medical clinics and road maintenance if it is driven properly 

(Laura et al. 2011;  Timko et al. 2014).  

5.2.2 Multifunctional land use 
The land use class multifunctional land use was used to cover areas that appeared to have traces 

of human disturbance or utilisation, but showed no clear signs of agricultural activity. Signs of 

human disturbances could be less dense or more scattered vegetation than the surrounding, the 

presence of clear borders and straight lines, and human settlements in the vicinity (Paine and 

Kiser 2012). The reason why multifunctional land use was common as previous land use of the 

LSLAs could be the Ghanaians’ frequent utilisation of the commons land (Pouliot et al. 2012). 

For example, collection of fuelwood is a common utilisation of the common lands and it is 

normally collected within 3 - 4 km from the place of consumption (Amoah et al. 2015), resulting 

in a higher probability that wood is collected from the utilised lands if human settlements are 
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present. Yet fuelwood is not the only environmental resource originating from the forest and 

savannah lands of Ghana and approximately 20% of rural household income originates from 

these common lands (Pouliot et al. 2012). In other words, it is unlikely that common lands close 

to human settlement are left pristine and unutilised. This reasoning partly explains why many 

previous land use were classified as multifunctional land use. The land use class multifunctional 

land use covered a broad spectrum of land utilisations, hence this land use class varied more in 

appearance than the other land use classes. 

 Literature on the natural vegetation and land utilisation of the specific area was often 

utilised to understand features in the satellite images. L10, for example, is situated in a well-

documented wetland sites (figure x, Appendix D; Anthony 2015;  Tufour 1999), and this 

information could be used to understand the marshy features of the previous land cover. Despite 

this, L10 was classified as multifunctional land use and not wetlands due to straight features in 

the area and roads and villages in the vicinity.  

 When multifunctional land uses are turned into LSLAs they become inaccessible for the 

residents and the natural resources that used to be provided by the land is no longer available 

(Pouliot et al. 2012), thus could contribute to increasing food insecurity and loss of income. It 

could also affect how farmers can extend their fields when other fields are left in fallow, also 

contributing to decreasing crop yield and consequently increasing food insecurity (Timko et al. 

2014;  Kidido and Kuusaana 2014;  Gaiser et al. 2011).  

The reasoning behind the classification of areas into multifunctional land use was 

primarily based on assumptions of intense human utilisation of common lands. Following the 

high fire wood consumption, high degradation rate and the utilisation of environmental product 

it was assumed that traces of human settlement equalled utilisation of land (Pouliot et al. 2012;  

Energy Commission of Ghana 2016;  Peprah 2015). It was then further assumed, based on the 

fallow system and the intense utilisation of lands, that these utilised lands previously could have 

been cultivated, hence they were included in the crop suitability analysis (section 4.3).  

5.2.3 Large-scale cultivation 
In four of the LSLAs that were large-scale cultivations, even prior to the land acquisitions, oil 

palm was cultivated. The land use of one of these LSLAs was determined from company 

sources (Volta Red Limited 2016), whereas the land use of two LSLAs were interpreted in 

historical satellite images and the land use of one LSLA was determined through the 

comparison of NDVI histograms. Palm oil is traditionally important in Ghana and evidence of 

the use of palm oil, dated to 3,600-3,200 BP, was found in an archaeological site in Ghana 

(Logan and D’Andrea 2012). It has continued to be an important product and the government 

of Ghana expressed the need for more oil palm cultivations already in the 1970s, which resulted 

in the growth of 4,000 hectares of oil palm (World Bank 1975). With the long tradition of oil 

palm cultivation in mind it is likely that some of the LSLAs growing oil palm has acquired 

already established oil palm cultivations, thus probably not changing the land use substantially. 

5.3 Determining the crop suitability with the Global                          
Agro-Ecological Zoning Model 

The result of the GAEZ model showed that there was a significant increase in CSI when the 

previous and the current crops were compared. However, this increase could be a result of the 

modern crop management and input practice rather than the LSLA and change in crop type. 

Under the high-level input the model assumes that an ideal amount of nutrients, pesticides and 

herbicides are applied, whereas no nutrient or chemicals are assumed to be applied in low-level 

input (Fischer et al. 2012). If the model could generate the parameter with the highest influence 

on the resulting CSI, it would have added an interesting aspect to the analysis these results. An 

idea could be to model the previous crops with high input level or irrigation in order to see 
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whether the previous crops were still less suitable or not. This could indicate if it is the crop per 

se or the management method that affect the CSI the most.  

The highest CSIs, when water supply was set to rainfed, were found in association with 

the growth of jatropha (7.5), corn (7), soybean (7), eucalyptus (8) and oil palm (7 and 7), 

whereof all except for one of the oil palm indices were modelled as a current crop. The 

eucalyptus, however, was modelled as jatropha, due to their similar physiological traits (well 

drained soils, tropical climate and do not require excessive rainfall), consequently eucalyptus 

followed the CSI of jatropha (Janick and Paull 2006). Both corn and soybean are considered 

drought tolerant in the model (Fischer et al. 2012), which could explain their high CSI. Jatropha 

is sensitive to waterlogged soils in the model (Fischer et al. 2012), hence it is probably most 

affected by the rainfall pattern and the soil type. Even though there was a significant increase 

in CSI after the land acquisitions, the lowest crop suitability indices were found among two 

current crops: butternut squash (1) and oil palm (1.5). This implies that the area chosen by these 

LSLAs were not suitable for the crop choice. The LSLA growing butternut squash was located 

in the northern part of Ghana, which experiences less rainfall than the southern areas (Food and 

Agriculture Organization of the United Nation (FAO) and Aquastat 2005). Butternut squash 

need irrigation if it grows in sparse regions (Janick and Paull 2006), thus this area might not be 

suitable for growing butternut squash. On the other hand, butternut squash was modelled as 

cacao, which prefers the same well drained soils, temperature range and relatively high amount 

of rainfall (1,500-2,800 mm) (Janick and Paull 2006), and this might have affected the resulting 

CSI of the butternuts squash. The oil palm plantation with low CSI was located on a dividing 

line, above which, no area in Ghana is suitable for growing oil palm. This clear dividing line, 

separating suitable south from unsuitable north, probably depends on a model input that highly 

affect the suitability of oil palms. The model documentation mentions that oil palm is restricted 

by its water requirement and is sensitive to high ground water tables, associated with the soil 

type (Fischer et al. 2012). Studying the rainfall and soil maps of Ghana, the rainfall pattern 

appears more similar to the oil palm suitability map than the soil distribution, hence it is likely 

that the limiting factor for oil palm cultivation is the rainfall scarcity of northern Ghana (Food 

and Agriculture Organization of the United Nation (FAO) 2004). 

Due to the irrigation parameter being restricted to areas that already have a known 

irrigation system, substantially fewer results were produced when irrigation was chosen as 

water supply (Fischer et al. 2012). Of the current crops that could be modelled with irrigation, 

rice increased the most in CSI compared to when it was modelled as rainfed. This is probably 

due to the fact that rice paddies without irrigation often generate a low yield (Fischer et al. 

2012). Also banana, pineapple and corn increased in CSI when irrigation was assumed 

compared to rainfed conditions, while jatropha increased in one area and decreased in another 

area compared to when it was rainfed. Butternut squash was left unchanged compared to rainfed 

conditions, while soybean decreased after applied irrigation. The decrease in CSI as a result of 

the crop being modelled as irrigated compared to rainfed could be a consequence of the soil or 

terrain of the areas not being suitable for irrigation systems (Fischer et al. 2012). Additionally, 

soybean is sensitive to waterlogging in the model (Fischer et al. 2012), and might be restricted 

by irrigation if a rainfed water supply already is sufficient. Although some crops decreased in 

CSI when they were modelled as irrigated compared to when they were rainfed, all of these 

current crops except for butternut squash had a higher CSI than their corresponding previous 

crop. 

5.4 Strengths and limitations of the methods 
The locations of the LSLAs identified with remote sensing relied solely on secondary sources 

to confirm the identified location and ground control points (GCPs) from the field would lower 

the uncertainties associated with the identified locations. Even though no situations arose that 
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questioned the credibility of the secondary sources, poor quality of the secondary sources could 

contribute to an incorrectly assessed certainty of the identified location, in the same way that 

poor GCPs can contribute to wrongly assessed accuracy of a land use or land cover 

classification (Foody 2009). On the other hand, the use of secondary sources contributed to 

making this study more cost efficient and time efficient than if GCPs were to be collected.  

There are several possible reasons why the method of comparing NDVI distributions to 

detect similarities in land cover was ineffective and only could be utilised for one LSLA. Firstly, 

the LSLA areas and the buffer zones contained different amount of cells, which might have 

influenced the statistical test. Secondly, NDVI is sensitive to atmospheric conditions, gets 

saturated in dense vegetation and biased by soil in sparse vegetation, which all could affect the 

results (Birky 2001;  Huete 1988;  Gutman 1991). Thirdly, while NDVI histogram could work 

to roughly classify larger areas (Loyarte 2002), it might not be suitable for this small scale 

(Pettorelli 2013). An attempt was made to remove the clouds from the satellite images, however 

this might not have been performed accurately enough. Additionally, thin clouds present in the 

satellite image can be difficult to detect, thus influencing the NDVI without the user’s 

awareness (Gao and Li 2000) 

The primary benefits of the GAEZ model are that it allows a variety of parameters 

settings and inputs, and that it can produce multiple outputs. This has also been recognised in 

other studies (Liu et al. 2015;  Królczyk et al. 2014). Besides from some socioeconomic criteria 

used in the model settings, the model does not consider socioeconomic suitability when it 

generates the results (Fischer et al. 2012). Additionally, the resulting CSI is not affected by 

what crop type that is produced. Whether it is a food crop, biofuel crop, forestry crop or a 

flexible crop the CSI is generated solely based on agro-ecological parameters. Consequently, 

food insecurity as a possible effect of acquired lands and crops being produced for biofuels or 

export, instead of targeting the local food market, is not considered (Hall 2011;  Oxfam 

International 2008). Considering the many socioeconomic consequences of LSLAs presented 

in the introduction, it is important to include these also when analysing the agro-ecological 

suitability. As for Ghana, it appears as if the socioeconomically consequences are many 

(Anseeuw 2013;  Kuusaana and Gerber 2015;  Aha and Ayitey 2017;  Ahmed et al. 2017;  

Kidido and Kuusaana 2014), and it can be discussed whether the agro-ecological benefits found 

in this study, possibly due to LSLAs, can be considered as benefits if they fail to benefit the 

residents of the area. Even though the productivity of an area increases due to LSLA, it is not 

always for the benefit the people living in the area (Anseeuw 2013). 
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6. Conclusions 

This study demonstrates how different open access tools can be utilised to observe the extent 

and the agro-ecological consequences of large-scale land acquisitions in Ghana. The results of 

this study can be separated into three different substudies, where the first substudy laid the 

foundation for the following two substudies.  

First and foremost, this study demonstrates that it is possible to utilise remote sensing 

for identifying areas of large-scale land acquisitions and even though the method is time 

consuming it has the strength of being cost effective and easy to revise. Additional field work 

and ground control points from the areas are desirable to further evaluate the significance of 

this study.  

Secondly, a visual interpretation of the previous land cover and land use of the large-

scale land acquisitions was highly limited in this study due to poor quality historical satellite 

images. Instead a combination of historical satellite images, supplemental information on 

common land cover and land use, agricultural statistics and information on land utilisations 

were used in order to determine the previous land cover and land use of the large-scale land 

acquisitions.  

Lastly, it was found that agro-ecological crop suitability increased when the previous 

crops were compared with the current crops, however it could not be concluded what factor that 

mostly contributed to the increase in crop suitability index. Furthermore, the socio-economic 

suitability was not considered in this model. A combination of agro-ecological and socio-

economic suitability is essential to obtain a more holistic approach, and should be considered 

for further studies in this subject.  
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Appendix A 

Data and data sources 
 
Table i The Landsat scenes and the position in Google Earth that were utilised for each LSLAs in this 

study are displayed in this table together with their sources.   

LSLA Landsat 7 and Landsat 8 Position in 

Google Earth 

1 LE07_L1TP_194054_20070113_20170105_01_T1 

LC08_L1TP_194054_20170305_20170306_01_RT 

8°13'51.11"N, 

0°44'51.32"W 

2 LE07_L1TP_193056_20061205_20170107_01_T1 

LC08_L1TP_193056_20170125_20170311_01_T1 

6°1'4.06"N, 

0°30'38.26"E 

3a LE07_L1TP_194053_20061126_20170106_01_T1 

LC08_L1TP_194053_20170305_20170316_01_T1 

9°27'5.89"N, 

0°19'4.61"W 

3b LE07_L1TP_194053_20061126_20170106_01_T1 

LC08_L1TP_194053_20170305_20170316_01_T1 

9°36'50.86"N,  

1°2'4.46"W 

4 LE07_L1TP_194055_20080201_20161231_01_T1 

LC08_L1TP_194055_20170305_20170316_01_T1 

6°58'3.69"N, 

0°57'37.09"W 

5a LE07_L1TP_194055_20060211_20170110_01_T1 

LC08_L1TP_194055_20170305_20170316_01_T1 

7°23'10.93"N, 

1°51'27.56"W 

5b LE07_L1TP_195055_20081208_20161223_01_T1 

LC08_L1TP_195055_20161120_20170318_01_T1 

7°36'54.91"N, 

2°36'26.36"W 

6a LE07_L1TP_194054_20070113_20170105_01_T1 

LC08_L1TP_194054_20170305_20170306_01_RT 

8°10'4.41"N, 

0°37'39.98"W 

6b LE07_L1TP_194054_20070113_20170105_01_T1 

LC08_L1TP_194054_20170305_20170306_01_RT 

7°59'31.45"N, 

0°32'48.44"W 

7 LE07_L1TP_194055_20100206_20161217_01_T1 

LE07_L1TP_194055_20110329_20161209_01_T1 

LC08_L1TP_194055_20170305_20170316_01_T1 

6°49'48.09"N, 

0°38'5.53"W 

8 LE07_L1TP_194055_20100206_20161217_01_T1 

LC08_L1TP_194055_20170305_20170316_01_T1 

6°55'45.87"N,  

1°1'19.21"W 

9 LE07_L1TP_195055_20010409_20170206_01_T1 

LC08_L1TP_195055_20161120_20170318_01_T1 

6°54'18.81"N, 

2°36'33.77"W 

10 LE07_L1TP_193056_20061205_20170107_01_T1 

LC08_L1TP_193056_20170125_20170311_01_T1 

5°55'34.17"N, 

0°40'0.52"E 

11a LE07_L1TP_193056_20011207_20170202_01_T1 

LC08_L1TP_193056_20170125_20170311_01_T1 

6°2'59.09"N, 

0°14'41.12"E 

11b LE07_L1TP_193056_20021226_20170127_01_T1 

LC08_L1TP_193056_20170125_20170311_01_T1 

5°42'12.39"N, 

0°27'20.44"W 

12 LE07_L1TP_193056_20061205_20170107_01_T1 

LC08_L1TP_193056_20170125_20170311_01_T1 

6°3'29.83"N, 

0°34'58.09"E 

13a LE07_L1TP_193055_20091229_20161216_01_T1 

LC08_L1TP_193055_20170210_20170217_01_T1 

7°55'40.28"N, 

0°34'17.55"E 

13b LE07_L1TP_193055_20091229_20161216_01_T1 

LC08_L1TP_193055_20170210_20170217_01_T1 

7°45'16.52"N, 

0°30'30.17"E 

14a LE07_L1TP_194057_20020115_20170201_01_T1 

LC08_L1TP_194057_20161231_20170314_01_T1 

4°56'29.15"N, 

1°53'24.95"W 

14b LE07_L1TP_194057_20020115_20170201_01_T1 

LE07_L1TP_194057_20000517_20170211_01_T1 

4°51'11.07"N, 

1°54'43.13"W 



II 

 

LC08_L1TP_194057_20161231_20170314_01_T1 

15 LE07_L1TP_194055_20080201_20161231_01_T1 

LC08_L1TP_194055_20170305_20170316_01_T1 

7°40'36.63"N, 

0°46'47.62"W 

16 LE07_L1TP_193056_20030212_20170126_01_T1 

LC08_L1TP_193056_20170125_20170311_01_T1 

5°31'5.05"N, 

0°38'11.80"W 

17 LE07_L1TP_194055_20110329_20161209_01_T1 

LC08_L1TP_194055_20170305_20170316_01_T1 

6°50'49.65"N, 

0°46'33.73"W 

18 LE07_L1TP_194056_20070113_20170105_01_T1 

LC08_L1TP_194056_20161231_20170314_01_T1 

5°59'52.43"N,      

1° 2'6.29"W 

19 LE07_L1TP_193056_20061205_20170107_01_T1 

LC08_L1TP_193056_20170125_20170311_01_T1 

5°43'18.14"N, 

0°28'46.52"W 

20 LE07_L1TP_194053_20011011_20170203_01_T1 

LC08_L1TP_194053_20170305_20170316_01_T1 

9°47'35.56"N, 

0°55'36.26"W 

(The Land 

Matrix 

Global 

Observatory 

2017b) 

(U.S. Department of the Interior and U.S. Geological Survey 

2017) 

(Google Inc. 

2017b) 

 

 
Table ii The Boundary files that were used for the analysis and are  

displayed below.  

Ghana Country Division File Name 

Country GHA_adm0 

Region GHA_adm1 

District GHA_adm2 

Source: (GADM database of Global Administrative Areas 2015) 
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Appendix B 

The original data from Land Matrix 
Table iii Part of the original data obtained from Land Matrix, where the LSLA in this study is highlighted in bold (The Land Matrix Global 

Observatory 2017b). 
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deal_id location investor_name investor_country intention 

1322 Yeji, Ghana Agroils Italy Biofuels 

1323 Volta Region, Ghana Galten Global Alternative Energy Israel Biofuels 

1324 Nsuta,Sekyere, Ghana Hazel Mercantile Ltd.  India Biofuels 

1330 Prang, Ghana Constran S/A, Sekab Brazil, Sweden Biofuels, Food crops, Renewable 
Energy 

1334 Brong Ahafo, Ghana Kimminic Corp. Canada Biofuels 

1337 Sege, Ghana, Gomoa, 
Ghana 

Bionic Group United States of 
America 

Agriunspecified, Biofuels, Food crops, 
Livestock 

1338 Brong Ahafo, Ghana Jatropha Africa, Unnamed investor 193 United Kingdom of 
Great Britain and 
Northern Ireland, 
Ghana 

Biofuels 

1348 Volta, Ghana Prairie Texas, Government of Ghana, 
Ghana Commercial Bank 

United States of 
America, Ghana 

Food crops 

2237 Yendi, Ghana, Hohoe, 
Ghana, Tamale, Ghana 

Solar Harvest AS Norway Food crops 

2241 Agogo, Ghana Scanfuel Ltd Norway Food crops, For wood and fibre 

2242 Ghana J. García-Carrión Spain Food crops 

3389 Asubima Forest 
Reserve, Ghana 

Form International Ltd Netherlands For carbon sequestration/REDD, For 
wood and fibre 

3393 Ashanti, Ghana Viram Plantation Ltd., Unknown Ghanaian 
Investor  

India, Ghana Biofuels, Food crops, Non-food 
agricultural commodities, Renewable 
Energy 

3398 Yeji, Ghana Natural African Diesel Ghana Limited South Africa Biofuels 

3399 Lake Volta, Ghana Africa Atlantic Holdings Ltd United States of 
America 

Food crops 

3404 Agogo, Ghana Miro Forestry Company United Arab 
Emirates 

For wood and fibre 

3761 Asunafo South, Ghana Mim cashew & Agricultural Products 
Ltd. 

Singapore Biofuels, Food crops 

3764 Volta, Ghana Brazil Agro-Business Group Brazil Food crops 

3765 Akuse, Ghana, 
Nsawam, Ghana 

Compagnie fruitière  France Food crops 

3766 Winneba, Ghana Symboil AG Germany Biofuels, Food crops, Livestock 

3767 Agona, Ghana, Mpohor, 
Ghana 

DOS Palm Oil Production Limited (UK) United Kingdom of 
Great Britain and 
Northern Ireland 

Agriunspecified 



V 

 

3768 Volta, Ghana Gadco Enterprise PLC United States of 
America 

Food crops 

3770 Brewaniase, Ghana Volta Red United Kingdom of 
Great Britain and 
Northern Ireland 

Agriunspecified 

3772 Shai Hills, Shai Hills 
Production Reserve, 
Ghana 

Agricon Global Corporation United States of 
America 

Food crops 

3773 Prestea, Ghana, 
Ahanta, Takoradi, 
Ghana 

Norpalm AS, PZ Cussons Ghana Ltd. Norway, Ghana Agriunspecified 

3778 Volta River, Ghana VP Group Kenya Food crops 

3781 Ashanti, Ghana Global Environment Fund United States of 
America 

Food crops, For wood and fibre, 
Renewable Energy 

3798 Sene, Ghana African Plantation for Sustainable 
Development Ghana Ltd. 

South Africa For carbon sequestration/REDD, For 
wood and fibre 

3915 Agona, Ghana Formako Farms United Kingdom of 
Great Britain and 
Northern Ireland 

Food crops 

4341 Ashanti, Ghana Hulstein Warren Co Ltd United States of 
America 

Food crops 

4354 Afram Plains, Ghana Unknown Investor, Unknown investor Denmark, Ghana Food crops, Livestock 

4359 Atebubu, Ghana Ghana Farms 
 

Food crops 

4362 Atebubu, Ghana African Plantation for Sustainable 
Development Ghana Ltd. 

South Africa For carbon sequestration/REDD, For 
wood and fibre 

4582 Abenase, Ghana YONEC GmbH & Co. Naturenergie KG, 
Unknown Ghanian Company  

Germany, Ghana Agriunspecified, Food crops, Non-
food agricultural commodities 

4583 Adeiso, Ghana Unknown (German), Unknown (British), 
Unknown (Ghanaian) 

Germany, United 
Kingdom of Great 
Britain and Northern 
Ireland, Ghana 

Food crops 

4730 Volta, Ghana Volta Red United Kingdom of 
Great Britain and 
Northern Ireland 

Agriunspecified 

4795 Ampabame, Kumasi, 
Ghana 

Juaboso Agro Processing Company 
(JAPC), Unknown Investor 

Ghana, United States 
of America 

Food crops 

4940 Kintampo, Ghana AgDevCo United Kingdom of 
Great Britain and 
Northern Ireland 

Food crops 

5055 Daboase, Ghana SOCFIN Luxembourg Agriunspecified, Non-food agricultural 
commodities 



VI 

 

 

 

5131 Ghana Jiangxi Yu Sheng Food China Food crops 

5316 Tamale, Ghana Wienco, Nanton Chief , African Tiger 
Mutual Fund, Tamale Investments, 
Komma BV 

Ghana, Netherlands Conservation, Food crops 
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Appendix C 

The previous crops of the large-scale land acquisitions 
 
Table iv The previous crop which were derived from the average yield (tonnes/hectare) for each district 

for the years 2006 and 2007.  

LSLA Previous Crop Region District 

1 Cassava Brong Ahafo Pru 

2 Cassava Volta2 - 

3a Yam Northern Yandi 

3b Cassava Northern Tolon-Kumbungu 

4 Cassava Ashanti Asante Akim North 

5a Yam Ashanti Offinso 

5b Cassava Brong Ahafo Berekum 

6a Cassava 

Yam 

Brong Ahafo Pru 

6b Yam Brong Ahafo Sene 

7 Yam Eastern Afram Plains 

8 Teak1 Ashanti Asante Akim North 

Sekyere East 

9 Commercial forestry1 Brong Ahafo Asunafo North 

10 Cassava Volta2 - 

11a Cassava Greater Accra Dangbe East 

11b Yam 

Cassava 

Cassava 

Eastern 

Greater Accra 

Central 

West Akim 

Ga West 

Awutu Efutu Senya 

12 Cassava Volta2 - 

13a Cassava Volta2 - 

13b Oil palm1 Volta2 - 

14a Oil palm1 Western Mpohor Wassa East 

14b Oil palm1 Western Ahanta West 

15 Yam 

Cassava 

Brong Ahafo Sene 

16 Cassava Central Gomoa 

17 Cassava Ashanti Asante Akim North 

19 Oil palm1 Eastern Birim North 

20 Cassava Greater Accra Ga West 

21 Yam Northern Savelugu Nanton 

Source: (Ministry of Food and Agriculture 2016) 

1. Analysis of previous land cover. 

2. Regional statistics were used due to no statistics over the districts being available.   
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Appendix D 

Replacement crops for the GAEZ model 
 

 
Table v The crops that were not represented 

in the GAEZ model had to be replaced by 

another crop with ecological requirements. 

Current Crop Replacement 

Crop 

Teak Cacao 

Eucalyptus Jatropha 

Pineapple Cacao 

Cashew Cacao 

Mango Jatropha 

Moringa Jatropha 

Butternut squash Cacao 
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Appendix E 

Satellite images after and prior to the large-scale land acquisitions 
 

 
Table vi The figure 

number and the 

corresponding LSLA. 

Figure LSLA 

i 2 

ii 3a 

iii 3b 

iv 4 

v 5a 

vi 5b 

vii 6 

viii 7 

ix 8 

x 10 

xi 11a 

xii 12 

xiii 13a 

xiv 13b 

xv 14b 

xvi 15 

xvii 16 

xviii 17 

xix 18 

xx 19 

xi 20 
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Figure i The previous land cover class of L2 is difficult to distinguish from old satellite data, with the 

most pronounced features being larger irregular patches of bare soil or sand. L2 is situated on the opposite 

side of the Volta River form L12, thus also bordering the coastal wetlands (Anthony 2015). Hence, the 

large patches that apparent as bare soil could be the result of sediment deposition from the river Volta or 

its tributaries (Omengo et al. 2016;  Day et al. 2008). Although no traces of agriculture are evident from 

the old satellite data, there are several communities dispersed around L2, indicating that the area might 

have been utilised for different purposes. Besides from communities being present in the more recent 

satellite images, agricultural fields intertwined with savannah tree stands are evident in surrounding area 

in the new images. This leads to the conclusion that the previous land cover class of L2 probably was of 

multifunctional land use. 

Satellite data: (Google Earth Pro 2016c;  U.S. Department of the Interior and U.S. Geological Survey 

2006a). 

2016 2006 

Figure ii The small rectangular patches in the image from 2006 indicate that the previous LULC of L3a 

was small-scale farming. 

Satellite data: (Google Earth Pro 2010a;  U.S. Department of the Interior and U.S. Geological Survey 

2006b).  

2010 2006 
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Figure iii Even though the resolution is course in the image from 2006 it appears as if there are some 

fields present which indicate that the previous LULC of L3b was small-scale farming. 

Satellite data: (Google Earth Pro 2016d;  U.S. Department of the Interior and U.S. Geological Survey 

2006b). 

2016 2006 

Figure iv The L4 is situated close to a major road and at least two villages are situated less than two 

kilometres from L4, which suggests that the area was utilised prior to the LSLA. Except for the road, 

no straight features can be traced in the area it appears irregularly patchy with lighter and darker 

features, possibly evidence of the area’s location close to the transit zone between deciduous forest 

and Guinean savannah. 

Satellite data: (Google Earth Pro 2014b;  U.S. Department of the Interior and U.S. Geological Survey 

2008a). 

2014 2008 
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Figure v Both subareas of L5 are situated in two different forest reserves, Asubima Forest Reserve and 

Tain Tributaries Block II Forest Reserve (Wanders and Tollenaar 2016;  Westerlaan and Tollenaar 2013), 

and the satellite images prior to the teak plantations of L5 display highly degraded forests in both 

locations. There are no evident signs of agriculture, however the area surrounding L5a is today dominated 

by agriculture and consequently some human disturbances could be expected to have caused the 

degradation. Additionally, a study conducted in the area of the forest reserve in L5a in the years 2007-

2008 concluded that human disturbances were common in the Asubima reserve, mainly through 

collection of fuel wood and bushmeat (Pouliot et al. 2012). 

Satellite data: (Google Earth Pro 2015a;  U.S. Department of the Interior and U.S. Geological Survey 

2006c). 

2015 2006 

Figure vi L5b: see above figure v. 

Satellite data: (Google Earth Pro 2015b;  U.S. Department of the Interior and U.S. Geological Survey 

2008b). 

2008 2015 
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Figure vii The adjacent subareas of L6 are situated on different sides of the border between the 

Transition zone and the Guinean savannah zone. Yet the features of the previous land cover are 

very similar with a mosaic of agricultural fields and savannah forest and grass land, which often 

characterises the Guinean savannah zone (Liu et al. 2017). 
Satellite data: (Google Earth Pro 2013a;  U.S. Department of the Interior and U.S. Geological Survey 

2007a). 

2013 

2007 2007 
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Figure viii L7 is situated close to a village which indicated that it used to be utilised by humans 

before the land acquisition. 

Satellite data: (Google Earth Pro 2013b;  U.S. Department of the Interior and U.S. Geological Survey 

2011). 

2013 2011 

Figure ix The site for the L8 that could be identified in this report appears to have been used for large-

scale tree cultivation prior to the land acquisition in 2011. A part of the acquired area used to be a teak 

plantation (Osei-Peprah 2015), which could explain why the area appeared to be cultivated with trees 

prior to the land acquisition. 

Satellite data: (Google Earth Pro 2014c;  U.S. Department of the Interior and U.S. Geological Survey 

2010). 

2014 2010 
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Figure x The L10 is situated within the Keta Lagoon Complex Ramsar Site in the Volta River Delta 

(Anthony 2015;  Tufour 1999). Ramsar is an international agreement to protect important wetlands of 

the world and agreement originated from a convention in Ramsar, Iran, arranged by the United Nations 

Educational, Scientific and Cultural Organization (UNESCO) (1994;  Google Earth Pro 2002b). The 

previous land cover appears to be a mosaic of bare soil, trees and marshes. This correspond well with 

the ecological characteristics of the area, which is grass thicket and shrubs in the elevated grounds and 

marshes in the lower grounds (Tufour 1999). However, there are also features within the area that are 

rectangular and appear to be purposely made by humans. The appearance of roads and villages in the 

vicinity of the area further contribute to the conclusion that the land probably is utilised by humans. 

Satellite data: (Google Earth Pro 2013c, 2002a). 

2013 2002 

Figure xi The old satellite images covering the L11a are of insufficient quality and as a result is was 

difficult to visually distinguish the previous LULC class. Because of the inability to visually determine 

the previous land cover class, the behaviour of the NDVI-histograms of the old satellite image, within 

the area and in the buffer zone, was investigated. The two histograms showed a similar shape and 

variance, which indicated that the vegetation cover within and outside of the area is similar, however the 

NDVI distributions were statistically different hence more recent satellite data of the surrounding could 

not be used to estimate the previous LULC of L11a. Due to the area being densely populated the LSLA 

was probably utilized before the land acquisition. 

Satellite data: (Google Earth Pro 2016e;  U.S. Department of the Interior and U.S. Geological Survey 

2001a).   
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Figure xii The rice farm of L12 is situated on the eastern side of Volta River, just north of 

the Volta River Delta and on the border to the coastal wetlands (Anthony 2015). The southern 

part of the area appears as marshes whereas the northern parts sparse savannah and 

agriculture. 

Satellite data: (Google Earth Pro 2015e, 2002b). 

2002 2015 

Figure xiii The L13a is situated in the deciduous forest zone and the area appears to be rather unspoilt 

in the eastern part, however rectangular features in the western part indicates that either agriculture or 

forest clearance took place there before the land acquisition. 

Satellite data: (Google Earth Pro 2014d, 2010b) 

2014 2010 
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Figure xiv It was difficult to distinguish the previous land cover class of L13b from 

satellite data, however the company claims that the property already was an oil palm 

cultivation when they acquired it (Volta Red Limited 2016). 

Satellite data: (Google Earth Pro 2014e;  U.S. Department of the Interior and U.S. 

Geological Survey 2009). 

 

2009 2014 

Figure xv In L14b the appearance of an oil farm is even more pronounced than in 14a due to fewer 

clouds. 

Satellite data: (Google Earth Pro 2012;  U.S. Department of the Interior and U.S. Geological Survey 

2000). 

2000 2012 
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Figure xvi Even though the forested areas are sparsely scattered in the area 

surrounding L15, it still holds the characteristics of the Transit zone with 

savannah woodland being discontinued by forested areas. The previous land 

cover within the LSLA 15 appears in the same pattern, but with agricultural 

fields also being present. 

Satellite data: (Google Earth Pro 2016g;  U.S. Department of the Interior and 

U.S. Geological Survey 2008a).  

2008 2016 

Figure xvii A mosaic of dense and sparse vegetation appears in the old satellite 

images of L16, but no straight borders and rectangular features indicating 

agriculture is evident. The adjacent areas do, however, indicate the presence of 

agriculture with rectangular features being scattered across the landscape along 

with the patches of sparse and dense vegetation. Other features indicating 

human disturbances in the area are the occurrence of roads and the vicinity to a 

larger town and smaller villages. 

Satellite data: (Google Earth Pro 2016h;  U.S. Department of the Interior and 

U.S. Geological Survey 2003). 

2003 2016 
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Figure xviii The old satellite images show no indications of agriculture, instead the area appears to 

blend in well with the surrounding, with the exception of a village located in the centre of the area of 

L17. Although agricultural activities might not have been present before the land acquisition, the direct 

vicinity of the village indicates that the area probably was utilised by humans. 

Satellite data: (Google Earth Pro 2014f;  U.S. Department of the Interior and U.S. Geological Survey 

2011). 

2011 2014 

Figure xix The satellite data also contributed to difficulties in estimating the previous land cover class 

for Land more recent satellite data had to be utilised to understand the land covers in the area. Through 

the comparison of the NDVI-histograms within and outside of the area of L18, the Wilcoxon test failed 

to reject the null hypothesis, (p=0.391) that the NDVI-values within and outside of the LSLA had the 

same median at significant level of 0.05. An assumption was then made that the area surrounding L18 

has not changed significantly since the L18 was initiated. The area surrounding the L18 appears to be a 

mosaic of forest, clear cut areas and oil palm plantation. It is then assumed that the previous land cover 

class of L18 is partly large-scale cultivation, more specifically oil palm cultivation. 

Satellite data: (Google Earth Pro 2015f;  U.S. Department of the Interior and U.S. Geological Survey 

2007b). 

2007 2015 
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Figure xx L19 appear to have some agriculture and grasslands with forest stands. 

Satellite data: (Google Earth Pro 2015g;  U.S. Department of the Interior and U.S. Geological Survey 

2006a).  

2006 2015 

Figure xi The area surrounding L20 appear to be densely cultivated whereas the area within the L20 only 

show two rectangular features indicating agricultural fields. Sparsely scattered forest stands and savannah 

grasslands are patched between the fields (Liu et al. 2017). 

Satellite data: (Google Earth Pro 2016i;  U.S. Department of the Interior and U.S. Geological Survey 

2001b). 

2001 2016 



XXI 

 

 

  



XXII 

 

Institutionen för naturgeografi och ekosystemvetenskap, Lunds Universitet.  

Studentexamensarbete (seminarieuppsatser). Uppsatserna finns tillgängliga på institutionens 

geobibliotek, Sölvegatan 12, 223 62 LUND. Serien startade 1985. Hela listan och själva uppsatserna 

är även tillgängliga på LUP student papers (https://lup.lub.lu.se/student-papers/search/) och via 

Geobiblioteket (www.geobib.lu.se) 

The student thesis reports are available at the Geo-Library, Department of Physical Geography and 

Ecosystem Science, University of Lund, Sölvegatan 12, S-223 62 Lund, Sweden. Report series started 

1985. The complete list and electronic versions are also electronic available at the LUP student papers 

(https://lup.lub.lu.se/student-papers/search/) and through the Geo-library (www.geobib.lu.se) 

 

400 Sofia Sjögren (2016) Effective methods for prediction and visualization of contaminated 

soil volumes in 3D with GIS 

401 Jayan Wijesingha (2016) Geometric quality assessment of multi-rotor unmanned aerial 

vehicle-borne remote sensing products for precision agriculture 

402 Jenny Ahlstrand (2016) Effects of altered precipitation regimes on bryophyte carbon 

dynamics in a Peruvian tropical montane cloud forest 

403 Peter Markus (2016) Design and development of a prototype mobile geographical 

information system for real-time collection and storage of traffic accident data 

404 Christos Bountzouklis (2016) Monitoring of Santorini (Greece) volcano during post-unrest 

period (2014-2016) with interferometric time series of Sentinel-1A 

405 Gea Hallen (2016) Porous asphalt as a method for reducing urban storm water runoff in 

Lund, Sweden 

406 Marcus Rudolf (2016) Spatiotemporal reconstructions of black carbon, organic matter and 

heavy metals in coastal records of south-west Sweden 

407 Sophie Rudbäck (2016) The spatial growth pattern and directional properties of Dryas 

octopetala on Spitsbergen, Svalbard 

408 Julia Schütt (2017) Assessment of forcing mechanisms on net community production and 

dissolved inorganic carbon dynamics in the Southern Ocean using glider data 

409 Abdalla Eltayeb A. Mohamed (2016) Mapping tree canopy cover in the semi-arid Sahel 

using satellite remote sensing and Google Earth imagery 

410 Ying Zhou (2016) The link between secondary organic aerosol and monoterpenes at a 

boreal forest site 

411 Matthew Corney (2016) Preparation and analysis of crowdsourced GPS bicycling data: a 

study of Skåne, Sweden 

412 Louise Hannon Bradshaw (2017) Sweden, forests & wind storms: Developing a model to 

predict storm damage to forests in Kronoberg county 

413 Joel D. White (2017) Shifts within the carbon cycle in response to the absence of keystone 

herbivore Ovibos moschatus in a high arctic mire 

414 Kristofer Karlsson (2017) Greenhouse gas flux at a temperate peatland: a comparison of the 

eddy covariance method and the flux-gradient method 

415 Md. Monirul Islam (2017) Tracing mangrove forest dynamics of Bangladesh using 

historical Landsat data 

416 Bos Brendan Bos (2017) The effects of tropical cyclones on the carbon cycle 

417 Martynas Cerniauskas (2017) Estimating wildfire-attributed boreal forest burn in Central 

and Eastern Siberia during summer of 2016 

418 Caroline Hall (2017)The mass balance and equilibrium line altitude trends of glaciers in 

northern Sweden 

419 Clara Kjällman (2017) Changing landscapes: Wetlands in the Swedish municipality 

Helsingborg 1820-2016 

420 Raluca Munteanu (2017) The effects of changing temperature and precipitation rates on 

free-living soil Nematoda in Norway. 

421 Neija Maegaard Elvekjær (2017) Assessing Land degradation in global drylands and 

possible linkages to socio-economic inequality 



XXIII 

 

422 Petra Oberhollenzer, (2017) Reforestation of Alpine Grasslands in South Tyrol: Assessing 

spatial changes based on LANDSAT data 1986-2016 

423 Femke, Pijcke (2017) Change of water surface area in northern Sweden 

424 Alexandra Pongracz (2017) Modelling global Gross Primary Production using the 

correlation between key leaf traits 

425 Marie Skogseid (2017) Climate Change in Kenya - A review of literature and evaluation 

of temperature and precipitation data   

426 Ida Pettersson (2017) Ekologisk kompensation och habitatbanker i kommunalt planarbete 

427 Denice Adlerklint (2017) Climate Change Adaptation Strategies for Urban Stormwater 

Management – A comparative study of municipalities in Scania 

428 Johanna Andersson (2017) Using geographically weighted regression (GWR) to explore 

spatial variations in the relationship between public transport accessibility and car use : a 

case study in Lund and Malmö, Sweden 

429 Elisabeth Farrington (2017) Investigating the spatial patterns and climate dependency 

of Tick-Borne Encephalitis in Sweden 

430 David Mårtensson (2017) Modeling habitats for vascular plants using climate factors 

and scenarios - Decreasing presence probability for red listed plants in Scania 

431 Maja Jensen (2017) Hydrology and surface water chemistry in a small forested 

catchment : which factors influence surface water acidity? 

432 Iris Behrens (2017) Watershed delineation for runoff estimations to culverts in the 

Swedish road network : a comparison between two GIS based hydrological modelling 

methods and a manually delineated watershed 

433 Jenny Hansson (2017) Identifying large-scale land acquisitions and their agro-

ecological consequences : a remote sensing based study in Ghana 

  

 

 


